
Potential for early forecast of Moroccan 
wheat yields based on climatic drivers 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Lehmann, J., Kretschmer, M. ORCID: https://orcid.org/0000-
0002-2756-9526, Schauberger, B. and Wechsung, F. (2020) 
Potential for early forecast of Moroccan wheat yields based on
climatic drivers. Geophysical Research Letters, 47 (12). 
e2020GL087516. ISSN 0094-8276 doi: 
https://doi.org/10.1029/2020GL087516 Available at 
https://centaur.reading.ac.uk/91704/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1029/2020GL087516 
To link to this article DOI: http://dx.doi.org/10.1029/2020GL087516 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Potential for Early Forecast of Moroccan Wheat Yields
Based on Climatic Drivers
J. Lehmann1 , M. Kretschmer2 , B. Schauberger1 , and F. Wechsung1

1Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany,
2Department of Meteorology, University of Reading, Reading, UK

Abstract Wheat production plays an important role in Morocco. Current wheat forecast systems use
weather and vegetation data during the crop growing phase, thus limiting the earliest possible release
date to early spring. However, Morocco's wheat production is mostly rainfed and thus strongly tied to
fluctuations in rainfall, which in turn depend on slowly evolving climate dynamics. This offers a source of
predictability at longer time scales. Using physically guided causal discovery algorithms, we extract
climate precursors for wheat yield variability from gridded fields of geopotential height and sea surface
temperatures which show potential for accurate yield forecasts already in December, with around 50%
explained variance in an out‐of‐sample cross validation. The detected interactions are physically
meaningful and consistent with documented ocean‐atmosphere feedbacks. Reliable yield forecasts at such
long lead times could provide farmers and policy makers with necessary information for early action and
strategic adaptation measurements to support food security.

Plain Language Summary The per capita consumption of cereals in Morocco is one of the
highest in the world, placing a significant role to wheat production in the framework of national food
security. Early wheat forecasts are crucial to increase the resilience of the agricultural sector to climate
risks. So far, operational forecast systems provide first yield estimates in March–April and hence around
1 month before harvest starts in May. These systems use weather and vegetation data during the crop
growing phase, thus limiting the earliest possible release date to this very time period. Here, we present a
different approach based on causal interactions in the climate system to provide accurate forecasts of
year‐to‐year wheat yield changes already in December. We make use of the fact that wheat production is
mostly rainfed and thus strongly coupled to prevailing rain conditions which, in turn, are influenced by
slowly evolving circulation patterns and sea surface temperatures in the Atlantic and Pacific Ocean.
These links between far‐away regions, also known as teleconnections, can last for several months and
thus provide predictability at seasonal time scales relevant for strategic adaptation decisions, for example,
regarding crop import planning or the choice and intensity of agronomic practices.

1. Introduction

Agriculture is of particular strategic importance in Morocco. Most of the arable land is devoted to cereals
with wheat accounting for the majority of total cereal production and thus playing a key factor for national
food security. However, most of the arable land is located in arid or semiarid regions which are characterized
by long dry periods and high year‐to‐year rainfall variations (Born et al., 2008). Since very little of the arable
land is irrigated, this leaves Morocco's wheat production heavily dependent on large fluctuations in rainfall
intensities (Berdai et al., 2011). Reliable seasonal forecasts could help in reducing the vulnerability of the
Moroccan agriculture to weather risks by enabling timely in‐season adaptation. Since the Moroccan climate
is projected to become drier and hotter with ongoing global warming, such forecasts will likely become even
more important in the future (Born et al., 2008; Filahi et al., 2017).

Operational yield forecasting systems provide estimates at lead times of a few days up to 3 months before
harvest in May–June. Provisional forecasts are released every year by the Crop Growth Monitoring
System—Morocco (CGMS‐MAROC) in April and then constantly revised over the course of the season.
CGMS‐MAROC uses a physical crop growth model combined with statistical models (Bernardi, 2016;
Bregaglio et al., 2014). Based on empirical regression models using weather and vegetation data, Balaghi
et al. (2008) accurately forecast grain yields as early as of March. Yet, both approaches use the Normalized
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Difference Vegetation Index (NDVI) during mid‐season of the growing phase, which limits the earliest pos-
sible release date to early spring.

Longer lead times may be achieved through utilization of remote climatic drivers which influence rainfall
variability over Morocco and thus wheat production. Total annual wheat yields are significantly correlated
to accumulated rainfall during the rainy season lasting from September to May (De Wit et al., 2013).
Intraseasonal rainfall variability in turn is influenced by large‐scale climate dynamics including atmospheric
circulation patterns and sea surface temperatures (SSTs) over the Pacific and Atlantic Ocean, which may
persist over months, allowing for skillful forecasts of rainfall and NDVI at extended lead times (Jarlan,
Driouech et al., 2014; Knippertz et al., 2003; Rodríguez‐Fonseca et al., 2006). The most prominent mode
of large‐scale variability in the Atlantic, the North Atlantic Oscillation (NAO), has been shown to directly
influence the early stage of Moroccan wheat growth in December by shaping the storm tracks which bring
moist air from the Atlantic Ocean to the land (Jarlan, Abaoui et al., 2014). Moreover, indirect influences on
Moroccan rainfall may occur via atmospheric teleconnections; wave trains, for instance, can emerge from
SST forcing and may lead to temperature and rainfall changes in far‐away regions downstream of the wave
(Schlueter et al., 2019; Shaman & Tziperman, 2011).

Tapping into this potential source of forecasting rainfall and thus Moroccan wheat yields, we here apply a
physically motivated approach based on causal discovery algorithms (Runge et al., 2019) to find causal cli-
mate precursors for interannual wheat yield variability at least 4 months before harvest. Previous studies
have successfully applied the methodology of causal precursors to forecast extreme stratospheric polar vor-
tex states relevant for midlatitude winter weather (Kretschmer et al., 2017) and the Indian summermonsoon
intensity (Di Capua et al., 2019).

2. Data
2.1. Moroccan Wheat Yield Data

Nationally aggregated annual wheat yield data for the time period 1979–2017 is taken from the website of the
Food and Agriculture Organization (FAO) (FAOSTAT, 2017) with wheat yields given in hectograms per hec-
tare (hg/ha). Annual anomalies are calculated based on the difference to the yield in the previous year (first
differences), thereby removing possible linear trends. See the supporting information for the original time
series of absolute values (Figure S1). We chose to forecast yields instead of total production because yields
are more directly correlated with the climate, whereas the crop area needed to calculate total production also
depends on socioeconomic influences. If production is required, a wheat area mask can be derived from sta-
tic crop masks like SPAM (Fritz et al., 2015) or MIRCA2000 (Portmann et al., 2010) or from harvested area of
last season.

2.2. Climate Data

Precursors are derived from two climate variables: SST and geopotential height at 500 hPa (Z500), with the
latter being a commonly used level to describe high‐ and low‐pressure systems in the mid troposphere. We
selected these climate variables because they were shown to be linked to Moroccan winter climate and/or
wheat yields (e.g., Jarlan, Abaoui, et al., 2014; Knippertz et al., 2003; Tuel & Eltahir, 2018). Both climate vari-
ables are taken from the ERA5 reanalysis product provided on a 1° × 1° longitude‐latitude grid covering the
time period 1979–2017 at monthly time resolution (Hersbach et al., 2019). Similarly, as for the Moroccan
Wheat Yield (MWY) time series, monthly climate anomalies are calculated at each grid cell by calculating
the difference to the same month of the previous year. Due to the first differences approach for anomaly cal-
culation and the wheat growing season lasting from November to June, the analysis is limited to the years
1981–2017.

3. Building the Statistical Forecast Model—A Three Step Approach

Building the forecast model consists of three steps: (1) defining potential precursors from gridded climate
variables by spatial clustering of correlation maps, (2) selecting causal precursors from potential precursors
using causal discovery algorithms, and (3) applying multiple linear regressions on observed yield anomalies
using causal precursor time series.
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3.1. Step 1: Define Potential Precursors

Potential precursors are defined as confined regions of a climate variable whose changes precede changes in
the target variable, that is, nationally aggregated MWY anomalies. In a first step, pairwise correlation ana-
lyses are conducted between MWY anomalies and lagged time series of monthly Z500 and SST anomalies
at each grid cell of the gridded globe between 90°N and 20°S to include possible teleconnections from the
northern hemisphere and the tropics. Thereby, statistical significance at the grid cell level is defined at the
2% threshold (two‐tailed p value < 0.02). Using two climate variables (Z500 and SST) and four time lags
(September to December) thus leads to eight correlationmaps fromwhich potential precursors are extracted.
Potential precursors are defined by grouping significantly correlated grid cells of the same correlation sign
using density‐based spatial clustering of applications with noise (DBSCAN, Ester et al., 1996; Schubert
et al., 2017). In DBSCAN, a radius of 300 km is chosen to define neighboring grid cells, which is found to
produce regions of reasonable sizes and spatial separation.

3.2. Step 2: Select Causal Precursors From Potential Precursors

So far, potential precursor regions have been identified which are correlated with the target variable MWY.
These lagged correlations, however, do not necessarily imply causation. Noncausal, spurious correlations
can emerge from indirect links, common drivers, or autocorrelation effects. To remove such spuriously cor-
related precursors, we apply a multivariate causal discovery algorithm (Runge et al., 2019). The algorithm
uses partial correlations to iteratively check whether the link between a given potential precursor and the
target variable can be explained by any combination of the remaining potential precursors. If this is the case,
that is, if the given potential precursor is conditionally independent from the target variable, then this poten-
tial precursor is removed. Otherwise, it is considered as a causal precursor. A detailed step‐by‐step descrip-
tion of this causal selection step can be found in Kretschmer et al. (2016). Despite the thorough selection
process, the definition of causality given here, like any causal interpretation, rests on several underlying
assumptions (Runge, 2018). In this sense, causal precursors as defined in this study should be understood
as climatic indices which exhibit a significant, time‐lagged linear dependence with MWY anomalies that
cannot be explained by any other identified potential precursor or combination of those.

The combination of Steps 1 and 2 of the method part was first introduced by Kretschmer et al. (2017) as the
response‐guided causal precursor detection. Here, we apply the same method albeit with the modification of
clustering significantly correlated grid cells in Step 1 in contrast to merging only directly neighboring grid
cells. This has shown to improve the robustness of detecting potential precursor regions.

3.3. Step 3: Build the forecast model based on causal precursors

In the last step, we perform amultiple linear regression between the anomaly time series of the selected cau-

sal precursors and MWY anomalies to build the forecast model in the formMWYforecast¼αþ∑n
i βi · CPi þ εi,

where α is the intercept, βi is the parameter of the ith causal precursor (CPi) with error term εi, and n is the
total number of causal precursors.

4. Results
4.1. Extracting Causal Precursors From Climate Data

In total, 61 potential precursors are extracted (Step 1) from the pairwise correlation analysis between the
gridded climate variables and MWY anomalies, indicating both positive as well as negative correlations
(respective red and blue regions with contours in Figure 1). Potential precursors are found in each correla-
tion map with spatial patterns of Z500 precursors showing larger differences between time lags compared to
SST as expected from higher variability in the atmosphere. Correlation maps are robust with similar regions
found for different significance thresholds and subsamples of the studied time period (see details in
Figure S2).

Among all 61 potential precursors, only five are found to be causally linked to MWY anomalies following
Step 2 of the model building approach (Figure 2). These causal precursors include a region of negatively cor-
related Z500 anomalies over Central to Southwestern Europe in November and December, suggesting that
Z500 anomalies in these months provide relevant, independent information for MWY. Otherwise, the
applied causal discovery algorithm should have eliminated one of the two precursors during the
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conditional independence test. Consistently, the correlation between both Z500 regions is only weak
(Pearson correlation coefficient of r = 0.36, Figure S3). A second causal precursor is found in December
which refers to positively correlated SST anomalies in the Coral Sea northwest of Australia. Two causal pre-
cursors emerge in October and relate to positively correlated SST anomaly fields—one in the North Atlantic
off the East Coast of the United States and the other in the tropical Atlantic along the western African coast-
line. In September, no causal precursor for MWY is identified. We test the robustness of the causal selection
step by altering significance thresholds and applying them to subsamples of the data and overall find consis-
tent results (see detailed discussion in Figure S4). Particularly, Causal Precursors 1–4 only show little sensi-
tivity to the chosen settings.

4.2. Validation of the Moroccan Wheat Yield Hindcasts

Hindcasted yield anomalies strongly correlate with observed anomalies, explaining 88% of the observed yield
variance over the full time period with a root mean square error (rmse) of 2,530 hg/ha (Figure 3a). Thereby,
each causal precursor contributes a similar individual share of 15–25% to the total explained variance

Figure 1. Potential precursors derived from 500 hPa geopotential height anomaly fields (Z500, left) and sea surface
temperature anomaly fields (SST, right). Pairwise correlations are calculated between wheat yield anomalies and the
respective climate variable at each grid cell and time lag ranging from Lag 4 (December) to Lag 7 (September).
Significantly correlated grid cells are then aggregated to homogeneous regions using cluster analysis (black contours).
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(Figure S5) as computed from variance decomposition of the multiple linear regression model
(Grömping, 2007). Oscillating MWY variability over the last decade seems to be driven by similar
variability of the causal Z500 precursor regions in December and November (Figure S6), which is in line
with increased correlation strength over time between both precursors and MWY (Figure S7). In contrast,
correlation strength between MWY and the causal SST precursor in the equatorial Atlantic starts at a high
level of around r = 0.8 and then decreases to around r = 0.4 in 2010. The transition phase when the
correlation of MWY with the Z500 precursors becomes stronger than with the SST precursor corresponds
to the time period where hindcasts diverge most from observations (1999–2003) and may thus play a role
for this discrepancy. Analyses of the hindcast residuals confirm that the assumptions of a multiple linear
regression model are fulfilled, that is, that residuals are characterized by a mean value of zero, constant
variance (homoscedasticity), and no significant autocorrelation and follow a normal distribution (Figure S8).

The regression model is robust with respect to its regression parameters of the identified causal precursors.
To show this, we divide the time series into two parts; regression parameters are derived from the training
period (19 years, 1981–1999) and then used to hindcast MWY anomalies over the test period (18 years,
2000–2017). The explained variance over the training period (91%, rmse = 2,100 hg/ha) is high and similar
to the explained variance over the test period (85%, rmse = 3,170 hg/ha), indicating that the regressionmodel
does not suffer from overfitting given the hypothetical case that all five causal precursors were known
(Figure 3b).

We next implement an out‐of‐sample cross validation to further validate the predictive skill of our hindcast
model in the case that causal precursors are not know a priori. For this, we iteratively remove two consecu-
tive years from the time series with the remaining years serving as the training period and the left‐out years
as the test period. We choose to remove two consecutive years instead of just one to account for the strong
year‐to‐year autocorrelation of the causal precursor time series (Figure S9). The full hindcast model
(Steps 1–3) is then calculated using data from the training period only to ensure that data against which
the model skill is validated do not enter any part of the model building process.

Hindcasted yield anomalies from this cross validation still explain 49% (rmse = 5,330 hg/ha) of the observed
variance over the full time period with observations mostly staying within the 95% prediction interval
(Figure 3c). The drop in explained variance is due to the fact that not all five causal precursors are detected
in each training period, which is primarily due to small changes in the identified potential precursor sets.

Figure 2. Causal precursors of Moroccan wheat yield anomalies. Five causal precursor regions are extracted from geopotential height anomaly fields (Z500, green)
and sea surface temperature anomalies (SST, red) at different time lags. Contours indicate whether a precursor is positively (solid line) or negatively (dotted line)
correlated with yield anomalies.
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Repeating the cross validation using prescribed potential precursors from the full time period increases the
explained variance to 76% (rmse = 3,640 hg/ha, Figure S10).

4.3. Forecasting Wheat Yields and Comparison to Other Statistical Methods

We next assess the potential of our approach to forecast interannual MWY changes and find it to produce
accurate forecasts when operated in a one‐step‐ahead mode (Figure 4). For this, we use climate and yield
data from the 25‐year period prior to the to‐be‐forecasted year to build the full forecast model; that is, to
define potential precursors, select causal precursors and derive the regression parameters. Regression para-
meters are then applied to causal precursor anomalies from the 26th year to produce the forecast.
Afterwards, the 25‐year period is shifted by 1 year to rebuild the complete model used to forecast the next
year and so on. This way, possible long‐term changes in teleconnections affecting MWY can in principle
be captured. The forecast model accurately forecasts MWY anomalies showing the right direction of change
in each year and explaining 72% of its variance (rmse = 5,250 hg/ha) between 2006 and 2017. Years before
2006 could not be tested because of a required reasonably long training period prior to the forecasted year.
Observed yield anomalies are within the 95% prediction interval except for 2007 and 2016 where the

Figure 3. Hindcasts based on causal precursors. (a) Hindcasted yields strongly correlate with observed yields over the
studied time period. (b) Observed and hindcasted yields over a train and a test period with same causal precursors as
in (a) and regression parameters calculated from the train period only. (c) Leave‐two‐out cross validation with strict
train‐test splitting in all three model building steps. Observed yields mostly stay within the 95% prediction interval.
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observed decline in yield is significantly lower than forecasted and in 2009 where the observed yield anomaly
is significantly higher.

To assess the added value of our forecast model, we compare results to two simple forecast models: one
which assumes that the forecasted yield is equal to the average of historical yields plus a linear trend and
a second one which sets all forecasts to be the anomaly of the previous year but inversed in sign (see details
in Figures S11 and S12). The latter model has no physical meaning but is motivated by the characteristic time
series of strongly alternating yield anomalies. The average + trend model and the previous‐year model show
some skill in forecasting next year's yield during 2006–2017 (r2 = 0.71 and 0.58, rmse= 5,840 and 6,000 hg/ha,
respectively). However, predictive skill drastically decreases in the out‐of‐sample cross validationwith 2 years
omitted in the training phase (r2 = 0.29 and 0.24, rmse = 6,290 and 7,400 hg/ha, respectively), indicating that
most of the skill in the forecast mode comes from the strong year‐to‐year autocorrelation of MWY and causal
precursor anomalies. Our causal precursor‐based model outperforms both simple models by a factor of
around 2 with respect to explained variance.

5. Discussion and Conclusions

We have shown that Moroccan wheat yield anomalies which are strongly linked to winter rainfall changes
can be robustly predicted using five causal precursors extracted from geopotential height anomalies at
500 hPa and SSTs. The physical interpretation of the discovered links is discussed in the following.

A clear direct effect can be derived from the November and December geopotential height anomalies over
Europe indicated as Causal Precursors 1 and 3 (see Figure 2). A high pressure system over this region deflects
extratropical storms to the north which bring moist air from the Atlantic Ocean to the land (Hurrell, 1995).
In turn, negative geopotential height anomalies would favor more zonal storm tracks, leading to more rain-
fall over Morocco (and thus higher yields) consistent with the negative link we find between the precursors
and wheat yields. The center and spatial pattern of the two precursors resemble the southern region of pres-
sure anomalies characteristic for the NAO. Indeed, also the NAO counterpart of positively correlated Z500
anomalies over Greenland/Iceland was identified in the correlation maps (Figure 1) but not found to add
additional information for MWY. A strong link between NAO and Moroccan precipitation has already been
reported and used for predictions (El Hamly & Sebbar, 1998; Jarlan, Abaoui, et al., 2014; Knippertz
et al., 2003). Here, this region is selected from our data‐driven method directly, confirming earlier findings.

Figure 4. One‐step‐ahead forecast. The forecast model is iteratively computed from the 25‐year period prior to the to‐be‐
forecasted year. Vertical lines indicate the 95% prediction interval.
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The positive correlation between October SST anomalies at the East Coast of the United States (Precursor 4,
Figure 2) and changes in wheat yields may arise via extratropical storm track activity. The causal precursor
region largely overlaps with a region of strong cyclogenesis of extratropical storms. Cyclogenesis is largely
determined by the surface layer and hence by SSTs (Hoskins & Valdes, 1990). High temperature gradients
in this region provide favorable conditions for the creation of extratropical storms and thus increased storm
track activity associated with anomalously wet conditions over Europe and North Africa (Lehmann &
Coumou, 2015).

A more indirect effect can be assumed from both tropical SST precursors on Moroccan winter rainfall and
thus wheat yields. There is an extensive body of literature on tropical‐extratropical interactions which
explains how tropical thermal forcing impacts on extratropical weather conditions through induced atmo-
spheric responses (see, e.g., Robertson & Vitart, 2019 and references therein). The most important
tropical‐extratropical teleconnection at the subseasonal to seasonal time scale emerges from the
Madden‐Julian Oscillation (MJO) (Stan et al., 2017; Vitart, 2017). It has been shown that Phases 6 and 7
of the MJO can enhance poleward and vertical Rossby wave propagation leading to negative NAO‐like con-
ditions via a stratospheric pathway (Lee et al., 2019) and thus positive precipitation anomalies over western
North Africa (Cassou, 2008; Lin et al., 2009). This link is in agreement with December Precursor 2 in the
West Pacific, suggesting that it provides predictability for Moroccan wheat yields via its remote influence
on winter rainfall. The reported SST Precursor 5 in October is consistent with a documented tropical driver
of Moroccan wheat yields. Warming of this region along the western African coastline has been shown to
enhance latitudinal moisture transport via changes in trade winds, which is important for autumn rainfall
in Morocco and thus for the early phase of wheat development (Knippertz et al., 2003).

The reported set of causal precursors is robust over the studied time period. However, for some shorter time
intervals, only a subsample of the set is found to be significant. Assessing the origin of these differences using
data from climatemodels could give valuable insights into whether this is a statistical artifact or due to actual
changes in physical teleconnections. Moreover, albeit all five causal precursors were found to be similarly
important to forecast Moroccan wheat yields, each of them may be relevant for different phases of rainfall
during the rainy season or rainfall at different locations. For example, it has been suggested that pressure
anomalies consistent with Precursor 1 are important for early wheat growth (Jarlan, Abaoui, et al., 2014),
whereas tropical Pacific SSTs corresponding to Precursor 2 are relevant for late‐season precipitation
(El Hamly & Sebbar, 1998). This should be assessed in subsequent research by linking climate drivers to spa-
tially resolved rainfall over Morocco using the causal discovery algorithm presented in this study. Finally,
further insights can be gained by analyzing how teleconnections operating on longer time scales might affect
the precursors identified in this study. For example, Lee et al. (2019) showed that the El Niño Southern
Oscillation (ENSO) influences the above‐mentioned MJO‐NAO link through modulation of the seasonal
mean background state.

Recent research showed the great potential of teleconnections as a source of predictability on subseasonal to
seasonal time scales, relevant for a multitude of applications (Dobrynin et al., 2018; Merryfield et al., 2020;
White et al., 2017). Here we showed that climatic information can be used to forecast Moroccan wheat yields
4 months before harvest through its direct link to prevailing rainfall conditions. This would offer release dates
3–5 months earlier compared to current operational forecast systems which use vegetation data and provide
first yield estimates in March (Joint Research Centre—Monitoring Agricultural Resources, JRC MARS),
April (CGMS‐MAROC), or May (U.S. Department of Agriculture, USDA). Comparison of forecast skill
between the different models is nearly impossible due to marked differences in input data, metrics, validation
techniques, and even the forecasted output (e.g., yield vs. production). Yet, it is reasonable to assume that
forecast accuracy of monthly updated operational forecasts generally improves over the course of the season.

Ideally, our model would thus be used to increase the volume of existing forecast information and extend the
lead time for initial estimates. Such long lead times could significantly improve strategic adaptation mea-
sures from the state to farm level, including early wheat import planning and the application of plant protec-
tion materials and fertilizers, and provide humanitarian actors with timely information for early action. The
presented method can easily be transferred to other indicators and regions. Yet, we emphasize that expert
knowledge, for example, about appropriate climate precursors, and a careful interpretation of the results
are crucial to extract meaningful results.
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Data Availability Statement

For this study, ERA5 data were retrieved via the Copernicus website (https://climate.copernicus.eu/climate-
reanalysis) and Moroccan wheat yield via the FAO website (http://www.fao.org/faostat/en/#data/QC).
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