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Abstract. The hydroxyl radical (OH), which is the domi-
nant sink of methane (CH4), plays a key role in closing the
global methane budget. Current top-down estimates of the
global and regional CH4 budget using 3D models usually
apply prescribed OH fields and attribute model–observation
mismatches almost exclusively to CH4 emissions, leaving
the uncertainties due to prescribed OH fields less quanti-
fied. Here, using a variational Bayesian inversion frame-
work and the 3D chemical transport model LMDz, combined
with 10 different OH fields derived from chemistry–climate
models (Chemistry–Climate Model Initiative, or CCMI, ex-
periment), we evaluate the influence of OH burden, spa-
tial distribution, and temporal variations on the global and
regional CH4 budget. The global tropospheric mean CH4-
reaction-weighted [OH] ([OH]GM−CH4 ) ranges 10.3–16.3×
105 molec cm−3 across 10 OH fields during the early 2000s,
resulting in inversion-based global CH4 emissions between
518 and 757 Tg yr−1. The uncertainties in CH4 inversions in-
duced by the different OH fields are similar to the CH4 emis-
sion range estimated by previous bottom-up syntheses and
larger than the range reported by the top-down studies. The
uncertainties in emissions induced by OH are largest over

South America, corresponding to large inter-model differ-
ences of [OH] in this region. From the early to the late 2000s,
the optimized CH4 emissions increased by 22± 6 Tg yr−1

(17–30 Tg yr−1), of which ∼ 25 % (on average) offsets the
0.7 % (on average) increase in OH burden. If the CCMI mod-
els represent the OH trend properly over the 2000s, our re-
sults show that a higher increasing trend of CH4 emissions
is needed to match the CH4 observations compared to the
CH4 emission trend derived using constant OH. This study
strengthens the importance of reaching a better representa-
tion of OH burden and of OH spatial and temporal distribu-
tions to reduce the uncertainties in the global and regional
CH4 budgets.

1 Introduction

Methane (CH4) plays an important role in both climate
change and air quality as a major greenhouse gas and tro-
pospheric ozone precursor (Ciais et al., 2013). CH4 is emit-
ted from various anthropogenic sources including agricul-
ture, waste, fossil fuel, and biomass burning, as well as nat-
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ural sources including wetlands and other freshwater sys-
tems, geological sources, termites, and wild animals. CH4
is removed from the atmosphere mainly by reaction with
the hydroxyl radical (OH) (Saunois et al., 2016, 2017). Tro-
pospheric CH4 levels have more than doubled between the
1850s and the present day (Etheridge et al., 1998) in response
to anthropogenic emissions and climate variabilities, lead-
ing to about 0.62 W m−2 of radiative forcing (Etminan et al.,
2016) and increases in tropospheric ozone levels of∼ 5 ppbv
(Fiore et al., 2008). The global CH4 atmospheric mixing ra-
tio stabilized in the early 2000s but resumed growing at a
rate of∼ 5 ppbv yr−1 or more starting in 2007 (Dlugokencky,
NOAA/ESRL, 2019).

Explaining the CH4 stabilization and renewed growth re-
quires an accurate estimation of the CH4 budget and its evo-
lution, as the source–sink imbalance that is responsible for
the contemporary CH4 yearly growth only accounts for 3 %
of the total CH4 burden (Turner et al., 2019). To recon-
cile the uncertainties in the current estimation of CH4 emis-
sions from various sources, the Global Carbon Project inte-
grates top-down and bottom-up approaches (Kirschke et al.,
2013; Saunois et al., 2016, 2017, 2020). However, gaps re-
main in global and regional CH4 emissions estimated by top-
down and bottom-up approaches, as well as within each ap-
proach (Kirschke et al., 2013; Saunois et al., 2016; Bloom
et al., 2017). The top-down method, which optimizes emis-
sions by assimilating observations in an atmospheric inver-
sion system, is expected to reduce uncertainties of bottom-up
estimates. Among the remaining causes of uncertainties in
the global methane budget, the representation of CH4 sinks,
mainly from OH oxidation, is one of the largest, as seen by
process-based models for atmospheric chemistry (Saunois et
al., 2017).

OH is the most important tropospheric oxidizing agent de-
termining the lifetime of many pollutants and greenhouse
gases including CH4 (Levy, 1971). A small perturbation of
OH can result in significant changes in the budget of at-
mospheric CH4 (Turner et al., 2019). At the global scale,
tropospheric OH is mainly produced by the reaction of ex-
cited oxygen atoms (O(1D)) with water vapor (primary pro-
duction) but also by the reaction of nitrogen oxide (NO)
and ozone (O3) with hydroperoxyl radicals (HO2) and or-
ganic peroxy radicals (RO2) (secondary production). At re-
gional scales, photolysis of hydrogen peroxide and oxidized
volatile organic compound (VOC) photolysis can be im-
portant depending on the chemical environment (Lelieveld
et al., 2016). OH is rapidly removed by carbon monox-
ide (CO), methane (CH4), and non-methane volatile organic
compounds (NMVOCs) (Logan et al., 1981; Lelieveld et al.,
2004). Tropospheric OH has a very short lifetime of a few
seconds (Logan et al., 1981; Lelieveld et al., 2004), hinder-
ing estimates of global OH concentrations ([OH]) through
direct measurements and limiting our ability to estimate the
global CH4 sink.

Global tropospheric [OH] is approximately
1× 106 molec cm−3 as calculated by atmospheric chemistry
models (Naik et al., 2013; Voulgarakis et al., 2013, Zhao et
al., 2019) and inversions of 1,1,1-trichloroethane (methyl
chloroform, MCF) (Prinn et al., 2001; Bousquet et al., 2005;
Montzka et al., 2011; Cressot et al., 2014), resulting in a
chemical lifetime of∼ 9 years for tropospheric CH4 (Prather
et al., 2012; Naik et al., 2013). However, accurate estima-
tions of [OH] magnitude, distributions, and year-to-year
variations needed for CH4 emission optimizations are still
pending (Prather et al., 2017; Turner et al., 2019). For global
tropospheric [OH], both MCF inversions and atmospheric
chemistry model intercomparisons give a 10%–15 % un-
certainty (Prinn et al., 2001; Bousquet et al., 2005; Naik et
al., 2013; Zhao et al., 2019). For [OH] spatial distributions,
MCF-based inversions generally infer similar mean [OH]
over both hemispheres (Bousquet et al., 2005; Patra et al.,
2014), while atmospheric chemistry models generally give
[OH] Northern Hemisphere to Southern Hemisphere (N/S)
ratios above 1 (e.g., Naik et al., 2013; Zhao et al., 2019). For
[OH] year-to-year variations, some studies have estimated
magnitudes significant enough to help explain part of the
stagnation in atmospheric CH4 concentrations during the
early 2000s (Rigby et al., 2008, 2017; McNorton et al., 2016;
Dalsøren et al., 2016; Turner et al., 2017), whereas others
show smaller trends and interannual variations of [OH]
(Montzka et al., 2011; Naik et al., 2013; Voulgarakis et al.,
2013; Zhao et al., 2019). In a recent study, Zhao et al. (2019)
simulated atmospheric CH4 with an ensemble of OH fields
and showed that uncertainties in [OH] variations could
explain up to 54 % of model–observation discrepancies in
surface CH4 mixing ratio changes from 2000 to 2016.

Current top-down estimates of the global CH4 budget usu-
ally apply prescribed and constant [OH] simulated by atmo-
spheric chemistry models and attribute model–observation
mismatches exclusively to CH4 emissions (Saunois et al.,
2017). However, the OH fields simulated by atmospheric
chemistry models show some uncertainties in both global
burden and spatial–temporal variations (Naik et al., 2013;
Zhao et al., 2019). The role of OH variations in the top-
down estimates of CH4 emissions has been evaluated using
two box model inversions with surface observations (e.g.,
Rigby et al., 2017; Turner et al., 2017; Naus et al., 2019)
and 3D models that optimize CH4 emissions together with
[OH] by assimilating surface observations (Bousquet et al.,
2006) or satellite data (Cressot et al., 2014; McNorton et
al., 2018; Zhang et al., 2018; Maasakkers et al., 2019). The
proxy-based constraints usually optimize [OH] on a global
or latitudinal scale, with the impact of OH vertical and hori-
zontal distributions being less quantified to date. Also, proxy
methods do not allow access to underlying processes as di-
rect chemistry modeling does (Zhao et al., 2019). This paper
follows the work of Zhao et al. (2019), wherein we analyzed
in detail 10 OH fields derived from atmospheric chemistry
models considering different chemistry, emissions, and dy-
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Table 1. Global tropospheric mean [OH] (×105 molec cm−3) and
interhemispheric OH ratios (N/S) averaged over 2000–2002 for
10 OH fields used in this study. The global tropospheric [OH]
weighted by reaction with CH4 ([OH]GM−CH4 ) and weighted by
dry air mass ([OH]GM−M) are both given.

[OH]GM−CH4 [OH]GM−M N/S

TransCom 10.6 10.0 1.0
INCA NMHC-AER-S 10.3 9.4 1.3
INCA NMHC 11.1 10.4 1.2
CESM1-WACCM 11.9 11.4 1.3
CMAM 12.2 11.3 1.2
EMAC-L90MA 11.8 11.5 1.2
GEOSCCM 12.6 12.3 1.2
MOCAGE 15.0 12.5 1.5
MRI-ESM1r1 10.9 10.6 1.2
SOCOL3 16.3 14.4 1.5

Mean±SD 12± 3.8 11± 2.8 1.3± 0.3

Mean±SD (8 OH)∗ 11± 0.8 11± 0.9 1.2± 0.1

∗ The OH fields simulated by SOCOL3 and MOCAGE are excluded.

namics (Patra et al., 2011; Szopa et al., 2013; Hegglin and
Lamarque, 2015; Morgenstern et al., 2017; Zhao et al., 2019;
Terrenoire et al., 2020). We now aim to build on this previous
paper to estimate the impact of these OH fields on methane
emissions as inferred by an atmospheric 4D variational in-
version system. To do so, we use each of the OH fields in
the 4D variational inversion system PYVAR-LMDz based on
the LMDZ-SACS (Laboratoire de Météorologie Dynamique
model with the Zooming-capability Simplified Atmospheric
Chemistry System) 3D chemical transport model to evalu-
ate the influence of OH distributions and variations on the
top-down estimated global and regional CH4 budget. Sec-
tion 2 briefly describes the OH fields and their characteris-
tics and underlying processes (see also Zhao et al., 2019, for
more details), the inversion method, and the setups of inver-
sion experiments. Section 3 illustrates the influence of OH
on the top-down estimation of CH4 budgets and variations,
specifically the following: (i) global, regional, and sectoral
CH4 emissions (Sect. 3.1); (ii) emission changes between the
early 2000s and late 2000s (Sect. 3.2); and (iii) year-to-year
variations in methane emissions (Sect. 3.3). Section 4 sum-
marizes the results and discusses the impact of OH on the
current CH4 budget.

2 Method

2.1 OH fields

In this study, we test the 10 OH fields presented in by Zhao
et al. (2019), including 7 OH fields simulated by chemistry–
transport and chemistry–climate models from Phase 1 of the
Chemistry–Climate Model Initiative (CCMI) (Hegglin and
Lamarque, 2015; Morgenstern et al., 2017), 2 OH fields

simulated by the Interaction with Chemistry and Aerosols
(INCA) model coupled to the general circulation model of
the Laboratoire de Météorologie Dynamique (LMD) model
(Hauglustaine et al., 2004; Szopa et al., 2013), and 1 OH field
from the TransCom-CH4 intercomparison exercise (Patra et
al., 2011) (Table 1).

The CCMI conducted simulations with 20 state-of-the-
art atmospheric chemistry–climate and chemistry–transport
models to evaluate model projections of atmospheric com-
position (Hegglin and Lamarque, 2015; Morgenstern et al.,
2017). To force atmospheric inversions during 2000–2010,
we use OH fields from 7 of the 20 CCMI model simulations
of REF-C1 experiments (Table 1), which were driven by ob-
served sea surface temperatures and state-of-the-art histori-
cal forcings (covering 1960–2010). For the inversions after
2010 (only with the CESM1-WACCM model; see Sect. 2.3),
we apply interannual variations of OH generated from REF-
C2 experiments, which were driven by sea surface conditions
calculated by the online-coupled ocean and sea ice mod-
ules. Although all of the CCMI models use the same an-
thropogenic emission inventories, the simulated OH fields
show different spatial and vertical distributions. The inter-
model differences of OH burden and vertical distributions are
mainly attributed to differences in chemical mechanisms re-
lated to NO production and loss. The differences in [OH] spa-
tial distributions are due to applying different natural emis-
sions: for example, primary biogenic VOC emissions and NO
emissions from soil and lightning (Zhao et al., 2019). As a re-
sult, the regions dominated by natural emissions (e.g., South
America, central Africa) show the largest inter-model differ-
ences in [OH] (Fig. S1 in the Supplement). The CCMI mod-
els consistently simulated a positive OH trend during 2000–
2010, mainly due to more OH production by NO than loss by
CO over East and Southeast Asia and a positive trend of wa-
ter vapor over the tropical regions (Zhao et al., 2019; Nicely
et al., 2020). More details can be found in Zhao et al. (2019)
and the literature cited herein.

The two INCA OH fields, INCA NMHC-AER-S and
INCA NMHC, are simulated by two different versions of
the INCA (Interaction with Chemistry and Aerosols) chem-
ical model coupled to LMDz (Szopa et al., 2013; Terrenoire
et al., 2020). The main difference between the two simula-
tions is that INCA NMHC-AER-S includes both gas-phase
and aerosol chemistry in the whole atmosphere, while INCA
NMHC only includes gas-phase chemistry in the troposphere
(Szopa et al., 2013; Terrenoire et al., 2020). We also include
the climatological OH field used in the TransCom simula-
tions (Patra et al., 2011), which uses the semi-empirical,
observation-based OH field computed by Spivakovsky et
al. (2000) in the troposphere.

Table 1 summarizes the global tropospheric mean CH4-
reaction-weighted [OH] ([OH]GM−CH4 , [OH] weighted by
the reaction rate of OH with CH4 (KOH+CH4 )× dry air
mass; Lawrence et al., 2001) and dry air-mass-weighted
[OH] ([OH]GM−M), as well as interhemispheric ratios (N/S
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ratios) calculated with [OH]GM−CH4 for the 10 OH fields
used in this study. The tropopause height is assumed at
200 hPa following Naik et al. (2013), and the 3D temper-
ature field used to compute [OH]GM−CH4 is from ERA-
Interim reanalysis meteorology data (Dee et al., 2011). The
volume-weighted [OH] was given by Zhao et al. (2019).
The [OH]GM−CH4 is a better indicator of the global atmo-
spheric oxidizing efficiency for CH4 than [OH]GM−M since
the latter is insensitive to the CH4+OH reaction rate in-
creased with temperature (Lawrence et al., 2001). Both the
mean value (12± 3.8× 105 molec cm−3) and absolute range
(10.3–16.3×105 molec cm−3) of [OH]GM−CH4 calculated for
the 10 OH fields are larger than those of [OH]GM−M (11±
2.8× 105 molec cm−3 and 9.4–14.4× 105 molec cm−3, re-
spectively). This is mainly because the MOCAGE and SO-
COL3 OH fields show much higher [OH] near the surface
than in the upper troposphere (Zhao et al., 2019). The inter-
hemispheric OH ratios range from 1.0 to 1.5, which is larger
than ones derived from MCF inversions (e.g., Bousquet et
al., 2005; Patra et al., 2014), partly explained by the underes-
timation of CO in the Northern Hemisphere by atmospheric
chemistry models (Naik et al., 2013). A comprehensive anal-
ysis of the spatial and vertical distributions of these OH fields
was presented in Zhao et al. (2019).

2.2 Inverse method

We conduct an ensemble of variational inversions of the CH4
budget that rely on Bayes’ theorem (Chevallier et al., 2005)
with the same set of atmospheric observations of CH4 mixing
ratios but different prescribed monthly mean OH fields as
described in Sect. 2.1. A variational data assimilation system
optimizes CH4 emissions and sinks by minimizing the cost
function J , defined as

J (x)=
1
2
(x− xb)T B−1

(
x− xb

)
+

1
2
(H (x)− y)T R−1(H (x)− y), (1)

where x is the control vector that includes total CH4 emis-
sions per 10 d at the model resolution of 3.75◦ longitude
×1.85◦ latitude and initial conditions at longitudinal and lati-
tudinal bands of 20◦×15◦; xb is the prior of the control vec-
tor x; y is the observation vector of observed CH4 mixing
ratios, here at the surface; and H(x) represents the sensitiv-
ity of simulated CH4 to emissions for comparison with y. B
and R represent the prior and observation error covariance
matrix, respectively. The cost function J is minimized iter-
atively by the M1QN3 algorithm (Gilbert and Lemaréchal,
1989). We do not include sinks in the control vector x but
prescribe the different OH fields mentioned above.

Prior knowledge (xb) of CH4 emissions is provided by the
Global Carbon Project (GCP; Saunois et al., 2020). The GCP
emission inventory includes time-varying anthropogenic and
fire emissions as well as the climatology of the natural emis-

sions. Global total CH4 emissions from the GCP inven-
tory are 511 Tg yr−1 in 2000, increased to 562 Tg yr−1 in
2010, and 581 Tg yr−1 in 2016 (with soil uptake excluded).
The soil uptake of CH4 is estimated to be 38 Tg yr−1 with
seasonal variations. Averaged over 2000–2016, the anthro-
pogenic sources (including biofuel emissions, agriculture,
and waste) and wetlands contribute 56 % and 32 % of to-
tal CH4 emissions, respectively (Fig. S2). The prior infor-
mation on emissions by sector in each grid cell is used to
separate the total optimized CH4 emissions into four broad
categories: wetlands, agriculture and waste, fossil fuel, and
other natural sources (biomass burning, termites, geological,
and ocean emissions). The spatial distributions of the prior
emissions from the four categories averaged over 2000–2016
are shown in Fig. S2. A detailed description of the GCP emis-
sion inventory can be found in Zhao et al. (2019) and Saunois
et al. (2020). The prior error of CH4 fluxes is set to 100 % of
xb, and the error correlation is calculated with a correlation
length of 500 km over land and 1000 km over the oceans for
CH4 fluxes.

The vector of observations (y) is generated from sur-
face measurements of the World Data Centre for Green-
house Gases (WDCGG; https://gaw.kishou.go.jp/, last ac-
cess: November 2019) through the WMO Global Atmo-
spheric Watch (WMO-GAW) program. The surface mea-
surements include both continuous time series of hourly af-
ternoon observations and flask data. In total, 97 sites are
included here, covering different time periods, including
68 sites from the Earth System Research Laboratory from
the US National Oceanic and Atmospheric Administration
(NOAA/ESRL; Dlugokencky et al., 1994), 14 sites from the
Laboratoire des Sciences du Climat et de l’Environnement
(LSCE), 8 sites from Environment and Climate Change
Canada (ECCC), 4 sites from the Commonwealth Scientific
and Industrial Research Organisation (CSIRO; Francey et al.,
1999), and 3 from the Japan Meteorological Agency (JMA:
http://www.jma.go.jp/jma/indexe.html, last access: Novem-
ber 2019). The location of the sites is shown in Fig. S3.

Atmospheric CH4 sensitivities to fluxes (H(x)) are sim-
ulated by LMDz5B, an offline version of the LMDz atmo-
spheric model (Locatelli et al., 2015), which has been widely
used for CH4 studies (e.g., Bousquet et al., 2005; Pison et
al., 2009; Lin et al., 2018; Zhao et al., 2019). LMDz5B is as-
sociated with the simplified chemistry module SACS (Pison
et al., 2009), which calculates the CH4 chemical sink using
prescribed 4D OH and O(1D) fields. The CH4 sink by re-
action with chlorine is not considered in our LMDz model
simulations. The deep convection is parameterized based on
the Tiedtke (1989) scheme. Air mass fluxes simulated by the
general circulation model LMDz with temperature and wind
nudged to ERA-Interim reanalysis meteorology data (Dee et
al., 2011) are used to force the transport of chemical tracers
in LMDz5B every 3 h.

Atmos. Chem. Phys., 20, 9525–9546, 2020 https://doi.org/10.5194/acp-20-9525-2020
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Figure 1. A diagram showing inversion experiments (Inv1–Inv6) performed in this study. For each experiment, “Inv” gives the time period
of inversion, and “OH” gives the time period of the OH fields used in the inversion. Inv1 is performed using the original OH field, whereas
Inv2–Inv6 are performed using scaled OH fields. The colored boxes on the left and right show analyses of inversions we did to examine
the OH impacts on inverted CH4 emissions. The brown, yellow, and green text boxes correspond to analyses presented in Sect. 3.1–3.3,
respectively.

2.3 Model experiments

As shown in Fig. 1, we performed six groups of inversions
(Inv1 to Inv6, 34 inversions in total). The impacts of OH
on the top-down estimation of CH4 emissions are compre-
hensively analyzed by comparing the inversion results within
one group or between two different groups. We analyze the
overall impacts of differences in OH burden, spatial distribu-
tion, and temporal change on CH4 emissions (colored boxes
on the right in Fig. 1) and separate the impacts of OH spa-
tial distribution and temporal variations (colored boxes on
the left in Fig. 1). The results are presented and discussed in
three sections as shown in different colors in Fig. 1.

We perform four groups of 3-year CH4 inversion experi-
ments using 6 to 10 OH fields (Inv1 to Inv4, Fig. 1) and two
groups of 17-year CH4 inversions from 2000 to 2016 (Inv5
and Inv6, Fig. 1) using only CESM1-WACCM OH fields.
For the short-term inversions, the first and last 6 months are
treated as spin-up and spin-down periods and discarded from
the following analyses (to avoid edge effect). Thus, we only
analyze the results over July 2000–June 2002 (i.e., the early
2000s) for Inv1 and Inv2 and July 2007–June 2009 (i.e., the
late 2000s) for Inv3 and Inv4. The early 2000s and the late
2000s represent the time periods with stagnant and resumed
growth of atmospheric CH4 mixing ratios, respectively. For
the long-term inversions, we take a 1-year spin-up and spin-
down and analyze the 15-year results from 2001 to 2015.

The aim of Inv1, conducted for 2000–2002 with 10 OH
fields, is to quantify the influence of both OH global burden
and spatial distributions on top-down estimates of global, re-
gional, and sectoral CH4 emissions (the brown box with the
solid line, Fig. 1). Because of the long lifetime of CH4 rel-
ative to OH, the top-down estimates of regional CH4 emis-
sions can be influenced by both global total OH burden and

OH spatial and seasonal distributions. To separate the in-
fluence of OH spatial distributions (including their seasonal
variations) from that of the global annual mean [OH], we
conduct Inv2, wherein all the prescribed OH fields are glob-
ally scaled to the global [OH]GM−CH4 value of the INCA
NMHC OH field in 2000 to get the same loss of CH4 by OH
(scaled OH fields). As such, Inv2 provides the uncertainty
range of CH4 emissions induced by the OH spatial distri-
bution in both the horizontal and vertical directions as well
as seasonal variations when assuming that the global total
burden of OH can be precisely constrained (the brown box
with the dashed line, Fig. 1). Thus, Inv1 (the inversions using
original OH fields) and Inv2 (the inversions using scaled OH
fields) yield upper (uncertainties from both global OH bur-
den and spatial distributions) and lower (uncertainties only
from OH spatial and seasonal distributions) limits of the in-
fluences of OH on regional CH4 emissions, respectively.

To quantify the influence of OH on CH4 interannual emis-
sion changes, we also conduct Inv3 and Inv4 over 2007–
2009, with six scaled OH fields (instead of 10 to limit com-
putational time). While both of the inversions are done for
2007–2009 (Inv3 and Inv4), the OH variations during 2007–
2009 (Inv3) and 2000–2002 (Inv4) are used for the two in-
versions, respectively. Therefore, the difference of Inv3–Inv2
reveals the impact of OH on CH4 emission changes between
the early and late 2000s (the yellow box with solid lines in
Fig. 1); Inv3–Inv4 separates the impact of OH interannual
variations, and the difference of Inv4–Inv2 allows for the
assessment of the uncertainties of optimized CH4 emission
changes due to different OH spatial and seasonal distribu-
tions (the yellow boxes with dashed lines in Fig. 1).

Finally, we test the impact of OH year-to-year variations
and trends on CH4 emissions over 2001–2015 by running
two long-term inversions (Inv5 and Inv6) with the OH fields

https://doi.org/10.5194/acp-20-9525-2020 Atmos. Chem. Phys., 20, 9525–9546, 2020
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simulated by CESM-WACCM only (the green box with
dashed lines in Fig. 1). Inv5 is forced by the OH fields
with both year-to-year variations and trends, while Inv6 is
forced by the OH fields for the year 2000. For each group,
only one experiment was done for computational reasons.
We chose OH fields simulated by CESM1-WACCM because
they shows the largest year-to-year OH variations and a posi-
tive trend of 0.4 % yr−1 during 2000–2010 among the CCMI
OH fields (Zhao et al., 2019). Therefore, inversions using
CESM1-WACCM OH are expected to yield an upper limit
of the influence of OH variations on CH4 emissions as seen
from atmospheric chemistry models.

We evaluate the optimized CH4 emissions by compar-
ing the simulated CH4 mixing ratios using prior and poste-
rior CH4 emissions with independent measurements from the
NOAA/ESRL Aircraft Project. The location of the observa-
tion site (Table S1 in the Supplement) and the vertical profile
of the model bias in CH4 mixing ratios compared with the
aircraft observations (model minus observations) are shown
in the Supplement (Fig. S4a for Inv1 and Fig. S4b for Inv2).
The comparisons with independent aircraft observations con-
firm the improvement of model-simulated CH4 mixing ra-
tios when using posterior emissions. All of the inversions in
Inv1 and Inv2 reach small biases when compared with air-
craft observations (right panel of Fig. S4a and S4b), which
means that it is hard to distinguish which OH spatial and ver-
tical distributions are more realistic in terms of the quality
of fit to these aircraft CH4 observations. For Inv1, the root

mean square errors (RMSE=
√∑

(model-observation)
2

nobs
, nobs is

the number of observations) are reduced from up to more
than 100 ppbv (prior) to ∼ 10 ppbv (posterior). For Inv2, al-
though the CH4 mixing ratios simulated using prior emis-
sions already match aircraft observations well (RMSE= 8–
17 ppbv), the posterior emissions still reduce the RMSE by
up to 10 ppbv.

In the following sections, to quantify uncertainties in top-
down estimations of CH4 emissions due to OH, we calcu-
late OH-induced CH4 emission differences and uncertainties
as the standard deviation and the maximum minus minimum
values of the inversion results, respectively.

3 Results

3.1 The impacts of OH burden and spatial
distributions on CH4 emissions in 2000–2002

3.1.1 Global total CH4 emissions

Based on the ensemble of the 10 different OH fields listed in
Table 1, global total emissions inverted by our system in Inv1
vary from 518 to 757 Tg CH4 yr−1 during the early 2000s
(July 2000–June 2002). The highest CH4 emissions exceed-
ing 700 Tg yr−1 are calculated using MOCAGE and SO-
COL3 OH fields, for which [OH]GM−CH4 values (15.0×105

and 16.3× 105 molec cm−3) are much higher than those of
other OH fields (10.3–12.6× 105 molec cm−3), leading to a
larger CH4 sink and as a consequence larger CH4 emissions
due to the mass balance constraint of atmospheric inver-
sions. The high [OH]GM−CH4 values simulated by SOCOL3
and MOCAGE are mainly due to the high surface and mid-
tropospheric NO mixing ratio simulated by these two models
(Zhao et al., 2019). As analyzed in Zhao et al. (2019), the
lack of N2O5 heterogeneous hydrolysis (by both SOCOL3
and MOCAGE) and the overestimation of tropospheric NO
production by NO2 photolysis (by SOCOL3) are the major
factors behind the overestimation of NO and OH.

The minimum–maximum range of the CH4 emissions es-
timated by the 10 OH fields is almost similar to the range
estimated by previous bottom-up studies (542–852 Tg yr−1

given by Kirschke et al., 2013, and 583–861 Tg yr−1 given
by Saunois et al., 2016) from GCP syntheses and much
larger than that reported by an ensemble of top-down studies
for 2000–2009 in Kirschke et al. (2013) (526–569 Tg yr−1),
Saunois et al. (2016) (535–566 Tg yr−1), and recent Saunois
et al. (2020) (522–559 Tg yr−1) (Table 2 and Fig. 2). In the
three top-down model ensembles, most of the inversion sys-
tems use TransCom OH fields, and the reported differences
are mainly from different model transport and the setup of the
inversion systems (e.g., the observations used in the inver-
sions). Excluding the two outliers (MOCAGE and SOCOL-
3) in Inv1, we find an uncertainty of about 17 % in global
methane emissions (518 to 611 Tg yr−1) due to OH global
burden and distributions, while transport model errors lead
to only 5 % of the uncertainty of the global methane budget
(Table 3; Locatelli et al., 2013). Our results indicate that con-
sidering different OH fields within top-down CH4 inversions
would lead to larger uncertainty in the top-down CH4 budget.

Plotting top-down estimated CH4 emissions against
[OH]GM−CH4 , which directly reflects the global OH oxidiz-
ing efficiency with respect to CH4 (Lawrence et al., 2001),
reveals that the global total CH4 emissions vary linearly with
[OH]GM−CH4 (r2 > 0.99; Fig. 2b). The top-down estimation
of global total CH4 emissions (EMISCH4 ) can be approxi-
mately calculated as

EMISCH4 = 40×[OH]GM−CH4 + 104, (2)

where a 1× 105 molec cm−3 (1 %) increase in [OH]GM−CH4

will increase the top-down estimated CH4 emissions
(EMISCH4 ) by 40 Tg yr−1, consistent with that given by He
et al. (2020) using full-chemistry modeling and a mass bal-
ance approach. Other CH4 sinks including soil uptake and
oxidation by O1(D), which are prescribed in this study, re-
move 104 Tg yr−1 of CH4. If uncertainties in all the CH4
sinks were also considered, the correlation between opti-
mized CH4 emissions and the [OH]GM−CH4 would be re-
duced. Using box model inversions, previous studies calcu-
lated that a 4 % (0.4× 105 molec cm−3) decrease in [OH]GM
is equivalent to an increase of 22 Tg yr−1 of CH4 emissions
(Rigby et al., 2017; Turner et al., 2017, 2019). If we apply
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Figure 2. (a) The global CH4 emissions from Inv1 (averaged over July 2000–June 2002). The bottom-up and top-down estimations over
2000–2009 from previous GCP calculations (Kirschke et al., 2013; Saunois et al., 2016, 2020) are also presented for comparison. The brown
box plot shows the inversion results using 10 OH fields, while the orange one shows the results that exclude the largest estimates from the
SOCOL3 and MOCAGE OH fields. The left, middle, and right whisker charts (vertical lines) represent the minimum, mean, and maximum
values of different inversion, and the left and right edges of the boxes represent the mean± 1 standard deviation. The definition of the box
plot is applicable to all those hereafter. (b) The relationship between the optimized CH4 emissions (Tg yr−1) in Inv1 and the corresponding
[OH]GM−CH4 (×105 mole cm−3). The correlation coefficient (r) and the linear regression equation fitted to the data are shown in the inset.

Table 2. The global total, hemispheric CH4 emissions, and interhemispheric difference of CH4 emissions calculated by Inv1 and Inv2 during
the early 2000s (July 2000–June 2002; Tg yr−1).

Unit: Tg yr−1 Inv1 original OH Inv2 scaled OH

Global 0–90◦ N 90◦ S–0◦ N–SInv1 Global 0–90◦ N 90◦ S–0◦ N–SInv2

Prior 522 384 138 246 522 384 138 246
TransCom 530 368 162 206 549 377 172 205
INCA NMHC-AER-S 518 380 138 242 553 399 154 245
INCA NMHC 552 392 160 232 552 392 160 232
CESM1-WACCM 587 420 166 254 551 400 151 249
CMAM 599 419 180 239 553 399 154 245
EMAC-L90MA 589 414 175 239 555 396 159 237
GEOSCCM 611 424 187 237 550 392 159 233
MOCAGE 716 /∗ / / / / / /
MRI-ESM1r1 553 396 156 240 548 396 152 244
SOCOL3 757 / / / / / / /

Mean±SD 601± 78 401± 21 166± 15 236± 14 551± 2 393± 7 158± 7 236± 14

∗ We do not analyze the hemispheric CH4 emission estimated with the MOCAGE and SOCOL3 OH field since inversions using the two OH fields calculate
much higher CH4 emissions than using other OH fields.

the same [OH]GM changes in Eq. (1) (0.4×105 molec cm−3),
the equivalent emissions change is 16 Tg yr−1, about 25 %
smaller than that given by Turner et al. (2017). This differ-
ence probably results from the different hemispheric mean
reaction rates of OH+CH4 applied in box models, but it
could also be due to different treatments of interhemispheric
transport and stratospheric CH4 loss in global 3D transport
models compared to simplified box models (Naus et al.,
2019).

With the OH fields scaled to the same [OH]GM−CH4

(11.1× 105 molec cm−3), the Inv2 simulations (assuming a
global total OH burden that is well constrained) estimated
global CH4 emissions of 551± 2 Tg yr−1 (Table 3), as ex-
pected by the scaling. Differences in OH spatial distributions
only lead to negligible uncertainty in global total CH4 emis-
sions estimated by top-down inversions.
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Table 3. Global, latitudinal, and regional CH4 emissions (Tg yr−1; mean±SD and the min–max range of the inversions) calculated by
Inv1 and Inv2 during the early 2000s (July 2000–June 2002; Tg yr−1, excluding MOCAGE and SOCOL3). The uncertainties (unc.= (max–
min) / multi-inversion mean) arising from using different OH fields are compared with the uncertainties in CH4 emissions given by Saunois
et al. (2016) and Locatelli et al. (2013).

Study This study (impact of OH) Saunois et Locatelli et
al. (2016) al. (2013)

Period July 2000–June 2002 2000–2009 2005

TD Transport
Experiment Inv1 (original OH) Inv2 (scaled OH) ensemble model

errors

Region Mean±SD[range] Unc. Mean±SD [range] Unc. Unc. Unc.
Global 567± 34[518–611] 17 % 551± 2[548–555] 1 % 6 % 5 %

60–90◦ N 29± 1[27–30] 12 % 29± 1[27–30] 12 % 50 % 10 %
30–60◦ N 174± 8[158–183] 14 % 172± 6[159–178] 11 % 20 % (NH)

0–30◦ N 199± 14[178–217] 20 % 192± 1[191–194] 1 % 13 %

0–30◦ S 147± 14[121–167] 30 % 140± 6[133–153] 14 % (< 30◦ N) 24 %
30–90◦ S 19± 1[17–20] 18 % 18± 1[18–19] 9 % (SH)

America 45± 2[42–48] 11 % 45± 1[42–46] 8 % 25 % 37 %
Canada 27± 1[24–28] 17 % 27± 1[24–28] 13 % 70 % (North America)

Europe 27± 1[25–28] 12 % 27± 1[25–28] 11 % 43 % 23 %
Russia 33± 1[30–35] 13 % 33± 1[30–34] 12 % 31 % 38 %

China 42± 5[33–50] 39 % 40± 3[35–43] 20 % 11 % 25 %
Southeast Asia 38± 3[34–41] 20 % 37± 0.3[36–37] 3 % 42 % (Asia)
South Asia 59± 6[51–66] 24 % 57± 0.8[56–58] 4 % 44 %

Northern South America 73± 9[58–85] 37 % 69± 4[65–77] 17 % 44 % 48 %
Southern South America 33± 4[27–39] 37 % 31± 2[29–36] 20 % 94 % (South America)

Africa 76± 4[68–82] 18 % 74± 1[73–77] 6 % 42 %–45 % 30 %

Table 4. Global and latitudinal percentage changes in CH4-reaction-weighted [OH] from 2000–2002 to 2007–2009.

90–30◦ S 30◦ S–0◦ 0–30◦ N 30–90◦ N Global

TransCom 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
INCA NMHC −0.5 % −0.9 % −0.3 % −0.2 % −0.5 %
CESM1-WACCM 1.1 % 1.6 % 2.5 % 1.2 % 1.8 %
EMAC-L90MA −0.1 % 0.1 % 1.3 % 1.1 % 0.7 %
GEOSCCM −0.3 % 1.1 % 1.4 % 1.0 % 1.0 %
MRI-ESM1r1 −2.0 % 0.2 % 2.4 % 1.7 % 1.1 %

3.1.2 Regional CH4 emissions

Inv1 and Inv2

Since MOCAGE and SOCOL3 OH fields show much higher
[OH]GM than constrained by MCF observations (∼ 10×
105 molec cm−3; e.g., Prinn et al., 2001; Bousquet et al.,
2005) and give much higher estimates of CH4 emissions
(> 700 Tg yr−1) than other OH fields, we exclude inversion
results with these two OH fields from the following analyses.

In response to both global total OH burden and interhemi-
spheric OH ratios (Table 1), CH4 emissions over the North-
ern and Southern Hemisphere calculated by Inv1 (Table 2)
vary from 368 to 424 Tg yr−1 (401± 21 Tg yr−1) and 138 to
187 Tg yr−1 (166± 15 Tg yr−1), respectively, resulting in a
range in interhemispheric CH4 emission difference (NH-SH)
of 206–254 Tg yr−1 (236±14 Tg yr−1). When scaling all OH
fields to the same loss for Inv2, the standard deviations of
hemispheric CH4 emissions are reduced to 7 Tg CH4 yr−1 for
both hemispheres (Table 2), much smaller than those derived
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in Inv1 (21 and 15 Tg yr−1 over the Northern and South-
ern Hemisphere, respectively). However, the CH4 emission
interhemispheric difference calculated by Inv2 remains at
236± 14 Tg yr−1, similar to that calculated by Inv1, which
indicates that the hemispheric CH4 emission differences are
mainly determined by OH spatial distributions. Without the
TransCom OH simulation, the interhemispheric CH4 emis-
sion difference ranges between 232 and 246 Tg yr−1. The
TransCom OH field, for which the OH N/S ratio is 1.0,
leads to an interhemispheric CH4 emission difference of
205 Tg yr−1, which is 35 Tg yr−1 (27 Tg yr−1) smaller than
the mean (minimum) interhemispheric difference calculated
using other OH fields (OH N/S ratio= 1.2–1.3). Previous
studies show that differences in atmospheric transport mod-
els can lead to ±28 Tg yr−1 uncertainties in the top-down
calculation of the interhemispheric CH4 emission difference
using a single OH field – TransCom (Locatelli et al., 2013).
Here, using a single atmospheric transport model but differ-
ent OH fields, we find a ±14 Tg yr−1 uncertainty, which is
about half of the atmospheric transport model uncertainty.
Combining the two studies, one could expect more than
30 Tg yr−1 of uncertainty in top-down estimates of the in-
terhemispheric CH4 emission difference based on different
atmospheric models and different OH fields.

Figure 3 shows the optimized and prior CH4 emissions
calculated by Inv1 (a–c) and Inv2 (d–f) over latitudinal in-
tervals (panels a, d) and large emitting regions (panels c, f).
Compared with prior emissions, nearly all the optimized lat-
itudinal and regional emissions show the same increment di-
rection from prior emissions, but the magnitudes of the in-
crement largely vary. The CH4 emissions calculated by Inv1
amount to (i) 147± 14 Tg yr−1 and are 1–47 Tg yr−1 higher
than the prior estimate over the southern tropical regions
(30◦ S–0◦), (ii) 199±14 Tg yr−1 and are 6–45 Tg yr−1 higher
than the prior estimate over the northern tropical regions (0–
30◦ N), and (iii) 174± 8 Tg yr−1 and are 1–26 Tg yr−1 lower
than the prior estimate over the northern midlatitude regions
(30–60◦ N) (Table 3). The uncertainties in global OH bur-
den and distributions lead to larger uncertainty (maximum–
minimum) in top-down estimated CH4 emissions over the
tropics (> 20 % of multi-inversion mean) and smaller un-
certainty over the northern midlatitude regions (14 %) com-
pared with that arising from transport model errors and dif-
ferent observations given by Saunois et al. (2016) (13 % over
the tropics and 20 % over northern midlatitude regions) (Ta-
ble 3).

Over the large emitting regions Europe (EU), Canada
(CAN), and China (CHN), optimized emissions are lower
than the prior. The emissions calculated by Inv1 show the
largest absolute OH-induced differences over South America
(SA, 73±9 Tg yr−1), South Asia (SAS, 59±6 Tg yr−1), and
China (42± 5 Tg yr−1) (Fig. 3c, f and Table 3), of which the
uncertainty (maximum-minimum) accounts for more than
20 % of the multi-inversion mean emission over the cor-
responding regions (Table 3). Over high-latitude regions

(Canada, Europe, and Russia), OH leads to small uncertainty
ranges (< 10 Tg yr−1). At the model grid scale, the uncer-
tainty range due to OH can be much larger than the regional
mean (Fig. 3b, e): for example, larger than 50 % of the multi-
inversion mean emissions over South America and East Asia.
As shown in Table 3, at regional scales, the uncertainty
(maximum-minimum) in top-down estimated CH4 emissions
due to different OH global burden and distributions over Asia
and South America (∼ 37 % of multi-inversion mean) are of
the same order as those arising from transport errors (25 %
and 48 %) or given by Saunois et al. (2016) (∼ 40 %). Over
other regions, using different OH fields leads to smaller un-
certainties (11 %–18 %) compared to other causes of errors
(23 %–70 %) (Table 3).

The uncertainties in the top-down estimated regional emis-
sions are not only due to inter-model differences of the re-
gional OH fields but also rely on the distribution of the sur-
face observations used in the inversions. Over the regions
with large prior emissions but less constrained by observa-
tions (e.g., South America, South Asia, and China), our OH
analysis leads to larger uncertainties than regions that are
well constrained by observations (e.g., the North America
and Canada) (Fig. S3). The results may indicate that on the
regional scale, the top-down estimated CH4 emissions and
the uncertainties arising from OH are specific to the obser-
vation system retained. If more surface observations (e.g., in
the Southern Hemisphere) or satellite columns with a more
even global coverage were included in our inversions, spatial
patterns of the top-down estimated CH4 emissions and their
uncertainties (as shown by Fig. 3) could be different.

Comparing Inv1 and Inv2

We now compare the inversion results using the original OH
fields (Inv1) with those using scaled OH fields (Inv2) to esti-
mate how much the optimized regional CH4 emission differ-
ences of Inv1 are dominated by OH spatial and seasonal dis-
tributions versus the global OH burden. Applying one single
global scaling factor per model reduces the inter-model dif-
ferences of original OH fields by 33 %, 67 %, and 33 % in the
southern tropics (0–30◦ S), northern tropics (0–30◦ N), and
northern middle and high latitudes (30–90◦ N) (Table S2).
This scaling results in a 57 %, 93 %, and 22 % reduction
of OH-induced latitudinal CH4 emission differences, respec-
tively, for the southern tropics (0–30◦ S), northern tropics (0–
30◦ N), and northern middle and high latitudes (30–90◦ N)
(Fig. 3a, d comparing standard deviations of Inv1 and Inv2).
At the regional scale (Fig. 3c, f and Table 3), the OH spatial-
distribution-induced CH4 emission differences (standard de-
viation of Inv2) account for 50 % of the differences due to
both OH burden and spatial distributions (standard devia-
tion of Inv1) over northern midlatitude regions (China, North
America) and South America. Over northern tropical regions
(southern Asia and Southeast Asia), the OH spatial distribu-
tion induces negligible CH4 emission differences.
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Figure 3. Zonal (a, d), and regional averages (c, f) of CH4 emissions calculated by Inv1 (a, c) and Inv2 (d, f) with eight OH fields from
July 2000–June 2002. (a, c, d, f) Prior (dashed red line) and mean optimized (solid red line) CH4 emissions for every 15◦ latitudinal band
and 10 regions, respectively. USA: America, CAN: Canada, EU: Europe, RUS: Russia, CHN: China, SEAS: Southeast Asia, SAS: South
Asia, NSA: northern South America, SSA: southern South America, AF: Africa. The full names of the abbreviations are applicable to all
figures hereafter. The differences between prior and optimized emissions (optimized minus prior) are shown by the box plots (defined in
Fig. 1). Prior and optimized emission values correspond to the right axes and their differences correspond to the left axes. (b, e) The ratio
of the uncertainty range of emissions estimated with different OH fields (max–min) in each grid cell calculated by Inv1 (b) and Inv2 (e) to
multi-inversion mean CH4 emissions.

The comparison of Inv1 and Inv2 reveals that methane
emissions in tropical regions are less sensitive to OH spa-
tial distribution than middle- and high-latitude regions in our
framework. One possible explanation could be the location
of monitoring sites. Over tropical regions, CH4 emissions are
less constrained (with few to no observation sites near source
regions) than in the northern extratropics, where several
monitoring sites are located at or near regions with high CH4
emission rates and high OH uncertainties (e.g., North Amer-
ica, Europe, and downwind of East Asia). Thus, CH4 emis-
sions over the tropical regions mainly contribute to match-
ing the global total CH4 sinks (instead of the sinks over the
tropical regions only) estimated by inversion systems. When
all OH fields are scaled to the same CH4 losses (Inv2), dif-
ferences in emissions over the tropical regions are therefore
largely reduced.

3.1.3 Global and regional CH4 emissions per source
category

Figure 4 compares optimized and prior global total CH4
emissions and the difference between the prior and optimized
CH4 emissions for four broad source categories: wetlands,

Figure 4. Global total CH4 emissions from four broad categories
from July 2000–June 2002 (Tg yr−1). The red circles and dots
show the prior emissions and mean optimized emissions, respec-
tively, as calculated by Inv1 (right axes), and the box plots (defined
in Fig. 1) show the difference between prior emissions (optimized
minus prior, left axes) and optimized emissions calculated by Inv1
(blue) and Inv2 (yellow).
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agriculture and waste (called agri-waste), fossil fuels, and
other natural sources. We attribute the optimized emissions
to different source sectors depending on the relative strength
of individual prior sources in each grid cell. With original OH
fields, Inv1 calculates CH4 emissions of 203±15 Tg yr−1 for
wetlands, 209±12 Tg yr−1 for agri-waste, 89±4 Tg yr−1 for
fossil fuel, and 66±3 Tg yr−1 for other natural sources. Opti-
mized emissions of the four sectors are 23±15 Tg yr−1 (−2–
42 Tg yr−1), 13±12 Tg yr−1 (−3–29 Tg yr−1), 5±4 Tg yr−1

(−1–9 Tg yr−1), and 4±3 Tg yr−1 (0–8 Tg yr−1) higher than
the prior emissions, respectively. Although Inv2 is conducted
with scaled OH fields and all inversions calculate similar
global total CH4 emissions (551±2 Tg yr−1), optimized CH4
emissions still show some uncertainties due to OH (as a
standard deviation) (3 Tg yr−1 for wetland emissions and
2 Tg yr−1 for agriculture and waste; yellow box plots in
Fig. 4) in response to different OH spatial distributions.

We have further calculated CH4 emissions per source
category and per region estimated by Inv1 (Fig. 5) to ex-
plore the contribution of each region to the OH-induced sec-
toral emission uncertainties. Wetland CH4 emissions mainly
dominate emissions over northern South America, Africa,
South and East Asia, and Canada. Northern South America
(53±7 Tg yr−1) and Africa (30±2 Tg yr−1) contribute most
of the global total OH-induced wetland emission differences
and are 1–22 Tg yr−1 and 1–8 Tg yr−1 higher than prior emis-
sions, respectively. In contrast to the higher wetland emis-
sions than prior ones over tropical regions, optimized boreal
wetland emissions (in Canada) are 6–9 Tg yr−1 lower than
prior emissions, consistent with lower top-down estimations
than the prior given by Saunois et al. (2016). Agriculture
and waste emissions are most intensive over China (25±
3 Tg yr−1) and South Asia (SAS) (39± 3 Tg yr−1). The op-
timized inventories show lower agriculture and waste emis-
sions over China (0.6–10 Tg yr−1) and Europe (1–3 Tg yr−1)
and much higher emissions over SAS (4–13 Tg yr−1) com-
pared with the prior emission inventory. The OH-induced
differences in fossil fuel emissions are found mainly in
China and Africa, which are 0.8–5 Tg yr−1 lower and 0.6–
3 Tg higher than prior emissions, respectively. In agreement
with the previous regional discussion, scaling OH (Inv2)
highly reduces the uncertainties attributable to different OH
over the tropical regions but not for the middle- to high-
latitude regions. In Inv2, the largest CH4 emission differ-
ences due to different OH spatial distributions are found for
wetland emissions in South America (60± 4 Tg yr−1), agri-
culture and waste emissions in South Asia (17± 1 Tg yr−1)
and China (24±2 Tg yr−1), and fossil fuel emissions in China
(8± 0.7 Tg yr−1) and Russia (9± 0.4 Tg yr−1).

Previous studies have highlighted the fact that anthro-
pogenic emissions over China are largely overestimated by
bottom-up emissions inventories compared with top-down
estimates (Kirschke et al., 2013; Tohjima et al., 2014;
Saunois et al., 2016). In our study, total anthropogenic emis-
sions (agriculture, waste, and fossil fuel) over China are 1–

Table 5. Global total emission changes (Tg yr−1) from the early
2000s (July 2000–June 2002) to the late 2000s (July 2007–
June 2009) calculated to identify the effect of OH fields (Inv3–
Inv2), the effect of OH fixed to the early 2000s (Inv4–Inv2), and
the contribution of OH changes from the early to late 2000s to top-
down estimated CH4 emissions changes (Inv3–Inv4).

Inv3–Inv2 Inv4–Inv2 Inv3–Inv4

TransCom 17 17 0
INCA NMHC 17 19 −3
CESM1-WACCM 30 19 12
EMAC-L90MA 20 15 5
GEOSCCM 19 16 3
MRI-ESM1r1 28 14 14

Mean±SD 22± 6 17± 2 5± 6

15 Tg yr−1 lower than the prior bottom-up inventory as cal-
culated by Inv1 and 7–14 Tg yr−1 as calculated by Inv2, with
the lowest emissions calculated with the TransCom OH field
(for both Inv1 and Inv2). The TransCom OH field is the most
widely used in current top-down CH4 emission estimations
but shows much lower [OH] over China than other OH fields
(Zhao et al., 2019), which may be due to the use of the same
NOx profile over East Asia as for remote regions based on
observations of the 1990s when constructing the TransCom
OH field (Spivakovsky et al., 2000). Thus, the large reduction
of top-down estimated anthropogenic CH4 emissions over
China compared to the prior emissions may be partly due
to an underestimation of [OH] over China in the TransCom
field.

3.2 Impact of OH on CH4 emission changes between
2000–2002 and 2007–2009

As shown in Table 4, the global mean [OH] simulated by
CCMI models increased by 0.7 %–1.8 % from 2000–2002 to
2007–2009 in response to anthropogenic emissions and cli-
mate change (Zhao et al., 2019), whereas the INCA-NMHC
model-simulated global [OH] shows a slight decrease of
0.5 %. The TransCom OH field, being constant over time,
shows no change. The increase in global mean [OH] mainly
results from the combination of a higher increase in the trop-
ics compared to the northern extratropics and a slight de-
crease in the southern extratropics. As a result, the changes in
OH between the two periods show different patterns between
regions. We have conducted inversions for 2007–2009 with
scaled OH fields (Inv3) to explore how uncertainties in OH
(both the spatial and seasonal distribution and interannual
changes) can influence the top-down estimates of temporal
CH4 emission changes from the early 2000s (July 2000–
June 2002, Inv2) to the late 2000s (July 2007–June 2009,
Inv3) (Inv3-Inv2). We have also performed Inv4 for 2007–
2009 but using OH fields of 2000–2002 to separate the con-
tribution of OH from different time periods (Inv3-Inv4).
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Figure 5. Same as Fig. 4 but for prior and optimized emissions over 10 emitting regions covering most of the emitting lands. W: wetlands,
A: agri-waste, F: fossil fuels, and O: others (Tg yr−1).

3.2.1 Global total emission changes between 2000–2002
and 2007–2009

Total emission changes. From the early 2000s (Inv2) to
the late 2000s (Inv3), the top-down estimated CH4 emis-
sions increased by 22± 6 Tg yr−1 (17–30 Tg yr−1; Table 5).
The largest CH4 increase of 30 Tg yr−1 is estimated with
CESM1-WACCM OH fields (for which OH increased by
1.8 % from 2000–2002 to 2007–2009), 13 Tg yr−1 higher
than the smallest increase of 17 Tg yr−1 estimated with
the INCA NMHC OH field (for which OH decreased
by 0.5 % from 2000–2002 to 2007–2009). In Saunois et
al. (2017), the minimum–maximum uncertainty range of
emission changes between 2002–2006 and 2008–2012 was
16 Tg yr−1. This means that the uncertainty attributable to
uncertainty in OH fields (13 Tg yr−1) is comparable to the
minimum–maximum uncertainty resulting from using dif-
ferent atmospheric chemistry–transport models and observa-
tions (surface and satellite) but mostly constant OH over time
(16 Tg yr−1; Saunois et al., 2017).

Spatial versus temporal OH effects. Only changing OH
from 2000–2002 (Inv4) to 2007–2009 (Inv3), top-down es-
timated CH4 emissions due to OH interannual changes are

5± 6 Tg yr−1 (−3–14 Tg yr−1; Table 5), which contribute
25 % of total optimized emission changes (Inv3-Inv2) be-
tween the early and late 2000s (22± 6 Tg yr−1; Table 5). As
listed in Table 5, the largest emission increases due to OH
interannual changes are calculated using MRI-ESM1r1 OH
fields, for which a 1.1 % global increase in OH can up to
double the top-down estimation of CH4 emission increase
from the early to the late 2000s. This result indicates that a
large bias likely exists in the former top-down estimation of
the CH4 emission trend calculated without considering OH
changes (Saunois et al., 2017).

Keeping OH fields for 2000–2002, top-down estimated
CH4 emissions increase by 17± 2 Tg yr−1 (14–19 Tg yr−1;
Table 5) between the early 2000s (Inv2) and the late 2000s
(Inv4) in response to increasing atmospheric CH4 mixing
ratios and temperature. This represents 75 % of total opti-
mized emission changes (Inv3-Inv2) between the early and
late 2000s (22± 6 Tg yr−1; Table 5). The 2 Tg yr−1 uncer-
tainty (as a standard deviation) is due to the different OH
spatial and seasonal distributions, indicating that OH spatial
and seasonal distributions, which are not considered in box
models, can also contribute to the uncertainties in optimized
CH4 emission changes.
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Figure 6. Top: latitudinal emission (every 15◦ latitudinal band) changes (Tg yr−1) from the early 2000s (July 2000–June 2002) to the late
2000s (July 2007–June 2009) in total, wetlands, agriculture and waste, and fossil fuel emissions (Inv3-Inv2). Bottom: contribution of OH
changes to top-down estimated CH4 emission changes between the two periods (Inv3-Inv4). The red lines are changes in prior emissions,
and the black lines are the mean changes in optimized emissions. The box plots (defined by Fig. 1) show the standard deviations and ranges
calculated with different OH fields.

Table 6. Global sectoral emission changes (Tg yr−1) from the
early 2000s (July 2000–June 2002) to the late 2000s (July 2007–
June 2009) (mean and the min–max range).

Inv3-Inv2 Inv4–Inv2 Inv3-Inv4 Prior

Wetland −4[−6–0] −6[−7–−3] 2[−3–5] 0
Agri-waste 14[12–17] 12[11–13] 2[0–5] 19
Fossil fuel 9[8–10] 8[7–9] 1[0–2] 18
Other 2[2–3] 2[2–2] 1[0–1] 3

Total 22[17–30] 17[14–19] 5[−3–13] 39

3.2.2 Emission changes by source type and region

Total emission changes. We further analyze the influence of
OH (both spatial distributions and interannual variations) on
the top-down estimated sectoral and regional CH4 emission
changes from the early 2000s (Inv2) to the late 2000s (Inv3).
As shown in Fig. 6 (top panels), the smaller increase in the
optimized global CH4 emissions from the early 2000s to
the late 2000s (17–30 Tg yr−1) compared to the prior change
(39 Tg yr−1) is mainly due to a decrease in wetland emissions
over the southern tropics (3–6 Tg yr−1, 15–0◦ S) and northern
midlatitude regions (3–4 Tg yr−1, 45–60◦ N) in contrast to

the climatology of prior wetland emissions and a lower fos-
sil fuel emission increase over 30–45◦ N (3–4 Tg yr−1) com-
pared to prior emission increase (9 Tg yr−1). Wetlands (−6–
0 Tg yr−1) as well as agriculture and waste (12–17 Tg yr−1)
contribute most of the total OH-induced uncertainty in global
total emission changes (17–30 Tg yr−1) from the early 2000s
(Inv2) to the late 2000s (Inv3) (Table 6), whereas fossil fuel
emissions (8–10 Tg yr−1) show smaller uncertainty.

Considering emissions over latitudinal bands (Fig. 6, top
panels), the largest spread of emission changes is found over
the southern tropics (15◦ S – tropics, −7 to −1 Tg yr−1),
northern subtropics (15–30◦ N, 16 to 20 Tg yr−1), and north-
ern extratropical regions (30–45◦ N, 8 to 11 Tg yr−1). The
spread over the southern tropics is dominated by emission
changes from wetlands (−6 to −2 Tg yr−1), over northern
subtropics by agriculture and waste (7 to 10 Tg yr−1), and
over northern extratropical regions by agriculture and waste
(4 to 5 yr−1) and fossil fuels (3 to 4 Tg yr−1). At the regional
scale (Fig. 7, top panels), northern South America (−5 to
−1 Tg yr−1), South Asia (9 to 12 Tg yr−1), and China (0 to
5 Tg yr−1) show the largest differences in emission changes
from the early 2000s to the late 2000s. The multi-inversion
calculated agriculture and waste sector emission changes in
China disagree in sign (Fig. 7; top panels), which range from
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Figure 7. Top: optimized global total and sectoral regional emission changes (Tg yr−1) from the early 2000s to the late 2000s (y axis) plotted
against prior emission changes between the two time periods (x axis) as derived from Inv2 and Inv3. The prior wetland emissions are constant
over time and thus show zero changes (all “0” on the x axis). Bottom: contribution of OH changes between the two periods to top-down
estimated emission changes (Inv3-Inv4). The box plots (defined by Fig. 1) show the standard deviations and ranges calculated with different
OH fields.

a 1 Tg yr−1 decrease to a 2 Tg yr−1 increase from the early
2000s to the late 2000s.

We now compare the uncertainty of top-down estimated
CH4 emission changes from the early to the late 2000s due to
different OH spatial–temporal variations with the ensemble
of top-down studies given by Saunois et al. (2017). For the
sectoral emissions, emission changes from agriculture and
waste as well as from wetlands show the largest uncertain-
ties (more than 50 % of the multi-inversion mean; Inv3-Inv2
in Table 6) induced by OH spatial–temporal variations, com-
parable to those given by Saunois et al. (2017). On the con-
trary, the uncertainty of fossil fuel emission changes (24 % of
the multi-inversion mean) is much smaller than that given by
Saunois et al. (2017). For regional CH4 emission changes,
the uncertainty induced by OH spatial–temporal variations
is usually larger than the multi-inversion mean emission
changes (except South Asia) and similar to that given by
Saunois et al. (2017). The large differences in different top-
down estimated regional and sectoral emission changes are
mainly attributed to model transport errors in Saunois et
al. (2017). Here, our results show that uncertainties due to
OH spatiotemporal variations can lead to similar biases in
top-down estimated CH4 emission changes.

Spatial versus temporal effects. We now separate the influ-
ences of OH interannual changes (Inv3-Inv4) on optimized
regional CH4 emission changes. As shown in the bottom pan-
els of Figs. 6 and 7, at the regional scale, OH interannual

changes mainly perturb top-down estimated CH4 emission
changes over the southern tropics (0–15◦ S, −3–6 Tg yr−1)
and northern subtropics (15–30◦ N, 0–5 Tg yr−1). This cor-
responds to the two largest spreads observed in Fig. 7 as-
sociated with wetland emissions over northern South Amer-
ica (−2–4 Tg yr−1) and with agriculture and waste emissions
over South Asia (0–3 Tg yr−1). Among the four emission
sectors, wetland emissions (mainly southern tropical wet-
land) show the largest change (−3–5 Tg yr−1) in response to
OH temporal changes (Table 6), which account for 60 % of
total wetland emission changes between these two periods.

The OH spatial and seasonal distribution can lead to large
uncertainties in regional CH4 emission changes. For regional
and latitudinal scales, the spreads (uncertainty ranges) of
Inv4-Inv2 (OH fixed to 2000–2002) (Figs. S5 and S6) are
comparable to the spread of regional and latitudinal emis-
sion changes arising from both OH interannual changes and
spatial and seasonal distributions (Inv3-Inv2) (top panels of
Figs. 6 and 7) as mentioned above (e.g., a 3–5 Tg yr−1 de-
crease over northern South America, a 6–11 Tg yr−1 increase
over South Asia, and a 0–4 Tg yr−1 increase over China).
These results show that even if the global total OH burden is
well constrained (as in Inv4 and Inv2, wherein all OH fields
are scaled to the same [OH]GM−CH4 , and the differences in
optimized CH4 emission changes from the early 2000s to the
late 2000s are only due to different OH spatial distributions),
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top-down estimates of sectoral and regional temporal CH4
emission changes remain highly uncertain.

3.3 Impacts of OH on year-to-year variations of CH4
emissions from 2001 to 2015

To infer the influence of OH year-to-year variations on top-
down optimized long-term CH4 emission changes, we con-
ducted two inversions, Inv5 and Inv6. Inv5 calculates opti-
mized CH4 emissions from 2001 to 2015 with the CESM1-
WACCM OH field varying from one year to the next, while
Inv6 uses the CESM1-WACCM OH field but fixed to the
year 2000. The choice of the CESM1-WACCM OH field
is explained in Sect. 2.3 above. As shown in Fig. 8, the
[OH]GM−CH4 of the CESM1-WACCM OH field increases by
0.47× 105 molec cm−3 (4.2 %) from 2001 to 2011 and then
decreases by 0.13× 105 molec cm−3 (1.1 %) from 2011 to
2015.

With OH fixed to the year 2000 (Inv6), global CH4 emis-
sions stall at 550±2 Tg yr−1 during 2001–2003 and decrease
to 538 Tg yr−1 in 2004, which is different from the continu-
ous increase in CH4 emissions given by the bottom-up inven-
tory (Fig. 8a). After 2004, global total CH4 emissions show
a positive trend of 3.5± 1.8 Tg yr−2 (P < 0.05) but smaller
than the prior bottom-up inventory (4.3± 0.6 Tg yr−2; P <

0.05). Both stalled and decreased emissions during 2001–
2004 as well as the increasing trend after 2004 are consistent
with previous top-down estimations (Saunois et al., 2017).

The trend of global CH4 emissions during 2004–2016
calculated by Inv5 (using varying OH) is 4.8± 1.8 Tg yr−2

(P < 0.05), which is 1.3 Tg yr−2 (36 %) higher than that cal-
culated by Inv6 (OH fixed to 2000) due to the small increase
in [OH] and also 0.5 Tg yr−2 higher than the prior emission
trend (4.3± 0.6 Tg yr−2). Accounting for the OH increasing
trend leads to increasing the prior trend in Inv5 instead of de-
creasing it in Inv6. When calculating the differences between
Inv5 and Inv6 for different latitude intervals, we find that
before 2004, differences between Inv5 and Inv6 are mainly
contributed by northern middle-latitude regions, whereas af-
ter 2004 they are dominated by tropical regions (Fig. 8b).

We further compare CH4 emission trends for the four pre-
viously defined emission sectors and the 10 continental re-
gions between Inv5 and Inv6. As shown in Fig. 9, the posi-
tive global CH4 emission trend during 2004–2016 is mainly
contributed by anthropogenic sources from agriculture and
waste, as well as fossil-fuel-related activities, which are 1.9±
0.7 Tg yr−2 and 2.3± 0.4Tg yr−2, respectively, as calculated
by Inv6 (fixed OH). Wetland emissions show a small nega-
tive trend (−0.5± 0.7 Tg yr−2), and other natural emissions
do not show a significant trend (0.04±0.6 Tg yr−2). Both sec-
tors show large uncertainties in their trends, reflecting large
year-to-year variations. When considering [OH] variations,
Inv5 estimates a higher agriculture and waste emission trend
(2.4± 0.8 Tg yr−2) compared to Inv6, mainly contributed by
China (1.5± 0.5 Tg yr−2 for Inv6 versus 1.7± 0.5 Tg yr−2

for Inv5) and southern South America (−0.1± 0.1 Tg yr−2

for Inv6 versus 0.1± 0.3 Tg yr−2 for Inv5). Accounting for
interannual OH variations, the negative wetland emission
trend reduces to near zero (0.1± 0.6 Tg yr−2), mainly due
to increased emission trends over northern South America
(−0.3± 0.3 Tg yr−2 for Inv6 versus 0.2± 0.5 Tg yr−2 for
Inv5). In contrast to agriculture and waste as well as wetland
emissions, fossil fuel emissions have a similar positive trend
of 2.4±0.4 Tg yr−2 in Inv5 and Inv6. This result comes from
a higher CH4 emission trend over China calculated by Inv5
balanced by a lower CH4 emission trend over America and
Russia (0.2±0.2 Tg yr−2 for Inv6 versus 0.1±0.3 Tg yr−2 for
Inv5) since the CESM1-WACCM OH field shows a signifi-
cant negative [OH] trend over America (Zhao et al., 2019).

4 Conclusions and discussion

In this study, we have performed six groups of variational
Bayesian inversions (top-down, 34 inversions in total) us-
ing up to 10 different prescribed OH fields to quantify the
influence of OH burden, interannual variations, and spa-
tial and seasonal distributions on the top-down estimation
of (i) global total, regional, and sectoral CH4 emissions,
(ii) emission changes between the early 2000s and late 2000s,
and (iii) year-to-year emission variations. Our top-down sys-
tem estimates monthly CH4 emissions by assimilating sur-
face observations with atmospheric transport of CH4 calcu-
lated by the offline version LMDz5B of the LMDz atmo-
spheric model using different prescribed OH fields.

Based on the ensemble of 10 original OH fields
([OH]GM−CH4 :10.3–16.3× 105 molec cm−3), the global to-
tal CH4 emissions inverted by our system vary from 518 to
757 Tg yr−1 during the early 2000s, similar to the CH4 emis-
sion range estimated by previous bottom-up syntheses and
larger than the range reported by top-down studies (Kirschke
et al., 2013; Saunois et al., 2016, 2020). The top-down
estimated global total CH4 emission varies linearly with
[OH]GM−CH4 , which indicates that at the global scale, a small
uncertainty of 1× 105 molec cm−3 (10 %) [OH]GM−CH4 can
result in 40 Tg yr−1 uncertainties in optimized CH4 emis-
sions.

At the regional scale (excluding the two highest OH
fields), CH4 emission uncertainties due to different OH
global burdens and distributions are largest over South Amer-
ica (37 % of multi-inversion mean), South Asia (24 %), and
China (39 %), resulting in significant uncertainties in opti-
mized emissions from the wetland as well as agriculture and
waste sectors. These uncertainties are comparable in these re-
gions with those due to model transport errors and inversion
system setup (Locatelli et al., 2013; Saunois et al., 2016). For
these regions, the uncertainty due to OH is critical for under-
standing their methane budget. In other regions, OH leads
to smaller uncertainties compared to that given by Locatelli
et al. (2013) and Saunois et al. (2016). By performing in-
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Figure 8. (a) Time series of global total CH4 emissions calculated by Inv5 (yellow) and Inv6 (purple) plotted together with prior emissions
(black) and the [OH]GM−CH4 anomaly of CESM OH fields (blue). (b) The difference in global total (black line) and latitudinal (stack bar
plots) CH4 emissions between Inv5 and Inv6 (Inv5–Inv6).

Figure 9. Comparison between Inv5 (x axis) and Inv6 (y axis) estimated global total CH4 emissions trends (Tg yr−2) between 2004 and
2015 for the four categories (a) and over the 10 continental regions (b). The error bars show the trend with 95 % confidence intervals.

versions with globally scaled OH fields, we calculated that
emission uncertainties due to different OH spatial and sea-
sonal distributions account for ∼ 50 % of total uncertainties
(induced by both different OH burdens and different OH spa-
tial and seasonal distributions) over middle- to high-latitude
regions and South America. CH4 emission differences due
to OH spatial distributions are the largest in northern South
America and China but are negligible over South Asia and
other northern tropical regions. Based on CH4 emission op-
timization with surface observations, our study shows that
tropical regions appear to be more sensitive to the OH global
burden (as less constrained regions used to achieve the global
mass balance of the methane budget), and middle- to high-

latitude regions are found to be sensitive to both the OH
global burden and spatial distributions.

The global CH4 emission change between 2000–2002
and 2007–2009 as estimated by top-down inversions using
six different OH fields is 22± 6 Tg yr−1, of which 25 %
(5± 6 Tg yr−1) is contributed by OH interannual variations
(mainly by an increase in [OH]), while 75 % can be attributed
to emission changes resulting from the increase in observed
CH4 mixing ratios and atmospheric temperature (consider-
ing constant OH). Among the four emission sectors, wet-
land emissions (mainly southern tropical wetlands) show the
largest change of 2± 3 Tg yr−1 in response to OH temporal
changes, which account for 60 % of total wetland emission
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changes between these two periods. For global total emission
changes, OH spatial distributions lead to lower uncertainties
than interannual variations (2 Tg yr−1 versus 6 Tg yr−1), but
at the regional scale, OH spatial distributions and interannual
variations are of equal importance for quantifying CH4 emis-
sion changes.

As the modeled OH used here mainly shows an in-
crease in [OH] (meaning an increasing CH4 sink) during the
2000s, our inversion using year-to-year OH variations in-
fers a 36 % higher CH4 emission trend compared with an
inversion driven by climatological OH over the 2001–2015
period. The different OH fields from CCMI models consis-
tently show increasing OH trends during 2000–2010 (Zhao et
al., 2019). These variations disagree with MCF-constrained
[OH], which shows a decrease of 8±11 % during 2004–2014
and 7 % during 2003–2016 estimated by Rigby et al. (2017)
and Turner et al. (2017), respectively. A drop in OH between
2006 and 2007 (Rigby et al., 2008, Bousquet et al., 2011)
is captured by CESM1-WACCM OH fields but with (possi-
bly) smaller changes (1%) compared to the (very uncertain)
4±14 % change constraint by MCF (Rigby et al., 2008). This
OH drop in 2006–2007 results in a 6 Tg yr−1 smaller increase
in CH4 emissions between 2006 and 2007 compared to that
derived using constant OH. However, such an [OH] drop is
treated as a year-to-year variation instead of a trend and can-
not fully explain the resumption of CH4 growth from 2006 to
2007. Thus, during 2004–2010, at the decadal timescale, if
the CCMI models represent the OH trend properly, a higher
increasing trend of CH4 emissions is needed to match the
CH4 observations (compared to the CH4 emission trend de-
rived using constant OH). After 2010, CCMI models simu-
lated OH trends of different signs (Zhao et al., 2019); thus,
the influence on the CH4 emission trend is more uncertain.

The trend and interannual variations of tropospheric OH
burden are determined by both precursor emissions from an-
thropogenic and natural sources and climate change (Holmes
et al., 2013; Murray et al., 2014). Based on satellite observa-
tions, Gauber et al. (2017) estimated that ∼ 20 % decrease in
atmospheric CO concentrations during 2002–2013 led to an
∼ 8 % increase in atmospheric [OH]. The El Niño–Southern
Oscillation (ENSO) has been proven to impact the tropo-
spheric OH burden and CH4 lifetime mainly through changes
in CO emissions from biomass burning (Nicely et al., 2020;
Nguyen et al., 2020) and in NO emission from lightning
(Murray et al., 2013; Turner et al., 2018). The ENSO signal
is weak during the early 2000s, resulting in small interannual
variations of tropospheric OH burden (Zhao et al., 2019). The
mechanisms of OH variations related to ENSO and their im-
pacts on the CH4 budget need to be explored by inversions,
but over a longer time period than this study (e.g., 1980–
2010; Zhao et al., 2020).

Compared to previous box model studies (e.g., Rigby et
al., 2017; Turner et al., 2017), the inversions performed
in this study take advantage of 4D OH fields from CCMI
to quantify impacts on regional and sectoral emission es-

timations. Our results indicate that OH spatial distribu-
tions, which are difficult to obtain from proxy observations
(e.g., MCF), are equally important as the global OH burden
for constraining CH4 emissions over midlatitude and high-
latitude regions. Constraining global annual mean OH based
on proxy observations (e.g., Zhang et al., 2018; Maasakkers
et al., 2019) provides a constraint on global total methane
emissions through the necessity of balancing the global bud-
get (sum of source minus sum of sinks equals atmospheric
growth rate). It also largely reduces uncertainties in opti-
mized CH4 emissions due to OH over most of the tropical
regions but not over South America and overall middle- to
high-latitude regions. Also, the spatial and seasonal distribu-
tions of OH are found to be critical to properly infer temporal
changes in regional and sectoral CH4 emissions.

Top-down inversions, particularly variational Bayesian
systems, are powerful tools to infer greenhouse gas bud-
gets, in particular methane, the target of this study. How-
ever, they suffer from some limitations impacting the bud-
get uncertainty. Some work has been done regarding atmo-
spheric transport errors (e.g., Locatelli et al., 2013, 2015) and
sensitivity to observation constraints (Locatelli et al., 2015;
Houweling et al., 2000) but less on the chemistry side of
the budget. Overall, our study significantly contributes to as-
sessing the impact of OH uncertainty on the CH4 budget.
We have shown that it is insufficient to consider a unique
OH field, constant over time, to fully understand and assess
the global CH4 budget and its changes over time. Indeed,
further work is needed to help determine OH fields to be
used in future variational top-down inversion studies to prop-
erly account for changes in both source and sinks. There are
different ways to optimize the current OH fields. One way
can be to build semi-empirical OH fields by combining at-
mospheric chemistry models, observation-based meteorolog-
ical data, and chemical species concentrations (e.g., NOx ,
CO, VOCs, etc.) as initiated in Spivakovsky et al. (2000);
another way is conducting a multispecies variational inver-
sion of OH (e.g., Zheng et al., 2019) with hydrofluorocar-
bon (HFC) species (Liang et al., 2017), formaldehyde (Wolfe
et al., 2019), CH4 (Zhang et al., 2018; Maasakkers et al.,
2019), or CO (Zheng et al., 2019). In addition, as suggested
by Prather et al. (2017), OH inversion would benefit from in-
cluding in the prior data the responses of [OH] to variations
of the precursor emissions (e.g., biomass burning and light-
ing) using the uncertainties estimated by 3D models. These
resulting OH fields should include a mean 3D global [OH]
distribution associated with temporal variations and uncer-
tainties. A lot remains to be done to better constrain the
chemistry side of the global methane budget, which is a crit-
ical step toward its closure.

Data availability. The CCMI OH fields are available at the Cen-
tre for Environmental Data Analysis (CEDA; http://data.ceda.ac.
uk/badc/wcrp-ccmi/data/CCMI-1/output, last access: May 2019;
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Hegglin and Lamarque, 2015), the Natural Environment Research
Council’s Data Repository for Atmospheric Science and Earth Ob-
servation. The CESM1-WACCM outputs for CCMI are available
at: http://www.earthsystemgrid.org, last access: May 2019 (Cli-
mate Data Gateway at NCAR, 2019). The surface observations for
CH4 inversions are available at the World Data Centre for Green-
house Gases (WDCGG, 2019; https://gaw.kishou.go.jp/, last access:
November 2019). Other datasets, including INCA OH fields and
optimized CH4 emissions, can be accessed by contacting the corre-
sponding author.
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