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Abstract
Due to the wide separation of time-scales in geophysical fluid dynamics,
semi-implicit time integrators are commonly used in operational atmospheric
forecast models. They guarantee the stable treatment of fast (acoustic and grav-
ity) waves, while not suffering from severe restrictions on the time-step size. To
propagate the state of the atmosphere forward in time, a nonlinear equation for
the prognostic variables has to be solved at every time step. Since the nonlin-
earity is typically weak, this is done with a small number of Newton or Picard
iterations, which in turn require the efficient solution of a large system of linear
equations with (106 − 109) unknowns. This linear solve is often the computa-
tionally most costly part of the model. In this article an efficient linear solver for
the LFRic next-generation model currently being developed by the Met Office
is described. The model uses an advanced mimetic finite element discretisation
which makes the construction of efficient solvers challenging as compared to
models using standard finite-difference and finite-volume methods. The linear
solver hinges on a bespoke multigrid preconditioner of the Schur-complement
system for the pressure correction. By comparing it to Krylov subspace methods,
the superior performance and robustness of the multigrid algorithm is demon-
strated for standard test cases and realistic model set-ups. In production mode,
the model will have to run in parallel on hundreds of thousands of processing
elements. As confirmed by numerical experiments, one particular advantage of
the multigrid solver is its excellent parallel scalability due to its avoidance of
expensive global reduction operations.
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1 INTRODUCTION

Operational models for numerical climate and weather
prediction must solve the equations of fluid dynamics in
a very short space of time. State-of-the art implementa-
tions rely on accurate spatial discretisations and efficient
time-stepping algorithms. To make efficient use of modern
supercomputers they have to exploit many levels of par-
allelism (such as SIMD/SIMT, threading on a single node
and message-passing on distributed memory systems) and
scale to hundreds of thousands of processing elements.
Semi-implicit time integrators are commonly employed
since they allow the stable treatment of fast acoustic waves,
which carry very little energy but have to be included in
a fully compressible formulation. The implicit treatment
of the acoustic modes allows the model to be run with
a relatively large time step. The size of the time step is
only restricted by advection, which is generally around
one order of magnitude slower horizontally than acoustic
oscillations and two orders of magnitude slower vertically.
The main computational cost of semi-implicit models is
the repeated solution of a very large sparse system of linear
equations. While standard iterative solution algorithms
exist, the linear system is ill-conditioned, which leads to
the very slow convergence of Krylov subspace methods.
This is a particularly serious problem for massively par-
allel implementations due to their very large number of
global reduction operations (arising from vector dot prod-
ucts and norms in each Krylov iteration). Preconditioners,
which solve an approximate version of the linear system,
overcome this issue and dramatically reduce the num-
ber of Krylov iterations and global communications. The
construction of an efficient preconditioner is non-trivial
and requires careful exploitation of the specific properties
of the system to be solved. For global atmospheric mod-
els, two key features that have to be taken into account
are (a) the high aspect ratio arising from the shallow
domain, and (b) the finite speed of sound in compress-
ible formulations, which limits the effective distance over
which different points in the domain are correlated during
one time step. Typically, the preconditioner is based on a
Schur-complement approach. This reduces the problem to
an elliptic equation for the pressure correction, which can
then be solved with standard methods.

1.1 Multigrid Solver

Hierarchical methods such as Multigrid solver (Trotten-
berg et al., 2001) are often employed for the solution of
elliptic systems, as they have a computational complex-
ity which grows linearly with the number of unknowns.
Müller and Scheichl (2014) contains a recent review of
linear solvers in atmospheric modelling (see also Steppeler

et al., 2003). There, the performance of a multigrid solver
based on the tensor-product algorithm described in Börm
and Hiptmair (2001) was applied to a simplified model
system which is representative of the linear system for
the pressure correction. The key idea is to use a vertical
line relaxation smoother together with semi-coarsening
in the horizontal direction only. Furthermore, due to the
finite speed of sound in compressible models, it is suffi-
cient to use a relatively small number of multigrid levels
of L ≈ log2CFLh, where CFLh = csΔt∕Δx is the horizontal
acoustic Courant number. The much higher vertical acous-
tic Courant number CFLv = csΔt∕Δz does not cause any
problems as vertical sound propagation is treated exactly
by the line relaxation smoother. Since advective trans-
port is about an order of magnitude slower than acoustic
pressure oscillations, CFLh ≈ 10 and L≈ 4 irrespective of
the model resolution. As was demonstrated in Müller and
Scheichl (2014) and Sandbach et al. (2015), this “shallow”
multigrid works well, and avoids expensive global com-
munications. It also significantly simplifies the parallel
decomposition, since it is only necessary to (horizontally)
partition the coarsest grid, which still has a large num-
ber of cells and allows a relatively fine-grained domain
decomposition. For example, one coarse grid cell could
be assigned to a node on a supercomputer, exploiting
additional shared-memory parallelism on the cells of the
4L− 1 ≈ 43 = 64 fine grid cells.

The tensor-product multigrid algorithm was applied
to more realistic model equations in Dedner et al. (2016),
and its performance on a cluster with 16,384 graphics pro-
cessing units (GPUs) was demonstrated in Müller et al.
(2015b).

1.2 Solvers for finite element
discretisations

One challenge of standard latitude–longitude models,
which is becoming more pronounced with increasing
model resolution, is the convergence of grid lines at the
Poles. Due to the resulting small grid cells at high lat-
itudes, this leads to severe time-step constrictions, slow
solver convergence and poor parallel scalability due to
global coupling at the Poles. To overcome this problem,
there has been a push towards using different meshes
which avoid this issue (see the review in Staniforth and
Thuburn, 2012). However, ensuring the accurate discreti-
sation of the continuous equations and the exact conserva-
tion of certain physical quantities on these non-orthogonal
grids requires advanced discretisations. While low-order
finite-volume methods (Ringler et al., 2010; Thuburn
and Cotter, 2012; Thuburn et al., 2013) and high-order
collocated spectral element methods (Fournier et al., 2004;
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Giraldo and Restelli, 2008) do exist, the mimetic finite ele-
ment approach developed in Cotter and Shipton (2012),
Cotter and Thuburn (2014) and Thuburn and Cotter (2015)
for the shallow-water equations is particularly attractive
since it generalises to arbitrary discretisation order, has
good wave dispersion properties, avoids spurious compu-
tational modes and allows the approximate conservation
of certain physical quantities in the discrete equations. At
lowest order on orthogonal meshes it reduces to the exten-
sively studied C-grid staggering in the horizontal direction.

This article builds on the work of Melvin et al. (2019),
which describes the recently developed GungHo dynami-
cal core employed in the LFRic model. The mimetic finite
element discretisation used there is combined with a ver-
tical discretisation (described in Natale et al., 2016; Melvin
et al., 2018), which is similar to Charney–Phillips stag-
gering, and a mass-conserving finite-volume advection
scheme.

A particular challenge of mimetic finite element dis-
cretisations is the significantly more complex structure
of the discretised linear equation system, which has
to be solved repeatedly at every time step. For tradi-
tional finite-difference and finite-volume discretisations
on structured grids the Schur-complement can be formed,
and – provided the resulting pressure equation is solved
to sufficiently high accuracy – the preconditioner is exact.
However, this is not possible for the finite element discreti-
sations considered here, since the velocity mass matrix is
not (block-) diagonal. Instead, the linear system is pre-
conditioned by constructing an approximate Schur com-
plement using velocity mass lumping. As demonstrated
for a gravity-wave system in Mitchell and Müller (2016),
this method is efficient if one V-cycle of the same bespoke
tensor-product multigrid algorithm is used to solve the
pressure system. As shown there, the method also works
for next-to-lowest-order discretisations if a p-refinement is
used on the finest level of the multigrid hierarchy.

In this article it is shown how the method can be
extended to solve the full equations of motion, that is, the
Euler equations for a perfect gas in a rotating frame. The
efficiency of the multigrid algorithm is demonstrated by
alternatively solving the pressure correction equation with
a Krylov subspace method. As will be shown by running
on hundreds of thousands of processing cores and solving
problems with more than one billion (109) unknowns, the
multigrid also improves the parallel scalability since – in
contrast to the Krylov method – the multigrid V-cycle does
not require any global reductions.

1.3 Implementation

To achieve optimal performance, an efficient implementa-
tion is required. In a continuously diversifying hardware

landscape the code has to be performance portable. In gen-
eral, the LFRic model uses an implementation which is
based on the separation-of-concerns approach described
in Adams et al. (2019). The composability of iterative
methods and preconditioners is exploited to easily swap
components of the complex hierarchical solver in an
object-oriented Fortran 2003 framework (see sect. 6 in
Adams et al., 2019).

1.4 Structure

This article is organised as follows. Once the research is
put into context by reviewing related work in Section 2,
the mixed finite element discretisation is described and
the construction of a Schur-complement preconditioner
for the linear system is discussed in Section 3. The proper-
ties of the elliptic pressure operator are used to construct a
bespoke multigrid preconditioner. After outlining the par-
allel implementation in the LFRic framework in Section 4,
numerical results for performance and parallel scalabil-
ity are presented in Section 5. Conclusions are drawn and
future work is discussed in Section 6.

2 CONTEXT AND RELATED
WORK

2.1 Semi-implicit time-stepping
methods

One of the perceived drawbacks of semi-implicit mod-
els is the additional complexity required to solve a large
nonlinear problem. Iterative solvers introduce global com-
munications, which potentially limits scalability and per-
formance; this can become a serious issue for operational
forecast systems that run on large supercomputers and
have to deliver results on very tight time-scales. Never-
theless, the comprehensive review of linear solver tech-
niques for atmospheric applications in Müller and Sche-
ichl (2014) shows that semi-implicit models deserve seri-
ous consideration. Looking at actively developed dynam-
ical cores that target massively parallel supercomput-
ers, of the 11 non-hydrostatic implementations compared
in the recent Dynamical Core Model Intercomparison
Project (DCMIP-2016) presented in Ullrich et al. (2017),
two are semi-implicit: the Canadian GEM finite differ-
ence code (Yeh et al., 2002) and FVM (Kühnlein et al.,
2019), the next-generation finite-volume version of the
Integrated Forecasting System (IFS) (Temperton et al.,
2001; Wedi et al., 2015) developed at the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF); the
current spectral-transform model used by ECMWF is
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also semi-implicit. To solve the linear equation system
these models use different approaches. IFS employs a
global spectral transform, which diagonalises the opera-
tor in Fourier spaces. Although this approach inherently
involves expensive all-to-all communications, scalability
can be improved by exploiting properties of the spher-
ical harmonics (Wedi et al., 2013). The solution of the
pressure system in IFS-FVM with a generalised conjugate
residual (GCR) method is described in Smolarkiewicz and
Szmelter (2011); the preconditioner exactly inverts the ver-
tical part of the operator, similarly to the line relaxation
strategy which is used in the smoother for the multigrid
algorithm in this work. To solve the three-dimensional
elliptic boundary value problem in the GEM model, a ver-
tical transform is used to reduce it to a set of decoupled
two-dimensional problems, which are solved iteratively
(see Côté et al., 1998).

All of the above semi-implicit models use second-order
accurate finite-difference/finite-volume discretisations or
the spectral-transform approach. In contrast, actively
developed massively parallel high-order spectral ele-
ment codes include NUMA (Giraldo et al., 2013), which
uses an implicit–explicit (IMEX) time integrator, the
CAM-SE/HOMME dynamical core used by Dennis et al.
(2012) in the ACME climate model, and Tempest (Ull-
rich, 2014; Guerra and Ullrich, 2016). Collocating the
quadrature points with nodal points in the continu-
ous Galerkin (CG) formulation of NUMA results in a
diagonal-velocity mass matrix, which allows the construc-
tion of a Schur-complement pressure system. This system
is then solved with an iterative method. This is in contrast
to the mixed finite element approach employed here, for
which the velocity mass matrix is non-diagonal. To address
this issue, the outer system is solved iteratively and precon-
ditioned with an approximate Schur complement based on
a lumped mass matrix. It should be noted, however, that
the construction of an efficient linear solver for the discon-
tinuous Galerkin (DG) version of NUMA is significantly
more challenging, since the numerical flux augments the
velocity mass matrix by artificial diffusion terms. Over-
coming this problem is a topic of current research, and
it is argued in Peraire et al. (2010) and Kang et al. (2020)
that hybridisable DG methods appear to be particularly
suitable. As discussed below, applying a similar hybridised
approach to the mixed finite element formulation is a
promising direction for future work.

While the fully implicit version of NUMA has been
optimised on modern chip architectures (see Abdi et al.,
2019), the massively parallel scaling tests in Müller et al.
(2015a) are reported for the horizontally explicit vertically
implicit (HEVI) variant of the model, in which only the
vertical couplings are treated implicitly. The same HEVI
time integrator can also be used by the Tempest dynamical

core. Again this vertically implicit solver is equivalent to
the block-Jacobi smoother in the fully implicit multigrid
algorithm and the preconditioner in Kühnlein et al. (2019).

The discretisation used by the semi-implicit GUSTO
code developed at Imperial College London is based on
Natale et al. (2016), Yamazaki et al. (2017) and Shipton
et al. (2018), and is very similar to the one used in this
work. In contrast to LFRic, which is developed for opera-
tional use, GUSTO is a research model implemented in the
Firedrake Python code-generation framework described in
Rathgeber et al. (2017). It uses the iterative solvers and pre-
conditioners from the PETSc library (see Balay et al., 1997)
to solve the linear system. By default, the elliptic pressure
operator is inverted with a black-box algebraic multigrid
(AMG) algorithm. While in Mitchell and Müller (2016)
AMG has been shown to give comparable performance
to the bespoke geometric multigrid preconditioners devel-
oped here, using off-the-shelf AMG libraries in the LFRic
code is not feasible due to their incompatible parallelisa-
tion strategy. It would also introduce undesirable software
dependencies for a key component of the model.

2.2 Parallel multigrid and atmospheric
models

Multigrid algorithms allow the solution of ill-conditioned
elliptic partial differential equations in a time that is pro-
portional to the number of unknowns in the system. Due
to this algorithmically optimal performance, they are often
the method of choice for large-scale applications in geo-
physical modelling. The hypre library (Falgout and Yang,
2002) contains massively parallel multigrid implementa-
tions, including BoomerAMG, and has been shown to
scale to hundreds of thousands of cores in Baker et al.
(2012). Similarly, the scalability of the AMG solver in the
DUNE library (Blatt and Bastian, 2006) has been demon-
strated in Ippisch and Blatt (2011), and Notay and Napov
(2015) describe another highly parallel AMG implementa-
tion. In Gmeiner et al. (2014), massively parallel multigrid
methods based on hybrid hierarchical grids are used to
solve problems with 1012 unknowns on more than 200,000
compute cores.

While these results clearly show the significant poten-
tial of parallel multigrid algorithms, it is evident from the
review in Müller and Scheichl (2014) that they are rarely
used in semi-implicit atmospheric models. An exception is
the recent implementation of the MPAS model. In Sand-
bach et al. (2015), it is shown that a semi-implicit method
with a multigrid solver can be competitive with fully
explicit time integrators. A conditional semi-coarsening
multigrid for the ENDGame dynamical core (Wood et al.,
2014) used by the Met Office is described in Buckeridge
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and Scheichl (2010) and is currently implemented in
the Unified Model code. Another recent application of
the multigrid in a non-hydrostatic model is given in Yi
(2018). Two-dimensional multigrid solvers for the Pois-
son equation on different spherical grids relevant for
atmospheric modelling are compared in Heikes et al.
(2013). More importantly, the work in Yang et al. (2016)
showed that domain-decomposition-based multigrid algo-
rithms can be used to solve the Euler equations with
0.77 ⋅ 1012 unknowns. That paper received the 2016 Gor-
don Prize for showing that the code scales to 10 million
cores and achieves 7.95 PetaFLOP performance on the
TaihuLight supercomputer. Note, however, that none of
the models described in this section are based on the
advanced finite element discretisations that are used in
this work.

3 METHODS

In the following, the mimetic finite element discretisa-
tion of the Euler equations in the LFRic dynamical core is
reviewed. By exploiting the structure of the pressure cor-
rection equation in the approximate Schur-complement
solver, an efficient tensor-product multigrid algorithm is
constructed.

3.1 Continuous equations

The dynamical core of the model solves the Euler
equations for a perfect gas in a rotating frame:

𝜕u
𝜕t

= −(∇ × u) × u − 2𝜴 × u

− 1
2
∇(u ⋅ u) − ∇Φ − cp𝜃∇Π,

𝜕𝜌

𝜕t
= −∇ ⋅ (𝜌u), (1)

𝜕𝜃

𝜕t
= −u ⋅ ∇𝜃,

Π
1−𝜅
𝜅 = R

p0
𝜌𝜃.

At every point in time the state of the atmosphere x =
(u, 𝜌, 𝜃,Π) is described by the three-dimensional fields for
(vector-valued) velocity u, density 𝜌, potential temperature
𝜃 and (Exner) pressure Π. In Equation 1 Φ is the geopo-
tential such that ∇Φ = −g, where the vector g denotes the
gravitational acceleration and the Earth’s rotation vector
is denoted by 𝜴. R is the gas constant per unit mass and
𝜅 = R∕cp, where cp is the specific heat at constant pressure;
p0 is a reference pressure. The equations are solved in a

domain D, which describes either the global atmosphere
or a local area model (LAM); for further details on the rel-
evant boundary conditions see Melvin et al. (2019). While
this article describes the development of multigrid solvers
for global models, the method can be easily adapted for
LAMs.

3.2 Finite element discretisation

To discretise Equation 1 in space, the mimetic finite ele-
ment discretisation from Cotter and Shipton (2012) and
Natale et al. (2016) is used. For this, four principal function
spaces Wi, i = 0, 1, 2, 3, of varying degrees of continuity
are constructed. These function spaces are related by the
de Rham complex (Bott and Tu, 2013)

W0
∇
→ W1

∇×
→ W2

∇⋅
→ W3. (2)

Pressure and density are naturally discretised in the
entirely discontinuous space W3, while the space W2,
which describes vector-valued fields with a continuous
normal component, is used for velocity. At order p on hexa-
hedral elements the space W2 is the Raviart–Thomas space
RTp and W3 is the scalar discontinuous Galerkin space
QDG

p . As will be important later on, note that the space
W2 = W

h
2 ⊕ W

z
2 can be written as the direct sum of a com-

ponent W
z
2 which only contains vectors pointing in the

vertical direction and the space W
h
2 such that the elements

of W
h
2 are purely horizontal vector fields. In the absence

of orography, these two spaces are orthogonal in the sense
that

∫D

u(h) ⋅ u(z) dV = 0 for all u(h) ∈ W
h
2 and u(z) ∈ W

z
2.x

Note that W
z
2 is continuous in the vertical direction and

discontinuous in the tangential direction, whereas W
h
2 is

continuous in the horizontal direction only. To discretise
the potential temperature field, an additional space W𝜃 is
introduced. W𝜃 is the scalar-valued equivalent of W

z
2 and

has the same continuity. The lowest order (p= 0) function
spaces are shown in Figure 1. Choosing suitable basis func-
tions vj(𝝌) ∈ W2, 𝜎j(𝝌) ∈ W3 and wj(𝝌) ∈ W𝜃 that depend
on the spatial coordinate 𝝌 , the discretised fields at the nth
model time step t can be written as follows:

un(𝝌) =
∑

j
ũn

j vj(𝝌) ∈ Wu,

𝜌n(𝝌) =
∑

j
�̃�n

j 𝜎j(𝝌) ∈ W3,

𝜃n(𝝌) =
∑

j
𝜃

n
j wj(𝝌) ∈ W𝜃,
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=

2 2 2 3
h z=

F I G U R E 1 Function spaces used in the finite element
discretisation

Πn(𝝌) =
∑

j
Π̃n

j 𝜎j(𝝌) ∈ W3.

For each quantity a the corresponding vector of
unknowns is written as ã = [a1, a2, … ].

3.3 Linear system

The time discretisation described in Melvin et al. (2019) is
semi-implicit and uses a finite-volume transport scheme.
This requires the solution of a nonlinear equation to obtain
the state vector x̃n+1 = (ũn+1, �̃�n+1, 𝜃

n+1
, Π̃n+1) at the next

time step. The nonlinear system can be written compactly
as

(x̃n+1) = 0. (3)

Equation 3 is solved iteratively with a quasi-Newton
method. For this a sequence of states x̃(k), k= 0,1,2, … ,
NNL with x̃(0) = x̃n, x̃(NNL) = x̃(n+1) is constructed such that

(x̃∗)x̃′ = −(x̃(k)) with x̃′ = x̃(k+1) − x̃(k). (4)

The linear operator (x̃∗), which needs to be inverted
in every Newton step, is an approximation to the Jacobian
of. Following Wood et al. (2014), it is obtained by lineari-
sation around a reference state x̃∗ = (0, �̃�∗, 𝜃∗, Π̃∗), which is
updated at every time step. Introducing x̃′ = (ũ′, �̃�′, 𝜃

′
, Π̃′)

and following Melvin et al. (2019), the linear system in
Equation 4 can be written down in matrix form as

⎛⎜⎜⎜⎜⎜⎝

M𝜇,C
2 −PΠ∗

2𝜃 −G𝜃∗

D𝜌∗ M3

P𝜃∗

𝜃2 M𝜃

−M𝜌∗

3 −P∗
3𝜃 MΠ∗

3

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

ũ′

�̃�′

𝜃
′

Π̃′

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

−u

−𝜌

−𝜃

−Π

⎞⎟⎟⎟⎟⎟⎠
. (5)

The exact form of the individual operators in
Equation 5 is given in Melvin et al. (2019) and the matrix
D𝜌∗ is defined as D𝜌∗ ũ ∶= D(f̃ ∗) ≡ D(�̃�∗ũ), where the mass
flux f * is defined as the product of the reference density
𝜌∗ sampled at velocity nodal points pointwise multiplied
by the velocity field ũ. Note that the expression in Melvin

et al. (2019, their eqn. 81) for Π is incorrect and should be

Π ≡
⟨
�̂�, det J

[
1 −

p0

R
(Π̂(k))

1−𝜅
𝜅

�̂�(k)�̂�
(k)

]⟩
(6)

such that both the linearised left-hand side and the nonlin-
ear right-hand side are non-dimensionalised. To interpret
the different operators, it is instructive to also write down
the continuum equivalent of the equations for the state
(u′, 𝜌′, 𝜃′,Π′):

u′ + 𝜏uΔt
(
𝜇ẑ(ẑ ⋅ u′) +2𝜴 × u′)

+ 𝜏uΔtcp(𝜃′∇Π∗ + 𝜃∗∇Π′) = ru,

𝜌′ + 𝜏𝜌Δt∇ ⋅ (𝜌∗u′) = r𝜌,
𝜃′ + 𝜏𝜃Δtu′ ⋅ ∇𝜃∗ = r𝜃,

Π′

Π∗ − 𝜅

1 − 𝜅

(
𝜌′

𝜌∗
+ 𝜃′

𝜃∗

)
= rΠ, (7)

where 𝜏u,𝜌,𝜃 = 1
2

are relaxation parameters, and 𝜌∗, 𝜃∗ and
Π∗ are the continuous reference profiles around which the
equation is linearised. The unit normal vector in the verti-
cal direction is denoted as ẑ and the quantity 𝜇 is defined
as 𝜇 = 1 + 𝜏u𝜏𝜃Δt2N2 with the Brunt–Väisälä frequency
N2 = g(𝜕z𝜃

∗)∕𝜃∗. In contrast to Wood et al. (2014), the hor-
izontal couplings are not neglected in P𝜃∗

𝜃2, and will only
be dropped in the approximate Schur complement con-
structed in Section 3.4. The block-diagonal entries in the
4× 4 matrix in Equation 5 are modified mass matrices of
the W2, W3 and W𝜃 spaces, possibly weighted by refer-
ence profiles (MΠ∗

3 , similar to the off-diagonal M𝜌∗

3 ). The
term in the upper-left corner of the matrix in Equation 5
is the velocity mass matrix augmented by contributions
from Rayleigh damping (optionally only applied to the ver-
tical component of the velocity vector near the model lid;
see Melvin et al., 2019) and the implicit treatment of the
Coriolis term,

M𝜇,C
2 = M2 + 𝜏uΔt(M𝜇 + MC), (8)

where
(MC)ij = 2∫D

vi ⋅ (Ω × vj) dV .

While M3, MΠ∗

3 and M𝜌∗

3 do not contain couplings to
unknowns in neighbouring cells, and M𝜃 only couples
between unknowns in the same vertical column, M𝜇,C

2 con-
tains couplings in all directions. This prevents the exact
solution of Equation 5 with a Schur-complement approach
as in Wood et al. (2014), since the inverse of M𝜇,C

2 is dense.
Instead, the system in Equation 5 is solved with an iter-
ative Krylov subspace solver, which only requires appli-
cation of the sparse operator (x̃∗) itself. The solver is
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preconditioned with the approximate Schur complement
described in the following section.

3.4 Schur-complement preconditioner

To obtain an approximate solution of the linear system in
Equation 5, first all instances of the mass matrix M𝜃 are
replaced by a lumped, diagonal version M̊𝜃 such that the
diagonal entries of M̊𝜃 are the row sums of M𝜃 . As in Wood
et al. (2014), only the part of P𝜃∗

𝜃2 that acts on the vertical
part of the velocity field is kept. The resulting operator P𝜃∗,z

𝜃2
maps from the subspace W

z
2 ⊂ W2 to W𝜃 .

Algebraically, the following steps correspond to mul-
tiplication by the upper block-triangular matrix (Step
1), solution of the block-diagonal matrix (Step 2) and
back-substitution through multiplication by the lower
block-triangular matrix (Step 3) in the Schur-complement
approach (Zhang, 2006).

Step 1a. Use

𝜃
′ = M̊−1

𝜃 (−P𝜃∗,z
𝜃2 ũ′ −𝜃) (9)

to eliminate 𝜃. In the resulting 3× 3 system, replace the
matrix M

𝜇,C
2 ∶= M𝜇,C

2 + PΠ∗

2𝜃 M̊−1
𝜃 P𝜃∗,z

𝜃2 on the diagonal by a
lumped diagonal approximation M̊𝜇,C

2 such that the diago-
nal entries of M̊𝜇,C

2 are the row sums of M
𝜇,C
2 . This leads to

a system for ũ′, �̃�′ and Π̃′ only:

⎛⎜⎜⎜⎝
M̊𝜇,C

2 −G𝜃∗

D𝜌∗ M3

P∗
3𝜃M̊−1

𝜃 P𝜃∗,z
𝜃2 −M𝜌∗

3 MΠ∗

3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ũ′

�̃�′

Π̃′

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
−u

−𝜌

−Π

⎞⎟⎟⎟⎠ , (10)

with
u = u − PΠ∗

2𝜃 M̊−1
𝜃 𝜃,

Π = Π − P∗
3𝜃M̊−1

𝜃 𝜃. (11)

Note that – in contrast to Equation 5 – the (block-) diago-
nal entries of the 3× 3 system in Equation 10 have sparse
inverses, and it is possible to form the exact Schur comple-
ment.

Step 1b. Similarly, eliminate density from Equation 10
using

�̃�′ = M−1
3 (−D𝜌∗ ũ′ −𝜌) (12)

to obtain a 2× 2 system for ũ′ and Π̃′. Finally, eliminate
velocity with

ũ′ = (M̊𝜇,C
2 )−1(G𝜃∗ Π̃′ −u) (13)

to get an equation for the pressure increment only:

HΠ̃′ =  = −Π + (M̊𝜇,C
2 )−1u − M𝜌∗

3 M−1
3 𝜌. (14)

The Helmholtz operator H ∶ W3 → W3 is defined as

H = MΠ∗

3 + (P∗
3𝜃M̊−1

𝜃 P𝜃∗,z
𝜃2 + M𝜌∗

3 M−1
3 D𝜌∗ )(M̊𝜇,C

2 )−1G𝜃∗ .

(15)
Step 2: Approximately solve the Helmholtz equation

in Equation 14 for Π̃′. For this, one multigrid V-cycle as
described in Section 3.6 is used.

Step 3: Given Π̃′, recover ũ′, �̃�′ and 𝜃
′ using

Equations 13,12 and 9.

3.5 Structure of the Helmholtz operator

Understanding the structure of the Helmholtz operator
H is crucial for the construction of a robust multigrid
algorithm for the approximate solution of Equation 14.
The tensor-product multigrid method which will be used
here was first described for simpler equations and dis-
cretisations in Börm and Hiptmair (2001) and applied to
mixed finite element problems in atmospheric modelling
in Mitchell and Müller (2016).

First, consider the sparsity pattern of the Helmholtz
operator H. In each cell of the grid, it contains cou-
plings to its four direct horizontal neighbours. In addition,
it couples to the two cells immediately above and the
two cells immediately below. Including the self-coupling,
this results in a nine-cell stencil, independent of the
order of discretisation p (see Figure 2). Second, it is
important to take into account how the components of
H depend on the time-step size Δt, the horizontal grid
spacing Δx and the vertical grid spacing Δz. For this,
first note that the weighted weak derivative D𝜌∗ can be
decomposed into a vertical and horizontal part D𝜌∗ =
D𝜌∗,z + D𝜌∗,h with D𝜌∗,z ∶ W

z
2 → W3 and D𝜌∗,h ∶ W

h
2 → W3.

Since the lumped mass matrix is diagonal, it is the sum
of two terms, M̊𝜇,C

2 = M̊𝜇,C,z
2 + M̊𝜇,C,h

2 with M̊𝜇,C,h
2 ∶ W

h
2 →

W
h
2 and M̊𝜇,C,z

2 ∶ W
z
2 → W

z
2. Using this decomposition, the

Helmholtz operator can be written as the sum of four
terms:

H = MΠ∗

3
⏟⏟⏟

H0

+ P∗
3𝜃M̊−1

𝜃 P𝜃∗,z
𝜃2 (M̊𝜇,C,z

2 )−1G𝜃∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Dz

1

+ M𝜌∗

3 M−1
3 D𝜌∗,z(M̊𝜇,C,z

2 )−1G𝜃∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Dz

2

+ M𝜌∗

3 M−1
3 D𝜌∗,h(M̊𝜇,C,h

2 )−1G𝜃∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Dh

2

. (16)

In order to interpret the different parts of H it is con-
structive to derive the corresponding Schur-complement
operator for the continuous linear system given in
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F I G U R E 2 Stencil of the Helmholtz operator H (all grey
cells) and of the operator Ĥz (dark grey cells). For clarity, only a
two-dimensional cross-section of the stencil is shown; in three
dimensions H has nine entries (instead of seven as for the standard
near-neighbour stencil) and Hz has three en tries

Equation 7. To be consistent with the substitution P𝜌∗

𝜃2 →

P𝜌∗,z
𝜃2 above, the third part of Equation 7 is replaced by

𝜃′ + 𝜏𝜃Δtu′
z𝜕z𝜃

∗ = r𝜃 . The resulting pressure operator is

h = 1
Π∗

⏟⏟⏟
h0

−𝜏𝜌𝜏uΔt2cp
𝜅

1 − 𝜅
𝜇−1(𝜕z𝜃

∗)𝜕z

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dz

1

− 𝜏𝜌𝜏uΔt2cp
𝜅

1 − 𝜅

𝜕z(𝜇−1𝜌∗𝜃∗𝜕z)
𝜌∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dz

2

−𝜏𝜌𝜏uΔt2cp
𝜅

1 − 𝜅

∇h ⋅ (𝜌∗𝜃∗∇h)
𝜌∗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dh

2

, (17)

where ∇h is the horizontal gradient operator. Up to scaling
by the local volume of the grid cell it is therefore possible
to identify H0

.
=h0, Dz

1
.
= dz

1, Dz
2
.
= dz

2 and Dh
2
.
= dh

2. With the
definitions of the linear operators in Melvin et al. (2019),
it is easy to see that the different parts of H depend on the
grid spacing and time-step size as

H0 ∝ Δx2 ⋅ Δz,

Dz
1,Dz

2 ∝ Δx2 ⋅ Δt2

Δz
,

Dh
2 ∝ Δz ⋅ Δt2. (18)

Further observe that with T∗ = Π∗𝜃∗ and the ratio of
the specific heat capacities 𝜅∕(1 − 𝜅) = cp∕cv the (squared)
speed of sound is given by c2

s = cp∕cvRT∗ = cp
𝜅

1−𝜅
Π∗𝜃∗.

Assuming that the reference profiles are slowly varying,
this implies that the ratios dz

1 ∶ h0, dz
2 ∶ h0 and dh

2 ∶ h0 scale
as

dz
1 ∶ h0 ∝

N2c2
s

g
Δt2,

dz
2 ∶ h0 ∝ c2

sΔt2,

dh
2 ∶ h0 ∝ c2

sΔt2. (19)

Combining this with Equation 18 results in the esti-
mates

Dz
1 ∶ H0 ∝

N2c2
s

g
⋅
Δt2

Δz
,

Dz
2 ∶ H0 ∝

(
csΔt
Δz

)2

= CFL2
v,

Dh
2 ∶ H0 ∝

(
csΔt
Δx

)2

= CFL2
h,

where CFLv and CFLh are the vertical and horizontal
acoustic Courant numbers. Note also that the relative size
of Dz

2 and Dh
2 is given by the squared aspect ratio (Δx∕Δz)2,

and the relative size of Dz
1 and Dz

2 decreases ∝ Δz as the
vertical grid spacing goes to zero.

To proceed further, the Helmholtz operator is split
into two parts, H = Hz + 𝛿H, such that Hz contains the
couplings to neighbouring cells in the vertical direction
only. If the degrees of freedom are ordered consecutively
in the vertical direction, Hz is a block-diagonal matrix.
Each block describes the couplings in one vertical col-
umn; furthermore, solution of the system HzΠ̃ = rΠ for
some right-hand side rΠ requires the independent solution
of a block-pentadiagonal system in each column. Follow-
ing the scaling arguments above, and observing that the
operators Dz

1 and Dz
2 only contribute to Hz, it can be seen

that for high aspect ratios Δz ≪ Δx, the dominant part of
the operator H is given by Hz. This observation is crucial
for the following construction of a robust tensor-product
multigrid algorithm.

3.6 Multigrid solver

Starting from some initial guess, an approximate solution
of Equation 14 can be obtained with a block-Jacobi itera-
tion S. To avoid the expensive block-pentadiagonal solve,
the next-to-nearest-neighbour couplings in Hz are dropped
to obtain a block-tridiagonal Ĥz; see Figure 2. With this
matrix, one iteration of the block-Jacobi method is

Π̃′
→ Π̃′ + 𝜔Ĥ−1

z ( − HΠ̃′), (20)

where 𝜔 is an over-relaxation factor. The shorthand Π̃′
→

BlockJacobi(H,, Π̃′
, 𝜔,nJac) is used for nJac applications

of the block-Jacobi iteration in Equation 20. Multiplication
by Ĥ−1

z in Equation 20 corresponds to the solution of the
block-tridiagonal linear system, which can be carried out
independently in each vertical column. The tridiagonal
solve can be done, for example, with the Thomas algorithm
(see, e.g., Press et al., 2007). When applying H to Π̃′ to
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calculate the residual  − HΠ̃′ in Equation 20, the vertical
terms Dz

2 and Dz
1 in Equation 16 are treated exactly.

It is well known that stationary methods such as the
Jacobi iteration converge extremely slowly since they only
reduce the high-frequency error components. This issue is
overcome by multigrid methods (Trottenberg et al., 2001,
contains a comprehensive treatment of the topic), which
construct a hierarchy of grids with associated (nested)
finite element function spaces, in particular W3 = W

(1)
3 ⊃

W
(2)
3 ⊃ … ⊃ W

(L)
3 . Following the tensor-product approach

in Börm and Hiptmair (2001), the grid is only coarsened
in the horizontal direction. By applying a small number of
smoother iterations on each level, the error is reduced at
all length scales. In the following the index 𝓁 ∈{1, … , L}
is used to label the multigrid level, with L= 1 correspond-
ing to the fine-grid level on which the solution is to be
found. Let {Π̃′(𝓁)} and {(𝓁)} be the set of solution vec-
tors and right-hand sides on all levels, with Π̃′(1) = Π̃′ and
(1) = . Since the function spaces are nested, the obvi-
ous prolongation 𝔓 ∶ W

(𝓁+1)
3 → W

(𝓁)
3 from a coarse space

to the next-finest multigrid level is the natural injection

𝔓 ∶ Π′(𝓁+1) → Π′(𝓁)
𝔓 , (21)

with

Π′(𝓁)
𝔓 (𝝌) = Π′(𝓁+1)(𝝌) for all points𝝌 ∈ D.

The corresponding linear operator acting on the
degrees-of-freedom-vector (dof-vector) Π̃′(𝓁+1) can be writ-
ten as Prolongate(Π̃′(𝓁+1)). Equation 21 naturally induces
a restriction ℜ ∶ W

(𝓁)∗
3 → W

(𝓁+1)∗
3 on the corresponding

dual spaces (denoted by *):

ℜ ∶ r(𝓁) → r(𝓁+1),

with
r(𝓁+1)(Π′(𝓁+1)) = r(𝓁)(𝔓(Π′(𝓁+1)))

for all functions Π′(𝓁+1) ∈ W
(𝓁+1)
3 . The corresponding lin-

ear operator acting on the vector (𝓁) representing the
dual one-form r(𝓁) is written as Restrict((𝓁)); note that the
level-dependent residual (𝓁) is different from the quan-
tities that appear on the right-hand side of Equation 5.
The Helmholtz operators on the coarse levels are con-
structed by representing the reference profiles on those lev-
els and re-discretising the operator. This is more efficient
than assembling it via the expensive Galerkin triple-matrix
product.

Based on these ingredients, it is now possible to
write down the recursive multigrid V-cycle in Algorithm
1. Starting from some initial guess Π̃′ = Π̃′(1) and the
right-hand side (1) =  on the finest level, this reduces

the error by recursively solving the residual equation on
the next-coarsest level.

Algorithm 1. Multigrid V-cycle, Σ𝓁 = {H(𝓁), Π̃′(𝓁)
,

(𝓁),(𝓁)} MGVcycle(Σ(𝓁),𝓁, 𝜔,npre,npost)

1: if 𝓁 = L then
2: Π̃′(L) → CoarseSolve(H(L),(L))
3: else
4: Π̃′(𝓁) → BlockJacobi(H(𝓁),(𝓁), Π̃′(𝓁), 𝜔,npre)
5: (𝓁) → (𝓁) − H(𝓁)Π̃′(𝓁)

6: (𝓁+1) → Restrict((𝓁))
7: Π̃′(𝓁+1) → 0
8: Π̃′(𝓁+1) → MGVcycle({Σ(𝓁)},𝓁 + 1, 𝜔,npre,npost)
9: Π̃′(𝓁) → Π̃′(𝓁) + Prolongate(Π̃′(𝓁+1))

10: Π̃′(𝓁) → BlockJacobi(H(𝓁),(𝓁), Π̃′(𝓁), 𝜔,npost)
11: end if

The natural way of (approximately) solving the
equation on the coarsest level 𝓁 =L is by inverting the
matrix directly or by applying a Krylov subspace method.
In a parallel implementation this requires expensive global
communications. As explained in Sandbach et al. (2015)
and Müller and Scheichl (2014), this is not necessary in
our case. To see this, observe that the relative size of
the zero-order term H0 and the second derivative in the
horizontal direction Dh

2 is proportional to the squared,
inverse grid spacing Δx. Since the grid spacing doubles
on each subsequent level, the relative size of the two
terms in the Helmholtz operator reduces to 4−(𝓁−1)CFL2

h
where, as above, CFLh is the acoustic Courant num-
ber in the horizontal direction. As the vertical terms are
treated exactly in the block-Jacobi smoother, the condi-
tion number of the Helmholtz operator will be (1) on
levels 𝓁 ≳ log2(CFLh) + 1. Hence, it is sufficient to pick
L = log2(CFLh) + 1 and simply apply a few iterations of
the block-Jacobi smoother. For typical atmospheric appli-
cations, CFLh ≈ 10 and hence it is sufficient to work
with L≈ 4 levels. As demonstrated in Müller and Sche-
ichl (2014), this shallow multigrid approach also greatly
reduces global communications.

3.7 Computational complexity

Although the multigrid method requires additional calcu-
lations on the coarse levels, its computational complexity
is proportional to the number of unknowns. The time
spent in one multigrid V-cycle in Algorithm 1 is dominated
by two contributions: the multiplication with the matrix
H(𝓁) and the vertical solve, i.e., the application of (Ĥ(𝓁)

z )−1.
These operations are required in the residual calculation
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and the block-Jacobi algorithm, which is used for both
pre-/post-smoothing and the approximate solution of the
coarse-level system with ncoarse block-Jacobi iterations.
Let CH and CĤz

be the cost per unknown for those two
operations. For a pressure system with N unknowns the
computational cost per multigrid V-cycle is

CostV-cycle = ((npre + npost)(CH + CĤz
) + CH)N

L−1∑
𝓁=1

4−𝓁+1

+ ncoarse(CH + HĤz
)N4−L

≈ 4
3
((npre + npost)(CH + CĤz

) + CH)N, (22)

where the approximation in the last line is valid for
4−L+ 1 ≪ 1.

In contrast, solving the Helmholtz pressure system
with niter iterations of a BiCGStab method, preconditioned
by Ĥ−1

z , involves a cost of

CostBiCGStab = (2niter(CH + CĤz
) + CH)N.

While the multigrid V-cycle contains more
nearest-neighbour parallel communications in the form
of halo exchanges, these can easily be overlapped with
computations via asynchronous calls to the message
passing interface (MPI). In contrast, the BiCGStab solver
requires four global sums per iteration (including one
for monitoring convergence in the residual norm). While
communication-avoiding variants of Krylov solvers exist
(see the overview in Hoemmen, 2010, and recent work
on BiCGStab in Carson et al., 2013), this will not over-
come the fundamental issue. Several BiCGStab iterations
with global communications are required to achieve the
same reduction in the pressure residual as in a multigrid
V-cycle. As the numerical results in Section 5.2 demon-
strate, this reduces the scalability of Krylov subspace
solvers for the pressure correction equation.

3.8 Memory requirements

The memory requirements of the different solvers for the
pressure equation are quantified by counting the number
of dof-vectors they need to store. Since the matrix H has a
nine-point stencil and the LU-factorisation of the tridiag-
onal matrix Ĥz is required in the block-Jacobi iteration in
Equation 20, storing the matrix requires the same memory
as 12 dof-vectors. As can be seen from Algorithm 1, on each
level of the multigrid hierarchy the three vectors Π̃(𝓁), (𝓁)

and (𝓁) are stored in addition to the Helmholtz matrix,
resulting in a total memory requirement of 15 dof-vectors
on each level. However, since the number of unknowns

is reduced by a factor of 4 in each coarsening step, the
memory requirements on the coarser levels are signifi-
cantly reduced. In the standalone multigrid iteration, two
additional vectors are required on the finest level to mon-
itor convergence. Assuming that a dof-vector on the finest
level contains N unknowns, this results in a total memory
requirement of

MemoryMultigrid = 15
(

1 + 1
4
+ 1

16
+ …

)
N + 2N < 22N

for the multigrid method. This should be compared to the
BiCGStab solver: in addition to the solution, right-hand
side and matrix, this uses eight temporary vectors, result-
ing in a total storage requirement of

MemoryBiCGStab = 22N.

The memory requirements of other solver combinations
considered in this work are in the same ballpark. Using
a standalone block-Jacobi iteration requires the storage of
16 dof-vectors, whereas the equivalent of no more than 28
dof-vectors has to be stored if BiCGStab is preconditioned
with a multigrid V-cycle.

4 IMPLEMENTATION

As described in Adams et al. (2019), the LFRic code
is designed around a separation-of-concerns philoso-
phy originally introduced in this context in Ford et al.
(2013). It provides well-defined abstractions for isolat-
ing high-level scientific code from computational issues
related to low-level optimisation and parallelisation, with
the aim of achieving performance portability on differ-
ent parallel hardware platforms. The model developer (an
atmospheric scientist or numerical algorithm specialist)
writes two kinds of code:

• local kernels, which describe the operations that are
executed in one vertical column of the mesh;

• high-level algorithms, which orchestrate the kernel
calls.

The PSyclone code-generation system (see Ford and
Porter, 2019) automatically generates optimised wrapper
subroutines for the parallel execution of the kernels over
the grid. PSyclone can generate code for execution on dis-
tributed memory machines via MPI and shared-memory
parallelisation with OpenMP, as well as mixed-mode par-
allelisation; it also supports threaded implementations on
GPUs. Depending on the data dependencies, which are
specified by attaching access descriptors to the kernels,
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appropriate MPI calls (e.g., for halo exchanges) are auto-
matically inserted into the generated code.

As is common in atmospheric modelling codes, and
consistent with the tensor-product multigrid algorithm
described in the article, the grid is only partitioned
in the horizontal direction and the elementary kernels
operate on contiguous data stored in individual verti-
cal columns. By using a structured memory layout in
the vertical direction, any costs of indirect addressing in
the horizontal direction from logically unstructured grids
can be hidden; this was already observed in MacDonald
et al. (2011) and confirmed for tensor-multigrid solvers in
Dedner et al. (2016).

To implement the solvers described in this article, the
user will have to write the iterative solver algorithm and
kernels for applying the appropriate finite element matri-
ces or carrying out the block-tridiagonal solves in each
column.

4.1 Solver Application Programming
Interface

For the complex solvers and preconditioners described in
this article the parameter space is very large: different
Krylov solvers for the outer mixed system in Equation 4
and for the Helmholtz pressure equation in Equation 14
will lead to varying overall runtimes. The performance
of the multigrid preconditioner depends on the num-
ber of levels, the value of the over-relaxation parameter,
the number of pre- and post-smoothing steps, and the
choice of coarse-level solver. To explore different con-
figurations and allow for the easy switching of compo-
nents, an object-oriented framework for iterative solvers
has been implemented in LFRic as described in Adams
et al. (2019). Similar to the DUNE Iterative Solver Tem-
plate Library (Blatt and Bastian, 2006) and PETSc (Balay
et al., 1997), this avoids re-implementation of the itera-
tive solver and aids reproducibility. Based on this library of
iterative solvers, the user has to provide problem-specific
linear operators and preconditioner objects.

For this, three abstract data types are defined in the
code:

• a vector type, which supports linear algebra operations
such as axpy updates (y → y + 𝛼x) and dot products
(𝛽 = ⟨x, y⟩ = ∑

jxjyj);
• a linear operator type, which acts on vectors x and imple-

ments the operation y → Ax;
• a preconditioner type, which implements the operation

x → Py, where x approximately solves the equation
Ax = y.

This allows the implementation of different Krylov
subspace solvers, which are parametrised over the linear
operator A and the corresponding preconditioner P, both
of which are derived from their respective abstract base
types. So far, the following solvers of the general form
K(A,P,[𝜖]) (where 𝜖 is a tolerance on the target residual
reduction) are available in LFRic:

• conjugate gradient, CG(A,P, 𝜖);
• generalised minimal residual, GMRES(A,P, 𝜖);
• stabilised biconjugate gradient, BiCGStab(A,P, 𝜖);
• generalised conjugate residual, GCR(A,P, 𝜖);
• a null-solver (preconditioner only), PreOnly(A,P).

All solvers operate on instances of a concrete
field_vector type, which is derived from the abstract
base-vector type and contains a collection of dof-vectors.
More specifically, to implement the linear solver with
the Schur-complement preconditioner for the linear
system described in Section 3.3, an operator Amixed,
which represents the matrix in Equation 5 and acts on a
field_vector for the state x̃′ = (ũ′, �̃�′, 𝜃

′
, Π̃′), was created.

The corresponding Schur-complement preconditioner
Pmixed acts on field_vectors of the same form and, as dis-
cussed in Section 3.4, contains a call to a Krylov subspace
method KH(AH ,PH) for solving the Helmholtz problem
in Equation 14. Here the operator AH represents the
Helmholtz operator in Equation 15 and PH is a pre-
conditioner; both AH and PH act on single-component
field_vector objects of the form x̃′

H = (Π̃′). Both the multi-
grid preconditioner P(MG)

H (L, 𝜔,npre,npost) described in
Section 3.6 and a single-level method P(Jac)

H (𝜔,nJac), which
corresponds to nJac applications of the block-Jacobi
iteration in Equation 20, were implemented.

Thus the general nested solver can be written as

Kmixed(Amixed,Pmixed(KH(AH ,PH , 𝜖H)), 𝜖). (23)

5 RESULTS

To identify the most promising preconditioner, first the
performance of different solvers for the pressure correction
in Equation 14 is explored on a relatively small number
of compute cores in Section 5.1, before massively paral-
lel scaling tests for a smaller subset of solver configura-
tions are presented in Section 5.2. Finally, robustness with
respect to the time-step size is quantified in Section 5.3.
All tests were run on the Met Office Cray XC40 supercom-
puter using the Aries interconnect. Each node comprises
dual-socket, 18-core Broadwell Intel Xeon processors, that
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T A B L E 1 Pressure solver configurations
used in Section 5.1 Pressure solver KH 𝝐H PH

Line relaxation PreOnly — P(Jac)
H (0.8, 10)

10−2 P(Jac)
H (1.0, 1)

Krylov (𝜖H) BiCGStab 10−4 P(Jac)
H (1.0, 1)

10−6 P(Jac)
H (1.0, 1)

— P(MG)
H (1, 0.8, 2, 2)

MG(L) PreOnly — P(MG)
H (2, 0.8, 2, 2)

— P(MG)
H (3, 0.8, 2, 2)

— P(MG)
H (4, 0.8, 2, 2)

10−2 P(MG)
H (4, 0.8, 2, 2)

Krylov-MG (𝜖H ,L) BiCGStab 10−4 P(MG)
H (4, 0.8, 2, 2)

10−6 P(MG)
H (4, 0.8, 2, 2)

is, 36 CPU cores per node. The model was compiled with
the Intel 17 Fortran compiler (version 17.0.0.098).

5.1 Algorithmic performance
and pressure solver comparison

In all cases a GCR solver with a tolerance of 𝜖 = 10−6 is
used to solve the mixed system in Equation 4; sometimes
this will also be referred to as the “outer solve” below.
Although other methods are available for this option, an
investigation of the mixed solver is not the focus of this
article and so only this method, as used in Melvin et al.
(2019), is considered. To test the algorithmic performance
of the solver, the model is run on the baroclinic-wave test
case of Ullrich et al. (2014), which models the develop-
ment of midlatitude atmospheric wave dynamics. Apart
from the semi-implicit solver, the model set-up is the same
as described in Melvin et al. (2019) with the following
exceptions:

1. To improve long time-step stability, the continuity
equation is handled in an (iterated) implicit manner,
instead of an explicit one as in Melvin et al. (2019); that
is, their eqn. 22 becomes

⟨𝜎, 𝛿t𝜌⟩ = −Δt⟨𝜎,∇ ⋅ F
𝛼⟩ (24)

with F
𝛼 ≡ 𝛼un+1𝜌n+1 + (1 − 𝛼)un𝜌n sampled pointwise.

2. To improve the accuracy of the advection operator over
non-uniform meshes, a two-dimensional horizontal
polynomial reconstruction of the potential temperature
field is used instead of the one-dimensional reconstruc-
tion of Melvin et al. (2019). This reconstruction follows
the method of Thuburn and Cotter (2012), except here
the polynomial is always evaluated at fixed points in

space instead of at Gauss points of the swept area as in
Thuburn and Cotter (2012).

The model is run on a C192 mesh (6× 192× 192 cells)
with ≈50km horizontal resolution and 30 levels in the
vertical following a quadratic stretching such that the
smallest vertical grid spacing is ≈200 m. This results in
39.3 ⋅ 106 total degrees of freedom, with 6.6 ⋅ 106 pressure
unknowns. The time step is Δt = 1200 s, which results in
a horizontal-wave Courant number of CFLh = csΔt∕Δx ≈
7.9 with cs = 340 m⋅s−1. The vertical Courant number is
CFLv = csΔt∕Δz ≈ 1800 (near the surface).

Different methods are used to solve the pressure cor-
rection equation in Equation (14):

1. Line relaxation: 10 iterations of the block-Jacobi
solver.

2. MG(L): Single geometric multigrid V-cycle with a vary-
ing number of levels L= 1,2,3,4 and a block-Jacobi line
smoother on each level.

3. Krylov(𝝐H) and Krylov-MG(𝝐H,L): BiCGStab itera-
tion with a relative tolerance of 𝜖H = 10−2, 10−3, 10−6

and one of the following preconditioners:
a. One iteration of the block-Jacobi method

[Krylov(𝜖H)]
b. Single geometric multigrid V-cycle with L= 4 levels

[Krylov-MG(𝜖H ,L)]

Following the notation in Equation 23, the solver con-
figurations are summarised in Table 1. The Krylov solver
with 𝜖H = 10−6 corresponds to the solver set-up used in
Melvin et al. (2019). Two pre- and post-smoothing steps
with an over-relaxation parameter 𝜔 = 0.8 are used in the
multigrid algorithm; the number of smoothing steps on the
coarsest level is ncoarse = 4.
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T A B L E 2 Number of iterations and time per linear solve for both the outer mixed solve t(m)
solve and the

inner pressure solve t(p)
solve

Mixed solve Pressure solve Solver

Pressure solver Iterations t(m)
solve

Iterations t(p)
solve

Set-up

Line relaxation 24.54 0.33 10 0.0075 0.018

Krylov(10−2) 15.10 0.39 15.12 0.0196 0.020

Krylov(10−3) 15.03 0.52 22.59 0.0276 0.019

Krylov(10−6) 14.03 0.96 52.50 0.0571 0.018

MG(1) 35.29 0.38 — 0.0047 0.018

MG(2) 19.51 0.23 — 0.0058 0.027

MG(3) 15.24 0.19 — 0.0067 0.026

MG(4) 15.12 0.20 — 0.0073 0.026

Krylov-MG(10−2,4) 15.04 0.26 1.58 0.0117 0.028

Krylov-MG(10−3,4) 15.03 0.34 2.21 0.0165 0.026

Krylov-MG(10−6,4) 15.03 0.63 4.37 0.0350 0.026

Notes: Set-up time per mixed solve for the linear operators is given in the final column. All numbers are averaged over the
total run of the baroclinic-wave test case on the C192 mesh described in Section 5.1. Times are given in seconds.

The test is run for 8 days of simulation time (768 time
steps) on 64 nodes of the Cray XC40 with six MPI ranks per
node and six OpenMP threads per rank.

The accuracy of the linear system is governed by the
solution obtained for Equation 5, which in all cases uses
the same GCR solver and relative tolerance 𝜖 = 10−6.
Therefore, there is very little difference in the solutions
obtained from the different solver set-ups in Table 1,
with the maximum difference in surface pressure after 8
days of simulation being ≈0.0001% as compared to the
Krylov(10−6) configuration.

Table 2 lists the average number of outer, mixed-solver
iterations per semi-implicit solve and the average num-
ber of iterations per pressure solve for each of the set-ups
described above and summarised in Table 1. Note that
in each time step the mixed solver is called four times
to solve a nonlinear problem and Table 2 shows the
average times for a single linear solve; these times are
visualised in Figure 3. For completeness, results for the
one-level multigrid method are also reported. Although
in essence this simply corresponds to four applications
of the line smoother, since npre +npost = 4 this guarantees
that the same number of fine-level smoother iterations
is used for all multigrid results. The multigrid methods
(provided more than one level is used) result in a signif-
icant reduction in the time taken for each linear solve
and, compared to the Krylov methods, require roughly the
same number of outer iterations. In particular, solving the

F I G U R E 3 Breakdown of solver times for the
baroclinic-wave test case on the C192 mesh described in Section 5.1.
Both the total time per solve and the time spent in the pressure
solver (filled bars) are shown

pressure correction equation to a relatively tight tolerance
of 𝜖H = 10−6 does not reduce the number of outer GCR
iterations. This implies that the main error in the approx-
imate Schur-complement solve is due to mass lumping,
and not to an inexact solution of the pressure equation.
Overall, a single multigrid V-cycle with L= 3 levels gives
the best performance. Increasing the number of multi-
grid levels further does not provide any advantage since
the problem is already well-conditioned after two coars-
ening steps, and adding further coarse levels will make
the method slightly more expensive. Although stand-alone
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T A B L E 3 Node configurations and local problem sizes for parallel strong scaling runs in Section 5.2

Local unknowns

Nodes Threads Local columns Mixed Pressure
384 13,824 24× 24 103,968 17,280
864 31,104 16× 16 46,528 7,680
1,536 55,296 12× 12 26,352 4,320
3,456 124,416 8× 8 11,872 1,920

line relaxation provides a cheap pressure solver (without
any global sums), this is offset by a significant increase in
the number of outer iterations such that the overall cost is
not competitive with the multigrid method. In fact (look-
ing at the final column of Table 2), 10 iterations of the
block-Jacobi solver are slightly more expensive than the
four-level multigrid V-cycle with two pre-/post-smoothing
steps; this is not too far off the theoretical cost estimate
in Equation 22. As the results for the Krylov-MG method
show, there is no advantage in wrapping the multigrid
V-cycle in a Krylov solver.

Although the use of the multigrid preconditioner sig-
nificantly improves the speed of the linear solver, it does
come with additional set-up costs. Principally, these come
from two areas that are not covered in the solver timings in
Figure 3. The first area is the set-up costs of the multigrid
hierarchy, such as reading in the multiple meshes, com-
puting the intergrid mappings and computation of certain
temporally invariant operators, such as the mass matri-
ces on every grid level. The additional cost of this area is
marginal and does not show itself in the overall model run-
times for the tests in Figure 3. The second area is the com-
putation of operators in Equation 16 that depend upon the
reference state (those denoted with a * in Equation 16) and
the restriction of the reference state (Π∗, 𝜌∗, 𝜃∗) between
different levels of the multigrid hierarchy. The average cost
per mixed solve of computing these operators for all solver
configurations is given in the final column of Table 2. If
any multigrid levels are used then the cost of computing
these operators increases by ≈50%, but adding more lev-
els after the first does not alter the cost significantly. This
increase is not a significant fraction of the overall model
runtime and is more than outweighed by the savings from
the solver; additionally, all these computations are local to
the processing element and so would be expected to scale
well.

Results (not shown) using the alternative iterative
methods listed in Section 4.1 for the pressure solver with
𝜖H = 10−2 show similar performance to the BiCGStab
solver presented in Table 2. The only exceptions are
the Jacobi and precondition-only methods, which take
approximately twice as long to run as using BiCGStab for

the pressure solver. Since the linear problem is not sym-
metric, the conjugate gradient method does not converge.

5.2 Massively parallel scalability

To examine parallel scalability, two representative pressure
solvers are chosen, namely BiCGStab with a prescribed
tolerance of 𝜖H = 10−2 (denoted “Kr2” hereafter) and a
stand-alone multigrid V-cycle with three levels (denoted
“MG”). For comparison, BiCGStab with a prescribed tol-
erance of 𝜖H = 10−6 (denoted “Kr6”) is also included in
the following study. The scaling tests are run on a C1152
cubed sphere mesh (6× 1152× 1152 cells) with≈9 km hor-
izontal resolution and 30 vertical levels with the same
stretched grid and vertical CFLv as in Section 5.1. The
total number of degrees of freedom is 1.4 ⋅ 109 with 2.4 ⋅ 108

pressure unknowns. The time step is set to 205 s such
that the horizontal-wave Courant number is again CFLh =
cs𝛥t∕𝛥x ≈ 8.0, as in Section 5.1. In a strong scaling exper-
iment the model is run for 400 time steps1 on up to 3,456
nodes of the Cray XC40, keeping the global problem size
fixed. Each node is configured to run with six MPI ranks
and six OpenMP threads per rank; for the largest node
count this corresponds to 3,456× 36= 12,4416 threads. In
this case the local state vector has around 10,000 degrees
of freedom and there are only around 2,000 pressure
unknowns per core. In Fischer (2015), an analysis of solver
algorithms is combined with a performance model for the
computation and communication costs. According to this
analysis, strong scaling is expected to break down when
the local number of unknowns is smaller than (104 −
105). It is therefore expected that the largest node count
considered in this article is well within the strong scaling
limit. Table 3 summarises the resulting local problem sizes
for all node counts.

The average times spent in the mixed and pressure
solvers are shown in Table 4. Note that these times are now
reported for an entire time step, that is, aggregated over

1Due to time constraints, the model is only run for 250 time steps with
the Kr6 solver on 384 nodes.
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MG Kr2 Kr6

Nodes T(m)
solve

T(p)
solve

T(m)
solve

T(p)
solve

T(m)
solve

T(p)
solve

384 4.70 2.34 15.1 10.3 35.0 26.3

864 3.14 1.30 8.82 5.52 14.0 10.9

1,536 1.63 0.563 5.96 3.69 16.7 10.5

3,456 1.15 0.285 5.71 3.34 11.1 7.24

Notes: All results are measured in seconds and are averaged over 400 time steps.
T(m)solve denotes the average total time spent in the mixed, outer solve for each time step;
T(p)solve is the average time spent in the inner pressure solve.

T A B L E 4 Strong scaling of the time spent
in the linear solver on different numbers of nodes
for the C1152 mesh test case in Section 5.2

four linear solves. This allows a quantitative comparison to
the overall communication cost per time step as reported
in Fig. 6.

It should be noted that the Aries network deployed on
the Cray XC40 uses an adaptive routing algorithm for the
messages (Mendygral et al., 2019). This ensures the best
utilisation of all the network links across the machine, but
may not be optimal for a given task. Moreover, the path
taken by messages is not the same each time, resulting
in variation in the time taken. Ideally, a statistical mea-
sure such as the minimum or mean would be taken over
many measurements to discount such variation. However,
jobs running on such large numbers of nodes would be
computationally expensive and the large number of poten-
tial paths through the network would require a large (and
expensive) statistical sample, which was not feasible for
this study. Consequently, only a single result for each
set-up is reported.

Figure 4 quantifies the strong scaling of the time spent
in the inner pressure solver. Rather than plotting the abso-
lute times (which can be read off from Table 4), the parallel
efficiency and the relative cost of the Krylov subspace
solvers (Kr2 and Kr6) compared to the multigrid (MG) are
shown. Let T(p)

solve(N) be the time spent in the pressure solve
on N nodes. The parallel efficiency PE relative to Nref = 384
nodes is defined as

PE =
T(p)

solve(Nref)∕T(p)
solve(N)

N∕Nref
. (25)

As the unhatched bars in Figure 4 show, the multigrid
solver scales extremely well to 3,456 nodes. Both Krylov
solvers ( hatching for Kr2 and hatching for Kr6) show
significantly worse scaling; that the trend is not smooth
can be attributed to network variability. The upper panel
of Figure 4 shows the relative performance of the multi-
grid solver and the two Krylov methods for increasing node
counts. More specifically, the ratio R=Kr/MG is obtained
by dividing the time spent in one of the Krylov solvers
by the time for the multigrid solver. The MG solver is
much faster than either Kr2 or Kr6, especially for large

F I G U R E 4 Strong scaling of the time spent in the inner
pressure solver for the C1152 mesh test case in Section 5.2. The
lower panel shows the parallel efficiency PE compared to 384 nodes
as defined in Equation 25. The horizontal dashed line corresponds
to perfect scaling where PE= 1. The relative cost of the Krylov
solvers (Kr2 and Kr6) compared to the multigrid V-cycle (MG) is
shown at the top.

node counts where the superior scalability of the multigrid
algorithm pays off: for 3,456 nodes, the MG solver is more
than 11 times faster than Kr2 and 25 times faster than Kr6.
As will be discussed below, this can be at least partially
explained by the fact that the multigrid does not rely on
costly global reductions, which are required in each itera-
tion of the Krylov subspace solvers. However, even for 384
nodes the relative advantage of MG is more than 4 times
that of the Kr2 solver and 11 times that of Kr6.

Figure 5 shows the same quantities as in Figure 4, but
for the outer, mixed solve. Again the parallel efficiency is
given in the lower panel, while the upper panel quantifies
the relative advantage of the MG pressure solver as com-
pared to Kr2 and Kr6. Compared to Figure 4, the strong
parallel efficiency of the outer solve drops to less than 40%
for all pressure solvers. This can be explained by the addi-
tional parallel communications in the outer solver, which
have a particularly strong impact for MG. As can be seen
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F I G U R E 5 Strong scaling of the time spent in the outer,
mixed solver for the C1152 mesh test case in Section 5.2. The lower
panel shows the parallel efficiency PE compared to 384 nodes as
defined in Equation 25. The horizontal dashed line shows perfect
scaling where PE= 1. The relative cost of the Krylov pressure
solvers (Kr2 and Kr6) compared to the multigrid V-cycle (MG) is
shown at the top

from Table 4, this is to be expected since the multigrid
solver accounts for a relatively smaller fraction of the outer
solve time. However, as can be read off from the top panel
of Figure 5, the MG pressure solver still improves perfor-
mance relative to Kr2 and Kr6: on the largest node count
the multigrid leads to a 4× reduction in runtime compared
to Kr2 (9× for Kr6) and even on 384 nodes the relative
advantage of MG is 3× for Kr2 (7× for Kr6).

To understand the differences in parallel scalabil-
ity for the different pressure solvers, reported in Fig. 6
shows the communication costs for increasing numbers of
nodes. This includes both local communications in halo
exchanges (top panel) and all-to-all communications in
global reductions (bottom panel). The numbers were col-
lected with the CrayPAT profiler in sampling mode. For
technical reasons it was not possible to limit the measure-
ments to the solver routine. Instead, the measured data is
aggregated across all the calls to the relevant MPI library
functions for the entire model run. However, from the pro-
filing data, the time spent in the semi-implicit solver varies
from 58–72% of the time per time step for MG, 79–87% for
Kr2 and 89–92% for Kr6. Moreover, almost all the calls to
the global sum take place in the solver routines. Thus it is
reasonable to conclude that the communication costs are
dominated by the solver.

The lower panel in Figure 6 shows 𝜏, the time spent in
the global sums per time step. On the largest node count,
the approximate times are 𝜏 ≈ 2 s for MG (unhatched),
𝜏 ≈ 7 s for Kr2 ( hatching) and 𝜏 ≈ 12 s for Kr6 ( hatch-
ing). Evidently Kr2 and Kr6 spend much more time in

F I G U R E 6 Strong scaling of the average communication
costs per time step for the C1152 test case in Section 5.2. The upper
panel shows the cost of MPI send/receive operations during halo
exchange; the lower panel shows the time spent in global sums. All
times are measured with the CrayPAT profiling tool

global communications. This is readily explained by the
fact that the number of global sums in the pressure solve is
proportional to the number of Krylov solver iterations. In
contrast, the MG V-cycle does not require any global sums
and the superior scaling of the MG pressure solver itself
(Figure 4) can be largely accounted for by this absence of
the global communication. Moreover, from Figure 6 it can
be seen especially for Kr6 the variation in the cost of the
global sum is large. To quantify this, define the variation 𝜈t
as

𝜈t =
tmax − tmin

tmax + tmin
, (26)

where tmin and tmax are the smallest and largest measured
global communication times across all four considered
node counts. For the different methods the numerical val-
ues are 𝜈t = 0.18 for MG, 𝜈t = 0.17 for Kr2 and 𝜈t = 0.36
for Kr6. Apart from the longer time-to-solution, the large
variation in global communication costs due to network
variability is another disadvantage of the Kr6 method.
Again, this can be explained by the significant fraction of
time spent in global sums during the pressure solve. For
MG, global sums are only required in the outer solve and
consequently the runtime variation is much smaller.

Although the trend in the data is not entirely clear
due to the network variability, the Kr2 solver ( hatching)
spends the least amount of time in nearest-neighbour com-
munications. Since Kr6 ( hatching) requires more itera-
tions to converge, it will also require more halo exchanges.
The nearest-neighbour communication cost of the MG
V-cycle (unhatched) lies somewhere between these two
extremes, which can be attributed to additional halo
exchanges on the coarser multigrid levels. Note, however,
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that limiting the number of levels to L= 3 in the shallow
multigrid approach avoids the inclusion of very coarse lev-
els with a poor computation-to-communication ratio. The
cost of halo exchange decreases with the number of nodes.
This is again plausible since (as long as the message size is
not too small) local communication is bandwidth-bound
and thus scales with the amount of data that is sent. The
third column of Table 3 shows that the size of the halo
reduces by a factor of 3 as the number of nodes increases
from 384 to 3,456.

The multigrid solver scales better than might be
expected from Fischer (2015), which predicts that for
the largest node count the local problems are so small
that strong scaling should break down. This can be at
least partially attributed to the fact that the analysis in
Fischer (2015) is for a three-dimensional decomposition,
whereas in the present work the decomposition is only
two-dimensional. Surface-to-volume scaling implies that
for small local volumes, there is less communication in two
days than in three days.

As discussed in Section 5.1, there are extra costs for the
set-up of the multigrid solver. The dominant costs arise
from the computation of operators in Equation 16, which
depend on the reference state and the restriction of the ref-
erence state between levels in the multigrid hierarchy. The
cost of this computation is small compared to the overall
runtimes, in some cases less than 1%, which is then not
automatically captured in the profile. However, from the
incomplete data captured it is apparent that, firstly, the
computation of the operators scales very well with the pro-
cessor number (as it is proportional to the problem size),
and secondly, the excess cost for the multigrid is small,
roughly a 50% increase as compared to the Krylov meth-
ods. Moreover, the excess is itself small compared to the
cost of the multigrid pressure solve, about 6–8%.

5.3 Robustness with respect to the
time-step size

Finally, the impact of variations in the horizontal acoustic
Courant number CFLh on the performance of the model is
studied. As can be inferred from the analysis in Section 3.5,
the condition number of the Helmholtz operator H in
Equation 15 depends strongly on CFLh. In other words,
for a fixed grid spacing the condition number will increase
with the time-step size, which can potentially make the
pressure solver more costly. To quantify the impact of this,
the model was run on 384 nodes with time-step sizes of
varying length. Aside from this, the set-up is the same as
in Section 5.2. Table 5 shows the number of outer mixed
and pressure solver iterations for CFLh between 4 and

T A B L E 5 Average number of solver iterations for
the outer mixed and inner pressure solves for increasing
horizontal acoustic Courant number

Iterations

CFLh Solver Mixed Pressure T(m)
solve

4 MG 12.9 — 3.96

4 Kr2 13.2 9.4 9.13

4 Kr6 12.0 26.2 16.29

6 MG 13.6 — 4.98

6 Kr2 13.3 13.2 10.31

6 Kr6 12.3 40.4 22.16

8 MG 14.0 — 4.70

8 Kr2 13.3 17.3 15.15

8 Kr6 12.6 54.2 34.96

Notes: Results are reported for the C1152 test case in Section 5.2.
The final column lists the average time spent in the mixed, outer
solve for each time step.

8. Results for CFLh = 4,6 are averaged over the first 100
time steps. The final column of Table 5 shows the average
time spent in the linear solver in each time step. Unfor-
tunately it was not possible to choose larger time-step
sizes due to instabilities resulting from the CFL limit
imposed by the explicit advection scheme (for the simu-
lations in Section 5.1 with the horizontal wave CFLh ≈ 8,
the advective Courant number grows from CFLadv,h ≈ 0.6
early in the simulation to around CFLadv,h ≈ 1.3 at the end
of the simulation; the vertical advective Courant number
is CFLadv,v ≈ 1.8 by the end of the simulation). For the
Kr2 and Kr6 solvers the number of inner, pressure iter-
ations is also given. It can be observed that the number
of outer iterations is largely insensitive to increases in the
time-step size. In particular, using one multigrid V-cycle
for the pressure solve gives good results for the range
of CFLh considered here. Any increase in the wall-clock
time for the configurations using Krylov subspace pres-
sure solvers can be clearly attributed to the growing num-
ber of inner iterations. Relative to the MG set-up, which
only requires exactly one multigrid V-cycle in the pres-
sure solve, the cost of the Kr2 and Kr6 solvers increases
for larger values of CFLh. This is readily explained by
the fact that the number of pressure solver iterations
grows with the condition number. Empirically it can be
observed that this number of iterations approximately dou-
bles when CFLh is increased from 4 to 8. While values
of CFLh ≈ 10 are typical atmospheric simulations, even
for smaller time-step sizes the multigrid pressure solver
shows a clear advantage compared to Krylov subspace
methods.
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6 CONCLUSION

This article describes the construction of a Schur-
complement preconditioner with a multigrid pressure
solver for the mixed-finite element LFRic numerical fore-
cast model. Due to the presence of a velocity mass
matrix–matrix, an additional outer solver iteration is nec-
essary, which makes the solver significantly more com-
plex than in simpler finite-difference models on structured
latitude–longitude grids. By exploiting the structure of
the Helmholtz operator on the highly anisotropic global
grid, it is possible to build a highly efficient bespoke
multigrid method using the tensor-product approach in
Börm and Hiptmair (2001). Using only a relatively small
number of multigrid levels further improves parallel
scalability.

The numerical results presented here confirm the
conclusions from earlier studies in idealised contexts, as
described, for example, in Mitchell and Müller (2016):
compared to Krylov subspace methods, solving the pres-
sure correction equation with a single multigrid V-cycle
leads to significantly better overall performance. Run-
ning a baroclinic test case with more than 1 billion (109)
unknowns on 124,416 threads, the multigrid reduces the
time spent in the outer, mixed solve by a factor of around
4. Since it requires significantly fewer global reductions,
the multigrid also scales better in parallel. In contrast to
Krylov subspace-based pressure solvers, the multigrid is
robust with respect to changes in the time-step size.

There are several avenues for future work. While the
multigrid has been demonstrated to be consistently bet-
ter than any other considered solver, there are likely fur-
ther small, problem-specific optimisations that can be
achieved, for example, by tuning the parameters or includ-
ing additional terms in the approximate Helmholtz oper-
ator by using a modified mass lumping strategy. While
the focus of this article was on the lowest-order discretisa-
tion, Mitchell and Müller (2016) have demonstrated that
the approach can be easily extended to higher orders by
including an additional p-refinement step in the multi-
grid hierarchy. LFRic already provides the necessary code
infrastructure. Following the promising results shown
here, extending the approach from global simulations to
local area models will require careful treatment of the
boundary conditions, but is likely to lead to similar perfor-
mance gains. Finally, an obvious downside of the approx-
imate Schur-complement approach pursued here is the
need for an additional outer solve of the mixed problem.
As has been shown recently in Gibson et al. (2020), this
can be avoided by using a hybridised mixed finite element
discretisation. In fact, for a gravity-wave test case a solver
based on this hybridised approach has already been imple-
mented in LFRic. Although not yet available currently,

an efficient preconditioner for this solver is being actively
developed.
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