• 1. Gottlieb, J., Oudeyer, P.-Y., Lopes, M. & Baranes, A. Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn. Sci. 17, 585–593 (2013).
• 2. Jirout, J. & Klahr, D. Children’s scientific curiosity: In search of an operational definition of an elusive concept. Dev. Rev. 32, 125–160 (2012).
• 3. Kidd, C. & Hayden, B. Y. The psychology and neuroscience of curiosity. Neuron 88, 449–460 (2015).
• 4. von Stumm, S., Hell, B. & Chamorro-Premuzic, T. The hungry mind: Intellectual curiosity is the third pillar of academic performance. Perspect. Psychol. Sci. 6, 574–588 (2011).
• 5. Gruber, M. J., Gelman, B. D. & Ranganath, C. States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron 84, 486–496 (2014).
• 6. Kang, M. J. et al. The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychol. Sci. 20, 963–973 (2009).
• 7. Renninger, K. A. & Hidi, S. The power of interest for motivation and engagement. (Routledge, NY, 2016).
• 8. Sakaki, M., Yagi, A. & Murayama, K. Curiosity in old age: A possible key to achieving adaptive aging. Neurosci. Biobehav. Rev. 88, 106–116 (2018).
• 9. Rozek, C. S., Svoboda, R. C., Harackiewicz, J. M., Hulleman, C. S. & Hyde, J. S. Utility-value intervention with parents increases students’ STEM preparation and career pursuit. Proc. Natl. Acad. Sci. 114, 909–914 (2017).
• 10. Loewenstein, G. The psychology of curiosity: A review and reinterpretation. Psychol. Bull. 116, 75–98 (1994).
• 11. Berlyne, D. E. Conflict, arousal, and curiosity. (McGraw-Hill Book Company, 1960). doi:10.1037/11164-000
• 12. Silvia, P. J. Exploring the Psychology of Interest. (Oxford University Press, 2006). doi:10.1093/acprof:oso/9780195158557.001.0001
• 13. Marvin, C. B. & Shohamy, D. Curiosity and reward: Valence predicts choice and information prediction errors enhance learning. J. Exp. Psychol. Gen. 145, 266–272 (2016).
• 14. Gottlieb, J. & Oudeyer, P.-Y. Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19, 758–770 (2018).
• 15. Murayama, K. A reward-learning framework of autonomous knowledge acquisition: An integrated account of curiosity, interest, and intrinsic-extrinsic rewards. Preprint at OSF doi:10.31219/osf.io/zey4k (2019).
• 16. Gruber, M. J. & Ranganath, C. How Curiosity Enhances Hippocampus-Dependent Memory: The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework. Trends Cogn. Sci. 23, 1014–1025 (2019).
• 17. Kobayashi, K., Ravaioli, S., Baranès, A., Woodford, M. & Gottlieb, J. Diverse motives for human curiosity. Nat. Hum. Behav. 3, 587–595 (2019).
• 18. Blanchard, T. C., Hayden, B. Y. & Bromberg-Martin, E. S. Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity. Neuron 85, 602–614 (2015).
• 19. Daddaoua, N., Lopes, M. & Gottlieb, J. Intrinsically motivated oculomotor exploration guided by uncertainty reduction and conditioned reinforcement in non-human primates. Sci. Rep. 6, 20202 (2016).
• 20. Vasconcelos, M., Monteiro, T. & Kacelnik, A. Irrational choice and the value of information. Sci. Rep. 5, 13874 (2015).
• 21. Bennett, D., Bode, S., Brydevall, M., Warren, H. & Murawski, C. Intrinsic valuation of information in decision making under uncertainty. PLOS Comput. Biol. 12, e1005020 (2016).
• 22. Brydevall, M., Bennett, D., Murawski, C. & Bode, S. The neural encoding of information prediction errors during non-instrumental information seeking. Sci. Rep. 8, 6134 (2018).
• 23. Eliaz, K. & Schotter, A. Paying for confidence: An experimental study of the demand for non-instrumental information. Games Econ. Behav. 70, 304–324 (2010).
• 24. Berridge, K. C. Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179–209 (2004).
• 25. Anselme, P. & Robinson, M. J. F. Incentive Motivation: The Missing Piece between Learning and Behavior. in The Cambridge Handbook of Motivation and Learning (eds. Renninger, K. A. & Hidi, S.) 163–182 (Cambridge University Press, 2019). doi:10.1017/9781316823279.009
• 26. Berridge, K. C. From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur. J. Neurosci. 35, 1124–1143 (2012).
• 27. Robinson, T. E. & Berridge, K. C. The incentive sensitization theory of addiction: some current issues. Philos. Trans. R. Soc. B Biol. Sci. 363, 3137–3146 (2008).
• 28. Kringelbach, M. L. & Berridge, K. C. Neuroscience of Reward, Motivation, and Drive. in Recent Developments in Neuroscience Research on Human Motivation (eds. Kim, S., Reeve, J. & Bong, M.) 23–35 (Emerald Group Publishing Limited, Bingley, 2016). doi:10.1108/S0749-742320160000019020
• 29. Berridge, K. C. ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiol. Behav. 97, 537–550 (2009).
• 30. Tang, D. W., Fellows, L. K., Small, D. M. & Dagher, A. Food and drug cues activate similar brain regions: A meta-analysis of functional MRI studies. Physiol. Behav. 106, 317–324 (2012).
• 31. O’Doherty, J. P., Deichmann, R., Critchley, H. D. & Dolan, R. J. Neural Responses during Anticipation of a Primary Taste Reward. Neuron 33, 815–826 (2002).
• 32. Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of Increasing Monetary Reward Selectively Recruits Nucleus Accumbens. J. Neurosci. 21, RC159–RC159 (2001).
• 33. Lawrence, N. S., Hinton, E. C., Parkinson, J. A. & Lawrence, A. D. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage 63, 415–422 (2012).
• 34. Litman, J. Curiosity and the pleasures of learning: Wanting and liking new information. Cogn. Emot. 19, 793–814 (2005).
• 35. Oosterwijk, S., Snoek, L., Tekoppele, J., Engelbert, L. & Scholte, H. S. Choosing to view morbid information involves reward circuitry. Preprint at bioRxiv doi:10.1101/795120 (2019).
• 36. Kobayashi, K. & Hsu, M. Common neural code for reward and information value. Proc. Natl. Acad. Sci. 116, 13061–13066 (2019).
• 37. Gerdeman, G. L., Partridge, J. G., Lupica, C. R. & Lovinger, D. M. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 26, 184–192 (2003).
• 38. Telzer, E. H. Dopaminergic reward sensitivity can promote adolescent health: A new perspective on the mechanism of ventral striatum activation. Dev. Cogn. Neurosci. 17, 57–67 (2016).
• 39. Wright, W. F. & Bower, G. H. Mood effects on subjective probability assessment. Organ. Behav. Hum. Decis. Process. 52, 276–291 (1992).
• 40. van Doorn, J. et al. The JASP Guidelines for Conducting and Reporting a Bayesian Analysis. Preprint at PsyArxiv doi:10.31234/osf.io/yqxfr (2019).
• 41. Moss, S. A., Irons, M. & Boland, M. The magic of magic: The effect of magic tricks on subsequent engagement with lecture material. Br. J. Educ. Psychol. 87, 32–42 (2017).
• 42. Ligneul, R., Mermillod, M. & Morisseau, T. From relief to surprise: Dual control of epistemic curiosity in the human brain. Neuroimage 181, 490–500 (2018).
• 43. Baranes, A., Oudeyer, P.-Y. & Gottlieb, J. Eye movements reveal epistemic curiosity in human observers. Vision Res. 117, 81–90 (2015).
• 44. Westfall, J., Nichols, T. E. & Yarkoni, T. Fixing the stimulus-as-fixed-effect fallacy in task fMRI. Wellcome Open Res. 1, 23 (2016).
• 45. Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B. & Gabrieli, J. D. E. Reward-Motivated Learning: Mesolimbic Activation Precedes Memory Formation. Neuron 50, 507–517 (2006).
• 46. Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291 (2016).
• 47. Kolling, N. et al. Value, search, persistence and model updating in anterior cingulate cortex. Nat. Neurosci. 19, 1280–1285 (2016).
• 48. Pochon, J.-B., Riis, J., Sanfey, A. G., Nystrom, L. E. & Cohen, J. D. Functional Imaging of Decision Conflict. J. Neurosci. 28, 3468–3473 (2008).
• 49. Botvinick, M. M., Cohen, J. D. & Carter, C. S. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–546 (2004).
• 50. Niv, Y. Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154 (2009).
• 51. O’Doherty, J. Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning. Science 304, 452–454 (2004).
• 52. Marche, K., Martel, A.-C. & Apicella, P. Differences between Dorsal and Ventral Striatum in the Sensitivity of Tonically Active Neurons to Rewarding Events. Front. Syst. Neurosci. 11, (2017).
• 53. Morrison, I., Tipper, S. P., Fenton-Adams, W. L. & Bach, P. “Feeling” others’ painful actions: The sensorimotor integration of pain and action information. Hum. Brain Mapp. 34, 1982–1998 (2013).
• 54. Guo, X. et al. Empathic neural responses to others’ pain depend on monetary reward. Soc. Cogn. Affect. Neurosci. 7, 535–541 (2012).
• 55. Whitmarsh, S., Nieuwenhuis, I. L. C., Barendregt, H. P. & Jensen, O. Sensorimotor alpha activity is modulated in response to the observation of pain in others. Front. Hum. Neurosci. 5, (2011).
• 56. Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S. A. R. B. & Nieuwenhuis, S. Neural mechanisms underlying the induction and relief of perceptual curiosity. Front. Behav. Neurosci. 6, (2012).
• 57. Kruger, J. & Evans, M. The paradox of Alypius and the pursuit of unwanted information. J. Exp. Soc. Psychol. 45, 1173–1179 (2009).
• 58. Bromberg-Martin, E. S. & Hikosaka, O. Midbrain Dopamine Neurons Signal Preference for Advance Information about Upcoming Rewards. Neuron 63, 119–126 (2009).
• 59. Rodriguez Cabrero, J. A. M., Zhu, J.-Q. & Ludvig, E. A. Costly curiosity: People pay a price to resolve an uncertain gamble early. Behav. Processes 160, 20–25 (2019).
• 60. Oosterwijk, S. Choosing the negative: A behavioral demonstration of morbid curiosity. PLoS One 12, e0178399 (2017).
• 61. Hsee, C. K. & Ruan, B. The Pandora effect: The power and peril of curiosity. Psychol. Sci. 27, 659–666 (2016).
• 62. Noordewier, M. K. & van Dijk, E. Curiosity and time: from not knowing to almost knowing. Cogn. Emot. 31, 411–421 (2017).
• 63. Dickinson, A. & Balleine, B. The Role of Learning in the Operation of Motivational Systems. in Stevens’ Handbook of Experimental Psychology (eds. Pashler, H. & Gallistel, R.) (John Wiley & Sons, Inc., 2002). doi:10.1002/0471214426.pas0312
• 64. Litman, J., Hutchins, T. & Russon, R. Epistemic curiosity, feeling-of-knowing, and exploratory behaviour. Cogn. Emot. 19, 559–582 (2005).
• 65. Schonberg, T. et al. Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson’s disease patients: evidence from a model-based fMRI study. Neuroimage 49, 772–781 (2010).
• 66. Takahashi, Y., Schoenbaum, G. & Niv, A. Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model. Front. Neurosci. 2, 86–99 (2008).
• 67. van Lieshout, L. L. F., Vandenbroucke, A. R. E., Müller, N. C. J., Cools, R. & de Lange, F. P. Induction and Relief of Curiosity Elicit Parietal and Frontal Activity. J. Neurosci. 38, 2579–2588 (2018).
• 68. Di Domenico, S. I. & Ryan, R. M. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research. Front. Hum. Neurosci. 11, (2017).
• 69. Preuschoff, K., Quartz, S. R. & Bossaerts, P. Human Insula Activation Reflects Risk Prediction Errors As Well As Risk. J. Neurosci. 28, 2745–2752 (2008).
• 70. Alexander, W. H. & Brown, J. W. The Role of the Anterior Cingulate Cortex in Prediction Error and Signaling Surprise. Top. Cogn. Sci. 11, 119–135 (2019).
• 71. Silvia, P. J. What Is Interesting? Exploring the Appraisal Structure of Interest. Emotion 5, 89–102 (2005).
• 72. Silvia, P. J. Appraisal components and emotion traits: Examining the appraisal basis of trait curiosity. Cogn. Emot. 22, 94–113 (2008).
• 73. Noordewier, M. K. & van Dijk, E. Interest in Complex Novelty. Basic Appl. Soc. Psych. 38, 98–110 (2016).
• 74. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).
• 75. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron 79, 217–240 (2013).
• 76. Murayama, K., FitzGibbon, L. & Sakaki, M. Process Account of Curiosity and Interest: A Reward-Learning Perspective. Educ. Psychol. Rev. 31, 875–895 (2019).
• 77. Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C. & Berns, G. S. Human Striatal Responses to Monetary Reward Depend On Saliency. Neuron 42, 509–517 (2004).
• 78. Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W. & Woldorff, M. G. The Involvement of the Dopaminergic Midbrain and Cortico-Striatal-Thalamic Circuits in the Integration of Reward Prospect and Attentional Task Demands. Cereb. Cortex 22, 607–615 (2012).
• 79. Ozono, H. et al. Magic Curiosity Arousing Tricks (MagicCATs): A novel stimulus collection to induce epistemic emotions. Preprint at PsyArXiv doi:10.31234/osf.io/qxdsn (2020).
• 80. Fastrich, G. M., Kerr, T., Castel, A. D. & Murayama, K. The role of interest in memory for trivia questions: An investigation with a large-scale database. Motiv. Sci. 4, 227–250 (2018).
• 81. Peirce, J. W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2, (2009).
• 82. Murayama, K., Matsumoto, M., Izuma, K. & Matsumoto, K. Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proc. Natl. Acad. Sci. 107, 20911–20916 (2010).
• 83. Murayama, K. et al. How self-determined choice facilitates performance: A Key role of the ventromedial prefrontal cortex. Cereb. Cortex 25, 1241–1251 (2015).
• 84. Worsley, K. J. et al. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 4, 58–73 (1996).
• 85. Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).
• 86. Mumford, J. A., Poline, J.-B. & Poldrack, R. A. Orthogonalization of Regressors in fMRI Models. PLoS One 10, e0126255 (2015).
• 87. Rissman, J., Gazzaley, A. & D’Esposito, M. Measuring functional connectivity during distinct stages of a cognitive task. Neuroimage 23, 752–763 (2004).
• 88. Göttlich, M., Beyer, F. & Krämer, U. M. BASCO: a toolbox for task-related functional connectivity. Front. Syst. Neurosci. 9, (2015).
• 89. Tomasi, D. & Volkow, N. D. Laterality Patterns of Brain Functional Connectivity: Gender Effects. Cereb. Cortex 22, 1455–1462 (2012).
• 90. Wang, D., Buckner, R. L. & Liu, H. Functional Specialization in the Human Brain Estimated By Intrinsic Hemispheric Interaction. J. Neurosci. 34, 12341–12352 (2014).
• 91. Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
• 92. Brauer, M. & Curtin, J. J. Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychol. Methods 23, 389–411 (2018).
• 93. Murayama, K., Sakaki, M., Yan, V. X. & Smith, G. M. Type I error inflation in the traditional by-participant analysis to metamemory accuracy: A generalized mixed-effects model perspective. J. Exp. Psychol. Learn. Mem. Cogn. 40, 1287–1306 (2014).
• 94. Ludbrook, J. Interim analyses of data as they accumulate in laboratory experimentation. BMC Med. Res. Methodol. 3, 15 (2003).
• 95. Šidák, Z. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. J. Am. Stat. Assoc. 62, 626–633 (1967).
• 96. Stone, M. Comments on Model Selection Criteria of Akaike and Schwarz. J. R. Stat. Soc. Ser. B 41, 276–278 (1979).
• 97. Wagenmakers, E.-J. A practical solution to the pervasive problems of p values. Psychon. Bull. Rev. 14, 779–804 (2007).
• 98. Masson, M. E. J. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav. Res. Methods 43, 679–690 (2011).
• 99. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).
• 100. Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R. & Kievit, R. A. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res. 4, 63 (2019).
• 101. Muthén, L. K. & Muthén, B. O. Mplus User’s Guide. Seventh Edition. (2012).
• 102. Enders, C. K. & Tofighi, D. Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychol. Methods 12, 121–138 (2007).
• 103. McNeish, D., Stapleton, L. M. & Silverman, R. D. On the unnecessary ubiquity of hierarchical linear modeling. Psychol. Methods 22, 114–140 (2017).
• 104. Arend, M. G. & Schäfer, T. Statistical power in two-level models: A tutorial based on Monte Carlo simulation. Psychol. Methods 24, 1–19 (2019).
• 105. Leong, Y. C., Hughes, B. L., Wang, Y. & Zaki, J. Neurocomputational mechanisms underlying motivated seeing. Nat. Hum. Behav. 3, 962–973 (2019).
• 106. Geuter, S., Qi, G., Welsh, R. C., Wager, T. D. & Lindquist, M. A. Effect Size and Power in fMRI Group Analysis. Preprint at bioRxiv doi:10.1101/295048 (2018).