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Abstract 

A deterministic Extreme Value Analysis method is of particular importance in an 

engineering-oriented context. In this paper, three extreme value analysis (EVA) 

methods, in which annual maxima (Type I), monthly maxima (Type II) or the peaks-

over-threshold (Type III) are fitted into Generalized Extreme Value distribution (GEV) 

function or Generalized Pareto distribution (GP) function, are used to estimate return 

values of significant wave height. Sensitivity of return levels of significant wave height 

to water depth and sampling length is vigorously investigated, based on the 40 years of 

high-resolution wave hindcasts for the South Yellow Sea (SYS). We find that for 100-

year return level (𝐻100), amongst the three methods, Type I method mostly provides 

the largest estimates in the shallow waters and are most sensitive to water depth, whilst 

estimates from Type II are the smallest and least sensitive to water depth. Additionally, 

the GP model shows more confidence for long-term return level estimates (e.g. 𝐻100) 

and the least vulnerable to the sampling length, but produces wider confidence level 

than the GEV model for short-term level estimates. In the SYS, the return level 

estimates are significantly reduced with a longer sample length. However, we find that 

the reduction is closely related to the long-term trend in extreme wave heights, rather 

than due to the sampling effect. From deep to shallow waters, spatial inhomogeneity of 

return levels increases, which should be considered in the engineering practice. 

 

Keywords: Extreme Value Analysis; Generalized Extreme Value distribution; 

Generalized Pareto distribution; Peak-over-threshold; Return level, Sampling length. 

1. Introduction 

A wide range of engineering applications requires the accurate information on 

extreme waves, partially related to the coastal and offshore area protections. Examples 

include the determination of design parameters for breakwaters, seawalls and offshore 

platforms. Meanwhile, extreme waves can also cause coastal erosion and threaten the 



safety of fisheries and the coastal marine ecosystems. Extreme value analysis (EVA) is 

used to estimate the return values or occurrence probabilities of extreme waves. In the 

EVA procedure, tail values of observed or simulated wave metrics are fitted to a 

theoretical function, from which the return values or occurrence probabilities of 

extreme waves at certain levels are calculated (Goda, 1992; Muir and El-Shaarawi, 

1986; Muraleedharan et al., 2012). Among the EVA estimates, the Generalized Extreme 

Value (GEV) distribution model is popularly used due to its flexibility and good-fitness 

in simulating extreme waves under the various conditions (e.g. Niroomandi et al., 2018; 

Menéndez et al., 2009). The GEV model can be specified with the Gumbel (type I of 

GEV) and Weilbulls (type III of GEV) (e.g. Shi et al., 2019; Li et al., 2018; Mathiesen 

et al., 1994). In addition to the GEV model, a Generalized Pareto (GP) distribution 

model has also been used in the wave return level estimations (e.g. Coles, 2001; Méndez 

et al., 2006; Hawkes et al., 2008; Thompson et al., 2009), which is also known as the 

Peaks-Over-Threshold (POT) due to the sampling method. 

Choosing the EVA approach for extreme wave height estimation varies on a 

case-by-case basis. Before the analysis for wave return levels at a location, there is 

normally very little information indicating the best or most-proper methods, likely due 

to the very localized features of extreme waves. Goda et al. (1993) conducted an 

intercomparison between Weibull and Fisher-Tippett distributions (type I and type II), 

and found that the return level estimates are dependent on the sampling variability. This 

work is mostly derived from the statistics perspective, while the effects of geophysical 

variations such as water depth were not considered. In contrast, van Vledd et al. (1993) 

compared the wave height 100-year return levels with the POT and annual maxima 

values used in the type I and type III methods of GEV distribution, and found that there 

are small differences between the methods. Note that van Vledd et al. (1993) used wave 

measurement data at only location in the Norwegian coast, and the comparison was 

made for two different periods (9-years vs. 20-years). Mazas and Hamm (2011) 

revisited the dataset in van Vledd et al. (1993) together with another single-site wave 

records for the Gibraltar Strait, and suggested two difference EVA methods for these 

two different sites regarding the fitness of observed extreme wave heights to the 

statistical models. Mazas and Hamm (2011) also found that the wave return levels in 

the Gibraltar Strait is less sensitive to the statistical methods than in the Norwegian 

coast. Contrastingly, in the Chesapeake Bay, Niroomandi et al. (2018) found that the 

statistical methods can considerably alter the wave return levels. Therefore, the 

performance of EVA methods varies with regions and the length of data. The 

suggestions for the most suitable methods in one place may not be valid in another 

place. Ideally, for each marginal sea or coastal region, a vigorous and systematic 

evaluation on the feasibility of EVA methods in estimating the wave height return levels 

should be performed, although there has always been lack of it. In this paper, we aim 

to systematically evaluate the different EVA methods for return level estimations in the 

SYS, including uncertainties of return levels related to by intrinsic factors (e.g. location 

and data source) and epistemic factors (e.g. statistical models and sampling length). 

The temporal variability and trends of extreme marine events are expected to 

have an essential effect on the estimated return levels (e.g. Ross et al., 2017; Wahl and 



Chambers, 2015; Feng and Tsimplis, 2014; Grinsted et al., 2014; Arns et al., 2013; 

Méndes et al. 2006; 2008; Menéndez et al., 2008; Wang and Swail, 2001, 2002). An 

increase or positive anomalies of the size/occurrence of extreme events over a period 

would imply the larger values of return level. This could contaminate the effect of the 

data sampling length on return levels, in which the samples are assumed to be 

independent of time (i.e. at a normal distribution). Extreme wave heights have been 

seen to increase or decrease by ** cm/yr in the western North Pacific over the last 

decades (REF), likely related to ** what reasons**. It remains unclear whether such 

significant changes in the open ocean will be able to translate into the marginal seas 

such as the SYS. The bathymetric refraction and shallow water in the SYS may damp 

the amplitudes of trend and variations in extreme waves from the open sea, especially 

for the swells, causing these trends and variability of waves in the SYS to be 

undetectable. In this paper, we will investigate how the long-term variations of waves 

in the SYS affect the sensitivity of wave return levels to the data sampling length.  

The SYS is located adjacent to one of the most developing coastal regions of 

China, with an enormous submarine deltaic system, known as the Radial Sand Ridges 

(JRSR). Over the last decades, the bathymetry and coastlines of the SYS become more 

complex due to intensive human activities, including land-reclamation and harbor 

development (Feng et al., 2019), which could potentially cause distinct changes in the 

local-wave generations and remote-wave propagations. However, long-term 

hydrological observations are very sparse, adding uncertainty to the return level 

estimations for marine extremes (Feng et al., 2010, Yang et al., 2014, Feng and 

Tsimplis, 2014, Feng et al., 2018). There have been limited studies sophistically 

evaluate the applicability of the EVA methods to this region, despite the importance 

from the engineering-oriented perspective.  

The objectives of this paper include: 1) to identify a most suitable EVA method 

for the SYS, as a function of water depth and data sampling length, for the engineering-

oriented purposes; 2) to evaluate the uncertainties in return level estimations due to the 

intrinsic factors (water depth) and epistemic factors (sampling length and EVA 

methods); and 3) to detect whether the long-term trend in extreme wave climate can 

affect the uncertainties of return level to the above factors. The paper is structured as 

follows. Section 2 describes the EVA methods and the wave datasets of the SYS. 

Section 3 gives the detailed analysis on the return values of extreme wave height, and 

the sensitivities to water depth and data sampling length. Section 4 discusses the impact 

of long-term variations of wave height on the return level sensitivity analysis, including 

the comparisons to previous studies and implications for engineering practice. We 

provide our conclusions in Section 5. 

2. Methodology 

2.1 Numerical dataset 

A forty-year long numerical hindcasted dataset spans from 1979-2018 with 

focus on the SYS (119°E-124°E and 31°N-35°N) (Figure 1) was used as the sampling 

dataset in this study. The SWAN wave model, a third-generation wave model, 



developed at Delft University of Technology, that computes random, short-crested 

wind-generated waves in coastal regions and inland waters (Boojj,1999) (v41.20), with 

unstructured module was used to construct the wave fields. The unstructured 

computational grid contained 20097 triangular elements and 10429 nodes, with 

resolution gradually varying from 1.5km to 10.8km in the coastal areas with an increase 

of 10-15%. The directions from 0-360° was divided into 36 bins, and the frequencies 

of the simulated waves are divided into 32 frequencies from 0.04 Hz to 1 Hz evenly. 

The time step of the simulation was set to 60s. The northern, southern and eastern 

boundaries were set as open boundaries. The offshore swells were implemented and 

forced into the study domain via the northern, eastern and southern open boundaries. 

Physics considered in the model included white capping, wave breaking and bottom 

friction. 

The contour colors in Figure 1b represent the bathymetry, which was obtained 

from nautical chart sourced of year 2010. The shallow areas off the coastlines were 

dominated by the Jiangsu Radial Sand Ridges system (JRSR). The effects of Yangtze 

River flow and sea level variations were not considered in the wave hindcast, i.e. 

assuming water depth was constant during the simulation period. The submarine 

sediment movement and the geomorphologic evolution over the 40 years were limited 

in the JRSR. Since the main focus of this study is on the extreme wave caused by 

atmospheric factors, the coastline and bathymetry of the SYS were assumed unchanged 

to avoid uncertainties introduced by human inventions or morphological changes. 

The model was driven by the ERA-Interim reanalysis winds at 10m-height 

above sea surface, obtained from ECMWF (https://www.ecmwf.int/) and the offshore 

swell-forcing were extracted from the operational ocean wave predictions of 

NOAA/National Weather Service based on WaveWatchIII (WWIII) 

(https://polar.ncep.noaa.gov/waves/). In this study, we used 40 years (1979-2018) of 

ERA-Interim data at 6 hourly interval, with a spatial resolution of approximately 80km. 

NCEP reanalysis winds were also used for comparing waves forced with ERA-Interim, 

during the period of 2009-2014 when measurements were available. The model was 

parameterized with reference to model configurations on the China adjacent seas from 

previous studies (Shi et al., 2019; Liang et al., 2014; Li et al., 2016).Wave hindcasts 

were verified with in-situ wave measurements: Buoy 1(120.81°E, 33.29°N), Buoy 2 

(121.57°E, 32.15°N), and Buoy 3 (121.98°E, 32.26°N) (Figure 2).  

The SWH at all three stations were better been hindcasted by ERA-Intrim from 

ECMWF than CFSR from NCEP regarding larger correlation coefficient (R) and higher 

Willmott Skill Score (defined in Supplemental Information). Willmott Skill Score 

equals to 1 meaning a perfect hindcast. In our case, the Willmott Skill Score was all 

greater than 0.7 (Table 1). The biases between the modeling results and observations 

were very limited to -0.09 m at Buoy 1, 0.08m at Buoy 2, and 0.03m at Bouy 3, which 

implied that the model can well capture the wave climate over a long time. The three 

buoys were all deployed at the apex of the RSR. The water depth is 25.5m (based on 

Mean-Sea-Level) at Buoy 1, 10m at Bouy 2 and 20.9 m at Buoy 3. The offshore waves 

were either been buffered on ebb shoals or sheltered by the emerged ridges, which 

https://www.ecmwf.int/


means the SWH at the three buoys was very sensitive to the local bathymetry. Thus, 

the mean SWH at Buoy 1 and Buoy 3 exceeded no more than 0.5m and at Buoy 2 was 

even smaller. Additionally, due to the resolution of wind dataset, the wind field close 

to the shore could also introduce biases. Considering the factors that can cause the 

deviations, the performance of our model can be considered as feasible, regarding such 

a long-time simulation. Moreover, the modeling accuracy was comparable to and even 

better than the previous numerical studies (e.g. Shi et al., 2019; Li et al., 2018; Liang et 

al., 2014). As the calibration of the model was not the focus of this study, the model 

validation are not expanded here. More details about the model validation are provided 

in the Supplemental Information (refer to S1). 

2.2 Sampling methods 

The SWH was used to quantify the extreme wave climate in the study area. For 

instance, the 1% annual maximum wave height, so-called the 100-year return value of 

SWH (𝐻100), refers to the SWH values being exceeded at 1% chance at any given year. 

The extreme return level has been widely used as designing wave parameter in coastal 

and ocean engineering. In this study, three samplings methods were used to estimate 

the extreme return values. 

A traditional but convenient approach for estimating 𝐻100  depends on the 

annual maximum wave heights, which is widely recommended officially (e.g. Oceanic 

Administration of China, Federal Emergency Management Agency of United States). 

The annual maximum wave height can be attributed to many factors, such as a storm 

wave event, a rogue wave, or a passage of an abrupt atmospheric disturbance such as 

meteo-tsunamis (Niu and Chen, 2019). However, such an extreme circumstances could 

appear more than once per year. Besides, for samples with short-period, annual maxima 

might fail to supply enough data for accurate estimates. Two supplementary sampling 

methods were used to make up for the deficiency and increase feasible sampling-size: 

1) picking extreme values with monthly-maxima and the return value of SWH can be 

transformed into 𝐻𝑇 = 𝐻𝑇′ , where  𝑇′ = 𝑇/12; 2) peak-over-threshold (POT) method. 

The POT method is more flexible and can reflect the occurrence of extreme 

weather more accurately (Niroomandi et al. 2018; Menendez et al. 2008). Values that 

exceed a certain threshold from a continuous measurement were counted into peak 

values to make up for the sparseness in the tail values resulted from the annual 

maximum method. To implement the POT sampling method, the SYS shelf was divided 

into 20 blocks for thresholds’ determination. Each block covered an area with latitude 

and longitude 1°×1°, except for the JRSR where a finer block size of 0.5°×0.5° was 

applied. The resolution of the blocks depended on the variability in geographic and 

bathymetric patterns shown in Figure 1b. The naming of each block is as following: 

letter D represents the deep-water area, P denotes the periphery of the JRSR, and the 

north, center, and south of JRSR are represented by N, R and S, respectively.  

In practice of the POT method, two critical parameters, which are the threshold 

of SWH where peak waves ought to exceed, and the time interval between two 

consecutive but independent extreme wave events, need to be taken carefully. A proper 



selection of the threshold and the time interval ought to ensure that the occurrences of 

extreme weathers were taken into account as much as possible. Whilst too low a 

threshold would result in underestimation in return level and too short a time interval 

would cause duplicate numbers within the same extreme event. The minimum time 

interval to assure independence between consecutive storms was chosen to be 3 days 

(e.g. Menéndez et al. 2006). Meanwhile, the previous studies have consistently 

demonstrated that 3-day as the optimal value for time span as little variability in POT 

was observed with varying time span (e.g. Niroomandi et al., 2018; Méndez et al., 2006, 

2008). Following the pioneering works, a 3-day time span has been picked and applied 

over the SYS. 

This study used a combination of the mean excess function (MEF) plot and the 

mean residual life (MRL) plot to make the selection of the threshold to implement POT 

sampling method.  The MEF was proposed by scholar McNeil in 1997. It can be 

defined as follow: 

  𝑒𝑛(𝜇) = 𝐸(𝑋 − 𝑈|𝑥 > 𝜇) =
∑ (𝑋𝑖−𝜇)𝑛

𝑖=1

𝑛
,     (1) 

where  𝜇  represents the threshold, and 𝑥𝑖(𝑖 = 1,2,∙∙∙, 𝑛)  represents the sample 

observation exceeding the threshold. In the MEF plot, a set of points with 

{𝜇, 𝑒𝑛(𝜇), 𝜇 > 0} were plotted with 𝜇 set as the horizontal axis and  𝑒𝑛(𝜇) set as the 

vertical axis. The threshold selection was determined when a linear platform (without 

abrupt ups and downs) appeared after 𝜇 exceeding a specific value. The upper panel 

of Figure 3 shows the MEF plots for 3 representative blocks. On the other hand, Coles 

(2001) proposed that an optimal threshold should also satisfy that the shape parameters 

of the fitted GP distribution be in a stable linear state. In the stable interval, a threshold 

as large as possible should be used to achieve the original intention of selecting extreme 

values. Thus, the MRL plot has been put forward, in which 𝜇  remained as the 

horizontal axis, while the vertical axis was replaced by the shape parameter in the GP 

model. The threshold depending on the MRL plot was achieved when the trend of the 

scatter plot became linear. The low panel of Figure 3 shows the MRL plot of the three 

representative blocks with a 95% confidence interval for the shape parameter estimates 

between red lines. 

Given a time series of SWH, the optimal threshold was determined from an 

overlapped range of 𝜇, where both the MEF plot and the MRL plot became stable and 

linear. Then a specific value of 𝜇 was determined by finding the location where the 

gradient of the corresponding curves both tended to zero. In the example shown in 

Figure 3, the 𝜇 of the three representative regions (D2, P4, R3) were: 2.3m, 2.5m, and 

2.1m, respectively. The thresholds in all the 20 blocks are shown in Table 2. The 40-

year averaged sampling dataset for each sampling method was mapped in Figure 4.  

2.3 Statistical models 

Following previous studies (e.g. Niroomandi et al., 2018; Méndez et al., 2006, 

2008), GEV model and GP model were both used by this study for 𝐻100 estimation. 

First, the annual maxima and monthly maxima of the 40-year long dataset was fitted 



into the GEV distribution function for 𝐻100 assessment. The cumulative distribution 

function of GEV model follows: 

G(𝑧, 𝜇, 𝜎, 𝜉)𝐺𝐸𝑉 = {
𝑒𝑥𝑝 [− (1 + 𝜉

𝑧−𝜇

𝜎
)

−1 𝜉⁄

] , 𝜉 ≠ 0

𝑒𝑥𝑝 [−𝑒𝑥𝑝 (−
𝑧−𝜇

𝜎
)] ,        𝜉 = 0

,   (2) 

where 𝑧(𝑧1, 𝑧2, 𝑧3, ⋯ , 𝑧𝑛) represents the independent random variable subject to GEV 

distribution and here is extreme wave height;  𝜇 is the location parameter, −∞ < 𝜇 <

+∞; 𝜎  is the scale parameter, with𝜎 > 0; and 𝜉  is the shape parameter,−∞ < 𝜉 <

+∞; 1 + 𝜉
𝑧−𝜇

𝜎
 needs to be positive. The shape parameter 𝜉 determines three types of 

GEV models, with Gumbel distribution subject to 𝜉= 0, Frechet distribution for 𝜉< 0, 

Weibull distribution for 𝜉> 0. The parameters 𝜇, 𝜎, 𝜉 were determined by the maximum 

likelihood estimates (MLE) at each grid point. Given a return period (𝑇) (e.g. T=100 

year) and a location, the return value of SWH can be obtained by the following 

equation: 

𝐻𝑇𝐺𝐸𝑉
= {

𝜇 −
𝜎

𝜉
{1 − [−𝑙𝑛 (1 −

1

𝑇
)

−𝜉

]} , 𝜉 ≠ 0

𝜇 − 𝜎𝑙𝑛 [−𝑙𝑛 (1 −
1

𝑇
)] ,           𝜉 = 0

.   (3) 

The graphic analysis based on the cumulative distribution function (CDF) plots 

and the quantile-quantile (Q-Q) plots was used to judge the fitness of the distribution 

function. The fitness of GEV distribution are shown in Figure 5 and Figure 6. It can be 

seen from the CDF plots that the fitted values (blue line) and the theoretical values (red 

line) are consistent with the distribution trend, which proves that the GEV distribution 

is suitable for the two sampling methods. In the Q-Q plots, the observational points 

(blue markers) are also conforming to the theoretical distribution (red dashed line). 

With sampling source based on the annual-maxima (Figure 6), a slight deviation from 

the theoretical distribution can be observed, which is typical in EVA because of the 

uncertainty aroused from the sparseness of samples.  

The GP model performs well in fitting the exceeding values over a threshold. 

Thus we fit the POTs into the GP model, and the GP model has the following 

cumulative distribution function: 

G(𝑧, 𝜎, 𝜉)𝐺𝑃 = {
1 − (1 + 𝜉

𝑧

𝜎
)

−1 𝜉⁄

, 𝜉 ≠ 0

1 − 𝑒𝑥𝑝 (−
𝑧

𝜎
) ,        𝜉 = 0

,   (4) 

where 𝑧(𝑧1, 𝑧2, 𝑧3, ⋯ , 𝑧𝑛) represents the independent random variable (here is extreme 

wave height) subject to the GPD distribution, 𝜎  and 𝜉  are the scale and shape 

parameters, respectively. The parameter 𝜎 and 𝜉  were determined using MLE. The 

solution of the return value of SWH (𝐻𝑇) corresponding to the return period 𝑇 is as 

follows: 



𝐻𝑇𝐺𝑃
= {

𝜇 +
𝜎

𝜉
(𝑇𝜉 − 1),     𝜉 ≠ 0

𝜇 + 𝜎𝑙𝑛(𝑇),             𝜉 = 0
 .  (5) 

To evaluate the performance of GP model in fitting the POT samples, the 

distribution function of excess proposed by McNeil (1997) was applied:  

𝐹𝑢(𝑥 − 𝑢) = Pr{𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢} =
𝐹(𝑥)−𝐹(𝑢)

1−𝐹(𝑢)
, 𝑥 ≥ 0,  (6) 

where 𝑢  is the threshold, 𝑋(𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛)  represents the independent random 

variable subject to the distribution 𝐹, 𝐹(𝑥)<1. McNeil (1997) suggested that, for a 

sufficiently high thresholds 𝑢, the distribution function of the excesses (𝐹𝑢(𝑥 − 𝑢)) will 

be approximated by GP distribution. The performance of GP model in fitting the tail 

values are shown in Figure 7. In the figure, the blue dots shows the empirical 

distribution by Equ.(6) and the black line indicates the GP distribution. Dotted line in 

red represents the boundaries of the GP distribution with a deviation in 𝑢 of ±5%. It 

was found that the GP with the thresholds selected (Table 2) gave the best performance 

to the empirical distributions. Table 3 summarized the types of methods for assessing 

the return level of extreme wave heights. 

3. Results 

3.1 Maps of 𝐻100 from three types of sampling method 

Maps of 𝐻100  vary to each other by using different methods (Figure 4). In the 

offshore regimes, 𝐻100 determined by Type II method is lower than that calculated by 

Type I or Type III method by approximately 20-30%. Type III provides the largest 

𝐻100  in the southeast of the domain, while Type I gives the highest 𝐻100  in the 

northeast. Spatial nonuniformity of 𝐻100  using Type I is larger than those from other 

two methods. Exception happens in the JRSR, where large waves are much reduced 

(<2m). The 𝐻100  estimates are generally below 1m over the sand ridges, reflecting 

significant energy dissipation due to shallow water effects. 

Standard deviation (𝑆𝑇𝐷) of 𝐻100 due to varied statistical methods at each grid 

point was calculated (Figure 5a). In nearshore and coastal areas (water depth<30m), the 

difference between varied methods is limited with 𝑆𝑇𝐷 <0.2m. In the offshore area 

(e.g.P1, P2, D3, D5), the difference is greater with 𝑆𝑇𝐷>0.5m. The method is regarded 

more conservative if outputs larger value of 𝐻100 and is determined at each grid point 

and shown in Figure 5b. The GPD method with POT samples is more conservative for 

most of the coastal areas and the east offshore areas. The GEV method with annual 

maximum values whereas gives more conservative estimates in the north and south. 

3.2 Effects of water depth and sampling length on 𝐻100 

The above sub-sections analyzed the spatial variations of 𝐻100 based on 40 years 

of SWH in the SYS. In the following two sub-sections, we will continuously discuss 

the effects of sampling length and water depth on the wave-return-heights (e.g. 𝐻100). 

At each grid point, the sensitivity of wave-return-heights to sampling length is 



quantified by using Equ.5: 

𝛼 =
𝐻100,𝑁−𝐻100,40

𝐻100,40
× 100%    (5) 

where 𝛼 is a non-dimensional coefficient, subscript N represents the sampling 

length in units of year. Moreover, we classified 𝐻100,𝑁 into four regimes depending on 

the water depth in range of 0-10m, 10-20m, 20-40m and >40m, which represent inter-

tidal area, submarine deltaic area, spherical of JRSR, and offshore area, respectively.  

Figure 6 shows the tendency of spatially-averaged 𝛼  for each regime with 

changing N. The largest variation in 𝐻100 happens to Type I method (|𝛼| maximizes 

around 15%). The Type II and Type III method whereas are not less sensitive to N, with 

|𝛼| within 5%. This is because for Type I method, sampling source were mostly 

generated by extreme weathers, thus that longer sampling length is required for 

obtaining stable 𝐻100.  

In regimes from inter-tidal area to the spherical of JRSR (0-40m), 𝐻100  would be 

overestimated from 𝐻100,40  with shorter N. However, the overestimation tends to 

reduce as water depth gets shallower. The inter-tidal regime (0-10m) sees the least 

variability with sampling length. In the offshore regime (water depth>40m), 𝐻100,𝑁 

tends to be underestimated with decreasing N. 

3.3 Effects of water depth and sampling length on different return levels 

3.3.1 Uncertainty in estimating 𝑯𝑻,𝑵 

We then evaluated the best-estimation and confidence interval (CI) of return value 

of SWH 𝐻𝑇,𝑁 in different methods, against different return periods (𝑇; e.g. 10-year, 

20-year, 50-year).The 95% CI for a given variable (�̂�𝑖) with significant level 𝛼 follows 

the formula: 

�̂�𝐶𝐼 = �̂�𝑖 ± 𝑢1−
𝛼

2
�̂�𝑇,   (6) 

where �̂�𝐶𝐼 represents the upper or lower boundary of �̂�𝑖; by setting 𝛼=0.1,  𝑢1−
𝛼

2
=1.96, 

�̂�𝑇  is the arithmetic square root of the approximate variance of �̂�𝑖 , which was 

determined via MLE: 

�̂�𝑇
2 = 𝑣𝑎𝑟(𝑥𝑖) = (

𝜕𝑥𝑖

𝜕𝛼
)

2

𝑣𝑎𝑟(𝛼) + (
𝜕𝑥𝑖

𝜕𝜉
)

2

𝑣𝑎𝑟(𝜉) + (
𝜕𝑥𝑖

𝜕𝑢
)

2

𝑣𝑎𝑟(𝑢) + 2
𝜕𝑥𝑖

𝜕𝛼

𝜕𝑥𝑖

𝜕𝜉
𝑐𝑜𝑣(𝛼, 𝜉) +

2
𝜕𝑥𝑖

𝜕𝛼

𝜕𝑥𝑖

𝜕𝑢
𝑐𝑜𝑣(𝛼, 𝑢) + 2

𝜕𝑥𝑖

𝜕𝜉

𝜕𝑥𝑖

𝜕𝑢
𝑐𝑜𝑣(𝜉, 𝑢),       (7) 

where 𝜇, 𝜎 and 𝜉 are parameters in GEV and GPD functions, refer to Eq. (1-4), 𝑣𝑎𝑟 

and 𝑐𝑜𝑣 are operators for calculating self-variance and covariance between pairs of 

parameters and �̂�𝑖 is 𝐻𝑇,𝑁. In Figure 7, each column provides the regime-averaged 

estimation of 𝐻𝑇,𝑁s and regional-averaged CIs, from each type of method. In each plot, 

the shaded area stands for CI, with narrower areas implying more confident estimations 

of 𝐻𝑇,𝑁. 



Both the best-estimations of 𝐻𝑇,𝑁  and the associated CIs reveal distinct 

dependence on water depth. For intertidal regimes 𝐻10, 𝐻20, and 𝐻50 are all within 

the range of 1-2m on average, while they increase to ~3m for seas with median water 

depth (20-40m) and over 4m for offshore regime (>40m). The CIs of 𝐻𝑇,𝑁 in the 

offshore regime are 3-4 times those in the nearshore regime.  

Figure 7 also shows that CIs of 𝐻𝑇,𝑁are the largest using Type III method, and the 

smallest using Type II method. As return period 𝑇 increases, CI of 𝐻𝑇,𝑁 increases 

when using Type I or Type II, whereas CI decreases when using Type III method. 

Nevertheless, as sampling length 𝑁 increases, CI in all cases converges, meaning more 

reliable estimates of 𝐻𝑇,𝑁.  

3.3.2 Spatial dispersion of estimated 𝑯𝑻,𝑵 

We further used the standard deviation (𝑆𝑇𝐷) of the 𝐻𝑇,𝑁s at all grid points for a 

given regime to quantify the spatial variability of return levels. The 𝑆𝑇𝐷  was 

calculated by Eq. (8): 

𝑆𝑇𝐷 = (
1

𝑛−1
∑ (�̂�𝑖 − �̅�)2𝑛

𝑖−1 )
1 2⁄

,   (8) 

where 𝑥𝑖 represents the return value of SWH 𝐻𝑇,𝑁 at 𝑖𝑡ℎ grid point for a given 𝑇 and 

a given sampling-length 𝑁, and �̅� represents 𝐻𝑇,𝑁 averaged over a given regime. 

In Figure 8 wider shaded area suggests greater spatial nonuniformity within one 

regime. There are no apparent distinctions between 𝑆𝑇𝐷s of different return levels. The 

spatial variability is not clearly sensitive to different types of method either. Although 

spatial variability is slightly larger when using Type I, for small 𝑁(<10-year) and large 

𝑇(>50-year). For each case, 𝑆𝑇𝐷 is ~1.0m where water depth is within 40m, and it 

reduces up to 50% in waters with depth >40m. 

4. Discussion 

4.1  Implications of uncertainties of return level estimation  

Uncertainties in return level of SWH are generated from both intrinsic factors 

(e.g. spatial variability due to effects of submarine topography) and epistemic factors 

(e.g. inevitable errors introduced by the models, sparseness of sampling data). The 

above results show that epistemic uncertainty dominant over intrinsic uncertainty in 

return level estimates for most of the open ocean. Moreover, uncertainties due to the 

statistic models expands as sampling length shortens.   

Explicitly, when estimating return value of SWH, the GEV model has more 

confidence in estimating return levels for small 𝑇 (<50 years), while the GPD model 

is more reliable in estimating return levels for large 𝑇 (≥50 years). For seas off the 

intertidal regime, when sampling length 𝑁 is less than 20 years, annual-maxima based 

sampling method has more uncertainties in estimating 𝐻50 ,  𝐻100 , which can be 

substituted by monthly-maxima or POT based sampling methods. While for estimating 

shorter return levels, e.g. 𝐻10 and  𝐻20 , the POT sampling-method has more 

uncertainties. For intertidal and nearshore regions (water depth <10m), as long as 



sampling length is larger than 10 years, all methods have similar uncertainties in 

estimating various return levels. 

The spatial variability is relatively small in open seas but large in the nearshore 

regime. This implies for practice, such as buoy-based estimation of return value of 

SWH, spatial variability cannot be ignored in nearshore areas. Precise or dense 

placement of buoy measurement, along with other auxiliary measures such as numerical 

simulation is required. Distinct regional differences may introduce uncertainty in return 

level estimations based on just single- or sparse-matrix of buoy deployment. 

4.2  Comparison to other studies 

The mapping of the return levels of extreme SWH from this study were carefully 

compared to the previous extreme wave studies (e.g. Shi et al., 2019; Li et al., 2018; Li 

et al., 2016; Chen et al., 2013 and etc.) and proved to very close to the previous ones in 

magnitude. For example, the estimates of  𝐻100 were 2.4m, 2.1m and 3.4m at the three 

inner-shelf sites (buoy #1,#2,#3 shown in Figure 1) by using the annual maxima from 

1979 to 2013 in this study. Shown by Li et al. (2018) for the case with the same wind-

source (ERA-interim from 1979-2013) and similar GEV models, the estimates of 𝐻100 

were 2.5m at buoy #1, ,2.2m at buoy#2, and 3.8m at buoy #3, respectively. When Li et 

al.,(2018) included a parametric typhoon model in the wind forcing, the estimates of 

𝐻100 by their study increased only by up to 0.15m. Comparisons to Shi et al., (2019) 

for the estimates of 𝐻100  based upon a longer sampling length (39 years from 1979 to 

2013) revealed that the bias were limited to -0.3m for buoy #1 and bouy #2 and a bit 

larger (-0.6m) for bouy #3. The negative deviation from their estimates could come 

from several sources, such as the wind data, bathymetric accuracy, and statistic models. 

Besides the differences introduced by the statistical models, we deemed that 

bathymetric accuracy could introduce unavoidable biases between ours and the latest 

studies. In both Li et al., (2018) and Shi et al., 2019), the bathymetric data interpolated 

from the General Bathy-metric Chart of the Oceans (GEBCO) was used. The 

bathymetry of GEBCO failed to represent the submarine profiles of the JRSR, which 

could highly possible to lead an overestimation on the 𝐻100 . For instance, in the 

absence of the northern shoals, the buoy #3 would experience frequent instruction of 

the northerly swells. In earlier works by Chen et al. (2013) and Li et al. (2016), the 

extreme waves on the inner shelf of SYS were not well resolved, which possibly 

because the focused spatial scale was much larger. Ignorance of the JRSR was apparent 

from their 𝐻100 maps as the contour lines were normal to the shore, whereas in the 

reality the SWH were significantly reduced due to the presence of the JRSR.  

Due to the unavailability of the long-term observational data for waves in the 

Yellow Sea, a lookup table dated back to 1990s (Yao et al., 1992) for observational 

verification. The lookup table was made from the annual maxima of SWH collected 

from 1960-1989 in the coastal stations of South Yellow Sea. Two numerical datasets 

of this study from 1979 to 1989 and 1979-1999 were used for calculating the return 

levels (𝐻10, 𝐻20, 𝐻50, and 𝐻100) for comparisons. The first covered a time period that 

was included in Yao’s dataset. The second had the same sampling length (30-year) as 

Yao’s dataset and contained the earliest samples in this study. The estimates by using 



the annual maxima spanning from 1979-1989 were the closest to Yao’s lookup. The 

biases were within 0.2m. Whereas by including annual maxima samples after year 

1989, the estimates of this study went lower than Yao’s estimate. The negative bias 

could also due to an interestingly negative tendency in the extreme wave climate of the 

SYS. A further discussion on the long-term tendency of the return levels of extreme 

SWH were given in the next section. 

4.3  Long-term variability in return level of extreme SWH 

From Figure 10 to Figure 12, there was a decreasing tendency in the return level 

of extreme SWH, which manifested for the Type I method. A further exploration on the 

spatial averaged the return levels of extreme SWH revealed such a negative trend was 

pronounced in the shallow water regime while gradually weakened to the deep water. 

For example, in the shallow waters with ℎ<10m (shown in Figure 13a), the descending 

rate of the 100-year return level of SWH versus the increasing sampling length was -

0.7cm/year with 95% confidence interval in range of (-1.0cm/year, -0.4cm/year) on a 

spatial average by using Type I method. A linear fitting of 100-year return level of 

SWH was statistically significant, with a p-value of 9.38e-06 at 5% significant level 

and could explain 49.7% of the variability in the scatter plot (R-square is 0.4975). The 

confidence interval for the long-term trend in ℎ<10m regime was narrow (within 0.1m 

with 0.05 significant level). Whilst in deep waters where ℎ >40m, the long-term 

tendency turned positive (0.01cm/year) and was not significant (failed to pass the F-

statistic test) on a spatial average. The CI became wider, which was about 0.15-0.2m at 

both ends. The spatial mean of 100-year return level of extreme SWH in the deep water 

showed a fierce oscillation which was hard for precise linear fitting (Figure 13b). The 

negative tendency also appeared by using the other two types of sampling methods 

(refer to Supplemental Information). On a spatial average, the long-term tendency was 

in the range of (-0.2cm/year, -0.4cm/year) for the 100-year return level of extreme SWH 

by using the Type II method and in the range of (-0.1cm/year, -0.5cm/year) by using 

the Type III method. In these two methods, the negative tendencies were found all 

significant whilst in one order smaller magnitude than that found with Type I method.  

In order to distinguish whether this negative tendency was due to a temporal 

variability or just a statistical convergence in response to the reduced statistical errors, 

a moving window with a fixed sampling length was applied to the 40-year long hind-

casted dataset to calculate the return levels of SWH. The window-width was chosen as 

26-year with reference to Mendez et al., (2006; 2008). The starting year was set as 1979 

and the window moved at 1-year time interval until the window spanned from year 

1993 to year 2018. The prototype was set for window started from 1979 and the return 

levels obtained from samples started in later years were compared to the prototype by 

using each type of method (Figure 14). It was found the return level of extreme SWH 

on the SYS was not random, but changed with time. For instance, for regimes with 

ℎ<40m, the trends between the yearly maxima, monthly maxima and POT were almost 

decreasing at the similar pace. The largest negative bias was about -9% by using the 

Type I method, and -5% by using the Type II and Type III. But for ℎ>40m, the trends 

were heterogeneous. For instance, the return levels of SWH decreased firstly and then 



increased by up to 8% when the data samples were after 2005 by using the Type I 

method. Similar fluctuation rather than consistent decrease also revealed by using Type 

II and Type III methods. This means the more offshore, the more fluctuation in the 

temporal variability of the extreme waves would appear. 

The sources of the negative tendency of the return level of extreme SWH were 

buried in their sampling sources. Therefore, the long term variability of the annual 

maxima, monthly maxima and POT were examined and represented by the spatial 

means (Figure 15). Although the spatial mean could wipe out the local characteristics 

and make the tendency insignificant (p>0.05), negative trends (up to -0.2cm/year) 

appeared for all cases: annual maxima, monthly maxima and POT. Separated by 

ℎ=40m, it was also found the negative tendency was more obvious in shallower waters 

(dark dashed lines) than in deeper waters (grey dashed lines) for all types of sampling 

methods. The spatial variability of the long-term trends could not be ignored and it was 

highly correlated to the genesis and propagation of the extreme waves (e.g. Menendez 

et al., 2008; Kukulka et al., 2017). In the SYS, the most severe waves occurred in the 

up north where ℎ >40m. These severe waves often come along with either the 

southward Siberian cold current. A few were associated with the passages of the 

tropical cycles in the middle of the Yellow Sea. The former could induce strong and 

prevailing northerly to northeasterly winds, while the latter could generate storm waves. 

The extreme waves sourced from the above genesis, however, could be dampened or 

sheltered by the JRSR on their southward route. Thus, for areas with ℎ<40m of the 

SYS, there appeared lower extremes and less variability. 

The negative tendency was rare and against most of the examples observed in 

the mid latitude of the north hemisphere where positive tendency in extreme waves 

were mostly reported: e.g. northeastern Pacific Ocean (e.g. Mendez, 2008; Mendez et 

al., 2006); Northeast Atlantic (e.g. Wang and Swail, 2001). Most the previous studies 

attribute the positive long-term trend to global warming and thus more intense wind 

fields. However, the negative trend in the return level of extreme SWH was not firstly 

reported by this study. Yao et al., (2017) by suing NCEP reanalysis and WWIII 

hindcasted the wave climate from 2001 to 2011 over the entire Pacific Ocean. The 

downward trend in the yearly averaged SWH were found in the Yellow Sea and 

Japanese strait. Similar downward trend in extreme SWH was also observed off the 

west coast of Canada (Menendez et al., 2008). Moreover, in the North Sea and Gulf of 

Alaska, the long-term trend in the extreme SWH was also significant (Feng et al., 

2014a; 2014b; Menedez et al., 2008; Yao et al.,2017). However, maybe due to the 

sparseness and less threat to coastal communities, the downward trends of the extreme 

SWH were not been paid much attention around the globe. Potential reasons for the 

descending tendency of the extreme SWH could related to very complex factors. First 

of all, although for most the central area of Pacific Ocean, the wind intense did show 

increasing tendency, but the increasing tendency of wind was insignificant in the 

Yellow Sea area (Yao et al., 2017; Zheng et al., 2017). Second, the SWH relies not only 

on the wind intensity, but also on the wind-duration, wind-direction and fetch of the 

wind. The Yellow Sea can be regarded as a semi-enclosed embayment on the map of 

North Pacific Ocean, which was sheltered by the Japanese islands and Korean 



Peninsula, thus avoiding from the intrusion of big swells generated from the Pacific 

Center. Besides, wind response to either global warming or climate variability such as 

El Nin˜o activity is an ocean-atmospheric interaction based on global-scale (Menendez 

et al., 2008). Thus, it would have less impact on the regional wind field whereby wave 

field such as Yellow Sea. Lastly, waves in the SYS were in mixed sea-states. Besides 

offshore swells, local wind with changing direction or decay could all result in swells, 

which later can transform and became steep under bathymetric effect while avoid direct 

influence from wind. Spatially inhomogeneous response of tidal range in response to 

global warming were extensively reported around the globe (Pickering et al., 2017; 

Feng et al., 2019), whereas the inhomogeneous response in extreme waves’ feedback 

to long-term climate variability were not paid much attention. This study emphasized 

requirement for further investigation on the spatial variability in the responses of 

extreme SWHs to climate change.  

The above analysis also showed that as the critical level for defining the extreme 

SWH lowered down, the slope of long-term trend became milder. This could arise from 

the natural characteristics of the sampling source. Usually, the yearly maxima contained 

more randomness (Feng et al. 2014a, 2014b). Note the time series of the yearly maxima 

showed the largest scatter than the other two (Figure 15a), which helped to explain why 

the variability of by using Type I method was the largest (Figure 14a and Figure 11), 

except for 𝐻10,10 from Type III. A sensitivity tests proposed by Feng et al., (2014b) 

revealed that the SWH with larger percentile of the exceedance probability obtained 

better correlation with climate variability. For example, 50th percentile of SWH, which 

meant the mean value of SWH showed better correlation with sea level pressure 

anomalies compared to the 2nd percentile of SWH, which indicated an extreme SWH. 

In this study, the monthly maxima and POT showed more consistent long-term 

tendency of extreme SWH, possibly because they included more extreme SWH 

samples.  

5. Conclusions 

The present work conducted a comprehensive sensitivity analysis on generating 

return value of SWH from the engineering-oriented perspectives. The SYS was chosen 

as the study area, and 40 years (1979-2018) of wave height hindcasts using SWAN 

wave model forced with ERA-Interim winds were analyzed. We compared three types 

of EVA methods for varying return levels of significant wave height (SWH), including 

the sensitivity of those methods to water depth and sampling length. Type I and Type 

II methods used the GEV model for best fitting extreme SWH values, but they were 

differentiated with extreme sampling method: annual maxima and monthly maxima, 

respectively. Type III method was based on GPD model with modified POT sampling 

method, in which localized SWH thresholds were determined in a range of 1.3-2.6m in 

a pre-processed analysis.  

The reliability of statistic models on wave height estimates vibrates as 

uncertainties grow with various aspects. As such, this study provides a useful insight 

into the selection of statistical methods. This study considers a balance between the 



engineering designing standard, data availability, and location for return level 

estimates. The major findings are as follows. 

First, the optimal EVA method which has the most conservative estimations of 

return period SWH was suggested at each grid point for 𝐻100  estimation on the shelf 

of SYS. The Type III method based on a spatially-and-temporally varied POT sampling 

method was found most conservative and confident for estimating extreme SWH with 

larger return period (𝑇).  

Second, a graphic lookup table of return levels of extreme SWH at 0.05 

significant level with reference to the sampling length, return level, and water regimes 

was provided for readers to make choices in applications. Limitations of each method 

was easily to be detected (Figure 11 and Supplemental Information). For instance, as 

the return level decreased (e.g. 𝐻100  vs. 𝐻10), the confidence interval narrowed for 

the Type I and Type II method, while widened for the Type III method. Thus, the 

spatially-and-temporally varied POT sampling method should be carefully applied 

when estimating extreme SWH with a short 𝑇. The Type II method based on monthly 

maxima were the least sensitive to the sampling length, but it would underestimate the 

return level of extreme SWH, particularly for a large 𝑇. 

Third, this study shows that the spatial variability of return levels of extreme 

SWH within a regime (e.g. ℎ≤10m, 10m<ℎ≤20m 20m<ℎ≤40m, ℎ>40m) were not 

sensitive to sampling length nor to the different types of statistical method. The 

deviation in the extreme SWH due to the spatial variability were vulnerable to water 

depth and increased in regimes close to shore. This implies for wave buoy deployment, 

it is more economical to set less measuring site for wave observations in the open sea, 

while arrange more near shore.  

Nevertheless, the uncertainties aroused from the statistical model always 

reduced as the sampling length increased, thus long-time dataset were always 

welcomed for improving the reliability of the return level estimation. Limited by the 

sparseness of the long-term observational data, the existing studies of extreme SWH 

were rich in hind-casted numerical datasets, but limited for in situ datasets. Verification 

on the estimation of return level of extreme SWH often failed through observations, 

including this piece of work. Thus establishment of an open and well-maintained 

platform for the long-term wave observation were in urgent demanding for scientific 

research and engineering application. 

Last, the estimation of return levels of extreme SWH from this study were 

comparable in magnitude to the existing ones based on older data source, but a negative 

bias apart from the errors induced by different model setup occurred. The negative 

biases after examination were found relevant to the temporal variability in the nature of 

extreme SWH samples. Further exploration revealed a long-term negative tendency in 

the annual maxima, monthly maxima and POT on the inner shelf of the SYS. The 

negative tendency in the extreme SWH enhanced from deep waters to shallow waters. 

Future investigation on the contributors to the descending trend of the extreme SWH 

would be necessary. Time-dependent statistical models might be in-need in the 



following studies to unveil the return levels’ co-oscillations with certain climate 

indices.  
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