Search from over 60,000 research works

Advanced Search

Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods

[thumbnail of Open Access]
Preview
Pulido_et_al_2018.pdf - Published Version (2MB) | Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Pulido, M., Tandeo, P., Bocquet, M., Carrassi, A. orcid id iconORCID: https://orcid.org/0000-0003-0722-5600 and Lucini, M. (2018) Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods. Tellus A: Dynamic Meteorology and Oceanography, 70 (1). pp. 1-17. ISSN 1600-0870 doi: 10.1080/16000870.2018.1442099

Abstract/Summary

For modelling geophysical systems, large-scale processes are described through a set of coarse-grained dynamical equations while small-scale processes are represented via parameterizations. This work proposes a method for identifying the best possible stochastic parameterization from noisy data. State-of-the-art sequential estimation methods such as Kalman and particle filters do not achieve this goal successfully because both suffer from the collapse of the posterior distribution of the parameters. To overcome this intrinsic limitation, we propose two statistical learning methods. They are based on the combination of the ensemble Kalman filter (EnKF) with either the expectation–maximization (EM) or the Newton–Raphson (NR) used to maximize a likelihood associated to the parameters to be estimated. The EM and NR are applied primarily in the statistics and machine learning communities and are brought here in the context of data assimilation for the geosciences. The methods are derived using a Bayesian approach for a hidden Markov model and they are applied to infer deterministic and stochastic physical parameters from noisy observations in coarse-grained dynamical models. Numerical experiments are conducted using the Lorenz-96 dynamical system with one and two scales as a proof of concept. The imperfect coarse-grained model is modelled through a one-scale Lorenz-96 system in which a stochastic parameterization is incorporated to represent the small-scale dynamics. The algorithms are able to identify the optimal stochastic parameterization with good accuracy under moderate observational noise. The proposed EnKF-EM and EnKF-NR are promising efficient statistical learning methods for developing stochastic parameterizations in high-dimensional geophysical models.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/90560
Item Type Article
Refereed Yes
Divisions No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > National Centre for Earth Observation (NCEO)
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Taylor & Francis
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar