Observed variability of intertropical convergence zone over 1998-2018

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of Liu20ERL.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Liu, C., Liao, X., Qiu, J., Yang, Y., Feng, X., Allan, R. P. orcid id iconORCID: https://orcid.org/0000-0003-0264-9447, Cao, N., Long, J. and Xu, J. (2020) Observed variability of intertropical convergence zone over 1998-2018. Environmental Research Letters, 15 (10). 104011. ISSN 1748-9326 doi: 10.1088/1748-9326/aba033

Abstract/Summary

The intertropical convergence zone (ITCZ) accounts for more than 30% of the global precipitation and its variability has a great effect on the people living in the tropical area. It is the manifestation of the Hadley circulation, tropical dynamic and thermodynamic coupling and the air-sea interaction. Therefore, it is essential to understand the changes and variability of the ITCZ, including its position and intensity. Using observed precipitation from GPCP and TRMM 3B43, as well as the ERA5 reanalysis data, we examine the ITCZ variations over the global and seven regions from 1998-2018. These data sets show consistent ITCZ climatology and inter-annual variability. Except over Atlantic and eastern Pacific where ITCZ stays in the northern hemisphere, the ITCZ crosses the equator after equinoxes over other sections. There is no overall significant shift of annual mean ITCZ position over the globe and seven regions, except over the America section where the GPCP data show a significant increase trend of 0.8°decade-1 and over the western Pacific section where ERA5 data show a significant decrease trend of -1.2°decade-1. The ITCZ positions over the globe and Africa are related to both ENSO and NAO, while ITCZ position over eastern Pacific is significantly affected by ENSO and the Atlantic ITCZ is mainly related to NAO. Except for the western Pacific, all other sections are significantly related to local meridional surface temperature gradient, particularly over America, Atlantic and eastern Pacific. The meridional gradient variation of the vertically integrated moist static energy has generally good agreement with the shift of the intertropical convergence zone, particularly for the seasonal climatology over the Africa region. The relationship between ITCZ position and intensity shows complicated patterns, with positive correlation over the globe, but different correlations over different sections. The two observed data sets are more or less consistent, but ERA5 shows discrepancies over some sections. It is also found that the local meridional temperature gradient has more influences on the ITCZ positions than the global one

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/91449
Identification Number/DOI 10.1088/1748-9326/aba033
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > National Centre for Earth Observation (NCEO)
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Institute of Physics
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar