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Abstract. We investigate a deep transfer learning methodology to per-
form water segmentation and water level prediction on river camera
images. Starting from pre-trained segmentation networks that provided
state-of-the-art results on general purpose semantic image segmentation
datasets ADE20k and COCO-stuff, we show that we can apply transfer
learning methods for semantic water segmentation. Our transfer learn-
ing approach improves the current segmentation results of two water
segmentation datasets available in the literature. We also investigate the
usage of the water segmentation networks in combination with on-site
ground surveys to automate the process of water level estimation on river
camera images. Our methodology has the potential to impact the study
and modelling of flood-related events.

1 Introduction

In recent years, the price and accessibility of surveillance cameras has greatly
improved. Notably, this progress has allowed many organizations, private and
public, to install surveillance cameras along rivers and other water bodies. The
availability of these cameras allows the interested parties to monitor the condi-
tions of the river as well as its surroundings for purposes such as boating, fishing,
flood monitoring, etc. [14, 27].

For the flood-risk management sector, the use of such cameras brings an
unparalleled opportunity for the study and modelling of flood-related events.
Indeed, as of now, to measure the water level of rivers, it is necessary to rely
on water gauges [25]. Gauges are expensive to install and maintain, and their
measurements can be unreliable when the river goes out-of-bank during a flood.
Satellite data from Synthetic Aperture Radar (SAR) can provide information
when the river goes out-of-bank, but the frequency of satellite overpasses is
limited (currently at most once in each 12 hour period)[17, 5].

River cameras offer a new possibility: by using the measurements of the
heights of particular landmarks or objects in the field of view of the camera, or
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by matching the camera image with light detection and ranging (LIDAR) digital
surface model data [10], it becomes possible to directly estimate the water level
from a camera. Such an example is given in Fig. 1. This approach is much more
flexible in matter of river surveillance location choices as well as budget.

Fig. 1. Sequence of river camera images with annotated landmark heights L1 (10m),
L2 (11m) and L3 (12m). At T1, water (segmented in blue) water has not reached any
of the landmarks: the water level is below 10m. At T2, L1 is reached by water, but not
L2 or L3: the water level is between 10 and 11m. At T3, water has reached L2 but not
L3: water level is between 11 and 12m. At T4, water has reached all the landmarks:
water level is above 12m.

When considering this approach, the water level measurements must be cal-
culated through a complex workflow: an operator (algorithm or human) has to
segment the image to find which areas/landmarks are flooded. Once the operator
knows which landmarks were flooded or not, it is possible to estimate the water
level: the lower bound will be the height of the highest flooded landmark, and the
upper bound will be the height of the lowest not flooded landmark. However, if a
human operator is considered, this process makes the water level measurement,
time consuming, and possibly an unusable approach since the number of images
to study (locations, extent in time, framerate) are typically large.

Our goal is to automate the process of river water segmentation by applying
transfer learning (TL) on deep convolutional neural networks, and assess its po-
tential for flood modelling. Specifically, for the datasets at our disposal, we study
the relevance of using TL approaches in order to perform water segmentation
and possibly use this segmentation to estimate the river levels as accurately as
possible. Our paper brings three novel contributions:

1. We develop water segmentation algorithms by using TL, and demonstrate
that it outperforms the current methods presented in the literature.

2. We provide an insightful comparison of several TL approaches for water
segmentation.

3. We show that it is possible to use our semantic segmentation method in
combination with ground survey measurements to estimate water levels for
a variety of locations.

In Section 2, we discuss the current related methods that are used to adress
the problem of water segmentation on river camera images. In Section 3, we
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motivate and explain the approach we used to tackle the problem of water seg-
mentation. In Section 4, we show the results of our TL approach. We compare
our method with the current state-of-the-art methods and show that we are able
to improve the water segmentation performance. In Section 5, we analyze the
efficiency of water segmentation networks to estimate the river levels. We make
our final observations and conclusions in Section 6.

2 Related Work

There have been many successful applications of deep learning to images from
surveillance cameras. Some examples include deep learning for crowd counting
[30, 22], abnormal behavior detection [8], pedestrian detection [26] or even park-
ing occupancy detection [1]. Until now however, most attempts that have tried
to tackle the problem of water detection in the context of floods have been real-
ized using hand-crafted features [9]. However, those algorithms remain sensitive
to luminosity and water reflection problems [9].

A deep learning approach was applied to flood detection in [16]. The authors
perform water detection on a home-made, accessible, dataset of 300 water images
that were gathered from the web and annotated manually. The performance of
three semantic segmentation networks (FCN-8 [15], Tiramisu [12] and Pix2Pix
[11]) are evaluated. By training the networks from scratch, Tiramisu produces
the best results, with 90.47% pixel accuracy. It is not clear however if the results
are transferable to water level estimation for real cases.

In another work, water detection is performed in the context of autonomous
driving for low-cost boats [23]. In this work, a deep learning architecture using
a fully convolutional network based on U-Net [20] to perform the water seg-
mentation is proposed. A pixel accuracy of 97.45% is obtained. However, the
evaluation protocol used images from the same video streams (therefore very
similar images) both for training and test sets, which suggests that the reported
results might be overestimated.

In [28], a deep semantic segmentation network is trained from scratch for
water segmentation and river level estimation. The biggest originality of this
paper lies in their development of the SOFI index (the percentage of segmented
water pixels in the image) to evaluate the quality of their results.

A water level estimation model based on voluntary geographic information
(VGI), LIDAR data and river camera images is developed in [13]. Notably, ran-
dom forests are used to develop a waterline detection algorithm [2].

3 Transfer Learning for Water Segmentation

In Section 2, we saw that little research has focused on water segmentation,
especially in the context of flooding. Indeed, there are only a few specific water
segmentation datasets.
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However, semantic segmentation of natural images is an area that has been
extensively studied over the past years. State-of-the-art algorithms for multi-
purpose semantic segmentation are based on the use of Fully Convolutional
Networks (FCNs) [15].

The most well-known datasets used for the comparison of semantic segmenta-
tion algorithms are COCO-stuff [3] and ADE20k [31]. These two datasets contain
large sets of images semantically annotated with 182 types of labels for COCO-
stuff and 150 for ADE20k. As we show in Table 1, some label types of these two
datasets correspond to water bodies. These two datasets, among others [6, 7],
are widely used for evaluating semantic segmentation algorithms.

Table 1. Water body related images in ADE20k and COCO-stuff datasets.

ADE20k dataset COCO-stuff dataset

Training Test Training Test

water 709 75 river 2113 90
sea 651 57 sea 6598 292
river 320 26 water-other 2453 79
waterfall 80 9

Given these observations, we decided to tackle the problem of water segmen-
tation using transfer learning (TL).

For a supervised learning problem, the aim is to find a function f : X → Y
from a dataset of N input-output pairs B = {(xi, yi)

N
i=1 : xi ∈ X, yi ∈ Y } such

that the function f should be able to predict the output of a new (possibly
unseen) input, as accurately as possible. The set X is called the input space,
and Y the output space.

With TL, the aim is also to build a function ft for a target problem with
input space Xt, output space Yt and possibly a dataset Bt. However, TL tries
to build ft by transferring knowledge from a source problem s with input space
Xs, output space Ys and a dataset Bs.

Inductive TL [18] is the branch of TL related to problems where we have
datasets of input-output pairs in both source and target domains, and where
Xs = Xt and Ys 6= Yt. Typically, inductive TL is used to repurpose well known,
efficient machine learning models trained on large datasets to related problems
with smaller training datasets [19, 21].

In our case, we want to use inductive TL where the source problem s will
be the segmentation of ADE20K or COCO-stuff images, and the target problem
t will be the binary water segmentation of river camera images. We think the
problems of segmenting the ADE20K and COCO-stuff datasets are especially
relevant in our context given the fact that they contain labels of water bodies,
which makes source and target output domains fairly similar.

In the scope of this study, we chose to focus on three TL approaches. With
the first TL approach, we use the pre-trained network as such, taking advantadge
of the water body labels to directly create binary semantic segmentation masks.
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With the second approach, we consider model transfer approaches, where we fine-
tune semantic segmentation networks pre-trained on either ADE20K or COCO-
stuff on water segmentation datasets. We also test a third TL approach related
to sample selection, where we fine-tune the pre-trained network on the subset of
ADE20k and COCO-stuff images containing water bodies. While other inductive
TL approaches exist and could possibly outperform our current results, we found
that our methods are computationally efficient, which will be critical for potential
future applications in near-real-time water level estimation.

4 Water Segmentation Experiments

In this section, we discuss the water segmentation experiments that were per-
formed on water segmentation datasets available in the literature. We also com-
pare our results to state-of-the-art water detection results.

4.1 Protocol

Pre-trained networks. The purpose of our experiments is to evaluate the
relevance of applying TL for water segmentation. As we explained in Section 3,
we chose to consider two datasets for pre-training: ADE20k and COCO-stuff. We
chose these datasets as they contain water-labelled images. For each of these two
datasets, we study one of its best performing semantic segmentation networks.

For ADE20k, the network we considered is an FCN with a ResNet50 encoder
and an UperNet decoder[31]. UperNet [29] is a model that is based on Pyramid
Pooling in order to avoid the use of deconvolution layers. During training, the
images are rescaled at 5 different sizes: the shorter edge of the image is rescaled to
either 300, 375, 450, 525 or 600 pixels, and the bigger edge is rescaled according
to the image aspect ratio. We re-used the original implementation as well as the
available pre-trained network weights.

For COCO-stuff, we chose the state-of-the-art network referenced by the
authors of the dataset, DeepLab (v2). It has a ResNet101 encoder, and an atrous
spatial pyramid pooling decoder able to robustly segment objects at mutliple
scales [4]. We used a pytorch implementation of the model with available pre-
trained COCO-stuff weights4.

First TL approach: pre-trained network use. With this method, we use the pre-
trained weights of the networks: we do not tune any layer of the network. We
apply the pre-trained networks on our images, and aggregate the predictions of
water body labels (lake, river, sea, water, and other similar water related labels)
as the output water segmentation. Given that the networks were trained with
images of water bodies, this first, simple approach should provide a baseline
result for the evaluation of our other approaches. We refer to this approach as
Pre-Trained.

4 https://github.com/kazuto1011/deeplab-pytorch
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Second TL approach: networks fine-tuning. As the output of ADE20k seman-
tic segmentation networks is not binary, the last output layers of the semantic
segmentation networks could not be directly reused in our binary semantic seg-
mentation problem. This is why we considered three fine-tuning methodologies:

– HEAD. With this approach, we only retrain the last output layers of the
network. The rationale is that the network has already learned all the neces-
sary filters to perform water segmentation, and it requires only to learn how
to perform the binary segmentation.

– WHOLE. We fine-tune the entire network, with a random initialization of
the last binary output layers.

– 2STEPS. We first retrain the last layer of the network with all the other
layers kept as is. Once the the last layer is retrained, we fine-tune the entire
network. This approach can be considered as retraining the entire netwok
after having applied the HEAD approach.

Third TL approach: sample selection. As we show in Table 1, the two datasets on
which our networks were pre-trained contain images with water related labels.
We thus consider a sample selection approach algorithm in order to perform TL:
we extract all the images containing water labels from the ADE20k and COCO-
stuff dataset, and fine-tune the two pre-trained networks on this new dataset
with binary masks. In our experiments, we will refer to this approach as Sample
Selection. We then fine-tuned the network using the WHOLE approach. HEAD
and 2STEPS were also tested during our experiments, but for clarity purposes,
we chose to only present the results using the approach providing the best results.

Relevance of using TL. In order to understand the relative performance of these
TL approaches, we also considered what results could be obtained with the same
networks trained from scratch (only using the training images of the dataset). We
will refer to this approach as Scratch. For the same purpose, we also compared
our TL approach with the water semantic segmentation results obtained in the
literature [16, 23].

Training. We trained the networks using the parameters recommended by the
authors [31, 4]. For the fine-tuning and scratch approaches, we increased the
number of epochs to 300 in order to ensure full convergence for all the networks.
For the approaches WHOLE and 2STEPS, we used an initial learning rate value
10 times smaller than its recommended value (0.001) in order to start with less
agressive updates.

4.2 Datasets

Our experiments are performed on two datasets used for water segmentation
in the literature, and which we use for evaluating the performance of our TL
methodology.
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– INTCATCH, an available dataset of RGB images annotated with binary
semantic segmentation water/not-water masks [23]. The images come from
a camera positioned on a boat. It was designed for waterline detection for
driving autonomous boats. The dataset consists of 144 training images and
39 test images. We noticed that the images in training and test come from
two video streams with relatively high frame-rates, which makes training
and test datasets look similar.

– LAGO (named after the main author[16]), an accessible dataset of RGB im-
ages with binary semantic segmentation of water/not-water labelled pixels.
The dataset was created through manual collection of camera images having
a field-of-view capturing riverbanks. This dataset was used for river segmen-
tation [16]. The dataset is made of 300 images, with 225 used in training,
and 75 in test.

Sample images of the datasets are shown in Fig. 2.

Fig. 2. Sample images from the datasets used for the water segmentation experiments.

4.3 Performance criteria

Let I ∈ [0, 255]H×W×3 be a typical 8-bit RGB, image of height H and width
W . Let S ∈ [0, 1]H×W be its corresponding, ground-truth, pixel-wise, semantic
segmentation mask, and Ŝ ∈ [0, 1]H×W be the estimation (prediction) of this
segmentation made by our semantic segmentation algorithm. The two perfor-
mance criteria used for the evaluation of semantic segmentation methods are
defined as follows:

Pixel Accuracy (Acc). In (1), we define the pixel accuracy as the percentage of
pixels correctly estimated by our algorithm.

Acc =

∑H
y=1

∑W
x=1 1− |(S(y, x)− Ŝ(y, x))|

H ×W
(1)
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Mean Intersection over Union (MIoU). The Intersection over Union (IoU ) rep-
resents the percentage of overlap between the ground truth and its estimation.
The MIoU criteria defined in (2) is the average of the IoU over all the pixel
labels. In our case, the pixel label types are water and background (not-water).
Thus, we need to consider the binary case:

MIoU =
1

2

H∑
y=1

W∑
x=1

S(y, x)Ŝ(y, x)

S(y, x) + Ŝ(y, x)− S(y, x)Ŝ(y, x)

+
1

2

H∑
y=1

W∑
x=1

(1− S(y, x))(1− Ŝ(y, x))

(1− S(y, x)) + (1− Ŝ(y, x))− (1− S(y, x))(1− Ŝ(y, x))

(2)

The advantage of using MIoU over Acc is that it is less sensitive to class
imbalance within the image. However, one of the works we are comparing with
provide their results for Acc only. For the sake of transparency, we provide our
results using both criteria.

4.4 Results and analysis

The results of the water segmentation approaches are presented in Table 2.

Table 2. Results of the water segmentation approaches on LAGO and INTCATCH
test datasets.

LAGO INTCATCH
MIoU Acc MIoU Acc

Gonzalez et al.[16] 81.91 90.2 - -
Steccanella et al.[23] - - - 97.5

ResNet50-UperNet Pre-Trained 90.2 95.4 97.4 98.7
Pre-trained on ADE20k Fine-Tuning HEAD 89.06 94.37 98.06 99.03

WHOLE 93.32 96.50 98.94 99.47
2STEPS 93.09 96.44 99 99.5

Sample Selection 92.2 96.95 98.95 99.48
Scratch 83.41 91.74 96.09 98.02

DeepLab Pre-Trained 90.34 95.52 97.70 98.85
Pre-trained on COCO-stuff Fine-Tuning HEAD 92.19 96.04 99.07 99.54

WHOLE 93.74 96.76 99.19 99.59
2STEPS 93.72 96.75 99.16 99.56

Sample Selection 91.69 96.31 98.59 99.3
Scratch 80.70 89.95 98.73 99.36

As explained in Section 4.2, we noticed that the images contained in the
INTCATCH training and test sets are largely similar to each other as they are
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frames randomly sampled from the same two videos. This is how we explain the
excellent performance of the different networks tested on these images.

On both LAGO and INTCATCH datasets, we can observe that, for both
networks, the pre-trained networks, and TL approaches provide better results
than the methods presented in the literature [16, 23]. We can also see that the
networks retrained from scratch obtain results similar to the ones of the state-of-
the-art on the respective datasets. This shows that the use of semantic segmenta-
tion networks that are first trained on large multi-purpose datasets can improve
the performance. Indeed, even without any kind of fine-tuning, the pre-trained
networks already outperform the state-of-the-art.

For the three datasets and both networks, fine-tuning the entire networks
(WHOLE and 2STEPS) or using sample selection always provides better results
than the pre-trained networks. This shows that it is possible to further im-
prove the performance of the segmentation by fine-tuning the networks weights.
Between sample selection and fine-tuning, the fine-tuning approaches seems to
provide the best results.

We also observe that HEAD provides results relatively close to or inferior
to the pre-trained approach. Furthermore, 2STEPS approach always obtains
better results than HEAD. This implies that it is necessary to fine-tune the
entire networks rather than retraining only its output layer.

5 River Level Estimation Experiments

In this section, our goal is to describe the experiments that we performed to
evaluate whether the semantic segmentation networks assessed in the previous
section can be used in the context of river level estimation.

5.1 Datasets

Our river level estimation datasets consist of RGB images coming from video
streams of Farson Digital river cameras located at 4 different locations in the
U.K. [27]. For each location, the camera position and orientation is fixed, which
means that the field of view stays the same for all of the images for a location.

Each location is annotated with landmarks for which heights were manually
measured during a ground survey. The images composing the datasets were all
sampled from the camera video streams with the purpose of observing a specific
flood event. On each sampled image, the landmarks were annotated with binary
information flooded/unflooded, that could be used to estimate the water levels
in the images (see Fig. 1).

From our first location, Diglis Lock, we extracted 141 images and used 7 land-
marks. For the second location, Evesham, we extracted 134 images and used 13
landmarks. For the third location, Strensham Lock, we extracted 144 images and
used 24 landmarks. For the fourth location, Tewkesbury Marina, we extracted
144 images and used 4 landmarks. In our nomenclature, Farson corresponds to



10 R. Vandaele et al.

Fig. 3. Images from Farson river camera datasets [27], with their landmarks in red
dots.

the union of the images collected from the 4 mentioned locations. Sample images
for each of the locations are given in Fig. 3.

5.2 Protocol

Performance criteria. As explained in Section 5.1, only specific landmark
(pixel) locations were annotated on those images. This is why we chose to use
the balanced accuracy classification score BAcc defined as:

BAcc = 100× (
1

2

TF

F
+

1

2

TU

U
), (3)

where F is the number of actual flooded landmarks, TF the number of correctly
classified flooded landmarks, U the number of actual unflooded landmarks and
TU the number of correctly classified unflooded landmarks. Given that the ex-
tracted time periods of the river camera datasets might create an imbalance
between flooded or unflooded landmarks, therefore, we think (3) is a relevant
performance criteria to consider.

Experimental design. We reused the networks that were trained in Section
4 to produce binary segmentation masks of the river camera images using the
fully trained/fine-tuned networks. A landmark is predicted as flooded if its pixels
location is predicted as water, and unflooded otherwise.
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A TL approach trying to directly output the water level from the camera
images could have been considered. However, this approach requires water-level
annotated images for each location as the water levels will vary. Thus, we assess
that our landmark classification approach is more relevant.

5.3 Results and analysis.

Table 3. Balanced accuracies (see Section 5.2) of landmark classification using TL on
the Farson dataset. Note that Pre-Trained and Sample Selection do not need to be
fine-tuned over LAGO or INTCATCH datasets.

Network trained/fine-tuned on:

- LAGO INTCATCH
BAcc BAcc BAcc

ResNet50-UperNet Pre-Trained 83.4
Pre-trained on ADE20k Fine-Tuning HEAD 87.96 78.89

WHOLE 93.06 88.03
2STEPS 93.29 88.25

Sample Selection 90.97
Scratch 91.56 80.47

DeepLab Pre-Trained 87.41
Pre-trained on COCO-stuff Fine-Tuning HEAD 93.41 91.65

WHOLE 95.04 94.31
2STEPS 95.06 93.78

Sample Selection 91.32
Scratch 87.1 85.55

The results are presented in Table 3. The scratch approach, which does not
use TL, tends to perform worse than the pre-trained networks without any kind
of fine-tuning. Training the network from scratch on LAGO dataste seems to be
the most favorable case. We explain this by the fact that the scratch approach
overfits its training dataset, and the LAGO dataset is focusing on river images
similar to the Farson dataset.

We can observe that fine-tuning the networks on either LAGO or INTCATCH
allows improvement in the landmark classification performance. The WHOLE
and 2STEPS approaches that fine-tune the entire networks, obtain the best
overall performance. Only retraining the last layer (HEAD) has varying impacts
on the performance: while it is always better than retraining the network from
scratch, it does not always reach the performance of using the pre-trained net-
work.

The sample selection approach provide good performance on both networks.
However, when comparing the TL methods, it is always outranked by fine-tuning
the entire networks (WHOLE and 2STEPS) over LAGO, which is a dataset
containing river images. Note that in the context of reusing the semantic seg-
mentation networks for landmark detection over the Farson dataset, the sample
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selection approach is similar to the WHOLE fine-tuning approaches, the differ-
ence being the dataset on which they are fine-tuned.

We can also observe that DeepLab network seems to obtain better results
than ResNet50-UperNet overall. From what we have seen on the segmentation
results, we believe that the choice of landmark locations played a significant role,
and that these results should not be directly correlated to the quality of the seg-
mentation: for example, we observed that while DeepLab seemed to be able to
make better distinctions between the edges of the river (where the landmarks
are typically located), it was also making more mistakes than ResNet50-UperNet
elsewhere in the image (the sky was sometimes considered as water, reflections
in the water were not always considered as water). In our case of water seg-
mentation in time series images, several post-segmentation filtering approaches
could be considered to improve the landmark detection results: if the N images
before and after the current image have segmented landmark X as water/not-
water, it is likely that landmark X is also water/not-water in the current image.
The information regarding the landmark height could also be used to perform
filtering: if N landmarks located at higher locations are segmented as water, it
is likely that the lower landmarks should also be segmented as water.

6 Conclusion

In this paper, we have explored the possibilities of using TL in the context of
water segmentation, especially for river level detection.

We have shown that TL approaches were able to outperform the current lit-
erature in water segmentation on two different datasets. We have also proven
that using fine-tuning and/or sample selection could further improve the water
segmentation performance. These networks obtained significantly worse perfor-
mance once retrained from scratch.

We have supplied quantified and encouraging results to demonstrate the util-
ity of our proposed TL approaches in the context of flood modelling, able to
predict flood situations with high accuracy.

Future research will focus on an in-depth analysis of our results for practical
flood modelling studies, with the aim to provide more advanced statistics helpful
to hydrologists, but that are going beyong the scope of this current study [24].

More practically, we would like to consider merging river camera images
with LIDAR digital surface model data [10], which can allow to obtain surface
elevation of the terrain on a 1m grid. In theory, this could allow our approach
to rely on more landmarks for the estimation of water levels, while avoiding
the tedious work of performing ground surveys to measure the heights of those
landmarks.
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