Surging of global surface temperature due to decadal legacy of ocean heat uptake

[thumbnail of surge_hiatus_paper_Revision_1_submitted.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Sinha, B., Sévellec, F., Robson, J. orcid id iconORCID: https://orcid.org/0000-0002-3467-018X and Nurser, G. (2020) Surging of global surface temperature due to decadal legacy of ocean heat uptake. Journal of Climate, 33 (18). pp. 8025-8045. ISSN 1520-0442 doi: 10.1175/JCLI-D-19-0874.1

Abstract/Summary

AbstractGlobal surface warming since 1850 consisted of a series of slowdowns (hiatus) followed by surges. Knowledge of a mechanism to explain how this occurs would aid development and testing of interannual to decadal climate forecasts. In this paper a global climate model is forced to adopt an ocean state corresponding to a hiatus (with negative Interdecadal Pacific Oscillation, IPO, and other surface features typical of a hiatus) by artificially increasing the background diffusivity for a decade before restoring it to its normal value and allowing the model to evolve freely. This causes the model to develop a decadal surge which overshoots equilibrium (resulting in a positive IPO state) leaving behind a modified, warmer climate for decades. Water mass transformation diagnostics indicate that the heat budget of the tropical Pacific is a balance between large opposite signed terms: surface heating/cooling due to air-sea heat flux is balanced by vertical mixing and ocean heat transport divergence. During the artificial hiatus, excess heat becomes trapped just above the thermocline and there is a weak vertical thermal gradient (due to the high artificial background mixing). When the hiatus is terminated, by returning the background diffusivity to normal, the thermal gradient strengthens to pre-hiatus values so that the mixing (diffusivity x thermal gradient) remains roughly constant. However, since the base layer just above the thermocline remains anomalously warm this implies a warming of the entire water column above the trapped heat which results in a surge followed by a prolonged period of elevated surface temperatures.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/90385
Identification Number/DOI 10.1175/JCLI-D-19-0874.1
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Meteorological Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar