In-situ observations and lumped parameter model reconstructions reveal intra-annual to multi-decadal variability in groundwater levels in sub-Saharan Africa

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of Ascott_et_al_2020_r1_clean.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Ascott, M. J., Macdonald, D. M. J., Black, E. orcid id iconORCID: https://orcid.org/0000-0003-1344-6186, Verhoef, A. orcid id iconORCID: https://orcid.org/0000-0002-9498-6696, Nakohoun, P., Tirogo, J., Sandwidi, W. J. P., Bliefernicht, J., Sorensen, J. P. R. and Bossa, A. Y. (2020) In-situ observations and lumped parameter model reconstructions reveal intra-annual to multi-decadal variability in groundwater levels in sub-Saharan Africa. Water Resources Research, 56 (12). e2020WR028056. ISSN 0043-1397 doi: 10.1029/2020WR028056

Abstract/Summary

Understanding temporal variability in groundwater levels is essential for water resources management. In sub-Saharan Africa, groundwater level dynamics are poorly constrained due to limited long term observations. Here we present the first published analysis of temporal variability in groundwater levels at the national scale in sub-Saharan Africa, using 12 multi-decadal (c. 1980s – present) groundwater level hydrographs in Burkina Faso. For each hydrograph, we developed lumped parameter models which achieved acceptable calibrations (NSE = 0.5–0.99). For eight sites not showing significant (p<0.001) long term groundwater level declines, we reconstructed groundwater levels to 1902, over 50 years before the earliest observations in the tropics. We standardized and clustered the eight reconstructed hydrographs to compare responses across the sites. Overall, the 12 hydrographs were categorized into three groups, which are dominated by (1) long term declines (four sites), (2) short term intra-annual variability (three sites) and (3) long term multi-decadal variability (five sites). We postulate that group 1 is controlled by anthropogenic influences (land use change and abstraction). Correlation of modelled water table depth and groundwater response times with hydrograph autocorrelation suggests that hydrogeological properties and structure control differences between group 2 and 3. Group 3 shows a small recovery in groundwater levels following the 1970/80s drought. Differences in intra-annual to multi-decadal variability in groundwater levels have implications for water management, and highlight the value of long term monitoring. Reconstructions contextualize current groundwater status, forecasts and projections. The approach developed is generic and applicable where long term groundwater level data exist.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/93766
Identification Number/DOI 10.1029/2020WR028056
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar