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The Continuous Limit of Weak GARCH

Carol Alexander∗ and Emese Lazar†
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Abstract

GARCH models are called ‘strong’ or ‘weak’ depending on the presence of parametric

distributional assumptions for the innovations. The symmetric weak GARCH(1, 1)

is the only model in the GARCH class that has been proved to be closed under

the temporal aggregation property (Drost and Nijman, 1993). This property is fun-

damental in two respects: (a) for a time-series model to be invariant to the data

frequency; and (b) for a unique option-pricing model to exist as a continuous-time

limit. While the symmetric weak GARCH(1, 1) is temporally aggregating precisely

because it makes no parametric distributional assumptions, the lack of these also

makes it harder to derive theoretical results. Rising to this challenge, we prove that

its continuous-time limit is a geometric mean-reverting stochastic volatility process

with diffusion coefficient governed by a time-varying kurtosis of log returns. When

log returns are normal the limit coincides with Nelson’s (1990) strong GARCH(1, 1)

limit. But unlike strong GARCH models, the weak GARCH(1, 1) has a unique limit

because it makes no assumptions about the convergence of model parameters. The

convergence of each parameter is uniquely determined by the temporal aggregation

property. Empirical results show that the additional time-varying kurtosis parameter

enhances both term-structure and smile effects in implied volatilities, thereby afford-

ing greater flexibility for the weak GARCH limit to fit real-world data from option

prices.
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1 Introduction

The class of ‘weak’ GARCH processes is characterised by the absence of parametric condi-

tional distributions of the errors, with the familiar autoregressive equation being defined for the

best linear predictor of the residuals rather than their conditional variance. The well-known

GARCH(1, 1) models introduced by Bollerslev(1986) are called ‘strong’ because they make spe-

cific parametric assumptions about the innovations of the process. Drost and Nijman (1993)

introduce the class of weak GARCH models and prove that the symmetric weak GARCH(1, 1)

process satisfies the temporal aggregation property. Thus, doubling or halving the sampling

frequency doesn’t change the model class, it remains a weak GARCH(1, 1) process. There are

many other time-series models whose structure is likewise invariant to time partitions of the

stochastic process on which it is defined, and there is a voluminous literature on this topic.1 For

example, all models in the autoregressive moving average class are also closed under temporal

aggregation – see Tsai and Chan (2005) and many others since.

However, few models for the conditional variance of a stochastic process, rather than the

process itself, possess this temporal aggregation property.2 Drost and Nijman (1993) show that

strong GARCH(1, 1) models do not have this property. Thus, for instance, consider the classic

case of the symmetric normal GARCH(1, 1) stochastic process and suppose we simulate ob-

servations at one frequency and then re-sample from these at a different frequency. Then the

conditional variance of the re-sampled process need not follow a symmetric normal GARCH(1, 1)

process – indeed it need not follow any type of GARCH(p, q) process at all.

We focus on the temporal aggregation property because it is necessary for the derivation of a

unique continuous-time limit. In fact, we believe it is controversial to even consider the derivation

of a limit if the model class is not closed under temporal aggregation. A case in point is the classic

work of Nelson (1990) which derives a limit of symmetric normal GARCH(1, 1) as a two-factor

stochastic price and variance process having independent Brownian motions.3 But this limit is

not unique because assumptions about the convergence rate of the parameters have to be made,

and different assumptions lead to different limits. For instance, Corradi (2000) chooses different

assumptions and derives a strong GARCH limit which has a deterministic variance. Yet another

problem arises because a discretized version of either limit need not be a strong GARCH process,

because the strong GARCH class is not closed under temporal aggregation.

In this paper we show that the continuous limit of a symmetric weak GARCH(1, 1) process

is a two-factor stochastic volatility model similar to Nelson’s limit but the diffusion coefficient in

the variance equation is related to a time-varying kurtosis of the distribution of log returns. It is

1 In a related strand of the literature, Alexander and Rauch (2020) classify all functions of multivariate stochastic
processes having time-series estimates that are independent of data frequency, requiring only the estimates to be
time aggregating and not the entire model class to be closed under temporal aggregation.

2 It is not known whether weak GARCH(p, q) processes could be closed under temporal aggregation for p, q > 1.
3 We use the term ‘price’ here and in the following to refer to the price of a financial asset, because the GARCH

literature has developed mainly within the context of financial econometrics. Typically, the stochastic process in
discrete time is for the log return, defined as the difference in log prices, and in continuous time the stochastic
process models the price of the asset.
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much more flexible than Nelson’s limit which has a constant kurtosis of 3. The additional time-

varying kurtosis parameter endows the weak GARCH limit with greater flexibility to fit observed

data in the implied risk-neutral measure, i.e. data on option prices or, more specifically, their

implied volatilities. In the special case that log returns are normally distributed our limit re-

duces to Nelson’s strong GARCH diffusion. However, log returns almost always have leptokurtic

distributions in real-world applications and therefore it comes as no surprise to find that Nelson’s

limit cannot fit implied volatility smiles as well as the weak GARCH limit. We also specify a

practical discretization of the limit model that is a symmetric weak GARCH(1, 1) process, and

use this to simulate the prices of options on the underlying process. There is no ambiguity about

parameter convergence when deriving the weak GARCH limit. It follows uniquely and directly

from the definition of the weak GARCH process and this is the reason why the weak GARCH

limit is unique. Therefore, knowledge of the discrete-time GARCH(1,1) parameters at only one

frequency can determine the coefficients of the GARCH limit process.

The remainder of this paper is organized as follows: Section 2 reviews the literature on

continuous limits of other GARCH processes; Section 3 presents the weak GARCH(1, 1) process

and discusses its properties; Section 4 derives the continuous limit, shows that it is unique and

has a time-varying conditional kurtosis as an explicit parameter in the variance process. Then we

specify a discretization of the continuous model; Section 5 presents our empirical results. First

we compare simulations from the weak GARCH diffusion with those of Nelson’s strong GARCH

diffusion. Then we apply the limit model to fit implied volatility smiles using data from traded

option prices; Section 6 concludes.

2 Continuous Limits of GARCH Processes

The particular form of strong GARCH(1, 1) limit derived by Nelson (1990) may be extended to

derive limits for other GARCH(p, q) processes, see Lindner (2009) for a brief overview. Also,

Hafner (2017) derives a limit of a particular multivariate GARCH model. Trifi (2006) extends

the paper of Nelson (1990) to non-normal distributions, and considers some augmented GARCH

processes as well as the CEV-GARCH(1, 1) model of Fornari and Mele (2005). However, none of

these limits may be regarded as unique because it is still necessary to make assumptions about the

convergence rates of the model parameters. As stated above, it makes little sense to consider these

limits of models that are not closed under temporal aggregation. Nevertheless, there are some

other GARCH-type models for which limits could be sensibly stated. In particular, Meddahi and

Renault (2004) introduce a new class of square-root stochastic autoregressive volatility models

that is closed under temporal aggregation. Their model is a natural extension of the weak

GARCH class which allows for skewness and leverage effects, i.e. both the asymmetries that are

excluded from weak GARCH models. This class includes strong GARCH processes, but there

is no closed sub-group for GARCH processes alone. In other words, taking a GARCH as the

process for some frequency, then for any other frequency we have another model in Meddahi and

Renault’s class, but not necessarily a GARCH process.
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Replacing the innovations in a GARCH process by jumps of Lévy processes, Kluppelberg,

Lindner and Maller (2004) introduce the COGARCH continuous-time process which features

similar properties to GARCH but the residuals follow a Lévy process. Here the variance is not

continuous either, but has jumps. Indeed, Kallsen and Vesenmayer (2008) show that any COG-

ARCH process can be represented as the limit in law of a sequence of GARCH(1, 1) processes.

They also argue, yet only heuristically, that COGARCH and the GARCH(1,1) diffusion limit

of Nelson (1990) are probably the only continuous-time limits of strong GARCH processes. In

support of this Maller et al. (2008) confirm that COGARCH and Nelson’s diffusion limit are

the only functional continuous-time limits of GARCH in distribution, showing convergence in

probability to COGARCH. They also claim that COGARCH can reproduce more of the stylized

facts in financial time series. Buchmann and Müller (2012) show that a GARCH process con-

verges generically to a COGARCH process, provided that the volatility processes are observed.

They argue that the COGARCH process can be considered as a continuous-time equivalent of

the discrete GARCH(1, 1) process, even though they are not actually deriving the limit.

Badescu, Elliott and Ortega (2014) consider minimum-variance and local risk minimizing

hedging strategies for diffusion limits of a class of asymmetric, non-Gaussian GARCH option

pricing models. Badescu, Elliott and Ortega (2015) obtain weak limits of its discretized ver-

sion under the same parameter convergence assumptions in both the physical and risk-neutral

measures. The continuous limit has a variance diffusion coefficient that depends on both the

skewness and kurtosis of the distribution of log returns. Subsequently, Badescu, Cui and Ortega

(2017) demonstrate the advantages of extending this class of GARCH processes using a pricing

kernel with stochastic equity and variance risk preference parameters, and again they derive the

corresponding diffusion limit.

Despite this prolific strand of the literature, the existence and uniqueness of a continuous

limit of even the simplest, symmetric GARCH(1, 1) process remains obscure. As mentioned in the

introduction, there are (at least) two possible limits for the strong GARCH (1,1) process, derived

by Nelson (1993) and Corradi (2000) respectively, where each limit employs different assumptions

about convergence of model parameters. The COGARCH literature reviewed above supports

Nelson’s diffusive variance limit. However, in favour of Corradi’s limit it can be argued that

discrete time GARCH has only one source of randomness whilst Nelson’s limit has two sources.

Furthermore, Wang (2002) uses the asymptotic non-equivalence of the likelihood functions to

demonstrate that the continuous limit of normal GARCH(1, 1) cannot be a diffusion. Brown,

Wang and Zhao (2002) consider stronger parameter convergence conditions and again show that

there can be no diffusion term in the continuous limit of multiplicative GARCH models, as

described above. Mele and Fornari (2000) consider the continuous limit of A-PARCH models

where the error term follows a GED distribution, and Zheng (2005) study the limit of the HARCH

type processes proposed by Muller et al. (1997). Its limit has deterministic variance because the

parameter convergence conditions chosen are similar to those of Corradi (2000).

In related work, Drost and Werker (1996) introduce continuous-time symmetric GARCH
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diffusion and jump-diffusion processes that exhibit weak GARCH-type behaviour at all discrete

frequencies. Their discretization scheme depends on the unconditional kurtosis which is assumed

constant and strictly greater than 3.

3 The Weak GARCH(1, 1) Process

For a detailed discussion of the classes of weak, semi-strong and strong GARCH processes see

Drost and Nijman (1993). In this section we only consider the weak GARCH(1, 1) process,

because this is the only GARCH process that is known to satisfy the temporal aggregation

property. We will show that this property allows us to derive a unique continuous-time limit.

Following Engle (1982) and Bollerslev (1986) the GARCH(1, 1) process for a log return yt

can be written as yt = µ+ εt with E (εt+1| It) = 0, where It is the σ-algebra generated by the

residual vector (εt). The classical or strong GARCH definition states

E
(
ε2
t+1

∣∣ It) = ht, (1)

where ht is the conditional variance. In the symmetric version of strong and weak GARCH(1,1)

we assume ht = ω+αε2
t +βht−1. But in the weak GARCH process ht is the best linear predictor

(BLP) of the squared residuals, and not the conditional variance, replacing (1) with

E
(
εt+1ε

r
t−i
)

= 0 i ≥ 0 r = 0, 1, 2; E
((
ε2
t+1 − ht

)
εrt−i

)
= 0 i ≥ 0 r = 0, 1, 2.

The assumption that 0 and ht are the BLPs for the residuals and squared residuals respectively,

guarantees that the BLP of the squared residuals aggregates in time, but only for symmetric

processes (Drost and Nijman, 1993). That is, time-aggregating weak GARCH models can have

no leverage effect, and since there is no parametric distribution for the innovations, they have

no explicitly-modelled asymmetry. By contrast with skewness, the kurtosis plays an important

role, as we shall see later.

For a finite step-length ∆ (please note that we don’t use ∆ as an operator, but as a simple

notation for the step-length) we consider the ∆-step process for the residuals and the GARCH

process. For processes in general, time is indexed as s∆, for s = 1, 2, . . .. Also, for both

parameters (such as ∆ω,∆α and ∆β) and processes (such as ∆hs∆) the pre-subscript signifies the

time step used for their estimation and, to be able to compare variances for different step-lengths,

we standardise the BLP series by dividing the squared returns by the step-length. Thus ∆hs∆

denotes the BLP for ∆−1
∆ε

2
s∆.

Using ∆λ = ∆α+ ∆β, for i ≥ 0, and for r = 0, 1, 2 the annualised weak GARCH process may

be written

∆ys∆ = ∆µ+ ∆εs∆, ∆hs∆ = ∆ω + ∆α∆−1
∆ε

2
s∆ + ∆β∆h(s−1)∆, (2)

E
(

∆ε(s+1)∆ ∆ε
r
(s−i)∆

)
= 0, E

((
∆−1

∆ε
2
(s+1)∆ − ∆hs∆

)
∆ε

r
(s−i)∆

)
= 0.
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Only one lag can be used here, otherwise we would obtain a higher-order GARCH process; but

it has not been proved that GARCH(p, q) processes satisfy the temporal aggregation property.

The first paper that discusses the continuous limit of GARCH is Nelson (1990). Under the

conditions

ω = lim
∆↓0

(
∆−1

∆ω
)

; α = lim
∆↓0

(
∆−1/2

∆α
)

; θ = lim
∆↓0

(
∆−1 (1− ∆λ)

)
; 0 < ω,α, θ <∞

the limit will be a stochastic volatility model with independent Brownians, i.e.

dSt = µStdt+
√
Vt StdB1t,

dVt = (ω − θVt) dt+
√

2αVtdB2t.

where Vt is the continuous-time limit of ht. On the other hand, Corradi (2000) proves that, if

we assume the following convergence rates

ω = lim
∆↓0

(
∆−1

∆ω
)

; α = lim
∆↓0

(
∆−1

∆α
)

; θ = lim
∆↓0

(
∆−1 (1− ∆λ)

)
; 0 < ω,α, θ <∞

then the continuous-time limit is a deterministic variance model with the same price dynamics

but with

dVt = (ω − θVt) dt.

The difference between the two assumptions lies with the convergence of alpha (at rate
√

∆

versus rate ∆). Which assumption is correct has been the subject of considerable debate. Here

we argue that the assumptions of Nelson are correct, but we promote a different continuous limit

because, as argued above, it is best to use a time aggregating model, viz. weak GARCH(1,1).

For a weak GARCH(1, 1) using two different step-lengths ∆ and δ, δ < ∆, Drost and Nijman

(1993) proved the following relationship between the parameters

∆ω = δω
(

1− (δλ)δ
−1∆

)
(1− δλ)−1 and ∆α = (δλ)δ

−1∆ − ∆β.

The relationship between the unconditional kurtosis coefficients, namely between the kurtosis

for the ∆-step process denoted ∆κ, and the kurtosis for the δ-step process denoted δκ, is

∆κ = 3 + ∆−1δ (δκ− 3) + 6 (δκ− 1)

(
δ−1∆ (1− δλ)−

(
1− δλ

δ−1∆
))

δα
(
1− δλ

2 + δαδλ
)

(δ−1∆)2(1− δλ)2 (1− δλ2 + δα2)
. (3)

Drost and Nijman (1993) derive the following

∆β
(
1 + ∆β

2
)−1

=
(

∆,δcδλ
δ−1∆ − 1

)(
∆,δc

(
1 + δλ

2δ−1∆
)
− 2

)−1

as the relationship between the low and high frequency parameters for λ and β, where
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∆,δc =

[
δ−1∆(1− δβ)2 + 2δ−1∆

(
δ−1∆− 1

)
(1− δλ)

(
1− δλ

2 + δα
2
)

(δκ− 1)−1(1 + δλ)−1

+ 4
(
δ−1∆ (1− δλ)−

(
1− δλ

δ−1∆
))

δα (1− δβδλ)
(
1− δλ

2
)−1

]
×

[
δα (1− δβδλ)

(
1− δλ

2δ−1∆
) (

1− δλ
2
)−1
]−1

. (4)

To derive the continuous limit of this model we are interested in the inverse relationship expressing

the high frequency (δ-step) parameters and their limit based on the low frequency (∆-step)

parameters, for δ < ∆. This relationship can be derived as

δω = ∆ω
(

1− ∆λ
∆−1δ

)
(1− ∆λ)−1 and δλ

δ−1
= ∆λ

∆−1

Also (
2

(
∆β

1 + ∆β2

)
− 1

)
δα (1− δβδλ)

(
1− ∆λ

2

1− δλ2

)
=

=

((
∆β

1 + ∆β2

)(
1 + ∆λ

2
)
− ∆λ

)(
∆δ−1(1− δβ)2 + 2∆δ−1

(
∆δ−1 − 1

)
(δκ− 1)−1

(
1−δλ
1+δλ

) (
1− δλ

2 + δα
2
)

+4
(
1− δλ

2
)−1

δα
(
∆δ−1 (1− δλ)− (1− ∆λ)

)
(1− δβδλ)

)
.

(5)

and

δκ = 1+

 (
2 + δ−1∆ (∆κ− 3)

) (
1− ∆λ

∆−1δ
)(

1− ∆λ
2∆−1δ + δα

2
)

((
1− ∆λ∆−1δ

) (
1− ∆λ2∆−1δ + δα2

))
+ 6δα

(
1−∆−1δ (1− ∆λ)

(
1− ∆λ∆−1δ

)−1
) (

1− δβ∆λ∆−1δ
)
 .

(6)

4 Continuous Limit of Weak GARCH(1, 1)

The continuous limit may not offer equivalence with the discrete-time model. For equivalence,

a discretization of the continuous limit should yield the same class of model as the original.

Furthermore, the discretized model must be the same for all frequencies, which cannot happen

without the temporal aggregation property. Thus, it is only when (1) the original discrete-time

model is time aggregating, and (2) the model can be discretized at any frequency in the form of

the original model, that we have an equivalence between discrete and continuous models.

4.1 Parameter Limits

The first step for deriving the continuous limit of symmetric weak GARCH(1,1) is to deter-

mine the limits of the parameters and their convergence speeds. In contrast to the strong

GARCH(1,1) process, where there is some freedom to choose assumptions about parameter con-

vergence speeds, we now show that assumptions about parameter convergence are unnecessary for

weak GARCH(1,1) processes. In fact, the temporal aggregation property of weak GARCH(1,1)

implies unique convergence speeds for all parameters. We prove this result in the following:
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Proposition 1 The convergence rates for the parameters implied by the weak GARCH(1,1)

process are as follows:

ω = lim
∆↓0

∆−1
∆ω; α = lim

∆↓0
∆−1/2

∆α; θ = lim
∆↓0

∆−1 (1− ∆λ) ; 0 < ω,α, θ <∞.

Also, the unconditional kurtosis converges to κ = lim
∆↓0

∆κ = 3
(
1− θ−1α2

)−1
.

Proof We have δλ
δ−1

= ∆λ
∆−1

which, being a constant between 0 and 1, can be denoted

exp (−θ) with θ > 0 . Thus

∆λ = exp (−θ∆) and lim
∆↓0

∆−1 (1− ∆λ) = lim
∆↓0

∆−1 (1− exp (−θ∆)) = θ.

Also δω(1− δλ)−1 = ∆ω(1− ∆λ)−1 is a positive constant denoted ωθ−1, ω > 0 and ∆ω =

ωθ−1 (1− ∆λ), so

lim
∆↓0

(
∆−1

∆ω
)

= ωθ−1 lim
∆↓0

∆−1 (1− exp (−θ∆)) = ω.

Formula (6) for the kurtosis may now be written

δκ = 1 +
(

∆κ− 3 + 2∆−1δ
)∆−1δ + 6

(
δ−1

(
1− ∆λ

∆−1δ
)
−∆−1 (1− ∆λ)

)
∆
(
δ−1

(
1− ∆λ∆−1δ

))2 ∆,δA

−1

,

with

∆,δA =
δαδ
−1
(

1− ∆λ
2∆−1δ

)
+ δ−1

δα
2 − δ−1

δα
2
(

1− ∆λ
∆−1δ

)
δ−1

(
1− ∆λ2∆−1δ

)
+ δ−1

δα2
. (7)

But

lim
δ↓0

δ−1
(

1− ∆λ
∆−1δ

)
= θ and lim

δ↓0
δ−1

(
1− ∆λ

2∆−1δ
)

= 2θ.

Thus, using δα ↓ 0, we have

lim
δ↓0

∆,δA =

(
2θ

(
lim
δ↓0

(
δ−1

δα
2
))−1

+ 1

)−1

.

Hence, taking the limit of (7) as δ ↓ 0 and then letting ∆ ↓ 0 yields the limit of the kurtosis as

κ = 3

(
1− θ−1 lim

δ↓0

(
δ−1

δα
2
))−1

. (8)

The limit of the unconditional kurtosis must be finite and positive, which forces

0 ≤ lim
δ↓0

δ−1
δα

2 < θ,

7



so the kurtosis will be greater than 3.

To see the speed of convergence for α we consider the limit α = lim
δ↓0

δ−wδα with α ∈ (0,∞)

with w unknown. Since lim
δ↓0

δ−1
δα

2 < θ, w ≥ 1/2, for y = min (w, 1) and z = min (2w, 1) we

write

lim
δ↓0

δ−y (1− δλ+ δα) = lim
δ↓0

δ−y (1− δλ) + lim
δ↓0

δ−yδα ∈ (0,∞) ,

lim
δ↓0

δ−y
(
1− δλ

2 − δα (1− δλ) + δα
)

= lim
δ↓0

δ−y
(
1− δλ

2
)

+ lim
δ↓0

δ−yδα ∈ (0,∞) ,

lim
δ↓0

δ−z
(
1− δλ

2 + δα
2
)

= lim
δ↓0

δ−z
(
1− δλ

2
)

+ lim
δ↓0

δ−zδα
2 ∈ (0,∞) .

Also, using (5) and noting that δκ 6= 1, since δα
2 > 0, we can compute(

2

(
∆β

1 + ∆β2

)
− 1

)
δα
(
1− δλ

2 − δα (1− δλ) + δα
)(1− ∆λ

2

1− δλ2

)
.

If w > 1/2, we can multiply the above expression by δ1−w−y and then computing the limit as δ

tends to zero leads to a contradiction in terms of limits. So we must have w = 1/2 and this sets

the convergence of α.

4.2 Model Convergence

Now consider the conditional variance and the conditional kurtosis of the residuals where the

conditional mean and skewness are equal to zero

∆σ
2
s∆ = E

(
∆−1

(
∆ε(s+1)∆

)2∣∣∣∆Is∆

)
,

∆κs∆ = E
(

∆−2
∆σ
−4
s∆

(
∆ε(s+1)∆

)4∣∣∣∆Is∆

)
,

where ∆Is∆ is the σ-algebra generated by the vector (∆εs∆) . We divide by ∆ when computing

the conditional variance series, in order to standardize them, so that the variance over ∆ is

comparable with ∆ times the 1-step variance.

The conditional expectation of the second moment and the kurtosis must be positive, and

due to the symmetric nature of the returns we can write

E
(

∆−1
∆ε

2
(s+1)∆

∣∣∣ Is∆) = ∆σ
2
s∆. (9)

Note that ∆σ
2
s∆ − ∆hs∆ is non-zero, otherwise the process is a semi-strong GARCH (Drost and

Nijman, 1993). Next, for s∆ ≤ t < (s+ 1)∆ write κ (t) = lim
∆↓0

∆κt where ∆κt = ∆κs∆ and write

8



∆ht = ∆hs∆ and ∆σ2
t = ∆σ

2
s∆. Because lim

∆↓0

(
∆σ

2
t − ∆ht

)
= 0 we can set

V (t) = lim
∆↓0

∆ht = lim
∆↓0

∆σ
2
t .

We must now conjecture that the difference between the conditional variance and the BLP of

the squared residuals converges to zero at a speed of square root of the time step, i.e.

lim
∆↓0

∆−1/2
(

∆σ
2
t − ∆ht

)
= 0.

Our justification is that the BLP process becomes more and more informative as the time step

decreases, so it must converge very fast to the conditional variance.

Theorem 1 The continuous limit of the weak GARCH(1,1) process defined in (2) is the following

stochastic volatility model, based on the limiting parameters in Proposition 1 and above:

dSt
St

= µdt+
√
Vt dB1t,

dVt = (ω − θVt) dt+ α
√

(κt − 1)Vt dB2t,

where B1t and B2t are independent Brownian motions and κt is the conditional kurtosis, which

may be time-varying.

Proof We employ the convergence theorem for stochastic difference equations to stochastic

differential equations given by Nelson (1990). For the returns process we have

E
(
∆−1

∆y(s+1)∆

∣∣ Is∆) = µ+ E
(
∆−1

∆ε(s+1)∆|Is∆
)

= µ.

And, using (9) it can be shown that E
(

∆−1
∆y

2
(s+1)∆

∣∣∣ Is∆) = ∆hs∆ + o (1) ,

E
(
∆−1

(
∆h(s+1)∆ − ∆hs∆

)∣∣ Is∆) = ∆−1
∆ω−∆−1 (1− ∆λ) ∆hs∆+

(
∆−1/2

∆α
)

∆−1/2
(

∆σ
2
s∆ − ∆hs∆

)
+o (1)

and this converges to ω − θVt by Proposition 1. The variance of the variance component is

E
(

∆−1
(

∆h(s+1)∆ − ∆hs∆
)2∣∣∣ Is∆) = ∆−1

∆α
2
(
E
((

∆σ
4
s∆

) (
∆2

∆σ
4
s∆

)−1
(

∆ε
4
(s+1)∆

)
− ∆h

2
s∆

∣∣∣ Is∆))+o (1) .

The covariance between the returns and the changes in the variances converges as follows

E
(
∆−1

∆y(s+1)∆

(
∆h(s+1)∆ − ∆hs∆

)∣∣ Is∆) = o (1) .

Therefore, the limits of the expected squared terms and cross-product between the returns and

9



variance derived above define the following covariance matrix of the continuous process

At =

(
Vt 0

0 α2 (κt − 1)V 2
t

)
.

Discussion: Discrete-time weak GARCH(1,1) processes are characterized by (i) the existence of

a long-term volatility; (ii) mean reversion in the variance process; (iii) the variance is stochastic,

i.e. the variance of variance is non-zero; and (iv) the variance process is uncorrelated with the

returns process, which is an implication of the symmetry of the returns’ distribution, being a

requirement of weak GARCH(1,1) processes. All these properties are present in our limit model

which is stated in Theorem 1. In addition, the variance in our model has a higher variance than

the variance of the variance process in the limit of Nelson (1990). This is a consequence of the

extra kurtosis parameter, which can also be time-varying.

When κ = 3 the limit process reduces to the diffusion derived by Nelson (1990) and in this

case we obtain the smallest value of the volatility of the variance process, i.e. 21/2αVt. Drost

and Werker (1996) have conjectured that the conditional kurtosis is independent of t. However,

our limit allows the conditional kurtosis to be time-varying.

Finally we note that properties of our limit are not only more flexible than those of Nelson’s

limit; our model also captures the observed behaviour of implied volatilities in the risk-neutral

measure better. See for example, Bates (1997, 2000) and Bakshi et al. (2003). In particular,

Section 5 will demonstrate the superior ability of our limit for capturing the smile and term-

structure features of implied volatilities.

4.3 Discretization Scheme

Here we find a discretization of the continuous limit when the series of returns and variances are

discretized by assuming a time step of length ∆ and considering changes at time t = s∆. Let

dt 7→ ∆,
dSt
St
7→ ∆y(s+1)∆, Vt 7→ ∆Vs∆, and dVt 7→ ∆V(s+1)∆ − ∆Vs∆.

The conditional kurtosis κt → ∆κs∆ for s∆ ≤ t < (s+ 1) ∆ and the parameter µ stays unchanged

during discretization. The rest of the parameters are discretized as

ω 7→ ∆−1
∆ω, θ 7→ ∆−1 (1− ∆λ) , α 7→ ∆−1/2

∆α,

where (∆ω,∆α,∆β) are specified in terms of the parameters (ω, θ, α) of the continuous model

and the unconditional kurtosis κ, which is given in Proposition 1, as follows

10



∆ω = ωθ−1 (1− ∆λ) ,

∆λ = exp (−θ∆) ,

∆α = ∆λ− ∆β,

∆κ = 3 + 2 (κ− 3) (θ∆− (1− ∆λ)) θ−2∆−2,

and

∆β =
1

2

∆c
(
1 + ∆λ

2
)
− 2 + (1− ∆λ)

(
∆c

2(1 + ∆λ)2 − 4∆c
)1/2

∆c∆λ− 1
, (10)

where

∆c = 2

[
∆α2 + 2α2

(
∆− θ−1 (1− ∆λ)

)
+ ∆2θ

(
θ − α2

)]
[α2θ−1 (1− ∆λ2)]

. (11)

An alternative but equivalent version of (11) may be derived, after some algebra, viz.

∆c = 2
3∆θ − 2 (1− ∆λ) + 3∆2θ2 (κ− 3)−1

1− ∆λ2
(12)

where the uncondtional kurtosis κ is defined in Proposition 1. The Brownian motions B1 and

B2 that drive the price and variance equations are discretized by expressing the changes in the

Brownian motions at time t = s∆ as

B1 ((s+ 1) ∆)−B1 (s∆) = ∆1/2
∆ξ(s+1)∆,

B2 ((s+ 1) ∆)−B2 (s∆) = ∆1/2
∆η(s+1)∆,

where ∆ξ(s+1)∆is a standard normal variable, ∆ξ(s+1)∆ |∆Is∆ ∼ N (0, 1) and ∆η(s+1)∆is defined

as

∆η(s+1)∆ = 2−1/2
(

∆ξ
2
(s+1)∆ − 1

)
. (13)

Now define the normal variable ∆ε(s+1)∆ = ∆1/2
∆V

1/2
s∆ ∆ξ(s+1)∆ and set ∆ε̃s∆ = G−1 [F (∆εs∆)] ,

where F is the normal distribution and G is the distribution for a variable ∆ε̃s∆ that has zero

mean and variance ∆∆Vs∆, like ∆εs∆, but kurtosis equal to ∆κs∆. This way, the errors of the

discretized model have non-zero excess kurtosis.

Discussion : The continuous model has two independent sources of randomness yet the discrete

model has only one. This is similar to the technique used by Nelson (1990) whereby one source

of randomness in discrete time translates to two sources of randomness in continuous time, one

for the changes in the variable and the other for changes in the variance process.

Our discretization reduces the number of sources of randomness in the continuous model,

via (13). There is no loss of generality using this discretization since the properties of the

discretized Brownian motion (mean, variance and correlation) are maintained; ∆η(s+1)∆ is not

11



exactly normal but it has a zero conditional mean, a unit conditional variance and zero correlation

with ∆ξ(s+1)∆. We are bound to use such a method because the classic discretization does not

work in this case, as argued by Lindner (2009, p. 482).4

The discretization (12) for β is useful because it makes the dependence on kurtosis explicit

at the same time as showing that the scheme does not work when the unconditional kurtosis

κ = 3. We employ (12) in Section 5.1 when we fix parameters and simulate from the discretized

model and in Section 5.2 when we calibrate model parameters to real-world data. Finally, we

note that there are other discretization schemes to the one above and we tested some of these

but they did not return the weak GARCH(1, 1) process.

Theorem 2 The above discretization scheme of the weak GARCH limit in Theorem 1 returns

a weak GARCH(1,1) process and the time aggregation property is preserved.

Proof The discretization of µdt is obvious, and that for θ and ω will follow from (10) as

ω∆ ≈ ω∆
(1− ∆λ)

θ∆
= ∆ω and θ∆ ≈ 1− ∆λ = 1− (∆α+ ∆β) = 1− ∆λ.

This gives ∆ω = ωθ−1 (1− ∆λ) and ∆λ = ∆λ. As is clear from (10) and (11), it is the discretiza-

tion of β that is most complex. From the aggregation results in Drost and Nijman (1993) we

know that the unconditional kurtosis for a given frequency ∆ may be expressed as a function of

the parameters at an arbitrary higher frequency δ as

∆κ = 3 + ∆−1δ (δκ− 3) + 6 (δκ− 1)

(
δ−1∆ (1− δλ)−

(
1− δλ

δ−1∆
))

δα
(
1− δλ

2 + δαδλ
)

(δ−1∆)2(1− δλ)2 (1− δλ2 + δα2)
.

Denoting the limit of the unconditional kurtosis by κ = lim
δ↓0

δκ, we obtain

∆κ = 3 + 2 (κ− 3)
(θ∆− (1− ∆λ))

θ2∆2
. (14)

From the proof of Proposition 1, we know that for any two time steps ∆ > δ, ∆β is the solution

to
∆β

1 + ∆β2
=

∆,δcδλ
δ−1∆ − 1

∆,δc
(
1 + δλ2δ−1∆

)
− 2

, (15)

where ∆,δc is given by (4). We want a discretization which ensures that (15) will hold. Taking

the limits of (4) when δ goes to 0, we define ∆c = lim
δ↓0

∆,δc as in either (11) or (12). This means

4The direct relationship (13) between the increments of B1t and the squared increments of B2t shows that they
have zero correlation – but they are not independent because they have the same source of randomness – just as
a standard normal variable is uncorrelated with its square.
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that we can discretize the continuous model by solving the following equation

∆β

1 + ∆β2
=

∆c∆λ− 1

∆c (1 + ∆λ2)− 2
.

First, we must ensure that this will have solutions, and then we have to show that there is a

unique solution between zero and one. Let’s consider the function whose roots we want to find

f (x) = x2 −mx+ 1, m =
∆c
(
1 + ∆λ

2
)
− 2

∆c∆λ− 1
.

This has two roots x1 and x2 where x1x2 = 1 and x1 + x2 = m. If we show that m is positive,

then both roots are positive and one will be less than 1. For the existence we need that m > 2.

If ∆c∆λ > 1 then m > 2 is equivalent to (1− ∆λ)2 > 0. Thus, all we need to show is that

∆c∆λ > 1, which is equivalent to 6θ∆ + 2α−2∆2θ3 + 5∆λ > exp (θ∆) + 2∆2θ2 + 4.

Both sides of the above equation converge to 5 when ∆ → 0, and it can be shown, using

derivatives with respect to ∆, that the left hand side converges faster. Thus ∆c∆λ > 1, so for

any small step ∆ close enough to zero there will always be a unique solution for ∆β between zero

and one that satisfies the above equation; this solution will be

∆β =
1

2

(
m−

(
m2 − 4

)1/2)
=

∆c
(
1 + ∆λ

2
)
− 2 + (1− ∆λ)

(
∆c

2(1 + ∆λ)2 − 4∆c
)1/2

2 (∆c∆λ− 1)
.

Also, we have that ∆α = ∆λ − ∆β . The discretization of the Brownian motions in our scheme

is obvious, whilst there is no loss of generality in assuming (13).

Now, we have y(s+1)∆ = µ∆ + ∆ε(s+1)∆. Hence E
(

∆−1
∆ε

2
(s+1)∆|∆Is∆

)
= ∆Vs∆ with

∆V(s+1)∆ = ∆ω + ∆α∆−1
∆ε̃

2
(s+1)∆ + ∆β∆Vs∆ + ∆u(s+1)∆,

∆u(s+1)∆ = ∆α∆Vs∆

[
1−

(
2−1 (∆κs∆ − 1)

)1/2
+
((

2−1 (∆κs∆ − 1)
)1/2 − 1

)
∆ξ̃

2
(s+1)∆

]
,

where ∆ξ̃(s+1)∆ has an unconditional kurtosis of ∆κ(s+1)∆, which can be approximated by ∆κs∆.

The above may also be written

∆u(s+1)∆ = ∆α∆Vs∆

[((
2−1 (∆κs∆ − 1)

)1/2 − 1
)(

∆ξ̃
2
(s+1)∆ − 1

)]
.

So far we have considered the conditional variance. For the BLP of squared residuals we have

∆hs∆ = ∆Vs∆ −
k∑
j=0

∆β
j
∆u(k−j)∆.

It is easy to see that this follows a GARCH(1,1) process since

∆hs∆ = ∆ω + ∆α
(
∆−1

∆ε
2
s∆

)
+ ∆β∆h(s−1)∆.
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For a weak GARCH(1,1) we must show that ∆hs∆ is the BLP of ∆−1
∆ε̃

2
(s+1)∆ which requires

showing

E
((

∆−1
∆ε̃

2
(s+1)∆ − ∆hs∆

)
∆ε̃

r
(s−i)∆

)
= 0 for i ≥ 0, r = 0, 1, 2.

Since E
((

∆V(s−j−1)∆ −∆−1
∆ε̃

2
(s−j)∆

)
∆ε̃

r
(s−i)∆

)
= 0, this reduces to proving that

E
(

∆u(s−j)∆∆ε̃
r
(s−i)∆

)
= 0.

This is clearly satisfied for i 6= j so we now prove it for r = 1 and i = j. We have to show that

E
((

∆V(s−i−1)∆ −∆−1
∆ε̃

2
(s−i)∆

)
∆ε̃(s−i)∆

)
= 0, i ≥ 0

or

E
(
E
(

∆V(s−i−1)∆∆ε̃(s−i)∆ −∆−1
∆ε̃

3
(s−i)∆

)
|∆I(s−i−1)∆

)
= 0, i ≥ 0,

which is clearly true. Also

E
(

∆ε̃
2
(s−i)∆

∣∣∣∆I(s−i−1)∆

)
= ∆∆V(s−i−1)∆

and

E
(

∆ε̃
4
(s−i)∆

∣∣∣∆I(s−i−1)∆

)
= ∆2

∆V
2

(s−i−1)∆∆κ(s−i−1)∆.

Thus, we have a weak GARCH(1,1) specification; this means that the time aggregation is pre-

served by our discretization. It is easy to see that ∆λ
∆−1

= δλ
δ−1

and that ∆ω = δω
(

1− δλ
δ−1∆

)
(1− δλ).

We also have the relations (14) for the kurtosis and (15) for β. For the kurtosis, we need to

prove (3), that is

(κ− 1)α2(1− δλ)2 (1− δλ
2 + δα

2
)

=
(
2δ2θ2

(
α2 + 2θ

)
+ 6 (κ− 1)α2 (θδ − (1− δλ))

)
δα (1− δλ+ δαδλ) .

After some algebra, this may be written as

δβ

1 + δβ2
=

(
δα2 + δ2θ

(
θ − α2

)
+ 2α2 (δ − (1− δλ) /θ)

)
δλ− 1/ 2α2θ−1

(
1− δλ

2
)

(δα2 + δ2θ (θ − α2) + 2α2 (δ − (1− δλ) /θ)) (1 + δλ2)− α2θ−1 (1− δλ2)
.

Since the above expression holds, we have shown that the kurtosis is indeed time aggregating.

Theorem 2 has practical importance because it guides how to discretize the weak GARCH

limit when simulating returns. In particular, the parameter β which appears in the original

discrete version of the model described in Section 3 does not explicitly appear in the limit model

of Theorem 1, it only enters implicitly in the sum λ = α+ β with θ as defined in Proposition 1.

However, Theorem 2 shows that, although β does not explicitly appear in the limit, it governs

the way the continuous model should be discretized.

In the next section we explore two ways in which such simulations can be applied. The first

14



example in subsection 5.1 takes the limit model parameters as given, discretizes the model and

then uses it to generate implied volatility smiles. The second example in subsection 5.2 takes

implied volatility smiles as the inputs and uses simulations of the discretized version of the model

to calibrate the parameters of the model by matching the simulated smile to the observed smile.

5 Empirical Results

The two most common financial applications of continuous-time stochastic processes are (i) to

price non-standard options with complex payoffs that are too illiquid to have a market price

and (ii) to hedge any options. Here we consider the second of these applications, for hedging

standard European puts and calls, and we do this by simulating and fitting implied volatility

‘smiles’.5 The closer a model fits market implied volatility the better its hedging performance.

And since a better hedging performance determines the profits made by option market makers,6

the ability of a model to fit implied volatility smiles is important in practice.

It is preferable to use a hedging model that is more sophisticated than the basic option-

pricing model of Black and Scholes (1973). The Black-Scholes model assumes prices are driven

by a simple geometric Brownian motion and its constant volatility assumption yields an implied

volatility surface that is flat, i.e. it does not vary with either the option strike or the option’s

maturity. To fit the ‘smile’ shape that is ubiquitous when implied volatilities are backed out

from real-world option prices requires a stochastic volatility model. But finding one stochastic

volatility model that can fit an entire smile surface is very challenging. That is, we seek a single

stochastic volatility model which has a parameterization that is flexible enough to calibrating

all parameters, in a single optimization, using smiles of different maturities together. Here we

demonstrate that the time-varying kurtosis parameter of the weak GARCH limit admits this

property.

To this end, we focus on the ability of the weak GARCH limit to capture different shapes of

smile features in implied volatility. We consider the model derived in Theorem 1 with µ = 0, viz.

dSt
St

=
√
Vt dB1t, (16)

dVt = (ω − θVt) dt+ α
√

(κt − 1)Vt dB2t,

since the drift does not affect the fit. Note that (16) encompasses Nelson’s limit for strong

GARCH(1, 1) as the special case that the conditional kurtosis κt is constant and equal to 3.

The variance diffusion coefficient in (16), i.e. the product α
√

(κt − 1), is colloquially termed

the ‘vol-of-vol’ part of the model because it controls the volatility of the volatility. It has two

5The implied volatility smile is obtained by putting the market prices of all options on a given underlying, of
different strikes but the same maturity, into the Black-Scholes formula and ‘backing out’ the diffusion coefficient
in the geometric Brown motion that is implied by each observed option price. The smile refers to the shape that
is usually seen when implied volatilities are plotted as a function of option strike.

6Market makers seek to minimize their spreads because this makes them more competitive, but spreads can
only be narrowed when the market maker uses an accurate hedging model. See Alexander et. al. (2012) for further
information.
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parameters, α and κt that do not explicitly appear elsewhere in (16). However, the choice of α

affects the discretization scheme derived in Section 4.3 and ∆β will depend on the α parameter.

Also, the unconditional kurtosis in the limit model is 3/(1− α2θ−1), as in Proposition 1, and so

we must have α2 < θ in order that this is positive. The parameters ω and θ control the long-term

volatility and the speed of mean reversion to it. Specifically the long-term variance is ω/θ and

the mean-reversion speed increases with θ.

In subsection 5.1 we explore the effect that different parameters in our limit model (16)

have on the shape of the smile, as well as the effect of using different discretization schemes.

In subsection 5.2 we demonstrate the gains that can result from using our weak GARCH limit

rather than Nelson’s strong GARCH limit, by calibrating (16) to implied volatilities backed out

from real-world data on option prices.

5.1 Simulations

Weak GARCH processes are a general model class, and since they make no distributional as-

sumptions, the simulation of the discretized limit model is non-trivial because it is based on

approximations made to the error term based on normally distributed returns (discretization of

Brownian motions). These approximations affect the simulations and it should be noted that

the simulated process is in the end an approximation of weak GARCH.

Table 1 defines 12 scenarios that explore the effect of changing the parameters of the model

(16) and the expiry date of the options. For the first three sets of simulations we have a constant

expiry date of 0.1 years. In the fourth set we explore the term structure effects of weak GARCH

implied volatilities and we set the conditional kurtosis κt = t−1, so that κ = 20, 10, 4 at expiry

times 0.05, 0.1 and 0.25 years.7

Next, with each of these 12 different sets of parameters, we employ the discretization scheme

of Section 4.3 to simulate prices using the weak GARCH limit. For each parameter set we

simulate the process with 100 steps, 50,000 times and thereby simulate a distribution of possible

values of the underlying of the options, at the expiry time shown in the table, each time starting

at S0 = 100. From this distribution we apply the call option pay-off to simulate an option price

for strikes between 65 and 125, at increments of 5 and then for each option price we use the

Black-Scholes formula to back-out the implied volatility via a standard search algorithm. The

results are displayed in Figures 1 and 2.

The top left graph in Figure 1 is based on scenario set 1 and it displays how the smile effect

increases with kurtosis:, which is 3 in the blue smile, 10 in the red smile and 20 in the green smile.

This effect is much more pronounced in scenario set 2, in which the value of α changes from 1

to 2. This higher value for α is associated with a greater vol-of-vol, especially when combined

with high values of κt. In both graphs the blue line (i.e. scenarios 1a and 2a) correspond to

Nelson’s limit, because κt = 3. The green and the red lines depict the smiles from our weak

7 It is common to use the term ‘instantaneous’ in the literature on continuous-time stochastic processes, in
place of the term ‘conditional’ typically used in discrete-time processes. However, we shall continue to use the
term conditional kurtosis rather than instantaneous kurtosis in this Section, and for the rest of the paper.
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Table 1: Scenarios for Parameters in Model (16)
Parameters above the line are set using scenarios for parameters below the line. The vol-of-vol is α

√
(κt − 1), the

unconditional kurtosis is 3/(1 − α2θ−1), the unconditional volatility is
√
ω/θ. The starting values for St and Vt

are S0 = 100 and V0 = 1.5ω/θ. This way V0 is 50% greater than the long-term variance. Note that setting κt = 3
as in scenarios 1a, 2a and 3a corresponds to Nelson’s limit for strong GARCH.

κt α and θ

Scenario number 1a 1b 1c 2a 2b 2c

V0 0.375 0.375 0.375 0.375 0.375 0.375
Vol of vol 1.41 3.00 4.36 2.83 6.00 8.72

Unconditional kurtosis 6 6 6 5 5 5
Unconditional vol 50% 50% 50% 50% 50% 50%

Expiry 0.1 0.1 0.1 0.1 0.1 0.1
α 1 1 1 2 2 2
θ 2 2 2 10 10 10
ω 0.5 0.5 0.5 2.5 2.5 2.5
κt 3 10 20 3 10 20

V0 and ω Expiry

Scenario number 3a 3b 3c 4a 4b 4c

V0 0.75 0.75 0.75 0.375 0.375 0.375
Vol-of-vol 1.41 3.00 4.36 4.36 3.00 1.73

Unconditional kurtosis 6 6 6 6 6 6
Unconditional vol 71% 71% 71% 50% 50% 50%

Expiry 0.1 0.1 0.1 0.05 0.1 0.25
α 1 1 1 1 1 1
θ 2 2 2 2 2 2
ω 1 1 1 0.5 0.5 0.5
κt 3 10 20 20 10 4

GARCH limit, which are clearly much more flexible and we observe the smile effect increasing

with kurtosis.

The top right graph in Figure 1 illustrates the effect of using a discretization different from the

one derived in Section 4.3. The simulations are based on identical parameters to those used for the

top left graph, i.e. scenario set 1 in Table 1, but this time we employ a standard discretization

scheme for the Brownian motion in the variance process. The kurtosis has less effect on the

implied volatility skew now, but we do not find this surprising because the discretized model is

no longer a weak GARCH(1, 1) under standard discretization. Finally, the bottom right graph

depicts the smiles obtained using scenario 3. Here we increase ω which increases the volatility,

hence all smiles shift upwards.

Figure 2 explores the volatility term-structure effects in the weak GARCH limit, using the

scenario set 4 in Table 1 where the expiry date varies from 0.05 of a year (blue) to 0.1 of a year

(red) to 0.25 of a year (green). The conditional kurtosis used in our discretization varies also,
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Figure 1: Implied Volatility Smiles Generated by Parameter Values in Table 1
Comparison of volatility smiles of the same maturities generated by the weak GARCH limit model with parameter
values given by scenario sets 1, 2 and 3 in Table 1. Results from scenarios labelled a are shown in blue, the b
scenarios are shown in red and those labelled c are shown in green. Non-starred curves are derived using simulations
based on the discretization scheme in Section 4.3 where kurtosis is constant. The curves 1a*, 1b* and 1c* (shown
top right) are derived using the parameter values in scenario set 1, but here we employ the standard discretization
for Brownian motions.

as shown in the table. These implied volatility smiles exhibit a ‘skew’ effect where low strike

options have much higher implied volatilities than high-strike options, especially for near-term

expiry dates. This is a common feature of equity index options in practice.

The middle graph in Figure 2 employs the standard discretization instead of the one derived

in Section 4.3. However, the discretized version of (16) is not a weak GARCH model in this

case and again there is a noticeable lessening of the skew effect. This shows that the wrong

discretization can produce misleading results. The bottom graph in Figure 2 again depicts three

different smiles from the weak GARCH limit, similar to scenarios 4 in Table 1. But this time

κt = 3 + ηt−1 with η = 0.75, i.e. we parametrize a fully time-varying conditional kurtosis in the

discretization instead of assuming it is constant. This time-varying kurtosis allows the smiles to

become more symmetric – a feature is often observed in practice, particularly in currency option

markets.

5.2 Calibrations

In this section we calibrate the parameters of the weak and strong GARCH limits to some real

data on option prices of different strikes and expiry. We expect that the additional time-varying

18



Figure 2: Effect of Discretization on Implied Volatility Smiles
Comparison of volatility smiles of different maturities generated by the weak GARCH limit model with parameter
values given by scenario set 4 in Table 1. Results from scenarios labelled a are shown in blue, the b scenarios
are shown in red and those labelled c are shown in green. Non-starred curves in the top graph are derived using
simulations based on the discretization scheme in Section 4.3 where the conditional kurtosis is constant and κ
takes the values shown in scenario 4 of Table 1. The curves 4a*, 4b* and 4c* (middle graph) are based on the
same parameters but are derived using the standard discretization for Brownian motions and the curves 4a**,
4b** and 4c** (bottom graph) are based on the discretization scheme in Section 4.3 where kurtosis is time varying
of the form κt = 3 + ηt−1 with η = 0.75 so that κ = 18, 10.5 and 6 at expiries 0.5, 0.1 and 0.25 years respectively.
All other parameters are as in scenario set 4 of Table 1.
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conditional kurtosis in (16) offers an extra degree of flexibility to match implied volatility smiles

more closely. Because currency options typically have deep, symmetric smile effects, and because

the cryptocurrency bitcoin is one of the most volatile of all currencies, we have obtained data

from the Deribit bitcoin options exchange on the implied volatilities of all bitcoin options that

were actively traded on 17 April 2020, when the spot price of bitcoin was almost exactly $7000.

There were two actively traded maturities on that day, one expiring on 24 April 2020 (7 days)

and the other expiring on 29 May 2020 (42 days).

The two bitcoin option smiles are depicted in the top left graph in Figure 3. The other graphs

in Figure 3 repeat the market data on implied volatilities and compare these with the smiles fitted

by calibrating parameters of (16). The calibration of model parameters is done my minimizing

the root mean square error (RMSE) between the market and model smiles and the resulting

fitted smiles are depicted using dashed lines of the same colour as the market smiles. Note that

parameters are calibrated using both smiles simultaneously in the RMSE minimization.

Figure 3: Calibration of GARCH Limit Models to Bitcoin Implied Volatility Smiles
Market smiles are derived from bitcoin option prices on 17 April 2020 at maturities 7 days (blue) and 42 days
(red). The top left shows the smiles implied by market prices and the top right depicts the fit obtained using the
weak GARCH model (in dotted lines of the same colour as the maturity). The lower two graphs compare the
smiles calibrated using strong GARCH when parameters are not constrained (bottom left) and when we constrain
the model to have positive unconditional kurtosis (bottom right) . All models are calibrated to both smiles
simultaneously.

The top right graph exhibits the fit obtained using the weak GARCH model with time-varying

conditional kurtosis and the bottom two graphs depict the smiles obtained by calibrating Nelson’s

strong GARCH limit with conditional kurtosis fixed at 3. Note that the unconditional kurtosis
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is not equal to 3 in Nelson’s limit because the volatility is time varying. Indeed, it is equal to

3/(1−α2θ−1) as proved in Proposition 1. Therefore we may need to restrict the values of α and

θ so that the unconditional kurtosis is positive.

Table 2: Calibration Results from Different Models
The first column gives the model name, with ** indicating the positive unconditional kurtosis constraint imposed,
the second to sixth columns report the fitted model parameters and the last column reports the root mean square
error (RMSE) between the calibrated smiles and the fitted smiles. Both smiles were calibrated simultaneously.
The parameter η is for the time-varying conditional kurtosis of the weak GARCH limit, where κt = 3 + ηt−1. The
fitted unconditional kurtosis is calculated as κ̂ = 3/(1 − α̂2θ̂−1).

Model ω̂ θ̂ α̂ η̂ κ̂ RMSE

Weak 2.25 108.71 6.62 0.0248 5.024 0.1023
Strong 7.46 12.89 8.46 0 -0.659 0.1284
Strong** 76.17 104.35 10.21 0 55734 0.1477

Table 2 reports the calibrated values of the parameters of the weak and strong GARCH models

corresponding to the fitted smiles exhibited in Figure 3. We used the classic discretization for the

strong GARCH limit and the discretization scheme of Section 4.3 for the weak GARCH limit.

The parameter η is for the time-varying conditional kurtosis of the weak GARCH limit, where

κt = 3 + ηt−1. The ** indicates the condition of positive unconditional kurtosis is imposed.

The results for the weak GARCH model are sensible. The calibrated unconditional kurtosis

is κ̂ = 5.024 and the time-varying kurtosis based on η̂ = 0.0248 is 3 + 0.0248
(

365
7

)
= 4.29 at 7

days and 3+0.0248
(

365
42

)
= 3.22 at 42 days. Also, this model gives the smallest RMSE of 0.1023,

which is in line with the better fit observed for the weak GARCH model in Figure 3. The strong

GARCH model, when calibration is unconstrained, returns a negative value for unconditional

kurtosis, with κ̂ = −0.659. We therefore impose the restriction that κ̂ > 0 in the last line of

results in Table 2. However, even though the fitted smiles appear reasonable to the eye (see the

bottom-right graph of Figure 3) the values of the calibrated parameters are not sensible. The

strong GARCH model gives such a high value of α̂ precisely because it is not flexible enough to

fit the given volatility smiles. Also, the RMSE of 0.1477 is almost 50% larger than the RMSE

for the weak GARCH calibration.

6 Conclusions

We present four arguments which motivate the use of weak rather than strong GARCH(1, 1) for

deriving a limit in distribution: (1) Strong GARCH is not time aggregating, so if we generate a

GARCH(1, 1) variance process and then re-sample at another frequency the result is no longer a

GARCH(1, 1) process; (2) The limit of strong GARCH may only be derived by making a specific

assumption about the convergence of the parameters and different assumptions lead to different

limits; (3) Any discretization of the strong GARCH diffusion is not a GARCH model; and (4)

the variance of its variance is either zero or too small to fit the implied volatility skew.

By contrast, a weak GARCH process is time aggregating, it implies the convergence rates
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for all parameters and our only assumption in deriving its limit is that the difference between

the GARCH BLP process and the conditional variance converges to zero with the square root

of the step-length. We prove that the weak GARCH diffusion is a stochastic variance process

with independent Brownian motions in which the variance diffusion coefficient is related to the

conditional kurtosis and the limit reduces to the GARCH diffusion derived by Nelson (1990)

when the excess kurtosis is zero. Our limit is unique and we provide a discretization that returns

the original weak GARCH model.

An analysis of simulated and real implied volatility skews from option prices demonstrates

that the extra conditional kurtosis parameter that is present in the weak GARCH limit – but

not in Nelson’s strong GARCH limit – adds considerable flexibility for fitting implied volatility

surfaces, even those with very steep skews such as those commonly observed in bitcoin options.

Acknowledgements: We are indebted to Shuyuan Qi of the University of Reading for per-
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by Lévy Process Stationarity and Second Order Behaviour’, Journal of Applied Probability Vol.
43 (3), 601-622.

Lindner A. (2009) ‘Continuous Time Approximations to GARCH and Stochastic Volatility Mod-
els’, Handbook of Financial Time Series, Edited by Andersen T., Davis R., Kreiss, J-P. and
Mikosch, T. (Springer), 481-496.

Maller, R., Miller, G. and Szimayer, A. (2008) ‘GARCH Modelling in Continuous Time for
Irregularly Spaced Time Series Data’. Bernoulli, Vol. 14, 519-542.

Meddahi, N. and Renault, E. (2004) ‘Temporal Aggregation of Volatility Models’, Journal of
Econometrics Vol. 19, 355 - 379.

Mele, A. and F. Fornari (2000) ‘Stochastic Volatility in Financial Markets Crossing the Bridge
to Continuous Time’, Kluwer Academic Publishers.
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