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Beta Uncertainty

March 16, 2020

Abstract

A stock’s exposure to systematic risk factors is surrounded by substan-
tial uncertainty. This beta uncertainty is both economically and statisti-
cally significantly priced in the cross-section of stock returns. Stocks with
high beta uncertainty substantially underperform those with low beta
uncertainty: a two-standard-deviation increase in the measure decreases
average annual returns by 9.7%. These results cannot be explained by
previously discovered determinants of cross-sectional stock returns. Ag-
gregate beta uncertainty negatively predicts market excess returns in the
short and medium term. We find supporting evidence for a mispricing

explanation of the beta uncertainty premium.
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I Introduction

The Capital Asset Pricing Model (CAPM) by Sharpe (1964), Lintner (1965), and Mossin
(1966) and the arbitrage pricing theory (APT) by Ross (1976) are important cornerstones
in the finance literature. These models posit that cross-sectional differences in expected
returns can be traced back to differences in sensitivities to risk factors, i.e., betas. In the
case of the CAPM, the beta with respect to the aggregate market portfolio is the sole asset
specific determinant of expected returns. Graham & Harvey (2001) document the model’s
popularity among chief financial officers of large U.S. companies. Examining mutual fund
flows, Barber et al. (2016) and Berk & Van Binsbergen (2016) also show that in practice
most investors use the CAPM for capital allocation.

Unfortunately, the betas are not directly observable and the theory remains silent on how
beta should be estimated. In practice, betas are generally estimated using historical data.
However, already the length of the historical window involves a trade-off. On the one hand,
one wants to operate with a short historical window to obtain conditional estimates. On
the other, a short window contains fewer observations and thus yields less precise estimates.
Furthermore, some stocks may be infrequently traded. These stocks may react to systematic
news with several days’ delay, in which case it might be useful to adjust beta to account
for lagged market returns. Thus, although beta is very important for financial decisions, its
estimation involves many choices, which in turn could lead to various estimates.

In this paper, we study the asset pricing implications of the uncertainty surrounding
beta. We define beta uncertainty for each stock as the total range spanned by the 95%
confidence intervals of different possible beta estimates made at the same point in time. If the
estimates derived from different approaches vary substantially for a firm and the confidence
intervals are wide, its beta is highly uncertain, and there is a large potential for disagreement

about beta among investors. In contrast, if all approaches yield similar estimates and the



confidence intervals are tight, the uncertainty about beta is low. Using a large cross-section
of stock returns and a long sample period covering 65 years, we empirically test whether
beta uncertainty has an impact on average stock returns.

We find that beta uncertainty carries an economically large and statistically significant
negative premium in the cross-section of stock returns. Buying stocks with high beta un-
certainty while simultaneously selling stocks with low beta uncertainty yields an average
annualized value-weighted return and 4-factor alpha of —7.9% and —10.6%, respectively. In
univariate cross-sectional regressions, we find that a two-standard-deviation increase in beta
uncertainty yields a significant decrease in average returns by roughly 9.7%. These results
are significant under the rigorous criterion defined by Harvey et al. (2016). Our results are
also robust to the inclusion of a large set of control variables.

Next, we examine the implications of an aggregate measure of beta uncertainty (value-
weighted average across stocks) for the predictability of market excess returns. We find that
aggregate beta uncertainty significantly negatively predicts future market excess returns for
in-sample horizons between 1 and 12 months. We also find that aggregate beta uncertainty
outperforms the historical mean in out-of-sample market excess return forecasts for horizons
between 1 and 3 months.

Having documented that beta uncertainty predicts returns both in the cross-section (of
stocks) and the time series (market), we next analyze the mechanisms underlying this pre-
dictability. We find that a mispricing explanation is more likely than a risk-based alternative.
Stocks with high beta uncertainty show several signs of overpricing. We find that the neg-
ative abnormal returns of stocks in the high beta uncertainty portfolio are the main driver
of the beta uncertainty premium. The negative relation between aggregate beta uncertainty
and future returns is also consistent with higher aggregate overpricing when beta uncer-
tainty is high on aggregate. More importantly, we find that the beta uncertainty premium

gets stronger the more binding short-sale restrictions of the stocks are.
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Our results are inconsistent with ambiguity-aversion and information uncertainty expla-
nations since they both counterfactually predict a positive beta uncertainty premium. Our
main empirical observations are consistent with (potentially heterogeneous) ambiguity-loving
investors, a convexity explanation put forward by Armstrong et al. (2013), as well as with
the disagreement model of Miller (1977). The intuition behind the convexity theory is that
prices may be convex functions of betas. Thus, if different agents use different beta estimates,
the average of these prices will be higher than the price obtained by using the average beta.
On the other hand, in the disagreement model of Miller (1977), investors disagree about
the correct valuation of a stock (potentially because they use different beta estimates). In
the presence of short-selling restrictions, the stock prices will mainly reflect the views of the
investors with high valuations.

Finally, we split beta uncertainty into uncertainty about stock volatility and correlation.
We document that the correlation uncertainty part of the beta uncertainty measure is the
main driver of the related premium.

We perform a battery of tests to document the robustness of our results to the measure
of beta uncertainty. First, we expand the set of beta estimates and randomly select a
subset of these to obtain alternative beta uncertainty measures. For all of these subsets,
we obtain a significant negative beta uncertainty premium. Indeed, we find that most of
the random subsets yield even larger magnitudes for the beta uncertainty premium than our
main specification. Second, a beta uncertainty measure orthogonalized with respect to beta
performs similarly to the raw measure. Third, instead of the total confidence interval we
examine several alternative beta uncertainty definitions and obtain a robust and significant
negative premium for all of these. These alternatives include: the simple standard deviation
of the different point estimates, the range of beta point estimates, the standard error of the
best estimate, and the past prediction error of the best estimate.

Numerous studies analyze the performance of the CAPM, mostly challenging it empiri-
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cally (e.g., Fama & French, 1992; Jagannathan & Wang, 1996; Ang et al., 2006b; Lewellen &
Nagel, 2006; Frazzini & Pedersen, 2014). These studies essentially examine a “level” effect,
implicitly assuming that there is only one beta estimate. However, in practice there are many
different ways to estimate beta and, hence, several possible beta estimates. In this paper,
we explore the asset pricing implications of the standard deviation across these estimates.

Our paper relates to the literature dealing with changes in beta. Adrian & Franzoni (2009)
build a model with long-run changes in beta, where investors learn about these changes
from return observations. Our analysis is related in that we examine uncertainty about
beta. Patton & Verardo (2012) show that a firm’s beta typically increases following earnings
announcements, i.e., when the uncertainty about the earnings is resolved. Our study differs
from theirs in that we focus on the uncertainty about a stock’s beta. Furthermore, we directly
examine the impact of beta uncertainty on the cross-section of stock returns. Hollstein &
Prokopczuk (2016), Levi & Welch (2017), Becker et al. (2019), Hollstein et al. (2019, 2020),
and Hollstein (2020) study and evaluate different predictors for beta. In this paper, we study
how the dispersion across different measures impacts stock returns.

Our paper also connects to Baltussen et al. (2018), who show that the time-series volatility
of a firm’s option-implied volatility carries a negative premium in the cross-section of stock
returns. Our measure of beta uncertainty is fundamentally different. Their measure mainly
captures changes over time in the market’s perception of future (idiosyncratic) volatility as
well as changes in the volatility risk premium. Hollstein & Prokopczuk (2018) show that
aggregate volatility-of-volatility is priced in the cross-section of stock returns. In a sense,
we complement these papers by showing that beta uncertainty is an important determinant
for the cross-section of stock returns. Furthermore, our results indicate that the correlation
channel is the main determinant for the pricing of beta uncertainty.

Our study also relates to Armstrong et al. (2013). The authors introduce uncertainty

about a firm’s risk factor loadings in a partial equilibrium model and show that higher factor-
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loading uncertainty decreases expected returns. The authors also validate their model’s
prediction empirically. Our empirical study involves several important differences to theirs.
First, we show that the beta uncertainty premium is robust to the inclusion of the measure
of Armstrong et al. (2013). Second, we intuitively motivate beta uncertainty from a practical
point of view with the choice of the estimator faced by investors.

The remainder of this paper is organized as follows. In Section II, we introduce the
data and the methodology for the estimation of our main variables as well as summary
statistics. We present our main empirical results for beta uncertainty and the cross-section
of stock returns in Section III. Section IV examines aggregate beta uncertainty as a predictor
of future market excess returns. In Section V, we discuss and analyze potential theoretical
explanations for the beta uncertainty premium. In Section VI, we present additional analyses

and test the robustness of our results. Section VII concludes.

II Data and Methodology

A Data

We obtain daily data on stock returns, prices, and shares outstanding from the Center
for Research in Security Prices (CRSP). We use all stocks traded on the New York Stock
Exchange (NYSE), the American Stock Exchange (AMEX), and the National Association of
Securities Dealers Automated Quotations (NASDAQ) that are classified as ordinary common
shares (CRSP share codes 10 or 11). We exclude closed-end funds and REITs (SIC codes
6720-6730 and 6798). Furthermore, following Amihud (2002) and Zhang (2006), we exclude
highly illiquid stocks. We expunge firm—month observations with prices below 1 dollar (e.g.,
Hou & Loh, 2016). We also adjust for delisting returns following Shumway (1997) and

Shumway & Warther (1999).



Balance sheet and income statement data come from Compustat. We start our sample
period in January 1951 with the beginning of the Compustat database and end it in Decem-
ber 2015.! We obtain data on analysts’ earnings forecasts from the Institutional Brokers’
Estimate System (I/B/E/S). Data on the risk-free (1-month Treasury Bill) rate as well as
the Carhart (1997) and Fama & French (2015) factors come from Kenneth French’s data
library. We obtain data on the Pastor & Stambaugh (2003) (traded) liquidity factor from
Robert Stambaugh’s homepage. To proxy for the market return, we use the CRSP value-
weighted index. We obtain data on different stock market predictor variables from Amit

Goyal’s webpage.

B Estimation Methodology

To account for the parameter uncertainty surrounding the estimation of beta, we first
obtain beta estimates using different estimators. To draw from a realistic set of estimators
that investors might reasonably use, we use the following estimators for our main analysis:
historical estimators with 6-month and 12-month estimation windows, two EWMA estima-
tors with different half-life specifications (one third and two thirds of a l-year window),
Dimson estimators with 1 up to 4 lags, and the Scholes—Williams (SW) estimator.?

Admittedly, the literature also proposes further reasonable estimators that we could in
principle include in the computation of the beta uncertainty measure. For example, Buss
& Vilkov (2012) and Chang et al. (2012) suggest estimators using option-implied data.
Bollerslev et al. (2016) and Hollstein et al. (2020) use different estimators based on high-

frequency data. However, due to high data requirements these classes of estimators are only

! Alternative starting dates, e.g., 1963 after the expansion of the CRSP database, yield qualitatively and
quantitatively very similar results.

2For later analysis, we also use the Frazzini-Pedersen estimator (FP). However, for our main analysis,
we need standard errors for the estimators. The FP measure is a combination of different components, for
which the aggregation to one standard error is not straightforward. Therefore, we do not include the FP
estimator for the main analysis.



available for a smaller number of stocks and a shorter time period. We limit our attention
to estimators available for the full set of stocks and sample period. If we were to include
estimators that are only available for a subset, the measure would not be comparable across
stocks and over time. We also refrain from adding further, less prominent, alternatives just
because they are feasible since these are very rarely used even in academic studies.

As is standard practice in the literature, we directly use past estimates of the betas as
forecasts for future betas (e.g., Fama & MacBeth, 1973; Frazzini & Pedersen, 2014). We
provide details on the beta estimators in Appendix A.

Beta Uncertainty For each beta estimate, we obtain both the point estimates and
the standard errors belonging to each beta estimate. Equipped with both, we obtain the
95% confidence interval for each estimate. Our main measure for beta uncertainty is the
total range spanned by all confidence intervals, i.e., the maximum beta that is spanned by
the entirety of confidence intervals minus the minimum beta spanned by the entirety of

confidence intervals:

UnC@j,t = miax (@‘Cf’(i)) — miin (ﬁjcf’(i)> . (1)

Uncg ;; is the measure for beta uncertainty of stock j at time ¢. ﬁftl’(i) is 95% beta confidence
interval of estimation approach ¢. If the heterogeneity in the beta estimates derived from
the different estimators is high, we obtain a high entire confidence interval and, hence, high
beta uncertainty. On the other hand, if all estimators yield similar estimates for beta and
tight confidence intervals, there is only little beta uncertainty.

Naturally, the differences in the beta estimators are in part mechanical. EWMA betas
and 6-month historical betas differ from simple 12-month historical betas mainly if betas are

highly time-varying. Dimson, Scholes-Williams, and Frazzini-Pedersen betas differ most

strongly from historical betas if the underlying stock is infrequently traded. One might



argue that there are alternative ways to account for infrequent trading and differences in
these betas do not reflect uncertainty. However, even if one is convinced that the beta of
a certain stock is highly time-varying or that the stock is traded only very infrequently, it
is still challenging to find the “right” estimator. Time-variation could be a major source
of uncertainty: what window length or half-life should one choose? There might also be
uncertainty regarding the correction for liquidity. How many lags for the Dimson estimator
are optimal? Is the stock really traded too infrequently? What is “too infrequently”” By
considering all the models described above, we aim to reflect the uncertainty about beta
without imposing too much structure on the stocks’ properties.?

To document that our results are not specific to the chosen subset of beta estimators or
the measure of beta uncertainty, we perform extensive robustness analyses. In Section VI.B,
we randomly draw beta estimators from an enlarged set of estimators and show that the
results are (i) similar for virtually all random subsets of estimators and (ii) on average even
stronger than for our main measure. Furthermore, in Section OA1 of the Online Appendix,
we document very similar results for numerous alternative beta uncertainty definitions (e.g.,
based on the simple standard deviation of beta point estimates and the standard error of

the best estimator).

C Control Variables

The literature shows that several stock characteristics are related to returns. To test if our
results are robust to these previously documented effects, we explicitly control for: beta, firm
size, book-to-market ratio, investment, profitability, illiquidity (ILLIQ), momentum, short-
term reversals, firm’s leverage ratio, idiosyncratic volatility (iVol), maximum daily return

(MAX), co-skewness, co-kurtosis, downside beta, vol-of-vol, forecast dispersion (Disp), and

30ur main beta uncertainty includes the uncertainty surrounding the liquidity correction by taking into
account different estimators for this (Scholes—Williams as well as Dimson with different numbers of lags).



the squared standard error of a historical beta estimate (SE). The construction of these
control variables follows the standard procedure described in the literature. Details are

provided in Appendix B.

D Summary Statistics

We start by examining the summary statistics of the main beta estimates used to con-
struct the beta uncertainty measure. We present these in Table 1. For all estimators, the
value-weighted average beta is between 1.01 and 1.02, suggesting that these contain similar
information on average. The estimates differ, though, in the equally weighted averages. With
an increasing number of lags considered for the Dimson estimator, the equally weighted av-
erage increases. Thus, including betas toward lags of the market return appears to increase
the beta estimates primarily for small stocks. Based on this finding, we might expect a
somewhat higher beta uncertainty for small stocks.

The cross-sectional and time-series standard deviations are highest for the historical
estimator with a short estimation window and the Dimson estimators. HIST and Dim1 have
the highest cross-sectional and time-series correlations with the average betas. Thus, these
estimators’ contribution to the beta uncertainty is likely small. On the other hand, HIST6,
and Dim4 have comparably low correlations with the average beta and, consequently, their
contributions to the beta uncertainty are likely higher. The average standard errors of the
estimates are highest for HIST6 and in particular for the sum betas (Dim and SW). This is
mainly because the coefficients with respect to lagged and leaded market returns are typically
measured imprecisely. Naturally, the EWMA estimates, for which the estimation windows
are longest, yield the smallest average standard errors.

In Table 2, we present summary statistics and Spearman Rank Correlations of our main

variables. The beta uncertainty measure yields an average value of 1.252 with an average



cross-sectional standard deviation of 1.306. The average cross-sectional 5th percentile is
0.873 while the average of the 95th percentile is at 4.593. The averages and distributions of
our control variables are comparable to those reported in the previous literature.*

Turning the focus on the average cross-sectional Spearman Rank Correlations, we find
some characteristics that are moderately correlated with our main measure for beta un-
certainty. Beta uncertainty is positively correlated with beta itself, with an average rank
correlation of 0.30. Thus, the beta of stocks with higher average beta also tends to be
somewhat harder to estimate. Furthermore, beta uncertainty is negatively correlated with
size and positively correlated with illiquidity with correlation coefficients of —0.56 and 0.56,
respectively. This finding is likely caused by the fact that the Dimson beta estimator is
designed to account for delayed stock reactions to systematic news which are most relevant
for small and illiquid stocks. Hence, for these stocks the simple historical and the Dimson
estimator can differ strongly and the beta uncertainty is high. Nevertheless, we find that
the relation of beta uncertainty to these measures is only moderate. Finally, the beta uncer-
tainty measure is also correlated with other measures of volatility like idiosyncratic volatility,
MAX, and SE, with average rank correlations of 0.75, 0.63, and 0.79, respectively.® Hence,
the relation to beta uncertainty might be part of the mechanism creating the idiosyncratic
volatility puzzle. Interestingly, although the measures appear to be somewhat related, the
average rank correlations of beta uncertainty with vol-of-vol and Disp amount to only 0.16

and 0.37, respectively.

4Note that information on Disp is available only for a small subset of the total stock-month observations.
This reduces the sample size for double sorts and regression specifications that include this variable.

5As discussed in Section OA1 of the Online Appendix, the correlations with all these control variables
of an alternative, simple standard deviation measure of beta uncertainty, which only makes use of the point
estimates, are substantially lower. Nevertheless, all our empirical results are qualitatively similar for this
simpler beta uncertainty measure.
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IIT Beta Uncertainty and the Cross-Section of Stock Re-

turns

A Portfolio Sorts

To test whether beta uncertainty has an effect on stock returns, we first perform portfolio
sorts. At the end of each month, we sort the stocks in ascending order with respect to their
estimates of beta uncertainty. We form quintile portfolios, so that quintile 1 contains the
stocks with the lowest beta uncertainty while quintile 5 contains the stocks with the highest
beta uncertainty. The hedge portfolio (5 minus 1) buys the quintile of stocks with the highest
beta uncertainty and simultaneously sells the stocks in the quintile with the lowest values
for beta uncertainty. The portfolio-sorting approach maximizes the spread in beta uncer-
tainty and, thus, differences in average returns can be attributed to differences in the sorting
variable. Fama & French (2008) point out that by building value-weighted portfolios the
hedge portfolio can be dominated by few big stocks, whereas for equally weighted portfolios
the hedge portfolio can be dominated by micro caps. To address this issue, we analyze both
value-weighted and equally weighted portfolios.

We present the results for value-weighted portfolios in Table 3. Sorting by beta uncer-
tainty, we find that the average portfolio returns generally decrease with increasing uncer-
tainty about beta. The portfolio of the stocks with the highest beta uncertainty yields a
lower average return than the other portfolios. The average annualized return of the 5 minus
1 portfolio amounts to —7.9%, which is statistically significant at 5%. Thus, investors do not
demand a positive premium for holding stocks with high beta uncertainty, but these stocks
actually appear to be relatively overpriced.

Controlling for systematic risk factors, we obtain largely similar results. The CAPM

alpha for the 5 minus 1 portfolio is almost twice as large in magnitude as the average excess

11



return and highly statistically significant at 1%. For the Carhart (1997) 4-factor model or
the 5-factor model including the Pastor & Stambaugh (2003) liquidity factor, we obtain
similar results. Considering the Fama & French (2015) 5-factor model (FF5), the alpha is
somewhat smaller in magnitude at —6.4%, but remains statistically significant at 1%. Thus,
stocks with low beta uncertainty significantly outperform stocks with high beta uncertainty.

Next, we analyze the average firm characteristics of the five portfolios sorted by beta
uncertainty. Naturally, we find that the beta uncertainty measured at the end of the pre-
vious month (Uncg,) increases monotonically for the portfolios. However, we also find that
already after 1 month (when the portfolio returns are realized) the beta uncertainty of the 5
minus 1 portfolio decreases from 2.9 to 2.7. This finding indicates that there is some mean-
reversion in the beta uncertainty measure. On top of that, stocks with high beta uncertainty
have on average higher betas (measured as the average across the different estimators), a
smaller market capitalization, a somewhat higher book-to-market ratio, higher investment, a
lower profitability, higher illiquidity, higher momentum, higher iVol, higher analyst forecast
dispersion, and a higher SE. These results indicate that the betas of small stocks, stocks
with high investment, low profitability, high illiquidity, high momentum, and high analyst
forecast dispersion are substantially more uncertain and harder to estimate. Thus, part of
why these characteristics yield risk premia in the cross-section of stock returns could be
due to difficulties with estimating their betas. On the other hand, we have to be careful to

document that the beta uncertainty premium cannot simply be explained by either of these
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characteristics.%7

In Table A2 of the Online Appendix, we present further portfolio sort results. First,
we present the results for equally weighted portfolios. These are qualitatively similar to the
value-weighted results, suggesting that the beta uncertainty premium is neither concentrated
only among the largest stocks nor microcaps. Second, we perform the sorts based on NYSE
breakpoints (Hou et al., 2019) and obtain risk-adjusted returns that are slightly smaller
(4-factor alpha of —4.9%) but still statistically significant at 1%. Third, we add the betting-
against-beta (BAB) factor of Frazzini & Pedersen (2014) to the factor models and find that
the alphas remain statistically significant at 5%.

To further disentangle the effects of beta uncertainty and beta itself, we also present
portfolio sorting results for an orthogonalized beta uncertainty measure in Table A3 of the
Online Appendix. We cross-sectionally orthogonalize our main measure to the level of beta

and sort the stocks based on the orthogonalized measure. The results are qualitatively similar

6In Table A1 of the Online Appendix, we also present the value-weighted portfolio averages of the various
beta measures used to compute the beta uncertainty measure. Overall, the numbers of the ingredient betas
line up rather well with those of the average beta. Dim4 has the highest beta spread in the 5 minus 1
portfolio while HIST6 and EWMA4s yield the lowest spreads. One interesting observation is that the
beta-uncertainty-sorted portfolios increase with the average beta of all the different estimators. This finding
motivates us to control for the level of beta. An alternative way to define beta uncertainty while controlling
for beta would be to scale the measure by the average betas. However, we believe that an unscaled measure
of beta uncertainty is economically more sensible than a scaled one. Consider the CAPM: the linearity of
the security market line implies that beta differences in absolute (not relative) terms always have the same
impact on differences in expected returns. More importantly, beta is theoretically unbounded. Beta can
be close to or even equal to zero. In case the beta equals zero, a scaled measure would be undefined. For
betas close to zero, the measure would be inflated. Finally, for negative betas the measure would be hard
to interpret. Therefore, we refrain from scaling the beta uncertainty measure. As an alternative, below we
show that the results are very similar when using a beta uncertainty measure orthogonalized with respect
to beta.

"The factor loadings on the different risk factors of the Carhart (1997) 4-factor models reveal market
betas close to those reported in Table 3. The 5 minus 1 portfolio thus has a significant positive beta. In
addition, the loading on SM B is 1.51, that on HM L is —0.39, and that on UMD is —0.21. All factor
loadings are statistically significant. For the Fama & French (2015) FF5 model, the market factor loadings
are similar. The SM B loading is 1.19, the HM L loading is —0.19, the RMW loading is —1.43, and the
CM A loading is —0.81. Again, all factor loadings are statistically significant. Thus, these factor loadings
line up well with the average characteristics observed for the portfolios. This indicates that the factor models
do a good job in accounting for the characteristics-based exposure of the beta uncertainty sorted portfolio.
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to those for the main measure.®

In Table A4 of the Online Appendix we present further results for subsamples. To do so,
we build three non-overlapping 22-year windows (the last window contains 21 years only).
For each of these, we repeat the previous analysis. We find that the 4-factor alphas for
all subsamples and for both equally weighted and value-weighted portfolios are significantly
negative. Thus, the beta uncertainty premium appears to be discernible across the various
subsamples. Finally, we also present the results when using the full CRSP sample period

starting from 1926, and obtain very similar results.

B Double Sorts

From the univariate sorts, we detect a strong negative relation between beta uncertainty
and future stock returns. This relation cannot be explained by systematic risk factors.
However, we also find that beta uncertainty is related to several characteristics that have
been shown to predict the cross-section of returns in earlier studies. Thus, in this section,
we perform double sorts to dissect the effects of beta uncertainty and these variables.

To do so, at the end of each month, we first sort the stocks into 5 portfolios according
to a control characteristic. Second, within each of these 5 portfolios, we sort the stocks
into another 5 quintile portfolios based on their beta uncertainty. This results in a total
of 25 portfolios. Throughout this section, we present Carhart (1997) 4-factor alphas for
value-weighted double-sorted portfolios.?

We begin the analysis by presenting the full 25 double-sorted portfolios when controlling
for the most natural explanatory variable: the level of beta. These results are in Table 4.

Consistent with Frazzini & Pedersen (2014), we find that the beta-sorted 5 minus 1 portfolios

8The further results in this paper are also qualitatively similar for the orthogonalized beta uncertainty
measure.

9To limit the number of tables, we only present the value-weighted results for 4-factor alphas. The results
are qualitatively similar for equally weighted portfolios as well as for other factor models, i.e., the CAPM,
5-factor, and Fama & French (2015) 5-factor models.
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have negative alphas. More importantly, we detect significantly negative alphas for the 5
minus 1 portfolio for beta uncertainty within each beta quintile. The average 5 minus 1
alpha when sorting on beta uncertainty while controlling for the level of beta amounts to
—8.0% per annum. Thus, beta uncertainty appears to be priced completely independently
of the level of beta.

In the same table, we also present the full 25 portfolios for a second very important
control variable: size. Consistent with the findings about the characteristics of the single
portfolio sorts, we find that the magnitude of the beta uncertainty premium is largest for
small stocks. Thus, limits-to-arbitrage likely play a role for the magnitude of the premium.
However, similar to the case when controlling for beta, we detect a significant negative beta
uncertainty premium for each size group. Thus, even for the largest stocks a higher beta
uncertainty is associated with lower future returns. The average 4-factor alpha amounts to
a highly statistically significant —10.9%.

In a next step, we perform double sorts with all other control variables. To save space, we
directly average across the respective beta-uncertainty quintiles within each of the quintiles
sorted on the control characteristic, leaving us with 5 consolidated beta-uncertainty-sorted
portfolios. These quintile portfolios control for another characteristic without making as-
sumptions on the parametric form of the relationship.

The results are in Table 5. We find that, independently of which variable we control
for, stocks with high beta uncertainty significantly underperform stocks with low beta un-
certainty. In every single case, the alphas are economically large and statistically highly
significant.

We place special emphasis on the results obtained when controlling for illiquidity and
idiosyncratic volatility. Due to the use of Scholes & Williams (1977) and Dimson (1979)
betas, which may deviate most strongly from simple historical betas for illiquid stocks,

one might argue that there could be a mechanical relation between beta uncertainty and
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illiquidity. However, as reported in Section I1.D, the average correlation is only moderate. For
double-sorted portfolios with respect to illiquidity, we find that the 4-factor alpha amounts
to a highly statistically significant —11.5%, which is even larger in magnitude than the 4-
factor alpha for the univariate sorts.!® Additionally, one might wonder about a strong link
between beta uncertainty and idiosyncratic volatility, motivated by an average correlation
of 75%. We find that the 4-factor alpha is —3.6%, which is statistically significant at 1%.!
Thus, neither illiquidity nor idiosyncratic volatility are able to explain the negative return
premium on beta uncertainty.

When controlling for SE, we obtain a value-weighted alpha of —5.4%, which is also
statistically significant at 1%. To further disentangle the effects of our beta uncertainty
measure and the SE measure, in Table A5 of the Online Appendix, we further present the
full 25 double-sorted portfolios for beta uncertainty when controlling for SE. We find that
stocks with the highest negative returns are concentrated in the portfolio of both high beta
uncertainty and high SE. Hence, to identify the stocks with the lowest expected returns,
it might prove worthwhile to use both signals, our beta uncertainty measure and SE. On
the other hand, we find that for 4 out of the 5 SE quintiles, there is a significant negative
premium for beta uncertainty (at 10% or lower). Thus, although the two measures are

related, our beta uncertainty measure carries additional information.

10We also test double sorts with respect to alternative measures of (il-)liquidity like the average bid-ask-
spread, trading volume, or the percentage of zero-return trading days and obtain qualitatively similar results.
The returns and alphas for the double sort on these variables and beta uncertainty remain economically
substantial and statistically highly significant.

'When measuring idiosyncratic volatility with respect to the CAPM instead of the Fama & French
(1993) 3-factor model, we obtain similar results. The 4-factor alpha for value-weighted portfolios amounts
to —4.4% and is statistically significant at 1%. We run further robustness tests using alternative definitions
of idiosyncratic volatility in Section OA2 of the Online Appendix.
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C Cross-Sectional Regressions

The previous sections present evidence that sorting by beta uncertainty yields negative
abnormal returns relative to prominent factor models. In this section, we estimate Fama
& MacBeth (1973) regressions that simultaneously control for different variables and test if
beta uncertainty contains information about stock returns beyond that of other, previously
documented, anomaly variables and risk factors. To run the regressions, we use individual
stocks instead of stock portfolios. Lo & MacKinlay (1990) and Lewellen et al. (2010) argue
that when using portfolios, the portfolio formation method can strongly influence the re-
sults. Ang et al. (2018) also show that creating portfolios ignores important information on
individual factor loadings and leads to higher asymptotic standard errors of risk premium
estimates. Hence, we use individual stocks and utilize this additional information, avoiding
the specification of breakpoints.

Each month, we perform cross-sectional regressions of stock excess returns on the stocks’

beta uncertainty and several control variables. We estimate the following regression:

Tit—Tft = )\? + )\EHCUncmﬂg + )\%Bj,t + /\tCControlst + €t (2)

7. is the return of stock j in month ¢ and 7, is the risk-free rate over the same period. §;; is
the average beta across all approaches and Controls; denotes an (optional) vector of control
variables, all observed at the end of the previous month ¢ — 1. \? denotes the regression
intercept and AP, A\l and \C are the risk premium estimates associated with the respective
variables. €;, is the idiosyncratic return component of stock j at time ¢.'?

We perform tests on the time-series averages A°, AU, X and \° of the estimated
intercept and slope coefficients. We compute robust Newey & West (1987) (using 6 lags)

adjusted standard errors based on the time series of coefficient estimates.

12To limit the effect of outliers, we winsorize the excess returns at the 1st and 99th percentile.
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The results are in Table 6. Univariately, beta uncertainty carries a significant cross-
sectional premium of —0.0371. Thus, a two-standard-deviation increase in beta uncertainty
is associated with a decrease in average returns by 9.7%.'* Adding the average beta decreases
the premium estimate on beta uncertainty only slightly to —0.0357, while the statistical
significance remains unaffected. These results correspond to t-statistics of —4.03 in the
univariate case and —4.45 when including the average beta. Thus, beta uncertainty clears
the hurdle defined by Harvey et al. (2016), who suggest accounting for potential data mining
and publication bias by specifying the critical t-ratio as 3.0 instead of 2.0.

Further adding size, the book-to-market ratio, investment, profitability, illiquidity, mo-
mentum, or short-term reversal does not qualitatively change the results. When we include all
these variables, the cross-sectional premium estimate on beta uncertainty is —0.0462, which
is significant at the 1% level (t-stat = —6.88). The risk premium estimates on these charac-
teristics are consistent with the findings of the previous literature (e.g., Fama & French, 1992;
Jegadeesh & Titman, 1993; Amihud, 2002; Fama & French, 2006). We detect a negative
risk premium estimate on size and a positive value premium. Investment carries a negative
risk premium, while profitability is positively priced. The cross-sectional risk premium on
illiquidity and the momentum signal is positive and that on short-term reversal is negative.
We use the model containing these prominent return anomalies as the baseline specification
when adding further return distributions characteristics.

Adding leverage does not affect the results. On the other hand, including idiosyncratic
volatility decreases the premium estimate on beta uncertainty to —0.0280. Thus, as also
shown in the summary statistics in Table 2, idiosyncratic volatility seems to be related
to beta uncertainty. However, the premium estimate on beta uncertainty is still econom-

ically large and statistically significant at 1% with a t-statistic of —4.37. Adding another

13We obtain this figure by multiplying the cross-sectional premium with 2 times the average cross-sectional
standard deviation of the beta uncertainty measure of 1.306.
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volatility-related variable, the maximum return, to the baseline model specification, the
premium estimate on beta uncertainty amounts to —0.0351, which is statistically significant
relative to the 1% significance level. For idiosyncratic volatility and the maximum return, we
find significant negative cross-sectional risk premium estimates, consistent with the previous
literature (e.g., Ang et al., 2006b; Bali et al., 2011).

Co-skewness, co-kurtosis, and downside beta are not significantly priced in the cross-
section and also do not affect the risk premium estimate on beta uncertainty. Both vol-
of-vol and the dispersion in analysts’ earnings forecasts (Disp) yield significantly negative
cross-sectional risk premia, but adding these variables also affects the premium estimate
on beta uncertainty only marginally. Thus, even among the subset of stocks for which we
can measure the dispersion in analysts’ earnings forecasts, beta uncertainty is significantly
negatively priced on top of this dispersion. Adding SE to the baseline model also reduces
the premium estimate on beta uncertainty, but it is still substantial and highly statistically
significant. Consistent with Armstrong et al. (2013), the premium on SE is significantly
negative. Note that for each of the models (i) up to (xiii) in Table 6, the t-statistics
associated with the beta uncertainty premium exceeds 3.0. For a final specification with
(almost) all control variables, the beta uncertainty premium is still statistically significant

at 5%.14

IV  Aggregate Beta Uncertainty

In this section, we examine the time-series implications of an aggregated measure of beta
uncertainty for future market returns. We obtain an aggregate beta uncertainty measure as

the value-weighted average beta uncertainty over all stocks in our sample (Goyal & Santa-

4For this specification, we omit MAX and Dbeta because they are highly correlated with iVol and Beta,
respectively. In addition, we omit Disp, which is only available for a subset of the stocks and a shorter
sample period. In a regression, where, despite these issues, all these variables are included (untabulated),
the beta uncertainty premium even amounts to —0.0186, with a p-value of 0.0095.
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Clara, 2003). Naturally, there is no uncertainty about the beta of the market, which has
to be equal to one. However, the extent to which there is uncertainty about the individual
stocks on average is likely informative about the aggregate state of the economy.

Figure 1 presents the time series of the aggregate beta uncertainty measure along with
the 5th and 95th percentiles of the beta uncertainty of individual stocks. We find that,
contrary to what one might intuitively expect, aggregate beta uncertainty evolves rather
counter-cyclically and typically does not peak in recessions but rather in expansions. The
largest peaks in average beta uncertainty occur in the year 1965 as well as in the period
1993-1996.

To examine the aggregate return predictability, we run the following regression:

"M strn = 0o + 01Uncy’ + 0;Controls; + earpyn, (3)
where rar 4415 is the annualized market excess return for the period starting at ¢ and ending
at t + h (with h expressed in months). We examine forecast horizons of 1, 3, 6, 9, 12, 18,
24, and 36 months. 6 is the intercept. 6; and 0y (optional) are regression slope coefficients.
€m+n 1S the residual of the regression. To account for the overlap in in-sample return
predictability regressions, we estimate the standard errors using the approach of Hodrick

(1992).1> We also examine the out-of-sample predictability, estimating the out-of-sample R?

St oa ("Mt h— T4 n)?
S tmou1 (P sty h—TAr )

as R5pg = 1— , where 7a7 441 1s the fitted value from the regression
model of Equation (3) using only data available up to time ¢. 7ps; is the historical mean
return up to time t. We specify an initial in-sample window of 240 months. Following Goyal

& Welch (2008), we use an expanding window and test the significance of the out-of-sample

R?s using their bootstrap approach.

15As Ang & Bekaert (2007) show, the Hodrick (1992) standard errors have better properties than those
of Newey & West (1987) when making inferences on long-horizon forecasting. When using Newey & West
(1987) instead of Hodrick (1992) standard errors, the results are qualitatively similar.
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We present the return predictability results in Table 7. Consistent with our cross-sectional
analysis, high aggregate beta uncertainty is associated with low future market returns. Thus,
not only do stocks with high beta uncertainty generally yield negative future returns, but
high aggregate beta uncertainty also predicts negative future market excess returns. For
the 1-month forecast horizon an increase in aggregate beta uncertainty by 1-percentage-
point decreases annualized monthly returns by 0.18 percentage points. Similar to the 1-
month horizon, we find that aggregate beta uncertainty strongly significantly predicts market
excess returns up to 12 months, although the impact of a 1-percentage-point change in
aggregate beta uncertainty slightly decreases with the return forecast horizon. For the 12-
month forecast horizon, a 1-percentage-point increase in aggregate beta uncertainty decreases
the annual market excess return by 0.10 percentage points. For 18 and 24 months, we still
detect a marginally significant negative relation. Turning our focus to the out-of-sample
predictability, we find that aggregate beta uncertainty also significantly outperforms the
historical mean model for horizons up to 3 months. For example, for the 3-month horizon,
we detect a significant out-of-sample R? of 0.5%.

To test whether our results are robust, in Table A6 of the Online Appendix we also
present return predictability regressions controlling for various previously documented pre-
dictor variables. The descriptions of these variables are available in Appendix C. We find
that the short- and medium-horizon predictive ability of aggregate beta uncertainty is ro-
bust to the inclusion of these control variables. In the multivariate predictive regression,
aggregate beta uncertainty significantly negatively predicts future market excess returns for
all forecast horizons up to 36 months. Consistent with Goyal & Welch (2008), we find that
CAY (Lettau & Ludvigson, 2001) significantly positively predicts future market excess re-
turns. The remaining predictive variables, including aggregate idiosyncratic volatility, do

not consistently yield significant predictions over the different prediction horizons.
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V Potential Sources of the Beta Uncertainty Premium

A Risk or Mispricing?

Having documented a robust negative premium for beta uncertainty, we next turn to the
question whether this premium more likely reflects risk or mispricing. To analyze this, it is
worth first taking a more detailed look at the composition of the beta uncertainty premium.
From Table 3, we see that the main driver of the 5 minus 1 portfolio risk-adjusted return
is portfolio 5: that containing the high-beta-uncertainty stocks. The alpha of this portfolio
is significantly negative. One possible explanation for this pattern is that the stocks in
this portfolio on average help hedge a risk not accounted for by the risk factor models. The
negative premium would then be due to investors’ hedging demand. Alternatively, the stocks
in portfolio 5 may be overpriced at the time the portfolios are created. The negative return
in the following month would thus be a partial correction of this overpricing. Consistent
with the latter explanation, Table 3 also reveals that already in the month after portfolio
formation, part of the beta uncertainty of the 5 minus 1 portfolio gets resolved. Furthermore,
we find that the stocks in portfolio 5 are on average small, illiquid, and have high idiosyncratic
volatility. Thus, limits to arbitrage apply to these stocks.

Second, we find that aggregate beta uncertainty negatively predicts future returns. This
could also be consistent with both a risk-based and a mispricing explanation. If high beta
uncertainty signifies low risk on aggregate, there may also be lower expected future market
returns. On the other hand, negative future returns could be a consequence of stronger
overpricing characterized by high current beta uncertainty.

To dig deeper into the overpricing hypothesis, we study the impact of short-selling con-
straints on the beta uncertainty premium. We follow, e.g., Boehme et al. (2006) and use
the firms’ relative short interest (RSI) as a measure for short-selling constraints. The main

intuition for using this proxy is that stocks with high relative short interest likely leave few
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additional stock lending opportunities, which leads to high shorting fees.'¢

We analyze the 25 double-sorted portfolios on beta uncertainty and relative short interest.
These results are presented in Table 8. We find that the beta uncertainty premium is
insignificant for the 2 quintiles with the lowest short-selling costs. Thus, consistent with an
overpricing explanation, the beta uncertainty premium is small for those stocks, for which
arbitrageurs can correct the mispricing. On the other hand, for the 3 quintiles with the
highest short-selling costs, there is an economically large and statistically significant beta
uncertainty premium. More importantly, we find that the magnitude of the beta uncertainty
premium increases from quintile 3 of RSI to quintile 5 of RSI. Thus, the higher the short-
selling costs get, the more overpriced it seems the stocks with high beta uncertainty get.
For the long-only portfolios, we detect significant negative abnormal returns only for the
portfolios with both high beta uncertainty and high RSI. These results also point toward a

mispricing explanation.

B Potential Mechanisms

We next discuss several potential mechanisms that could create the observed beta un-
certainty premium. First, is it possible that beta uncertainty is a proxy for ambiguity. In
this case, stocks with high beta uncertainty would be more ambiguous in that investors
could be less certain about their systematic risk than they could be for stocks with low
beta uncertainty (where all estimates are rather similar and confidence intervals are tight).
The negative sign of the risk premium on beta uncertainty, though, is inconsistent with
ambiguity-averse investors. Ambiguity-averse investors dislike stocks with high ambiguity
and would require a positive premium on high-ambiguity stocks. Clearly, this is opposite to

what we find. The sign of the beta uncertainty premium would be consistent, though, with

16Using data on real stock loan fees, Boehme et al. (2006) find that these are highly correlated with the
relative-short-interest measure.
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ambiguity if investors were ambiguity-loving, or if only ambiguity-loving investors participate
in the market (Chapman & Polkovnichenko, 2009).

Second, Klein & Bawa (1977) and Barry & Brown (1984, 1985, 1986) introduce a class
of models of information uncertainty, which could also be considered as an explanation for a
beta uncertainty premium. In these models, investors require a premium for holding stocks
with higher parameter estimation risks. The predictions of these models, however, are similar
to those of the ambiguity-aversion explanation discussed in the previous paragraph (positive
premium).

A third possible explanation for our findings is the convexity of the beta—price function.
Armstrong et al. (2013) feature a theoretical model that leverages this property. They argue
that the “fair” asset price increases in a convex manner with decreasing beta. Thus, the
average price under different possible betas is higher than that when using the average beta,
which might imply a lower return in the future for stocks with high beta uncertainty. Clearly,
this explanation is consistent with the sign of the beta uncertainty premium.

Finally, it is possible that beta uncertainty is a cause of disagreement among investors.
Consistent with the construction of the beta uncertainty measure, different investors may
use different beta estimators. Heterogeneity in the choice of the beta estimator is natural
because (i) there are numerous possibilities to estimate betas, (ii) there is little guidance on
what is the optimal method to use, and (iii) investors themselves are vastly heterogeneous
in their preferences, investment styles, and planning horizons (Alfarano & Lux, 2007; Corsi,
2009; Kamara et al., 2016). Thus, investors may simply use one specific method out of their
idiosyncratic taste for it. Others may vary in their investment horizons. Some investors may
have short investment horizons and use a EWMA beta with a very small half-life to obtain
a good conditional estimate. Others may choose a longer half-life for their estimates simply
because they have a very long investment horizon. Investors that consider buying illiquid

assets might choose a beta estimator that corrects for illiquidity. However, there is very little
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theoretical guidance on which correction one should employ and how exactly it should be
implemented.

As soon as investors disagree about the true beta, the model of Miller (1977) applies:
stocks for which investors disagree strongly (i.e., those with high beta uncertainty) and for
which short-selling is difficult will be overpriced. This is because investors with low valuations
for the shares do not engage in the market because of short-selling constraints and prices
reflect only the views of the investors with high valuations.!” The disagreement explanation
is consistent with the negative sign of the beta uncertainty premium as well as our finding
that there is only a significant beta uncertainty premium for the stocks with the highest

short-selling costs.

VI Additional Analyses and Robustness Tests

A Volatility vs. Correlation Uncertainty

Beta is defined as the product of a correlation of the stock return with that of the market
and the standard deviation of the stock divided by that of the market. Thus, uncertainty
about beta can stem from each of these three channels. Uncertainty about the volatility
of the market should have only little effect on the cross-sectional ranking of the stocks in
terms of beta uncertainty (because it similarly turns up in the denominator of the beta
estimator for all stocks). In this section, we thus examine whether uncertainty about the
stock volatility, or rather uncertainty about the correlation, are the main driver of the beta

uncertainty premium.

1"Note that the disagreement explanation does not require us to specify what the beliefs “optimists” and
“pessimists” imply about the kind of betas they use. The mechanism of the Miller (1977) model only needs
a source of disagreement. Beta uncertainty likely creates such disagreement. Ultimately, the optimists are
those that have very high valuations for a stock. Whether this high valuation is due to an “optimistic”
assumption about a low beta or whether the channel is not that direct is irrelevant, as long as the different
possible betas create differences in valuations.
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As a measure of volatility uncertainty, we use the realized quarticity, which is defined as:

k
k
RQj: = 3 Z r;'l,m (4)
i=1

where r;; denotes one of the k (log-)return observations during the estimation period. To
be consistent with the main beta estimators, we set the estimation period to the past 12
months. Roughly speaking, the realized quarticity is a measure of the variance-of-variance.

To separate volatility and correlation uncertainty, we cross-sectionally orthogonalize the
beta uncertainty measure with respect to the realized quarticity as well as the squared real-
ized quarticity (to account for potential non-linear relations).!® The orthogonalized measure
of beta uncertainty serves as measure of correlation uncertainty.

We present the results in Table 9. In a bivariate regression specification using only
the volatility and correlation uncertainty measures, both are priced significantly negatively.
Thus, both may to some extent drive the pricing of beta uncertainty. However, when adding
control variables, we find that only the correlation uncertainty is consistently priced. Thus,
we conclude that the uncertainty about the correlation between one asset return and that of

the market is the main driver of the beta uncertainty premium.

B Randomized Model Selection

We document a significant negative relation between beta uncertainty and subsequent
returns. However, the definition of the beta uncertainty measure involves an important
choice: the subset of beta estimation models to be considered. Any choice of models is
necessarily somewhat arbitrary. We could also include the simple historical model with
alternative historical sampling windows of, say, 1 or 3 months, or with 60 months of monthly

data (e.g., Fama & MacBeth, 1973). Additionally, we could use Dimson (1979) betas which

18The results are qualitatively similar both when not accounting for the squared realized quarticity and
when instead using the square-root of the realized quarticity in addition to the level of the realized quarticity.
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also include 1 up to 4 leaded market excess returns in addition to (the same number of)
lagged market excess returns. Moreover, it is also unclear how many models we should use.

In this section, we examine the robustness of our results with respect to these choices.
We first augment the set of possible models by those mentioned above. Subsequently, we
randomize in two dimensions. First, we draw from a discrete uniform distribution how many
of the models available should be used. We require a minimum of 6 models to be selected
while the maximum is to use all 16 approaches considered. The second step of randomization
involves the selection of the models. We randomly pick from the models without replacement.
We repeat these steps 1,000 times and report the average coefficient estimates as well as the
shares of significant estimates among the 1,000 repetitions.

We present the results in Table 10. We find that, for virtually all the subsets, the results
are similar to those for our main measure. For all subsets, all factor model alphas are
significantly negative. Thus, beta uncertainty appears to be priced rather independently of
which models one uses to define it. Indeed, the model selection used for our main tests is
rather conservative. On average across the 1,000 random subsets, the coefficient estimates
are typically even larger in magnitude than those reported in the main part of the paper.
We find that in 86.4% of the random subsets the value-weighted average return is larger
in magnitude (more negative) than for our main measure. For the Carhart (1997) 4-factor

model, this is the case for 86.6% of the random draws.

C Further Robustness Tests

We present further robustness tests in the Online Appendix. In Section OA1, we exam-
ine the robustness of our results to various alternative definitions of the beta uncertainty
measure. We obtain very similar results for each of these. In Section OA2, we alterna-

tively control for the CAPM idiosyncratic volatility, the natural logarithm of idiosyncratic
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volatility, and idiosyncratic volatility quintile dummies. None of these affects our main re-
sults. Finally, in Section OA3 we perform a regression analysis with an errors-in-variables

correction. Our conclusions remain unchanged.

VII Conclusion

In this paper, we document an economically and statistically significant negative premium
for beta uncertainty. Stocks in the high beta uncertainty quintile substantially underperform
those in the low beta uncertainty quintile. For value-weighted portfolios, the difference
in average returns amounts to —7.9% and that in 4-factor alphas to —10.6%. Performing
double sorts and cross-sectional regressions with numerous control variables, we find that the
premium on beta uncertainty cannot be explained by either of these, neither univariately nor
jointly. An aggregate measure of beta uncertainty negatively predicts market excess returns
in the short and medium term. We find that the pricing patterns of beta uncertainty are
consistent with mispricing. In particular, stocks characterized by high beta uncertainty, as
well as high short-selling costs, appear overpriced.

In future work, it would be interesting to extend our analysis to a multifactor world.
Pursuing this avenue would require new tools to capture the uncertainty about multiple

factors in one measure. We leave this to future research.!’

19We are grateful to an anonymous reviewer for this suggestion.
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Appendix

A Beta Estimation

e Historical Beta (HIST) We consider historical beta estimates (HIST) following,
e.g., Fama & MacBeth (1973), regressing an asset’s excess return on a constant and

the market excess return:
N HIST
Tir —Tir = By (Tarr —Trr) + €, (A1)

where ﬁftIST denotes the estimate for the historical beta of asset j at time t. We use
daily data from time ¢t — k to ¢, observed at discrete intervals 7, where k is the length
of the estimation window, which we set to 12 months for our main estimators, but also
consider a historical estimator with a 6-month estimation window (HIST6). r;, is the
return on asset j, 7y, is the risk-free rate, and rjs, denotes the return of the market

portfolio, all observed at time 7.

e EWMA Beta We also examine a weighted version of the historical estimator with
an exponentially weighted moving average structure using an expanding sample window
(Boons, 2016; Hollstein et al., 2019).2° To be precise, we estimate Equation (A1)
with weighted least squares (WLS) using the weights —<2EI=mh_ wigp p = 9@

>0 1 eap(—t—7|h) L
¢ characterizes the horizon, to which the half-life of the weights converges for large

samples. We try two alternatives for ¢: (i) 84 and (ii) 168 trading days.?!

e Dimson Beta Following Dimson (1979) and Lewellen & Nagel (2006), we estimate
a beta that aims to account for potential infrequent trading effects. If stocks trade less
frequently than the market index, stock prices adjust gradually to new information. To

account for this possibility, Dimson (1979) adds lagged market returns in the regression:

Tir = Tfr = Q4 + Bj(gf) (TM,’T - Tf,q—) + B](,lt) (TM,’T—I - Tf,’r—l) <A2)
K
+53(',2t) (Z M-k — 7’f;k> + €7
k=2

We incorporate K = 1 up to K = 4 lagged returns. If K < 2, the term associated with

20To reduce the computational burden, we limit the maximum amount of daily returns used to 10 years.
21These choices correspond to one third and two thirds of the trading day observations for a Il-year
window.
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min(2,K)

ﬁ](-i) drops. The estimator for beta is then ?t‘mK =y 5](22, where min(-) is the

minimum operator.

e Scholes—Williams Beta (SW)  We also examine the beta estimator of Scholes &
Williams (1977). That is, we estimate three separate regressions. The first regression
uses the contemporaneous market return, exactly as in Equation (Al). The second
regression uses the lagged market excess return as explanatory variable, that is r;, —
T = Qg+ ﬁjft(rMJ,l —7fr-1) + €, and the third regression uses the leaded market
excess return rj . —rp, = o+ Bft(rM,T+1 —7¢r+1) + €. Note that also ;ft uses only
information available at time ¢. The final estimator for beta is:

SW B+ B> + B

W = t 5 A3
75t 1_'_2p ) ( )

where p is the first order autocorrelation of the market excess return. For the Dimson

and SW beta estimators, we also use 12-month estimation windows.

e Frazzini-Pedersen Beta (FP) Following Frazzini & Pedersen (2014), we use an
estimator that separates the estimation of volatilities and correlations. The authors
estimate volatilities from daily return data and correlations from overlapping 3-day
returns to account for asynchronous trading. Additionally, Frazzini & Pedersen (2014)
argue that correlations move more slowly over time, allowing for different estimation
windows used to compute volatilities and correlations. We thus obtain the beta as:

= At (A4)

j?t
OM,t

)

where p?f}\}’t is the correlation between the return of asset j with the market during the

past hor months and o, and o), are the volatilities of the return of asset j and the
market, respectively. We follow Frazzini & Pedersen (2014) and use a 1-year estimation

window for the volatilities and a 5-year window for correlations.

Control Variables

e Beta is the median beta estimate for a certain stock across all estimation approaches

considered.

e Book-to-market (Fama & French, 1992) is the most current observation for book
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equity divided by the market capitalization at the end of the previous fiscal year.
Following the standard literature, we assume that the book equity of the previous
year’s balance sheet statement becomes available at the end of June. Book equity is
defined as stockholders’ equity, plus balance sheet deferred taxes and investment tax

credit, plus post-retirement benefit liabilities, minus the book value of preferred stock.

Co-Skewness (Harvey & Siddique, 2000, “CoSkew”) and Co-Kurtosis (Dittmar,
2002, “CoKurt”) are the coefficients fts and ftK in the regression 7;, — ¢, =
e+ BN (e — 1r2) + Bty — mpe)? 4 B (rar — 752)° + €7, including the
market excess return, the squared market excess return, and the cubed market excess

return. The regression is estimated using daily returns over the previous year.

Downside beta (Ang et al., 2006a) is the coefficient ﬁft in the regression 7, , — 7, =
Qg + Bft(r Mr — Tfr) + €7, using daily returns over the previous year only when the

market return is below the average daily market return over that year.

Forecast dispersion (Diether et al., 2002, “Disp”) is the standard deviation of ana-
lysts’ earnings forecasts for the current fiscal year divided by the absolute value of the
mean earnings forecast. We obtain the data on the standard deviation and mean of

earnings forecasts from the Unadjusted Summary History file of I/B/E/S.

Idiosyncratic volatility (Ang et al., 2006b, “iVol”) is the standard deviation of the
residuals €; - in the Fama & French (1993) 3-factor model r; , — 7y, = —i—ﬁ%(rM’T —
Tfr) +BftSMBT+BﬁHMLT+ej7T, using daily returns over the previous month. SM B,
and HM L, denote the returns on the Fama & French (1993) factors.

Iliquidity (Amihud, 2002, “ILLIQ") is the absolute value of the stock’s return divided
by the daily dollar volume, averaged over the previous year. Specifically, it is Illiq; =

Ly izl with the daily dollar volume (Volume$,, in thousand dollars) being

T7=1 Volume$:’

calculated as last trade price times shares traded on day 7, while the summation is

taken over all n trading days during the examination period.

Investment (Fama & French, 2006) is the annual growth rate in total assets. We

update the variable every year at the end of June.

Leverage (Bhandari, 1988) is defined as one minus book equity (see “Book-to-market”)
divided by total assets. Book equity and total assets are updated every 12 months at
the end of June.
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Maximum return (Bali et al., 2011, “MAX”) is the average of the five highest daily

returns during the previous year.

Momentum (Jegadeesh & Titman, 1993) is the cumulative stock return over the

period from t — 12 until ¢t — 1.

Profitability (Fama & French, 2006) is total revenue minus cost of goods sold (zero
if missing) minus selling, general, and administrative expenses (zero if missing) minus
interest expense (zero if missing), scaled by book equity (see Book-to-market). We
require that at least one of the expenses is non-missing and update the variable every

year in June.

Relative short interest (Bochme et al., 2006, “RSI”) is the ratio of short interest of
a firm, obtained from Compustat, over the number of shares outstanding. If available,
we use the short interest as of the end of month ¢, otherwise we use the last observation

recorded in that month.

SE (Armstrong et al., 2013) is the squared standard error of the slope coefficient

HIST
j?t

HIST
j7t

from the regression ;. — s, = a;; + (ra,r —757) +€jr, estimated with monthly

returns from a rolling 60-month window.

Short-Term reversal (Jegadeesh, 1990) is the preceding month’s stock return (from
t—1tot).

Size (Banz, 1981) is the current market capitalization of a firm. Market capitalization
is computed as the product of the stock price and the number of shares outstanding.
In regressions, we take the natural logarithm to remove the extreme skewness in this

variable.

Vol-of-vol (Baltussen et al., 2018) is the volatility of non-overlapping monthly realized
volatilities of a stock during the past year divided by the average of the monthly realized
volatility. In dividing by the average volatility, we follow Baltussen et al. (2018). The

results are qualitatively similar when using an unscaled version of vol-of-vol.

Macroeconomic Variables

CAY (Lettau & Ludvigson, 2001) is the log consumption-to-wealth ratio.
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DFSP is the default spread, defined as the difference between BAA- and AAA-rated

corporate bond yields.

EFD is economic forecaster disagreement based on data from the Federal Reserve
Bank of Philadelphia’s Survey of Professional Forecasters. The data are from www.

policyuncertainty.com.

EPU is the U.S. news-based economic policy uncertainty index of Baker et al. (2016).

The data are from www.policyuncertainty.com.

iVol®? (Goyal & Santa-Clara, 2003) is the value-weighted average idiosyncratic volatil-

ity of the stocks in our sample.

log(P /D) is the logarithm of the level of the S&P 500 index over the 12-month trailing
sum of dividends paid by S&P 500 firms.

log(P/E) is the logarithm of the S&P 500 price index over the 12-month trailing sum

of earnings.

MRP1 is the PLS market excess return forecast following Kelly & Pruitt (2013). We
use 1-month out-of-sample market excess return forecasts from a 200-month rolling
window that starts with data from 1926 and use the 25 size/book-to-market portfolios

obtained from Kenneth French’s webpage.

MRP12 is the PLS 12-month out-of-sample market excess return forecasts. The

procedure is similar as for MRP1.

RREL is the stochastically detrended risk-free rate, i.e., the 1-month U.S. Treasury

Bill rate minus its 12-month trailing average.

TMSP is the term spread, defined as the difference between the U.S. Treasury 10-year
yield and the 3-month Treasury Bill rate.

VIX is the Chicago Board Options Exchange (CBOE) Volatility Index. The data are
from the CBOE.
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Figure 1: Time Series of Aggregate Beta Uncertainty
This figure plots the time series of the cross-sectional value-weighted average of the beta uncertainty
measure along with the 5th and 95th percentiles of the cross-sectional beta uncertainty distribution.

The shaded areas indicate the time periods marked as business cycle contractions by the National

Bureau of Economic Research (NBER).
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Table 1: Summary Statistics: Beta Estimates

This table presents the summary statistics of the beta estimates used for our main beta uncertainty measure.
“Mean,,,” and “Mean” denote the time-series average of the value-weighted and simple cross-sectional mean,
respectively. “SDE” and “SD”°” are the average cross-sectional and time-series standard deviations, respec-
tively. That is, for the SD®S, we use the time-series average of the cross-sectional standard deviations and

for SDTS | we compute the cross-sectional average of the time-series standard deviations of individual firms

«0.05%

(requiring a minimum of 50 observations). “q and “q%-95”

indicate the averages of the cross-sectional 5th

CS» TS5

and 95th percentiles, respectively. “Corr and “Corr present the average cross-sectional and time-series
correlation of the estimates with the average beta for each stock (derived from all estimates), respectively.
“SE” denotes the average standard error associated with the different beta estimates. The sample period

runs from January 1951 until December 2015.

Meanyy, Mean SD®S SDTS q°-0 q% Corr®  Corr™ SE
HIST 1.0168  0.8329  0.5873  0.4266  0.0225  1.8948  0.9469  0.8667  0.2243
HIST6 1.0159  0.8248  0.6624  0.5456 —0.0871 2.0025  0.8680  0.7357  0.3245

EWMAg, 1.0164 0.8313  0.5785  0.4164  0.0321 1.8728  0.9364  0.8370  0.0978
EWMA;4s 1.0156 0.8339  0.5332 0.3319 0.0915 1.7955  0.9281 0.8354  0.0961

Dim1 1.0134  0.9301 0.6096  0.4883  0.0594  2.0018 0.9511  0.8927  0.3026
Dim?2 1.0116  0.9490  0.6388  0.5349  0.0391 2.0671 09164 0.8432  0.3685
Dim3 1.0107  0.9851 0.6748  0.5820  0.0292 21626  0.8768  0.7939  0.4231
Dim4 1.0105 1.0122  0.7130  0.6276  0.0116  2.2554  0.8375  0.7411 0.4728
SW 1.0132 09114  0.6354  0.5145 0.0160  2.0361  0.9214  0.8155  0.3346
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Table 3: Portfolio Sorts: Beta Uncertainty

At the end of each month, we sort the stocks into 5 value-weighted portfolios according to their beta
uncertainty. The column labeled “5 minus 17 refers to the hedge portfolio buying the quintile of stocks
with the highest beta uncertainty and simultaneously selling the stocks in the quintile with the lowest beta
uncertainty. The row labeled “Mean return” denotes the annualized average portfolio excess return. “CAPM
alpha”, “4-factor alpha”, “5-factor alpha”, and “FF5 alpha” refer to the alphas of the CAPM, the Carhart
(1997) 4-factor, and the 5-factor models (including Pastor & Stambaugh, 2003 liquidity), and the Fama &
French (2015) 5-factor model, respectively. Robust Newey & West (1987) standard errors using 6 lags are

*

reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. The
lower part of the table presents the value-weighted averages of several characteristics for the 5 portfolios.
“Uncg+” is the observation of beta uncertainty used for sorting, while “Uncg ;11" denotes the beta uncertainty
at the end of the month after we sort the portfolios. Size is log-transformed and ILLIQ is multiplied by

1,000. Since most characteristics are strictly positive, we only report the results of significance tests for the

5 minus 1 differences.

Rank | 1 2 3 4 5 | 5 minus 1
Mean return 0.0746*** 0.0830*** 0.0785*** 0.0563* —0.0044 —0.0790**
(0.0169) (0.0223) (0.0286) (0.0336) (0.0424) (0.0330)
CAPM alpha 0.0154*** 0.0047 —0.0162 —0.0495***  —0.1211*** —0.1365"**
(0.0050) (0.0053) (0.0102) (0.0167) (0.0237) (0.0279)
4-factor alpha 0.0091*** 0.0047 —0.0053 —0.0322***  —0.0971*** —0.1062***
(0.0034) (0.0056) (0.0076) (0.0106) (0.0185) (0.0210)
5-factor alpha 0.0086** 0.0069 —0.0048 —0.0346***  —0.1157*** —0.1243***
(0.0042) (0.0071) (0.0097) (0.0129) (0.0230) (0.0262)
FF5 alpha —0.0017 —0.0024 0.0067 —0.0016 —0.0653*** —0.0636***
(0.0030) (0.0069) (0.0075) (0.0105) (0.0169) (0.0181)
Portfolio Characteristics
Uncg 0.9372 1.4523 1.9264 2.5292 3.7999 2.8626***
Uncg,¢4+1 0.9463 1.4440 1.9065 2.4879 3.6881 2.7419***
Beta 0.8982 1.1162 1.2913 1.4237 1.4664 0.5682***
Size 15.811 14.513 13.669 12.836 11.880 —3.9310*"**
Book-to-market 0.6202 0.6396 0.6627 0.7235 0.8135 0.1933***
Investment 0.1157 0.1620 0.2454 0.3208 0.3391 0.2234***
Profitability 0.3952 0.3780 0.3541 0.3407 0.1139 —0.2812%**
ILLIQ 0.0283 0.0922 0.2129 0.5160 2.7026 2.6743%**
Momentum 0.1520 0.1899 0.2484 0.3292 0.4878 0.3358***
iVol 0.0098 0.0144 0.0188 0.0244 0.0351 0.0253***
SE 0.0307 0.0627 0.1107 0.1815 0.3446 0.3139***
Disp 0.0495 0.1168 0.2025 0.2855 0.5496 0.5001***
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Table 4: Double Sorts: Beta Uncertainty, Beta, and Size

This table reports annualized value-weighted Carhart (1997) 4-factor alphas for double-sorted portfolios.
At the end of each month, we first sort the stocks into 5 quintile portfolios according to their betas (size).
Within each of these quintiles, we sort the stocks into another 5 portfolios based on their beta uncertainty.
We report the alphas of all 25 portfolios as well as the respective long minus short (“5 minus 17) portfolios.
The rows labeled “5 minus 17 refer to the hedge portfolio buying the quintile of stocks with the highest beta
uncertainty and simultaneously selling the stocks in the quintile with the lowest beta uncertainty. Within
each portfolio, we value-weight the stocks. The final column (“Avg.”) reports the averages for each beta
uncertainty quintile across the quintiles sorted on the respective control characteristic. Robust Newey &
West (1987) standard errors using 6 lags are reported in parentheses. *, **, and *** indicate significance at

the 10%, 5%, and 1% level, respectively.

Beta
1 2 3 4 5 ‘ 5 minus 1 ‘ Avg.
1 0.0276** 0.0229** 0.0092 0.0057 —0.0143 —0.0419* 0.0102**
(0.012) (0.009) (0.007) (0.008) (0.013) (0.022) (0.004)
2 0.0139 0.0171 0.0040 —0.0118  —0.0449*** | —0.0588** —0.0042
(0.014) (0.011) (0.010) (0.009) (0.016) (0.024) (0.006)
Une 3 0.0259 0.0178* 0.0074 0.0037 —0.0204 —0.0463* 0.0054
B (0.017) (0.011) (0.010) (0.012) (0.017) (0.027) (0.007)
4 0.0060 0.0132 —0.0254**  —0.0323*** —0.0853*** | —0.0913*** | —0.0237***
(0.017) (0.013) (0.012) (0.012) (0.022) (0.029) (0.008)
5 —0.0668***  —0.0318*  —0.0450*** —0.0602*** —0.1383***| —0.0715** | —0.0699***
(0.019) (0.018) (0.016) (0.017) (0.024) (0.029) (0.013)
5minus 1 —0.0944*** —0.0547*** —0.0542*** —0.0659*** —0.1240*** —0.0802***
(0.022) (0.019) (0.019) (0.019) (0.024) (0.015)
Size
1 2 3 4 5 | 5minus 1 | Avg.
1 0.0623***  0.0615***  0.0421***  0.0321*** 0.0113** —0.0511*** | 0.0414***
(0.013) (0.010) (0.008) (0.008) (0.006) (0.013) (0.007)
2 0.0554***  0.0368***  0.0280***  0.0271*** 0.0042 —0.0512"** | 0.0304***
(0.014) (0.009) (0.007) (0.007) (0.004) (0.014) (0.006)
Une 3 0.0365** 0.0072 0.0160** 0.0206*** 0.0045 —0.0320"* | 0.0168***
g (0.015) (0.009) (0.008) (0.007) (0.005) (0.016) (0.006)
4 —0.0100 —-0.0317**  —0.0207* —0.0006 —0.0035 0.0065 —0.0130*
(0.017) (0.013) (0.011) (0.007) (0.007) (0.017) (0.008)
5 —0.0818*** —0.0890*** —0.0835"** —0.0525*** —0.0309** 0.0510** | —0.0677***
(0.023) (0.021) (0.017) (0.013) (0.013) (0.026) (0.014)
5minus 1 —0.1442***  —0.1505*** —0.1255"** —0.0846*** —0.0421** —0.1091***
(0.023) (0.024) (0.021) (0.018) (0.017) (0.017)
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Table 5: Double Sorts: Beta Uncertainty

This table reports annualized value-weighted Carhart (1997) 4-factor alphas for double-sorted portfolios.

At the end of each month, we first sort the stocks into 5 quintile portfolios according to the characteristic

denoted in the first column. Within each of these quintiles, we sort the stocks into another 5 portfolios based

on their beta uncertainty. The 5 portfolios reported are the averages of the beta uncertainty quintiles across

the quintiles sorted on the control characteristic. The column labeled “5 minus 1” refers to the hedge portfolio

buying the quintile of stocks with the highest beta uncertainty and simultaneously selling the stocks in the

quintile with the lowest beta uncertainty. Within each portfolio, we value-weight the stocks. Robust Newey

at the 10%, 5%, and 1% level, respectively.

* *k3k

& West (1987) standard errors using 6 lags are reported in parentheses. *,

, and *** indicate significance

Rank 1 2 3 4 5 | 5 minus 1
Book-to-market 0.0066 0.0031 —0.0072 —0.0303*** —0.0714*** —0.0780***
(0.0045) (0.0049) (0.0063) (0.0086) (0.0148) (0.0180)
Investment 0.0113*** 0.0026 0.0011 —0.0198* —0.0581*** —0.0695***
(0.0044) (0.0057) (0.0071) (0.0106) (0.0162) (0.0192)
Profitability 0.0039 —0.0116* -0.0114 —0.0358*** —0.0615*** —0.0654***
(0.0041) (0.0064) (0.0070) (0.0119) (0.0142) (0.0158)
ILLIQ 0.0331*** 0.0191*** 0.0125** —0.0196*** —0.0816*** —0.1147***
(0.0065) (0.0052) (0.0050) (0.0069) (0.0125) (0.0172)
Momentum 0.0138*** —0.0002 —0.0213*** —0.0461*** —0.0866*** —0.1004***
(0.0042) (0.0053) (0.0061) (0.0084) (0.0133) (0.0155)
Short-term reversal 0.0136*** —0.0025 0.0035 —0.0212** —0.0856*** —0.0992***
(0.0038) (0.0042) (0.0073) (0.0105) (0.0152) (0.0175)
Leverage 0.0099*** 0.0054 —0.0006 —0.0262*** —0.0714*** —0.0813***
(0.0034) (0.0055) (0.0072) (0.0088) (0.0171) (0.0189)
iVol —0.0135** —0.0122* —0.0319*** —0.0354*** —0.0496*** —0.0361***
(0.0054) (0.0066) (0.0081) (0.0092) (0.0115) (0.0133)
MAX 0.0005 —0.0101 —0.0298*** —0.0377*** —0.0512*** —0.0517***
(0.0037) (0.0062) (0.0068) (0.0090) (0.0108) (0.0118)
CoSkew 0.0069* —0.0035 —0.0081 —0.0281*** —0.0895*** —0.0964***
(0.0040) (0.0046) (0.0062) (0.0094) (0.0150) (0.0166)
CoKurt 0.0100*** —0.0014 —0.0042 —0.0317*** —0.0808*** —0.0908***
(0.0035) (0.0050) (0.0070) (0.0095) (0.0143) (0.0164)
Dbeta 0.0071* —0.0025 —0.0044 —0.0179** —0.0795*** —0.0866***
(0.0038) (0.0051) (0.0059) (0.0084) (0.0127) (0.0147)
Vol-of-vol 0.0150*** 0.0083 —0.0041 —0.0331*** —0.0866*** —0.1015***
(0.0042) (0.0053) (0.0073) (0.0106) (0.0164) (0.0192)
Disp 0.0027 —0.0011 —0.0020 —0.0175 —0.0488*** —0.0516**
(0.0056) (0.0061) (0.0088) (0.0123) (0.0178) (0.0203)
SE 0.0041 —0.0048 —0.0067 —0.0378*** —0.0501*** —0.0543***
(0.0062) (0.0065) (0.0067) (0.0087) (0.0113) (0.0134)
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Table 7: Return Predictability of Aggregate Beta Uncertainty

This table summarizes the results of return predictability regressions for aggregate beta uncertainty. We
regress annualized excess returns of the CRSP value-weighted index over h months on a constant and the
lagged aggregate beta uncertainty. We consider forecasting horizons (h) of 1, 3, 6, 9, 12, 18, 24, and 36
months. To account for overlapping return observations, in parentheses we present Hodrick (1992) corrected
standard errors. “Adj. R?” reports the adjusted in-sample R%. The line “R2oos” indicates the out-of-
sample R2s for the respective predictive horizons. We test the out-of-sample significance using the bootstrap

approach of Goyal & Welch (2008). *, **, and *** indicate significance at the 10%, 5%, and 1% level,

respectively.

Horizon (Months) 1 3 6 9 12 18 24 36
Constant 0.2805*** 0.2724*** 0.2414*** 0.2072*** 0.1884***  0.1739*** 0.1602***  0.1208**
(s.e.) (0.077) (0.074) (0.071) (0.068) (0.067)  (0.063)  (0.059)  (0.056)
Uncgyg —0.1785"**  —0.1712***  —0.1462*** —0.1188*** —0.1037** —0.0922* —0.0813* —0.0503
(s.e.) (0.057) (0.055) (0.052) (0.051) (0.050)  (0.048)  (0.045)  (0.043)
Adj. R? 0.002 0.002 0.005 0.019 0.037 0.053 0.073 0.248
R%5q 0.004** 0.005*** —0.010 —0.026 —0.038 —0.092 —0.152 —0.253
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Table 8: Double Sorts: Beta Uncertainty and Relative Short Interest

This table reports annualized value-weighted Carhart (1997) 4-factor alphas for double-sorted portfolios. At

the end of each month, we first sort the stocks into 5 quintile portfolios according to their relative short

interest (RSI). Within each of these quintiles, we sort the stocks into another 5 portfolios based on their

beta uncertainty. We report the alphas of all 25 portfolios as well as the respective long minus short (“5

minus 1”) portfolios. The row labeled “5 minus 17 refers to the hedge portfolio buying the quintile of stocks

with the highest beta uncertainty and simultaneously selling the stocks in the quintile with the lowest beta

uncertainty. Within each portfolio, we value-weight the stocks. The final column (“Avg.”) reports the

averages for each beta uncertainty quintile across the quintiles sorted on RSI. Robust Newey & West (1987)

standard errors using 6 lags are reported in parentheses.

and 1% level, respectively.

*, ** and *** indicate significance at the 10%, 5%,

RSI
1 2 3 4 5 | 5minus 1 | Avg.

1 —0.0100 0.0027 0.0182* —-0.0136 ~ —0.0119 | —0.0019 | —0.0032

(0.014) (0.010) (0.010) (0.010) (0.012) (0.019) (0.007)

2 —0.0225 0.0225 0.0035 —0.0106  —0.0209 0.0016 —0.0055

(0.024) (0.014) (0.011) (0.012) (0.015) (0.029) (0.009)

Une 3 —0.0133 0.0076 —0.0042  —0.0274  —0.0558"** | —0.0425 | —0.0198"

P (0.024) (0.020) (0.017) (0.017) (0.019) (0.029) (0.012)
4 —-0.0255  —0.0019 0.0067 —-0.0110  —0.0686*** | —0.0432 | —0.0198"

(0.026) (0.019) (0.018) (0.019) (0.019) (0.032) (0.012)
5 —0.0589*  —0.0378  —0.0483*  —0.0599*** —0.1418"**| —0.0829"* | —0.0676***

(0.034) (0.030) (0.028) (0.022) (0.028) (0.038) (0.018)
S5minus 1 —0.0489  —0.0405  —0.0666**  —0.0463*  —0.1299** —0.0644**

(0.039) (0.033) (0.030) (0.024) (0.031) (0.021)
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Table 10: Portfolio Sorts: Randomized Model Selection

At the end of each month, we sort the stocks into 5 portfolios according to their beta uncertainty, computed
from a random subset of possible beta estimators. To create this random subset, we first randomize the
number of beta estimators to be included (minimum 6) and then randomly assign (without replacement)
the estimators. We repeat this procedure 1,000 times. The column labeled “5 minus 1”7 refers to the hedge
portfolio buying the quintile of stocks with the highest beta uncertainty and simultaneously selling the stocks
in the quintile with the lowest beta uncertainty. The row labeled “Mean return” denotes the annualized
average portfolio excess return. “CAPM alpha”, “4-factor alpha”, “5-factor alpha”, and “FF5 alpha’ refer
to the alphas of the CAPM, the Carhart (1997) 4-factor, and the 5-factor models (including Pastor &
Stambaugh, 2003 liquidity), and the Fama & French (2015) 5-factor model, respectively. In brackets, we
report the share of subsets for which the respective parameter is significant at the 10% level using robust

Newey & West (1987) standard errors with 6 lags.

Rank ‘ 1 2 3 4 5 ‘ 5 minus 1
Value-weighted
Mean return 0.0745 0.0838 0.0787 0.0506 —0.0161 —0.0906
[1.000] [1.000] [1.000] [0.100] [0.000] [1.000]
CAPM alpha 0.0151 0.0059 —0.0131 —0.0545 —0.1279 —0.1431
[1.000] [0.162 [0.095] [1.000] [1.000] [1.000]
4-factor alpha 0.0095 0.0048 —0.0005 —0.0392 —0.1027 —0.1122
[1.000] [0.005] [0.000] [1.000] [1.000] [1.000]
5-factor alpha 0.0076 0.0071 0.0022 —0.0419 —0.1141 —-0.1217
[0.785] [0.071] [0.000] [1.000] [1.000] [1.000]
FF5 alpha —0.0023 0.0006 0.0112 —0.0098 —0.0741 —0.0717
[0.000] [0.000] [0.240) [0.001] [1.000] [1.000]
Equally Weighted
Mean return 0.1000 0.1143 0.1114 0.0906 0.0268 —0.0732
[1.000] [1.000] [1.000] [1.000] [0.000] [0.988]
CAPM alpha 0.0489 0.0466 0.0315 —0.0001 —0.0712 —0.1201
[1.000] [1.000] [1.000] [0.000] [1.000] [1.000]
4-factor alpha 0.0339 0.0327 0.0256 0.0035 —0.0599 —0.0938
[1.000] [1.000] [1.000] [0.000] [1.000] [1.000]
5-factor alpha 0.0329 0.0324 0.0267 0.0016 —0.0716 —0.1046
[1.000] [1.000] [1.000] [0.000] [1.000] [1.000]
FF5 alpha 0.0137 0.0120 0.0142 0.0034 —0.0496 —0.0633
[0.951] [0.649] [0.695] [0.000] [1.000] [1.000]
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Beta Uncertainty

Online Appendix

This Online Appendix contains the robustness tables referenced in the main
paper. In addition, Section OA1 provides extensive robustness analyses for the
beta uncertainty measure. In Section OA2, we examine the robustness of our
main results to alternative definitions of idiosyncratic volatility. Finally, Section
OA3 presents an analysis that explicitly accounts for potential errors-in-variables

in the beta uncertainty measure.

JEL classification: G12, G11, G17

Keywords: Beta, CAPM, disagreement, ambiguity, parameter uncertainty



OA1 Alternative Beta Uncertainty Measures

In this section, we test the robustness of our main results by considering alternative
measures for beta uncertainty. First, we use a simpler beta uncertainty measure based only
on the individual beta point estimates. Second, we consider the total range spanned by
the different beta point estimates instead of all confidence intervals. Third, we consider the
standard error of the respective best models. Fourth, we examine the past absolute forecast
error of the respective best beta model.

For the first alternative measure, we use the simple standard deviation across the different

beta estimates:

Uncj?, = ﬁ > (5§f2 - Bj,t> } (OA1)
i=1
where ﬁj(lt) is the estimate of one approach and Bj,t denotes the average estimate across the
N approaches. Empirically, this simple measure has a correlation of more than 82% with
our main beta uncertainty measure.

The analysis of this simpler beta uncertainty measure is important because the measure’s
correlations with known cross-sectional return predictors is far lower than those of our main
beta uncertainty measure. The correlation coefficients with size and illiquidity amount to
only —0.37 and 0.39, respectively. Those of the standard deviation beta uncertainty mea-
sure with other measures of volatility like idiosyncratic volatility, MAX, and SE are also
substantially lower than those for our main measure, amounting to 0.55, 0.47, and 0.61,
respectively.

We present the results in Table A7. For all specifications, and independently of which
control variables we include, this alternative beta uncertainty measure is negatively priced

in the cross-section of stock returns. A two-standard-deviation increase in beta uncertainty



is associated with a decrease in average returns of 6.4%.! The effect of this variable is
somewhat weaker than that of the main beta uncertainty measure. Thus, a beta uncertainty
measure that also takes into account the sampling variation of the individual beta estimates
appears to carry a somewhat stronger economic content than the simple measure we use for
this analysis.

A second alternative is to measure the dispersion as the range of beta estimates. The

measure is:
U Range _ (ﬁ(l)) . (ﬁ(l)) (OA2>
NCgje = Max{pjg) — min{p;q ).

The results for this measure are in Table A8. As for our main measure, we find that
also the simple range-based beta uncertainty measure is significantly negatively priced. The
economic impact of beta uncertainty is also high with this measure: a two-standard-deviation
increase in beta uncertainty is associated with a decrease in average returns of 6.49%.2

As a third alternative measure, we use the standard error of the best model. For each
beta estimation approach and stock, we obtain estimates for the previous month as well as
the corresponding realized beta S, , for each stock. For each stock, we use the estimator

for which the forecast error (F'E)

FE = \/ (B - 6;?t_1,t)2 (OA3)

is lowest. The beta uncertainty measure is then simply the current standard error of this
estimator.

We present the results in Table A9. As in our main result, we find that this alternative

'We obtain this figure by multiplying the cross-sectional premium with 2 times the average cross-sectional
standard deviation of the beta uncertainty measure of 0.166.

2We obtain this figure by multiplying the univariate cross-sectional premium with 2 times the average
cross-sectional standard deviation of the alternative beta uncertainty measure of 0.5174.



beta uncertainty measure is also significantly negatively priced. A two-standard-deviation
increase in beta uncertainty is associated with a decrease in average returns of 6.68%.3

Our fourth alternative measure of uncertainty about the true beta is to use the lowest
squared error from the previous period. That is, for each stock we use the minimum of
the F'Es as defined in Equation (OA3). A high measure indicates that the stock’s beta is
difficult to estimate, since none of the estimators comes close to the true realized beta. A
small realization indicates that the uncertainty surrounding the beta estimation is low, at
least when using an adequate estimator.

The results are in Table A10. As for all other alternative measures, we find that the lowest
squared error from the previous period carries a significant negative premium in the cross-
section of stock return throughout every specification. A two-standard-deviation increase in

this beta uncertainty measure is associated with a decrease in average returns of 5.91%.*

OA2 Further Idiosyncratic Volatility Controls

In this section, we present the Fama & MacBeth (1973) regression results for alternative
ways to control for idiosyncratic volatility. In Table A11 we present the results when using
the natural logarithm instead of the level of idiosyncratic volatility, Table A12 uses quintile
dummies for idiosyncratic volatility, and for Table A13 we measure the idiosyncratic volatility
relative to the CAPM instead of the Fama & French (1993) model. Our main results are

robust to each of these definitions.

3We obtain this figure by multiplying the univariate cross-sectional premium with 2 times the average
cross-sectional standard deviation of the alternative beta uncertainty measure of 0.2691.

4We obtain this figure by multiplying the univariate cross-sectional premium with 2 times the average
cross-sectional standard deviation of the alternative beta uncertainty measure of 0.6611.



OA3 Errors-In-Variables

The measure of beta uncertainty has to be pre-estimated before we include it in cross-
sectional regressions. Therefore, these cross-sectional regressions might be affected by errors-
in-variables. While we show that the results are similar when using portfolio sorts that are
far less strongly affected by errors-in-variables, in this section we directly account for this
in cross-sectional regressions. We use the instrumental variable approach of Christensen &
Prabhala (1998). First, for each stock, we regress the beta uncertainty measures on the mea-
sures 12 months before. The measurement errors in these variables should be uncorrelated
over time. Second, we replace our beta uncertainty measure with the fitted values from the
regressions performed for each stock. Finally, we re-run the regressions of Equation (2) in
the main part of the paper using the instrumental variable. In the presence of measurement
errors in the independent variable, there is a downward attenuation bias in the slope coef-
ficient. Hence, we expect the regression slopes to rise (in absolute terms) once we use the
instrumental variables.

We present the results in Table A14. The results when using the instrumental variable ap-
proach are qualitatively similar to our main results. Beta uncertainty earns an economically
large and significant negative premium in the cross-section of stock returns. Furthermore,
consistent with our expectations, the cross-sectional premium estimates are substantially

larger in magnitude for the instrumental variable approach.



Table Al: Portfolio Sorts: Beta Uncertainty — Beta Estimates

At the end of each month, we sort the stocks into value-weighted 5 portfolios according to their beta

uncertainty. The column labeled “5 minus 1”7 refers to the hedge portfolio buying the quintile of stocks

with the highest beta uncertainty and simultaneously selling the stocks in the quintile with the lowest beta

uncertainty. The table presents the value-weighted portfolio averages of the various beta measures used to

compute the beta uncertainty measure.

Rank | 1 2 3 4 5 5 minus 1
Individual Portfolio Betas

Beta 0.8982 1.1162 1.2913 1.4237 1.4664 0.5682
HIST 0.9052 1.0958 1.2674 1.4000 1.4109 0.5057
HIST6 0.9048 1.0944 1.2589 1.3962 1.4110 0.5062
EWMAg, 0.9072 1.0940 1.2596 1.3867 1.3989 0.4916
EWMA 143 0.9127 1.0886 1.2458 1.3598 1.3625 0.4497
Diml 0.8872 1.1213 1.2962 1.4219 1.4670 0.5798
Dim?2 0.8860 1.1188 1.2930 1.4237 1.5004 0.6144
Dim3 0.8799 1.1224 1.3026 1.4458 1.5598 0.6799
Dim4 0.8731 1.1253 1.3183 1.4742 1.6226 0.7494
SW 0.8822 1.1252 1.3108 1.4444 1.4704 0.5882




Table A2: Portfolio Sorts: Beta Uncertainty — Robustness

At the end of each month, we sort the stocks into 5 portfolios according to their beta uncertainty. The
column labeled “5 minus 1”7 refers to the hedge portfolio buying the quintile of stocks with the highest beta
uncertainty and simultaneously selling the stocks in the quintile with the lowest beta uncertainty. The row
labeled “Mean return” denotes the annualized average portfolio excess return. “CAPM alpha”, “4-factor
alpha”, “5-factor alpha”, and “FF5 alpha” refer to the alphas of the CAPM, the Carhart (1997) 4-factor, and
the 5-factor models (including Pastor & Stambaugh, 2003 liquidity), and the Fama & French (2015) 5-factor
model, respectively. Robust Newey & West (1987) standard errors using 6 lags are reported in parentheses.
* ** and *** indicate significance at the 10%, 5%, and 1% level, respectively. With NYSE breakpoints, we
first sort only the stocks traded on the NYSE by their beta uncertainty and then assign all stocks based on
the quintile breakpoints obtained from the first sort. In the panels denoted by “Models Augmented by BAB
Factor”, we present the alphas toward the respective models while adding the betting-against-beta factor of

Frazzini & Pedersen (2014) to the set of factors.

Rank | 1 2 3 4 5 | 5 minus 1

Equally Weighted

Mean return 0.0978*** 0.1106*** 0.1063*** 0.0886™** 0.0397 —0.0581*
(0.0172) (0.0223) (0.0267) (0.0324) (0.0412) (0.0320)

CAPM alpha 0.0477*** 0.0433*** 0.0266** —0.0021 —0.0598** —0.1075%**
(0.0098) (0.0114) (0.0131) (0.0169) (0.0252) (0.0272)

4-factor alpha 0.0326*** 0.0300*** 0.0202*** 0.0025 —0.0495*** —0.0821***
(0.0062) (0.0057) (0.0057) (0.0084) (0.0156) (0.0186)

5-factor alpha | 0.0327*** 0.0305*** 0.0210*** —0.0003 —0.0619*** | —0.0947***
(0.0075) (0.0071) (0.0068) (0.0098) (0.0192) (0.0228)

FF5 alpha 0.0137* 0.0092 0.0070 0.0013 —0.0374** —0.0511***
(0.0073) (0.0069) (0.0071) (0.0096) (0.0164) (0.0183)

Value-Weighted and NYSE Breakpoints

4-factor alpha 0.0100** 0.0042 —0.0004 —0.0059 —0.0390*** | —0.0490***
(0.0047) (0.0046) (0.0064) (0.0079) (0.0109) (0.0144)

Models Augmented by BAB Factor (Value-Weighted)

4-factor alpha 0.0015 0.0023 0.0087 —0.0076 —0.0658*** | —0.0673***
(0.0035) (0.0058) (0.0076) (0.0099) (0.0195) (0.0220)

FF5 alpha —0.0052* —0.0022 0.0163** 0.0108 —0.0518*** —0.0466**
(0.0030) (0.0073) (0.0077) (0.0097) (0.0177) (0.0190)

Models Augmented by BAB Factor (Equally Weighted)

4-factor alpha | 0.0152*** 0.0151*** 0.0129** 0.0056 —0.0361** —0.0512%**
(0.0043) (0.0041) (0.0055) (0.0095) (0.0175) (0.0191)

FF5 alpha 0.0041 0.0023 0.0038 0.0026 —0.0328* —0.0369**
(0.0057) (0.0061) (0.0075) (0.0109) (0.0179) (0.0185)




Table A3: Portfolio Sorts: Beta Uncertainty — Beta Uncertainty
Orthogonalized to Beta
At the end of each month, we sort the stocks into 5 portfolios according to their orthogonalized beta
uncertainty. The column labeled “5 minus 17 refers to the hedge portfolio buying the quintile of stocks
with the highest beta uncertainty and simultaneously selling the stocks in the quintile with the lowest beta
uncertainty. The row labeled “Mean return” denotes the annualized average portfolio excess return. “CAPM
alpha”, “4-factor alpha”, “5-factor alpha”, and “FF5 alpha” refer to the alphas of the CAPM, the Carhart
(1997) 4-factor, and the 5-factor models (including Pastor & Stambaugh, 2003 liquidity), and the Fama &
French (2015) 5-factor model, respectively. Robust Newey & West (1987) standard errors using 6 lags are

reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Rank ‘ 1 2 3 4 5 ‘ 5 minus 1
Value-Weighted
Mean return 0.0703*** 0.0848*** 0.0846*** 0.0595* 0.0161 —0.0542**
(0.0190) (0.0213) (0.0256) (0.0305) (0.0378) (0.0267)
CAPM alpha 0.0028 0.0114* 0.0016 —0.0329** —0.0875*** —0.0903***
(0.0039) (0.0069) (0.0110) (0.0145) (0.0216) (0.0235)
4-factor alpha 0.0086** 0.0057 —0.0063 —0.0412*** —0.0757*** —0.0843***
(0.0035) (0.0064) (0.0090) (0.0113) (0.0172) (0.0183)
5-factor alpha 0.0096** 0.0040 —0.0061 —0.0469*** —0.0910*** —0.1006***
(0.0041) (0.0076) (0.0110) (0.0140) (0.0213) (0.0228)
FF5 alpha 0.0107** —0.0068 —0.0075 —0.0315** —0.0621*** —0.0728***
(0.0047) (0.0071) (0.0128) (0.0140) (0.0150) (0.0160)
Equally Weighted
Mean return 0.0932*** 0.1074*** 0.1026*** 0.0896*** 0.0495 —0.0436*
(0.0199) (0.0225) (0.0259) (0.0309) (0.0390) (0.0261)
CAPM alpha 0.0280*** 0.0376*** 0.0252** 0.0051 —0.0406* —0.0686***
(0.0068) (0.0106) (0.0127) (0.0168) (0.0246) (0.0234)
4-factor alpha 0.0253*** 0.0280*** 0.0180*** 0.0047 —0.0403*** —0.0656"**
(0.0056) (0.0049) (0.0048) (0.0077) (0.0151) (0.0172)
5-factor alpha 0.0291*** 0.0276*** 0.0184*** —0.0004 —0.0529*** —0.0820***
(0.0068) (0.0061) (0.0058) (0.0093) (0.0191) (0.0220)
FF5 alpha 0.0157* 0.0093 0.0059 —0.0030 —0.0341** —0.0498***
(0.0087) (0.0066) (0.0062) (0.0092) (0.0165) (0.0188)




Table A4: Portfolio Sorts: Beta Uncertainty — Subsamples

In this table, we present the portfolio sorting results for 3 separate 22-year subsamples (the last subsample
contains only 21 years) as well as an extended sample period starting with data from 1926. At the end of
each month, we sort the stocks into 5 portfolios according to their beta uncertainty. The column labeled “5
minus 17 refers to the hedge portfolio buying the quintile of stocks with the highest beta uncertainty and
simultaneously selling the stocks in the quintile with the lowest beta uncertainty. “4-factor alpha” refers to
the alpha of the Carhart (1997) 4-factor model. Robust Newey & West (1987) standard errors using 6 lags

are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Rank | 1 2 3 4 5 | 5 minus 1

Value-Weighted (1951-1972)

4-factor alpha 0.0156*** —0.0060 —0.0219*** —0.0485*** —0.0809*** —0.0965***
(0.0032) (0.0056) (0.0080) (0.0128) (0.0166) (0.0181)

Value-Weighted (1973-1994)

4-factor alpha 0.0084* 0.0132 0.0032 —0.0514*** —0.1639*** —0.1722***
(0.0044) (0.0096) (0.0119) (0.0125) (0.0183) (0.0209)

Value-Weighted (1995-2015)

4-factor alpha 0.0162** 0.0090 —0.0215 —0.0428* —0.1213*** —0.1375%**
(0.0077) (0.0112) (0.0177) (0.0230) (0.0394) (0.0453)

Equally Weighted (1951-1972)

4-factor alpha 0.0340*** 0.0254*** 0.0128** —0.0111 —0.0398*** —0.0738***
(0.0078) (0.0052) (0.0063) (0.0073) (0.0109) (0.0157)

Equally Weighted (1973-1994)

4-factor alpha 0.0273*** 0.0397*** 0.0169*** —0.0212** —0.1291*** —0.1564***
(0.0101) (0.0062) (0.0054) (0.0093) (0.0202) (0.0233)

Equally Weighted (1995-2015)

4-factor alpha 0.0495*** 0.0360*** 0.0243** 0.0092 —0.0433 —0.0929**
(0.0132) (0.0126) (0.0116) (0.0170) (0.0318) (0.0394)

Value-weighted (1926-2015)

4-factor alpha 0.0102*** 0.0016 —0.0151** —0.0355*** —0.0738*** —0.0840***
(0.0029) (0.0047) (0.0066) (0.0096) (0.0179) (0.0198)

Equally Weighted (1926-2015)

4-factor alpha 0.0303*** 0.0269*** 0.0139*** —0.0012 —0.0369*** —0.0673***
(0.0059) (0.0051) (0.0053) (0.0068) (0.0131) (0.0161)




Table A5: Double Sorts: Beta Uncertainty and SE

This table reports annualized value-weighted Carhart (1997) 4-factor alphas for double-sorted portfolios. At
the end of each month, we first sort the stocks into 5 quintile portfolios according to their SE. Within each
of these quintiles, we sort the stocks into another 5 portfolios based on their beta uncertainty. We report the
alphas of all 25 portfolios as well as the respective long minus short (“5 minus 1”) portfolios. The row labeled
“5 minus 1”7 refers to the hedge portfolio buying the quintile of stocks with the highest beta uncertainty and
simultaneously selling the stocks in the quintile with the lowest beta uncertainty. Within each portfolio, we
value-weight the stocks. The final column (“Avg.”) reports the averages for each beta uncertainty quintile

across the quintiles sorted on SE. Robust Newey & West (1987) standard errors using 6 lags are reported in

parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
SE
1 2 3 4 5 | 5minus 1 | Avg.
1 0.0187** 0.0207** 0.0000 0.0130 —0.0317** | —0.0504*** 0.0044
(0.008) (0.009) (0.011) (0.016) (0.014) (0.018) (0.006)
2 0.0067 0.0064 0.0114 —0.0069 —0.0418** | —0.0485** —0.0044
(0.007) (0.009) (0.011) (0.014) (0.017) (0.019) (0.006)
Une 3 0.0094 0.0027 0.0073 —0.0004 —0.0526*** | —0.0620*** | —0.0073
s (0.007) (0.010) (0.012) (0.014) (0.019) (0.022) (0.007)
4 —0.0032 —0.0076 —0.0301**  —0.0423*** —0.1061"** | —0.1029*** | —0.0382***
(0.008) (0.012) (0.012) (0.015) (0.022) (0.024) (0.009)
5 —0.0015 —0.0163 —0.0260 —0.0536"*  —0.1532*** | —0.1517*** | —0.0497***
(0.010) (0.015) (0.017) (0.024) (0.026) (0.029) (0.011)
5 minus 1 —0.0202* —0.0370* —0.0260 —0.0666**  —0.1215*** —0.0541***
(0.012) (0.020) (0.020) (0.028) (0.028) (0.013)




Table A6: Return Predictability of Aggregate Beta Uncertainty: Control
Variables
This table summarizes the results of return predictability regressions on aggregate beta uncertainty. We
regress annualized excess returns on the CRSP value-weighted index over & months on a constant and one
or several lagged predictive variables. We consider forecasting horizons (h) of 1, 3, 6, 9, 12, 18, 24, and 36
months (Panels A-H). To account for overlapping return observations, in parentheses we present Hodrick
(1992) corrected standard errors. Adj. R? reports the adjusted R%. *, ** and *** indicate significance at

the 10%, 5%, and 1% level, respectively.

Panel A. 1-Month Horizon

Constant 0.2805*** 0.0554*** 0.0236 0.3380** 0.1932 0.0565*** 0.0105 0.1979*** 0.4696**
(s.e.) (0.077) (0.019) (0.050) (0.169) (0.156) (0.019) (0.030) (0.074) (0.223)
Unc??Y —0.1785*** —0.2537***
(s.c.) (0.057) (0.073)
CAY 2.5108*** 3.7205***
(s.e.) (0.751) (0.905)
DFSP 3.4647 —0.2623
(s.c.) (5.292) (6.663)
log(P/D) —7.9893 5.1192
(s.e.) (4.782) (8.409)
log(P/E) —4.8867 —4.4203
(s.e.) (5.626) (9.333)
RREL —59.057** —45.438
(s.e.) (23.52) (30.22)
TMSP 2.7273* 0.1012
(s.e.) (1.402) (1.705)
Idio Vol.®99 —11.123* —11.933
(s.e.) (6.230) (8.105)
Adj. R? 0.008 0.011 0.000 0.003 0.000 0.008 0.004 0.006 0.034
Panel B. 3-Month Horizon

Constant 0.2724*** 0.0563*** 0.0189 0.3536** 0.1804 0.0575*** 0.0146 0.1700** 0.4992**
(s.e.) (0.074) (0.019)  (0.048)  (0.167) (0.150)  (0.019) (0.030) (0.068) (0.212)
Unc%% —0.1712*** —0.2482***
(s.e.) (0.055) (0.069)
CAY 2.4480*** 3.4855***
(s.c.) (0.769) (0.939)
DFSP 4.0403 —0.5779
(s.e.) (5.103) (6.192)
log(P/D) —8.4084* 0.5643
(s.e.) (4.746) (7.659)
log(P/E) ~4.3053 ~1.9203
(s.e.) (5.303) (8.320)
RREL —43.937** —22.027
(s.e.) (22.25) (27.52)
TMSP 2.5389* 0.7373
(s.e.) (1.396) (1.645)
Idio Vol.®99 —8.8449 —8.1724
(s.e.) (5.721) (6.949)
Adj. R? 0.022 0.030 0.002 0.011 0.002 0.012 0.012 0.011 0.090
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Table A6: Return Predictability of Aggregate Beta Uncertainty: Control Variables

(continued)
Panel C. 6-Month Horizon
Constant 0.2414*** 0.0556*** 0.0091 0.3748** 0.1855 0.0577*** 0.0182 0.1524** 0.4531**
(s.e.) (0.071) (0.019) (0.044) (0.165) (0.142) (0.019) (0.030) (0.065) (0.205)
Unc% —0.1462*** —0.2037***
(s.e.) (0.052) (0.066)
CAY 2.4367*** 3.2376***
(s.e.) (0.783) (0.935)
DFSP 5.0760 1.3905
(s.e.) (4.599) (5.637)
log(P/D) ~9.0107* ~1.5106
(s.e.) (4.712) (7.142)
log(P/E) —4.5754 —1.0635
(s.e) (5.112) (7.202)
RREL —35.130* —9.1984
(s.e.) (21.05) (25.00)
TMSP 2.3371* 0.9322
(s.e.) (1.358) (1.564)
Idio Vol.®99 —17.4424 —6.8732
(s.e.) (5.457) (6.374)
Adj. R? 0.030 0.055 0.008 0.025 0.006 0.015 0.019 0.014 0.143
Panel D. 9-Month Horizon

Constant 0.2072*** 0.0557*** 0.0178 0.3719** 0.1921 0.0578*** 0.0137 0.1612** 0.4665**
(se) (0.068) (0.019) (0.042) (0.164) (0.136) (0.019) (0.030) (0.063) (0.198)
Uncaﬂgg —0.1188** —0.1613**
(s.e.) (0.051) (0.063)
CAY 2.2668"** 2.7430***
(se) (0.805) (0.953)
DFSP 4.1884 0.4074
(s.e.) (4.268) (5.365)
log(P/D) —8.9292* ~3.1691
(s.e.) (4.678) (6.857)
log(P/E) —4.8124 —1.6819
(s.e.) (4.915) (6.725)
RREL —32.685 —5.6040
(s.e.) (20.33) (23.31)
TMSP 2.6144** 1.7567
(s.e.) (1.310) (1.505)
Idio Vol.®99 —8.1210 —6.5018
(s.e.) (5.272) (6.090)
Adj. R? 0.030 0.069 0.008 0.037 0.010 0.019 0.037 0.026 0.186
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Table A6: Return Predictability of Aggregate Beta Uncertainty: Control Variables
(continued 2)

Panel E. 12-Month Horizon

Constant 0.1884*** 0.0553*** 0.0223 0.3662** 0.1930 0.0579*** 0.0142 0.1569** 0.4674**
(s.e.) (0.067) (0.019) (0.040) (0.163) (0.133) (0.019) (0.030) (0.062) (0.194)
Unci? —0.1037** —0.1410**
(s.e.) (0.050) (0.060)
CAY 2.1959*** 2.5301***
(s.e.) (0.831) (0.964)
DFSP 3.7248 —0.2504
(s.e.) (4.002) (5.064)
log(P/D) —8.7684* —3.9195
(s.e.) (4.674) (6.665)
log(P/E) —4.8411 —2.0184
(s.e.) (4.790) (6.402)
RREL —31.838 —5.9449
(s.e.) (19.50) (21.91)
TMSP 2.5921** 1.9313
(s.e.) (1.260) (1.435)
Idio Vol.#99 —7.7679 —5.5198
(s.e.) (5.141) (5.947)
Adj. R? 0.031 0.086 0.009 0.048 0.014 0.025 0.049 0.033 0.227
Panel F. 18-Month Horizon

Constant 0.1739***  0.0551*** 0.0339 0.3560** 0.1696 0.0580*** 0.0203 0.1488** 0.4931***
(s.e.) (0.063)  (0.019) (0.038) (0.161) (0.126) (0.019) (0.029) (0.058) (0.187)
Uncaﬂgg —0.0922* —0.1377**
(s.e.) (0.048) (0.055)
CAY 2.0805** 2.3420**
(s.e.) (0.866) (0.978)
DFSP 2.5150 —1.9080
(s.c.) (3.702) (4.755)
log(P/D) —8.4883" ~6.9570
(s.e.) (4.627) (6.523)
log(P/E) —4.0041 0.4856
(s.e.) (4.549) (5.906)
RREL —22.822 2.3783
(s.e.) (17.09) (18.85)
TMSP 2.2427* 1.9134
(s.e.) (1.157) (1.343)
Idio Vol.#99 —7.1212 —3.6890
(s.e.) (4.802) (5.521)
Adj. R? 0.037 0.115 0.006 0.069 0.015 0.020 0.056 0.042 0.298




Table A6: Return Predictability of Aggregate Beta Uncertainty: Control Variables

Panel G. 24-Month Horizon

(continued 3)

Constant 0.1602***  0.0546*** 0.0429 0.3335** 0.1498 0.0579*** 0.0241 0.1436** 0.4831***
(s.e.) (0.059)  (0.019) (0.037) (0.160) (0.119) (0.019) (0.028) (0.056) (0.185)
Unci? —0.0813* —0.1316**
(s.e.) (0.045) (0.052)
CAY 1.9536** 2.1673**
(s.e.) (0.896) (1.021)
DFSP 1.5665 —2.5554
(s.e.) (3.529) (4.709)
log(P/D) —7.8590" ~8.3849
(s.e.) (4.613) (6.336)
log(P/E) ~3.3011 2.0454
(s.e.) (4.289) (5.190)
RREL —12.639 13.499
(s.e.) (14.82) (16.50)
TMSP 2.0182* 2.0133
(s.e.) (1.075) (1.331)
Idio Vol.#99 —6.7103 —2.6433
(s.e.) (4.583) (5.199)
Adj. R? 0.042 0.141 0.003 0.084 0.015 0.008 0.065 0.054 0.372
Panel H. 36-Month Horizon
Constant 0.1208**  0.0522*** 0.0496 0.3060* 0.1505 0.0575*** 0.0259 0.1381*** 0.3941**
(s.e.) (0.056)  (0.020) (0.035) (0.158) (0.111) (0.019) (0.026) (0.052) (0.178)
Uncaﬂgg —0.0503 —0.0813*
(s.e.) (0.043) (0.048)
CAY 1.8047** 1.7867*
(s.e.) (0.912) (1.043)
DFSP 0.8203 —1.9535
(s.c.) (3.221) (4.281)
log(P/D) —7.0992 ~6.9359
(s.e.) (4.560) (5.678)
log(P/E) —3.3427 0.8199
(s.e.) (3.993) (4.355)
RREL —11.330 10.568
(s.e.) (11.10) (12.51)
TMSP 1.9157** 1.9469
(s.e.) (0.958) (1.234)
Idio Vol.#99 —6.2949 —2.4606
(s.e.) (4.208)  (4.690)
Adj. R? 0.027 0.202 0.001 0.117 0.027 0.011 0.100 0.081 0.457
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