The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil – a review

[thumbnail of Ponting et al Revised manuscript with no changes marked.pdf]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Ponting, J., Kelly, T. J., Verhoef, A. orcid id iconORCID: https://orcid.org/0000-0002-9498-6696, Watts, M. J. and Sizmur, T. orcid id iconORCID: https://orcid.org/0000-0001-9835-7195 (2021) The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil – a review. Science of the Total Environment, 754. 142040. ISSN 0048-9697 doi: 10.1016/j.scitotenv.2020.142040

Abstract/Summary

The frequency and duration of flooding events are increasing due to land-use changes increasing run-off of precipitation, and climate change causing more intense rainfall events. Floodplain soils situated downstream of urban or industrial catchments, which were traditionally considered a sink of potentially toxic elements (PTEs) arriving from the river reach, may now become a source of legacy pollution to the surrounding environment if PTEs are mobilised by unprecedented flooding events. When a soil floods, the mobility of PTEs can increase or decrease due to the net effect of five key processes; (i) the soil redox potential decreases which can directly alter the speciation, and hence mobility, of redox sensitive PTEs (e.g. Cr, As), (ii) pH increases which usually decreases the mobility of metal cations (e.g. Cd2+, Cu2+, Ni2+, Pb2+, Zn2+), (iii) dissolved organic matter (DOM) increases, which chelates and mobilises PTEs, (iv) Fe and Mn hydroxides undergo reductive dissolution, releasing adsorbed and co-precipitated PTEs, and (v) sulphate is reduced and PTEs are immobilised due to precipitation of metal sulphides. These factors may be independent mechanisms, but they interact with one another to affect the mobility of PTEs, meaning the effect of flooding on PTE mobility is not easy to predict. Many of the processes involved in mobilising PTEs are microbially mediated, temperature dependent and the kinetics are poorly understood. Soil mineralogy and texture are properties that change spatially and will affect how the mobility of PTEs in a specific soil may be impacted by flooding. As a result, knowledge based on one river catchment may not be particularly useful for predicting the impacts of flooding at another site. This review provides a critical discussion of the mechanisms controlling the mobility of PTEs in floodplain soils. It summarises current understanding, identifies limitations to existing knowledge, and highlights requirements for further research.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/92613
Identification Number/DOI 10.1016/j.scitotenv.2020.142040
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar