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ABSTRACT  

Leguminosae, Polygalaceae, Quillajaceae and Surianaceae together comprise the order Fabales. 

Phylogenetic relationships within Fabales remains an unsolved problem even though interfamilial 

relationships have been examined in a number of studies using different sampling approaches and 

both molecular and morphological data. In this study, we gather information from the nuclear 26S 

rDNA region as well as previously published data from the sqd1, matK and rbcL regions. Phylogenetic 

analyses were performed by maximum parsimony, maximum likelihood, and Bayesian inference. 

Overall, the best-supported topology for the relationships among families within the order places 

the pair of Leguminosae and Polygalaceae as sister to the pair of Quillajaceae and Surianaceae. 

However, our approximately unbiased (AU) test of the combined data results has shown that none 

of the seven different topologies rejected. Furthermore, three topologies were not significantly 

different from each other. Therefore, similar to the previous studies, this study did not find well-

supported dichotomous relationships among the four Fabales families. The Fabales topology was 

very sensitive to both data choice and the phylogenetic methods used, which may indicate a rapid-

near-simultaneous evolution of the four Fabales families. Our results also show that while nuclear 

sqd1 can be helpful as a complementary region, both the nuclear sqd1 and rDNA 26S regions could 

be problematic when analysed individually.  

Keywords — Fabales, Leguminosae, matK, Polygalaceae, Quillajaceae, rbcL, sqd1, Surianaceae, 26S.  

 

INTRODUCTION 

The last decades have seen an exponential increase in molecular phylogenetic studies of 

angiosperms and emerging consensus at higher levels. The order Fabales Bromhead was one of the 

most surprising angiosperm clades to result from early studies of interfamilial relationships. Since 

four families of Fabales are very diverse morphologically, (APG III 2009; Bello et al. 2009); until DNA 

sequence data became available, most of classification systems placed only the Leguminosae 

(Fabaceae) Juss. in the order Fabales, while the other families now placed in the order, Polygalaceae 
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Hoffmanns. & Link, Surianaceae Arn., and Quillajaceae D. Don, appeared in different taxonomic 

groups (Bello et al. 2009).  

Molecular studies and fossil evidence suggest an ancient origin and rapid radiation for Fabales (e.g., 

Crane et al. 1990; Zi-Chen et al. 2004; Lavin et al. 2005; Pigg et al. 2008; Bello et al. 2009) (note that 

the unconfirmed fossils of Polygalaceae and Surianaceae, and there is still the possibility of 

incomplete fossil record of Fabales). The monophyly of the order is strongly supported by several 

studies (e.g., Bello et al. 2009; Bello et al. 2012; APG IV 2016), but the overall phylogenetic 

relationships across the order and position of the root remain controversial; a situation common in 

higher level phylogenetic studies of ancient, rapid radiations. (Bello et al. 2009). Previous studies 

which have recovered different interfamilial topologies for Fabales have used different DNA regions 

and have very different and unbalanced taxon sampling (e.g. Crayn et al. 1995; Doyle et al. 2000; 

Savolainen et al. 2000; Soltis et al. 2000; Kajita et al. 2001; Persson 2001; Wojciechowski et al. 2004; 

Lavin et al. 2005; Forest et al. 2007; Bruneau et al. 2008; Soltis et al. 2011). Phylogenetic instability 

has been attributed not only to the putative rapid radiation in the early history of the order, but also 

to sampling directed above (i.e. angiosperms) or below (i.e. Leguminosae, Polygalaceae) the ordinal 

level (Bello et al. 2009). Nevertheless, even studies focused on Fabales could not yield robust 

relationships for the order (Table 1).  

 

The most comprehensive studies addressing the phylogeny of order Fabales were by Bello and 

colleagues (Bello et al. 2009; Bello et al. 2012). In their first study, five different topologies were 

recovered using maximum parsimony (MP) and Bayesian analysis (BI) based on the rbcL and matK 

plastid regions (Table 1). The Shimodaira-Hasegawa test (Shimodaira and Hasegawa 1999) they 

conducted favoured a resolved topology over a polytomy, but none of the five possible topologies 

outlining the relationships between the four families of Fabales received a significantly better 

likelihood. In all analyses, Fabales and each of its component families were monophyletic and 
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support values were mostly very high for all these clades. However, all five topologies for 

interfamilial relationships within the order received low to moderate support, an observation 

common to many rosid orders and attributed to rapid, early radiation within Fabales (Bello et al. 

2009; Wang et al. 2009). Furthermore, Bello et al. (2009) reported that the stem age estimate for 

Leguminosae, Polygalaceae and the pair Surianaceae+Quillajaceae have very similar ages, which 

would support the idea of a rapid radiation in the early history of the order.  

 

In their second study (Bello et al. 2012), two hypotheses emerged from the combination of 66 

morphological characters with previously published rbcL and matK plastid regions. The 

morphological characters described floral development and anatomy, and MP and BI analyses were 

used to explore three data sets which differed in the proportion of missing data and in the choice of 

outgroup taxa (Table 1). The two recovered topologies were (((S+Q)L)P) and (L+P)(S+Q), with the 

latter only recovered from BI analyses of the most densely-sampled matrices (Table 1). The most 

frequently-recovered topology, (((S+Q)L)P) was considered the most likely in the light of 

morphology, in spite of low to moderate support from both MP and BI analyses.  

 

Despite the attention phylogenetic relationships within Fabales has received, a well-supported 

interfamilial topology remains elusive. This unresolved phylogeny problem of Fabales also causes 

unanswered evolutionary questions such as estimating diversification rates (e.g., Smith et al. 2011; 

Koenen et al. 2013) and understanding trait evolution and biogeography. Therefore, an 

unambiguous phylogenetic answer for the four Fabales families is required. Moreover, the genomic 

markers used to date in phylogenetic reconstructions within the order have mostly been from the 

plastid genome. However, the prevailing view is that nuclear and plastid DNA sequence data are 

needed to fully understand flowering plant evolutionary history, because nuclear regions can 

provide insights into hybridization, polyploidy and reticulation (Sang 2002; Álvarez and Wendel 
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2003). Therefore, in the present study, 26S rDNA sequence data is explored alongside previously 

published sqd1 data from the nuclear genome, and matK and rbcL data from the plastid genome. 

 

sqd1 (UDP sulfoquinovose synthase gene) is a low copy nuclear gene and it is one of the five 

conserved orthologue set (COS) markers highlighted in a survey of universally amplifiable markers; it 

is 267 base pairs (bp) long in Angiosperm families, easy to align due to the lack of indels and highly 

parsimony informative (Li et al. 2008). Babineau et al. (2013) screened the phylogenetic utility of 19 

low copy nuclear genes for caesalpinoid legumes, and they highlighted that the sqd1 region has a 

potential for familial to tribal level resolution with almost 30% of parsimony informative characters.  

 

The 26S nuclear ribosomal DNA (rDNA) has been used in several phylogenetic studies (e.g. Fan 2001; 

Soltis et al. 2001; Zanis et al. 2003; Weitemier et al. 2015; Xu et al. 2015). It has potentially many 

advantages for phylogenetic reconstruction: 1) it consists of both variable and conserved regions 

suitable for closely and distantly related taxa; 2) it has very high copy numbers making amplification 

generally easy with mostly universal primers (Baldwin et al. 1995; Bailey et al. 2003; Weitemier et al. 

2015; Xu et al. 2015); and 3) like all nuclear loci, it is biparentally inherited providing insights into 

hybrid parentage, polyploidy events and reticulation (Álvarez and Wendel 2003). However, some 

drawbacks were also reported related to its high copy number, such as intra-individual and intra-

genomic variation with multiple copy types found within individuals, often incomplete and 

bidirectional homogenization of copy types, incomplete concerted evolution, paralogy problems, 

secondary structures, high GC content and the presence of potentially non-functional pseudogene 

sequences (Hillis and Dixon 1991; Baldwin 1992; Baldwin et al. 1995; Soltis and Soltis 1998; Alvarez 

and Wendel 2003; Bailey et al. 2003). Among them the view on inclusion/exclusion of pseudogenes 

changes from one study to another (Bailey et al. 2003). While some authors exclude potential 

pseudogenes due to alignment or long-branch attraction concerns (LBA; Felsenstein 1978), others 
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include them to address issues related to the potential reticulate evolution of taxa. Many 

approaches such as pairwise comparisons and tree-based methods were applied to detect these 

pseudogenes (e.g., Hughes et al. 2002). 

 

Despite the apparent early enthusiasm for the 26S gene and its potential in phylogenetics, the 26S 

rDNA region’s popularity fell due to the increased interest for low-copy nuclear genes and the low 

phylogenetic signal subsequently reported for the region (Soltis et al. 2011). The extent of how 

above-mentioned issues affect phylogenetic reconstruction varies among groups of organisms. For 

example, phylogenetic studies rated the inclusion of the 26S conserved rDNA sequences from useful 

(e.g. Fan 2001; Neyland 2002; Soltis et al. 2011) to inconsistant (e.g. Ro et al. 1997; Muellner et al. 

2003).  

 

The matK plastid region is one of the most frequently employed genes in phylogenetic analyses (e.g. 

Hilu et al. 2003; Luckow et al. 2003; Wojciechowski et al. 2004; Lavin et al. 2005; Kim and Kim 2011; 

Wanntorp et al. 2011; Kim et al. 2013; LPWG 2017). It was shown, not only for Leguminosae but also 

for Fabales, that this plastid gene successfully resolves many relationships with high support due to 

its high substitution rate (Lavin et al. 2005; Bello et al. 2009; LPWG 2017). Similarly, the rbcL region is 

another commonly sequenced plastid gene for Fabales. While the use of this gene for Fabales was 

not recommended (Bello et al. 2009), nor was it as useful as matK for Leguminosae (Lavin et al. 

2005), the possibility of it contributing to a robust combined analysis should not be ruled out. 

 

In the present study, a broader outgroup sampling compared to previous studies of Fabales was 

employed to reduce tree imbalance artefacts (Smith 1994), and particularly to reduce problems 

associated with LBA (Felsenstein 1978) by breaking long branches between the ingroup and 

outgroup. The 34 outgroup taxa used here were chosen to represent each family from seven Fabidae 

orders. Additionally, as well as combining new nuclear sequence data and previously published 
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nuclear and plastid regions, these regions were compared to investigate possible incongruence 

between them. Lastly, three analytical methods MP, maximum likelihood (ML) and BI were used to 

investigate how these approaches perform with the new data sets.  

 

MATERIALS AND METHODS 

Taxon sampling  

Total genomic DNA samples used in Forest (2004)  were newly sequenced here for 26S rDNA. The 

National Center for Biotechnology Information (NCBI/GenBank) accession numbers for previously 

published and newly produced DNA sequences are provided in Appendix 1, including 70 26S rDNA 

sequences. The taxon sampling list is organised according to the most recent classification system 

(e.g. Gagnon et al. 2016 and LPWG 2017). We included 34 taxa from seven different orders of 

Fabidae as outgroup taxa. 

DNA extraction, amplification and sequencing  

Approximately 950 bp of the 5’-end of the 26S rDNA gene was amplified using primers N-nc26S1 and 

950rev (Kuzoff et al. 1998). Amplification was performed using the following program: 2 min at 94°C, 

32 cycles of 45 sec at 94°C, annealing at 55°C for 1 min, 1,5 min at 72°C, and a final extension of 5 

min at 72°C. When PCR product yields were too low, one of the following additional steps was 

performed: (1) an increase in number of cycles (e.g. up to 35 cycles); (2) an additional PCR run using 

identical parameters as above repeated with 8 to 10 cycles; (3) three identical non-modified 

reactions pooled together on the same column for the cleaning step. All PCR products were purified 

with the QIAquick PCR purification kit (Qiagen inc.) and eluted in EB buffer (10 mM Tris). 

Complementary strands were sequenced on an ABI 377 or ABI 3100 automated sequencer following 

the manufacturer’s protocols. The same primers were used for amplification and for the cycle 

sequencing reactions. Seventy previously unpublished 26S rDNA sequences were included (Forest 

2004), and 15 were downloaded from GenBank (Appendix 1). A total of 85 samples were included, 
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43 from Leguminosae, 17 from Polygalaceae, four from Surianaceae and 21 outgroup taxa 

representing diverse Fabidae orders. Unfortunately, 26S region could not be amplified for Quillaja. 

 

Since sequencing results do not clearly indicate the presence of paralogous copies and/or 

pseudogenes (e.g. no significant double peaks in chromatograms), this has not been investigated 

further here for the 26S nuclear gene region.  

Phylogenetic analyses and model selection  

Sequences were assembled and aligned using the Geneious alignment option in Geneious Pro 4.8.4 

(Kearse et al. 2012) with the automatic pairwise alignment tool and subsequently edited manually. 

Equivocal base calling at the beginning and end of assembled complementary strands were trimmed. 

All indels were scored as missing data. Eight different combined analyses were performed to explore 

the results obtained with the newly produced 26S and published sqd1 nuclear partitions separately 

and in combination with published matK and rbcL sequences (sqd1 alone, 26S alone, 26S+sqd1 

combined, matK+rbcL combined, sqd1+matK combined, 26S+sqd1+matK combined, 

sqd1+matK+rbcL combined, and 26S+sqd1+matK+ rbcL combined); details of each analysis are 

presented in Table 2. The substitution models for each of the individual genes were estimated using 

jModelTest2.1.10 (Guindon and Gascuel 2003; Darriba et al. 2012). 

Maximum parsimony analysis was performed using PAUPRat (parsimony ratchet searches using 

PAUP*; (Sikes and Lewis 2001) as implemented on the CIPRES portal ((Miller et al. 2010); 

http://www.phylo.org/). Heuristic searches were performed with 1,000 replicates with tree-

bisection-reconnection (TBR) branch swapping and a maximum of 1,000 best trees kept. All 

characters were equally weighted and unordered. Strict consensus trees were generated using PAUP 

and all the best trees found.  
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Maximum likelihood analysis was performed using RAxML version 8 (Stamatakis 2014) as 

implemented on the CIPRES portal ((Miller et al. 2010); http://www.phylo.org/). The GTRGAMMA 

model was applied to each partition individually and default maximum likelihood search options 

were selected with 1000 bootstrap replicates. The best scoring trees with bootstrap values were 

saved.  

 

Bayesian analyses were conducted using MrBayes 3.2.7a (Ronquist et al. 2012) as implemented on 

the CIPRES portal ((Miller et al. 2010); http://www.phylo.org/). The same GTR+G+I model of 

molecular evolution as for ML was applied. MrBayes was run with four (one cold and three heated) 

Monte Carlo Markov chains (MCMC) and for 100 million generations, sampling one tree in every 

1,000 generations. This was repeated twice as independent runs, and the resulting parameter files 

were jointly visualized in Tracer (Rambaut and Drummond 2003) to ensure convergence. Among the 

100,000 trees thus obtained, the first 25,000 trees (25%) were discarded as “burn-in”, and a 

maximum credibility tree and associated posterior probabilities were compiled using the remaining 

75,000 trees and the “halfcompat” option of the “sumt” command. Images of the phylogenetic trees 

were produced using the Interactive Tree of Life (iTOL) online tool (https://itol.embl.de/) (Letunic 

and Bork 2016). 

Alternative topology testing 

The approximately unbiased (AU) (Shimodaira and Hasegawa 1999) test was used to evaluate the 

alternative phytogenetic relationships of the four Fabales families. For each alternative topology, P-

values were calculated by W-IQ-TREE (http://iqtree.cibiv.univie.ac.at/, Trifinopoulos et al. 2016) by 

using 10,000 bootstrap replicates and our 26S+sqd1+matK+ rbcL combined alignment. 

 

RESULTS 
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The GTR+G+I model of molecular evolution was selected as the most suitable for each of the 

individual genes. In the following sections, the results of the ML and BI analyses are highlighted with 

MP topology summaries presented in Table 3 alongside those obtained from the ML and BI analyses. 

Only bootstrap support values above 50% or posterior probabilities above 0.95 are discussed. 

Alignment details for all datasets are also summarized in Table 2 (Online resource 1-8).  

 

Fabales is found to be monophyletic in all analyses based on sqd1 (MP, ML and BI), but interfamilial 

relationships other than the Leguminosae-Polygalaceae pair were not resolved (Table 3, Online 

resource 9). Polygalaceae is monophyletic in all analyses, and Xanthophyllum sp. is retrieved as sister 

to the remainder of the family. Within the monophyletic Leguminosae, all six newly recognized 

subfamilies are also monophyletic, except in the MP analyses in which subfamily Papilionoideae is 

paraphyletic. For the analyses performed with the 26S rDNA region alone (Online resource 10), both 

Fabales and its constituent families were resolved as monophyletic in the ML analysis (only 57%) and 

BI analysis (posterior probability of 1.0), but not in the MP analysis. However, the position of both 

Detarium (a member of subfamily Detarioideae) and Acrocarpus (a member of subfamily 

Caesalpinioideae) within Caesalpinioideae and Papilionoideae, respectively, was never seen in any 

previous analyses (e.g., LPWG 2017), 

 

In the nuclear 26S+sqd1 ML analysis (Online resource 11), except Caesalpinioideae and Detarioideae, 

the remaining subfamilies were monophyletic. However, in the plastid matK+rbcL ML analysis, the 

phylogenetic relationships of the six subfamilies supports the new classification of the LPWG (2017), 

all the subfamilies were monophyletic (Online resource 12). In both analyses (matK+rbcL and 

26S+sqd1), Leguminosae was sister to Polygalaceae (with only 60% bootstrap support compared to 

68% from the nuclear regions analysis). Quillajaceae was sister to Surianaceae with 85% bootstrap 

support in the plastid ML analysis, while in the nuclear tree the position of these two families were 

not resolved. Lastly, in contrast to highly supported monophyletic Fabales (100%) in the plastid tree, 
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in the nuclear tree the monophyly of the order Fabales was supported by only 71% bootstrap 

support.  

 

The 26S+sqd1+matK+rbcL ML analysis yielded monophyletic Fabales (100%), Fabales families, 

Leguminosae subfamilies and Polygalaceae tribes (Fig. 1). While a (L+P)(Q+S) topology was observed 

with moderate bootstrap support (90% bootstrap support for (L+P) and 88% bootstrap support for 

(Q+S)). Within Leguminosae all six subfamilies were monophyletic. Within monophyletic 

Polygalaceae (100%), Xanthophylleae was sister to the remainder of the family. 

 

The addition of 26S rDNA data to the other data sets did not yield higher support or better 

resolution (Table 3 and Table 4). In contrast to 83% bootstrap support for the (L+P) clade in the sqd1 

ML tree, this clade was supported with 68% bootstrap support in the sqd1+26S ML analysis. 

Similarly, the addition of 26S nuclear data to the sqd1+matK and sqd1+matK+rbcL did not yield 

better results. When matK is added, generally higher support values were obtained for all analyses, 

however when the rbcL is added, slightly lower values were observed (Table 3 and 4).  

Lastly, our approximately unbiased (AU) test analysis showed that ((L+P)(S+Q)) topology (1) was not 

significantly better than the other hypotheses (Table 5). 

 

DISCUSSION 

 

Our results have shown that, while the sqd1 nuclear region may not be helpful in solving Fabales 

phylogeny problems on its own due to reduced support for interfamilial relationships, it can be used 

in combination with other regions such as matK. On the other hand, there was no difference with 

regard to phylogenetic relationships between analyses including 26S and those excluding it. While 

our sequencing results do not clearly indicate the presence of paralogous copies and/or 

pseudogenes (please note that this has not been investigated in depth here with additional 
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analyses), it is possible that our 26S dataset includes paralogous copies and/or pseudogenes which 

are causing Caesalpinioideae and Papilionoideae to be represented as non-monophyletic. Indeed, 

similar results were reported by a recent study (Maia et al. 2014) using both 26S and 18S nuclear 

regions in an angiosperm-wide study (e.g., non-monophyletic Fabales, Leguminosae and 

Polygalaceae). Furthermore, lack of support across the majority of nodes in the 26S tree, especially 

for Leguminosae, is another concern (Online resource 11), which could be linked to the conserved 

nature of the region (Kuzoff et al. 1998). Therefore, the inclusion of 26S in any phylogenetic study 

should assess possible paralogy problems, as well as how its contribution to support and topology is 

compared to analyses excluding it. 

 

Our results have shown that both the topology and the root of the order change according to choice 

of genes and the analytical methods (Table 3), which was also common in the previous studies that 

focussed on Fabales. Moreover, two possible topologies were recovered from our analyses, 

(L+P)(Q+S) obtained for most analyses, and (((L+P)S)Q) for MP analyses of 26S+sqd1 (Table 3). 

Overall, our results indicate that the ((L+P) (S+Q)) topology is the most likely; which is the same 

topology that was recovered from the BI analyses of matK and matK+rbcL by (Bello et al. 2009) and 

again from the BI analyses of matrix A and C of (Bello et al. 2012) (Table 1). However, similar to the 

previous studies (e.g., Forest 2004; Bello et al. 2009; Bello et al. 2012), it was found that both ML 

and BI analyses yielded low support values for the interfamilial relationships within Fabales. 

Furthermore, none of the seven different topologies were rejected by the AU test of our combined 

data, and the first three topologies were not significantly different from each other (Table 4). 

Indeed, this may indicate that the phylogenetic signal in the internal branches of Fabales is very 

weak that it is open to any small changes, which is a common feature of rapid radiations (Rota-

Stabelli and Telford 2008; Roberts et al. 2009). However, Fabales is not one of the hard polytomy 

cases reported to date (Bello et al. 2009), in which the genes that are used may not have any 
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phylogenetic signal for the internal branches (Braby et al. 2005; Whitfield and Kjer 2008; 

Kodandaramaiah et al. 2010).  

 

Lack of resolution is a common problem across Angiosperms in general (e.g., Zeng et al. 2014; Huang 

et al. 2015; LPWG 2017) and there are several common reasons underlying not only unresolved 

rapid radiations but most phylogenetic problems, such as, gene tree incongruence due to biological 

events (e.g., whole genome duplication (WGD), hybridization, introgression, horizontal gene 

transfer, incomplete lineage sorting (ILS), extinction) (e.g., Koenen et al. 2019), outgroup problems 

(i.e., lack of an extant outgroup/closely related outgroup or the effect of the outgroup on ingroup 

topology) (e.g., Huerta-Cepas et al. 2014), or just systematic errors such as taxon sampling (Thomas 

et al. 2013), appropriate outgroup choice (i.e., possible systematic biases related to the outgroup 

sequences, such as low substitution rate and not ingroup-like G+C composition) (e.g., Rota-Stabelli 

and Telford 2008),  LBA (e.g., Qui et al. 2001), inadequate data and inaccurate model 

implementation (e.g., Reddy et al. 2017; Morgan et al. 2013).  

 

A recent study has shown that the root of Leguminosae is particularly difficult, due to several WGD 

events, a combination of short internal and long external branches (i.e., extinction and rapid 

divergence, respectively), ILS and/or reticulation (Koenen et al. 2019) (please see also Cannon et al. 

2015 and Wong et al. 2017). Furthermore, it was also argued that obtaining a fully bifurcated legume 

tree may not be possible due to the simultaneous/near-simultaneous origin of the family (Koenen et 

al. 2019). Indeed, conflict is very widespread, and it is quite possible that every gene tree is 

incongruent with the species tree, with these incongruences being stronger for the short-internal 

nodes (Salichos et al. 2014), and  the same evolutionary history would also be possible for the order 

Fabales, and even thousands of genes may not be enough to solve the Fabales phylogeny, similar to 

the case of Leguminosae. On the other hand, we think  that LBA may not be a problem for Fabales, 

because in the presence of LBA the root of the group is not stable when sampling different 
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outgroups (Qui et al. 2001), which is not the case for Fabales (e.g., Bello et al. 2009; Bello et al. 2012; 

current study). Furthermore, to overcome a possible LBA problem, we employed a broad outgroup 

sampling strategy (Smith 1994; Lyons-Weiler et al. 1998; Djernæs et al. 2012; Drew et al. 2014) and 

performed Bayesian analyses that are less vulnerable to LBA artefacts, compared to parsimony 

analyses (Bergsten 2005), yet both the root and topology of the tree changed according to the 

phylogenetic method, and genes used. However, the effect of data sampling, model 

implementation, outgroup choice and taxon sampling need further analyses, and future studies 

should focus on these possible causes for the unresolved Fabales phylogeny.  

 

In conclusion, as with previous studies, this study did not find well-supported dichotomous 

relationships among the four Fabales families, which may indicate a rapid-near-simultaneous 

evolution of the four Fabales families. Therefore, it should not be concluded that ((L+P)(Q+S)) is the 

“definitive answer” for relationships within Fabales, as there is still a need for further studies to not 

only confirm whether ((L+P)(Q+S)) or another topology is the right answer for the order, but also to 

reveal the underlying reason for the unresolved phylogeny within Fabales. However, we think that 

this and previous studies dealing with interfamilial Fabales relationships will provide the framework 

for future genomic studies that address the issue. Further work is certainly needed to solve the 

Fabales puzzle with confidence, and to approach the underlying problem from a direction other than 

employing conventional phylogeny methods.  
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Table 1: Summary of previous studies focused on Fabales. In Forest’s 2004 study “complete” refers to “all taxa regardless of the missing sequences” and 

“partial” refers to “only taxa for which all of the DNA regions were sequenced”. In Bello et al. ’s (2009) study the “reduced taxa” dataset consists of only 

taxa with both rbcL and matK sequences available, while “all taxa” contains every available rbcL and matK sequences. In Bello et al. ’s (2012) study, Matrix 

A, B and C are defined as follow: Matrix A includes all 75 taxa included in the morphological survey, whether or not molecular data were available; Matrix B 

includes 40 ingroup taxa for which morphology, rbcL and or matK data were available; Matrix C comprises the broadest possible sampling with any marker 

available, rbcL, matK or morphology. MP= maximum parsimony, ML= maximum likelihood, BI=Bayesian inference, L= Leguminosae, P= Polygalaceae, S= 

Surianaceae, Q= Quillajaceae.  

Study Analyses Topology Ingroup Outgroup 

Forest, 2004 rbcL, trnL-F-MP ((LP)S)Q 159 (98P, 54L, 6S, 1Q) 8 taxa from diverse Fabidae  

 rbcL, trnL-F,26S-MP-complete ((SP)L)Q 159 (98P, 54L, 6S, 1Q) 8 taxa from diverse Fabidae  

 rbcL, trnL-F,26S-MP-partial ((LP)S)Q 65 (18P, 41L, 5S, 1Q) 8 taxa from diverse Fabidae  

 26S-MP Unresolved 65 (17P, 43L, 4S, 1Q) 10 taxa from diverse Fabidae  

Bello et al. 2009 rbcL-MP Unresolved 152 (93P, 52L, 6S, 1Q) 14 taxa from diverse Fabidae  

 rbcL-BI ((PS)Q)L 152 (93P, 52L, 6S, 1Q) 14 taxa from diverse Fabidae 

 matK-MP ((SQ)L)P 70 (36L, 28P, 5S, 1Q) 8 taxa from diverse Fabidae  

 matK-BI (LP)(SQ) 70 (36L, 28P, 5S, 1Q) 8 taxa from diverse Fabidae 

 rbcL-matK-MP-reduced taxa ((LP)S)Q 70 (36L, 28P, 5S, 1Q) 5 taxa from diverse Fabidae  

 rbcL-matK-BI-reduced taxa ((LP)S)Q 70 (36L, 28P, 5S, 1Q) 5 taxa from diverse Fabidae 

 rbcL-matK-MP-all taxa ((SQ)L)P 152 (93P, 52L, 6S, 1Q) 17 taxa from diverse Fabidae  

 rbcL-matK-BI-all taxa (LP)(SQ) 152 (93P, 52L, 6S, 1Q) 17 taxa from diverse Fabidae 

 matK-molecular clock ((SQ)L)P 70 (28P, 36L, 5S, 1Q) 7 taxa from diverse Fabidae  

Bello et al. 2012 Matrix A-MP ((SQ)L)P 74 (48P, 24L, 1S, 1Q) Krameria ixine 

 Matrix B-MP ((SQ)L)P 40 (20P, 18L, 1S, 1Q) Krameria ixine 

 Matrix C-MP ((SQ)L)P 179 (112P, 61L, 5S,1Q) 17 taxa from diverse Fabidae  

 Matrix A-BI (LP)(SQ) 74 (48P, 24L, 1S, 1Q) Krameria ixine 

 Matrix B-BI ((SQ)L)P 40 (20P, 18L, 1S, 1Q) Krameria ixine 

 Matrix C-BI (LP)(SQ) 179 (112P, 61L, 5S,1Q) 17 taxa from diverse Fabidae 

 Only morphology Unresolved 75 taxa (48P, 24L, 1S, 1Q) Gillenia trifoliata and Krameria ixine 
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Table 2: Eight phylogenetic analyses of order Fabales performed with different data sets. Analyses were designed to explore the data partitions alone and in 

different combinations. Alignment statistics for all datasets are indicated. L: Leguminosae, P: Polygalaceae, S: Surianaceae, Q: Quillajaceae.  

Data sets Total # of 
sequences 

L P S Q Outgroup 
taxa 

Alignment 
length 

# of parsimony 
informative 
characters 

sdq1 106 69 6 2 1 28 333 124 (37%) 

26S 
 

85 43 17 4 0 21 935 200 (21%) 

sqd1+matK 106 69  6 2 1 28 2041 944 (46%) 

26S+sqd1  
 

121 71 17 4 1 28 1269 317 (25%) 

matK+rbcL  128 72 16 5 1 34 3140 1267 (40%) 

26S+sqd1+matK  131 73 18 5 1 34 3012 1217 (40%) 

sqd1+matK+rbcL  131 73  18 5 1 34 3474 1391 (40%) 

26S+sqd1+matK+ rbcL  131 73  18 5 1 34 4410 1589 (36%) 
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Table 3: Summary of phylogenetic trees from nuclear sqd1, sqd1+matK combined, nuclear 26S, nuclear 26S+sqd1 combined, plastid matK+rbcL combined, 

26S+sqd1+matK combined, sqd1+matK+rbcL combined and 26S+sqd1+matK+rbcL combined analyses. In the topology column, different topologies are 

indicated with different numbers in brackets which are (1) for ((LP)(SQ)) and (2) for (((LP)S)Q). In the support column, support values for the MP analyses 

were left as empty, since no bootstrap analyses were carried for the MP analyses. Clades with less than 50% BS in the MP analyses were not reported. MP: 

maximum parsimony, ML: maximum likelihood, BI: Bayesian inference.  

Gene region Reconstruction method Outgroups Topology Support 

sqd1+matK MP 28 ((LP)(SQ)) (1)  

 ML 28 ((LP)(SQ)) (1) (LP) 85% BS; (SQ) 96% BS 

 BI 28 ((LP)(SQ)) (1) (LP) 0.99 PP; (SQ) 0.95 PP 

26S MP 21 Non-monophyletic Fabales but 
monophyletic Fabales families 

 

 ML 21 ((PS)L) (PS) 61% BS; ((PS)L) 57% BS 

 BI 21 ((PS)L) (PS) 0.96 PP; ((PS)L) 1.0 PP 

26S+sqd1 MP 28 (((LP)S)Q) (2)  

 ML 28 ((LP)SQ) (LP) 68% BS; ((LP)SQ) 71% BS 

 BI 28 ((LP)SQ) (LP) 0.98 PP; ((LP)SQ) 1.0 PP 

26S+sqd1 +matK MP 34 ((LP)(SQ)) (1)  

 ML 34 ((LP)(SQ)) (1) (LP) 87% BS; (SQ) 94% BS 

 BI 34 ((LP)(SQ)) (1) (LP) 0.99 PP; (SQ) 0.89 PP 

matK+rbcL MP 34 ((LP)(SQ)) (1)  

 ML 34 ((LP)(SQ)) (1) (LP) 60% BS; (SQ) 85% BS 

 BI 34 ((LP)(SQ)) (1) (LP) 0.64 PP; (SQ) 0.70 PP 

sqd1+matK+rbcL MP 34 ((LP)(SQ)) (1)  

 ML 34 ((LP)(SQ)) (1) (LP) 90% BS; (SQ) 87% BS 

 BI 34 ((LP)(SQ)) (1) (LP) 1.00 PP; (SQ) 0.85 PP 

26S+sqd1+matK+rbcL MP 34 ((LP)(SQ)) (1)  

 ML 34 ((LP)(SQ)) (1) (LP) 90% BS; (SQ) 88% BS 

 BI 34 ((LP)(SQ)) (1) (LP) 93 PP; (SQ) 94 PP 
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Table 4: Comparison of analyses with 26S molecular data included/excluded, with/without matK and with/without rbcL. Results of only the ML analyses are 

shown. 

With and without 26S 

sqd1: (LP) 83% sqd1+26S: (LP) 68% 

sqd1+matK: (LP) 85%; (SQ) 96% sqd1+matK+26S: (LP) 87%; (SQ) 94% 

sqd1+matK+rbcL: (LP) 90%; (SQ) 87% 26S+sqd1+matK+rbcL: (LP) 90%; (SQ) 88% 

With and without matK 

sqd1: (LP) 83% sqd1+matK: (LP) 85%, (QS) 96% 

26S+sqd1: (LP) 68%, (QS) 71% 26S+sqd1+matK: (LP) 87%, (QS) 94% 

With and without rbcL 

sqd1+matK: (LP) 85%, (QS) 96% sqd1+matK+rbcL: (LP) 90%, (QS) 87% 

26S+sqd1+matK: (LP) 87%, (QS) 94% 26S+sqd1+matK+rbcL: (LP) 90%, (QS) 88% 
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Table 5: Topology test for the phylogenetic relationships of the four Fabales families. Two different 

topologies that emerged from our MP, ML and BI analyses are indicated with different numbers in 

brackets which are (1) for ((LP)(SQ)) and (2) for (((LP)S)Q) (p-value <0.05 indicates statistical 

rejection). 

 

Topology Δln L AU test p-values 

(LP)(QS) (1) 0 0.731 

(QS)P)L 10.345 0.553 

(QS)L)P 10.618 0.496 

(SL)Q)P 18.374 0.323 

(LP)Q)S 26.899 0.226 

(LP)S)Q (2) 31.992 0.176 

(PS)L)Q 50.629 0.0675 

 

APPENDIX 

Appendix 1: Taxon sampling for the phylogenetic analyses of order Fabales based on the nuclear 

sqd1 and 26S rDNA, and the plastid rbcL and matK. A dash indicates the region was not sampled. 

Information is presented in the following order: taxon name, voucher specimen of the samples 

worked in this study (SOURCE); GenBank accessions: sqd1, 26S, matK, rbcL. 

 
Leguminosae. Subfamily Duparquetioideae: Duparquetia orchidacea Baill. Bruneau 1098 (K); 
MG431081, MG431186, EU361937.1, —. Subfamily Cercidoideae: Adenolobus garipensis (E. Mey.) 
Torre & Hillc. Leistuer et al. 246 (K); —, MG431188, EU361844.1, AM234268.1. A. pechuelli (Kuntze) 
Torre& Hillc. Oliver et al. 6527; MG431096, MG431178, JN881353.1, —. Bauhinia syringifolia (F. 
Muell.) Wunderlin Weston 2449 (NSW); —, MG431187, —, AM234267.1. B. galpinii N. E. Br. Forest 
347 (NBG); MG431094, MG431172, JN881366.1, AM234262.1. Brenierea insignis Humbert Dupuy 
M430 (K); —, MG431166, EU361889.1, AM234269.1. Cercis canadensis L. JBM 1397-91; MG431097, 
MG431189, EU361912.1, U74188.1. Griffonia physocarpa Baill. Cheek 8013 (K); MG431095, 
MG431190, EU361961.1, AM234265.1. Subfamily Dialioideae: Dialium guianensis (Aubl.) Sandw. 
Klitgaard 686 (K); MG431086, —, EU361930.1, AM234245.1. Poeppigia procera Presl. Howard 5162 
(MT); MG431087, —, EU362026.1, AM234246.1. Storckiella australiensis J. H. Ross & B. Hyland Hill 
et al. 2096 (K); —, —, GU321970.1, AM234249.1. Zenia insignis Chun Manos 1418 (DUKE); —, —, 
EU362065.1, AF308722.1. Subfamily Detarioideae: Afzelia bella Harms. Breteler.13120; MG431085, 
—, EU361846.1, KC628648.1. Amherstia nobilis Wall. Baker 490 (KEP); MG431084, MG431182, 
EU361849.1, AM234234.1. Anthonotha macrophylla P. Beauv. Wieringa 2996 (WAG); MG431083, 
MG431205, EU361853.1, KC628430.1. A. pynaertii (De Wild.) Exell & Hillc. Breteler 12781 (WAG); 
MG431063, —, EU361854.1, —. Aphanocalyx cynometroides Oliver Wieringa 2355 (WAG); —, 
MG431179, —, AM234241.1. A. djumaensis (De Wild.) J.Leonard; —, —, EU361856.1, —. A. 
margininervatus J. Leonard Breteler 12346 (WAG); MG431082, —, —, —. Brownea sp. Pérez, A. & 
Alvia, P. 38917 QCA (K); MG431069, —, AY386932.1, U74186.1. Browneopsis ucayalina Huber 
Klitgaard 684 (K); MG431089, MG431185, EU361894.1, AM234233.1. Crudia gabonensis Harms 
Wieringa 2585 (WAG); —, MG431167, EU361922.1, AM234230.1. Cynometra crassifolia Benth.; —, 
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—, KF294055.1, —. C. mannii Oliv. Bruneau 1364; MG431062, MG431177, —, AM234231.1. 
Detarium macrocarpum Harms. Breteler 12528 (WAG); —, MG431195, GU321969.1, AM234239.1. 
Goniorrhachis marginata Taub. 3585 Cara 5338 Lewis and Klitgaard; MG431136, MG431183, —, —. 
Hymenostegia klainei Pellegr. Wieringa 2575 (WAG); MG431061, —, —, KC628501.1. H. robusta 
Wieringa & Mackinder; —, —, EU361976.1, —. Intsia bijuga (Colebr.) Kuntze; —, —, EU361981.1, 
KF496786.1. Intsia sp. Colector.4202; MG431060, —, —, —. Isoberlinia scheffleri (Harms) Greenway 
Herendeen 16-XII-97-2 (US); —, MG431169, EU361983.1, AM234240.1. Macrolobium acaciifolium 
(Benth.) Benth.; —, —, —, U74191.1. M. archeri Cowan Klitgaard 683; MG431059, —, —, —. M. 
bifolium (Aubl.) Pers.; —, —, EU361996.1, —. Saraca declinata (Jack) Miq. Manos 1417 (DUKE); 
MG431080, —, EU362033.1, JX856761.1. Tamarindus indica L. JBM 2138-76 (MT); MG431088, 
MG431184, EU362056.1, AB378732.1. Subfamily Caesalpinioideae: Acrocarpus fraxinifolius Arn. 
Manos 1416 (DUKE); —, MG431154, GU321971.1, AY904371.1. Archidendron hirsutum I. Nielsen 
Douglas 625 (MEL); MG431110, MG431157, EU361860.1, AM234253.1. Caesalpinia decapetala 
(Roth) Alson Herendeen and Mbago 19-XII-97-1 (US); KF379299.1, —, KF379248.1, —. C. 
pulcherrima (L.) Sw; KF379321.1, —, EU361906.1, U74190.1. Calliandra juzepczukii Standl.; —, —, 
EU812019.1, —. C. trinervia Benth. Klitgaard 622 (K); MG431072, MG431160, —, —. Calpocalyx 
dinklagei Harms. Breteler 15461 (WAG); MG431107, MG431155, EU361907.1, AM234257.1. Cassia 
grandis L. f. Smith 2061 (MT); MG431065, —, —, —. Cedrelinga cateniformis (Ducke) Ducke 
Pennington, T.D., Daza, A. & Muellner, A. 17761 MOL (K) (sqd1)/ Klitgaard 698 (K) (26S); MG431074, 
MG431159, AF521818.1, AM234256.1. Ceratonia siliqua L. Wieringa 3341 (WAG); —, MG431194, 
AY386852.1, U74203.1. Chamaecrista fasciculata (Michx.) Greene; —, —, AY386955.1, U74187.1. C. 
nictitans (L.) Moench var. jaliscensis (Greenman) Irwin &Barnaby Klitgaard 654; MG431098, 
MG431181, —, —. Colvillea racemosa Bojer; KF379329.1, —, EU361916.1, AY904425.1. Conzattia 
multiflora Standl.; KF379326.1, —, AY386918.2, AY904416.1. Delonix boiviniana (Baill.) Capuron 
Bruneau 1365 (MT); KF379330.1, —, KF379239.1, —. D. floribunda (Baill.) Capuron Bruneau 1393 
(MT); KF379331.1, —, KF379240.1, AY904421.1. D. pumila Du Puy, Phillipson & R. Rabev. Bruneau 
1411 (MT); KF379328.1, —, KF379237.1, AY904424.1. D. regia (Boj. ex Hook.) Raf; KF379327.1, —, 
KF379238.1, AY904419.1. D. velutina Capuron Bruneau 1354 (MT); KF379324.1, —, KF379236.1, 
AY904423.1. Denisophytum madagascariense R. Vig.; KF379301.1, —, KF379246.1, —. 
Erythrostemon calycinus (Benth.) L. P. Queiroz Lewis 1885 (K); —, MG431176, —, —. E. ivorense A. 
Chev. Breteler 15446 (WAG); MG431092, —, EU361948.1, U74205.1. Gleditsia sinensis Lam. Haston 
V200305; —, —, —, AY904374.1. G. triacanthos L. JBM 2327-82 (sqd1)/ JBM 2674-95 (MT) (26S); 
MG431093, MG431173, EU361958.1, —. Guilandina bonduc L.; KF379298.1, —, KF379242.1, —. 
Gymnocladus dioica (L.) Koch JBM 1830-72 (sqd1)/ JBM 2099-88 (MT) (26S); MG431066, MG431174, 
EU361966.1, U74193.1. Inga edulis Mart. ; —, —, EU361980.1, —. I. nouragensis Poncy; —, —, —, 
JQ626021.1. Inga sp. Klitgaard 677 (K); MG431075, MG431193, —, —. Mezoneuron scortechinii F. 
Muell. Wieringa 4195 (WAG); MG431134, —, —, —. Mimosa colombiana Britton & Killip Torres, 
A.M. 21343 (K); MG431073, —, DQ790603.1, —. M. pudica L.; —, —, —, KJ008941.1. Moullava 
digyna (Rottl.) E. Gagnon & G. P. Lewis, comb. nov. Lewis 2067 (K); MG431135, —, EU361902.1, —. 
Parkia multijuga Benth. Klitgaard 697 (K); MG431109, MG431161, EU362018.1, AM234251.1. 
Parkinsonia aculeata L. Spellenberg & Brouillet 12704 (MT); KF379325.1, MG431168, —, —. P. 
raimondoi Brenan; —, —, —, AY904413.1. P. florida (Benth. ex A. Gray) S. Watson; —, —, 
AY386856.2, —. Pentaclethra macroloba (Willd.) Kuntze Boyle, B. et al. 6720 (K) (sqd1)/ DeWilde 
11496 (WAG) (26S); MG431108, MG431156, AY386904.1, —. P. macrophylla Benth.; —, —, —, 
AM234250.1. Poincianella palmeri (S. Watson) E. Gagnon & G. P. Lewis, comb. nov. Lewis et al. 2065 
(K); MG431133, —, —, —. Pterogyne nitens Tul. Herendeen 13- XII-97-1 (US); MG431090, 
MG431171, EU362031.1, AY904377.1. Senna alata (L.) Roxb. Bruneau 1076 (K); MG431064, 
MG431180, EU362042.1, U74250.1. Tara spinosa (Molina) Britton & Rose; KF379323.1, —, —, —. 
Umtiza listerina T. Sim Schrire 2602 (K); MG431091, MG431175, EU362062.1, AM234237.1. 
Vachellia caven (Molina) Seigler & Ebinger JBM 386-89 (MT); —, MG431191, AF274131.1, Z70145.1. 
Zapoteca tetragona (Willd.) H.M. Hern. Klitgaard 649 (K); —, MG431158, AF523097.1, JQ592095.1. 

http://www.theplantlist.org/tpl/record/ild-1524
http://www.theplantlist.org/tpl/record/ild-11490
http://www.theplantlist.org/tpl/record/ild-221
http://www.theplantlist.org/tpl1.1/record/tro-13047741
http://www.theplantlist.org/tpl1.1/record/tro-13047741
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Subfamily Papilionoideae: Arachis hypogaea L.; FJ824608.1, —, EU307349, U74247.1. Astragalus 
laxmannii var. robustior (Hook.) Barneby & S.L. Welsh; —, —, —, JX848460.1. A. lusitanicus Lam. 
Edmondson, J.R. & McClintock, M.A.S. 2803 (K); MG431068, —, —, —. A. mongholicus Bunge; —, —, 
EF685993.1, —. Baphia nitida Afzel. ex Lodd. Bruneau sn. LBG; MG431103, MG431162, EU361867.1, 
AM234261.1. Bobgunnia fistuloides (Harms) J.H. Kirkbr. & Wiersema Breteler 14870 (WAG); 
MG431071, MG431165, EU361885.1, AM234258.1. Cadia purpurea (G.Piccioli) Aiton; —, —, 
JX295932.1, U74192.1. C. pubescens Bojer ex Baker Dorr, L.J., Barnett, L.C. & Brooks, R. 3279 (K); 
MG431104, —, —, —. Cladrastis kentukea (Dum.Cours.) Rudd; —, —, AF142694.1, —. C. sinensis 
Hemsl. Punethalengam, E. s.n. (K); MG431105, —, —, Z95551.1. Dalbergia congestiflora Pittier; —, 
—, AF142696.1, —. D. hupeana Hance; —, —, —, U74236.1. D. yunnanensis Franch. Sino-British Exp. 
to Cangshan 1981 (K); MG431099, —, —, —. Exostyles venusta Spreng. Klitgaard 24 (K); MG431067, 
—, JX152591.1, —. Lecointea peruviana J. F. Macbr. Klitgaard B. B. 679 (K); MG431106, MG431163, 
JX295927.1, AM234260.1. Lotus corniculatus L. Cowan. R.S. MFF128 (K); MG431100, —, 
HM049505.1, U74213.1. Sclerolobium sp. Klitgaard 687 (K); —, MG431170, AM234242.1, —. 
Lupinus luteus L. ABH 31123 (ABH); MG431101, —, HM851129.1, HM850145.1. Sophora 
chrysophylla (Salisb.) Seem. —, GU256432.1, —, —. S. microphylla Aiton N. A. Smith (AK); 
MG431070, —, —, —. Swartzia cadiosperma Spruce ex. Benth. Klitgaard 664 (K); MG431102, 
MG431164, EU362053.1, AM234259.1. Wisteria sinensis (Sims) DC.; FN675910.1, —, AF142732.1, 
Z95544.1. Polygalaceae: Tribe Xanthophylleae: Xanthophyllum octandrum Domin Forster 9554 
(NY); —, MG431137, —, AM234229.1. Xanthophyllum sp. Coode 7760 (K); MG431076, —, 
EU604044.1, —. Tribe Carpolobieae: Atroxima afzeliana (Oliv. ex Chodat) Stapf Jongkind 4281 
(WAG); —, MG431150, EU604049.1, AM234175.1. Carpolobia alba G. Don. Cable 747 (K); 
MG431114, MG431145, EU604053.1, AM234176.1. Tribe Moutabea: Eriandra fragrans P. Royen & 
Steenis R Pullen 7234 (K); MG431115, MG431146, EU604051.1, AM234170.1. Moutabea aculeata 
(Ruiz & Pav.) Poepp. & Endl. Smith 1522 (US); —, MG431149, —, AM234169.1. M. guianensis Aubl.; 
—, —, JQ626362.1, —. Tribe Polygaleae: Bredemeyera colletioides (Phil.) Chodat Guaglianone et al. 
1587 (NY); —, MG431148, —, AM234171.1. B. floribunda Willd. Bello 742 (COL) (sqd1)/ Irwin et al. 
27995 (NY) (26S); MG431113, MG431147, EU596520.1, EU644699.1. Comesperma esulifolium 
(Gand.) Telford 12350 (CANB); —, MG431192, EU596516.1, AM234179.1. Monnina xalapensis 
Kunth Chase 963 (K); —, MG431151, EU604047.1, AM234184.1. Muraltia alba Levyns Goldblatt 
9515 (MO); —, MG431144, —, —. M. heisteria (L.) DC. —, —, —, AJ829698.1. M. spinosa (L.) 
Dumort Chase 281 (K); —, MG431152, —, —. M. thunbergii Eckl. & Zeyh. Forest 250 (K, NBG); 
MG431111, —, AM889730.1, —. Polygala acuminata Willd. Wurdack 1818 (NY); —, MG431141, —, 
AM234195.1. P. alpicola Rupr. Chase 11747 (K); —, MG431139, EU604041.1, AM234191.1. P. 
californica Nutt.; —, —, AY386842.1, —. P. chamaebuxus (L.) var. grandiflora Chase 11323 (K); —, 
MG431142, —, —. P. cowellii (Britton) S.F. Blake; —, —, —, AM234199.1. P. ligustrioides A. St. Hil. 
Harley et al. 20751 (K); —, MG431143, —, AM234202.1. P. senega L. Brouillet 99-11 (MT); —, 
MG431138, —, —. Polygala sp. Bello 48; MG431112, —, —, —. P. vulgaris L. Fay 316 (K); —, 
MG431140, EU604046.1, AM234193.1. Securidaca diversifolia (L.) S.F. Blake Chase 2998 (MICH); —, 
—, JQ588837.1, AM234225.1. Surianaceae: Cadellia pentastylis F. Muell. Thompson & Robin sn (K); 
MG431116, MG431196, EU604056.1, L29491.1. Guilfoylia monostylis (Benth.) F. Muell. Fernando & 
Wannan sn (UNSW 21246); —, MG431203, EU604031.1, L29494.1. Recchia mexicana Moc. & Sessé 
ex DC. No voucher (see Forest, 2004); —, MG431153, EU604045.1, AM234270.1. Suriana maritima 
L.; —, —, AY386950.1, U07680.1. Stylobasium spathulatum Desf. Latz. 13213 (K); MG431117, 
MG431204, EU604032.1, U06828.1. Quillajaceae: Quillaja saponaria Molina Chase, M.W. 10931 (K) 
(sqd1)/ Morgan 2146 (WS) (26S); MG431077, —, AY386843.1, U06822.1. Outgroups. Zygophyllales: 
Krameria ixine Lofling. Fernandez 22529 (COK); MG431078, —, EU604050.1, EU644679.1. K. 
lanceolata Torr. Chase 103 (MICH); —, MG431198, —, —. Zygophyllum rosowii Bunge D1507; —, —
, JF956824.1, JF944812.1. Z. xanthoxylum (Bunge) Maxim. Chase 1700 (K); —, MG431197, —, —. 
Celastrales: Celastrus orbiculatus Thunb. Chase, M.W. 2274 (K); MG431079, AF222357.1, 
EF135517.1, AY788194.1. Oxalidales: Eucryphia lucida (Labill.) Baill.; —, AF036494.1, —, —. 

http://www.theplantlist.org/tpl1.1/record/ild-31857
http://www.theplantlist.org/tpl/record/tro-25900414
http://www.gbif.org/species/5421445
http://www.tropicos.org/Name/29400049
http://www.tropicos.org/Name/29400049
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Malpighiales: Licania alba (Bernoulli) Cuatrec.; —, KJ414473.1, —, —. Viola suavis M. Bieb.; 
AM503808.1, —, —, —. V. chaerophylloides (Regel) W. Becker; —, —, JQ950581.1, JQ950611.1. 
Rosales: Colubrina arborescens (Mill.) Sarg. Christenhusz, M.J.M. 5714; MG431131, —, —, —. C. 
asiatica (L.) Brongn.; —, DQ146521.1, —, —. Elaeagnus commutata Bernh. ex Rydb.; —, —, —, 
JX848456.1. Elaeagnus sp. Chase, M.W. 2414 (K); MG431130, AF479235.1, —, —. E. umbellata 
Thunb.; —, —, AY257529.1, —. Ficus sp. Moore 315; —, —, —, EU002278.1. F. benjamina L.; 
FN675916.1, —, JQ773509.1, —. F. tikoua Bureau; —, JF317386.1, —, —. Fragaria × ananassa 
(Weston) Duchesne; —, X58118, —, U06805.1. Fragaria vesca L.; XM_004290997.1, —, AF288102.1, 
—. Hippophae rhamnoides L. Crawley, M.J. MJC150; MG431129, JF317389.1, JF317428.1, 
JF317488.1. Humulus lupulus L. Fay, M.F. MFF341 (K); MG431128, AY686777.1, AY257528.1, 
AF206777.1. Gironniera sp. Puradyatmika 10455 (BO, MAN, FRE, K, L, CANB, A, SING, BRI, BISH); 
MG431132, —, —, —. G. subaequalis Planch.; —, —, AF345319.1, AF500340.1. Malus domestica 
Borkh. ; XM_008395413.1, —, AM042561.1, —. M. spectabilis (Aiton) Borkh. ; —, —, —, 
JQ391363.1. Prunus armeniaca L.; FN675931.1, —, HQ235101.1, KF154869.1. P. avium (L.) L.; 
FN675932.1, —, AM503828.1, HQ235394.1. P. cerasus L.; FN675933.1, —, FJ899111.1, HQ235416.1. 
P. domestica L.; FN675934.1, —, FJ899110.1, L01947.2. P. persica (L.) Stokes; FN675912.1, 
AY935820.1, AF288117.1, AF411493.1. Shepherdia argentea (Pursh) Nutt. Chase 3176 (K); —, 
MG431201, —, AJ225787.1. S. canadensis (L.) Nutt.; —, —, KC475874.1, —. Fagales: Alnus glutinosa 
(L.) Gaertn; —, AF479106, KF419025.1, EU644678.1. Betula pendula Roth AM503778.1, —, 
AY372014.1, KF418943.1. Casuarina equisetifolia L. Edwards, P.J. 4011 (K); MG431119, —, 
AY033837.1, AY033859.1. Juglans nigra L.; —, AF479105.1, —, U00437.1. J. regia L. Fay, M.F. et al. 
MFF416 (K); MG431118, —, AF118038.1, —. Morella cerifera (L.) Small; —, AF479247.1, —, —. M. 
nana (A. Chev.) J. Herb.; —, —, KF419020.1, —. M. quercifolia (L.) Killick Fay, M.F. s.n. (K); 
MG431120, —, —, —. M. rubra Lour; —, —, —, KF418924.1. Myrica gale L. Fay, M.F. MFF 238 (K); 
MG431123, —, AY191715.1, AJ626757.1. Nothofagus alpina (Poepp. & Endl.) Oerst.; —, —, —, 
L13342.2. N. antarctica (G.Forst.) Oerst.; —, —, AY263924.1, —. N. obliqua (Mirb.) Oerst. Chase, 
M.W. 33143, (K) (1000 Plant Genomes Project); MG431121, —, —, —. Platycarya strobilacea 
Siebold & Zucc. Herbarium Kewense Cultivated Plants s.n. (K); MG431122, —, AY147100.1, 
AY263933.1. Ticodendron incognitum Gómez-Laur. & L.D. Gómez Brummitt, R.K. & Aizprua, R. 21139 
(K); MG431124, —, U92855.1, AF061197.1. Trigonobalanus verticillata Forman Chase 595 (K); —, 
MG431202, AB084771.1, AB084768.1. Cucurbitales: Abobra tenuifolia (Gillies ex Hook. & Arn.) 
Cogn. Chase 915 (K); —, MG431200, DQ536629.1, AF008961.1. Begonia glabra Aubl. Chase 945 (K); 
—, MG431199, —, —. B. ulmifolia Willd.; —, —, GU397115.1, —. B. metallica W.G.Sm. x Begonia 
sanguinea Raddi; —, —, —, L12670.1. Bolbostemma paniculatum (Maxim.) Franquet TCMK 854 (K); 
MG431125, —, DQ469139.1, DQ501255.1. Corynocarpus laevigatus J.R. Forst. & G. Forst. Chase, 
M.W. 236 (NCU); MG431126, AF479110.1, AY968448.1, AF148994.1. Cucumis sativus L.; 
XM_004167788.1, —, DQ536662.1, L21937.1. Datisca cannabina L. Chase, M.W. 2745; MG431127, 
AY968410.1, AB016467.1, L21939.1. 
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Figure 1. Maximum likelihood tree of 26S+sqd1+matK+rbcL analysis. Outgroup taxa, Polygalaceae, 

Surianaceae, Quillajaceae and Leguminosae with six subfamilies (Cercidoideae, Detarioideae, 

Duparquetioideae, Dialioideae, Caesalpinioideae and Papilionoideae) are indicated. Bootstrap values 

are indicated below branches. 

 

 


