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Abstract 

  Data on orienting and habituation to irrelevant sound can distinguish between task-

specific and general accounts of auditory distraction: Distractors either disrupt specific 

cognitive processes (e.g., Jones, 1993; Salamé & Baddeley, 1982), or remove more general-

purpose attentional resources from any attention-demanding task (e.g., Cowan, 1995). Tested 

here is the prediction that there is no further auditory distraction effect on immediate serial 

recall with increments in the number of distractors beyond the “changing-state point”  of two 

discrete distractors. A Bayes factor analysis refutes this nil hypothesis: This prediction, a key 

element of the strong changing-state hypothesis, is shown to be less likely than two 

competing alternatives. Quantitative predictions for distraction as a function of the number of 

distracters are derived for an orienting response (OR) and a stimulus mismatch (SMM) 

hypothesis, representing general and task-specific accounts respectively. The data are shown 

to be more likely under the SMM hypothesis. Prospects for a parametric account of auditory 

distraction are considered.      

 

Keywords: auditory distraction, irrelevant sound effect, working memory, orienting, 

habituation 
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  Cognitive performance upon a range of different tasks has been shown to be 

susceptible to disruption by auditory distraction. Tasks vulnerable to the disruptive effects of 

irrelevant sound include such activities as counting (Logie & Baddeley, 1987), arithmetic 

(Banbury & Berry, 1997, 1998), proof-reading (Jones, Miles, & Page, 1990), and data entry 

(Beaman, 2005).  The effects of distraction are not equivalent across all tasks, being more 

robust and pronounced when immediate verbal memory is tested (e.g., Bell, Röer, Dentale, & 

Buchner, 2012; Ellermeier & Hellbrück, 1998; Elliott, 2002; Jones, 1993; Jones, Madden & 

Miles, 1992; Lange, 2005; Salamé, & Baddeley, 1982) and in particular when the order of 

the verbal sequence needs to be retained (Beaman & Jones, 1997, 1998; Farley, Neath, 

Allbritton & Surprenant, 2007; Gisselgård, Uddén, Ingvar & Petersson, 2007; Henson, 

Hartley, Burgess, Hitch & Flude, 2003; Jones & Macken, 1993; Neath, Guérard, Jalbert & 

Surprenant, 2009), all of which are features of typical serial short-term memory tasks 

(Oberauer et al., 2018). In consequence, the auditory distraction known as the “irrelevant 

sound effect” (Beaman & Jones, 1997) has both featured heavily in the development of short-

term memory models and been explained in terms of interference processes in short-term 

memory (Jones, Beaman & Macken, 1996; Neath, 2000; Norris & Page, 2003; Salamé & 

Baddeley, 1982). 

In a typical short-term memory task involving irrelevant sound, auditory distractors 

are played alongside the presentation of visual memoranda. Participants are required to 

ignore anything they may hear having been given the reassurance there will be no test 

concerning the content of the sound.  On presentation of a recall cue, participants attempt to 

recall the visually-presented items in the original order. The apparent task-specificity of 

auditory distraction has given rise to a number of hypotheses to account for auditory 

distraction effects in terms of interference with specific representations, such as the 

suggestion that speech interferes with the retrieval of phonological representations (Salamé, 
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& Baddeley, 1982) or other verbal codes (Neath, 2000), or processes such as the maintenance 

of sequence order (Jones, 1993). Indeed, the original finding that speech is a particularly 

disruptive distractor resulted in the reformulation of a phonemic output buffer (Baddeley & 

Hitch, 1974) as a phonological input store within the influential multistore model of working 

memory (Baddeley, 1986; Salamé, & Baddeley, 1982; for a discussion, see Shallice & 

Cooper, 2011). To be considered here are the possibilities that a specific working memory 

account of auditory distraction is unnecessary if it can be assumed by a more general 

attentional account, and whether a parametric account of auditory distraction as a derivable 

function of the distractors is possible. 

 

Theories of Auditory Distraction by Irrelevant Sound 

The phonological store hypothesis, as it originally existed, assumed that unattended 

and task-irrelevant speech (but not irrelevant sound) disrupted verbal memory. This 

disruption took place via a confusion between the phonemes in the to-be-ignored auditory 

distractors and the to-be-recalled visual-verbal memoranda. Later results showed that the 

phenomenon was not restricted to irrelevant speech as various forms of non-speech also 

showed the same effect (e.g., Jones & Macken, 1993; Klatte, Kilcher, & Hellbrück, 1995; 

Schlittmeier, Hellbrück & Klatte, 2008). On top of this, further studies failed to replicate the 

original Salamé & Baddeley (1982) finding that irrelevant speech disruption was a function 

of the phonological similarity between irrelevant auditory items and visual memoranda 

(Jones & Macken, 1995; Larsen, Baddeley, & Andrade, 2000; LeCompte, & Shaibe, 1997), 

leading to the abandonment of this particular hypothesis. Instead, the changing-state effect 

(Jones, Madden & Miles, 1992) has come to be seen as the main empirical signature of the 

“irrelevant sound effect” (Beaman & Jones, 1997) within serial short-term memory. This 

irrelevant sound effect in serial short-term memory is particularly pronounced when the 
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distracting sound consists of changing sequences of multiple different task-irrelevant sounds. 

Those sounds can be speech or non-speech. Sound that changes acoustically from one token 

to the next (changing-state sound, e.g., A-B-C-D) is more disruptive to serial recall than 

repetitive, steady-state sound in which the same token is repeated (e.g., A-A-A; Jones & 

Macken, 1993; Jones et al., 1992; Meiser & Klauer, 1999). This changing-state effect is one 

of the benchmark phenomena of working memory (Benchmark 6.2B, Oberauer et al., 2018).  

Taking its name from the effect, the changing-state hypothesis is the most prominent 

task-specific hypothesis of auditory distraction. This account assumes that the disruption 

caused by changing-state irrelevant sound arises from the conflict of processes of seriation 

within the auditory distractors and the memoranda. Consistent with other data on the 

perception of order within auditory streams (e.g., Warren & Obusek, 1972), the changing-

state hypothesis assumes changes-in-state between auditory events that vary abruptly (e.g., 

the sequence A-B-C, or a pitch glide interrupted by periods of silence) encode the temporal 

order of the sequence or stream. Contrastingly, unchanging or repeated (steady-state) 

auditory events (e.g., the sequence A-A-A, or a single uninterrupted pitch glide) contain little 

order information (Jones, Alford, Bridges, Tremblay & Macken, 1999; Jones & Macken, 

1995). This account is consistent with a number of results on effects of varying the number 

of auditory streams, that is the number of different sound sources (often voices; Jones et al., 

1999; Jones & Macken, 1995b, c; Jones, Macken & Harries, 1997; Klatte et al., 1995) as well 

as data indicating that tasks which require participants to maintain the serial order of a 

sequence of memoranda are peculiarly susceptible to the irrelevant sound effect (Beaman & 

Jones, 1997, 1998; Farley et al., 2007; Gisselgård et al., 2007; Henson et al., 2003; Jones & 

Macken, 1993; Neath et al., 2009).  

More general accounts have also been applied to the phenomenon. Cowan (1995) 

suggested that the changing-state effect might be explicable in terms of known principles of 
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orienting and habituation (Sokolov, 1963). According to this account, individuals 

involuntarily orient towards novel auditory stimuli thereby withdrawing attention from the 

primary task, resulting in poorer performance. As such, this orienting response becomes 

habituated over time, restoring performance to something approaching baseline levels. An 

attraction of this approach is the way in which the changing-state effect arises naturally from 

already familiar principles.  

Numerous studies of habituation to irrelevant sound have been reported as tests of the 

orienting account (Banbury & Berry, 1997; Bell, Röer, Dentale, & Buchner, 2012; Ellermeier 

& Zimmer, 1997; Elliott & Cowan, 2001; Hellbrück, Kuwano & Namba, 1996; Jones et al., 

1997; Morris & Jones, 1990; Perham & Banbury, 2008; Röer, Bell, Dentale & Buchner, 

2011; Röer, Bell & Buchner, 2014; Tremblay & Jones, 1998), but rather fewer direct 

investigations of orienting yet tests of habituation to irrelevant sound implicitly assume that 

attentional capture by irrelevant sound is the basis of auditory distraction in the first place. 

However, this remains an assumption and the term “habituation” has been used rather loosely 

(e.g., by Morris & Jones, 1990) to refer to both an effect and its cause, where in principle a 

decrease in distraction over time (an apparent habituation effect) could be accounted for by 

mechanisms other than reduction in an orienting response (an habituation mechanism). For 

example, there is substantial evidence that dual-task costs can be reduced with practice (e.g., 

Oberauer & Kliegel, 2004; Spelke, Hirts & Neisser, 1976; Underwood, 1974) and 

participants might simply become skilled in avoiding, or resolving, confusions (e.g., of serial 

order cues) at recall.  

Theoretically, Cowan’s (1995) suggestion of orienting plus habituation seems to 

provide an existing framework for auditory distraction, in particular the changing-state effect 

but tests of habituation as a mechanism have tended to look for habituation as an effect over 

the longer periods of time represented by blocks of trials. A number of studies (Banbury & 
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Berry, 1997; Bell, Röer, Lang & Buchner, 2019; Bell, Röer, Dentale, & Buchner, 2012; 

Morris & Jones, 1990) show reduced auditory distraction when participants undertake a 

serial recall task in the presence of distractors after a passive listening period. In that period, 

an assumption is that participants listen to and form a neural model of the distractors lending 

some credence to the prospect of an habituation-based account. It remains uncertain whether 

an habituation effect over such longer periods necessarily implies an habituation process 

efficient enough to reduce the changing-state effect. At least one study (Mutschler et al., 

2010) has suggested that auditory habituation occurs in parallel by two different means and 

along two different timescales. A plausible, if less parsimonious, account might therefore 

allow for very rapid short-term habituation of orienting without attention over the period of a 

small number of trials – sufficient to account for the changing-state effect – and a smaller, 

longer-term effect over blocks of trials, requiring pre-exposure and, presumably, attending to 

the irrelevant sound. If correct, these two processes should be examined independently and 

not conflated.  

 

Tests of Orienting and Other Hypotheses 

Since habituation to a distractor presupposes orienting, one way of avoiding the 

problems discussed above is to look directly at the evidence for orienting per se rather than 

the evidence for habituation following orienting. Even this direct assessment is not without 

conceptual problems, however. Näätänen (1986, p. 91) noted that, as a central concept in 

psychophysiology, orienting was “even too popular” and made the provocative claim that 

because there were multiple types of orienting, each associated with particular types of 

surprise or novelty (Näätänen, 1979, p. 61), the scope of the term had grown “too broad” to 

serve as a useful conceptual tool. In particular, there is no a priori basis for deciding what 

size the effect of orienting should be on the short-term memory tasks most typically used to 
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investigate auditory distraction unless further analytical work is done to provide such a basis. 

In the following, a brief conceptual analysis introduces how orienting might operate during 

auditory distraction before applying Bayesian tools to existing experimental data. This 

conceptual backdrop then serves to derive specific quantitative hypotheses to test and thus 

differentiate between the theoretical possibilities. 

 

Theoretically Motivated Quantitative Hypotheses 

 The extent to which orienting might be anticipated over a typical auditory changing-

state sequence has remained an open question, which existing evidence, however, has the 

potential to answer. The presentation rate of such stimuli is typically either at the rate of 

normal conversation (approximately 2-3 utterances per second if connected speech is played) 

or somewhere between 1-2 auditory events per second (if speech or non-speech sound is 

edited and presented according to a regular presentation schedule). It also seems reasonable 

to presume that the orienting (if orienting occurs) to conversational speech is at, or close to, 

the maximum that might be expected. That is, speech signals typically prove to be at least as 

disruptive as any other sound when other factors (e.g., presentation rate, changing-state 

information) are controlled. These considerations are based only on orienting towards the 

acoustics of the auditory signal rather than the meaning of the signal. Data suggest that 

auditory distraction may also be mediated by semantics (Beaman, 2004; Beaman, 

Hanczakowski, Hodgetts, Marsh & Jones, 2013; Hanczakowski, Beaman & Jones, 2017; 

Jones, Miles, & Page, 1990; Neely & LeCompte, 1999; Marsh, Hughes & Jones, 2008, 2009; 

Marsh, Perham, Sorqvist & Jones, 2014; Oswald, Tremblay & Jones, 2000; Röer, Bell, 

Körner & Buchner, 2018), depending on the processing of meaning within the focal task 

(Marsh, Hughes & Jones, 2009). They also suggest auditory distraction occurs when there is 

deviation from an anticipated higher-order structure (Hughes, Vachon & Jones, 2005, 2007; 



How much do we orient? 

 

 9 

Vachon, Hughes & Jones, 2012). Both semantics and such deviation characterize everyday, 

conversational speech but these occurrences speak to the disruptive potential possessed by 

the informational content of an auditory sequence rather than the purely acoustic or energetic 

effects of a sound, which are both cognitively and neurally distinct (Beaman, Bridges, & 

Scott, 2007). These semantic and deviation effects are not the focus of the present 

investigation.  

A repeated, steady-state sound or utterance (e.g., A-A-A-A) can also cause disruption 

given a sufficiently sensitive design (e.g., Bell, Röer, Lang & Buchner, 2019; LeCompte, 

1995; Parmentier & Beaman, 2015) so this, presumably, represents the effects of orienting to 

a single sound. Similarly, a changing-state sequence that consists of two distinct sounds or 

utterances (e.g., A-B-A-B) should represent the effects of orienting to two auditory events. A 

sequence of three sounds (A-B-C-A-B-C) should evoke orienting responses to three events 

and so on. The changing-state effect is thus an instance of what, in reference to the number of 

different auditory events, Tremblay and Jones (1998) dubbed the token set size. Tremblay 

and Jones (1998) hypothesized that orienting to each token should be additive. Accordingly, 

the disruption caused by auditory distraction should be, approximately, a linear function of 

the token set size. They contrasted this situation with the predictions of a strong version of 

the changing-state hypothesis: According to the strong version of the hypothesis, the repeated 

presence of a single change (from “A” to “B” and back again) should be sufficient to set-up 

order cues and disrupt immediate recall to the extent that further changes would have no 

greater impact on recall. The results of a direct test by Tremblay and Jones (1998) supported 

the strong version of the changing-state hypothesis (no significant further disruption was 

observed after a token set-size of two). That is, despite the predicted significant increase in 

disruption seen with increments in set size from 1-token (AAA...) to 2-tokens (ABAB...), 

increments in set size beyond this changing-state point did not produce a significant increase 
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in disruption. However, a consistent although non-significant numerical tendency was seen 

for higher set sizes to produce an increased disruption. 

In a more recent, and statistically more powerful, test of the strong changing-state 

hypothesis, Bell and colleagues (Bell, Röer, Lang & Buchner, 2019a) re-assessed the strong 

changing-state hypothesis. Bell et al. concluded that, across two experiments, the results 

were inconsistent with this hypothesis and instead favoured the orienting hypothesis. A 

problem with this interpretation, however, is that the effect size (ηp²=.10 for a difference 

between two and eight tokens) upon which these researchers based their sample size was not 

theoretically motivated. Thus, although their results are sufficiently improbable, given the 

null hypothesis, for them to reject the strong changing-state hypothesis the findings do not by 

themselves provide any indication that these data are any more likely under the orienting 

account. The reason is that no particular effect size is suggested as a plausible orienting effect 

(for a more general version of similar arguments see Dienes, 2019; Dienes & Mclatchie, 

2018). To take a simplistic example, if orienting predicted an effect size of ηp²=.3 or above 

(i.e., three or more times that observed) then the orienting response prediction is at least 

twice as far from the observed effect than is the nil effect, yet the null hypothesis is rejected 

in favour of this less likely alternative. To address this problem, the present investigation 

advances some possible functions that relate token set size to disruption observed to serial 

recall. The analysis assesses which function is the most plausible given the data. 

In the absence of any more principled basis for estimating the effects of orienting, one 

possible version of the orienting hypothesis is to assume a reapplication of each percentage 

decrement every time token set size is incremented by one token to produce the required 

monotonic, nonlinear function. As an example, if the difference in performance between set 

size 1 (steady state) and set size 2 (changing state) is 30% then there should be a further 30% 

decrement from set size 2 to set size 3 and so on. This pattern of data gives a decreasing 
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function for disruption, as shown in the upper panel of Figure 1(A), consistent with the 

existing shape of the token set size effect as observed by Tremblay and Jones (1998). It 

represents a somewhat conservative form of orienting beyond set size 2 as the increase 

remains constant at every point, resulting in a decelerating increase in disruption as 

demonstrated in the upper panel of Figure 1(A). This suggestion also has the attractive 

property of being parameter-free, as the initial disruption from two items relative to one is 

taken as the baseline from existing data and simply re-applied in an iterative manner. 

 

FIGURE ONE ABOUT HERE 

 

An even simpler alternative to both the strong changing-state hypothesis and the 

orienting hypothesis is referred to here as the stimulus-mismatch hypothesis (after Campbell, 

2000). This stimulus-mismatch hypothesis flows from Beaman´s (2000) suggestion that the 

pattern of disruption observed by Tremblay and Jones (1998) should be taken seriously even 

if the direct comparisons between memory performance at adjacent set sizes (e.g., set size 2 

vs set size 3) are not statistically significant. Beaman (2000) suggested that this pattern could 

readily be accounted for by assuming that noise is added to memory for each token to the 

extent that the token contains novel information not already present in the stream of 

distractors. This resembles the idea of “novelty-gating” espoused more recently by some 

researchers as a mechanism for limiting encoding in working memory (e.g., Farrell & 

Lewandowsky, 2003; Oberauer, Lewandowsky, Farrell, Jarrold & Greaves, 2012).  

The simplest way of implementing this novelty-gating is to again assume that the 

difference between steady-state (set size 1) and changing-state (set size 2) conditions 

represents baseline performance (as in the implementation of the orienting hypothesis). A 

further assumption necessary is that, because of an overlap in features and content between 
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tokens, each subsequent token only adds half as much noise again to memory as its 

immediate predecessor, resulting in a pattern something similar to that shown in the upper 

panel of Figure 1 (A). Technically this model has one free parameter in that it assumes a 50% 

overlap between the features of different distractors. This overlap results in each subsequent 

token only adding half as much noise again. However, this simplifying assumption is itself 

ultimately derived from the idea within the feature model that items are represented in terms 

of feature vectors. Each feature takes a binary value. In this way, any randomly generated 

pair of features would be expected to share, on average, half the values in their respective 

feature vectors (Beaman, 2000; Nairne, 1990). The assumed 50% overlap is therefore kept as 

a constant and is not varied in the studies which follow. This hypothesis produces a pattern of 

results most obviously more similar in form to that reported by Tremblay and Jones (1998, 

Figure 2, and reproduced in the lower panel of Figure 1(B)) than the strong changing-state 

and orienting hypotheses. This stimulus-mismatch hypothesis produces neither the 

polynomial function which is the best-fitting function to Tremblay and Jones (1998), as 

redrawn in Figure 1, nor the broken power law suggested by Campbell (2000; see also 

Campbell, Beaman, & Berry, 2002; Campbell, Winkler,  Kujala, & Näätänen, 2003; 

Campbell, Winkler, & Kujala, 2005)1.  

 

Existing Data on the Token Set-Size Function 

The foregoing has demonstrated that token set size is a variable that can readily be 

varied parametrically, and for which parametric functions can be derived, but a peculiarity of 

the studies reviewed so far is that only in the first two studies by Tremblay and Jones (1998) 

was set size varied in this way and in those studies the token set size effect was non-

 
1 The pattern is a broken power law because an unbroken power law would predict the largest 

difference to appear between quiet and set size one (steady-state). This conundrum will be 

addressed in the General Discussion. 
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significant. Although it is possible to derive token set size predictions in the form of 

quantitative functions from theories of auditory distraction, as suggested above, this also has 

not previously been attempted. One reason for this is that Tremblay and Jones (1998) 

assumed that there was no further disruption beyond the changing-state point because of their 

non-significant results, and concluded in favor of the strong changing-state hypothesis. All 

later studies, such as those by Campbell and colleagues (Campbell et al., 2002, 2003, 2005) 

as well as Bell et al. (2019a) took this as a starting point and, as demonstrated in Table 1, 

constructed experiments specifically to test the hypothesis of no difference between the 

changing-state point and some larger set size.   

The Tremblay and Jones (1998) data are also not the only results in which null effects 

were observed: Unequivocal further disruption by increasing set size beyond the changing-

state point is not universal. Null effects were apparent in Campbell et al. (2002, Experiment 

3A) for example, and in a later study by Hughes and Jones (2005, Experiment 2) which 

found no significant increase in disruption with increments in set size from two to eight.  

Hughes and Jones (2005) provocatively concluded that, “The absence of a basic set size 

effect casts doubt on the one previous experiment2 in which such an effect was found 

(Campbell et al., 2002: Exp. 3b) and buttresses the claim that the classical changing-state 

effect is driven by acoustic changes between immediately adjacent items (Tremblay & Jones, 

1998).” However, the higher number of trials per condition used by Campbell et al. (2002), 

led to a more sensitive procedure than that of Hughes & Jones (2005) and of Tremblay & 

Jones (1998).  Caution is also warranted in interpreting Experiment 3A of Campbell et al. 

(2002) as unequivocally demonstrating a null significant disruptive advantage of increments 

in set size beyond two across all serial positions: Increments in set size from one to two to 

 
2 This claim was incorrect at the time because Experiment 3 of Tremblay and Jones (1998, 

Experiment 3) found a significant set size effect, as did Campbell et al. (2003).  
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five produced a linear trend of reduced performance with high set sizes, without a significant 

nonlinear residual (Campbell, 2000). Thus, whether the numerical trends which appear in 

Tremblay and Jones (1998) represent reliable parametric functions or not remains debatable. 

The present investigation resolves that issue. 

Following Bell et al. (2019b), Table 1 shows the frequency with which statistically 

significant effects of token set size have been reported as a function of the sample size of the 

experiment and the differences between the token set sizes considered in all the papers 

identified using the procedure set out in the Data Selection section below. 

 

TABLE ONE ABOUT HERE 

   

Bayesian Reanalysis 

The data so far have indicated that a stimulus-mismatch or orienting hypothesis might 

be preferred to the strong version of the changing-state hypothesis as potential explanations 

for the irrelevant sound effect and the changing-state effect. However, as Table 1 shows, 

although individual papers report data which seem internally consistent, the literature overall 

is rather less so. Further, the orienting and stimulus-mismatch hypotheses have not been 

tested against each other: All studies to date have either nullified the strong changing-state 

hypothesis or have not succeeded in doing so, and they have not directly tested alternate 

hypotheses. To do this, and to add to the evidence assessing the strong changing-state 

hypothesis, which remains conflicted despite the significant results reported by Bell et al. 

(2019a), the present enquiry makes use of the Bayes factor analysis method outlined by 

Dienes (2014, Appendix 1).  
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Call a Bayes factor comparing theory 1 with the null hypothesis B1/0. Call a Bayes 

factor comparing theory 2 with the null hypothesis B2/0. Then, the Bayes factor comparing 

theory 1 with theory 2,  

 

𝐵1 2⁄ =
likelihood of obtained data given theory 1 

likelihood of obtained data given theory 2
      (1) 

 

In this notation, a Bayes factor of 𝐵1 2⁄  > 1 represents evidence in favour of the first 

theory in the pairwise comparison. For example, a Bayes factor of 𝐵1 2⁄  > 3 indicates theory 1 

is more than three times as likely as theory 2 given the data. A Bayes factor of 𝐵1 2⁄  < 1/3 

represents equivalent evidence in favour of the second theory. A Bayes factor of 1.0 is 

therefore exactly equivocal between the theories. The Bayes factor gives a continuous 

measure of support such that any value over 1.0 favours theory 1 (even if barely) and any 

value under 1.0 favours theory 2. In the current case, for token set sizes above 2, the strong 

changing-state hypothesis (SCS) is a null hypothesis, the stimulus-mismatch hypothesis 

(SMM) is theory 1, and the orienting response hypothesis (OR) is theory 2.  

𝐵𝑆𝑀𝑀 𝑆𝐶𝑆⁄  represents the relative strength of evidence in support of the stimulus-

mismatch hypothesis compared to the strong changing-state hypothesis. As already indicated, 

since the strong changing-state hypothesis gives a null prediction of no further disruption 

beyond set size 2, this assertion is equivalent to 𝐵1 0⁄  for these set sizes. Similarly, 𝐵𝑂𝑅 𝑆𝐶𝑆⁄  is 

the Bayes factor representing the support for the orienting hypothesis over the strong 

changing-state hypothesis and again is equivalent to comparing the orienting hypothesis to a 

null prediction. By extension then, 𝐵𝑆𝑀𝑀 𝑆𝐶𝑆⁄  represents the relative support for the stimulus-

mismatch hypothesis when compared to the orienting hypothesis.   

To summarise, this approach is an advance upon previous analyses in two ways. In 

the first place, the current data – as tested by traditional null hypothesis significance testing 
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(NHST) – indicate only p(Data | Null Hypothesis). A statistically significant result therefore 

indicates that the dataset is unlikely to have been generated given the null hypothesis of 

exactly zero difference between conditions is true. A statistically non-significant result, in 

contrast, indicates merely that the data are plausible given this null hypothesis. In neither 

case is the plausibility of the data given a stated alternate hypothesis explicitly considered. 

Thus, a null and an alternate hypothesis could be equally plausible or implausible but the 

traditional NHST considers only the plausibility of the null hypothesis. Bayes factors 

potentially improve upon this situation by their use of likelihood ratios in which the 

plausibility of two separate hypotheses are considered, allowing for the most plausible of the 

two to be selected. At present, a small difference between token set sizes two and eight might 

yield a result which is either non-significant (Tremblay & Jones, 1998) or significant (Bell et 

al., 2019a). This situation leads to arguments over the balance of type 1 vs type 2 errors and 

very different theoretical interpretations. In both cases, however, the data might be more 

plausible under the hypothesis of a small effect than either the null hypothesis of precisely 

zero effect (Tremblay & Jones, 1998) or an alternate hypothesis that assumes a rather large 

effect (Bell et al, 2019a).  

The second advantage of using this approach is that it is not restricted to testing only 

a null prediction. As noted by Cohen (1995; see also Gigerenzer, 2018), the null hypothesis 

was intended by Fisher to indicate the hypothesis intended to be nullified. However, typically 

with NHST, the null hypothesis has come to mean testing a hypothesis of null difference – an 

approach referred to by Cohen (1995) as “nil hypothesis testing”. This investigation will test 

two hypotheses, both of which postulate a non-zero difference between conditions, against 

each other.  

Yet a third advantage of this approach is the opportunity to combine existing data-sets 

meta-analytically and examine the weight of evidence across published results (see also 
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Sörqvist, Marsh, & Nöstl, 2013). Datasets will be combined in a meta-analysis using the 

mean and SE from Study 1 as the prior mean and prior SD and the mean and SE from Study 

2 as the likelihood’s mean and likelihood’s SD to calculate the posterior mean and posterior 

SD. The posterior mean and SD thus obtained are then entered as the new prior mean and SD 

and the mean and SE from Study 3 used as the likelihood’s mean and SD and so on until the 

data from all available experiments have been combined (Dienes, 2008; see also Parmentier 

& Beaman [2015] for a previous application of this procedure to irrelevant sound effects). 

This procedure then gives the likelihood of all the data combined given the strong changing-

state hypothesis, the stimulus-mismatch hypothesis, and the orienting response hypothesis. 

 

Data Selection. 

 The current study made use only of existing published data-sets and as such was 

deemed exempt from the need for ethical review by the institutional ethics board. On 16th 

April 2018, Google Scholar listed 133 papers which made reference to the Tremblay and 

Jones (1998) study. Of these, 24 papers were identified as containing comparisons of 

conditions with different token set sizes within the irrelevant sound. Note that we became 

aware of the study by Bell et al. (2019a) which explicitly addresses the token set-size effect 

from a statistical power perspective only in the process of writing this paper and so this was 

also incorporated into our analysis. Of the papers so identified, 6 compared only set sizes of 2 

(i.e., a straight comparison of 2-token changing-state conditions with steady-state or quiet 

controls) but data were available in a form open to analysis from 6 papers either directly or 

by request to the author.3 Of these papers, the study by Campbell et al. (2003) was excluded 

because the relevant comparison did not find a changing-state effect with set size 2, which is 

not predicted by the hypotheses under scrutiny, and gives no basis within this system for 

 
3 We thank Emily Elliott for making the data from Elliott and Cowan (2005) available to us. 
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estimating the effect size of greater token set size effects. The general discussion shall return 

to this issue, and to the possibility of file-drawer effects (Simonsohn, Nelson, & Simmons, 

2014; Rosenthal, 1979).  

The final data-set thus consists of 14 comparisons across 10 experiments, as shown in 

Table 1. As examples of the form taken by the data under consideration, Figure 2 shows data 

from two of the relevant papers that have not previously been drawn in a form allowing for 

the direct comparison of set size effects (e.g., in the case of Bell et al., 2019a, all data were 

presented as a function of serial position so the difference between conditions when 

collapsed across serial position was indeterminate). Comparable bar charts can already be 

consulted in the results sections of other relevant papers (e.g., Campbell et al., 2002),  

 

FIGURE TWO ABOUT HERE 

 

Results. 

The prediction of the strong changing-state hypothesis was a null prediction beyond 

the changing-state point. That is, there was predicted to be an effect of precisely zero for 

comparisons between any changing-state conditions.  

The predictions of the orienting and stimulus-mismatch hypotheses were based upon 

calculations similar to those given in Figure 1. The prediction of the orienting hypothesis for 

a given experiment was taken to be a constant reapplication of the percentage decrease in 

performance observed between the control condition and set size 2 every time the set size 

was incremented by one. For example, if the decrement in performance at set size 2 was 20% 

lower than control in a given experiment this was used to inform the predictions such that a 

further 20% decrement was expected on top of this at any set size 3 condition in that 

experiment, and so on. Thus, if performance at control was 100% and at set size 2 was 80% 
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then the performance at set size 3 was expected to be 64%, at set size 4 it would be expected 

to be 51.2% and so on. 

The calculated prediction of the stimulus mismatch hypothesis was taken to be the 

absolute disruption observed at set size 2 and subsequently halved each time the token set 

size was incremented by one. For example, if the decrement in performance at set size 2 was 

20% lower than control, this was used to inform the predictions such that a further 10% 

decrement was expected on top of this at any set size 3 condition in that experiment, a further 

5% at any set size 4 condition and so on. Thus, if performance at control was 100% and at set 

size 2 it was 80%, then the performance at set size 3 was expected to be 70%, at set size 4 it 

would be expected to be 65% and so on. 

A half-normal distribution was chosen to reflect the plausibility of different 

population mean values, as described by Dienes (2014). Bayes factors were calculated using 

the Dienes calculator obtainable at: 

http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm. This calculator 

was coded in Matlab and converted to Flash. Calibration shows that alternative code written 

independently in R (Baguley & Kaye, 2010) gives identical results. 

Once calculated, Bayes factors were combined meta-analytically for those studies 

(Campbell et al., 2002; Elliott & Cowan, 2005) which made use of the same stimuli and the 

same set size contrasts. In each case, data from the first study reported in the series was used 

to inform the prior mean and prior SD, data from the second study reported was used to 

inform the likelihood’s mean and SD, and the two combined to calculate the posterior mean 

and posterior SD following the first two studies. The posterior mean and SD thus obtained 

are then entered as the new prior mean and SD and the mean and SE from Study 3 used as 

the likelihood’s mean and SD and so on until the data from all available experiments was 

combined (Dienes, 2008, 2014; Parmentier & Beaman, 2015). In principle, the same 
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procedure could be used to combine data across all of the studies examined here but to do so 

would involve combining data from the different experimental stimuli and procedures (e.g., 

different list lengths and therefore differences in baseline difficulty) employed by the various 

labs and therefore a purer approach which avoids these potential confounds was adopted 

here. We will return to the interpretation of the multiple Bayes factors so obtained in the 

General Discussion. 

 

TABLE TWO ABOUT HERE 

 

Orienting response versus strong changing-state. Examination of column 3 of Table 2 shows 

that the Bayes factors in favour of the orienting response hypothesis over the strong 

changing-state hypothesis are mixed. The combined results of the two experiments by 

Campbell et al. (2002) support the strong changing-state hypothesis over the orienting 

response account (notwithstanding the statistically significant disruptive advantage for 

increments in set size beyond two reported for one experiment in the original paper), 

however the combined results of the three experiments by Elliott and Cowan (2005) are 

strongly in favour of orienting over strong changing-state. Comparisons originally reported 

by Tremblay and Jones (1998) are largely inconclusive, however comparisons of 3 versus 5 

tokens are strongly supportive of the strong changing-state hypothesis over the orienting 

hypothesis both for speech and non-speech tokens. In contrast, the Bayes factors calculated 

for the studies by Bell et al. (2019a) provide very strong evidence for the orienting 

hypothesis over the strong changing-state hypothesis. 

 

Stimulus mismatch versus strong changing-state. By contrast, column 4 of Table 2 shows the 

Bayes factors in favour of the stimulus-mismatch hypothesis over the strong changing-state 
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hypothesis. Although, again, a substantial number of the Bayes factors are inconclusive (5 in 

total are between 1/3 and 3, all of them derived from the Tremblay and Jones (1998) data) 

only one Bayes factor (a comparison of 3 vs 5 speech tokens by Tremblay and Jones) favours 

the strong changing-state hypothesis, the remainder support the stimulus-mismatch 

hypothesis. Juxtaposed with the previous set of comparisons, the combined results from both 

Elliott and Cowan (2005) and Campbell et al. (2002) substantially favour the alternative to 

the strong changing-state hypothesis. Once again, the results from Bell et al. (2019a) are 

against the strong changing-state hypothesis. 

 

Stimulus-mismatch versus orienting hypotheses. The final set of comparisons (column 5 of 

Table 2) pits the two experimental hypotheses, which predict a non-zero effect of token set 

size against each other. Although the majority of Bayes factors are inconclusive in terms of 

magnitude, it is striking that all of the comparisons favor the stimulus-mismatch hypothesis, 

even if the evidence in any single comparison would only be classified as “substantial” in 

three out of the eleven cases. A frequentist sign-test shows that it is unlikely that evidence in 

favor of one outcome over another would be found in all eleven cases if the SMM and OR 

hypotheses were equally plausible (p <. 0001). 

 

General Discussion 

The results summarized in Table 2, when taken in toto, unequivocally favour the 

stimulus-mismatch hypothesis over both the strong changing-state hypothesis and the 

orienting-response hypothesis. The data represent the first meaningful attempt to contrast 

multiple accounts of the irrelevant sound effect simultaneously and parametrically. As noted, 

we chose not to combine these results meta-analytically in the manner we combined the 

results of the individual experiments in the Campbell et al. (2002) and Elliott & Cowan 
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(2005) studies because the analyses we have presented show the relative likelihood of 

particular quantitative accounts in conditions where the parameters (e.g., the token set size 

conditions and the difference in set size between conditions) are specific to those particular 

investigations. Thus, the predicted effect size according to either orienting response or 

stimulus mismatch hypotheses (which in both cases is a function of such parameters) is 

similarly experiment-specific. Overall, however, the data do not favour the strong changing-

state hypothesis. Five out of the eleven comparisons with the orienting-response account 

presented here numerically support the changing-state hypothesis but only weakly. One of 

the comparisons with the stimulus-mismatch hypothesis also supports the strong changing-

state hypothesis but again, the evidence in this one comparison is not compelling and is not 

in line with the results of the other studies.  

In contrast, it is notable that in most cases the evidence from individual studies is 

much stronger in favour of either the orienting-response or the stimulus-mismatch 

hypotheses over the strong changing-state hypothesis. The verbal labels researchers are 

willing to place on different quantitative outcomes vary with some (e.g., Raftery, 1995) being 

more conservative in their use of labels and, technically, Bayes factors provide a continuous 

measure of confidence in a hypothesis (Dienes & McLatchie, 2018) which should not be 

reduced to a dichotomous decision. Nonetheless, three of the comparisons between strong 

changing-state and orienting-response hypotheses produced evidence that would be labelled 

“substantial” by some authorities (Bayes factors >3) two would be considered “strong” 

evidence (Bayes factors > 10) and one “decisive” (Bayes factor > 100; all verbal labels taken 

from Jeffries, 1961).  

The pattern of results is even more striking when the strong changing-state hypothesis 

is contrasted with the stimulus mismatch hypothesis. In these comparisons, two contrasts 

provide substantial evidence for the mismatch hypothesis, two contrasts provide “very 
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strong” evidence in the same direction (Bayes factors > 30; Jeffries, 1961) and two contrasts 

come out decisively in favour of the stimulus mismatch hypothesis. Thus, if anything, 

contrasting both stimulus mismatch and orienting hypotheses with the strong changing state 

hypothesis favours the stimulus mismatch rather than the orienting response hypothesis, 

although these are not direct comparisons between these two possibilities. 

The data are also illuminating when the stimulus-mismatch hypothesis is directly 

contrasted with the orienting-response hypothesis. In this case, although the evidence is for 

many of the studies is weak (e.g., Bell et al., 2019a: Exp. 1; Tremblay & Jones, 1998: Exp. 2) 

the direction of the Bayes factors favours the stimulus-mismatch hypothesis in all cases. 

Although at an individual level, only three of the contrasts provide Bayes factors which 

might be termed “substantial” evidence, it is noteworthy all eleven contrasts favour the same 

(SMM) hypothesis. Since Bayes factors reflect likelihood ratios for one position over 

another, the position is not analogous to finding a series of p-values where some statistically 

significant effects might be called into question by the presence of other more ambiguous 

results (e.g., p=.06) which are insufficient to reject the null hypothesis as only one hypothesis 

(the null) is under consideration in traditional testing. Consistently finding more – even if 

weak – evidence in favour of one position over another can only strengthen confidence in 

that position, albeit the extent to which confidence in the conclusions is heightened varies 

according to the strength of the new evidence. Weaker Bayesian evidence might push less 

strongly but it still pushes in the same direction. Goodman (1999, Table 1) provides 

examples of how far particular Bayes factors can move belief in a given hypothesis (the 

posterior probability) as a joint function of  the size of the Bayes factor and the original level 

of belief (the prior probability) but here, in all cases, the posterior probability in favour of the 

stimulus mismatch hypothesis over the orienting response has to be revised upwards 

continuously as a consequence of the additional positive evidence (represented by Bayes 
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factor >1) each additional study provides. Thus, in this case, the minimum size of the 

combined Bayes factor is at least as large as the largest individual Bayes factor reported. 

A concern might be that the function predicted by the orienting response is squashed 

by the presence of floor effects as token set size increases. This concern is unwarranted 

because – as examination of Figures 1 and 2 shows – performance is above floor even at the 

largest token set sizes. One could, perhaps, argue that “floor” is defined not by very poor 

percentage performance but, rather, by a minimum absolute number correct that is in some 

way inviolate to irrelevant sound effects. Thus, for example, it might be possible to be at 

floor and still score 50% correct if four out of eight items are correctly recalled and four 

items is the size of a focus of attention, which is immune to interference effects (e.g., Cowan, 

1995). Again, however the data show that the same effects are observed with both speech and 

non-speech stimuli in the same studies. In passing, it should be mentioned that the speech 

stimuli resulted in greater interference than non-speech stimuli. Thus, even if the participants 

are performing at floor in irrelevant speech conditions they cannot then be at floor in 

irrelevant non-speech conditions, and yet the same results are obtained. This investigation 

therefore concludes that of the three functions considered here, the data favour that predicted 

by the stimulus-mismatch hypothesis.  

 

Data selection and file-drawer effects. 

 As with any review, cautious assessment of whether there is a bias in the selection of 

data is necessary, which might present a misleading picture. Notably, there is the question of 

the file-drawer problem. This analysis presents the data from Tremblay and Jones (1998), 

which are the only data representative of null effects of token set size as the data from a 

similar investigation showing a null result by Hughes and Jones (2005) were not available, so 

the possibility must be considered that other datasets exist. Such datasets may have not 
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reached publication either because they were not submitted or rejected by journals as merely 

showing uninteresting null effects of token set size.  

Although there is the known publication bias towards publishing “significant” effects, 

this tendency in science seems unlikely to have affected the results in this case for a number 

of reasons. The Tremblay and Jones (1998) data, which established token set size as a 

variable of interest, are themselves non-significant, with the majority of analyses within their 

paper showing null effects beyond a token set size of two. Their investigation was more 

comprehensive than later studies in terms of comparing multiple different set sizes, and 

contributes a full 50% of the contrasts considered in Table 1. It is therefore not the case that 

statistically nonsignificant effects are under-represented in these analyses. That is, in all but 

one of these contrasts the Bayes factor was numerically in favour of the stimulus-mismatch 

hypothesis rather than the strong changing-state hypothesis. Where the Bayes factors provide 

only weak or inconclusive evidence, this is also exactly where one would expect given the 

curvilinear function predicted by the stimulus-mismatch hypothesis and the resulting 

difference in effect sizes across comparisons: As token set size increases, the rate at which 

each token further increases disruption decelerates. Thus the difference in the predictions of 

the stimulus-mismatch and strong changing-state hypotheses also drops and it becomes 

more-and-more difficult for any data set to distinguish between the predictions on a purely 

pair-wise basis at higher set sizes. 

One data-set which was considered and rejected from further analysis was that 

obtained by Campbell et al. (2003), which showed a greater effect of irrelevant sound at 

token set size five than at set size two. The reason for excluding these data was simply that, 

contrary to other reports in the literature, there was no changing-state effect at token set size 

two. That is, in this study two items were no more disruptive than one (and, numerically at 

least) less so. This dataset therefore gives no basis for comparing the hypotheses considered 
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here as the difference between set size one and two, the basic changing-state effect, was used 

to calculate the anticipated further increases in disruption with increasing token set size. 

These data are not predicted by any of the hypotheses considered here and, in the absence of 

any further information, can be explained post hoc in a number of ways such as the 

difference between one and two items was insufficient to invoke a changing-state 

effect/orienting response/stimulus mismatch that only became apparent subsequently as set 

size increased. To be borne in mind is that this study used Finnish monosyllables as 

irrelevant speech items. A peculiarity of Finnish is that it contains only 23 monosyllabic 

words. In the experiment it is possible that Finnish participants grouped pairs of Finnish-

sounding monosyllables into bi-syllables, as they are not used to Finnish monosyllables, 

thereby conflating the token set size. These data then serve best to reinforce the utility of 

providing more results in the form of systematic parametric manipulations rather than two or 

three conditions at a time.          

 

Direction for Further Research 

The stimulus-mismatch hypothesis favoured by the data according to the current 

analyses is novel, despite its similarity to previous ideas (Beaman, 2000; Campbell, 2000; 

Farrell & Lewandowsky, 2003). The hypothesis is intended at this point simply as a 

mathematical statement to describe how adding noise to a memory representation (possibly 

encoded as a vector of different feature values as in the feature model; Beaman, Neath & 

Surprenant, 2008; Nairne, 1990; Neath, 2000) is subject to a process of increasing 

redundancy. That process operates such that the noise associated with every additional object 

is increasingly less potent as a disruptor. A natural interpretation of this interference process 

is as a form of overwriting in memory, however we are reluctant to advance this as a 

hypothesis for reasons described in detail elsewhere (Beaman & Jones, 2016). Instead the 



How much do we orient? 

 

 27 

interpretation offered is that noisier or more energetic storage, possibly with irrelevant sound 

items blocking easy access to memoranda, renders retrieval more problematic regardless of 

the precise nature of the noise. A backward masking effect of irrelevant sound would explain 

why distraction effects can be seen both when the sound is played at encoding or during a 

post-encoding maintenance interval (e.g., Miles, Jones & Madden, 1991) but not when the 

sound immediately precedes the memoranda (Macken, Mosdell & Jones, 1999). This 

retrospective effect requires further assumptions to be made about rehearsal or other 

maintenance processes in order to be reconciled with either feature overwriting (or feature 

adoption; Neath, 2000) or orienting-based explanations. For example, for feature overwriting 

or feature adoption to work, there must be some form of contiguity between the overwriting 

and the overwritten material which does not automatically occur if the auditory distractors 

are presented only within a retention interval. Similarly, for orienting hypotheses one must 

assume that attention is oriented away from maintenance-rehearsal processes during this 

same retention period. 

A more difficult proposition for the stimulus-mismatch hypothesis is the question 

why a single repeated (“steady-state”) item is frequently not statistically significant. Beyond 

set size two, the rapid deceleration of the rate at which disruption increases with token set 

size would explain why the patterns obtained by Tremblay and Jones (1998) were not 

statistically significant. This steady-state effect is not significant in designs powerful enough 

to routinely pick up a changing-state effect (Jones & Macken, 1993; Jones et al., 1992; but 

see also Bell et al., 2019b; Parmentier & Beaman, 2015), rather this steady-state effect 

dances either side of significance, suggesting an effect size for which many published studies 

are underpowered. One possibility is that the cognitive interference caused by steady-state 

information is at a level from which recovery is usually possible – at least partially – and 

only beyond this point is recall itself seriously affected (e.g., Beaman, 2000). This 
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explanation parallels the suggestion that orienting to a single utterance habituates sufficiently 

to reduce the effect size – an intuitively compelling corollary to the OR hypothesis. However, 

both suggestions – reasons why recovery might be possible from SMM interference and the 

possible rate of habituation to an OR remain to be investigated.  

In summary, the current data support a version of auditory distraction in which there 

is a gradual but decelerating increase in distraction as a function of the number of distracters. 

This pattern of data is less likely under the strong changing-state hypothesis and the 

orienting-response hypothesis than under the stimulus-mismatch hypothesis as 

operationalized here. The approach taken, both in terms of the Bayesian analyses used, and 

their application to a function governing auditory distraction instead of nil hypothesis tests 

aimed at showing qualitative differences, opens new ways of examining auditory distraction 

data. As a method, the approach is particularly suitable to examining multiple accounts of 

effects for which predictions can be quantified – particularly, as here, where the manipulation 

itself is inherently parametric. Suitable effects amenable to such investigations include the 

quantifiable effects of word “dose” (the total number of utterances experienced, irrespective 

of token set size; Bridges & Jones, 1996) and of “babble” – the effect of speech or noise from 

multiple different sound sources and how these interact with the ability to identify and 

segregate the different sound streams (Jones et al., 1999; Jones & Macken, 1995). It is also 

worth noting that a stimulus-mismatch hypothesis is more consistent than a strong changing-

state hypothesis with data showing that the extent of changes-in-state within a single stream 

influences the size of the effect (Beaman & Holt, 2007; Jones & Macken, 1995). Such data 

are difficult to reconcile with the doctrine that it is the fact of change rather than the extent of 

change which is important. 

A critical precursor to further investigations, however, is to develop mechanistic 

accounts which can be shown to give rise to particular disruptive functions from first 
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principles. Presented here is evidence that a particular mathematical function represents a 

more likely basis for the data examined than two alternative mathematical functions but this 

represents the first attempt to systematically make such comparisons. The current lack of 

detail in theorizing forced us to make a number of assumptions – for example the only 

restriction on orienting response predictions put forward by Bell et al. (2019a) is that it 

should be monotonic but nonlinear in response to increases in token-set size, which aligns it 

with the “weak” changing-state hypothesis considered but rejected by Tremblay and Jones 

(1999) and against their assumption that orienting functions should be strictly linear which 

Tremblay and Jones also rejected after testing. Thus, the current study is open to the criticism 

that the functions we examined are not the “real” predictions of these hypotheses but, if so, 

then absent such more detailed mechanistic accounts there is – as yet – no solid basis on 

which to make any testable predictions. The current analysis however, indicates what 

functions any mechanistic account should aim to generate. 

Finally, there remains the question of task-specificity. The changing-state hypothesis 

was initially embedded in the object-oriented episodic record model of short-term memory 

(Jones et al., 1996) which focussed on serial order retention but assumed amodal, object-

based representations. This model has since been superseded by the perceptual-gestural 

model (Jones, Hughes & Macken, 2006) which retains a reliance upon maintaining serial 

order but shifts towards a more perception-for-action, embodied idea of representation (e.g., 

Macken, Taylor, Kozlov, Hughes & Jones, 2016). Note that the changing-state hypothesis 

that a requirement to maintain serial order is necessary to observe a changing-state effect is 

independent of either of these models. One could assume that the representational 

assumptions of the perceptual-gestural model to be correct while simultaneously rejecting the 

idea of a conflict of order cues as the basis of auditory distraction and, as we have seen, the 

hypothesis could be incorporated into multiple models with different representational 
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assumptions. As such, it is the strong changing-state hypothesis which is tested here, with the 

results as discussed. It is worth noting also that the changing-state effect – which we have 

reformulated as a subset (indeed, the starting point) of the token set size effect – has not to 

our knowledge anywhere been disputed. Similarly, there is no argument that orienting 

sometimes happens, and it is also possible to build orienting responses into multiple memory 

models, but critics of the orienting response hypothesis argue simply that orienting (and 

subsequent habituation) are not the basis for the auditory distraction effects which give rise to 

changing-state and token set-size effects. A difficulty for all current models is how to 

account for the extensive data on task-specificity without becoming entangled in circular 

logic.  

For changing-state theorists, it is possible to argue that tasks which require serial 

order maintenance strategies are those which show changing-state effects, and that tasks 

which show changing-state effects are those which involve serial order maintenance 

strategies. For orienting response theorists, it is possible to argue that tasks which require 

attention show distraction effects when attention is oriented away, and that tasks which do 

not show distraction effects are insufficiently attention-demanding for orienting away to 

cause distraction. A possible way of breaking this circularity is to take the memory-blocking 

suggestion of the stimulus mismatch hypothesis seriously, and argue that tasks which require 

access to representations of a kind which are either intrinsically similar to the blocking 

material (i.e., other auditory representations) or can be translated into an auditory-motor 

output (most typically, vocalized) are those which should show distraction effects. Critically, 

for all tasks with these characteristics, one would expect to see a token set-size effect of the 

kind shown in Figure 1A. 
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Sample 

Size (N) 

Token Difference 

 

1 2 3 4 5 6 Total No. of 

Comparisons 

at N 

21-30 0/1 0/2 2/3 0/1 - 0/1 8 

31-40 - - - 0/2 - - 2 

41+ 0/1 0/2 - - 0/1 2/2 6 

%age 

significant 

results 

 

0% 

 

0% 

 

67% 

 

0% 

 

0% 

 

67% 

16 

Total 

Sample 

Size 

72 144 70 101 80 300  

 

Table 1. Frequency (numerator) of statistically significant results reported for comparisons of 

a particular token difference and the total number of studies (denominator) for which that 

comparison is reported. Data are given as a function of the sample size for the experiment in 

question and the difference in token set size being compared (e.g., token difference 2 could 

be a comparison between 4 and 2 tokens or between 5 and 3 etc). 
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Source Contrast Bayes Factor 

OR vs SCS 

Bayes Factor 

SMM vs SCS 

Bayes Factor 

SMM vs OR 

Tremblay & 

Jones (1998) 

Exp 1 

Speech, 2 vs 3 1.39* 3.77* 2.85* 

 
Speech, 3 vs 5 0.24 0.86 5.55* 

 
Speech, 5 vs 7 0.42 1.03* 2.42* 

Tremblay& Jones 

(1998) 

Exp 2 

Tones, 2 vs 3 2.51* 3.97* 1.51* 

 
Tones, 3 vs 5 .21 1.11* 4.09* 

 
Tones, 5 vs 7 .56 1.01* 1.85* 

Tremblay & 

Jones (1998) 

Exp 3 

Speech, 2 vs 7 1.07* 2.44* 2.36* 

Campbell, 

Beaman, & Berry 

(2002) 

Exps 3A & 3B 

combined 

Speech, 2 vs 5 .21 170.52* 4.98* 

Elliott & Cowan 

(2005) 

Exps 1D, 1E, & 

1F combined 

Tones, 4 vs 8 21.55* 46.74* 2.17* 

Bell, Röer, Lang, 

& Buchner (2019) 

Exp 1 

Speech, 2 vs 8 15981245437.29* 17137777433.56* 1.07* 

Bell, Röer, Lang, 

& Buchner (2019) 

Exp 2 

Notes, 2 vs 8 17.99* 42.14* 2.34* 
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Table 2. Summary of the evidence in favour of strong changing-state (SCS) orienting (OR) 

and stimulus mismatch (SMM) hypotheses when direct compared with each other across 14 

different contrasts. In this notation, Bayes factors < 1.0 favour the first hypothesis and Bayes 

factors >1.0 favour the second hypothesis. The Bayes factor is a continuous measure of 

relative confidence in an hypothesis but as a basic guide some authors have suggested that 

only Bayes factors > 3 (or <1/3) give “substantial” or “positive” support for a hypothesis 

(Jeffreys, 1961; Raftery, 1995). In this table, all the Bayes factors which favour the first of 

two hypotheses are annotated with an asterisk.
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Figure Legends 

Figure 1. Panel A: Idealized data on the effects of irrelevant sound according to strong 

changing state, stimulus mismatch and orienting hypotheses. Baseline (in quiet) was assumed 

to be 50% error rate and the effects of two token (changing-state) irrelevant sound was 

assumed to be a 30% increase in error rate for all cases (the average disruptive effect of 

irrelevant speech according to Ellermeier & Zimmer, 1997). For the strong changing state 

hypothesis, no further disruption is assumed beyond this. For the stimulus mismatch 

hypothesis, the additional disruption of recall is given by halving the previous increase in 

disruption and adding it to the total disruption. For the orienting hypothesis, the additional 

disruption of recall is given by an additional reduction of recall rate by 30% at every 

subsequent set size. Panel B:  Adapted from data from Experiments 1-2 of Tremblay & Jones 

(1998, Lines of best-fit are 3rd order polynomials (R2 = 0.9998 and 0.9995 for speech and 

tones respectively). 

 

Figure 2. Data redrawn from studies by Elliott and Cowan (2005) and Bell et al. (2019a) 

showing the effects of token set size in these studies when collapsed across serial position.. 

A-C show data from Elliott & Cowan, 2005; D shows data from Bell et al. (2019a). 
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FIGURE ONE 

 

 

 

 

  

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

P
(E

rr
o

r)

Token Set Size

A

Orienting

Stimulus Mismatch

Strong CS

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7

P
(E

rr
o

r)

Token Set Size

B

Tones

Speech

Poly. (Tones)

Poly. (Speech)



How much do we orient? 

 

 50 

FIGURE TWO 

 

 


