
Simultaneous optimization of neural
network weights and active nodes using
metaheuristics
Conference or Workshop Item

Accepted Version

Ojha, V. K. ORCID: https://orcid.org/0000-0002-9256-1192,
Abraham, A. and Snasel, V. (2014) Simultaneous optimization
of neural network weights and active nodes using
metaheuristics. In: 14th International Conference on Hybrid
Intelligent Systems, 14-16 Dec 2014, Kuwait, pp. 248-253. doi:
https://doi.org/10.1109/HIS.2014.7086207 Available at
https://centaur.reading.ac.uk/93568/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1109/HIS.2014.7086207

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

Simultaneous Optimization of Neural Network
Weights and Active Nodes using Metaheuristics

Varun Kumar Ojha∗, Ajith Abraham∗,Václav Snášel∗
∗IT4Innovations, VŠB Technical University of Ostrava, Ostrava, Czech Republic

varun.kumar.ojha@vsb.cz, ajith.abraham@ieee.org, vaclav.snasel@vsb.cz

Abstract—Optimization of neural network (NN) significantly
influenced by the transfer function used in its active nodes. It
has been observed that the homogeneity in the activation nodes
does not provide the best solution. Therefore, the customizable
transfer functions whose underlying parameters are subjected to
optimization were used to provide heterogeneity to NN. For the
experimental purpose, a meta-heuristic framework using a com-
bined genotype representation of connection weights and transfer
function parameter was used. The performance of adaptive
Logistic, Tangent-hyperbolic, Gaussian and Beta functions were
analyzed. In present research work, concise comparisons between
different transfer function and between the NN optimization
algorithms are presented. The comprehensive analysis of the
results obtained over the benchmark dataset suggests that the
Artificial Bee Colony with adaptive transfer function provides the
best results in terms of classification accuracy over the particle
swarm optimization and differential evolution.

Index Terms—Meta-heuristics; Neural network; Activation
function; Beta Function; Artificial Bee Colony,

I. INTRODUCTION

Due to the property of being robust and adaptive with the
problem environments, the Neural Network (NN) has emerged
as the most desirable computational tool for solving nonlin-
ear and complex optimization, pattern recognition, function
approximation classification, etc., problems [1], [2]. On the
other hand, the meta-heuristic algorithms are well appreciated
for their role in the optimization of the Neural Networks
(NNs) [3]. The conventional NN optimizations/training algo-
rithms are efficient in local search or in other words, they
are efficient in the exploitation of the current solutions for
the creation of new solutions. Whereas, the meta-heuristic
algorithms are efficient in both exploitation of the current
solution and exploration of the given search space for the
creation of new solutions. The meta-heuristic algorithms can
be used for the optimization of the connection (synaptic)
weights, architecture (geometrical arrangement of the nodes),
transfer (activation) functions associated with the nodes and
the learning mechanisms [1].

Yao [3] has summarized the Evolutionary Algorithm (EA)
based optimization of the NN where it can be found that
the NN optimization is not only limited to optimization of
connection weights, but it encompasses the optimization of
network architecture, activation function, and learning rules.
In the present research, we have illustrated the meta-heuristic
framework for the optimization of NN and investigated the
impact of the optimization of the underlying parameters of
the transfer function associated with the active nodes (nodes

at hidden and output layers) of the neural network. In the past,
efforts to optimize the transfer functions were mostly limited
to finding the appropriate combinations of different variety
of transfer functions at the active nodes of a NN. Liu and
Yao [4] have chosen a combination of Sigmoid (Logistic) and
Gaussian function to optimize transfer functions of the NN.
Similarly, White and Ligomenides [5] opted to combine 80%
of Sigmoid and 20% of Gaussian activation function. Castelli
and Trentin [6] have illustrated a connectionist model for an
adaptive selection of the transfer function. In their model,
they selected hidden unit with a pair {f, p} where f was a
set of various transfer functions and p was the corresponding
probabilistic measure of the likelihood of the node that was
relevant to the computation of the output over the current input.
Alimi [7] and [8] have illustrated the significant benefits of
using the Beta function in the optimization of the NNs.

In the present research, we have chosen Logistic, Tangent-
hyperbolic, Gaussian and Beta function in the optimization
of NN. Unlike the research referred above, in the present
research, we were inclined toward the homogeneity in NN
active nodes. In the other words, all the active nodes in the
NN were set using similar transfer functions. Interestingly, in
our experiment we have chosen to optimize the parameters
of the transfer function that were set at the active nodes
of the NN. Thereby, it imparted heterogeneity between the
transfer functions of the NN. A similar approach was adopted
by van Wyk and Engelbrecht [9] for the optimization of
lambda-gamma NN using particle swarm optimization. We
have extended the idea, where we use various transfe function
and meta-heuristic algorithms in order to enhance the perfor-
mance of NN. A meta-heuristic NN optimization framework
illustrated in the present paper was used for the simultaneous
optimizations of the NN connection weights and the transfer
functions. A comprehensive experimental result presented in
the paper suggest that setting the active nodes of the NN
using the customizable transfer functions whose parameters
were optimized using the meta-heuristic algorithms was worth
investing efforts. The Artificial Bee Colony (ABC) algorithm
used for the simultaneous optimization of the connection
weights and the transfer functions was consistent in producing
the best result in terms of accuracy in classification of the three
classification problem chosen in the present research work.

The rest of the paper is organized as follows: In section II,
we discussed the fundamental concept of the NNs, the transfer
function and the meta-heuristic algorithms. A discussion on

the experimental design and the meta-heuristic framework for
the simultaneous optimization of the NN connection weights
and the transfer function parameters is provided in section III
followed by the results and discussion in section IV. Finally,
a conclusion is provided in section V.

II. NEURAL NETWORK

Artificial Neural Network (NN) or simply the NN imitates
the functioning of human brain basically, the biological ner-
vous system that is a network of the immense interconnec-
tions between the vast numbers of biological neurons [1].
The neurons are the smallest processing unit of the nervous
system. Similarly, the NN is a network of several process-
ing elements (nodes) which gains its capability of behaving
intelligently by meticulous training provided using training
examples. The NNs have three basic components, architecture,
connection weights and learning-rules. In the present scope
of the research, we have chosen feed-forward multilayer NN.
Geometrically, the NNs are arranged in layer by layer basis,
where, each layer may contain one or more computational
nodes. Mathematically, the jth node of a NN may be given
as:

yj = ϕj

(∑
i

wjixi − bj

)
, (1)

where yj is output of jth node, wij is connection weight
between ith node and jth node, xi is ith input, bj is bias
at the jth node and ϕj(.) is transfer (activation) function at
jth node. Since variable x is input (known) and variable y
is output (to be computed), we need information of the other
remaining variables using a training process that can help to
find the optimal values for the variables. Transfer function ϕ(.)
is function input x and variables {t1, t2, . . . , tn} where t is a
parameter of transfer function ϕ(.). It is worth noticing that
variable t is usually kept fixed. In subsequent section, we have
discussed various kinds of transfer function that may be used
at the nodes of a NN.

A. Transfer Function (TF)

Transfer functions at the active nodes of a NN are used to
transfer the net scalar input at an active node to a scalar called
activation value or the output value at that node. Consult (1),
where yj on the left hand side is the output value of the jth

node evaluated using a transfer function ϕ(.) shown on the
right hand side. Basically, the transfer functions limit the net
input value at a node to a certain range of values in order to
allow a NN to behave in certain ways rather than letting it to
behave indiscriminately. Transfer functions may be linear or
non-linear. Mostly, the NN is designed to solve non-linearly
separable problems. Hence, non-linear transfer functions such
as: Logistic (Sigmoid), Tan-hyperbolic, Gaussian, Beta basis
function, etc. are be used.

Logistic Function: Logistic function (2) also known as
sigmoid function is a unipolar function. The Logistic function
(2) has three parameters x, λ and θ, where the variable x
indicates net-scalar input value of a node, λ indicates steepness

and θ indicates center of the Logistic function. The variables
λ and θ control the behavior of Logistic function. The most
conventional approach is to keep the variables λ and θ value
fixed to one and zero respectively. However, the behavior
of the function significantly varied with the variation of the
parameters λ and θ. Therefore, approaches to optimize the
parameters together with the connection weights of a NN will
help in obtaining optimal NN.

ϕ(x, λ, θ) =
1

1 + e(−λ(x−θ))
(2)

Tangent-hyperbolic Function: Tan-hyperbolic function de-
fined in (3) receives parameters x, λ and θ that are analogues
to Logistic functions. However, unlike the unipolar Logistic
function, the Tangent-hyperbolic functions are bipolar func-
tions that produce significantly different impact on the net
output of a NN with respect to the one produced by the
Logistic functions. The parameter steepness λ and center θ
controls the behavior of Tangent-hyperbolic function. Hence,
optimum values of these parameters may significantly enhance
performance of a NN.

ϕ(x, λ, θ) =
e(λ(x−θ)) − e(−λ(x−θ))

e(λ(x−θ)) + e(−λ(x−θ))
(3)

Gaussian Function: Gaussian function (4) parameterized by
variables x, λ and θ, where x is net-input and variables σ and
µ are width and mean (center) of the function respectively.
Gaussian function is a unipolar function that produces a
symmetric shape around center µ. The width and center signif-
icantly influence the behavior of Gaussian function. Therefore,
optimum values of the parameters will be able to enhance the
overall performance of a NN.

ϕ(x, σ, µ) =
1√
2πσ

e
−(x−µ)

2σ2 (4)

Basis Function: Due to Beta function (7) flexibility and uni-
versal approximation characteristics and ability adopt variety
different shapes, Alimi [7] used Beta function as an activation
function of NN. The Beta function is defined as:

β(x, x0, x1, p, q) =

{(
x−x0

θ−x0

)p (
x1−x
x1−θ

)q
if x ∈]x0, x1[

0 Otherwise
(5)

where p > 0, q > 0x0, x1 are real parameters x0 < x1 and
θ = (px1 + qx0)/(p+ q) is center of Beta function. Let σ =
x1 − x0 is the width of the Beta function which can be seen
as scale factor for distance like ‖ x − θ ‖. Hence, x0 and x1
defined as:

x0 = θ − σp
p+q

x1 = θ + σq
p+q

(6)

From (5) and (6) the Beta function is written as

ϕ(x, θ, σ, p, q) =

{
A.B if x ∈]θ − σp

p+q , θ + σq
p+q [

0 Otherwise
(7)

where A =
[
1 + (p+q)(x−θ)

σp

]p
and B =

[
1− (p+q)(x−θ)

σq

]q
A

detailed discussion on various other types of transfer function

provided by Duch and Jankowski [10] supports our discussion
that an activation functions with various shapes and behaviors
influence the overall performance of a NN. Therefore, the
necessity of optimizing parameters in the optimization of NN
is evident. The conventional NN optimization algorithms uses
fixed transfer function. Hence, meta-heuristic optimization
algorithms provides a robust platform for the optimization
of both the connection weights and the transfer function
parameters of a NN.

B. Meta-heuristic Algorithms

Meta-heuristic algorithms are stochastic procedures that are
efficient in both exploitation of the present solutions and
exploration of the given search space. The meta-heuristic
algorithms such as: Artificial Bee Colony, Particle Swarm
Optimization and Differential Evolution can be used for op-
timization of both connection weights and transfer function
parameter simultaneously.

Artificial Bee Colony (ABC): ABC proposed by Karaboga
[11] is a meta-heuristic algorithm inspired by foraging be-
havior of honey bee swarm. The ABC algorithm uses the
population of bees to explore the given search space in order
to find the optimal solution for a given problem. The ABC
algorithm works as follows: At first a memory of initial food
position (candidate solution) is initialized and then the food
position is updated by the artificial bees in iterative fashion.
The ith candidate in a memory of P solutions, where each of
which has M variables can be given as:

xij = xij + rand(−1, 1)× (xij − xkj) (8)

where, k ∈ [1, P], and j ∈ [i,M] and xij is the comparison
between the ithfood source and a randomly chosen neighbor
k. A food source is abundant if it is not of good quality and
hence a new food source is obtained as:

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j), (9)

where min and max is the bound of the jth variable.
Karaboga and Basturk [12] have illustrated the application
of the ABC algorithm for the optimization of NN connec-
tion weights that in our experiment was extended to the
optimization of both connection weights and the transfer
function simultaneously. Similarly, we used Particle Swarm
Optimization and Differential Evolution algorithms for the
same purpose.

Particle Swarm Optimization (PSO): PSO [13] is a popula-
tion based meta-heuristic algorithm imitates the mechanisms
of the foraging behavior of swarms. The PSO depends on
the velocity and position update of a swarm. The velocity
in PSO is updated in order to update the position of the
particles in a swarm. Therefore, the whole population moves
towards an optimal solution. The PSO uses a population
of motile candidate particles characterized by their position
xi and velocity vi inside the n−dimensional search space.
Each particle remembers the best position (in terms of fitness
function) it visited bi and knows the best position discovered

1

2

n

φ (.)

φ (.)

φ ()

φ (.)

φ (.)

φ (.) Node with transfer

function

Bias to the node

Input and Output

Signal

Connection weights

Fig. 1. Phenotype representation of NN

so far by the whole swarm g. At each iteration, the velocity
of a particle i is updated according to [14]:

vt+1
i = c0v

t
i + c1r

t
1(bi − xti) + c2r

r
2(ḡt − xti), (10)

where c1 and c2 are positive acceleration constants, r1 and
r2 are vectors of random values sampled from a uniform
distribution, vector bti represents the best position known to
particle i at iteration t, vector ȳt is the best position visited
by the swarm at time t and inertia factor c0 is computed as:

c0 = cmax0 − (cmax0 − cmin0)× Currentiteration
Maxiteration

. (11)

The position of particle i is updated by [14]:

xt+1
i = xti + vt+1

i (12)

Differential Evolution (DE): DE proposed by [15] is a popu-
lar meta-heuristic algorithm for the optimization of continuous
functions. DE has been successfully used for the optimization
of NN [16]. The basic principle of DE is as follows: At first an
initial population of n dimensional solutions xi is constructed.
The contraction of new solution takes place iteratively. For
the purpose of the construction of new solution, three distinct
solutions a, b and c are chosen. Thereafter, a random index
N ∈ [1, n] is chosen. Hence, a new solution yi is constructed
as:

yi =

{
ai + F × (bi − ci) if ri < CR or i = N

xi Otherwise (13)

where CR indicates the crossover rate, F indicates the weight
factor and ri is a uniform random sample chosen in (0, 1).

III. META-HEURISTIC FRAMEWORK FOR TRANSFER
FUNCTION OPTIMIZATION

Meta-heuristic algorithms have proven their competency
in optimizing NNs [3], [17] over the conventional NN op-
timization algorithms such as Backpropagation [18]. In the
present research, we have illustrated the role of meta-heuristic
algorithms such as: ABC, PSO and DE (version DE/rand−
to− best/1/bin [19]) in the simultaneous optimization of the
NN connection weights and transfer function parameters. A
three layered feed-forward NN (phenotype) given in Figure 1
represented as a solution vector (genotype) shown in Figure
2 was used for the experiment purpose. It may be noted that,
the hidden layer and output layer consist of transfer functions.
Liu and Yao [4], Weingaertner et al. [20] and others [21],

[22] have adopted heterogeneity in the NN nodes by the

GeneticNconstructionN(VectorNofNVariables)

(a) A combinedNgenotype representationNofNNNNandNtransferNfunction

GeneticNconstructionNofN connectionN
weightsN

GeneticNconstructionNofN transferNfunctionN
parametersN

←N GeneticNconstructionNofN λNparameterN → ←N GeneticNconstructionNofN θNparameterN →

← hiddenNlayerN
λN

→ ← OutputNlayerNλ → ← hiddenNlayerN
θN

→ ← OutputNlayerN
θN

→

λ1, λ2 …. λm λ1 λ2 ….. λp θ1, θ2 …. θm θ1 θ2 ….. θp

(b) Logistic andNTanh parametersN λN andN θN areNplacedNonNaNgeneticNstrip

←N GeneticNconstructionNofN σN parameterN → ←N GeneticNconstructionNofN μNparameterN →

← hiddenNlayerN → ← OutputNlayerN → ← hiddenNlayerN → ← OutputNlayerN →

σ1, σ 2 …. σm σ 1 σ 2 ….. σ p μ 1, μ 2 …. μm μ 1 μ 2 ….. μ p

(c)NGaussianNfunctionNparametersN σN andN μN areNplaced onNaNgeneticNstrip.

←N ParametersNatNhiddenNlayerN → ←N ParametersNatNoutputNlayerN →

σ1, .. σm θ1, … θm P1 .. pm q … qm σ1, .. σm θ1, … θm P1 .. pm q … qm

(d) BetaNfunctionNparametersN σ, θ,NpNandNqNareNplacedNonNaNgeneticNstrip

.

.

.

Fig. 2. Genotype representation of NN

1: procedure META-HEURISTICS-NN(W, ε)
2: Initialize W0

3: Fittest solution w∗ = fittest(W0)
4: repeat
5: Wt+1 := MHOperator(Wt)
6: ŵ = fittest(Wt+1)
7: if w̄ < w∗ then
8: w∗ = w̄
9: end if

10: until Stopping criteria ε satisfied
return w∗

11: end procedure

Fig. 3. Meta-heuristic Framework for Optimization

means of choosing various transfer function at the hidden
layers and the output layers of a NN. On the contrary to
their approach, our approach was to explore the impact of
the optimization of the individual transfer function parameters
on the performance of NN. A meta-heuristic framework for
the simultaneous optimization of NN and its transfer function
parameters is illustrated in Figure 3, where the meta-heuristic
operator MHOperator were defined as per the respective meta-
heuristic algorithms. For the experiment, the initial population
was constructed using the genotype illustrated in Figure 2.
We have chosen the genotype representation with Logistic,
Tangent-hyperbolic, Gaussian and Beta basis function.

The performance of individual meta-heuristic algorithms
are subjected to their respective parameter setting. A list of
parameter setting used in the experiment for the ABC, PSO
and DE is shown in Table I. Apart from the given parameter,
the Mersenne-Twister algorithm with random seeds ware used
for the initialization of the initial population within a search
space [−1.5, 1.5].

TABLE I
PARAMETER SETTING OF THE ALGORITHMS USED IN THE EXPERIMENTS

Algorithm Population Iteration Other
BP 10 1000 η = 0.5 and m = 0.1

ABC 10 1000 triallimit = 100
PSO 10 1000 c1 = c2 = 2.0, cmax

0 =
1.0 and cmin

0 = 0.0
DE 10 1000 CR = 0.9, F = 0.7

TABLE II
THE 10 CV RESULTS USING BACKPROPAGATION ALGORITHM

Function Iris wdbc Wine
Error Var Error Var Error Var

SigFix 0.916 0.017 0.933 0.011 0.914 0.069
TanhFix 0.956 0.009 0.945 0.012 0.955 0.017

IV. RESULTS AND DISCUSSION

For the experiment purpose, three benchmark dataset (clas-
sification problem) from the UCI Machine Learning repos-
itory (http://archive.ics.uci.edu/ml/datasets.html) were used.
The dataset chosen were Iris, Breast Cancer (Wdbc) and Wine.
In order to justify the significance of the proposed model,
the primary independent benchmark results given in Table
II in terms of 10 Cross-Validation (CV) over the mentioned
dataset was obtained using BP algorithm [18] that has learning
rate η and momentum m as its controlling parameters. The
experiment using BP was repeated for the Logistic (SigFix)
and Tangent-hyperbolic (TanhFix) function for each of the
mentioned dataset. In the experiment using BP algorithm,
the parameters λ and θ of the transfer functions SigFix and
TanhFix ware set to one and zero respectively.

The performance of meta-heuristic algorithms used for the
optimization of NN weights and transfer function was tested
with the reference to the results obtained using the BP algo-
rithm. Each of the mentioned meta-heuristic algorithms were
used optimization of NN independently over the mentioned
datasets. The obtained results over Iris, Cancer and Wine
classification problems are shown in Tables III, IV and V re-
spectively. The best classification accuracy for the Iris dataset
obtained using the BP algorithm with TanhFix was 95.6%.
Whereas, the best classification accuracy using the ABC with
Beta function over the same dataset was found to be 98.3%.
It may also be observed from Table III that optimization of
the parameters of the Logistic (SigAdp), Tangent-hyperbolic
(TanhAdp), Gaussian and Beta provides classification accuracy
better than that of the classification accuracy obtained using
the functions with fixed parameter setting. Similarly, the best
classification accuracy obtained by the BP over the datasets
Cancer and Wine was 94.5% and 95.5% respectively and
the best classification accuracy over the same dataset using
the meta-heuristic algorithms was 97.0% each. The results
obtained over the dataset Iris, Cancer and Wine providing
significant evidence that the optimization of functions together
with the NN weights helped in obtaining better results than that
of using function with fixed parameter setting. Interestingly,
the results shown in Tables III, IV and V suggest that the ABC

TABLE III
10CV RESULTS ON IRIS CLASSIFICATION PROBLEM

Function ABC PSO DE
Error Var Error Var Error Var

SigFix 0.774 0.248 0.799 0.271 0.729 0.190
SigAdp 0.972 0.014 0.839 0.669 0.859 0.322
TanhFix 0.943 0.012 0.959 0.013 0.885 0.201
TanhAdp 0.978 0.008 0.759 0.150 0.846 0.179
Gaussian 0.977 0.020 0.767 0.748 0.893 0.065
Beta 0.983 0.008 0.839 0.188 0.944 0.074

TABLE IV
10CV RESULTS ON CANCER CLASSIFICATION PROBLEM

Function ABC PSO DE
Error Var Error Var Error Var

SigFix 0.941 0.006 0.909 0.013 0.928 0.016
SigAdp 0.958 0.008 0.970 0.016 0.928 0.027
TanhFix 0.958 0.007 0.957 0.011 0.951 0.010
TanhAdp 0.963 0.005 0.938 0.009 0.943 0.011
Gaussian 0.951 0.005 0.874 0.110 0.906 0.008
Beta 0.954 0.012 0.914 0.019 0.912 0.013

TABLE V
10CV RESULTS ON WINE CLASSIFICATION PROBLEM

Function ABC PSO DE
Error Var Error Var Error Var

SigFix 0.962 0.018 0.814 0.188 0.861 0.083
SigAdp 0.986 0.019 0.679 0.557 0.848 0.325
TanhFix 0.986 0.019 0.943 0.023 0.951 0.029
TanhAdp 0.990 0.015 0.873 0.031 0.895 0.061
Gaussian 0.976 0.013 0.794 0.514 0.748 0.241
Beta 0.970 0.028 0.867 0.058 0.871 0.046

algorithm excels over the other meta-heuristic algorithms such
as PSO and DE in the present experiment design with their
respective parameter setting mentioned in Table I. However the
algorithms PSO and DE have more performance tuning param-
eters than the ABC. Hence, their performance are subjected to
meticulous tuning of their respective parameters. In contrast to
van Wyk and Engelbrecht [9], we have performed experiments
for the optimized parameters of Tangent-hyperbolic, Gaussian,
and Beta function and the results suggests that performance
of other adaptive transfer function are better than that of
sigmoid function. Similarly, we have used ABC algorithms
that performs better than that of PSO algorithm.

V. CONCLUSIONS

In present research, we have presented a meta-heuristic
framework for the simultaneous optimization of the NN
weights and the parameters of the transfer functions (NN-
TFs model). Various types of transfer functions were chosen
for the purpose of the rigorous analysis of the influence
of the transfer functions optimization together with the NN
weights. For the optimization of NN-TFs model, ABC, PSO
and DE algorithm were used. Apart from the meta-heuristic
algorithms, a Back-propagation algorithm was used for the
comprehensive comparison and validation of the significance
of the NN-TFs model. The comprehensive results presented
in the paper suggests that the adaptive/customizable transfer

function helps in enhancing the performance of NN. It may
also be observed that the Beta function have four parameters
and it is competitive to the Tangent-hyperbolic function that
has two controlling parameters. Hence, further examination
and tuning of its parameters may offer the best results in
comparison to its counterparts. Apart from this, a probabilistic
setting for the heterogeneity at the active nodes will be
interesting to analyze. From the obtained results, it may also be
observed that the ABC excels significantly over the other meta-
heuristic such as particle swarm optimization in the present
form of their parameter setting.

ACKNOWLEDGMENT

This work was supported by the IPROCOM Marie Curie
initial training network, funded through the People Programme
(Marie Curie Actions) of the European Union’s Seventh
Framework Programme FP7/2007-2013/ under REA grant
agreement No. 316555.

REFERENCES

[1] S. Haykin, Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[2] C. M. Bishop et al., Pattern recognition and machine learning. springer
New York, 2006, vol. 1.

[3] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[4] Y. Liu and X. Yao, “Evolutionary design of artificial neural networks
with different nodes,” in Evolutionary Computation, 1996., Proceedings
of IEEE International Conference on, May 1996, pp. 670–675.

[5] D. White and P. Ligomenides, “Gannet: A genetic algorithm for opti-
mizing topology and weights in neural network design,” in New Trends
in Neural Computation. Springer, 1993, pp. 322–327.

[6] I. Castelli and E. Trentin, “A preliminary study on training neural
networks with adaptive activation functions.”

[7] A. M. Alimi, R. Hassine, and M. Selmi, “Beta fuzzy logic systems:
approximation properties in the mimo case,” International Journal of
Applied Mathematics and Computer Science, vol. 13, no. 2, pp. 225–
238, 2003.

[8] H. Dhahri, A. M. Alimi, and A. Abraham, “Designing beta basis function
neural network for optimization using artificial bee colony (abc),” in
Neural Networks (IJCNN), The 2012 International Joint Conference on.
IEEE, 2012, pp. 1–7.

[9] A. van Wyk and A. Engelbrecht, “Lambda-gamma learning with feed-
forward neural networks using particle swarm optimization,” in Swarm
Intelligence (SIS), 2011 IEEE Symposium on, April 2011, pp. 1–8.

[10] W. Duch and N. Jankowski, “Survey of neural transfer functions,” Neural
Computing Surveys, vol. 2, no. 1, pp. 163–212, 1999.

[11] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Erciyes University, Engineering Faculty, Computer En-
gineering Department, Technical Report TR06, 2005.

[12] D. Karaboga and B. Basturk, “On the performance of artificial bee
colony (abc) algorithm,” Applied Soft Computing, vol. 8, no. 1, pp. 687
– 697, 2008.

[13] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Micro Machine and Human Science, 1995. MHS ’95.,
Proceedings of the Sixth International Symposium on, 1995, pp. 39–43.

[14] A. Engelbrecht, Computational Intelligence: An Introduction, 2nd Edi-
tion. New York, NY, USA: Wiley, 2007.

[15] R. Storn and K. Price, “Differential evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces,” 1995.

[16] A. Slowik, “Application of an adaptive differential evolution algorithm
with multiple trial vectors to artificial neural network training,” Indus-
trial Electronics, IEEE Transactions on, vol. 58, no. 8, pp. 3160–3167,
2011.

[17] E. Alba, Parallel Metaheuristics: A New Class of Algorithms. Wiley-
Interscience, 2005.

[18] D. E. Rumelhart and J. L. McClelland, “Parallel distributed processing:
explorations in the microstructure of cognition. volume 1. foundations,”
1986.

[19] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
Evolutionary Computation, IEEE Transactions on, vol. 13, no. 2, pp.
398–417, 2009.

[20] D. Weingaertner, V. K. Tatai, R. R. Gudwin, and F. J. Von Zuben,
“Hierarchical evolution of heterogeneous neural networks,” in Evolu-
tionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress
on, vol. 2. IEEE, 2002, pp. 1775–1780.

[21] Z. Sheng, S. Xiuyu, and W. Wei, “An ann model of optimizing activation
functions based on constructive algorithm and gp,” in Computer Appli-
cation and System Modeling (ICCASM), 2010 International Conference
on, vol. 1, Oct 2010, pp. V1–420–V1–424.

[22] G. S. d. S. Gomes and T. B. Ludermir, “Optimization of the weights
and asymmetric activation function family of neural network for time
series forecasting,” Expert Systems with Applications, vol. 40, no. 16,
pp. 6438–6446, 2013.

