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Abstract

A series of 8 laboratory experiments was used to investigate the dynamics of

a few almost neutrally-buoyant finite-size particles in the entire volume of a

rectangular tank open to air and filled with water. Stirring was achieved by a

cylinder executing a two-dimensional periodic Lissajoux figure. The rate and

direction of stirring by the cylinder was varied. The particle motions were

analyzed using a tracking method developed for the experimental design.

The Reynolds number associated with the large-scale stirring motion was in

a turbulent range of [5, 693− 11, 649] across all experiments. The absence of

stirring in the direction of the cylinder axis, the constant interference of the

cylinder with the eddies and the presence of walls and the free-surface re-

sulted in a flow that was both inhomogeneous and anisotropic as recorded by

the particle motion. Despite these unusual conditions, the single-particle dis-

persion across all experiments could be seen to follow a ballistic regime until

∗Corresponding author
Email address: catherine.meriaux@monash.edu (C.A. Mériaux)

Preprint submitted to European Journal of Mechanics - B/Fluids April 21, 2020



about two-fifths of the particle Lagrangian velocity auto-correlation time TL.

It was followed by a brief diffusive regime between TL and 2.5TL, after which

the presence of the boundaries prevented further dispersion. Such evolution is

consistent with classic predictions for fluid tracer dispersion in homogeneous

and isotropic turbulence. Particle-pair dispersion was more complex. Both

the fixed time-averaged and length-scale-dependent particle-pair dispersion

rates averaged across pairs showed the ballistic dispersion regime, whereas

the subsequent diffusive regime was better borne out by the length-scale-

dependent particle-pair dispersion. A super-diffusive Richardson regime was

not unmistakably detected. Substantial variability was however found across

the different pairs of particles, which was linked to differences in the decorre-

lation time of the velocity difference as a result of the inhomogeneity of the

turbulence. For short initial separations, some particle pairs had a better

separation of the time scales delimiting the ballistic and diffusive regimes

and showed hints of a brief Richardson regime.

Keywords: Turbulence, Dispersion, Particle mixing, Experimental

modelling

1. Introduction1

In many contexts, from natural systems to industrial processing, the2

transport, dispersion or mixing of particulate matter in turbulent flows comes3

into play. In the oceans, understanding how the wind mixes an ever increas-4

ing number of floating plastic fragments down into the water is at the heart5
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of estimating how much plastic waste exists in our oceans. In industry, the6

transformation of ingredients fed to a vessel and stirred by the motion of an7

impeller is determined by judiciously choosing an impeller and its motion8

that will create a homogeneous end-product so that it can pass its primary9

quality control. In realistic contexts, turbulence is prone to be inhomoge-10

neous and anisotropic.11

Yet, although numerous applications have motivated intense research on12

these topics, theoretical, numerical or experimental studies have mostly fo-13

cused on the behaviour of fluid parcels within turbulent flows (e.g. Toschi and14

Bodenschatz, 2009; Salazar and Collins, 2009; Balachandar and Eaton, 2010).15

Theoretically, Kolmogorov (1941a,b) showed that, in three-dimensional (3D)16

homogeneous and isotropic turbulence, energy cascades from the larger scales,17

where energy is injected, down to a length scale η, at which dissipation by18

molecular viscosity becomes important. In the Eulerian reference frame (i.e.19

in terms of variables defined at points fixed in space), the energy spectrum20

E(k) as a function of wavenumber k follows E(k) ∼ ε2/3k−5/3, where ε is21

the energy dissipation rate, in the inertial range, which lies in between the22

production and dissipation scales, kf < k < kη, where kf is the forcing23

wavenumber and kη ∼ 1/η is the dissipation wavenumber. In the same24

range, the equivalent to the -5/3 law can be expressed in physical space by25

velocity structure functions of order 2, satisfying C2(l) = ΛCKε
2/3l2/3, where26

l is the spatial separation, CK is a universal constant found to be equal to27

2.01 for homogeneous and isotropic turbulence and Λ is a constant equal28

to 1 in the case of a longitudinal structure function and 4/3 in the case of29

a transverse structure function (Sreenivasan, 1995). For k > kη, viscosity30
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becomes important, and E(k) rapidly decays. In the Lagrangian reference31

frame (i.e. in terms of time-dependent variables following particles originat-32

ing at position y and with velocity U(x(y, t), t)), properties of homogeneous33

and isotropic turbulence are characterized by the velocity structure functions34

D(τ) representing the variance of temporal increments of any velocity com-35

ponent U , D(τ) = 〈δU(τ)δU(τ)〉, where δU(τ) = U(t + τ) − U(t), and the36

velocity frequency spectrum E(ω), defined as the Fourier cosine transform37

of the velocity autocovariance R(τ) = 〈U(t)U(t + τ)〉. In the inertial range,38

D(τ) is predicted to scale as D(τ) = C0 ετ and E(ω) as E(ω) = (C0/π) εω−2,39

and the constant C0 has been found to equal 5 (Monin and Yaglom, 2013;40

Ouellette et al., 2006).41

When particles are neutrally buoyant and small compared to the Kol-42

mogorov dissipative length scale η, they behave as tracers of the fluid motion43

by passively following the flow. The upper size limit dp for tracer behaviour44

was determined to be dp = 5η (e.g. Qureshi et al., 2007; Volk et al., 2011).45

Dispersion of tracer-like particles in homogeneous and isotropic 3D turbu-46

lence differentiates single-particle dispersion, which is defined by the mean-47

square displacement of a particle from its initial position, from particle-pair48

dispersion or relative dispersion, which involves the mean-square separation49

of a pair of particles. In the dispersion of a single particle, also called Taylor50

dispersion, the mean-square displacement varies as t2 for short times (ballistic51

regime) and is proportional to t in a long-time diffusion limit (Taylor, 1922;52

Einstein, 1956). The particle-pair or relative dispersion, however, has been53

described by three regimes (Batchelor, 1950; Richardson, 1926; Csanady,54

1973; Bourgoin, 2015). In the inertial regime, where the initial separation55
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between two particles, |S| = S0, is greater than η, a ballistic regime is ex-56

pected, for which 〈(|S| − S0)
2〉 ∝ t2 if t � t0 = (S2

0/ε)
1/3. The time t0 is57

identified as the time for which the two fluid elements “recall” their initial58

relative velocity when moving in an eddy of size S0. When t0 � t � TL,59

where TL is the Lagrangian velocity auto-correlation time, an intermediate60

super-diffusive regime, also named the Richardson regime, is expected, for61

which (〈|S| − S0)
2〉 ∝ t3. Physically, this is caused by the fact that the scale62

of the eddies contributing to relative dispersion, which in this phase lies in63

the inertial range, is proportional to the separation between the dispersing64

particles. Finally, when t � TL, i.e. when the particle separation equals or65

exceeds the scale of the dominant, energy-containing eddies in the turbulence,66

the particles are expected to separate diffusively as 〈(|S|−S0)
2 ∝ t. An alter-67

native to the previous fixed time-averaged indicators of relative dispersion is68

a length-scale-dependent dispersion rate, which is defined through the finite-69

scale Lyapunov exponent (FSLE). Given the spatial separation δ between two70

particle trajectories and the mean time 〈τ(δ)〉 that δ takes to be amplified by71

a factor ρ, then the (Lagrangian) FSLE is defined as λ(δ) = ln ρ/〈τ(δ)〉. Di-72

mensional arguments further establish that if 〈|S|2〉 ∝ t2/ζ , then λ(δ) ∝ δ−ζ73

(Aurell et al., 1996; Boffetta et al., 2000). Boffetta and Sokolov (2002) showed74

that the advantage of averaging at a fixed scale separation, as opposed to at a75

fixed time, is that it removes crossover effects since all sampled particle pairs76

belong to the same scales and as a result they allow a better identification of77

the super-diffusive Richardson regime.78

The experimental study of particle motion in turbulence has developed79

substantially in the last decade with the use of new optical (e.g. La Porta80
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et al., 2001) and acoustic (e.g. Mordant et al., 2004) tracking techniques.81

The synchronization of multiple fast cameras or ultrasonic/laser Doppler ve-82

locimetry allows fully resolving the 3D particle trajectories in turbulent flows,83

but the measurements are limited to time intervals of a few Kolmogorov84

times. In many experiments, the von Kármán apparatus is used (e.g. Zand-85

bergen and Dijkstra, 1987; Mordant et al., 2003; Gibert et al., 2010). This86

is a closed flow chamber filled with a carrier fluid and consisting of two-87

counter rotating disks generating the turbulence. Properties of turbulence88

are inferred from hot anemometry or tracer-like particles. The observation89

volume is commonly limited and selected relatively far from the disks to90

avoid anisotropy and inhomogeneity in the turbulence. In such ideal turbu-91

lent conditions, both laboratory experiments and numerical simulations have92

confirmed the theoretical predictions on the dispersion of tracers (Bourgoin,93

2015; Xia et al., 2019; Boffetta and Sokolov, 2002; Biferale et al., 2008; Bi-94

tane et al., 2012). In particular, these studies have shown that observation95

of the Richardson regime requires a significant scale separation between the96

different lengths, η, S0, Li, where Li is the integral length scale, a statisti-97

cally characteristic length related to the largest energy-containing eddies in98

the turbulence (Li ∝ 1/kf ).99

Otherwise, experimental studies (Zimmermann et al., 2011; Fiabane et al.,100

2012; Qureshi et al., 2007; Bourgoin et al., 2011) have typically investigated101

the behaviour of particles in a size and density range of dp ∼ [5 − 30]η and102

ρp = [1 − 70]ρa, where ρa is the density of the ambient fluid, respectively.103

Qureshi et al. (2007) and Bourgoin et al. (2011) especially showed that the104

inertia of finite-size particles primarily affects their acceleration, whereas105
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their Lagrangian velocity statistics are almost similar to those of tracers.106

With the exception of the studies by Klein et al. (2012) and Machicoane107

and Volk (2016), much less attention has been given to particles with dp ∼108

O(100)η ∼ O(10−1)Li. The present study falls within this context.109

Our experimental study was designed to examine the dispersion of large-110

sized particles (compared to fluid tracers) in the entire volume of a rect-111

angular open tank filled with water, in which turbulence was generated by112

moving a cylinder of diameter 2R and length L very similar to the depth of113

the tank along a periodic Lissajoux figure. In this setting, the turbulence114

is neither homogeneous nor isotropic, as boundary-layers at the walls and115

the free-surface are part of the volume of study, the cylinder is constantly116

interfering with the turbulent vortices, and the stirring is two-dimensional117

(2D), as no forcing is imposed in the direction along the axis of the cylinder.118

Particles were slightly negatively buoyant spheroids and their concentration119

in the fluid carrier was low. Their size was dp ∼ R. Consequently, particles120

were only to respond to eddies of size ≥ dp such as those produced by the121

cylinder and its wake, while being unaffected by any eddy of size < dp.122

Following the works of Qureshi et al. (2007) and Bourgoin et al. (2011),123

we assumed that the Lagrangian particle velocity statistics were essentially124

similar to those of tracers. In other words, we assumed that the velocity-125

based properties of the turbulence could be inferred from the velocities of the126

finite-size particles. The energy dissipation rate ε was thus derived from the127

particle motion. We found both a priori and a posteriori that this assumption128

was sensible. A priori, values of 〈U2〉 and of ε derived from the inertial129

range of spectra probed by the particles were estimated not to differ by130
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more than 20% from the corresponding exact fluid properties (see section131

2.4). A posteriori, the regions in which the different dispersion regimes are132

displayed are within the temporal and spatial limits derived using the energy133

dissipation rate (see section 6.2). We stress however that the statistics of the134

experiments relies on a few particles in a bounded domain and is obtained135

from sampling in time via particle tracking.136

The same stirring system and moving bodies were previously studied in137

a two-dimensional context with Smooth Particle Hydrodynamics (SPH) nu-138

merical models (Valizadeh and Monaghan, 2015; Monaghan, 2017; Monaghan139

and Mériaux, 2018a,b). In the presence of bodies, not all but many of the140

properties of the fluid could be estimated from the dynamics of those bodies.141

For instance, the velocity auto-correlation times for the bodies and the fluid142

were found to be similar.143

The structure of this paper is as follows. The laboratory experiments144

are described in §2, whereas the methodology of analysis is presented in §3.145

Since the experimental setup has never been described before, section §4146

details the particle dynamics, from which we establish the inhomogeneity147

and anisotropy of the turbulence at the particle scale; Turbulence statistical148

properties are further inferred in section §5. Analysis of particle dispersion149

follows in section §6, and conclusions are gathered in §7.150

2. Laboratory experiments151

2.1. Experimental setup152

The laboratory experiments were conducted in an Acrylic tank, D = 0.3153

m long (x direction), W = 0.3 m wide (y direction), and 0.5 m high that154
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was filled with tap water up to a height H = 0.3 m (z direction). The tank155

itself was inserted into a metal wire frame secured to the experimental bench,156

at the top of which were fixed two electric actuator ball screw drives (SMC157

Pneumatics) mounted one over the other at right angles (Figure 1). These158

actuators were driven by two motors (Model AM8023 from BECKHOFF159

Automation), which were controlled by the TwinCAT software (BECKHOFF160

Automation). The two actuators were responsible for moving a cylinder in161

the tank in both the horizontal (y) and vertical (z) directions. The cylinder,162

which was hollow but capped at both ends, was hanging by a rigid rod of163

adjustable length from one of the actuators. Its centre was initially positioned164

at the tank mid-width, at a height of 0.15 m. The cylinder had a radius165

R = 0.02 m, and a length L = 0.298 m, so it was only 2 mm shorter than the166

length of the tank D. It had been coated with a black film for visualisation167

purposes.168

2.2. Turbulence forcing169

Turbulence was generated in the water by forcing the cylinder to follow170

a cyclic Lissajous loop defined by171

yc = yc(0) + A sin (2πt/T ), (1)172

zc = zc(0)± A sin (4πt/T ), (2)173

where yc(0) and zc(0) are the initial yc and zc positions of the cylinder (see174

Figure 1). The amplitude A was fixed at 0.075 m, and the forcing period T175

varied within the range T = 1.75−3 s. The motion started initially either go-176

ing down to the right as shown in Figure 1 or going up to the left (reverse). We177
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Figure 1: Experimental setup and coordinate system used, the Lissajous figure executed

by the cylinder, and the finite-size particles used in the experiments. Note that the x

direction is along the cylinder, and the y direction is horizontally across the cylinder. The

z direction is vertical. The cylinder motion executing a Lissajous figure starts either going

down to the right or up to the left. The finite-size particles used in the experiments 1-10

are slightly oblate spheroids.
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identify those two initial directions of motion by down and up in Table 1. The178

velocity magnitude of the cylinder is given by uc =
√

(dyc/dt)2 + (dzc/dt)2.179

In the two directions of motion, the absolute maxima of the cylinder vertical180

velocity are located at mid-height in the tank at points given in dimension-181

less units by (yc/W, zc/H) = (0.25, 0.5), (0.5, 0.5), and (0.75, 0.5) cm, and182

occur over a complete cycle at the times 2πt/T = 0, π/2, π, 3π/2, and 2π183

(see Figure 1).184

2.3. Finite-size particles185

The finite-size particles, shown in Figure 1, were built from hollow plastic186

beads of different colours and are slightly oblate spheroids with an equatorial187

diameter dp = 2.21 cm only 12% longer than the distance from pole to pole188

along the symmetry axis. Particles were filled with a single fishing weight189

and plasticine in order to be quasi-neutrally buoyant. The average density of190

the particles was 1015±10 kg m−3 giving an excess of density of the particles191

relative to the ambient water of 1.7%.192

2.4. Experimental runs193

We report on eight experiments, which differed by the stirring period194

and direction of motion as detailed in Table 1. Across all experiments, the195

temperature of the water was Tw = (20.9 ± 1.1) oC. Changes of the exper-196

imental conditions due the temperature change could be neglected as they197

were equivalent to a change of less than 0.1% in water density ρa, less than198

7% in water dynamic viscosity µa and less than 1% in surface tension (see199

Vargaftik et al., 1983).200
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Experiment Id. Tw T Initial motion Nc ts

oC s s

4 20.9 2.5 Down 128 51

5 22.4 3 Down 118 72

6 21.6 3 Down 102 78

7 21.6 2 Down 100 86

8 21.6 1.75 Down 121 86

9 19.45 3 Down 110 74

10 19.84 3 Up 85 56

11 19.84 1.75 Up 99 96

Table 1: Conditions for each run. Nc refers to the total number of collisions between the

particles and the cylinder over 100 cycles of its motion, which was manually counted by

systematically inspecting all the video recordings. ts is the time at which the transient

motion ends as defined in Appendix A.
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As we changed the stirring rate, the first normal mode of sloshing, at201

which a single peak and trough of a free surface wave oscillated between the202

y vertical walls of the tank, was observed with a period of T = 1.75 s, but203

only when the motion of the stirrer was initially going down to the right.204

When the motion of the stirrer was reversed, initially going up to the left, we205

did not detect any sloshing mode, which points to a different interaction with206

the free surface in the two directions of stirring. The observed sloshing period207

was also larger than the predicted sloshing period of a fluid in a rectangular208

tank (Ibrahim, 2005), estimated as209

T sn =
2π√

ngπ
W

tanh
(
nπH
W

) , (3)210

where n is the mode number. When n = 1, T s1 = 0.6211 s. This difference211

is likely due to the presence of the cylinder in the fluid, which acts as an212

obstacle.213

Eight experiments were performed using the four particles previously de-214

scribed. We did not use any tracers to follow the fluid. The experiments were215

characterized by a set of dimensionless numbers and characteristic length and216

time scales, which are given in Table 2, with the underlying assumption that217

the impact of the particles on the velocity fluctuations in the fluid was small.218

In this regard, at least two dimensionless numbers have been found to be219

important for assessing the effect of particles on turbulence intensity: the220

volume fraction of particles in the fluid φv and the ratio of the particle size221

to the integral length scale of the turbulence dp/Li (see for instance Balachan-222

dar and Eaton (2010) and Gore and Crowe (1989)). In our experiments, the223
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volume fraction of particles in the fluid was224

φv =
vp
Vf

= 4× π

6

[
d3p

(DWH − πR2L)

]
, (4)225

where Vf , which coincides with the volume of measurement, is the total226

volume D ×W × H minus the volume of the cylinder πR2L and vp is the227

volume of the four particles228

vp = 4×
(π

6
d3p

)
. (5)229

φv was 8.4×10−4 in the experiments, which is small. Such a volume fraction230

is, for example, below the threshold value of 1.4× 10−3, at which neutrally-231

buoyant Taylor-size spherical particles were shown to reduce by 15% the232

turbulent kinetic energy of the fluid (Bellani et al., 2012). Apart from φv, in233

our experiments, dp/Li = 0.18 − 0.21, which falls in the range where Gore234

and Crowe (1989) found that particles cause an increase in turbulence by235

not more than 20%. So, regardless of whether there is a slight increase or236

a decrease in turbulence due to the particles, the values of φv and dp/Li in237

our study imply that the modulation of the turbulence due to the particles238

should be limited.239

Additionally, our study shares dynamic similarities with the studies by240

Bellani et al. (2012) (φv � 1; dp/Li = 0.11), Qureshi et al. (2007) (φv � 1;241

dp/Li = 0.02−0.10) and Bourgoin et al. (2011) (φv � 1; dp/Li = 0.04−0.12),242

which all showed little impact of the particles on the velocity fluctuations in243

the fluid. It however departs from these studies by its ratio of the particle size244

to the Kolmogorov scale dp/η, which is of order O(100) and therefore greater245

than the ratios used in the previous studies, dp/η = [7, 30]. In our study, the246

departure of the acceleration variance of particles from that of tracers in the247
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inertial rangeR = 〈a2〉particle/〈a2〉fluid is estimated to be in the interval [0.16-248

0.22], following equations 2 and 3 of Qureshi et al. (2007), which predict R ∼249

6(dp/η)−2/3. The impact of particle inertia on the acceleration is therefore250

substantial (80%). This impact on the acceleration does not however imply251

a substantial impact of the particles on the velocity fluctuations in the fluid,252

as shown previously by Qureshi et al. (2007) and Bourgoin et al. (2011) when253

dp/η = [7, 30]. The time integration by which the velocity is obtained from254

the acceleration acts like a low-pass filter (Φ(ω) = ω2E(ω), where Φ(ω) is255

the acceleration frequency spectrum), making the velocity be dominated by256

lower frequencies, less affected by inertia, compared to the acceleration. In257

practice, the relation between the velocity variance of the particles 〈u2〉 and258

the energy spectrum E(k) can be defined as for tracers, but integrated over a259

narrower range of wavelengths that excludes scales smaller than the particle260

size, that is (3/2)〈u2〉 =
∫ 2π/dp
2π/Li

E(k)dk. This truncation of the spectrum of261

the turbulence reflects the fact that particles do not respond to scales of fluid262

motion smaller than their own size. Calculations using the model spectrum263

adopted by Teixeira and Belcher (2000) for a range of Reynolds numbers of264

the order of magnitude of those used in the experiments, Re = [102 − 104],265

actually indicate that this truncation does not lead to an underestimation of266

the velocity variance of the fluid motion by more than about 20%. Similarly,267

the estimate of ε captured by the particles from the slope of the inertial range268

is expected to be even more accurate, since there is a factor of ∼ 5 between269

the integral length scale Li and the scale of the particles dp, which allows270

a sufficient window of motions in the inertial range to be well resolved by271

the particles. However, the inertial range detected in this way is necessarily272
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relatively narrow, as will be confirmed later. These arguments allow us to273

extend the domain of validity of the conclusions drawn by Bourgoin et al.274

(2011) and Qureshi et al. (2007) for dp/η ∼ 30 to dp/η ∼ O(100).275

The experiments were characterized by a set of dimensionless numbers276

and characteristic length and time scales, which are given in Table 2. These277

dimensionless numbers and scales depend on the energy dissipation rate ε,278

whose estimate will be thoroughly detailed in section 5.279

Experiment Id. U ′ ε Li τe Re Reλ λ η τη

cm s−1 cm2s−3 cm s mm µm ms

4 7.0 31.0± 2.5 11.0 1.6 7682 339 4.9 133.8 18.0

5 5.6 17.1± 1.6 10.2 1.8 5693 292 5.2 155.3 24.2

6 5.7 15.4± 1.4 12.1 2.1 6942 323 5.5 159.8 25.5

7 8.6 55.9± 4.3 11.3 1.3 9733 382 4.4 115.7 13.4

8 10.3 108.3± 7.6 10.2 1.0 10586 398 3.9 96.9 9.6

9 5.8 16.5± 1.5 11.5 2.0 6636 316 5.5. 157.0 24.6

10 5.2 11.8± 1.3 11.9 2.3 6206 306 5.9 170.9 29.1

11 9.6 73.4± 5.9 12.1 1.3 11649 418 4.3 108.1 11.7

Table 2: Experimental scales and dimensionless numbers. U ′ =√
(〈Ux〉2 + 〈Uy〉2 + 〈Uz〉2)/3 is the particle velocity averaged over components. The

energy dissipation ε represents an average of the estimates from the Lagrangian velocity

structure function, the energy spectrum and the longitudinal structure function. The

integral length scale is given by Li = U ′3/ε and the eddy turn-over time by τe = Li/U
′.

The Reynolds number is estimated as Re = LiU
′/ν and the Reynolds number based

on the Taylor micro-scale λ is estimated as Rλ = λU ′/ν with λ =
√

15U ′2ν/ε. The

Kolmogorov length and time scales are respectively η = (ν3/ε)1/4 and τη = (ν/ε)1/2.
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3. Analysis methodology280

3.1. Particle tracking281

The experiments were recorded during 300 s from two sides by cameras282

in video mode providing one plane view across the cylinder axis, and another283

along the cylinder axis. As we varied the period of the cylinder motion from284

3 s to 1.75 s, the recording covered a minimum of 100 cycles (18,000 frames)285

to a maximum of 171 cycles, implying that the number of samples slightly286

differs across the 11 experiments when calculating statistical quantities. The287

videos were produced at a resolution of 1920×1080 pixels and at a number of288

frames per second nf=59.94 frames/s. Note that at this sampling rate we did289

not expect to resolve the dissipative turbulence range as T/nf ∼ O(10)τη,290

where τη is the Kolmogorov time scale (see Table 2). The two recordings were291

first synchronized using the frame at which the cylinder started to move. A292

camera calibration was performed using the landmarks of grids that had been293

drawn on the sides of the tank to measure the 3D coordinates of the particles.294

Particles and cylinder were tracked based on their coloured pixels, and we295

followed the centre of the finite-size spheres as shown in Figure 2a. The set296

of centre particle positions over time (X(t), Y (t), Z(t)) defined the particle297

trajectory as shown Figure 2b. We did not track the particle orientations.298

To compute the velocity of the spheres, a monotonic cubic spline was fitted299

to the (X, Y, Z) particle positions for the purpose of applying a first-order300

differentiation.301
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a)

b)

Figure 2: a) Three-dimensional tracking of the particles from the two side views taken by

the cameras. The background lines are the grids used for 3D geo-referencing and camera

calibration. The yellow circles mark the centre of the finite-size particles identified by par-

ticle tracking. b) Reconstructed trajectory. The example shows that of the green particle

in experiment 5 seen in different views, including looking parallel and perpendicular to the

axis of the cylinder and from the top. The black line represents the path of the cylinder

in each plane (y, z), (x, y) and (x, z). For visibility reasons, the cylinder position along the

x direction is simply shown at the centre x = 15 cm. The black diamond indicates the

initial position of the particle.
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3.2. Statistical analysis302

Statistical analysis was used to interpret the data. We first checked the303

equivalence of the 4 particles, and assessed the role of the collisions and304

transient behaviour of the particles. Appendix A and Appendix B give full305

details on the existence of a transient period and its duration, and on the lack306

of impact of the collisions on the particle velocity statistics. As a result, in307

data sets containing positions and velocities, the data corresponding to the308

transient were removed; velocities of the resulting data sets were not filtered309

for the collisions; and data sets of the four particles were assimilated into a310

single set for analysis, such as for estimating Probability Density Functions311

(PDF). Besides, spatial statistical analyses were performed after subdividing312

the entire (undisturbed) volume of fluid V = H × D ×W = (30 cm)3 into313

153 cells of dimensions Vc = (2 cm)3, i.e. the cubic volume occupied by a314

particle. In a cell (i, j, k) of central position (xi, yj, zk), we evaluated the count315

of particles N(i, j, k), and the velocity U(i, j, k). We note that all the cells316

close to a boundary will be statistically different from interior cells because317

the finite-size of the particles implies that their centres are at a distance of318

at least 1 cm from the lateral walls or bottom of the tank. In other words,319

compared to an interior cell, only half a cell effectively contributes to the320

statistics when it is bounded by a tank wall, because in those cells the centre321

of a particle is constrained to take a position in only half of its volume (farther322

from the boundary).323
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4. Dynamics of the particles324

4.1. Ensemble particle localization325

An insight into the ensemble wandering of particles in the tank was first326

gained by analyzing the percentage of fluid volume that was never visited327

by the four particles over the duration of each experiment excluding the328

transient. Wandering of particles increases as the stirring rate increases, as329

shown in Figure 3. An exponential fit to the data further indicates that330

this study uses a range of stirring rates that achieves reasonable excursion of331

the particles. Increasing further the stirring rate would have increased the332

particle wandering but it was technically not possible due to the torque limit333

of the actuators.334
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Figure 3: Dimensionless volume Va/Ve (in %) never visited by any of the four particles as a

function of Reynolds number Re for experiments 4–11. Note that Va has been normalized

here using the volume accessible to the particles Ve ∼ V (1− dp/W )
2
.
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The increase in wandering with the stirring rate especially applies to the335

particle excursion in the z (vertical) direction. As shown in Figure 4, at low336

stirring rate, the PDFs of the Z particle coordinate are higher in the lower337

half of the tank regardless of the direction of stirring. At high stirring rate,338

however, there is much less vertical disparity between the two directions of339

cylinder motion. The increase in stirring velocity helps to counteract the340

slight negative buoyancy of the particles, whose presence in the upper half341

of the tank is facilitated by the more vigorous vortices.342
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Figure 4: Probability Density Functions (PDFs) of particle dimensionless vertical coordi-

nate Z/H in experiments 6 & 8, and 10 & 11. The stirring is weaker in experiments 6 &

10 than in experiments 8 & 11.
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4.2. Inhomogeneous and anisotropic flow inferred from the particles343

While the stirring is obviously anisotropic, the flow inferred the particle344

motion is also influenced by the anisotropy of the forcing. This is shown in345

Figure 5 by the distributions of the direction cosines of the particle velocity346

vectors calculated as cosine(αji ) = U j
i /|U j |, where i refers to components x, y347

and z and j runs from 1 to four times the number of frames recorded between348

the end of the transient and the end of the experiment. Regardless of the349

direction and intensity of stirring, the direction cosines are more uniformly350

distributed in the y and z directions, whereas in the x direction the distribu-351

tion is non-uniform and peaks around zero, indicating a preferred direction352

of the velocity vectors normal to the x axis. However, the histograms in Fig-353

ure 5 also show that the motion is far from being perfectly two-dimensional354

(which would correspond to a Dirac function δ(0) for cosine(αx)).355
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Figure 5: Raw histograms of the direction cosines of the particle velocity for experiments

a) 4, b) 9 and c) 10. Experiments 4, 9 and 10 exemplify experiments at different directions

and/or intensity of stirring.
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Further insights into the inhomogeneity and anisotropy of the motion can356

be found by looking at the velocity fields at the particle scale, as shown in357

Figures 6 and 7 for two representative planes (y, z) and (x, y) and, for the358

two directions of stirring.359
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Figure 6: Contour maps of the flow speed (top frames) and corresponding velocity vector

field (lower frames) in experiment 8. The black lines delimit the path or region reached

by the cylinder. The colour scale indicates the magnitude of the flow speed. The size of

the velocity vectors in the flow fields has been scaled for visualisation purposes.

Aside from preferential directions normal to the x axis, consistent the360

anisotropy discussed in Figure 5, the velocity fields in the interior of the361
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Figure 7: Contour maps of the flow speed (top frames) and corresponding velocity vector

field (lower frames) in experiment 11. The black lines delimit the path or region reached

by the cylinder. The colour scale indicates the magnitude of the flow speed. The size of

the velocity vectors in the flow fields has been scaled for visualisation purposes.

measurement volume are quite inhomogeneous. They comprise areas of high362

velocity being essentially located along the cylinder path, which contrasts363

with areas of low velocity, especially close to boundaries (i.e. walls, and364

the free surface). However, differences in inhomogeneity exist between the365

two directions of stirring, especially in the vertical direction. In the case of366

stirring with initial downward cylinder motion, large-scale vortices are most367
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active in the lower half of the tank, whereas for stirring with initial upward368

cylinder motion, large-scale vortices are most active in the upper half of369

the tank, as shown by Figures 6 and 7. Interestingly, for stirring with initial370

upward cylinder motion, large-scale vortices also exist in the lower half of the371

tank, although they have a weaker intensity, but there are almost no vortices372

in the upper half of the tank in the case of stirring with initial downward373

cylinder motion.374

4.3. Individual trajectories375

While the global flow features seem to point to a reasonably efficient376

wandering of the particles in the tank, although constrained by the looping377

motion of the cylinder in the (y, z) plane perpendicular to the cylinder axis,378

more complex behaviour emerges when looking at the particles individually.379

In particular, substantial variability between different particles is found re-380

garding their excursions in the x (i.e. along-axis) direction, in which the381

cylinder does not generate any direct forcing motion. This effect seems to382

prevent individual particles from crossing the whole domain along x, leading383

to particles being strikingly confined, as shown in Figure 2b. The observed384

particle confinement in the x direction is consistent with the anisotropic flow385

dominated by motion in the (y, z) plane, as shown in Figure 5, and is a mani-386

festation of the conservation of the angular momentum perpendicular to that387

plane. An uneven localization along the x direction is observed regardless388

of the stirring rate and direction, as shown by the (y, z) plane-averaged resi-389

dence times as a function of x in Figure 8. We will see that this contributes390

to a differentiation of the particle pairs during dispersion.391
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Figure 8: Top frames: y − z plane-averaged residence time of the particles along the

x direction, respectively, for experiments 5, 7 and 8. Bottom frames: corresponding

y − z plane-averaged velocity magnitude along the x direction in the same experiments.

Note that the particle residence time anti-correlates well with the particle plane-averaged

velocity: where the averaged velocities appear larger, the residence time is lower, and

vice-versa. This is to be expected, since the residence time should scale inversely to the

flow velocity.
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5. Statistical properties392

As was mentioned in the Introduction, the time t0 delimiting the ballistic393

and super-diffusive regimes in 3D dispersion is defined in terms of the energy394

dissipation rate, ε. This requires obtaining an estimate of this quantity. To do395

so, we used both the Lagrangian and Eulerian frameworks. The Lagrangian396

velocity structure function D and frequency spectrum E are strictly tensors397

of order 2 because the anisotropy of the large-scale flow is also present in398

the smaller-scale fluctuations of the particles. These tensors are respectively399

defined as:400

Dij(τ) = 〈δUi(τ)δUj(τ)〉, (6)401

where δUi(τ) = Ui(t+ τ)− Ui(t) (Monin and Yaglom, 2013; Mordant et al.,402

2003) and403

Eij(ωk) =
δt

2π

[
2

(
n−1∑
j=1

Rij(jδt)cos(ωktj)

)
+Rij(0) +Rij(nδt)

]
, (7)404

taken at equal sampling intervals of size δt with ωk = kπ/nδt(k = 0,±1, ...±405

n) and Rij(τ) = 〈Ui(t)Uj(t + τ)〉 (Yeung and Pope, 1988). Here we only406

evaluated the Dii and Eii components of these tensors together with an es-407

timate of the trace of D defined as Tr(D) = 1/3
∑

iDii. Alternatively, in408

the Eulerian framework, we estimated the dissipation rate from the second-409

order longitudinal structure function C2(l) assuming that the instantaneous410

velocity at a similar time t of two particles respectively with positions x and411

x+ l coincides with the local Eulerian velocity field. C2(l) is thus defined by412

C2(l) = 〈([U(x + l, t)−U(x, t)] · l/l)2〉, (8)413
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where U(x, t) and U(x+ l, t) are the velocities of a pair of particles at time t414

and positions x and x+ l. Such an evaluation of C2(l) is similar to that used415

in Valizadeh and Monaghan (2012) with SPH tracer-like particles, but for416

particle separations l > dp, where the particle velocities can be representative417

of the flow (Qureshi et al., 2007; Bourgoin et al., 2011). C2(l) was further418

averaged over the six pairs of particles.419

Figure 9 shows the compensated Lagrangian velocity structure function420

Dii(τ)/(C0τ), frequency spectrum πEii(ω)ω2/C0 and the second-order longi-421

tudinal structure function (C2(l)l
−2/3/CK)3/2. All three statistical properties422

were compensated with the dimensional expression given by the classical423

Kolmogorov theory in the inertial range (see section 1). We used the scaling424

constants C0 = 5 and CK = 2.01, which have been associated with three-425

dimensional turbulence, including in anisotropic contexts (Ouellette et al.,426

2006). All three statistical quantities consistently show a plateau even if427

the plateau is better developed for the energy spectrum and the longitudi-428

nal structure function than for the Lagrangian velocity structure function.429

Values of the compensated functions at their plateaus were used to esti-430

mate ε for each experiment. In practice, the value of ε inferred from the431

compensated Lagrangian velocity structure function Dii(τ)/(C0τ) was sim-432

ply taken as being an average of the maximum compensated values for the433

three velocity components at τ = 0.2− 0.3 as the structure function did not434

have a well-defined plateau. For the frequency spectrum πEii(ω)ω2/C0 and435

the second-order longitudinal structure function (C2(l)l
−2/3/CK)3/2, which436

had better-defined plateaus, values of ε were calculated as an average of the437

means of the compensated values over the frequency range w = [4, 10] s−1438
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Figure 9: Compensated Lagrangian velocity structure function, frequency spectrum and

second-order longitudinal structure function in a) experiment 6 and b) experiment 11. The

values wc = π/T and wp = π/tp, where tp is the particle relaxation time, are the frequency

of the particles and cylinder, respectively. The inset in the figure for the longitudinal

structure function (C2(l)l−2/3/CK)3/2 of experiment 6 is the same structure function but

evaluated using the three experiments 5, 6 & 9, giving a smoother compensated function as

the statistical sampling is increased. The vertical dashed lines indicate the limits τ = τe,

ω = π/τe and l = Li. In experiment 6, ε derived from the three functions gives a mean

value with standard error, ε = (15.39± 1.40) cm2s−3. In experiment 11, ε derived from

the three functions gives a mean with standard error, ε = (73.38± 5.85) cm2s−3.
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and length range l = [5, 10] cm, respectively, for the three velocity compo-439

nents. We note that these averages for the Lagrangian velocity structure440

function, 1/3
∑

iDii(τ), and the frequency spectrum, 1/3
∑

iEii(τ), repre-441

sent the isotropic decomposition of D and E. Finally, as the standard errors442

of the mean of values of ε inferred from D, E and C2 ranged only between 4443

and 6%, we obtained a final estimate of ε as the average of these three esti-444

mates. The resulting value of ε was then used to calculate the associated flow445

scales and dimensionless numbers (see Table 2). The time τ corresponding446

to the maximum of the compensated Lagrangian velocity structure function447

D(τ) is reasonably consistent with the values of the eddy turn-over time τe448

given in Table 2. Similarly, the lower limit ω of the plateaus of the frequency449

spectrum E(ω) reasonably agrees with the frequency ωe = π/τe. In the spa-450

tial domain, the region of the function C2(l) between the lags l = 4 cm and451

l = Li = 10− 12 cm in Figure 9 also matches with what would be expected452

for an inertial range. The quoted lower limits of l are dictated by spatial453

resolution, and the upper limits coincide with the forcing length scales of454

Li ∼ 12 and 10 cm in experiments 6 and 8, respectively. We note that val-455

ues of Li are naturally close to the size of the Lissajoux curve executed by456

the cylinder while stirring, that is Lc = 2A = 15 cm.457

6. Particle dispersion458

In the context of the inhomogeneous and anisotropic turbulence just de-459

scribed, we now examine both single-particle dispersion and particle-pair460

dispersion, also known as relative dispersion. Although the dispersion of461

particles must be three-dimensional, the flow has been shown to be strongly462
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anisotropic (and increasingly so as the stirring rate increases). So, the aim463

here is to check if large-sized particle dispersion in strongly inhomogeneous464

and anisotropic turbulence satisfies the same scaling laws as tracers in ho-465

mogeneous and isotropic 3D turbulence.466

6.1. Single-particle dispersion467

Single-particle dispersion can be be investigated by analysing the trajec-468

tory of a single particle, by calculating 〈|∆(τ)|2〉, where ∆(τ) = X(t+ τ)−469

X(t), where X(t) is the position of a particle at each time t along its tra-470

jectory and τ is the time lag. Figure 10a shows 〈|∆(τ)|2〉/Li2 as a function471

of τ/τe for each of the four particles in experiment 7. When τ/τe � 0.25,472

the ballistic dispersion regime holds, i.e. 〈|∆(τ)|2〉 ∝ τ 2, whereas when473

τ/τe & 0.6 − 0.7, the mean-square displacement follows a diffusive regime474

(〈|∆(τ)|2〉 ∝ τ) over a brief time interval of length approximately equal to475

τe, as shown in Figure 10c. The start of the diffusive regime coincides with476

the time required for the decay of the Lagrangian velocity auto-correlation of477

the particles 〈Ui(t)Ui(t+τ)〉/〈Ui(t)2〉, that is TL/τe = 0.6, as shown in Figure478

10b. At τ/τe ≈ 2.5, the mean-square displacement reaches a plateau. The479

brevity of the diffusive regime is due to the finite dimensions of the domain,480

which limit the particle’s excursion at large times. Similar dimensionless481

curves of 〈|∆(τ)|2〉/Li2 and 〈Ui(t)Ui(t + τ)〉/〈Ui(t)2〉 as a function of τ/τe482

were displayed for all other experiments (not shown).483

The dispersion regimes of Figure 10 may be also interpreted in terms of484

space instead of time. Thus τ/τe ∼ 0.25 corresponds to the mean-square par-485

ticle displacement 〈|∆(τ)|2〉/L2
i ∼ 0.16, which corresponds to a root-mean-486

square displacement Lb/Li = (〈|∆(τ)|2〉)1/2/Li ∼ 0.4 or in dimensional terms487
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Figure 10: a) Mean square displacement relative to initial position as a function of time

τ/τe along the trajectories of the 4 particles in experiment 7. The four particles have a

similar behaviour. The black solid line represents a linear fit of the data (in logarithmic

scales) up to τ/τe = 0.25, which gives a slope of 1.92, very close to the predicted slope

of 2. The black dashed line represents a slope of 1, indicating a diffusive regime. b)

Lagrangian velocity auto-correlation function. The Lagrangian velocity auto-correlation

time TL/τe ∼ 0.6 is shown by the vertical blue dotted line in a). c) Single-dispersion

compensated for the diffusive regime. The diamonds delimit the intervals over which

< |∆(τ)|2 > /(L2
i × τ/τe) is equal to its maximum within a tolerance of 5%. This

criterion is used to ascertain the presence of plateaus and hence the diffusive regime. The

average width of such intervals for the four particles is ∆τ/τe = 0.9. Here the diffusive

regime is observed between TL/τe � τ/τe � 2.5TL/τe.

in experiment 7, Lb = (〈|∆(τ)|2〉)1/2 ∼ 4.5 cm. Hence, in this latter experi-488

ment, the ballistic regime remains valid for particle displacements below ∼489

5 cm. On the other hand, τ/τe = 0.6 corresponds to 〈|∆(τ)|2〉/L2
i ∼ 0.63,490

or Ld/Li = (〈|∆(τ)|2〉)1/2/Li ∼ 0.8, or equivalently, in experiment 7, Ld =491
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(〈|∆(τ)|2〉)1/2 ∼ 9 cm, which means that the diffusive regime will apply to492

particle displacements larger than 9 cm. Finally, the plateau reached by the493

dispersion curves ends when 〈|∆(τ)|2〉/L2
i ∼ 1.8, or (〈|∆(τ)|2〉)1/2/Li ∼ 1.34,494

or equivalently, in experiment 7, (〈|∆(τ)|2〉)1/2 ∼ 15 cm, which means that495

once the particles approach displacements around 15 cm the displacement is496

unable to on average increase further due to the limited dimensions of the497

domain.498

Aside from showing the existence of the ballistic and diffusive regimes, the499

results of this analysis of single-particle dispersion are the above definition500

of TL and the characteristic dimensionless lengths Lb and Ld delimiting the501

different dispersion regimes, which will be used in the next section in the502

interpretation of particle-pair dispersion.503

6.2. Particle-pair dispersion504

To analyse particle-pair dispersion, we used both the traditional way of505

looking at the relative dispersion as a function of time and the fixed length-506

scale method (FSLE). We will show in this section that the two methods507

are complementary. We first looked at the time evolution of the separation508

between particles i and j, |Sij(t)| = |Xi(t)−Xj(t)|, by calculating the mean-509

square relative distance 〈(|Sij| − S0)
2〉 of pair ij relative to the initial pair510

separation |Sij(0)| = S0. The values of S0 were carefully chosen so that they511

span characteristic lengths of the system within the interval S0 = [3, 11] cm.512

This allowed a calculation of statistically representative ensemble averages of513

the mean-square relative distance. However, the sampling was uneven: the514

number of ensemble members was found to roughly linearly increase with515

intermediate values of S0, be sometimes small at the lowest (< 3 cm) and516
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largest (> 30 cm) values of S0, and vary between pairs for the same S0, es-517

pecially for experiments with low stirring rates. For instance, in experiment518

5, the number of ensemble members averaged over the six pairs increased519

from 18 to 151 as S0 increased from 3 to 11 cm, and varied between pairs at520

S0 ∼ 3 cm from zero (pair 4) to 62 (pair 5), whereas in experiment 11, the521

number of ensemble members averaged over the six pairs increased from 17522

to 172 for a similar set of values of S0, and varied between pairs at S0 ∼ 3 cm523

from 8 (pair 5) to 28 (pair 6). The fact that sampling varies between particle524

pairs likely results from the fact that the turbulence is neither isotropic nor525

homogeneous.526

In all experiments, as exemplified in Figure 11 for experiments 5 and527

11, the mean-square relative distance 〈(|S| − S0)
2〉 shows three main trends:528

in the interval τ/τe < 0.25, it evolves as t2, clearly following a ballistic529

regime; when 0.25 < τ/τe < 0.6, it varies as tβ with variable β values,530

1.0 < β < 2.3, so that there is no indication of a super-diffusive regime;531

when τ/τe � TL/τe = 0.6, it finally grows more slowly (eventually becoming532

stationary) with short-period oscillations, reflecting the finite dimensions of533

the domain. The diffusive dispersion regime in the interval τ/τe > 0.6 is534

equivocal, partly for the same reasons related to particle confinement as in535

single-particle dispersion, but also partly because the statistics are noisier.536

The lack of identification of an intermediate super-diffusive regime can537

be explained by the narrow time windows [t0, TL] that are available for this538

regime to exist, as shown in Table 3 for experiments 5 and 11 and the initial539

separations S0 considered in Figure 11. For the time t0 = (S2
0/ε)

1/3 marking540

the transition from the ballistic to the super-diffusive regime at a given ini-541
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Figure 11: Mean square distance averaged over the six particle pairs for different initial

separations S0 as a function of time in a) experiment 5 and b) experiment 11. The black

solid, dashed and dotted lines represent slopes of 2, 3, and 1, respectively, characterizing

the ballistic, super-diffusive and diffusive regimes. The time TL/τe = 0.6 is shown by a

vertical blue dotted line.
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tial separation S0 to be shorter and further separated from the Lagrangian542

integral time TL marking the start of the diffusive regime (see section 1),543

an increase in ε and/or a smaller S0 would be required. When t0 > TL,544

the super-diffusive regime can not occur. The ratio of t0 to TL can also be545

expressed as:546

t0
TL

=
(S2

0/ε)
1/3

0.6τe
=

(S2
0/ε)

1/3

0.6 (L2
i /ε)

1/3
=

1

0.6

(
S0

Li

)2/3

. (9)547

So, t0/TL > 1 is equivalent to S0/Li > (0.6)3/2 = 0.47 or S0 > 4.7 − 5.6 cm548

(see Table 2), which is a limit that is very close to that found for the end of549

the ballistic regime in the single-particle dispersion, namely Lb/Li ∼ 0.4 or550

Lb ≈ 4.5 cm.551

Exp. 5 Exp. 11

S0 (cm) t0/TL S0 (cm) t0/TL

3.15 0.76 3.29 0.70

3.55 0.83 3.69 0.75

4.35 0.95 4.49 0.86

5.55 1.11 5.60 1.00

7.55 1.36 7.69 1.23

11.15 1.77 10.89 1.55

Table 3: Estimates of t0/TL as a function of S0 for experiments 5 and 11.

As an alternative to the analysis of fixed-time average of inter-particle dis-552

tances over the ensemble of particle pairs, we computed the Finite-Scale Lya-553

punov Exponent (FSLE). We thus calculated the function λ(δ) = ln ρ/〈τ(δ)〉,554
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where δ is the spatial separation between two particle trajectories and 〈τ(δ)〉555

the mean time that δ takes to be amplified by a factor ρ. We took ρ as equal556

to
√

2 (Corrado et al., 2017). We ultimately averaged λ(δ) over the six par-557

ticle pairs. The results of the FSLE analysis are shown in Figure 12. In all558

experiments, two regimes (λ(δ) ∝ δ−ζ) are consistently found: the ballistic559

separation (ζ ∼ 1) is present for δ < [0.77− 0.99]Li; and the diffusive regime560

(ζ ∼ 2) for [0.77 − 0.99]Li < δ < [1.2 − 1.7]Li. We note that the length561

scale interval for diffusion is consistent with that found in the single particle562

analysis of the dispersion regime. For instance, in experiment 7, the diffusion563

regime is found for separations between 9 cm and 16 cm, which agrees with564

the analysis of section 6.1. The fact that we find the transition to diffusive at565

δ ∼ Li shows that our estimates of the energy dissipation rate ε derived from566

the particles, and consequently of a number of scales derived from ε, such567

as Li, are reliable. Finally, it is to be noted that, whereas the traditional568

approach shows the ballistic regime with much less noise, the FSLE analysis569

shows the diffusive regime much more clearly.570
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Figure 12: Lagrangian FSLE λ(δ) = ln ρ/(〈τ(δ)〉/τe) as a function of δ/Li for all experi-

ments. The FSLE scaling exponent δ−ζ corresponds to: ballistic separation (ζ = 1), and

diffusive regime (ζ = 2).
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Whereas two dispersion regimes were identified when the statistics were571

averaged over the six particle pairs, the dispersion between single pairs had572

more variability, especially at low stirring rate, as shown in Figure 13. For573

instance, in experiment 5, pair 2 separated as t2.9 in the interval 0.13 <574

τ/τe < 0.6, whereas pair 6 separated as t1.9 in the interval 0.01 < τ/τe < 0.6.575

Similarly, in experiment 11, pair 3 separated as t3.05 in the interval 0.2 <576

τ/τe < 0.6, whereas pair 2 separated as t1.9 in the interval 0.01 < τ/τe <577

0.6. Individually, particle pairs could thus seemingly exhibit a super-diffusive578

behaviour extended outside of the expected time window t0 < τ < TL (but579

overlapping with it). This variability affecting different dispersion pairs can580

be related to the variability of the Lagrangian correlation time of velocity581

differences (relative velocity between two particles of a pair) between the582

pairs separated by S0 ∼ 3 cm, as shown in Figure 14. For instance, in583

experiment 5, the velocity difference of pair 2 loses its memory of the initial584

separation at τ/τe = 0.13, five times more rapidly than for pair 6. This585

indicates not only that the ballistic regime ended earlier for pair 2 than586

for pair 6 but also that it ended earlier than the theoretical time t0/τe =587

t0/TL × TL/τe = 0.76× 0.6 = 0.46. In practice, this corresponds to a better588

separation between t0 and TL, possibly allowing the Richardson regime to589

exist in this case. Similarly, in experiment 11, the velocity difference of pair 3590

decorrelated at τ/τe = 0.19 instead of t0/τe = 0.42 and earlier by a factor of 3591

than for pair 2. It is tempting to attribute the difference in the decorrelation592

time of the velocity difference between pairs to the inhomogeneity of the593

turbulence, although it is rather intricate to identify why it would affect the594

pairs differently. Nevertheless, for S0 ∼ 3 cm, histograms of the particle595
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Figure 13: Mean square distance for each particle pair for S0 ∼ 3 cm as a function of

time in experiments a) 5 and b) 11. The black solid, dashed and dotted lines represent

slopes of 2, 3, and 1, respectively, characterizing the ballistic, super-diffusive and diffusive

regimes. The time TL/τe = 0.6 is shown by a vertical blue dotted line. The separation

of the particle pair 4 was never less than 5.5 cm n experiment 5, and so that pair is not

shown in a).

positions for each characteristic pair 2 and 6, and 2 and 3, respectively, in596

experiments 5 and 11, shown in Figure 15, reveal that the particle pairs597

whose velocity differences were decorrelating slowly were actually close to598

the bottom wall or the free surface, i.e. they were located in two highly599

inhomogeneous regions.600
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Figure 14: Lagrangian correlation of velocity differences between the particle pairs sepa-

rated by S0, 〈δu(τ)δu(0)〉S0
/〈δu(0)2〉S0

, as a function of τ/τe for experiment 5 (S0 = 3.15

cm) and experiment 11 (S0 = 3.29 cm).
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a) Experiment 5

b) Experiment 11

Figure 15: Histograms of the positions X,Y, Z for the particle pairs 2 and 6, and 2 and

3 in a) experiment 5 and b) experiment 11 when S0 ∼ 3 cm. Each bar represents the

number of times the x, y or z particle positions of a pair were encountered when the

particle-pair distance was about 3 cm (which corresponds to the initial times contributing

to the Lagrangian correlation of velocity differences between the particle pairs in Figure

14).
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7. Conclusions601

In this experimental study, we departed from the theoretical framework602

for homogeneous and isotropic turbulence and the dispersion of fluid (tracer)603

particles to assess to what extent classic theories remain valid for the disper-604

sion of large particles in inhomogeneous and anisotropic turbulence.605

Our original experimental design consisted of stirring a fluid together with606

a few almost neutrally-buoyant finite-size particles contained in a rectangular607

tank including a mixed type of boundaries (no-slip and free surface). The608

stirring of the two phases (fluid/particle) was achieved by a cylinder executing609

a two-dimensional periodic Lissajoux figure enclosing a quarter of the volume610

of the tank. Our approach consisted of recording the dynamics of the particles611

in the entire volume of the tank, without using tracers. In doing so, we did612

not directly probe the turbulence over the entire inertial range, but over613

a limited scale range, which, in terms of length scales, extended from the614

particle size to the tank’s dimensions. However, the velocities of the finite-615

size particles allowed us to determine the velocity-based properties of the616

turbulence with tolerable accuracy.617

Despite our initial expectations of particle collisions, only particle-cylinder618

collisions had multiple occurrences, but their effect on the particle motion619

remained limited. This can partly be explained by the fact that when parti-620

cles are in the proximity of the cylinder, they frequently are engulfed in the621

vortex surrounding the cylinder, which makes them flow around the cylinder622

instead of colliding with it.623

The dynamics of the particles was clearly indicative of anisotropy and624

inhomogeneity of the turbulence at the particle scale. The walls and free-625
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surface contributed to the inhomogeneity, as shown by the velocity field. The626

absence of forcing motion in the direction along the axis of the cylinder re-627

sulted in a preferred velocity direction of the particles normal to the cylinder628

axis. Consequently, random preferential locations and trapping of particles629

along the x direction were recorded, especially at low stirring rates. Velocity630

fluctuations at the scale of the particles in this direction seemed insufficient to631

eject particles from their trapping regions. For a given period of the cylinder632

motion, the two opposite directions of stirring did not produce substantially633

different anisotropy, but produced a different inhomogeneity of the particle634

velocity fields.635

Single-particle dispersion exhibited a ballistic regime at times shorter636

than the particle Lagrangian velocity auto-correlation time, and a short dif-637

fusive regime at longer times, in agreement with theoretical predictions for638

tracers in isotropic and homogeneous turbulence.639

Particle-pair dispersion mostly agreed with the classic predictions for dis-640

persion in 3D turbulence when averaged over the six pairs, as ballistic and641

diffusive regimes were found. The super-diffusive regime was not observed642

because the time t0 was not sufficiently smaller than the Lagrangian corre-643

lation time TL. So, a temporal window for super-diffusion did not exist, and644

the ballistic regime transitioned directly to the diffusive regime. However,645

individually, some particle pairs briefly gave indications of a super-diffusive646

regime following the Richardson law. These particle pairs were found to647

be characterised by a more rapid decorrelation of their velocity differences648

compared to other pairs. We further made a link between the variability in649

the timescale of transition from the ballistic regime to Richardson’s law and650
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the inhomogeneity of turbulence, by noting that larger decorrelation times651

tended to occur near the tank’s boundaries. Overall, both single-particle652

and particle-pair dispersion mostly agree with the ballistic and diffusive be-653

haviours expected for 3D dispersion in homogeneous and isotropic turbulence654

despite the inhomogeneity and anisotropy of the turbulence in our experi-655

ments.656
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tial particles in a turbulent von kármán flow. Journal of Fluid Mechanics778

668, 223–235.779

Xia, H., Francois, N., Faber, B., Punzmann, H., Shats, M., 2019. Local780

anisotropy of laboratory two-dimensional turbulence affects pair disper-781

sion. Physics of Fluids 31 (2), 025111.782

Yeung, P., Pope, S., 1988. An algorithm for tracking fluid particles in nu-783

merical simulations of homogeneous turbulence. Journal of computational784

physics 79 (2), 373–416.785

51



Zandbergen, P., Dijkstra, D., 1987. Von kármán swirling flows. Annual review786
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Appendix A. Particle lifting and transient times792

By lifting time we mean the time it takes for particles to lift off the bottom793

of the tank once the stirring motion has started. These lifting times inevitably794

reflect the time it takes for momentum to reach the bottom wall after flow795

initiation. Such a time is related to the time at which the cylinder reaches its796

minimum distance from the bottom wall (yc = A) during its first cycle, and797

thus should be proportional to T . For initial downward cylinder motion, the798

cylinder first reaches this height at a time T/8, which potentially translates799

into an increase by a factor 3/1.75 ∼ 1.7 of the lifting times between the800

cases with T = 3 s and T = 1.75 s. This appeared to be consistent with801

what we observed, as the ratio of the mean of all the lifting times at T = 3802

s to those at T = 1.75 s was 1.79. For initial upward cylinder motion, the803

cylinder first reaches its lower height at a time 3T/8. So, one would expect804

that particle lifting in this latter case takes three times longer than for the805

initial downward motion. We found an increase of that order, at T = 3 s,806

as the ratio of the mean of all the lifting times for initial upward motion to807

those for initial downward motion was 2.25. In any case, this lifting time808
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Figure A.16: (a) mean particle velocity 〈|U |〉 as a function of the number of frames.

(b) Standard deviation σ (〈|U |〉) over neighbouring frames as a function of the number of

frames. Data from experiment 11 have been used as an example.

can only be regarded as an indication of how long it takes for momentum809

to reach the bottom wall after flow initiation, which takes from one to five810

loops of the cylinder motion only.811

To further assess how long it takes for the turbulent flow to be fully812

established in the tank, we calculated the mean velocity of the particles as813

a function of frame number. As shown in Figure A.16a, the mean velocity814

reaches a plateau, whose start signals the onset of stationary turbulence in815

the tank. The onset of the plateau is detected numerically by an algorithm816

which estimates from which frame the standard deviation over a number of817

neighbouring frames corresponding to one third of the cylinder period is first818

less than 5% (Figure A.16b). Times ts at which the transient is over in all819

experiments are given in the last column of Table 1. They range from 20 to820

34 cycles of the cylinder (equivalent to 3071 to 4711 frames over a total of821
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18,000 frames).822

Appendix B. Velocity time series, collisions and filtering823

The time series of the velocity are characterized by two types of peaks.824

Some are short-lived (from a fifth to half a second), and result from a particle825

colliding with the cylinder, and being kicked in either the y or z direction at826

a speed that can exceed the maximal speed of the cylinder. Those kicks often827

result in the particle subsequently rebounding against a wall. The transfer828

of momentum that takes place is all the more important as the speed of829

the cylinder is high. Table 1 of section 2.4 gives the total number of these830

collisions for each experiment over 100 cycles. On average, a particle has a831

collision with the cylinder every 4 to 7 cycles. Given the typical collision832

duration, 4 to 10% of the time series recorded thus are affected by particle-833

cylinder collisions. The second type of peaks last approximately one to two834

seconds, and occur when particles happen to be in the wake of the cylin-835

der. There are rare collisions with the cylinder rod, and we counted only836

two occurrences of collision between particles across 11 experiments (only 8837

experiments have been used).838

To filter the collisions from the measured velocities, we assume that the839

collisions only transfer momentum to the y and z particle velocity compo-840

nents. The collisions are identified in the time series of Uy and Uz by auto-841

matically finding peaks exceeding a velocity threshold that is adjusted using842

the recorded videos. The velocities are then smoothed based on a local re-843

gression using weighted linear least-squares and a second-degree polynomial844

model, assigning lower weight to outliers in the regression. A zero weight845
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Figure B.17: Time series of the velocity components Uy and Uz for the green particle in

experiment 6 before and after filtering the collisions.

is assigned to the data outside six mean absolute deviations. Figure B.17846

shows an example of the procedure.847

Figure B.18 shows the efficiency of the momentum transfer from the cylin-848

der to the particles as well as the lack of impact from filtering. We note that849

the transients were not removed from the time series of the velocity in this850

instance. On average, the velocity of the particles is about 35% that of the851

cylinder but the standard deviations are larger when the stirring is more vig-852

orous (greater Uc = uc), which appears to result at least partly from particle853

collisions, as shown by the fact that the standard deviation is substantially854
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Figure B.18: Mean speed of the particles 〈U〉 = 〈|U |〉 including its standard deviation as

a function of the mean cylinder velocity Uc = uc for all experiments (in black). The mean

and standard deviation from experiments 4, 6, 7 and 11 that were estimated after filtering

the velocity for collisions with the cylinder are presented in magenta.

reduced when collisions are filtered (magenta lines).855

We further assessed that the collisions have only minor impact on the856

velocity and acceleration distributions (not shown).857
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