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Abstract   1 

Cocoa mirids are the most important insect pests of cocoa in West Africa. This study 2 

investigated the effect of environmental parameters that are modulated by overhead shade, 3 

i.e. light intensity and temperature, on nutrient and phenolic concentrations in cocoa and their 4 

subsequent effect on mirid feeding. Eight-month-old cocoa seedlings were maintained for 50 5 

days in two growth chambers set to day temperatures of 25oC or 30oC. Each chamber had 6 

sections with different light intensities (541, 365 and 181 µmolm-2s-1 PAR). For the field 7 

studies at Akim-Tafo in Ghana, eight-month-old plants of three cocoa clones were subjected 8 

to shaded (PAR= 180 µmol m-² s-1, between 11:00 and 12:00) and unshaded (PAR= 1767 9 

µmol m-² s-1 between 11:00 and 12:00) treatments for 50 days after which nutrient 10 

measurements and mirid choice tests were carried out. No significant effect of environment 11 

was observed on the phenolic concentration of stems under controlled environment chamber 12 

conditions. However, in the field, the phenolic concentration of stems was significantly 13 

greater for unshaded compared with shaded plants (P=0.04). Under controlled conditions, the 14 

leaf nitrogen concentration increased slightly with light intensity (P=0.003). The same trend 15 

was seen in stems but only at 30oC. In the field, the impact of overhead shade on nitrogen 16 

varied between cocoa clones. The concentration of carbohydrates in both leaves and stems in 17 

the field was higher under unshaded conditions. When subjected to feeding tests, stems from 18 

unshaded cocoa had significantly more mirid feeding lesions (P=0.003) after 24 hours 19 

exposure to mirids compared to shaded cocoa. Mirid feeding therefore appears not to be 20 

deterred by the higher phenolic levels but rather there was a preference for cocoa tissue 21 

grown under unshaded conditions. These findings highlight the need to consider the growing 22 

environment of cocoa clones when screening for varieties with resistance to mirids. 23 

Key words: cocoa, mirids, phenolics, plant nutrient, choice-test 24 

  25 



3 

 

1.0 Introduction     1 

Plants have evolved mechanisms over time to reduce insect feeding. Many plant secondary 2 

metabolites are known to affect the feeding, growth and oviposition of insects (Halkier and 3 

Du, 1997, Ossipov et al., 2001, Lattanzio et al., 2009). Such plant defence compounds 4 

include proteinase inhibitors, which inhibit digestion of proteins in insects thereby causing 5 

retarded growth and may eventually result in insect mortalities due to starvation (Stotz et al., 6 

1999). As a group, the mirid species, Sahlbergella singularis Haglund and Distantiella 7 

theobroma (Distant) (both Hemiptera: Miridae), are the most important insect pests on cocoa 8 

(Theobroma cacao) in West Africa. Since plant phenolics and nutrients influence insect 9 

herbivory in a number of plant species (Dudt and Shure, 1994, Duffey and Stout, 1996, 10 

Lattanzio et al., 2009), understanding the effects of environmental factors on plant nutrient 11 

concentration and plant defence compounds could aid mirid management on cocoa farms.  12 

 13 

Campbell (1984) reported that knowledge of mirid nutrient requirements and defence 14 

compounds produced by cocoa against mirids is limited and this still remains the case today. 15 

Specifically, there is little information on the relationship between soluble carbohydrates in 16 

tissues and mirid feeding or the extent to which phenolics might deter feeding. On the other 17 

hand, nitrogen is suggested to be a limiting factor as feeding by mirids on cocoa tissue with a 18 

high nitrogen concentration has been associated with an increase in weight and overall 19 

growth of mirids as compared with mirids on nitrogen poor diets (Entwistle, 1972). Anikwe 20 

(2010) also showed that Sahlbergella singularis preferred cocoa pods that had high protein 21 

concentration. This might explain, in part, why fertilizer application generally has been 22 

associated with an increase in insect feeding (White, 1984, Thompson and Hagen, 1999, Lee 23 

et al., 2003) since nitrogen concentration would be expected to be higher in the leaves, 24 

chupons and young unhardened stems making them a preferred choice over food sources with 25 

a lower nitrogen concentration (Altieri and Nicholls, 2003). 26 

Mirids are known to prefer unshaded areas of cocoa farms, where they create extensive 27 

damage referred to as pockets (Padi and Owusu, 1998, Bigger, 1981, Entwistle, 1985, 28 

Awudzi et al., 2009, Babin et al., 2010). High solar radiation in unshaded areas of cocoa 29 

farms or portions with a break in the shade canopy enhances photosynthetic rate and 30 

vegetative growth of the cocoa trees (Bos et al., 2007, Babin et al., 2010). These new shoots 31 

provide feeding and breeding sites which sustain mirid growth and development. The quality 32 

and quantity of light has also been reported to affect nutrient concentrations in plant tissues, 33 
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which has a consequent influence on insect feeding (Bryant et al., 1983, Dudt and Shure, 1 

1994). However, the extent to which environmentally induced changes in cocoa tissue 2 

nutrient concentrations and defence compounds might impact on mirid feeding is not known. 3 

Here, we hypothesise that different concentrations of defence compounds and/or nutrients in 4 

the leaves and stems of shaded compared with unshaded cocoa affect the feeding preference 5 

of mirids. The impact of environmental factors that are modulated by shade, i.e. temperature 6 

and light on defence compounds and nutrients were studied through a combination of 7 

controlled environment and field studies.  8 

2.0 Materials and methods  9 

2.1 Controlled environment experiment 10 

Eight-month-old seedlings (variety: Amelonado) from the International Cocoa Quarantine 11 

Centre, at the University of Reading were used. Seedlings selected were those whose new 12 

leaves were just about to emerge (flush). Plants were grown in pots (volume 800ml) and the 13 

potting medium used was an inert mixture of sand, gravel and vermiculite (1:2:2 v:v). They 14 

were fed daily with a modified Long Ashton nutrient solution developed for cocoa (End, 15 

1990) with pH maintained between 5.5 and 5.7 and an electrical conductivity of 2mS. Two 16 

walk-in growth chambers were used (dimensions, 3.2m long 2.5m wide and 1.8m high; 17 

Fitotron WEISS Gallenkamp, Loughborough, UK). The chambers were set to provide two 18 

different day temperatures (30oC or 25oC day ± 0.5 oC) with a common night temperature 19 

(22oC± 0.5 oC) and a 12-hour day length to mimic tropical daylength. Each chamber was sub-20 

divided into sections to give three different light intensities: 541 µmol m-2 s-1; 365 µmol m-2 s-21 

1; and at 181 µmol m-2 s-1 photosynthetically active radiation (PAR). Light was provided by 22 

fluorescent lamps (MASTER/TL/D/Reflex-58W/840/1SL, Philips) and their intensities were 23 

adjusted with a dimmer switch. PAR in each treatment was measured with a LI-COR 24 

quantum sensor (LI-191SA; LI-COR, Lincoln, NE 68504, USA) attached to a quantum flux 25 

meter (Skye Instruments, Llandrindod Wells).  26 

PAR was measured periodically, to note any changes incident on the plants as they grew 27 

taller; values recorded on day 30 were as follows: 550 µmol m-2 s-1; 380µmol m-2 s-1 and 185 28 

µmol m-2 s-1. Even though plants grew taller as the experiment progressed, the resultant 29 

increases in PAR at the shoot apex were relatively small. The experiment was carried out for 30 

50 days in a split plot design with temperature as the main plot and light intensity as subplots 31 
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with 5 plants in each treatment. The last six fully expanded leaves and stem cuttings were 1 

removed from plants from all treatments after day 50 and kept at -20 oC until required for 2 

analysis. These samples were later ground in liquid nitrogen and stored at -80 oC for 3 

subsequent analysis. Tissue concentrations of total phenolics, nitrogen and carbohydrates 4 

were determined on three replicate stem and leaf samples under each light and temperature 5 

treatment.  6 

2.2 Field experiment 7 

An experiment to study the effect of solar radiation and temperature on the nutrient and total 8 

phenolic concentration in cocoa stems and leaves was carried out in the field at the Cocoa 9 

Research Institute of Ghana (CRIG), Akim-Tafo (latitude 06° 13’N, longitude 0°22’W), in 10 

the Eastern Region of Ghana. The cocoa clones used were: CATIE 1000, IMC 67 and T 11 

85/799, originally sourced from the International Cocoa Quarantine Centre, University of 12 

Reading, UK. Eight-month-old clonal plants in pots containing loamy soil were transplanted 13 

into field plots at a spacing of 2m x 2m in shaded and unshaded treatments with 5 replicate 14 

plants per clone per treatment. Shade was provided by shade cloths and plants were watered 15 

daily in the mornings at 8:00am. Plants were maintained for 6 months after which stem 16 

cuttings and the last six fully expanded leaves were sampled for nitrogen, soluble 17 

carbohydrates and total phenolic concentration. Three replicates of stem cuttings and leaf 18 

samples were taken from each treatment.    19 

Measurements of light quantity and quality were taken between the hours of 11:00am and 20 

12:00 noon under the shaded and unshaded conditions over 5 days and averaged. A light 21 

meter (Skye Instruments, Llandrindod Wells) fitted with a LI-COR light sensor was used to 22 

measure PAR, whilst UV radiation (UVA & UVB) was measured with a UV meter 23 

(Solartech Inc. Solar meter model 5.7, UK). Temperature and relative humidity 24 

measurements were recorded with miniature data loggers (Gemini Tiny Tags, UK) placed in 25 

Stevenson screens, set to log at 30 minutes intervals, for 5 days and averaged. Total 26 

phenolics, nitrogen and carbohydrates were determined in leaf and stem samples. The 27 

experiment was an un-replicated split plot design with shade regime as main plots and cocoa 28 

clones as sub-plots in replicates of five. The field experiment was carried out from February 29 

to July, 2012 and the whole experiment was repeated between August 2012 and January 30 

2013.  31 
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Total phenolics extraction and analysis  1 

Total phenolic concentration of samples taken from both the controlled environment and field 2 

studies were determined using a method described by Singleton and Rossi (1965), using 3 

Folin-Ciocalteu as the reactive reagent on samples ground while frozen under liquid nitrogen. 4 

Preparation of the calibration curve for total phenolic concentration determination was 5 

carried out using gallic acid at a concentration of 0.5g/500ml and diluted serially 8 times. The 6 

total phenolic concentration was expressed as Gallic acid equivalents (GAE).  7 

Nitrogen analysis 8 

Nitrogen concentration of dried ground samples from the controlled environment studies was 9 

determined by a micro-Kjeldhal method. This analysis was carried out by the Farm Advisory 10 

Services Team (FAST), Faversham, UK. Samples were subjected to sulphuric acid/selenium 11 

digest followed by dilution and analysis through a Foss Fiastar 5000 Flow Analysis Injection 12 

analyser. The digested solution was made highly alkaline by merging with a sodium 13 

hydroxide stream, which releases ammonia gas that permeates a gas permeable membrane 14 

and into an indicator stream. The intensity of the colour produced was read photometrically at 15 

590nm and the concentration of ammonium nitrogen was read against a calibration curve.  16 

Determination of nitrogen concentration for field samples in Ghana was carried out using a 17 

modified form of the Kjeldhal method as described by Bremner and Mulvaney (1982).  18 

Carbohydrate analysis 19 

The carbohydrate concentration of ground stem and leaf samples taken from the controlled 20 

environment experiment was determined using the method described by Yemm and Willis 21 

(1954) with anthrone as a reagent. The green colour produced when carbohydrates are heated 22 

with anthrone in acid solution is the basis for this test. The carbohydrate concentration in 23 

field samples was determined by the method described by Dubois et al. (1956). This method 24 

is based on the reaction between simple sugars and phenol and concentrated sulphuric acid, 25 

which generates a yellow-orange colour. Different methods for carbohydrate extraction had 26 

to be used for the controlled environment and field experiments as the same equipment was 27 

not available in both places. Thus, we do not compare absolute carbohydrate values between 28 

the two sets of data. However, de Toledo et al. (2012) demonstrated the different methods 29 

measure the same type of carbohydrates and give comparable results.  30 
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2.3 Mirid feeding preference test for cocoa clones (choice test) 1 

Stem cuttings were taken from different clones to evaluate their attractiveness (defined as a 2 

combination of attraction and antixenosis) to mirids after exposure to either shaded and 3 

unshaded treatments in the field for six months in Ghana using the method described by N’ 4 

Guessan et al. (2008). Healthy young twigs of each of the three cocoa clones from the shaded 5 

and unshaded treatments in the field experiment were cut into 5-cm sections and arranged 6 

randomly each time with each piece touching another in Petri dishes forming a hexagon of 7 

six sections. Cuttings were selected from plants of the same age and similar size at the mid-8 

sections with similar circumference. Adult mirids were collected from CRIG plots at Tafo 9 

with hybrid cocoa and reared on chupons and pods in an insectary as described by Babin et 10 

al. (2008). One 4th instar (nymph which has just developed wing buds) S. singularis mirid 11 

nymph of the next generation, starved for 24 hours to the time of screening, was placed in the 12 

middle of each Petri dish and the number of feeding lesions on stem cuttings counted and 13 

recorded after 24hrs. The test was conducted twice with 8 replicates on each occasion making 14 

a total of 16 cuttings per clone * shade treatment. Petri dishes were placed on insectary 15 

benches to obtain uniform distribution of light on test materials at an average room 16 

temperature of 25oC. 17 

3.0 Statistical analysis   18 

The differences in the concentration of nitrogen, carbohydrate and phenolics in samples as a 19 

result of the different treatments under both controlled and field conditions were determined 20 

using an ANOVA. In the mirid feeding preference tests, the impact of shaded and unshaded 21 

treatments as well as the different cocoa clones on mirid feeding was also analysed by means 22 

of ANOVA. For the field experiment, the analysis was performed on the combined data of 23 

the two repeated experiments since initial analysis showed no significant differences in the 24 

repeated experiments for phenolics, nitrogen, carbohydrate concentrations and mirid feeding 25 

preference. Data was analysed with GenStat version 11. 26 

 27 

4.0 Results  28 

 29 

4.1  Controlled environment 30 

4.1.1 Total phenolics  31 

There was a non-significant trend of a reduction in phenolic concentration in stems with an 32 

increase in PAR (P=0.06) or temperature (P=0.79). There was also no significant effect of 33 
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light (P=0.9) or temperature (P=0.64) on the total phenolic concentration in leaf samples 1 

measured (data not shown).  2 

 3 

4.1.2 Nitrogen   4 

The nitrogen concentration of leaves was significantly greater in plants grown under higher 5 

light intensity (P=0.003) (Fig. 1 A). A significant interaction of light and temperature was 6 

observed on percentage nitrogen in stems (P=0.05) (Fig. 1 B). Stem nitrogen concentration of 7 

plants grown at 30oC increased with increasing light intensity. However, this trend was not 8 

observed at 25oC. As with leaves, stems under the highest light level also had the greatest 9 

percentage nitrogen (P=0.04) while temperature had no significant effect (P=0.28).  10 

 11 

Figure 1 here 12 

 13 

4.1.3 Soluble carbohydrates   14 

A significant interaction of light and temperature on soluble carbohydrate concentration of 15 

cocoa leaves was observed (P=0.04) such that an effect of temperature (P=0.04) (Fig. 2A) 16 

was only observed at a PAR of 365 µmol m-2 s-1 (where carbohydrate concentration was 17 

higher at 25°C). There was also a significant interaction of light and temperature on the 18 

carbohydrate concentration of stems (P=0.03) whereby carbohydrate concentration was 19 

higher at 30°C at PAR levels of 181 and 365 µmol m-2 s-1 but no significant differences 20 

between temperatures were evident at the highest PAR (Fig. 2 B).  21 

Figure 2 here 22 
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4.2 Field experiment  1 

4.1. Microenvironment 2 

UVA radiation was significantly higher in the unshaded treatment (mean=0.40 mw cm-²) 3 

relative to shade treatment (mean=2.4 mw cm-²) (P<0.001; Lsd= 0.18). UVB radiation was 4 

also significantly higher under the unshaded treatment (mean=289.67 µw cm-²) than the 5 

shaded treatment (mean= 27.33 µw cm-²) (P<0.001; Lsd=3.5). PAR (between 11:00 and 6 

12:00) measured under unshaded conditions was significantly greater (mean= 1767 µmol m-² 7 

s-1) compared with the shade treatment (180 µmol m-² s-1) (P<0.001; Lsd=122.7). Day time 8 

mean temperature under unshaded conditions (mean=32 oC) was significantly greater than 9 

that measured under shade (mean= 25 oC) (P=0.01; Lsd=4.14), whilst there was no significant 10 

difference in relative humidity measured in unshaded (mean=57%) compared with the shaded 11 

treatment (62%) (P=0.08; Lsd=6).  12 

 13 

4.2.1 Total phenolics   14 

A significant interaction between clone and shade treatments was observed in the 15 

concentration of total phenolics in leaves (P=0.03). For all three cocoa clones, the 16 

concentration of phenolics was higher under non-shaded conditions but the magnitude of the 17 

difference was not consistent across clones (Fig. 3A). The difference between the phenolic 18 

concentration of unshaded and shaded IMC 67 was greater than 18mg g-1 while for CATIE 19 

1000 and T85/799, the differences were approximately 12mg/g and 7mg/g, respectively. 20 

Phenolic concentration in stems was also influenced by the shade treatments (P=0.04) (Fig. 3 21 

B). There was a significant effect of shade on the phenolic concentration of CATIE 1000 22 

(higher under no shade conditions) but not on the other two clones. In all, the phenolic 23 

concentration of leaves (mean=89 mg/g) was significantly greater than that in stems (42 24 

mg/g) (P<0.001; Lsd= 8.6).  25 

Figure 3 here 26 

4.2.2 Nitrogen 27 

There was a significant interaction between shade treatments and clone on the nitrogen 28 

concentration of stems (P=0.01). The effect of shade was significant only for CATIE 1000 29 

and IMC 67. However, the direction of response was inconsistent as under the shaded 30 
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condition the nitrogen concentration of CATIE 1000 in stems was significantly greater than 1 

in unshaded trees while the reverse was observed for IMC 67 (Fig. 4).     2 

 3 

Figure 4 here 4 

4.2.3 Soluble carbohydrates     5 

Carbohydrate concentration of leaves was significantly influenced by clone (P<0.001) as well 6 

as by shade treatments (P<0.001) (Fig. 5A). Carbohydrate concentration was greater in 7 

unshaded conditions and highest for IMC 67 (25mg/g). There was no significant interaction 8 

between clone type and shade treatments. It can be seen from Figure 5B that there is a 9 

significant interaction between shade treatments and clones on carbohydrate concentration in 10 

stems (P=0.01). In all cases, carbohydrate concentration was greater under the unshaded 11 

treatment but the magnitude of the difference was greatest for CATIE 1000.  12 

 13 

Figure 5 here 14 

4.2.4 Mirid preference test for cocoa clones 15 

Stem cuttings from unshaded cocoa clones had significantly (P=0.003) more mirid feeding 16 

lesions after 24hrs exposure to previously starved 4th instar mirids compared to stem cuttings 17 

from shaded cocoa clones (Fig. 6). The effect of shade on mirid feeding preference was 18 

greater for IMC 67 and T 85/799 than for CATIE 1000. There was however no significant 19 

effect of clone on mirid feeding preference.   20 

Figure 6 here 21 

5.0 Discussion  22 

Most phytophagous insects have a narrow range of host plants on which they feed. This host 23 

range is often limited by the presence or absence of chemical (secondary metabolites) or 24 

physical feeding stimulants or deterrents. Such chemical stimulants or deterrents are usually 25 

complex in nature and may have more than one function depending on the plant species in 26 

question (Close and McArthur, 2002, Lattanzio et al., 2009). Plant phenolic compounds, an 27 

example of such secondary metabolites, are found mainly in the epidermis and its appendages 28 

and may act as the first line of defence absorbing the harmful UV region of the light spectrum 29 

(Caldwell et al., 1983, Grammatikopoulos et al., 1999, van Emden, 1966). However, phenolic 30 

compounds may have some other important functions. They are reported to function as 31 

antifungal agents and due to their bitter taste, are considered as potential feeding deterrents to 32 
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insect herbivores (Matern and Kneusel, 1988, Bernays et al., 1989, Berenbaum, 1995, 1 

Haukioja et al., 2002). On the other hand, nutrients such as nitrogen and carbohydrates have 2 

been reported to enhance insect growth and development (van Emden, 1966, Waring and 3 

Cobb, 1992, Entwistle, 1985).  This study sought to clarify the effect of light and temperature 4 

on plant nutrients and phenolic compounds in cocoa, thereby potentially providing some 5 

understanding as to why mirids prefer unshaded to shaded cocoa. Mirid numbers increase 6 

under shaded cocoa when there is a break in the canopy permitting more light into the crop 7 

canopy (Padi and Owusu, 1998, Babin et al., 2010).  8 

 9 

Differences in phenolic concentration of leaves and stems observed under different light and 10 

temperature treatments under controlled environment and shaded and unshaded cocoa in the 11 

field experiment suggest that light and temperature influences nutrients and phenolic 12 

concentrations in leaves and stems of cocoa. Under controlled conditions, there was a trend of 13 

increasing concentration of total phenolic compounds in young cocoa stems as PAR levels 14 

decreased. This result was different from that observed in the field where significantly more 15 

phenolic compounds were measured in unshaded compared to shaded cocoa. The difference 16 

in the quality and quantity of light that plants were exposed to could explain the difference in 17 

results obtained between controlled and field experiments. In the field, plants were subjected 18 

to a broader spectrum of light and high levels of UVA and UVB were measured, which are 19 

reported to influence the phenolic synthesis pathway in plants (Hatcher and Paul, 1994, 20 

Zavala et al., 2001). However, UV light was absent in fluorescent tubes used in providing 21 

light under the controlled environment experiment. As mirids preferred feeding on twigs kept 22 

under unshaded conditions with relatively high phenolic concentrations as observed in the 23 

mirid preference tests, high phenolic concentration of stems however, does not appear to be a 24 

major deterrent to mirid feeding. These results suggest that, whilst phenolic compounds in 25 

cocoa could provide protection against photo-damage from harmful rays from the sun they do 26 

not necessarily act as defence against insect herbivory. This is in agreement with the report of 27 

Close and McArthur (2002) as they concluded that plant phenolic compounds do not 28 

necessarily provide defence against insect herbivory, but rather provide protection from 29 

photo-damage. However, the results are not consistent with the report of Dudt and Shure 30 

(1994) that slow growing dogwood under shade produce more phenolics to act as feeding 31 

deterrents as they are unable to grow rapidly enough to recover from pest damage. Hatcher 32 

and Paul (1994) highlighted the risk in attributing changes in insect feeding preference only 33 
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to the effect of phenolic compounds and other plant secondary metabolites. It would appear 1 

from our results that, for cocoa, the presence of phenolics are not a major deterrent to insect 2 

feeding. Another hypothesis may be that mirids have evolved to be able to metabolize 3 

phenolic compounds. 4 

 5 

The observation of higher levels of nitrogen in the controlled environment study with 6 

increased light intensity was not experienced in the field. Moreover, the direction of response 7 

to light conditions differed between cocoa genotypes. Entwistle (1972) and Anikwe et al. 8 

(2009) have reported enhanced mirid feeding and development under high levels of nitrogen. 9 

White et al. (1984), Ohmart et al. (1985) and Myers (1981) also reported enhanced insect 10 

(Glycaspis spp.) growth and activity under conditions that increased the amount of nitrogen 11 

available to insects in their food. Even though mirids preferred twigs obtained from unshaded 12 

conditions in the choice test, nitrogen level was only higher for one clone (IMC 67) under 13 

such conditions. Thus, the results did not produce conclusive evidence of an effect of 14 

nitrogen concentration of cocoa stem tissues on mirid feeding preference. A reduction in 15 

nitrogen in some plant species is related to an increase in carbon-based phenolic compounds 16 

(Kytö et al., 1996). Keski-Saari and Julkunen-Tiitto (2003) demonstrated that the 17 

concentration of phenolics was higher in different parts of juvenile mountain birch plants 18 

(Betula pubescens ssp. czerepanovii (N.I. Orlova) Hämet-Ahti) at lower levels of nitrogen 19 

than at moderate nitrogen level. However, in the present study the effect of the variation in 20 

cocoa nitrogen concentrations on the level of phenolics was not consistent across clones.  21 

Carbohydrate concentrations of leaves and stems in the field were higher under unshaded 22 

compared with shaded conditions. This could be attributed to enhanced photosynthetic 23 

activity and hence greater carbohydrate production under high light intensities. High 24 

concentrations of carbohydrates in young shoots/stems under no shade may be a reason why 25 

mirids prefer unshaded to shaded cocoa. The tender nature of such young stems with high 26 

moisture content may also be a reason why mirids prefer them to older shoots/stems. The fact 27 

that mirids preferentially fed on cocoa grown under unshaded conditions with higher 28 

carbohydrate concentrations suggests that nutrient concentration could be an important 29 

determinant of mirid feeding activity on cocoa. As there were no significant effect of clone 30 

on the number of mirid feeding lesions, the exposure of cocoa plants to different 31 

environmental conditions was the critical factor determining mirid feeding preference. The 32 

fact that nutrient status appears to impact on mirid feeding preference could explain 33 
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inconsistencies in reporting of which cocoa clones are resistant to mirid damage across West 1 

Africa. Mirid resistant clones in one country have been reported to be susceptible in another 2 

(N'Guessan et al., 2008, Anikwe et al., 2009). The effects of prevailing environmental 3 

conditions and hence stem carbohydrate levels are usually not considered when clones are 4 

tested. However, our results show that, in some cases, environmental conditions may override 5 

inherent genotypic factors that might incur pest resistance. Therefore, it is important that 6 

when screening for mirid resistance the cocoa clones should be grown and tested under a 7 

range of uniform conditions.  8 

 9 

Conclusion  10 

Light intensities and temperature both had an impact on nitrogen and carbohydrate 11 

concentrations in cocoa tissues, whilst UV radiation was associated with an increase in 12 

phenolics. Since mirids preferentially fed on cocoa stems that were higher in phenolics and 13 

nutrients, it is concluded that phenolics do not deter mirid feeding but that higher nutrient 14 

concentration, specifically carbohydrates, provides a plausible explanation for preferential 15 

feeding. 16 

 17 
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Figure legends 1 

 2 

Figure 1: Effect of light and temperature on percentage nitrogen concentration in the leaves 3 

(A) and stems (B) of young cocoa. Each bar represents a mean of three replicates. 4 

 5 

Figure 2: Effect of PAR and temperature on carbohydrate concentration in cocoa leaves (A) 6 

and stems (B). Each bar represents a mean of three replicates. Note difference in scales 7 

between A & B. 8 

Figure 3: The interaction of shade treatments and clone on total phenolic concentration of 9 

young leaves (A) and stems (B). Note the difference in scales. Each bar represents a mean of 10 

six replicates. 11 

Figure 4: The interaction of shade and unshaded treatments and clone types on nitrogen 12 

concentration of stems.  Each bar represents a mean of six replicates. 13 

Figure 5: Interaction between shade treatments and clone type on soluble carbohydrate 14 

concentration in the leaves (A) and stems (B) of young cocoa. Each bar represents a mean of 15 

six replicates. 16 

Figure 6: Mirid feeding preference on stem cuttings from shaded and unshaded cocoa. Each 17 

bar represents a mean of sixteen replicates. 18 
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Figures 1 
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Figure 1: Effect of light and temperature on percentage nitrogen concentration in the leaves 3 

(A) and stems (B) of young cocoa. Each bar represents a mean of three replicates. 4 
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 1 

 2 

Figure 2: Effect of PAR and temperature on soluble carbohydrate concentration in cocoa 3 

leaves (A) and stems (B). Each bar represents a mean of three replicates. Note difference in 4 

scales between A & B. 5 
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 1 

 2 

Figure 3: The interaction of shade treatments and clone on total phenolic concentration of 3 

young leaves (A) and stems (B). Note the difference in scales. Each bar represents a mean of 4 

six replicates. 5 
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 1 

Figure 4: The interaction of shade and unshaded treatments and clone types on nitrogen 2 

concentration of stems.  Each bar represents a mean of six replicates  3 
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 2 
 3 

Figure 5: Interaction between shade treatments and clone type on soluble carbohydrate 4 

concentration in the leaves (A) and stems (B) of young cocoa. Each bar represents a mean of 5 

six replicates. 6 
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 1 

Figure 6: Mirid feeding preference on stem cuttings from shaded and unshaded cocoa. Each 2 

bar represents a mean of sixteen replicates. 3 
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