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Abstract
Ensemble Kalman Filters are used extensively in all geoscience areas. Often a
stochastic variant is used, in which each ensemble member is updated via the
Kalman Filter equation with an extra perturbation in the innovation. These per-
turbations are essential for the correct ensemble spread in a stochastic Ensemble
Kalman Filter, and are applied either to the observations or to the modelled
observations. This paper investigates if there is a preference for either of these
two perturbation methods. Both versions lead to the same posterior mean and
covariance when the prior and the likelihood are Gaussian in the state. However,
ensemble verification methods, Bayes' Theorem and the Best Linear Unbiased
Estimate (BLUE) suggest that one should perturb the modelled observations.
Furthermore, it is known that in non-Gaussian settings the perturbed modelled
observation scheme is preferred, illustrated here for a skewed likelihood. Exist-
ing reasons for the perturbed observation scheme are shown to be incorrect, and
no new arguments in favour of that scheme have been found. Finally, a new and
consistent derivation and interpretation of the stochastic version of the EnKF
equations is derived based on perturbing modelled observations. It is argued
that these results have direct consequences for (iterative) Ensemble Kalman Fil-
ters and Smoothers, including “perturbed observation” 3D- and 4D-Vars, both
in terms of internal consistency and implementation.

K E Y W O R D S

data assimilation, ensemble, nonlinear, particle filter, synchronisation.

1 INTRODUCTION

A major breakthrough in data assimilation and Bayesian
Inference for high-dimensional systems was the introduc-
tion of the Ensemble Kalman Filter (EnKF) by Evensen

(1994). The scheme uses an ensemble representation of
the probability density function (pdf) of the state of the
system and the propagation of the pdf in time is repre-
sented by the propagation of the ensemble members with
the full model equations. The great practical advantage
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over schemes like the Kalman filter and many variational
methods like 4D-Var is that the model and the observation
operators do not have to be linearised.

The EnKF update equation can be seen as an approxi-
mation to the Kalman Filter update equation. At observa-
tion times the Kalman filter assumes that the prior pdf is
Gaussian, and also that the likelihood is Gaussian in the
state x. In that case the Kalman filter updates the mean of
the prior Gaussian as:

xa = xf + K(yo − Hxf ) (1)

in which xf is the forecast mean, xa denotes the analysis
mean, K is the Kalman gain, yo is the observation vec-
tor, and H is the observation operator that maps model
states to observation space. The notation used is yo for the
actual observation, and y for the case when the observations
are seen as random variables. This distinction is of funda-
mental importance in this paper. The Kalman gain is given
by K=BHT(HBHT +R)−1 in which B is the prior state
covariance and R is the observation error covariance. The
state covariance is updated in the standard Kalman filter
as P= (I−KH)B. For future reference, we also show the
symmetric Joseph form of the covariance update as

P = (I − KH)B(I − KH)T + KRKT, (2)

which can easily be derived from the standard form by
adding and subtracting the symmetric matrix BHTKT, sub-
stituting for the additive term BHTKT =K(HBHT +R)KT

and collecting terms.
The original Ensemble Kalman Filter (EnKF) in

Evensen (1994) implements the Kalman filter update
equation on each ensemble member, as:

xa
i = xf

i + K(yo − Hxf
i ), (3)

in which the index i denotes the ensemble member index,
with i∈1, 2,… , N. Burgers et al. (1998) showed that the
posterior covariance from this ensemble is systematically
too small, even when the ensemble size goes to infinity.
Indeed, when we calculate the posterior ensemble mean
for an ensemble of N members as

xa = 1
N

N∑
i=1

xa
i = 1

N

N∑
i=1

xf
i + K(yo − Hxf

i )

= (I − KH)xf + Kyo, (4)

use

xa
i − xa = xf

i + K(yo − Hxf
i ) − (I − KH)xf − Kyo

= (I − KH)(xf
i − xf ), (5)

and calculate the posterior sample covariance matrix

Pe =
1

N − 1

N∑
i=1

(xa
i − xa)(xa

i − xa)T

= (I − KH) 1
N − 1

N∑
i=1

(xf
i − xf )(xf

i − xf )T(I − KH)T

= (I − KH)Be(I − KH)T, (6)

in which Be is the prior sample covariance matrix. Com-
paring this to the Joseph form in Equation (2), we imme-
diately see that, even in the limit of an infinite number of
ensemble members, a term KRKT is missing.

Burgers et al. (1998) argue that the missing term is
due to the fact that each ensemble member is updated
with the same observation, leading them to suggest a
perturbed observation scheme. Perturbing observations
in an EnKF scheme was first advocated by Houtekamer
and Mitchell (1998), using a Monte-Carlo argument and
also found independently by Bennett et al. (1998) in
their representer method, an observation-space variational
scheme. The idea of perturbing observations goes back to
Daley and Mayer (1986), who used it in observation sys-
tem simulation experiments, and their use was extended
by Houtekamer and Derome (1995) to generate forecast
ensembles, and by Kitanidis (1995), who used it in a vari-
ational data-assimilation approach. It later found its way
in 4D-Var for weather prediction by Žagar et al. (2005)
and is now used operationally in the “Ensemble of Data
Assimilations” scheme of the ECMWF, e.g., Isaksen et al.
(2011).

In the perturbed-observations scheme, each ensemble
member is updated with a perturbed observation

xa
i = xf

i + K(yo + 𝜖i − Hxf
i ), (7)

in which 𝝐i ∼N(0,R). Since 𝝐i and the prior ensemble
members are independent draws from independent distri-
butions, this would indeed lead to the correct covariance
update in the limit of an infinite ensemble size:

xa
i − xa = xf

i + K(yo + 𝜖i − Hxf
i ) − (I − KH)xf − Kyo

= (I − KH)(xf
i − xf ) + K𝜖i, (8)

leading to

Pe =
1

N − 1

N∑
i=1

(xa
i − xa)(xa

i − xa)T

= (I − KH) 1
N − 1

N∑
i=1

(xf
i − xf )(xf

i − xf )T(I − KH)T

+ (I − KH) 1
N − 1

N∑
i=1

(xf
i − xf )𝜖T

i KT + (..)T
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+ K𝜖i𝜖
T
i KT

≈ (I − KH)Be(I − KH)T + KReKT. (9)

This expression converges to the Joseph form for infi-
nite ensemble size. Note that one has to take care in how
one takes the limit towards infinite ensemble size, and
details can be found in e.g., Mandel et al. (2011)

The alternative methodology that leads to the same
posterior mean and covariance perturbs the modelled
observations, via

xa
i = xf

i + K
{

yo − (Hxf
i + 𝜖i)

}
, (10)

in which 𝝐i ∼N(0,R). Repeating the analysis for the per-
turbed observation scheme given above with the sign of
𝝐 changed does show that this scheme leads to the same
posterior statistics. This version of the stochastic EnKF has
been used more and more (e.g., the review on ensemble
methods in Vetra-Carvalho et al., 2018). The first to sug-
gest this scheme was Hodyss (2011), as far as this author
is aware. His idea originated from studying non-Gaussian
extensions of the EnKF. However, he sees no preference
for either scheme for the Gaussian case. The paper by Nott
et al. (2012) is slightly confusing, and seems to mix ideas
from both schemes. Snyder (2015) presented a clear pref-
erence for the perturbed modelled observations scheme
based on his analysis of the EnKF approximation of the
Best Linear Unbiased Estimator (BLUE).

Is there any preference for either of these two schemes?
One could argue no, because both lead to the same answer.
However, as with any analysis method, it would be good to
understand where the perturbations come from. In Burg-
ers et al. (1998), the reason for perturbing observations
was after the fact: doing that leads to the correct result,
and no principled reason was provided. Houtekamer and
Mitchell (1998) suggest that observation perturbations are
needed because the EnKF is a Monte-Carlo method, while
Snyder (2015) argues that the BLUE equations directly sug-
gest that one should perturb modelled observations, and
that the BLUE in non-Gaussian situations provides further
evidence for this choice.

The contribution of this paper is that all existing
arguments for either scheme will be critically discussed,
new arguments from ensemble verification methods, from
Bayes' Theorem, and from a reanalysis of the EnKF as
a BLUE are provided, and a new principled derivation
of the stochastic EnKF will be presented. Furthermore, a
numerical example is included to demonstrate the influ-
ence of the choice of perturbation of the posterior when
the likelihood is skewed. The conclusion is that prefer-
ence should be given to perturbing modelled observa-
tions as strong arguments exists for that scheme, while
no existing arguments remain and no new arguments

have been found in favour of the scheme that perturbs
observations.

In the next section arguments in favour of the per-
turbed observation scheme are presented and discussed.
Then arguments in favour of perturbing modelled observa-
tions are provided, and a new consistent derivation of the
stochastic EnKF is given. This is followed by a numerical
non-Gaussian example that also supports perturbing mod-
elled observations. A summarizing and concluding section
closes the paper. To keep the paper focussed, we will not
discuss issues like inbreeding, localisation and inflation, or
efficient updating schemes as they are not directly relevant
for the present discussion.

2 ARGUMENTS IN FAVOUR
OF PERTURBING OBSERVATIONS

Houtekamer and Mitchell (1998), Burgers et al. (1998), and
Bennett et al. (1998) introduce observation perturbations
by arguing implicitly or explicitly that it is needed for a full
Monte-Carlo description of the posterior. However, there
is an enormous volume of literature on Markov-Chain
Monte-Carlo methods, such as Gibbs Sampling, Metropo-
lis Hastings Sampling, Langevin Sampling and Particle Fil-
ters, and none of these methods need to perturb observa-
tions, e.g., Doucet et al. (2000), Robert and Casella (2004),
van Leeuwen (2009), Bocquet et al. (2010), van Leeuwen
et al. (2015), van Leeuwen et al. (2019). It is known that
all these methods are providing the correct posterior pdf in
the limit of an infinitely large ensemble size, showing that
this argument does not hold.

It is interesting that no derivation of a perturbed obser-
vation scheme exists. Papers that “derive” the scheme only
show that using the update equation with perturbed obser-
vations leads to the correct posterior covariance; none of
them provides a principled derivation for this scheme (e.g.,
the papers mentioned in the introduction and Mandel
et al., 2011). This author has also not been able to provide
such a derivation.

3 ARGUMENTS IN FAVOUR
OF PERTURBING MODELLED
OBSERVATIONS

In the following we provide three reasons why perturb-
ing modelled observations is preferable over perturbing
observations.

3.1 Reasons from ensemble verification

In ensemble verification methods, as in data assimilation,
we compare observations with the ensemble member
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equivalents of those observations. Each prior ensemble
member is interpreted as a random draw from the prior pdf
p(x) (e.g., the rank histogram literature, such as Hamill,
2001). Also the true state of the system xtrue is assumed
to be a random draw from that pdf. Hence, each ensem-
ble member is statistically indistinguishable from the true
state.

The observations yo arise from applying the obser-
vation operator to the true state of the system Hxtrue,
followed by a perturbation with a random measurement
error 𝝐 ∼N(0,R). If each ensemble member is statistically
indistinguishable from the true state, we should treat the
measurement of that member the same as a measurement
of the true state, so the ensemble member equivalent of
the observation is Hxi + 𝝐i in which 𝝐i ∼N(0,R). Note that
the equivalent of the measurement of an ensemble mem-
ber to a real observation is not Hxi: adding 𝝐i is essential.
The consequence of this reasoning in favour of perturbing
modelled observations has not been highlighted earlier.

The argument can also be reformulated against per-
turbing observations. The observations are obtained by
adding measurement noise to applying the observation
operator to the true state of the system. Nature does this
random draw for us. Hence the observation is derived
from adding a perturbation to the true system. Why fur-
ther perturb a quantity that is itself a perturbation from
the true system? Also, note that any observation, after the
observation has been made, is a biased estimate of the true
system because of the non-zero measurement error. Why
would one want to create an ensemble around a biased
variable? We come back to this reasoning when discussing
arguments from the BLUE below.

3.2 Reasons from Bayes' Theorem

Bayes' Theorem reads:

p(x|yo) =
p(yo|x)
p(yo)

p(x), (11)

which expresses the pdf of the state of the system given a
set of observations yo, in terms of the likelihood and the
prior. The likelihood p(yo|x) is not the pdf of the observa-
tions, as these are given. It is an unnormalized function of
the state x given a set of observations. Similarly, p(yo) is a
constant, as, again, yo is a given vector. Bayes' Theorem is
a point-wise update for each possible value of the state vec-
tor, and the full solution to the data assimilation problem is
the full posterior pdf of the state p(x|yo). (e.g. van Leeuwen
2015 gives a thorough discussion of the meaning of the
likelihood in Bayes' Theorem.) In Bayes' Theorem the state
x and the observations yo are not treated equally: one is a

random variable, and the other is fixed. This is why Bayes'
Theorem goes beyond the simple notion of a conditional
pdf. It is derived from the identity p(x|y)p(y)= p(y|x)p(x)
from probability theory, but then it is used as an update
equation for the pdf of the state when observations y are
given as yo, and enters the field of data assimilation, and
Bayesian Inference in general.

How can this be compatible with a perturbed obser-
vation scheme to find the correct posterior covariance?
Burgers et al. (1998) explore the expression for the poste-
rior covariance as an expectation over the squared aver-
age deviation of the state from its mean. Using Bayes'
Theorem, the posterior covariance is the squared average
deviation of the state from its mean, where the integral is
weighted with the posterior pdf:

P = Ex|yo
[
(x − xa)(x − xa)T] , (12)

in which Ex|yo [..] denotes the expectation with respect to
the pdf of x|yo. Burgers et al. (1998) use an ‘overbar’ nota-
tion to denote the expectation over the deviations from its
mean, but it is unclear what the underlying pdf is. The
only consistent interpretation is that they use the joint pdf
p(x,y), and hence their derivation is based on the BLUE,
not on Bayes' Theorem, as shown in the next section.

Appendix B shows that it is possible to derive the
correct posterior covariance

P = (I − KH)B(I − KH)T + KRKT (13)

using the posterior pdf in the expectation, so using Bayes'
Theorem. This derivation is new, and this is the first time
that a stochastic EnKF is shown to be consistent with
Bayes' Theorem. The important point of this derivation
is that observations are treated as given constants, not as
random variables.

3.3 Reasons from the BLUE

Snyder (2015) showed that a stochastic EnKF can be
derived using the Best Linear Unbiased Estimator formal-
ism. This differs from Bayes' Theorem in that one searches
for an analysis state that is an unbiased linear combina-
tion of prior state and observations with minimal trace of
the analysis covariance. The BLUE imposes that this trace
is minimal irrespective of the actual value of the obser-
vations, or, in other words, is minimal averaged over all
possible realizations of the actual observation. Hence in
this section y is a random variable, and the expectation in
the expression for the posterior covariance uses the joint
pdf p(x,y) of state and observations, and not the posterior
pdf p(x|y) as in Bayes' Theorem.
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Snyder (2015) shows that the BLUE estimate is equal to

xBLUE = xf + K(yo − E[y]), (14)

in which yo is the actual observation and the expectation
E[y] is taken with respect to p(x,y), or p(y) in this case
as realizations of y are independent from realizations of
x. It is important to realize that E[y] is not the mod-
elled observation. It is a quantity defined by E[y] =
∫ y p(x, y) dx.

The following makes the wording in Snyder (2015)
explicit. The expectation E[y] is defined via

E[y] = ∫ y p(x, y) dx = ∫ y p(y|x) p(x) dx.

If we now use p(y|x)=N(Hx,R) and p(x)=N(xf,B), the
integral can be evaluated as E[y]=Hxf, consistent with
the Kalman Filter assumptions. The connection with a
stochastic EnKF can be made by using an ensemble repre-
sentation with N members for p(x) in the integral, leading
to

E[y] = ∫ y p(y|x) p(x) dx ≈ 1
N

N∑
i=1

∫ y p(y|xi) dy, (15)

with the xi being draws from the prior. If we now draw one
yi for each xi, so we draw yi from p(y|xi)=N(Hxi,R), we
find

E[y] ≈ 1
N

N∑
i=1

yi =
1
N

N∑
i=1

Hxi + 𝜖i. (16)

This clearly demonstrates the need for perturbing mod-
elled observations.

We now present an alternative derivation following
the steps taken in the derivation using Bayes' Theorem
that will allow for more insight in the role of the observa-
tions, and allows for a direct connection with Burgers et al.
(1998). In this case we define, as implicitly done in Burgers
et al. (1998),

P = ∫ (x − xa)(x − xa)Tp(x, y) dx dy

= Ex,y
[
(x − xa)(x − xa)T] (17)

and Appendix C shows how one derives the Joseph
form of the posterior covariance from this expression.
We now trace back in that derivation whether the obser-
vations themselves, or the modelled observations from
the ensemble, would be perturbed in a stochastic EnKF.
The observational part appears as an integral of the form

(Equation (C2))

∫
[
∫ {K(y−Hx)} {K(y−Hx)}Tp(y|x) dy

]
p(x) dx. (18)

We now implement a Monte-Carlo sampling method
for this integral, as in a stochastic version of the EnKF. We
first draw N samples xi from p(x), leading to:

∫
[
∫ {K(y − Hx)} {K(y − Hx)}Tp(y|x) dy

]
p(x) dx

≈ 1
N

N∑
i=1

∫ {K(y − Hxi)} {K(y − Hxi)}Tp(y|xi) dy.

(19)

To evaluate this further we draw a sample from p(y|xi)
for each i. This is a pdf with mean Hxi and covariance R,
and the important observation is that this pdf is not cen-
tred at the actual observations. The result of such a draw is
yi =Hxi + 𝝐i, in which 𝝐i is drawn from N(0,R). Hence we
perturb Hxi and not the actual observation yo, consistent
with Snyder (2015).

(Nott et al. (2012) use a similar reasoning, but their
wording is slightly confusing. They introduce the stochas-
tic EnKF in two steps. First they draw samples (xi,yi)
from p(y|x)p(x) by first drawing from p(x) followed by a
draw from each p(y|xi). This is the same as done here.
Then they mention that “The next important idea in the
ensemble Kalman Filter is to adjust the forecast ensemble…
There are several ways to do this, but one common way that
provides a connection with ABC methods is the following
perturbed observations scheme”, suggesting that the con-
nection between the draws yi and perturbations in the
innovation is actually not made.)

We can analyze the BLUE derivation also by inter-
changing the integrations in (18), and first sample from
p(y):

∫
[
∫ {K(y − Hx)} {K(y − Hx)}Tp(x|y) dx

]
p(y) dy

≈ 1
N

N∑
i=1

∫ {K(yi − Hx)} {K(yi − Hx)}Tp(x|yi) dx.

(20)

Does this lead to a perturbed observation scheme? The
answer is again no. p(y) is a pdf with mean Hxf and
covariance HBHT +R, as can be seen directly from the
identity p(y) = ∫ p(y|x)p(x) dx. Hence this pdf p(y) is not
centred at the actual observations. In fact, we can write
yi =Hxf + 𝜉i in which 𝜉i ∼N(0,HBHT +R). To evaluate
the integral further, we need to draw samples from p(x|yi).
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This looks very much like an ensemble method in which
each ensemble member sees a different observation real-
ization, as in a perturbed observation scheme. This is true,
with the important difference that the yi are centred on
Hxf and not on the actual observations.

3.4 Discussion

The above presented three reasons to perturb the mod-
elled observations and not the observations themselves. No
reasons could be found by this author to perturb the obser-
vations, and this paper partly serves to correct his mistake
in Burgers et al. (1998).

All three reasons presented above in favour of per-
turbing modelled observations hold equally well for lin-
ear ensemble smoothers as these are just state-space
extensions to the time domain of the Ensemble Kalman
Filter. It is expected that perturbing modelled observa-
tions instead of perturbing observations is also beneficial
for non-Gaussian situations where iterative variants of
the update scheme are used, such as stochastic iterative
ensemble filters and smoothers and the “Ensemble of Data
Assimilations” scheme (e.g., Žagar et al., 2005 and Isak-
sen et al., 2011) as these can be seen as Gauss–Newton
iterations of the linear scheme discussed here.

4 A CONSISTENT DERIVATION
OF A STOCHASTIC ENKF

The basic idea behind ensemble or particle methods is that
one tries to draw samples from the posterior pdf, start-
ing from samples from the prior pdf. Several methods are
available, and a short overview is given in Appendix A to
understand better where Ensemble Kalman Filters fit in,
which is needed for our discussion.

When the prior and posterior are Gaussian, a one-step
transformation (method 4 in Appendix A) can be made
exact. Deterministic Ensemble Kalman Filters explore this
by using an ensemble square root of the prior and pos-
terior covariance. For instance, the Ensemble Transform
Kalman Filter (Bishop et al., 2001) transforms the so-called
ensemble perturbation matrices via Xa =XT in which T
is a transformation matrix. The ensemble mean is trans-
formed similarly, and indeed the ensemble is transformed
from the prior to the posterior in one deterministic step.

The stochastic version of the Ensemble Kalman Fil-
ter is special because it draws samples directly from the
Gaussian posterior pdf, and is an example of scheme 6
in Appendix A. If the mean and covariance of the poste-
rior are given by xa and P, respectively, we can generate

samples via

xa
i = xa + P1∕2𝝃i, (21)

in which 𝝃i ∼N(0,I), Because these samples are direct
independent samples from the posterior, there is no need
for any weighting, or no need for extra moves of the ensem-
ble members. (Not realising this has led to some confusion
in the literature, e.g., Morzfeld et al., 2017 who discuss
using the EnKF as proposal in a particle filter scheme,
method 2 in Appendix A. They did not mention that the
stochastic version of the EnKF is developed as a method to
directly sample from the Gaussian posterior.)

To use the sampling scheme (Equation (21)) we need
to determine P1/2. Since P is a covariance matrix, it is sym-
metric positive semi-definite and it has one unique sym-
metric positive semi-definite square root. In the stochastic
version of the EnKF, one does not use this symmetric
square root because there is no analytical expression for
the posterior covariance as one symmetric matrix. Instead,
a non-symmetric square root can be used. Starting from
the Joseph form of the posterior covariance,

P = (I − KH)B(I − KH)T + KRKT, (22)

we note that the posterior covariance matrix is a summa-
tion of two symmetric matrices. Using this Joseph form for
P, the natural square-root matrix is given by

P1∕2 =
{
(I − KH)B1∕2,−KR1∕2} , (23)

where the minus sign in front of the second block of the
covariance follows from the minus sign in front of K in
the factor x− xa = x−xf−K(yo−Hxf) in the definition of P.
It can be traced back to the minus sign in front of 𝝐 in
Equation (C4). Also Appendix B shows in Equations (B1)
and (B4) that the natural factor appearing in the equations
is Hx−yo, which corresponds to a negative sign for 𝝐.
It should be noted that, although the minus sign in
Equation (23) is more straightforward and perhaps more
natural, this derivation does not explicitly force us to use
the minus sign. All equations in this section are equally
valid up to this point with the positive sign in front of
KR1/2. The formal justification for the minus sign comes
from the arguments laid down in the previous section and
in the next section.

Matrix P1/2 is of size Nx × (Nx +Ny), with Nx the
dimension of the state vector and Ny the dimension of the
observation vector, and hence the random vector 𝝃i is a
vector in Nx+Ny . We can split this vector into two parts

𝝃i =
(
𝝃xT

i , 𝝃
yT

i

)T
, where the superscript refers to the space

each part belongs to.
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Using this expression for the square root of P, we find
for the posterior samples:

xa
i = xa + P1∕2𝜉i

= (I − KH)xf + (I − KH)B1∕2𝝃x
i + Kyo − KR1∕2𝝃

y
i .

(24)

If we now realise that we do have samples from the
prior as xf

i = xf + B1∕2𝝃x
i and we define 𝜖i = R1∕2𝝃

y
i , we can

write

xa
i = (I − KH)xf

i + Kyo − K𝜖i

= xf
i + K

{
yo − (Hxf

i + 𝜖i)
}
. (25)

The above derivation is perhaps the most simple
derivation of the stochastic version of the EnKF pro-
duced so far, based on its interpretation as a scheme
that directly samples from the posterior pdf. In principle,
one could subtract the 𝝐i from the observations instead
of adding them to the measured model states, but the
ensemble-verification argument in section 3.2, and also
the other arguments, are against this choice.

5 WEAKLY NON- GAUSSIAN
STOCHASTIC ENKF

Direct practical differences between perturbing observa-
tions or perturbing modelled observations will become
apparent when the observation errors are not Gaussian
or the observation operator is nonlinear. As mentioned
in Hodyss (2011) and Snyder (2015), a skewed pdf of the
observation errors 𝝐 will lead to a skewed posterior ensem-
ble. The stochastic version of the EnKF formulation in
which we perturb the Hxi leads to a skewness of the cor-
rect sign, while the “perturbed observation” approach does
not. One could argue that an EnKF should only be used in a
Gaussian setting, but real-world problems are never Gaus-
sian. Instead, one could argue that a scheme that behaves
well both in the Gaussian and in the weakly non-Gaussian
regime is preferable.

To understand why the perturbed modelled observa-
tion scheme is preferable, assume that the prior is sym-
metric and the likelihood is skewed. Specifically, let us
assume that the observation errors are negatively skewed,
meaning that negative values of 𝝐 tend to be of larger mag-
nitude than positive ones. To understand the argument it is
important to follow the sign of epsilon through the analysis
scheme. In the likelihood we need to evaluate 𝝐 = yo−x, in
which yo is given. Hence the likelihood as function of x will
be positively skewed. This means that the posterior will
also be positively skewed. Let us now use the stochastic

F I G U R E 1 Numerical illustration of an EnKF on a skewed
likelihood for the perturbed modelled observation version. The
prior is depicted as the broad Gaussian with the black line, the true
posterior as the blue line, and the stochastic EnKF posterior as the
red line. Note that this stochastic EnKF and the posterior have the
same positive skewness

EnKF formulation as advocated in the previous section:

xa
i = xf

i + K
{

yo − (Hxf
i + 𝜖i)

}
. (26)

Since the 𝝐 will be negatively skewed, the posterior
samples will be positively skewed, as they should be when
they are to be samples of the posterior pdf. In contrast, the
“perturbed observations” approach will lead to a posterior
sample skewness of the wrong sign.

An illustrative numerical example is discussed next.
Assume a zero-dimensional system with a Gaussian prior
N(0,1). An observation with value y is obtained, with error
𝜖 ∼ p(𝜖) in which

p(𝜖) = 𝛼1N(𝜖1, 𝜎
2
1) + (1 − 𝛼1)N(𝜖2, 𝜎

2
2). (27)

We ensure that E𝜖[𝜖]= 𝛼1𝜖1 + 𝛼2𝜖2 = 0 by choosing
𝜖2 =−𝛼1𝜖1/(1−𝛼1). We choose 𝛼1 > 0.5, such that p(𝜖) is
negatively skewed, meaning that negative values of 𝜖 tend
to be of larger magnitude than positive ones.

For this specific example we choose xf = 0, 𝜎2
f = 1,

𝛼1 = 0.9, 𝜖1 = 0.2, 𝜎2
1 = 0.2, 𝜎2

2 = 0.7, and yo = 0.5.
To generate the true posterior, we draw 100,000 sam-

ples from the posterior density, which, since the prior is
Gaussian and the likelihood is a Gaussian mixture, is also
a Gaussian mixture. We run a stochastic EnKF with per-
turbed modelled observations by drawing 1,000 samples
from the Gaussian prior. The observation error covariance
is determined from the 100,000 samples from p(𝜖).
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F I G U R E 2 Numerical illustration of an EnKF on a skewed
likelihood for the perturbed observation version. The prior is
depicted as the broad Gaussian with the black line, the true
posterior as the blue line, and the stochastic EnKF posterior as the
red line. The same random realizations for the perturbations are
used as in Figure 1. Note that this stochastic EnKF has a skewness
of the wrong sign compared to the posterior

Figure 1 contains the result of the numerical experi-
ment, showing the broad Gaussian prior, the true poste-
rior, and the stochastic EnKF posterior. The positive skew-
ness of the posterior and the stochastic EnKF are directly
visible.

Figure 2 shows the same picture but using the 'per-
turbed observation' EnKF, as in Equation (7), clearly show-
ing that the EnKF posterior has a skewness of the wrong
sign. This negative result should not come as a surprise
because, as argued above, the method is inconsistent with
Bayes' Theorem which describes this situation exactly.

6 SUMMARY AND CONCLUSIONS

Both the perturbed-observation EnKF and the perturbed
modelled observation EnKF give rise to a statistically cor-
rect posterior mean and covariance when the prior and
the likelihood are Gaussian in the state of the system.
However, arguments from ensemble verification methods,
Bayes' Theorem and the BLUE all suggest that one should
perturb the modelled observations. No such arguments
have been found for the perturbed observation scheme,
and the Monte-Carlo reason proposed earlier has been
invalidated. Furthermore, it was shown explicitly that a
skewed likelihood also has a clear preference for the per-
turbed modelled observation scheme.

This paper thus concludes that the correct interpreta-
tion of a stochastic EnKF is one in which one perturbs
the modelled observations and not the actual observations.

A simple derivation of the stochastic EnKF as a scheme
that draws samples directly from the posterior and per-
turbs modelled observations is provided.

The results of this paper carry over without reser-
vation to linear ensemble smoothers as these are just
state-space extensions to the time domain of the Ensemble
Kalman Filter. Iterative variants of those, such as stochas-
tic iterative ensemble smoothers (e.g., Gu and Oliver, 2007;
Emerick and Reynolds, 2013), and the “Ensemble of Data
Assimilations” scheme advocated by operational centres
(e.g., Žagar et al., 2005; Isaksen et al., 2011), are also
expected to benefit from a consistent treatment of the lin-
ear problem as advocated in this paper since the same
arguments as displayed here can be used on these schemes.
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APPENDICES

A. Methods for generating posterior
samples

To better understand the sampling methodology of a
stochastic EnKf, a short overview of posterior sampling
methods is given below. Sampling methods can:

1. Use the prior samples directly as samples from the pos-
terior, which are then weighted by the likelihood, as in
the standard particle filter (e.g., Doucet et al., 2000, van
Leeuwen, 2009, van Leeuwen et al., 2015), or

2. Move the prior samples towards the high-likelihood
regions of state space via a proposal step, leading
to samples that are closer to the observations with
weights that are the product of the new likelihood
and a proposal weight (e.g., Doucet et al., 2000, van
Leeuwen, 2009, van Leeuwen et al., 2015), or

3. Explore tempering, in which the particles are moved
iteratively from samples from the prior to samples
from the posterior, such as in iterative Ensemble
Kalman Filters or Smoothers (e.g., the discussion in
van Leeuwen and Evensen, 1996, Gu and Oliver,
2007, Emerick and Reynolds, 2013, Asch et al., 2016),
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or explore transportation particle filters (e.g., Villani
2008, Reich, 2011, Liu and Wang, 2016, Pulido and van
Leeuwen, 2019), or

4. Move the particles from prior to posterior in one
step (e.g., Moselhy and Marzouk, 2012, Ades and van
Leeuwen, 2013, Zhu et al., 2016), and if the posterior is
Gaussian use a deterministic EnKF (e.g., Bishop et al.,
2001, Anderson, 2001, Whitaker and Hamill, 2002, or

5. Use Markov-chain Monte-Carlo methods to generate
samples from the posterior in a sequential way (e.g.,
Robert and Casella, 2004), or

6. Draw directly from the posterior. This can rarely be
done, but a stochastic EnKF is such a scheme.
As shown in the main text, deterministic ensemble

Kalman Filters belong to method 4, and the stochastic
version of the EnKF belongs to method 6.

B. Posterior covariance via Bayes' Theorem

Instead of using the direct derivation of the posterior
covariance from Bayes' Theorem via multiplication of the
prior and the likelihood and completing the squares under
the exponent, in this Appendix we demonstrate a deriva-
tion based on the expectation operator. This will allow
us to clearly see the treatment of the observations in the
derivation.

To keep track of the random variables, we use the nota-
tion Ea[..] to denote an expectation with respect to the pdf
of a. We find, using xa = (I−KH)xf +Kyo, and realizing
that the expectation should be taken with the posterior pdf
in Bayes' Theorem:

P = Ex|yo
[
(x − xa)(x − xa)T]

= Ex|yo [
{
(I − KH)(x − xf ) − K(yo − Hx)

}
×
{
(I − KH)(x − xf ) − K(yo − Hx)

}T]
= (I − KH)Ex|yo

[
(x − xf )(x − xf )T] (I − KH)T

+ Ex|yo

[{
K(Hx − yo)

}{
K(Hx − yo)

}T
]

− (I − KH)Ex|yo

[
(x − xf )

{
K(yo − Hx)

}T
]

− Ex|yo
[{

K(yo − Hx)
}
(x − xf )T] (I − KH)T. (B1)

To evaluate these expectations, we need to be
mindful that the pdf in the integrals is the posterior
pdf. For the first term we proceed as follows, using
(x−xf)p(x)=−B𝜕p(x)/𝜕x:

Ex|yo
[
(x − xf )(x − xf )T]

= ∫ (x − xf )(x − xf )Tp(x|yo) dx

= −∫ B
𝜕p(x)
𝜕x

(x − xf )T p(yo|x)
p(yo)

dx

= B + ∫ B
𝜕p(yo|x)

𝜕x
(x − xf )T p(x)

p(yo)
dx

= B +∫ B
{

HTR−1(yo −Hx)
}
(x−xf )Tp(x|yo) dx

= B + Ex|yo
[
B
{

HTR−1(yo − Hx)
}
(x − xf )T] , (B2)

where we used partial integration and

𝜕p(yo|x)∕𝜕x = HTR−1(yo − Hx) p(yo|x).
The first term in Equation (B1) now becomes, explor-

ing the identity (I−KH)BHTR−1 =K,

(I − KH)Ex|yo
[
(x − xf )(x − xf )T] (I − KH)T

= (I − KH)B(I − KH)T

+ Ex|yo
[(

K(yo − Hx)
)
(x − xf )T] (I − KH)T.

(B3)

Similarly, we find

Ex|yo

[{
K(Hx − yo)

}{
K(Hx − yo)

}T
]

= ∫
{

K(Hx − yo)
}{

K(Hx − yo)
}Tp(x|yo) dx

= ∫ (I − KH)B
𝜕p(yo|x)

𝜕x
{

K(yo − Hx)
}T p(x)

p(yo)
dx

= (I − KH)BHTKT

+ ∫ (I − KH)(x − xf )
{

K(yo − Hx)
}Tp(x|yo) dx

= (I − KH)BHTKT

+ (I − KH)Ex|yo

[
(x − xf )

{
K(yo − Hx)

}T
]
. (B4)

Combining these two results in Equation (B1), we
obtain, using (I−KH)BHTK=KRKT,

P = (I − KH)B(I − KH)T + KRKT, (B5)

because all remaining integral terms cancel each other.
The important point of this derivation is that observa-
tions are indeed treated as constants, not as random
variables because there is no integration over the obser-
vations. Hence perturbing observations is not needed
to derive the posterior covariance, and indeed Bayes'
Theorem tells us that we should not do that in the first
place.

C. Posterior covariance via the BLUE

Note that in this Appendix y is a random variable. We
derive the Joseph form of the posterior covariance using
the BLUE. This can be found in textbooks but the explicit
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derivation will allow us to understand how observations
are treated in a stochastic EnKF.

The posterior covariance is defined in the BLUE as

P = ∫ (x − xa)(x − xa)Tp(x, y) dx dy

= Ex,y
[
(x − xa)(x − xa)T] . (C1)

Note the use of the joint pdf in the expectation. We can
now proceed as in Appendix B, using xa = (I−KH)xf +Ky,
which is true for any value for the observation:

P = (I − KH)Ex,y
[
(x − xf )(x − xf )T] (I − KH)T

+ Ex,y
[
{K(Hx − y)} {K(Hx − y)}T]

− (I − KH)Ex,y
[
(x − xf ){K(y − Hx)}T]

− Ex,y
[
{K(y − Hx)} (x − xf )T] (I − KH). (C2)

In this case, one can split integrals over x and y to find:

Ex,y
[
(x − xf )(x − xf )T]

= ∫ ∫ (x − xf )(x − xf )Tp(x, y) dx dy = B (C3)

by integrating the y dependence out. Furthermore, for the
second term in the expression for P we find:

Ex,y
[
{K(Hx − y)} {K(Hx − y)}T]

= ∫ ∫ K(Hx − y)(Hx − y)TKTp(x, y) dx dy

= ∫
[
∫ K(Hx − y)(Hx − y)TKTp(y|x) dy

]
p(x) dx

= ∫
[
∫ K(−𝜖)(−𝜖)TKTp(𝜖) d𝜖

]
p(x) dx

= ∫ KRKTp(x) dx = KRKT, (C4)

where we used that y=Hx+ 𝝐 when x is given, allowing
for the change of variables from y to 𝝐. It is easy to see that
the cross terms are zero, leading to the correct expression
for P. One might expect that this derivation leads to obser-
vation perturbations when evaluated via a Monte-Carlo
sampling, but the main text shows that this is not the case.


