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a b s t r a c t 

In 2018 we published a spatially-explicit individual-based model (IBM) that uses satellite-derived maps of 

food availability and temperature to predict Northeast Atlantic mackerel (Scomber scombrus, NEAM) population 

dynamics. Since then, to address various ecological questions, we have extended the IBM to include additional 

processes and data. Throughout its development, technical documents have been provided in the form of e.g. 

supplementary information to published articles. However, we acknowledge that it would be difficult for potential 

users to collate information from separate supplementary documents and gain a full understanding of the current 

state of the IBM. Here, we provide a full technical specification of the latest version of our IBM. The technical 

specification is provided in the standard ODD (Overview, Design concepts and Details) format, and supplemented 

by a TRACE (TRAnsparent and Comprehensive model Evaludation) document. For the first time, we give our 

model the acronym SEASIM-NEAM: a Spatially-Explicit Agent-based SIMulator of North East Atlantic Mackerel 

population dynamics. This article supersedes previous documentation. Going forward we hope that this article 

will stimulate development of similar models. 

• This article collates improvements that have been made to SEASIM-NEAM over time. 
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Specifications Table 

Subject Area Environmental Science 

More specific subject area Fisheries ecology 

Method name SEASIM-NEAM 

Name and reference of original method Boyd, R., S. Roy, R. Sibly, R. Thorpe, and K. Hyder. 2018. A general approach to 

incorporating spatial and temporal variation in individual-based models of 

fish populations with application to Atlantic mackerel. Ecological Modelling 

382:9–17. 

Boyd, R., R. M. Sibly, K. Hyder, R. B. Thorpe, N. D. Walker, and S. Roy. 2020. 

Simulating the summer feeding distribution of Northeast Atlantic mackerel 

with a mechanistic individual-based model. Progress in Oceanography 

183:102299. 

Boyd R, Thorpe R, Hyder K, Roy S, Walker N and Sibly R (2020) Potential 

Consequences of Climate and Management Scenarios for the Northeast 

Atlantic Mackerel Fishery. Front. Mar. Sci. 7:639. doi: 

10.3389/fmars.2020.00639 

Resource availability 

Model code - https://github.com/robboyd/SEASIM-NEAM/tree/master 

R Markdown documents showing how to run and calibrate the model 

provided in supplementary material. 

Supporting “TRAnsparent and Comprehensive model Evaludation” (TRACE) 

document provided in the supplementary material. 

Input data for the model is very large. We are happy to provide this data to 

anyone who can provide a means to transfer it. 

Method details 

Model description 

In this article, we provide a technical specification of SEASIM-NEAM in the standard ODD 

(Overview, Design Concepts and Details) format [26] . See [6,7] and [8] for earlier applications of the

SEASIM-NEAM. We refer the reader to the supplementary TRACE (TRAnsparent and Comprehensive 

model Evaludation) document throughout, where full details of the IBM’s calibration, validation, 

sensitivity analyses etc. can be found. SEASIM-NEAM was built in the open-source software NetLogo 

[83] , where it comes with an easy-to-use GUI, but can also be run from the R statistical environment

[59] using the RNetLogo package [73] . The Netlogo and R code can be found at https://github.com/

robboyd/SEASIM-NEAM/tree/master . 

Purpose and patterns 

The primary goal of SEASIM-NEAM is prediction: it is designed to assess how the Northeast

Atlantic mackerel (NEAM) stock may respond to various climate and management (fishing) scenarios. 

Specifically, the model predicts how e.g. NEAM Spawning Stock Biomass (SSB, biomass of mature 

individuals), average body weights-at-age and spatial distribution (density and presence/ absence) 

may respond to spatial and temporal variations in prey availability, temperature and exploitation. 

Model overview 

The model seascape comprises dynamic maps of phytoplankton density, which is used as a proxy

for baseline prey availability ( Fig. 1 ), Sea Surface Temperature (SST), photoperiod and horizontal

current velocities. The fish population represents the largest spawning unit of the NEAM stock, the

western component, which has historically comprised ~80% of the stock’s total biomass [32 , 33 , 35] . It

should be noted that there is evidence of straying between the western and the much smaller North

Sea spawning component of NEAM [41] , which is not accounted for in the IBM. Fish are grouped

into super-individuals (SIs), which comprise a number of individuals with identical variables [63] .

SIs are sometimes considered to represent schools of identical individuals in varying abundances 

[66] , but the approach is mainly used for computational tractability. Each year, at fixed times, SIs

https://github.com/robboyd/SEASIM-NEAM/tree/master
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Fig. 1. SEASIM-NEAM’s GUI. There are there are three types of NetLogo widgets shown: Grey buttons (used to initialise and 

run the model); green “sliders”, used to select input values from a specified range; green “choosers” allowing users to select 

configuration options from drop down menus; and brown “plots and monitors” displaying e.g. predicted population dynamics. 

See TRACE section 5 for full details of the interface widgets. Grey SIs in the Nordic seas are adults, and the blue SIs to 

the west of the British Isles are juveniles. The red cells indicate “destination” patches towards which adults migrate. The 

southerly red cell is the destination for the spawning migration, and the northerly red cell is the destination for the feeding 

and return overwintering migrations (see text for details). The colour of the landscape corresponds to phytoplankton density: 

black indicates low density, through green and then white which indicates high density. The colour bins are arbitrary. 
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igrate between spawning, feeding and overwintering areas. After reaching the destination areas

hey then move locally until the next migration is triggered. Each SI has an energy budget which

etermines how its state variables (e.g. body length, body mass, energy stores) change in response

o its local environment. Age-specific rates of fishing mortality from the NEAM stock assessment

etermine the number of individuals removed from the population due to harvesting [37] . A constant

umber of new SIs enter the model as eggs each year, but the abundance that they represent on entry

eflects the amount of energy the spawning stock was able to accumulate for egg production prior to

pawning. SIs’ abundances are reduced as fishing and natural mortalities are applied each time-step.

opulation-level outputs are by summarising the characteristics of the SIs including their abundances.

or example, biomass is the sum of individual body masses, and spatial distribution is a summary of

he individuals’ locations. 

tate Variables and Scales 

The IBM seascape comprises a two-dimensional grid of 60 km 

2 patches representing the sea

urface ( Fig. 1 ). The geographical extent spans from 47 to 77 °N, and from -45 ° to 20 °E. Each grid

ell is characterised by prey density, SST, NEAM density, photoperiod (proportion of day length) and

orizontal current velocities in x and y dimensions. The NEAM population is represented by a roughly

onstant number of SIs; as n cohort new SIs enter the model as eggs each year, an equal number

each 15 years of age and are removed from the model. Slight variations in the number of SIs arise

hroughout simulations because 1) a SI is removed from the model if its abundance < 1 (this is

are). Users can select the number of SIs in multiples of 1050, which is equivalent to choosing n cohort

n multiples of 70 (as 70 ∗ number of age groups (15) = 1050). While the number of SIs remains

pproximately constant, the abundance that they represent differs: A SI’s abundance is determined by

he level of egg production in the year that it entered the model, and all subsequent mortality. Each SI

s characterised by a number of state variables (see Table 1 ). The spawning area comprises patches on

he continental shelf edge to the west of the British Isles (-550 m < depth < -50 m; fig. 1 ) on which

0 °C < SST < 14 °C [65] . The feeding area is a fully emergent feature of the IBM and is not constrained
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Table 1 

Key state variables charcterising SIs and patches. Here we define state variables as variables that cannot be immediately 

deduced from the state variables of the other entities [60] . As such this table does not include „rate“ variables (e.g. growth, 

metabolic rate) which could be calculated from e.g. body size and temperature. 

State variable Description Details 

Super-individuals 

Abundance Number of “actual“ individuals represented by SI 

Age years/ days 

A mat Age at which sexual maturity was reached Years 

Batches Cumulative number of egg batches spawned in a 

season 

Used to determine when spawning should cease 

(when > = 5) 

Breed Life stage Egg, yolk-sac larvae, larvae, juvenile or adult 

Development Number of days developed as an egg 

Energy-reserve Energy stored as lipid kJ 

F Fishing mortality rate Day −1 

Feeding Whether or not the individual is feeding (only half 

of year for adults) 

Boolean 

Gender 

L Body length Cm 

L mat Length at which sexual maturity was reached Cm 

M Total body mass g 

M gon Gonad mass g 

Migrating Whether or not individual is currently migrating Boolean 

M standard Standard body mass g 

M struct Structural body mass g 

Prey-choices Potential prey (sufficiently small and on same patch 

as focal individual) 

Netlogo ID numbers 

f r Realised fecundity Proportion of potential fecundity 

V r Realised swimming velocity Minimum velocity plus random noise (km hour −1 ) 

Spawning Whether or not an individual is spawning Boolean 

V min Minimum swimming velocity Km hour −1 

x x coordinate Floating point 

y y coordinate Floating point 

Patches 

A4 In ICES division 4a? Boolean 

A5 In ICES division 5a? Boolean 

A6 In ICES division 6a? Boolean 

Depth m 

Feed-dist Distance from destination at the entrance to the 

feeding area 

No. Patches 

Latitude Decimal degrees 

Longitude Decimal degrees 

NArea In nursery area? Boolean 

Ocean In ocean? Boolean 

OWArea In overwintering area? Boolean 

p photo Photoperiod Proportion of 24 h 

Rectangle ICES rectangle 

Ricker-spawn- 

area 

Area designated as spawning grounds for Ricker 

model 

Used as area over which to calculate mean SST for 

use in Ricker recruitment model (not the default 

recruitment configuration, see TRACE section 3) 

SArea In spawning area? Boolean 

Shelf-edge On the European continental shelf edge? -550 m < depth < -50 m 

Spawn-dist Distance from destination at end of spawning 

migration 

No. Patches 

SST Sea Surface temperature °C 
True-north Heading equal to true north on the Netlogo grid Used to calculate effects of horizontal currents in 

the NetLogo grid 

True-west Heading approximately equal to true west on the 

Netlogo grid 

Used to calculate effects of horizontal currents in 

the NetLogo grid 

U Zonal component of current velocity km hour −1 

V Meridional component of current velocity km hour −1 

X Phytoplankton biomass g m 

−2 
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Fig. 2. Conceptual model showing the key bioenergetics processes that individuals of different life stages implement between 

time t and t + 1, and the conditions required for progression to the next life stage. Red boxes indicate an effect of SST, and grey 

boxes an effect of SST and food availability. L is body length. 
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eographically. The overwintering area is assumed to be ICES divisions 6a (west of Scotland) and 4a

northern North Sea, Fig. 5 ). The nursery area includes all patches that are ≤ 200 m deep [42] to the

est of the British Isles ( < 4 °00 west). The temporal extent of the IBM depends on the choice of input

ata; where Earth System Model (ESM) derived inputs are used the model extent may span 1981 to

050 (chosen by the user), but if satellite-derived inputs are used the temporal extent is fixed at 2005

o 2018. The IBM proceeds in discrete five-day time-steps. 

rocesses, Overview and Scheduling 

Full details of the model processes are given in the Submodels sections indicated in parentheses

ere. The order in which individuals or patches carry out a given process is random. State variables
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are updated immediately after being calculated by a process. The order in which processes are

implemented each time-step are as follows: 

1. Phytoplankton and SST data are updated if appropriate (i.e. every tenth day) 

2. If it is the first time-step in a month, then photoperiod, current velocities and the proportion

of annual fishing mortality that should be applied in that month are updated 

3. If it is the first time-step in a year, then annual rates of fishing mortality-at-age are updated 

4. Fishing, starvation and background mortalities are applied to SIs (mortality) 

5. SIs move to a new location (movement) 

6. SIs update their energy budgets (with the exception of reproduction which comes later; energy

budget Figure 2 ) 

7. SIs progress to the next life stage if body size thresholds are met (it must also be February 1st

for juveniles to reach sexual maturity) 

8. If it is the start of the spawning period (March 1st), adults calculate their potential fecundity

and the associated energy cost (energy budget) 

9. If in the spawning period, adults implement a spawning module. This includes allocating energy

to the production of egg batches, spawning those batches at specified intervals, and moving

northward as suitably warm regions open up for egg development in the north 

10. New SIs enter the model at the egg stage, and calculate their development 

11. All SIs age by �t (days post-hatch) 

12. SIs‘ state variables are recorded for analysis outside of the IBM 

Design Concepts 

Emergence 

Movement and bioenergetics models describe the ways in which SIs’ characteristics (e.g. body 

mass, energy reserves and location) respond to their local food availability and SST. By summarising

the characteristics of all the SIs, population measures can be obtained. For example, SSB can

be obtained by summing the individual body masses of all adults, and spatial distribution by

summarising the locations of the individuals. 

Sensing 

To direct movement individuals can sense the plankton biomass, SST, depth and area type of all

patches, and the global variables that indicate when migrations and spawning should begin. To select

prey, SIs can sense one another‘s body length and ID number. In order for density dependence to act

an ingestion rates and perceptions of patch profitability (see Movement), SIs can sense the density of

mackerel on all patches. 

Interaction 

Larger individuals can feed on smaller ones, inflicting predation mortality on them and hence

depleting fish prey. Individuals on the same patch also compete with each other for baseline prey

(proxied by phytoplankton) according to a competition term in Eq. (2) . 

Stochasticity 

There are several stochatic elements to the IBM. If not migrating or actively foraging over summer,

individuals move randomly to patches within their search radius (see Movement) and with suitable 

environmental conditions. Swimming velocity when feeding is given by a minimum swimming 

velocity plus some random noise (see Movement). In the gradient area search (GAS) foraging model,

half of each day is spent moving in a random direction. If multiple potential mackerel prey SIs are

available, one is selected randomly to be canniblised. At the end of the feeding migration, SIs stop

migrating at a randomly selected distance from their target patch at the entrance to the feeding

grounds (see Movement). In the spin-up period, recruits enter the model at the end of each year

at body length L 1 (Table 4) minus some random noise. 
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Table 2 

Population metrics obtained by summarising the characteristics of the individuals, and the dates on which they are extracted. 

Metric Date extracted Details 

SSB in summer August 1st Sum of adult body masses 

SSB at spawning time May 1st Sum of adult body masses 

Egg production June 1st Number of eggs produced by the spawning stock 

Recruitment December 31st Number of young-of-the-year surviving until 

December 31st 

Maturity ogives February 10th Proportion mature-at-age 

Adult summer age distribution August 1st Relative age distribution (years) of adults 

Weight of 36 cm individuals Mean each month Mean body mass of individuals in the 36 cm 

length group. This length class was chosen as data 

are available for each month of the year 

Quarter 1 juvenile length distribution March 16th Relative body length distribution of juveniles 

Quarter 4 juvenile length distribution November 23rd Relative body length distribution of juveniles 

Mean weight-at-age in summer August 1st Mean body mass in each age group 

Mean weight-at-age at spawning time May 1st Mean body mass in each age group 

Presence/ absence in summer Mean over July/ August Whether or not individuals were present on each 

patch 

Density in summer Mean over July/ August Density of individuals present on each patch 
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bservation 

During simulations the state variables of all, or a subset, of the SIs can be extracted and

ummarised to obtain measures of population dynamics and spatial distribution. Key model outputs

re summarised in Table 2 . 

nitialization 

The IBM is initialised on January 1st of a chosen year (1981 onwards) using numbers-at-age in

rom the latest ICES stock assessment. This population is apportioned in to n SIs assuming a gender

atio of 1:1. Body lengths are calculated from age using the standard von Bertalanffy equation ( Eq. 12

ere), and energy reserves are set at half maximum. From these all other state variables are calculated

hen the simulations begin. Adults and juveniles are distributed randomly in the overwintering

nd nursery areas, respectively ( Fig. 5 ). After initialisation the model spins up for ten years with

ecruitment forced from the ICES stock assessment. Recruits are introduced at the end of each year,

ith body length set at the maximum length at the end of the first growing season (first winter), L 1
cm), minus ε 3, where ε is drawn randomly from uniform distribution between 0 and 1. 

nput data 

The IBM is forced with estimates of fishing mortality at age, chlorophyll concentration (from which

e derive phytoplankton biomass with an empirical conversion factor), SST, zonal and meridional

orizontal current velocities and photoperiod. See section TRACE section 3 for details of how these

ata were processed. 

ishing mortality 

Historical annual rates of fishing mortality F at age are taken from the 2019 NEAM stock

ssessment [37] . Unless stated otherwise, F is applied uniformly to all individuals in an age group

egardless of their location. We incorporate monthly variation in F by setting the fractional of annual

 taken in each month as proportional to the mean historical (2001 to 2018) fraction of the annual

EAM catch taken in each month ( Fig. 3 ). 

The default future fishing scenario comprises a constant F-at-age at the historical mean level

 Fig. 3 ). Alternatively, users can select one of three multipliers which are used to convert the historical

ean F over the most important age groups to the fishery (for NEAM 4-8 years) to one of three rates:

 = 0; F MSY (0.23 year −1 ) , i.e. the level of harvesting that is likely to result in maximum sustainable
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Table 3 

Parameters and their values used in the model. All normalizing and rate constants are shown in units of 1/day and are adjusted for the time-step in the IBM. 

Parameter Symbol Value Units Reference Details 

Taxon-specific normalization constant 

(AMR) 

a AMR 8.86 × 10 7 [16] See TRACE section 2.3 

Assimilation efficiency A e 0.95 Proportion of ingested 

energy 

[46] Proportion of ingested energy made available to the energy 

budget 

Normalizing constant for fecundity a f 8.80 [48] Normalizing constant for fecundity-length relationship 

Caudal fin aspect ratio A r 4.01 FishBase 

Taxon-specific normalization constant 

(SMR) 

a SMR 0.45 × 10 8 [29] See TRACE section 2.3 

Swimming speed normalizing constant a v 0.15 [62] Normalizing constant for speed-length relationship 

Exponent for the scaling of AMR with 

body mass 

b AMR 0.75 [29] See TRACE section 2.3 

Scaling exponent for fecundity b f 3.02 [48] Exponent in fecundity-length relationship 

Exponent for the scaling of SMR with 

body mass 

b SMR 0.75 [16] See TRACE section 2.3 

Exponent for scaling of swimming 

velocity with body length 

b v 0.62 [62] 

Strength of the predator density 

dependence 

c 

9.71 × 10 −11 

This study Estimated with ABC (see TRACE section 2.3) 

Exponent for the scaling of AMR with 

swimming speed 

c AMR 1 [16] See TRACE section 2.3 

Maximum consumption rate C max 0.69 g g −1 day −1 [28] See TRACE section 2.3 

Exponent for scaling of swimming 

velocity with caudal fin aspect ratio 

c v 0.35 [62] 

Activation energy E a 0.5 eV [22] Minimum energy required for physiological chemical 

reactions 

Energy content of flesh E flesh 7.00 kJ g −1 [53] 

Energy content of lipid E lipid 39.3 kJ g −1 [64] 

Maximum energy reserves E max 0.78 Proportion of structural 

mass 

[24] See TRACE section 2.3 

( continued on next page ) 
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Table 3 ( continued ) 

Parameter Symbol Value Units Reference Details 

Energy density of phytoplankton E phyto 6.02 kJ g −1 [2] 

Energy costs of synthesizing flesh E sf 3.60 kJ g −1 [67 , 68] 

Energy costs of synthesizing lipid E sl 14.7 kJ g −1 [58] See TRACE section 2.3 

Half saturation constant h 1.26 g m 

−2 This study Estimated with ABC (see section 2.3). The food density at 

which ingestion is half maximum at a given temperature 

Rate of cannibalism IR cannibalism 0.064 Proportion of ingestion rate [56] Only relavent where suitable prey are available. Proportion 

of ingestion rate comprising mackerel prey. 

Growth constant k 8.6 × 10 −4 day −1 FishBase See TRACE section 2.3 

Boltzmann’s constant K 8.62 × 10 −5 eV K −1 

Maximum growth rate k 1 0.025 day −1 [79] See TRACE section 2.3 

Maximum length after first growing 

season 

L 1 20 cm [79] 

Asymptotic length L ∞ 42.4 cm FishBase See TRACE section 2.3 

Length at hatching L hatch 0.3 cm [79] 

Threshold length for maturity L mat 26.2 cm FishBase See TRACE section 2.3 

Background adult mortality M a 0.0 0 041 day −1 [36] Constant for all ages, based on tagging studies in 1980’s 

and used in the stock assessment 

Background early mortality M e 0.287 day −1 This study Estimated with ABC (see TRACE section 2.3). Applied to 

eggs, yolk-sac larvae and larvae 

Number of egg batches spawned n b 5 season −1 This study For simplicity, the actual number is around 20 

Lower temperature limit SST lim 7 °C [52] In summer the threshold SST below which SIs avoid 

Age at maximum growth t max 55 days [79] 
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Fig. 3. Left panel: Mean historical F at age (2001 to 2018, black line) from which F MSY is calculated with a multiplier of 0.83 

(grey line) and F lim with a multiplier of 1.66 (red line). Right panel: Proportion of annual catch in each month over the historical 

period which is used to apportion F over each year in SEASIM-NEAM. 

Fig. 4. Conceptual movement algorithm. Local movement differs between different areas and at different times (e.g. spawning 

period and overwintering, see text for full details). 

 

 

 

 

yield in the long-term; and F lim 

(0.46 year −1 ), i.e. high mortality used as an upper reference point

[31 , 38] (see Fig. 3 ). Monthly variation in F is implemented as in the historical period. 

Environmental inputs 

Environmental inputs to SEASIM-NEAM include maps of chlorophyll concentration, from which we 

derive phytoplankton density (with an empirical conversion factor), SST, bathymetry, photoperiod and 

horizontal current velocities. Users can select chlorophyll and SST estimates derived from satellite 

remote-sensing, or from the earth system model GFDL-ESM-2M [18] . The satellite-derived inputs 

comprise ten-day composites and are updated accordingly. It should be noted that when using the

satellite-derived inputs the temporal extent of SEASIM-NEAM is fixed at 2005 to 2018. The ESM

outputs represent monthly averages. The data required processing for use in SEASIM-NEAM (e.g. re- 

gridding), the details of which can be found in TRACE section 3. When using the ESM inputs users

must choose from one of representative concentration pathways (RCPs) 2.6 or 8.5, representing high 

and low levels of climate change mitigation action, respectively. Forecasts of the environmental inputs 

are available out to 2050 for each RCP scenario. 
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Fig. 5. Left panel: Broad summary of adults‘ locations throughout a year. White segments indicate migrations which begin 

at the start of a month but do not necessarily last the whole month. Right panel: Locations of the spawning (orange cells), 

overwintering (red boxes) and nursery areas (white cells, yellow cells are both spawning and nursery areas). The adult feeding 

distribution is not constrained geographically; it is a fully-emergent feature of the IBM. 

 

O  

d  

i  

o  

2  

[  

f  

v

 

e  

1

S

 

w

M

 

b  

m  

a  

s  

b  

f  

h  

L

M

 

s  

[  

M  

m

 

d  
Near surface (average over 0 to -30 m) horizontal current velocities were taken from the 1/3 0

SCAR dataset [20] . Currents influence the movements of adults over summer ( Eq. 4 ), so we obtained

ata for the months May through September. Outside of this period current velocities have no effect

n SEASIM-NEAM. It would not be appropriate to include the effects of near surface current velocities

n individuals outside of the summer period, when mackerel may inhabit deeper waters (e.g. -50 to -

20 m over winter) [39] . Over summer NEAM are found in the upper water layer (average of ~ -20 m)

50] . As data are not available for the selected months prior to 2012, we generated mean climatologies

or each month over 2012 to 2018. As such we do not account for inter-annual variability in current

elocities. 

Data on photoperiod (as a proportion of 24 h) at all latitudes in the IBM grid was extracted for

ach month using the daylength() function in the R package geosphere [30] . Values correspond to the

5th day of each month, and are updated at the start of each month in SEASIM-NEAM. 

ub-models 

Most parameters were derived from the literature as shown in Table 4. Mass is in units of wet

eight throughout. 

ovement 

The following sub-models describe the ways in which SIs are directed around the landscape. In

road terms, SIs migrate between different areas (e.g. spawning, nursery, feeding), and otherwise

ove locally within an area. Migrations are date-triggered. Localised movement differs between

rea, e.g. local movement when spawning in spring differs from local movement when feeding over

ummer. At most times of year movement is represented in discrete space, i.e. on a patch-by-patch

asis. However, we spent considerable time improving the way in which movement is modelled

or adults in the summer period [7] , which now operates in continuous space (details below). We

ope that in time SEASIM-NEAM will be further developed such that all movement is described in a

agrangian framework. 

igrations 

Adults cycle between overwintering, spawning and feeding areas [75] (see state variables and

cales). Migration departure dates were approximated from Uriarte et al. [75] and Petitgas et al.

55] and imposed at: October 1st for the overwintering migration; February 1st for spawning; and

ay 1st for the feeding migration ( Fig. 5 ). While this scheme captures the general pattern of NEAM

igration, it should be noted that in reality migration timings can vary between years [40] . 

Once a migration is triggered, adults move from their current area towards the relevant

estination. For each migration there is a destination patch corresponding to the entrance to the
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relevant area. The destination for the feeding and return overwintering migrations are at the entrance

to the feeding area in the Faroe Shetland channel (northernmost red patch on Fig. 1 ). For the spawning

migration the destination patch is located in the southern region of the spawning area (southernmost

red patch on Fig. 1 ). We give each patch that is not on land an index R corresponding to its distance

from the destination patch, while accounting for the fact that individuals cannot move over land. Once

a migration is triggered (see Fig. 5 for dates), individuals move towards the appropriate destination to

a patch with the lowest R within their possible search area. A SIs‘ search area is calculated from its

minimum swimming velocity V min (km hr −1 ) [62] : 

V min = a v L 
b v A r 

c v (1) 

where a v is a normalizing constant, L is body length, A r is the caudal fin aspect ratio, and b v and

c v are scaling exponents (see Table 2 for a full list of parameters and TRACE section 8 for a local

sensitivity analysis). Eq. 1 allows larger SIs to arrive earliest in destination areas, which has been

noted for NEAM [40] . 

The spawning and feeding migrations are slightly more complicated than the overwintering 

migration, as they occur primarily along the European shelf edge to the west of the British

Isles [10 , 81] . We represent the shelf edge with a corridor around the British Isles in which -

550 m < depth < -50 m ( Fig. 1 ). For the spawning and feeding migrations we then add the constraint

that individuals must remain on the shelf edge while moving to minimise R. 

Local movement 

There are three types of local (non-migratory) movement in SEASIM-NEAM: 1) adult foraging in 

the summer months; 2) random movement constrained to a particular area type (e.g. juveniles in

the nursery area, adults in overwintering area in deep winter months); and 3) gradual northward

movement on the spawning grounds as suitably warm regions open up for egg development in spring.

The details of each type of local movement are given below. 

Adult foraging 

At the end of their feeding migration ( Fig. 5 ), adults begin to move in search of the most

profitable locations at which to feed. Each patch is characterised by a profitability cue c dd which is

proportional to potential ingestion rate ( Eq. 6 ) in that location. c dd represents the bottom-up effect

of phytoplankton density as a proxy for food availability, a density-dependent effect of intraspecific

competition, an effect of photoperiod (as NEAM are primarily visual feeders), and an effect of SST

(Kelvins), in the form of a Beddington-DeAngelis functional response [4 , 15] : 

c dd = A ( SST ) p photo 

X 

X + h + cD 

(2) 

where X is phytoplankton density (g m 

−2 ), h is a half saturation constant, p photo is photoperiod (as a

proportion of 24 h) at the SI’s location, D is local mackerel density (g patch 

−1 ), c determines the

strength of the density dependence, and A(SST) is an Arrhenius function giving the effect of SST.

A(SST) is given as: 

A ( SST ) = e 
−E a 

K 

((
1 

SST 

)
−
(

1 
T ref 

))
(3) 

where E a is an activation energy, K is Boltzmann’s constant and T ref is an arbitrary reference

temperature. 

SIs move in search of the most profitable locations ( Eq. 2 ) at which to feed following a gradient

area search (GAS). The GAS algorithm is based on those of Politikos et al. [57] , Tu et al. [74] and

Boyd et al. [7] . SIs can detect the profitability of the four patches neighbouring their current location.

Positions are updated five times per time step (i.e. once per day) to ensure that SIs cannot overshoot

the neighbouring patch. Positions in x and y dimensions are updated by: 

x t+1 = x t + ( D x + R x + C x ) 

y t+1 = y t + 

(
D y + R y + C y 

)
(4) 
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here D x and D y denote orientated movements towards the most profitable patches, R x and R y denote

andom movements, and C x and C y are displacements caused by zonal and meridional horizontal

urrents, respectively. 

In the orientated component of Eq. (4) D x and D y , SIs make a comparison between the

nvironment at their current location and that of the day before. If it their current location is more

rofitable, then they maintain the heading of the orientated component of their movement the day

efore. If their current location is less profitable than the day prior, SIs undertake a gradient search

owards what is perceived to be the most profitable neighbouring patch, given by: 

D x = V r 
g x √ 

g x 2 + g y 2 

D y = V r 
g y √ 

g x 2 + g y 2 
(5)

here g x and g y are the gradients of the profitability cue ( Eqn 2 ) in x and y dimensions, and

 r is realized swimming velocity. V r is equivalent to V min ( Eq. 2 ) plus some random noise, as

 r = V min + (V min ε), where ε is drawn randomly from a uniform distribution ranging from zero

o one. 

Following Politikos et al. [57] we assume that SIs spend half of each day moving in search of

he best feeding opportunities (D x , D y ) and half moving in a random direction that is not southward

R x , R y ). Random southward movement is not permitted because acoustic studies have shown that

EAM infrequently swim southwards over summer [50] . However, SIs may still move southward

uring the oriented component of the GAS algorithm (i.e. if feeding conditions are best on a more

outherly patch), or due to currents. R x and R y introduce stochasticity into the GAS models and

revent unrealistic overcrowding on optimal patches. 

The effects of horizontal currents on SIs’ locations, C x , C y , are given as zonal (u) and meridional (v)

urrent velocities (km hour −1 ), respectively, multiplied by the time step (here 24 h as the GAS model

perates five times per 5 day time-step). 

NEAM avoid areas in which temperature is below 7 0 C [52] . To reflect this, SIs are deterred from

oving to patches on which SST is below this threshold. In the directed component of Eq. 4 , we

epel individuals from patches with SST < 7 °C by setting their profitability at zero. For the random

omponent of Eq. 4 , if a SI orientates towards a patch on which SST < 7 °, its heading is reversed.

f currents displace individuals on to an intolerably cold patch (or land) then this movement is

bandoned and the SI instead moves to the centroid of the nearest suitable patch. 

The energy cost associated with the GAS algorithm is subsumed in to a SI’s active metabolic rate

see Maintenance for details). 

andom movement constrained to particular area types 

Movement for adults in the overwintering area, and juveniles in the nursery area, follows a true

andom walk: They each move to a randomly-selected patch within their possible search area and the

ame area type each time-step (see migrations and Eq. 1 ). 

pawning movement 

Spawning begins on March 1st and lasts for 60 days [19 , 43 , 82] . This period covers peak spawning

n 2007 and 2010 as observed in the triennial mackerel egg survey (MEGS) [34] . Throughout

pring NEAM gradually progress northwards towards the feeding area as warming opens up suitable

pawning habitat at higher latitudes [14 , 19] . To reflect this, after spawning a batch of eggs, SIs move

o the nearest patch north of their current location on which 10 0 C < SST < 14 0 C (preferred spawning

emperature). If there are no patches northwards in which 10 0 C < SST < 14 0 C, SIs move to a random

eighboring patch within that temperature range. 

ioenergetics 

The following sub-models describe the energy budgets of larvae, juveniles and adults in terms

f individual physiology. We assume eggs and yolk-sac larvae have sufficient energy to satisfy

aintenance and maximal growth/ development. 
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Prey availability 

SIs can cannibalise other individuals which are: 1) located on the same patch at the same time;

2) ≥ 3.5 times smaller (as in [66] ); and 3) < 0.33 cm [3] . If multiple SIs satisfy these conditions,

then one is chosen at random to be preyed upon. The energy content of prey depends its fat content

(as a proportion of its total mass). Lipid has an energy content E lipid (kJ g −1 ) which is higher than the

energy content of structural mass (1- lipid content, E flesh ). At most times individuals do not overlap

with potential mackerel prey and instead eat phytoplankton, which we use as a proxy for baseline

food availability, with energy content E p (kJ g −1 ). 

Ingestion and energy uptake 

Adults fast from November until after spawning the following year. Otherwise, ingestion rate IR is

given as a function of both predator and prey density. This is described by a Beddington-DeAngelis

functional response [4 , 15] , relating IR to body surface area (M 

2/3 ) [45] and SST (kelvin), as: 

IR = A ( SST ) C max 
X 

X + h + cD 

M 

2 / 3 (6) 

where IR is in g time-step 

−1 , C max is the maximum ingestion rate (g time-step 

−1 g −1 mackerel), h a

the half saturation constant (g m 

−2 ), X is phytoplankton density (g m 

−2 ), D is local mackerel density

(g patch 

−1 ) including the density of the focal individual, c determines the strength of predator density

dependence and A(SST) is an Arrhenius function giving the effect of SST ( Eq. 3 ). If potential mackerel

prey are available (see conditions above), then a proportion of IR, IR cannibalism 

, comprises mackerel

prey (see mortality later in this section for the associated predation mortality). A justification for

IR cannibalism 

is provided in TRACE section 3. The remainder of ingested prey, total IR multiplied by

(1 – IR cannibalism 

), comprises baseline prey availability as proxied by phytoplankton. Ingestion rate is 

converted from g time-step 

−1 to kJ time-step 

−1 using the energy content of the relevant prey type (kJ

g −1 ). A proportion of ingested energy, an assimilation efficiency A e , becomes available for allocation

to the following vital processes. 

Maintenance 

Standard metabolic rate, SMR, the level below which an individual cannot survive [21] , is used as

a baseline measure of maintenance. SMR scales with body mass and temperature, according to: 

SMR = a SMR M 

b SMR e −E a / K SST (7) 

where SMR is measured in kJ time-step 

−1 , a SMR is a normalizing constant and M 

b SMR is body mass (g)

raised to a scaling exponent b SMR (see TRACE section 2.3). SMR is increased to active metabolic rate

(AMR, kJ time-step 

−1 ) when migrating or actively foraging, given by: 

AMR = a AMR M 

b AMR V 

c AMR e −E a / K SST (8) 

where a AMR is another normalizing constant and V is swimming velocity (km hr −1 ). For this case

study we calculated that AMR scales linearly with V, i.e. an exponent of 1 (see TRACE section 2.3). 

Growth 

S. scombrus growth has a different form and rate in the first growing season than in later life

[71 , 84] . Body length L (cm) at age t (days) in the first growing season is well described by the

Gompertz function: 

L t = L 1 e 
−e −k 1 ( t −t max ) 

(9) 

[13 , 23 , 69 , 79] where L 1 is the maximum length at the end of the first growing season (cm), k 1 is

the maximum growth rate in the first season, and t max is t (days) at which growth is maximum. k 1 is

adjusted for the SST at which it was recorded using the Arrhenius function. For older individuals the

von Bertalanffy equation [5] is generally used: 

L t = L ∞ 

(
1 − e −k ( t −t 0 ) 

)
(10) 

[78] where k is the Bertalanffy growth constant (time-step 

−1 ), L ∞ 

is the asymptotic length (cm)

and t 0 is an adjustment parameter. k is adjusted for the SST at which it was recorded using the
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rrhenius function. Taking the end of the first growth phase to be at t = 240 (days, see TRACE section

.3), from Eqs. 9 and 10 the maximum growth rate �L (cm time-step 

−1 ) is given by: 

�L = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

k 1 e 

−E a 
K 

((
1 

SST 

)
−
(

1 
T re f 

))
L ln 

(
L 1 
L 

)
, t < 240 

k e 

−E a 
K 

((
1 

SST 

)
−
(

1 
T re f 

))
( L ∞ 

− L ) , t ≥ 240 

(11)

We assume that adults grow only when feeding [55] , i.e. for half of the year. To reflect this, their

alue of k obtained from Eq. 10 is doubled. �L (cm time-step 

−1 ) is converted to the difference in

tructural mass �M (g time-step 

−1 ) assuming an allometric relationship between L and structural

ody mass M struct : 

M struct = a w 

L b w (12)

here a w 

is a normalizing constant and b w 

is a scaling exponent. We define structural mass as total

ody mass minus lipid stores and gonads. Growth costs are calculated using �M ( E c + E s ) , where E c is

he energy content of flesh (kJ) and E s is the energy costs of synthesising flesh (kJ g −1 ). If insufficient

nergy is available to support maximum growth, the growth rate is reduced accordingly. 

eproduction 

The maximum number of eggs that a female can produce, potential fecundity f p , is calculated at

he beginning of the spawning period ( Fig. 5 ) as a function of body length L, as: 

f p = a f L 
b f (13)

here a f is a normalizing constant and b f is a scaling exponent. The energy cost of producing a

aximum-sized batch of eggs b max (kJ time-step 

−1 ) is then given as a function of f p , as: 

b max = 

f p M 0 ( E c + E s ) 

n b 

(14)

here M 0 is egg mass, E c is the energy content of flesh, E s is the cost of synthesising tissue and n b is

he number of batches produced. NEAM are batch spawners, so energy is allocated to each batch over

he inter-batch intervals b int . Hence, the duration of the spawning period is given by n b multiplied by

 int . If less energy than b max is available, batch size is reduced accordingly. We define gonad mass as

qual to the mass of the eggs produced in a batch. This increases as energy is allocated to a batch over

 int , then is reset to zero when that batch is spawned. The egg production of all females is divided

qually among n cohort new individuals (eggs) each year. We assume that male and female investment

n reproduction is equal. 

nergy reserves 

Larval mackerel prioritse growth [54] over energy storage. Juveniles and adults store energy as

ipid [24 , 80] in preparation for maturation, spawning and, for adults, the winter fast. Individuals can

tore energy up to their maximum possible energy reserve E max (see TRACE section 2.3). The energy

ost of synthesising lipid L s is accounted for when assimilated energy is converted to energy stores.

he mass of stored lipid and, for adults, the gonads are added to structural mass to get total mass M.

gg development 

While embryo duration in S. scombrus decreases with temperature, background mortality rate

 back increases. Hence, the cumulative proportion of eggs that die from M back varies little except at

xtreme temperatures [49] (see TRACE section 2.4) not encountered in the model (see TRACE section

.4). We therefore assume for simplicity that the egg development period is five days and M back is

onstant at rate M e (see Mortality). 
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Fig. 6. Predicted vs observed (stock assessment, red dots) SSB. The black line denotes the single best-fitting simulation from the 

ABC, and the grey shaded area delimits the 95% credible intervals from the accepted 1% of 20 0 0 simulations (i.e. the posterior 

parameter uncertainty). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ontogenetic transformation 

Eggs transform into yolk-sac larvae at length L hatch once reaching the end of their development

period. Thereafter individuals transform into larvae (cease to be nourished by the yolk sac) when

they reach 0.61 cm [72] ; into juveniles when they reach 3 cm (at which point S.scombrus have been

observed to exhibit active taxis and schooling behaviour; Sette [65] ); and can sexually mature as

adults after reaching 26.2 cm (L mat ). For simplicity juveniles with a sufficient length all reach maturity

on the same day each year, February 1st. At this point they join the adult migration towards the

spawning area. 

Mortality 

The ways in which the abundance n of of an individual can decrease are outlined below. 

Starvation: If a SIs‘ total mass reduces to its structural mass it is removed from the model. 

Predation: If a SI is selected as prey for a larger SI, its abundance is reduced by M pred . M pred is

given as ingestion rate IR of the predator (g time-step 

−1 ) / prey body mass (g), after adjusting the

predator’s IR by IR cannibalism 

. Hence, M pred depends on the number of predators and SST. 

Background mortality: Eggs and larvae are susceptible to background mortality at rate M e . Juvenile

susceptibility to M back at length L is given by: 

M back = M a 
L mat 

L 
(15) 

where M a is a constant equal to adult mortality susceptibility (time-step 

−1 ), L mat is the threshold

length above which juveniles can sexually mature and L is length (cm) [9] . Because background

mortality rates decrease with life stage or body length, cumulative mortality depends on growth. 

Fishing mortality: Annual rates of fishing mortality rates F (time-step 

−1 ) are taken from the stock

assessment (stockassessment.org). These rates are applied each day, such that the proportion being 

applied in each month is proportional to the historical proportion of annual catch in that month

( Fig. 3 ). 

M back and F are converted to a proportion of a SI‘s abundance dying in a time-step as 1 −
e −( M back +F ) . SIs with abundance < 1 are removed from the model. 

Recruitment 

Recruitment is defined as the number of young-of-the-year that survive to December 31st each 

year. This depends on the total number of eggs spawned, and the fraction of those eggs that survive.

The number of eggs spawned is determined by the amount of energy that the spawning stock is able

to accumulate prior to spawning, which reflects the feeding opportunities available over the previous 

summer. The fraction of eggs that survive to the end of their first year depends largely on the previling
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Fig. 7. Predicted (SEASIM-NEAM, black line) and observed (red dots) weight at ages three to twelve at spawning time (extracted 

May 1st). The grey shaded region represents the 95% credible intervals of the posterior distributions as estimated by ABC. 
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nvironmental conditions on the spawning grounds. Mortality rate is inversely related to body size

eaning that, if conditions favour quick growth (e.g. high prey availability and temperature), then

umulative mortality in that cohort is reduced and more SIs recruit. Users can choose to substitute

his ’emergent“ recruitment scheme for a more traditional Ricker-type stock-recruitment relationship

hat has been fitted to data from the stock assessment. Doing so removes the egg and larval stages

rom the IBM; instead, recruits enter the model on December 31st. See TRACE section 2 for details of

he Ricker model. 

odel calibration and validation 

In the following we outline how SEASIM-NEAM was calibrated and evaluated following the

rinciples of “pattern oriented modelling” (see e.g. [12 , 25 , 27 , 44 , 61] ), i.e. by assessing its ability to

atch spatial and temporal patterns at the individual and population level. 

odel calibration 

Values for three of SEASIM-NEAM’s parameters cannot be justifiably extracted from the literature.

hese parameters are the half saturation constant (h) and strength of the competition effect (c) in the

unctional feeding response, and the background early mortality rate for eggs and larvae (excluding

xplicit cannibaism, M e ). Although alternative algorithms are available (e.g. [17 , 70 , 77] ), we estimate

hese parameters by fitting SEASIM-NEAM to available data using rejection Approximate Bayesian

omputation (ABC). Generally following van der Vaart et al. [76] , the ABC comprises: 1) selecting data

o which the model should be fitted; 2) generating prior distributions for the three parameters; 3)

unning a number of simulations while randomly sampling values of the parameters from their prior

istributions; 4) accepting the parameters that resulted in the best fits to the data; and 5) examining

he accepted parameters (i.e. the posterior distributions). 
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Fig. 8. Predicted and observed presence/ absence of NEAM over July/ August. Predictions were obtained after optimising a 

threshold mackerel density above which a patch is classed as a presence, and below which it is classed as an absence (see 

text). The numbers on each panel represent the total proportion of data points for which SEASIM-NEAM correctly predicted 

whether or not NEAM were present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We suggest that SEASIM-NEAM should be fitted to estimates of SSB from the latest NEAM stock

assessment, and data on weight-at-age (spawning time). For both variables data are freely available

at www.stockassessment.org , where they are updated annually. Note that, if new SSB data from the

stock assessment is used for calibration, then fishing mortality from the same stock assessment must

be used as input to the IBM. If SEASIM-NEAM can simultaneously match data SSB and weight-at-age,

then competition for food at a given SSB can be considered realistic, as reflected by the individual

body weights of the fish. In addition, the model’s ability to match data at both the individual (body

weights) and population level (biomass) gives credibility to its underlying structure. For M e , c and

h we use uninformative uniform prior distributions spanning intentionally wide bounds, but users 

can define their own priors based on e.g. expert knowledge. In previous applications we have run

10 0 0 - 4500 simulations, but again users can decide on how many simulations are sufficient for their

purposes. We use the sum of the squared deviations of the model outputs from the data as a cost

function, but normalise the deviations to account for differences in units between the datasets. Full

details of the most recent ABC can be found in TRACE section 3. We also provide an annotated R script

in the supplementary material which can be used to conduct future calibrations. Figs. 6 and 7 show

the fits of SEASIM-NEAM to the data on SSB and weight-at-age, respectively. 

Model validation using data on the summer distribution 

To assess SEASIM-NEAM’s ability to match data that was not used in the ABC, we compare its

predictions of presence/ absence over July/ August to observations from the Internation Ecosystem 

Survey in the Noridc Seas (IESSNS, Fig. 8 ). See Nøttestad et al. [51] for details of these data, which we

http://www.stockassessment.org
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[

[  
pproximated from Olafsdottir et al. (2018) using Java’s PlotDigitizer ( http://plotdigitizer.sourceforge.

et/ ). To assess model fits we used two standard statistics for binary data, sensitivity and specificity,

.e. the proportion of presences and absences correctly classified, respectively. As is standard, we first

ptimised a threshold mackerel density (patch 

−1 ) above which that patch is classed as a presence, and

elow which it is classed as an absence (see TRACE section 7 for full details) [11 , 47] . After optimising

his threshold, sensitivty and specificity values of 0.73 and 0.68 were obtained, respectively. Note that

e pooled the predictions and data across all (surveyed) years over 2007 to 2015. This gives extra

eight to years in which sampling effort was higher, which we consider appropriate. See Fig. 8 for a

omparison of predicted and observed presence/ absence over the summer months. 
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