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ABSTRACT 

Low vitamin B12 concentrations have been shown to be risk factors for metabolic traits in 

numerous observational studies; however, the relationship has remained inconsistent. It is 

possible that certain genotypes might jointly contribute to obesity and vitamin B12 deficiency, 

and these may be modulated by lifestyle factors (dietary factors and physical activity levels) 

across different ethnic groups. The implementation of a genetic approach to establish the 

relationship between vitamin B12 and obesity could be a more desirable option over 

observational studies, as results are less prone to confounding factors. Hence, the main aims of 

this thesis were to examine for the first time the association of common vitamin B12-related 

single nucleotide polymorphisms (SNPs) and metabolic SNPs with vitamin B12 concentrations 

and metabolic outcomes in multiple ethnic groups. In addition, the interaction between these 

SNPs and dietary factors (protein, carbohydrate and fat) on vitamin B12 concentrations and 

metabolic traits was investigated. A total of five studies with different study designs were used. 

These studies included a case-control study (Chennai Urban Rural Study; CURES, Asian India, 

n=900), three cross-sectional cohort studies [Genetics of obesity and Diabetes study (GOOD 

study; Sinhalese Sri Lankan adults, n=109), The Minangkabau Indonesia Study on Nutrition 

and Genetics (MINANG study; Indonesian women; n=118) and Brazilian adolescents (n=113)] 

and a 16 week-dietary randomized, single-blind, parallel-group dietary intervention [Dietary 

Intervention and VAScular function (DIVAS study; British adults, n=119)]. Gene-diet 

interactions were observed in the Sri Lankan and Indonesian populations between the vitamin 

B12-related SNPs and protein energy intake (%) on markers of central obesity (waist 

circumference (P=0.002) and body fat percentage (P= 0.034), respectively). In the Brazilian 

adolescent population, the metabolic and vitamin B12 related SNPs showed a significant 

interaction with carbohydrate and protein intakes on oxidised low density lipoprotein 

cholesterol (P=0.005) and homocysteine concentrations (P = 0.007), respectively, which are 



well-known independent risk factors for cardiovascular disease. Additionally, in the Indonesian 

population, an interaction was observed between vitamin B12-related SNPs and dietary fibre 

intake (g) on glycated haemoglobin levels (P =0.042), a marker of long-term glycaemic status. 

Furthermore, for the first time, a novel association between two obesity-related SNPs and 

vitamin B12 concentrations (P = 0.018) was observed in the Indian population. In summary, 

these studies in multiple ethnic groups show that the relationship between B12 deficiency and 

metabolic outcomes may be influenced by dietary factors such as protein and fibre intake. 

However, in the Indian population, we found that vitamin B12 concentrations may be 

influenced by a genetic predisposition to obesity, but without a dietary influence. Given the 

limited sample size in some of the cohorts, replication of the study findings is highly warranted. 
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associated (FTO) and Melanocortin 4 Receptor (MC4R); BMI, body mass index; SD, indicates 

standard deviations; WC, waist circumference. SFA, saturated fatty acid; MUFA, with either 

cis-monounsaturated fatty acids; n–6 PUFA, polyunsaturated fatty acid; TE, total energy; TAG, 

triacylglycerol; TC, Total Cholesterol; high-density lipoprotein, HDL; low-density lipoprotein 

(LDL) 
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Chapter 1      

Introduction to the thesis 

1.1  Introduction 

Vitamin B12 is an essential water soluble micronutrient, which participates as a 

cofactor for the synthesis of DNA, fatty acids, and myelin [1]. Vitamin B12 deficiency was 

previously thought to be limited to populations with a low intake of vitamin B12-rich foods 

(mainly vegetarians) and older adults, due to their impaired absorption of the vitamin through 

food [2]. However, alarmingly high prevalence rates of low plasma vitamin B12 status have 

been recognized to exist in the Indian subcontinent, Mexico, Central and South America, and 

selected areas in Africa [3]. Symptoms of vitamin B12 deficiency include haematological and 

neurological impairment. Additionally, observational studies have shown that low vitamin B12 

concentrations are accompanied by a wide range of chronic diseases and conditions, including 

obesity, insulin dysregulation and adverse cardiometabolic outcomes [4-10].  

 Metabolic diseases such as type 2 diabetes and obesity are world-wide health problems, 

which are now increasingly diagnosed earlier in life. The metabolic diseases are generally 

caused by the interaction between environmental factors (dietary factors and sedentary 

lifestyle) and a genetic predisposition to the development of metabolic diseases [11]. Whilst 

dietary factors are an important contributor to metabolic disorders, this relationship differs 

across countries, due to the variation in food consumed worldwide [12]. Studies have shown 

that the intrauterine imbalance of vitamin B12 and folate can affect DNA methylation and 

‘programme’ the offspring to develop metabolic disorders later in life [13] providing evidence 

for interactions between genes and nutrients in the development of metabolic disease.   

Many candidate genes have been studied in relation to their potential role in vitamin 

B12 metabolism, and an association between these genes and vitamin B12 concentrations have 
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been confirmed [14]. To date only two Mendelian Randomization studies (an analytical tool 

used to measure the causal relations between modifiable risk factors and a clinically relevant 

outcome, using measured variation in genes of known function [15]) have explored the 

relationship between a genetically determined decrease in serum vitamin B12 concentrations 

on body mass index (BMI) [16] and cardiometabolic risk [17] highlighting the need for more 

studies. Vitamin B12 levels, which are not a homogenous phenotype, are responsive to changes 

in diet and are dependent on the quality and consumption of animal protein [18]. Therefore, 

controlling diet is recommended in preventing vitamin B12 deficiency [19]. Given that the 

genetic make-up varies from individual to individual, it is vital to examine the interactive 

effects between dietary factors and genetics on vitamin B12 concentrations and metabolic 

traits, which will ultimately allow us to personalise diet according to each ethnic sub-group 

[12]. Furthermore, other modifiable factors (e.g. physical activity), which could interact with 

genetic factors should be taken into account. 

The following chapter will (i) explain the nutritional aspects of vitamin B12 (ii) focus 

on the importance of maintaining adequate vitamin B12 concentrations (iii) describe the 

symptoms associated with vitamin B12 deficiency (iv) explain the role of genes in influencing 

circulating vitamin B12 concentrations and (vi) explain the need for a nutrigenetics approach 

to study the role of genes and diet in the development of vitamin B12 deficiency and metabolic 

traits.  

1.2 Vitamin B12 function 

Vitamin B12 in the body is crucial for normal erythropoiesis [20]. Both folate and vitamin 

B12 are required for DNA synthesis, which codes for the production of billions of erythrocytes 

daily. Deficiency of either folate or vitamin B12 leads to the inhibition of purine and 

thymidylate synthesis, which impairs DNA synthesis. As a result erythroblast apoptosis and 

anaemia persists [20]. Additionally, vitamin B12 is an essential co-factor important for cell 
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metabolism, thus a deficiency will have serious clinical consequences. The intracellular 

conversion of vitamin B12 into two active co-enzymes, methylcobalamin (cytoplasm) and 

adenosylcobalamin (mitochondria) is essential for the homeostasis of methionine and 

methylmalonic acid, respectively [21, 22].  

In the cytoplasm, methylcobalamin participates as a co-factor for the enzyme 

methionine synthase; which converts homocysteine to methionine. This reaction also depends 

on folate, where the methyl group of methyltetrahydrofolate is transferred to homocysteine, to 

produce methionine and tetrahydrofolate (Figure 1) [23]. A deficiency of vitamin B12 may 

lead to the increase in homocysteine concentration, which is a known marker of cardiovascular 

disease (CVD) [24]. Furthermore, methionine synthase is important for purine and pyrimidine 

synthesis [23].  

 

Figure 1  Synthesis of methionine 

This chemical reaction is catalysed by methionine synthase. Methylcobalamin is a co-factor 

which serves as an intermediate in the transfer of a methyl group from 

methyltetrahydrofolate to homocysteine.  

 In mammals, the mitochondrial conversion of methylmalonyl-CoA to succinyl-CoA is 

catalysed by methylmalonyl-CoA mutase an enzyme which utilizes vitamin B12 (5-deoxy 

adenosyl cobalamin) as a co-enzyme [25, 26]. Subsequently, succinyl-CoA, which is important 

for lipid and carbohydrate synthesis, enters the Krebs cycle (Figure 2) [27]. A defect in the 

conversion of methylmalonyl-CoA to succinyl-CoA can cause the build-up of methylmalonyl-

CoA which gets converts into methylmalonic acid (MMA), which has detrimental implications 
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on the nervous system. Accumulated MMA is thought to be a myelin destabiliser, where 

excessive MMA leads to the incorporation of abnormal fatty acids into the myelin sheath [28, 

29].  

 

Figure 2 Succinyl-CoA synthesis 

 This chemical reaction is catalysed by methylmalonyl coenzyme A mutase (MUT). 5-deoxy-

adenosyl cobalamin is a co-factor which serves as an intermediate for the conversion of 

methylmalonyl-coA to succinyl-coA.  

1.3  Metabolism of vitamin B12 

While ingesting food, the salivary and oesophageal glands release transcobalamin-I 

(TCN1, also known as haptocorrin), which binds strongly to vitamin B12. The function of 

TCN1 is to protect vitamin B12 from acid degradation in the stomach [30]. Once vitamin B12 

reaches the duodenum, proteolytic enzymes from the pancreas release vitamin B12 from 

TCN1. Vitamin B12 then forms a new complex with intrinsic factor (IF), which is secreted by 

the gastric epithelium. The vitamin B12-IF complex interacts with the cubam receptor 

(consisting of cubilin and a receptor-associated protein) present on the apical surface of the 

distal ileal epithelium, at which the complex enters by endocytosis in the ileum [25].  Upon 

internalization, IF is degraded in enterocyte lysosomes, releasing the free vitamin B12 to the 

cytosol  in the form of hydroxocobalamin [31]. Next, hydroxocobalamin is either transformed 

into methylcobalamin in the cytoplasm or to adenosylcobalamin in the mitochondria [32]. 

Alternatively, vitamin B12 is transported into portal circulation by the ABC drug transport 
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protein (ABCC1), also known as multidrug resistance protein (MRP1) [25, 33]. Vitamin B12 

then binds to transcobalamin II (TC), which is then secreted into circulation and is transported 

as holotranscobalamin (holoTC) in serum and is distributed to tissues including the liver by 

receptor-mediated endocytosis [33].  

 In healthy adults, approximately 50-90% of vitamin B12 is stored in the liver as 

adenosylcobalamin (2000-5000 µg) [34, 35]. The remainder of vitamin B12 is stored in muscle, 

skin and blood plasma [36]. Approximately, 2-5 µg of vitamin B12 is lost daily as a result of 

cellular metabolism, irrespective of how much vitamin B12 is stored in the body [36]. Vitamin 

B12 is also excreted into bile (500 µg - 5000 µg) and is reabsorbed across the ileal enterocyte. 

Very small amounts of vitamin B12 absorption (1%–2% of an oral dose) occur by passive 

diffusion, and this route of absorption especially important for populations with limited or no 

intrinsic factor present (e.g., patients with gastric bypass surgery) [2]. 

1.4  Dietary sources and Bioavailability of vitamin B12 

1.4.1 Bioavailability of vitamin B12 

The intake of dietary vitamin B12 cannot be used as a sole measure of nutritional status. It 

is important to take into consideration how much of the vitamin B12 from the food source can 

be used systematically through normal body functions [37]. At present, the bioavailability of 

vitamin B12 is assumed to be between 40-50% for healthy adults with normal gastrointestinal 

functioning [37].  

Absorption of vitamin B12 are traditionally assessed by measuring faecal extraction of 

radioactivity, after consuming 100g of a food item labelled with radioactive vitamin B12 [38]. 

In healthy humans, the absorption of vitamin B12 has shown to vary according to the type and 

quantity of protein consumed within the diet [19]. Studies assessing bioavailability of B12 from 

different food sources in healthy participants showed that the absorption of vitamin B12 was 

better in milk (65%) and chicken (61-65%), in comparison to eggs (24-36%) [38-41].  
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A further issue to take into consideration, when discussing bioavailability, is that IF-

vitamin B12 receptors (present on the distal ileal epithelium), can be saturated and absorb a 

certain amount of vitamin B12 [38]. It is thought that  approximately 1.5-2.0 µg of vitamin B12 

can be absorbed from a meal, however other studies have reported higher absorption rates (up 

to 6 µg from a single meal) [37]. Bioavailability of vitamin B12 increases as the vitamin B12 

content in food increases up to a certain point, and then it decreases if the vitamin B12 content 

is higher than the absorption capacity of the IF-vitamin B12 receptors [38].  

Consuming processed food, improving hygiene and reheating cooked foods are some 

factors which reduce the bioavailability of vitamin B12 in foods [19]. Furthermore, the 

overgrowth of intestinal bacteria (because of poor dietary intake, antibiotics and stress), leads 

to the competitive uptake of vitamin B12 by bacteria and interferes with the bioavailability of 

vitamin B12 [42]. 

1.4.2 Nutritional Aspects of vitamin B12 

Vitamin B12 is synthesized from bacteria growing in soil, sewage, water and the 

intestinal lumen of animals. Vitamin B12 enters animal tissues when animals ingest vitamin 

B12-producing bacteria present on legumes/roots or produced in the animal’s rumen [38]. 

Although, micro-organisms in the human colon synthesize vitamin B12, humans cannot absorb 

it, as the majority of vitamin B12 is absorbed in the small intestine [43]. Consequently, the 

main sources of biologically active vitamin B12 vitamers are derived from animal products, 

such as milk, eggs, seafood and poultry [38]. Excellent sources of vitamin B12 include the 

livers of ruminant animals as well as shellfish, fish and fish roe (Table 1) [38, 43]. 

Table 1: Contents of uncooked foods containing a high vitamin B12 content 

Sources of B12 Vitamin B12 content (µg/100 g) a 
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Beef liver 60-122b 

Shellfish1 2-58 

Fish2 3.0-8.0 

Fish roe3 18 

The data has been extracted from a national Food composition data bank (The Danish National 

Food Institute, 2015). The data should be treated as an estimate, given that the food data base 

did not disclose how the levels of vitamin B12 were obtained. 

1 Clam, scallop, mussel, shrimp and oyster 

2 Salmon, trout, mackerel, and tuna 

3 Roe from Atlantic cod, lumpfish, and rainbow trout 

aThe adult UK Recommended Nutrient Intake (RNI) for vitamin B12 is 1.5 µg/day [44] 

bThe efficiency of absorption from liver is approximately 11% compared with 50% for other 

food [45]. 

It is believed that individuals following a vegan/vegetarian diet are more susceptible to 

vitamin B12 deficiency [46]. Any vitamin B12 present on plant-derived products are usually 

because of bacterial contamination. However, some plants such as dried purple laver (nori), 

mushroom fruiting bodies fermented soybeans (Tempe), and tea leaves have been found to 

contain vitamin B12 [46, 47]. Most blue-green algae (cyanobacteria) and certain edible 

shellfish contain vitamin B12 analogues which are inactive in mammals and may inhibit 

cobalamin-dependent enzymes [48]. As a result, vegetarians and vegans are reliant on vitamin 

supplements containing vitamin B12, and foods such as breakfast cereals, soy milk and 

nutritional yeast products which are fortified with vitamin B12 [43]. 
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1.4.3 Methods for the analysis of vitamin B12 in food 

Several methods have been used to determine the vitamin B12 content in foods 

including microbiological assays, chemiluminescence assays, polarographic, 

spectrophotometric and high-performance liquid chromatography [49]. The microbiological 

assay has been the most commonly used assay technique for foods, utilizing certain vitamin 

B12–requiring microorganisms, such as Lactobacillus delbrueckii subsp.lactis ATCC7830 

[19]. However, it is no longer the reference method due to the high measurement uncertainty 

of vitamin B12 [50]. Furthermore, this assay requires overnight incubation and may give false 

results if any inactive vitamin B12 analogues are present in the foods [38]. Currently, 

radioisotope dilution assay (RIDA) with labelled vitamin B12 and hog IF (pigs) have been used 

to determine vitamin B12 content in food [19]. Previous reports have suggested that the RIDA 

method is able to detect higher concentrations of vitamin B12 in foods compared to the 

microbiological assay method [19, 49]. New techniques employing more specific monoclonal 

antibodies and specific binding proteins are expected to advance the detection of vitamin B12 

in food products [51]. 

1.4.4 Recommended dietary intake of vitamin B12 

The recommended dietary intake (RDI) of vitamin B12 varies between countries. The 

European Union recommends 1 µg of vitamin B12, whilst the government of the United 

Kingdom and United States recommends a daily intake of 1.5 µg and 2.4 µg, respectively [23]. 

The requirements of vitamin B12 also varies according to age and whether a woman is pregnant 

or lactating, as shown in Table 2. 

Table 2: Recommended Dietary Allowance (RDA)/ Recommended Nutrient Intake 

(RNI) for vitamin B12  
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Age or condition Vitamin B12 requirement 

(µg/day) in healthy U.S 

and Canadian populations 

[45] 

Age or 

condition 

Vitamin B12 

requirement 

(µg/day) in a healthy 

UK population [44] 

Pregnant 2.6 Pregnant 1.5 

Breast-feeding 2.8 Breast-feeding 2.0 

0-6 mo 0.4 0-6 mo 0.3 

7-12 mo 0.5 7-12 mo 0.4 

1-3 yr 0.9 1-3 yr 0.5 

4-8 yr 1.2 4-6 yr 0.8 

9-13 yr 1.8 7-10 yr 1.0 

14-18 yr 2.4 11-14 yr 1.2 

19-50 yr 2.4 15+ yr 1.5 

51+ yr 2.4 

 

The RNI of vitamin B12 for healthy British adult men and women is 1.5 µg/day and is based 

on the estimated average requirement (EAR) of vitamin B12 which is 1.25 µg/day for over 15 

year olds (with no different recommendations for  pregnant women)[44]. Although the daily 

requirement of vitamin B12 for people over the age of 50 is the same as younger adults (1.5 

µg/day), this serves many problems. Individuals over the age of 51 years are at greater risk of 

vitamin B12 malabsorption, due to inadequate stomach acid and gastritis. As a result, the US 

institute of Medicine has recommended that individuals over 51 should take vitamin B12 

supplements or consume a greater amount of fortified vitamin B12 products [45, 50]. The 

storage of vitamin B12 in the body is approximately 1000 - 5000 µg, which is relatively high 

[23]. Therefore, vitamin B12 deficiency may not appear for several years, until stores deplete. 
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However, an inadequate dietary consumption of vitamin B12 is recommended to prevent the 

onset of vitamin B12 deficiency.  

For pregnant women in the UK, the RNI (1.5 µg/day) does not take into consideration 

the foetal deposition of vitamin B12 (0.10-0.2 µg/day). Furthermore, there is evidence that the 

maternal absorption of vitamin B12 is more efficient during pregnancy. During lactation, the 

RNI is further increased to 2.0 µg/day to take account of the approximate secretion of 0.33 µg 

vitamin B12/day in breast milk [38, 45].  

1.5  Vitamin B12 deficiency 

1.5.1 Symptoms of vitamin B12 deficiency 

The clinical manifestations of vitamin B12 deficiency vary in severity and can affect 

multiple systems in the body. The following section summarizes the current knowledge of the 

adverse functional effects of vitamin B12 deficiency.  

1.5.2 Prevalence of vitamin B12 deficiency from world-wide studies 

According to the World Health Organization (WHO), vitamin B12 deficiency may be 

considered a global public health problem affecting millions of individuals [52]. However, the 

incidence and prevalence of vitamin B12 deficiency worldwide is unknown due to the limited 

population-based data available (Table 3).  

Developed countries such as the United States, Germany and the United Kingdom have 

relatively constant mean vitamin B12 concentrations [3]. The data from the National Health 

and Nutrition Examination Survey (NHANES) reported the prevalence of serum vitamin B12 

concentrations in the United States population between 1999 to 2002 [53, 54]. Serum vitamin 

B12 concentrations of <148 pmol/L was present in < 1% of children and adolescents. In adults 

aged 20-39 years, concentrations were below this cut-off in ≤3% of individuals. In the elderly 

(70 years and older), ≈ 6% of persons had a vitamin B12 concentration below the cut-off. 
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Furthermore, ≈ 14-16% of adults and >20% of elderly individuals showed evidence of marginal 

vitamin B12 depletion (serum vitamin B12: 148-221 pmol/L) [53, 54]. In the United Kingdom, 

a National Diet and Nutrition Survey (NDNS) was conducted in adults aged between 19 to 64 

years in 2000–2001 [55] and in elderly individuals (≥ 65 years) in 1994–95 [56]. Six percent 

of men (n = 632) and 10% of women (n = 667) had low serum vitamin B12 concentrations, 

defined as <150 pmol/L. In a subgroup of women of reproductive age (19 to 49 years), 11% 

had low serum B12 concentrations <150 pmol/L (n=476). The prevalence of vitamin B12 

deficiency increased substantially in the elderly, where 31% of the elderly had vitamin B12 

levels below 130 pmol/L. In the most recent NDNS survey conducted between 2008-2011, 

serum vitamin B12 was measured in 549 adults [57]. The mean serum vitamin B12 

concentration for men (19-64 years) was 308 pmol/L, of which 0.9% of men had low serum 

B12 concentrations <150 pmol/L. In women aged between 19-64 years, the mean serum 

vitamin B12 concentration was slightly lower than men (298 pmol/L), with 3.3% having low 

vitamin B12 concentrations <150 pmol/L [57]. In Germany, a national survey in 1998 was 

conducted in 1,266 women of childbearing age. Approximately, 14.7% of these women had 

mean serum vitamin B12 concentrations of <148 pmol/L [58]. 

 Few studies have reported vitamin B12 status on a national level in non-Western 

countries [59]. Of these reported studies, vitamin B12 deficiency was prevalent among school-

aged children in Venezuela (11.4% ) [60], children aged 1-6 years in Mexico (7.7%) [61], 

women of reproductive age in Vietnam (11.7%) [62], pregnant women in Venezuela  (61.34%) 

[60] and in the elderly population (>65 years) in New Zealand (12%) [63]. Currently, there are 

no nationally representative surveys for any African or South Asian countries. However, the 

very few surveys which have investigated vitamin B12 deficiency in these countries have been 

based on local or district level data. These surveys have reported a high prevalence of vitamin 

B12 deficiency (<150 pmol/L), among 36% of breastfed and 9% of non-breastfed children 
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(n=2482) in New Delhi [64] and 47% of adults (n=204) [65] in Pune, Maharashtra, India. 

Furthermore, in Kenya a local district survey in Embu (n=512) revealed that 40% of school-

aged children in Kenya had vitamin B12 deficiency [66]. 

Table 3: Worldwide Prevalence of vitamin B12 deficiency (serum/plasma B12 < 148 or 

150 pmol/L) 

Group Number of studies Number of 

participants 

Vitamin B12 

deficiency (%) 

Children (< 1y – 18 

years) 

14 22,331 12.5 

Pregnant women 11 11,381 27.5 

Non-pregnant 

women 

16 18,520 16 

All adults (Under 60 

years) 

18 81.438 6 

Elderly (60+ years) 25 30,449 19 

Data derived from Table 2 available on https://doi.org/10.1016/bs.afnr.2017.11.005 [1] 

1.5.3 Vitamin B12 and metabolic risk in offspring 

Vitamin B12 is a critical micronutrient essential for supporting the increasing metabolic 

demands of the foetus during pregnancy [67]. B12 deficiency in pregnant women is 

increasingly common [68] and has been shown to be associated with major maternal health 

implications, including increased obesity [68], higher body mass index (BMI) [69], insulin 

resistance [67], gestational diabetes, and type 2 diabetes (T2D) in later life [70]. A study in a 

pregnant white non-diabetic population in England, found that for every 1% increase in BMI, 

there was 0.6% decrease in circulating B12 [67]. Furthermore, an animal study in ewes 

demonstrated that a B12, folate and methionine restricted diet around conception, resulted in 

offspring with higher adiposity, blood pressure and insulin resistance which could be accounted 

for altered DNA methylation patterns [71]. 

https://doi.org/10.1016/bs.afnr.2017.11.005
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Both vitamin B12 and folate are involved in the one-carbon metabolism cycle. In this 

cycle, vitamin B12 is a necessary cofactor for methionine synthase, an enzyme involved in the 

methylation of homocysteine to methionine [72]. DNA methylation is involved in the 

functioning of genes and is an essential epigenetic control mechanism in mammals. This 

methylation is dependent on methyl donors such as vitamin B12 from the diet [73]. Vitamin 

B12 deficiency has the potential to influence methylation patterns in DNA, besides other 

epigenetic modulators such as micro (RNAs), leading to the altered expression of genes [74, 

75]. Consequently, an altered gene expression can possibly mediate impaired foetal growth and 

the programming of non-communicable diseases [13, 74]. 

Vitamin B12 and folate status during pregnancy is associated with the increasing risk 

of low birth weight [68, 76], preterm birth [76], insulin resistance and obesity [67, 69] in the 

offspring. In addition it has been associated with adverse foetal and neonatal outcomes 

including neural tube defects (NTDs) [77-80] and delayed myelination or demyelination [81, 

82]. The mother’s B12 status can be important in determining the later health of the child, as 

shown in the Pune maternal Nutrition Study, conducted in India. In this study mothers with 

high folate concentrations and low vitamin B12 concentrations, led to babies having a higher 

adiposity and insulin resistance at age 6. In the same study, over 60% of pregnant women were 

deficient in vitamin B12 and this was considered to increase the risk of gestational and later 

diabetes in the mothers [69]. Increased longitudinal cohort studies or randomised controlled 

trials are required to understand the mechanisms between vitamin B12 and metabolic 

outcomes, and to potentially offer interventions to improve maternal and offspring health [83]. 

1.5.4 Vitamin B12 and cardiometabolic disease outcomes 

Multiple studies have explored the association between vitamin B12 and metabolic 

disease outcomes, such as obesity, insulin resistance and the development of cardiovascular 
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disease. Results from two recent studies have indicated that vitamin B12 deficiency may be 

associated with obesity during childhood. Pinhas-Hamiel et al., reported that obese children 

and adolescents (n=164) had significantly lower vitamin B12 concentrations in comparison to 

normal-weight children (n=228) [84]. The report from the Canadian Health Measurement 

Survey showed that obese children and adolescents aged 6 to 19 years were more likely to have 

an inadequate vitamin B12 status compared to those with normal weight [85]. In adults, Madan 

et al., (2006) reported that 13% of patients referred to pre-operative bariatric surgery had 

vitamin B12 deficiency [86]. On the other hand, Schweiger et al., (2010) only observed vitamin 

B12 deficiency in 3.4% of patients evaluated in bariatric surgery (n=114) [87]. In addition, in 

a study conducted in post-menopausal women, vitamin B12 concentrations decreased in 

relation to an increase in BMI [88]. A long-term study where vitamin B12 was supplemented 

across a period of 10 years, led to lower levels of weight gain in overweight or obese individuals 

(p < 0.05) [89].   

 There are several mechanisms which may explain the relationship between obesity and 

decreased vitamin B12 status. Vitamin B12 is a major dietary methyl donor, involved in the 

one-carbon cycle of metabolism and a recent genome-wide association (GWA) analysis 

showed that increased DNA methylation is associated with increased BMI in adults [90], 

consequently a  deficiency of vitamin B12 may disrupt DNA methylation and increase non-

communicable disease risk. Vitamin B12 is also a co-enzyme which converts methylmalonyl-

CoA to succinyl-CoA in the one carbon cycle. If this reaction cannot occur, methylmalonyl-

CoA levels elevate, inhibiting the rate-limiting enzyme of fatty acid oxidation (CPT1 – 

carnitine palmitoyl transferase), leading to lipogenesis and insulin resistance [9]. Further to 

this, reduced vitamin B12 concentrations in the obese population is thought to result from 

repetitive short-term restrictive diets and increased vitamin B12 requirements secondary to 

increased growth and body surface area [84, 91]. It has also been hypothesised that low vitamin 
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B12 concentrations in obese individuals are a result of wrong feeding habits, where individuals 

consume a diet low in micronutrient density [92]. Finally, vitamin B12 is involved in the 

production of red blood cells, and vitamin B12 deficiency can result in anaemia, which causes 

fatigue and the lack of motivation to exercise [89]. 

 It is important to screen vitamin B12 deficiency in obese individuals, due to its 

importance in energy metabolism, and relationship with homocysteine and its potential to 

modulate weight gain [92]. More studies are needed to test for the causality of vitamin B12 and 

obesity using genetic markers [93]. Furthermore, many studies have tested for the association 

of vitamin B12 with BMI. However, BMI does not accurately measure adiposity, and a high 

BMI does not necessary indicate that an individual is obese. More studies implementing x-ray 

absorptiometry, magnetic-resonance imaging computed tomography scans and analysing body 

fat % may be important for testing the link between obesity-related traits and vitamin B12 

concentrations [93].  

 A few studies have also reported no deficiency of vitamin B12 in obese individuals [88, 

94-96]. Lower vitamin B12 concentrations were observed in overweight Brazilian adolescents 

compared to normal-weight adolescents, however there was no statistically significant 

difference between the two groups [97]. Likewise, among Thai adults no statistically 

significant difference between overweight and obese individuals compared to normal control 

subjects was detected [98]. In the study by Baltaci et al [7], approximately 37.7% of overweight 

and 40.1% of obese Turkish individuals were deficient in vitamin B12. Despite overweight and 

obese individuals having lower B12 levels in comparison to control non-obese subjects, the 

difference between the groups were not statistically significant. In a Mendelian randomization 

study conducted in a Danish cohort [16], no significant associations were detected between  

genetically determined decreased serum vitamin B12 concentrations and BMI levels, 

indicating that there may not be a causal role of low serum vitamin B12 levels in obesity. 
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Finally, a recent literature review conducted over 19 studies, found no evidence of an inverse 

association between BMI and circulating vitamin B12 [93]. 

 Previous clinical and population-based studies have indicated that vitamin B12 

deficiency is prevalent amongst adults with type 2 diabetes [99-101]. Kaya et al., conducted a 

study in women with polycystic ovary syndrome, and found that obese women with insulin 

resistance had lower vitamin B12 concentrations compared to those without insulin resistance 

[102]. Similarly, in a study conducted in European adolescents, there was an association 

between high adiposity and higher insulin sensitivity with vitamin B12 concentrations. 

Individuals with a higher fat mass index and higher insulin sensitivity (high Homeostatic Model 

Assessment [HOMA] index) had lower plasma vitamin B12 concentrations [103]. 

Furthermore, a recent study conducted in India reported that mean levels of vitamin B12 

decreased with increasing levels of glucose tolerance e.g. individuals with type 2 diabetes had 

the lowest values of vitamin B12, followed by individuals with pre-diabetes and normal 

glucose tolerance, respectively [5]. However, B12 levels of middle aged-women with and 

without metabolic syndrome [104] showed no difference in vitamin B12 levels between those 

with insulin resistance (IR) and those without. It is believed that malabsorption of vitamin B12 

in diabetic patients, is due to individuals taking metformin therapy (an insulin sensitizer used 

for treating type 2 diabetes) [105]. Furthermore, obese individuals with type 2 diabetes are 

likely to suffer from gastroesophageal reflux disease [106], and take proton pump inhibitors, 

which further increased the risk of vitamin B12 deficiency [93]. 

The investigation into the relationship between cardiovascular disease (CVD) and 

vitamin B12 has been limited, and there is still controversy as to whether primary intervention 

with vitamin B12 will lower CVD [107]. Deficiency of vitamin B12 can impair the 

remethylation of homocysteine in the methionine cycle, and result in raised homocysteine 

levels [108]. There is much evidence linking elevated homocysteine concentrations with an 
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increased risk of CVD [109], and homocysteine lowering treatments have led to improvements 

in cardiovascular reactivity and coagulation factors [110]. In adults with metabolic syndrome, 

individuals with low levels of vitamin B12 had higher levels of homocysteine compared to 

healthy subjects [111]. It is thus possible that vitamin B12 deficiency enhances the risk of 

developing cardiovascular disease in individuals who are obese [84]. Alternatively, low levels 

of vitamin B12 may increase the levels of proinflammatory proteins which may induce 

ischaemic stroke [112, 113]. 

A recent literature review conducted over seven studies, found that there was limited 

evidence to show that low vitamin B12 status increased the risk of CVD and diabetes [114]. 

Only one study by Weikert et al. reported that low vitamin B12 status increased the risk of 

cerebral ischaemia [115]. After controlling for homocysteine, the relative risk of cerebral 

ischaemia reduced by approximately 10%, suggesting that the effects of low vitamin B12 are 

partially mediated by homocysteine [115]. In two other studies, higher vitamin B12 

concentrations were associated with an increased risk of mortality, fatal and non-fatal coronary 

events [116, 117]. It is important to note that these discrepancies, may be the result of the study 

population including individuals who were diseased [116] or old [117]. Further to this, both 

studies did not assess whether individuals were taking vitamin B12 supplements or they did 

not exclude individuals with liver disease or malignancy, which is important as raised vitamin 

B12 levels could have been due to a functional deficit [114, 118]. Finally, the review did not 

identify any associations between vitamin B12 and CVD in the remaining four studies [114]. 

Currently, no data supports vitamin B12 supplementation on reducing the risk of CVD. 

In a dose-response meta-analysis of five prospective cohort studies, it was reported that the risk 

of coronary heart disease (CHD) did not change substantially with increasing dietary vitamin 

B12 intake [119]. Of these five studies, three of the studies stated a non-significant positive 



38 

association and two of the studies demonstrated an inverse association between vitamin B12 

supplementation and CHD (only one of the studies was significant) [119].  

1.5.5 Vitamin B12 and Neural tube defects (NTDs) 

Neural tube defects (NTDs), including spina bifida, encephalocele and anencephaly, are 

debilitating birth defects which result from the failure of neural fold closure during embryonic 

development. The causes of NTDs are multifactorial, including folate deficiency, genetic and 

environment factors [120]. The WHO Technical Consultation has concluded that there is 

moderate evidence for the association between low vitamin B12 status and the increased risk 

of developing NTDs [121]. Given that vitamin B12 is a co-factor for methionine synthase 

within the folate cycle. If vitamin B12 supplies are depleted, folate becomes trapped and DNA 

synthesis and methylation reactions are impaired. DNA synthesis is critical for embryonic 

development. Further to this, cell-signalling events which control gene-expression are 

controlled by methylation reactions. As a result, adequate folate and vitamin B12 is needed to 

help prevent NTDs [77]. Many studies have shown associations between maternal vitamin B12 

status and NTD affected pregnancy [77-80]. Low vitamin B12 concentrations have also been 

found in the amniotic fluid of NTD affected pregnancy [122, 123]. Additionally, a population-

based case-control study (89 women with an NTD and 422 unaffected pregnant controls) in 

Canada conducted after the fortification of folic acid in flour, found almost a tripling in the risk 

of NTD, in the presence of low maternal vitamin B12 status (indicated by holoTC)[78]. Future 

studies, using interventions with vitamin B12 supplements or fortification with vitamin B12 is 

needed to confirm the relationship between vitamin B12 and NTDs. 

1.5.6  Vitamin B12 and anaemia 

In countries where vitamin B12 deficiency is common, it is generally assumed that there 

is a greater risk of developing anaemia. However, the overall contribution of vitamin B12 
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deficiency to the global incidence of anaemia may not be significant, except in elderly 

individuals and vegetarians [124]. There are relatively few studies which have assessed the 

impact of haematological measures in response to vitamin B12 supplementation. One study in 

184 premature infants, reported that individuals given monthly vitamin B12 injections (100 

µg) or taking supplements of vitamin B12 and folic acid (100 µg/day), had higher haemoglobin 

concentrations after 10-12 weeks, compared to those only taking folic acid or those taking no 

vitamin B12 injections [125].  In deficient Mexican adult women and pre-schoolers, it was 

found that vitamin B12 supplementation did not affect any haematologic parameters [126, 

127]. Vitamin B12 deficiency is also a major factor leading to megoblastic anaemia, especially 

in those infants breastfed by strict vegetarian mothers [121, 128]. 

1.5.7 Vitamin B12 and Ageing 

Vitamin B12 has been associated with disability in the elderly including the 

development of age-related macular degeneration (AMD) and the risk of frailty [50].  

AMD is the leading cause of severe, irreversible vision loss in older adults [129]. 

During the advanced stages of AMD, individuals are impaired of carrying out basic activities 

such as driving, recognising faces and reading [130]. Several risk factors have been linked to 

AMD, including increasing age, family history, genetics, hypercholesterolemia, hypertension, 

sunlight exposure and lifestyle (smoking and diet) [131, 132]. A few cross-sectional studies 

have found associations between low vitamin B12 status and AMD cases [132, 133]. It has 

been shown that daily supplementation of vitamin B12, B6 and folate over a period of seven 

years can reduce the risk of AMD by 34% in women with  increased risk of vascular disease 

(n=5,204) [134]. However, another study failed to find an association between AMD and 

vitamin B12 status in a sample of 3,828 individuals representative of the non-institutionalized 

US population [135].  
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Frailty is a geriatric condition which is characterized by diminished endurance, 

strength, and reduced physiological function that increases an individual’s risk of mortality and 

impairs an individual from fulfilling an independent lifestyle [136]. Frailty is associated with 

an increased vulnerability to fractures, falls from heights, reduced cognitive function and more 

frequent hospitalisation [137]. The worldwide prevalence of frailty within the geriatric 

population is 13.9% [138], therefore there is an urgent need to eliminate any risk factors 

associated with frailty. Poor vitamin B status has been shown to be associated with an increased 

risk of frailty. Two cross sectional studies have reported that deficiencies of vitamin B12 were 

associated with the length of hospital stay, as observed by serum vitamin B12 concentrations 

and methylmalonic acid (MMA) concentrations [139, 140]. Furthermore, another study 

looking at elderly women (n=326), found that certain genetic variants associated with vitamin 

B12 status (Transcobalamin 2) may contribute to reduced energy metabolism, consequently 

contributing to frailty [141]. In contrast, a recent study by Dokuzlar et al., found that there was 

no association between vitamin B12 levels and frailty in the geriatric population (n=335) [142]. 

Given that there are limited studies, which have assessed the relationship between vitamin B12 

and frailty status, more longitudinal studies are needed to clarify the relationship. 

1.5.8  Vitamin B12 and neurological decline 

Severe vitamin B12 deficiency is associated with subacute combined degeneration of 

the spinal cord, which involves demyelination of the posterior and lateral columns of the spinal 

cord [23]. Symptoms include memory and cognitive impairment, sensory loss, motor 

disturbances, loss of posterior column functions and disturbances in proprioception [143, 144]. 

In advanced stages of vitamin B12 deficiency, cases of psychosis, paranoia and severe 

depression have been observed, which may lead to permanent disability if left untreated [23, 

143, 144]. Studies have shown the rapid reversal of the neurological symptoms of vitamin B12 
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deficiency, after treatment with high-dose of vitamin B12 supplementation; suggesting the 

importance of prompt treatment in reversing neurological manifestations [145].  

1.5.9 Vitamin B12 and cognitive decline 

Elderly individuals are currently assessed on vitamin B12 status during the screening 

process for dementia. Studies investigating the association between vitamin B12 

concentrations and cognitive status have produced inconclusive results [50, 146, 147]. It has 

been shown that elevated MMA concentrations are associated with decreased cognitive decline 

and Alzheimer’s Disease [148]. In addition, low vitamin B12 and folate intakes have shown 

associations with hyperhomocysteinemia, which is associated with cerebrovascular disease, 

cognitive decline and an increased risk of dementia in prospective studies [149]. 

There are limited intervention studies which have investigated the effect of 

supplementation of vitamin B12 and cognitive function. A Cochrane review, analysing two 

studies, found no effect of vitamin B12 supplementation on the cognitive scores of older adults 

[150]. A recent longitudinal study in elderly individuals, found that individuals had a higher 

risk of brain volume loss over a 5-year period, if they had lower vitamin B12 and holoTC levels 

and higher plasma tHcy and MMA levels [151]. More intervention studies are needed to 

determine the modifiable effects of vitamin B12 supplementation on cognition [50].  

1.5.10 Vitamin B12 and Osteoporosis 

There has been growing interest on the effect of low serum vitamin B12 concentrations 

on bone health [152, 153]. Recent studies have found a connection between elevated plasma 

tHcy and an increased risk of bone fractures, but is unknown whether this is related to the 

increased levels of tHcy or to vitamin B12 levels (which are involved in homocysteine 

metabolism) [154].  Results from the third NHANES conducted in the United States, found 

that individuals had significantly lower bone mass density (BMD) and higher osteoporosis rates 
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with each higher quartile of serum MMA (n= 737 men and 813 women) [155]. Given that poor 

bone mineralization has been found in individuals with pernicious anaemia [156], and that the 

content of vitamin B12 within bone cells in culture has shown to affect the functioning of bone 

forming cells (osteoblasts) [157]; it is possible that vitamin B12 deficiency is causally related 

to poor bone health.  

Randomized intervention trials investigating the association of vitamin B12 

supplementation and bone health have yielded mixed results. Two studies conducted in 

osteoporotic risk patients with hyperhomocysteinemia and individuals who had undergone a 

stroke, found positive effects between supplementation of B vitamins on BMD [158, 159]. 

However, no improvement in BMD was observed in a group of healthy older people [160]. 

Further, controlled trials are needed to confirm the impact and mechanisms vitamin B12 

deficiency has on bone mineralization [121]. 

1.5.11 Causes of B12 deficiency  

The most common reason for vitamin B12 deficiency in spite of eating a diet rich in 

animal products is poor absorption. It has been long known that vegans, lacto-ovo vegetarians 

and elderly individuals are at risk of vitamin B12 deficiency. Causes can also relate to having 

inadequate amounts of IF, gastric atrophy, intestinal disease, gastric surgery, bacterial 

overgrowth in the small intestine, alcohol consumption, a tapeworm infection, drug-nutrient 

interactions, as well as some genetic defects [45, 48, 161].  

It is well known that strict vegans are at high risk of vitamin B12 deficiency. At present, 

there are very few studies analysing the association of vitamin B12 deficiency with veganism 

in large populations. In a group of 131 vegan adults from Germany (aged 20-82 years), 

individuals who followed a vegan diet for 7.1 years, had a 1.8 increased rate of deficiency 

compared to those who adhered to a vegan diet for less than 5 years. The study showed that 
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26% of strict vegans who did not take vitamin B12 supplements, had vitamin B12 deficiency 

with a cut-off point of 110 pmol/L  [162]. Furthermore, in another study looking at 25 vegan 

adults from California aged 20 to 60 years, showed that 40% of individuals were vitamin B12 

deficit; based on either low plasma cobalamin (< 150 pmol/L), macrocytosis, or elevated serum 

MMA (>376 nmol/L) [163]. Vegans are therefore recommended to take vitamin B12 fortified 

foods or supplements to meet their recommended daily intake.  

Traditionally, vegans were suggested to be the only group at risk of vitamin B12 

deficiency, but it is now acknowledged that individuals who consume low animal source foods 

are also at risk. Lacto-ovo vegetarians and individuals from less-industrialized (where the 

consumption of meat is rare) have a greater risk of vitamin B12 deficiency compared to 

individuals who consume an omnivorous diet [48]. Evidence shows that meat contains 

comparatively more vitamin B12 (1.3 µg/100 kcal cooked meat) than milk (0.6 µg/100 kcal) 

[48]. In a recent literature review addressing the vitamin B12 deficiency rates amongst 

vegetarians, it was reported that 32% of young adult vegetarians/ lacto-ovo vegetarians had 

vitamin B12 deficiency (MMA >271 nmol/L) [164]. As a result, lacto-ovo vegetarians are 

required to take supplemental vitamin B12 to meet their nutritional needs [50]. 

Vitamin B12 deficiency is also a common condition among the elderly. Elderly 

individuals are frequently malnourished, which enhances the risk of vitamin B12 deficiency. 

Whilst some of these reasons might be the result of underlying ill health, other influences 

include problems with dentition, depression or anxiety, mobility difficulties (e.g. difficulties 

with food preparation) and the use of medications which may interfere with appetite or 

absorption of vitamin B12 [165]. Atrophic gastritis is also a common condition observed in the 

elderly, which results in the inflammation of the stomach mucous membrane. In atrophic 

gastritis, there is a reduction or absence in gastric acid secretion which is needed to release 

vitamin B12 from proteins in food. However, elderly individuals still retain the ability to absorb 
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vitamin B12 in synthetic form (as it is not protein bound), due to sufficient intrinsic factor being 

secreted [48].   

Pernicious anaemia is the final stage of an auto-immune gastritis (Type A atrophic 

gastritis). In autoimmune gastritis, parietal cells of the corpus and fundus of the stomach are 

destroyed. These parietal cells are responsible for producing hydrochloric acid and intrinsic 

factor, which is required for the uptake of vitamin B12 [166]. As there is no therapy at present 

for auto-immune gastritis, patients are required to take vitamin B12 injections, or large doses 

of vitamin B12 to prevent the development of megaloblastic anaemia and future neurological 

complications [50]. 

Vitamin B12 uptake in the ileum can be reduced by the overgrowth of bacteria or 

parasites. Intestinal bacteria may have the potential to compete for vitamin B12, convert the 

vitamin B12 into inactive analogs or impair the absorption of vitamin B12 [48]. At present, 

Helicobacter pylori infection is one of the most common gastric infections worldwide. H. 

pylori infection is characterized by gastritis, gastric and duodenal ulcers, achlorhydria and 

gastric atrophy. Numerous studies have suggested that there may be a causal relationship 

between H. pylori and food-bound vitamin B12 malabsorption [167]. Furthermore, diseases of 

the ileum such as Crohn’s Disease, chronic bowel inflammatory disease and gastrointestinal 

surgery may induce vitamin B12 malabsorption [45].  

Vitamin B12 malabsorption is also linked to genetic disorders which regulate the uptake 

and metabolism of vitamin B12. Vitamin B12 is a cofactor for methionine synthase (MS) and 

methylmalonyl CoA mutase (MCM). In order to function as a co-factor, the structure of vitamin 

B12 must be modified [168]. Obstructions in the intracellular processing of vitamin B12 into 

its co-factor forms; methylcobalamin (MeCbl) for (MS) and adenosylcobalamin (AdoCbl) for 

MCM or changes in the functional activity of MS or MCM can result in inborn errors of vitamin 
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B12 utilisation. The genetically inherited blocks can be detrimental for new-borns and children 

[168]. A number of inborn errors of intracellular vitamin B12 metabolism, designated cblA-

cblG, have been determined by biochemical analysis of radioactive metabolites and B12 

(complementation analysis). Methylmalonic acidemia (cblA, cblB, cblD variant 2), 

hyperhomocysteinemia (cblD variant 1, cblE, cblG) or combined methylmalonic acidemia and 

hyperhomocysteinemia (cblC, classic cblD, cblF) have so far been acknowledged as inborn 

errors [169]. These disorders and the genes involved in intracellular B12 metabolism are listed 

in Table 4. Further to this, vitamin B12 levels in the general population are underpinned by 

molecular mechanisms which are responsible for the absorption, distribution, metabolism and 

elimination of vitamin B12 [170]. The genetics of vitamin B12 status and genetic variation in 

different ethnicities within individuals without inborn errors of metabolism will be discussed 

in detail in chapter 2. 
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Table 4: Inborn Errors of Cobalamin Transport and Metabolism  

Disorder Gene Location Phenotype 

(Inborn errors) 

Function 

Intrinsic factor 

deficiency 

GIF 11q13 Intrinsic factor 

deficiency 

Encodes a glycoprotein 

secreted by parietal cells of 

the gastric mucosa. The gene 

encodes the protein that is 

required for adequate 

absorption of vitamin B12.  

Imerslund–

Gräsbeck syndrome 

(Megaloblastic 

anaemia 1) 

AMN 14q32 Intestinal 

absorption of 

dietary cobalamin 

is impaired (Partial 

loss of IF binding 

affinity to 

cobalamin or the 

cubam receptor 

complex) 

Involved in the transfer of the 

cubilin-vitamin B12 complex 

into the intestinal cell 

CUBN 10p12.1 It encodes the intestinal 

receptor Cubilin, which is 

expressed in the renal 

proximal tubule and intestinal 

mucosa. Cubilin recognizes 

the vitaminB12-intrinsic 

factor complex, and binds to 

another protein called 

Amnionless to facilitate the 

entry of vitamin B12 into the 

intestinal cells 

Transcobalamin 

deficiency 

(Transcobalamin II 

deficiency) 

TCN2 22q11.2 Decreased 

intestinal 

absorption of B12, 

uncorrected by 

intrinsic factor. 

It encodes a transport protein 

called transcobalamin 2 (TC), 

which binds to vitamin B12 

within the enterocyte. The 

TC-B12 complex enters the 

portal circulation and makes 

vitamin B12 available for 

cellular uptake in target 

tissues 

Haptocorrin 

deficiency  

(Transcobalamin I 

deficiency) 

TCN1 11q11–q12 Affects multiple 

specific granule 

proteins, and 

results in low 

serum B12 levels 

It encodes a glycoprotein 

called Transcobalamin 1, also 

known as haptocorrin (HC), 

which binds to vitamin B12. It 

shields dietary vitamin B12 

from the acidic environment 

of the stomach.  

Transcobalamin 

receptor deficiency 

CD320 19p13.2 Loss of a glutamate 

residue in the 

extracellular 

It encodes the membrane 

receptor transcobalamin 

receptor (TCblR), which binds 
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domain of the 

receptor. Decreased 

receptor‐mediated 

uptake of TC‐B12 

in vitro. 

to the transcobalamin-vitamin 

B12  complex, and mediates 

the uptake of vitamin B12 into 

cells 

cblA MMAA 4q31.1–q31.2 Adenosyl-

vitaminB12 

deficiency in cells 

MMAA encodes a protein that 

may be involved in the 

translocation of vitamin B12 

into the mitochondria. In 

addition, MMAA could play 

an important role in the 

protection and reactivation of 

Methylmalonyl-coA mutase 

(MCM) in vitro. 

cblB MMAB 12q24 Adenosyl-

vitaminB12 

deficiency in cells 

Adenosylates cobalamin in an 

ATP-dependent manner 

cblC MMACHC 1p23.2 The inability to 

convert cynano-

vitaminB12 into 

biological forms 

The MMACHC gene encodes 

a chaperone protein 

MMAACHC (cblC protein) 

which binds to vitamin B12 in 

the cytoplasm and appears to 

catalyse the reductive 

decyanation of 

cyanocobalamin into 

cob(II)alamin 

cblD MMADHC 2q23.2 Improper targeting 

of vitamin B12 to 

cognate enzymes 

This gene leads to the 

Branching of vitamin B12 

within the cell to either the 

cytosol or the mitochondrion 

CblE MTRR 5p15.3-p15.2 Inactive methionine 

synthase 

This gene is responsible for 

the reductive methylation of 

vitamin B12 to generate 

methylcobalamin from 

cob(II)alamin   

CblF LMBRD1 6q13 Accumulation of 

vitamin B12 within 

lysosome 

Potentially helps in the 

transport of vitamin B12 out 

of the lysosome 

CblG MTR 1q43 Homocysteine 

accumulation 

Transfers a methyl group from 

methyltetrahydrofolate to 

homocysteine to produce 

methionine 
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CblJ ABCD4 14q24.3 Accumulation of 

cobalamin within 

lysosome 

Transports vitamin B12 from 

lysosomes to the cytosol 

Methylmalonyl 

CoA mutase 

deficiency 

MUT 6p21 Methylmalonic acid 

accumulation 

The enzyme converts 

methylmalonylCoA and 

succinylCoA, reversibly.  

Data derived from Table 1 available on https://doi.org/10.1016/bs.afnr.2017.11.005  [1] and 

from Table 3 available on https://doi.org/10.1186/s12263-018-0591-9 

 

Currently there is concern that the mandatory fortification of folic acid to cereals and grains, 

may in fact conceal the macrocytic anaemia associated with vitamin B12 deficiency, 

consequently eliminating an important diagnostic tool [171]. The combination of high folate 

and low serum vitamin B12 is associated with higher concentrations of methylmalonic acid 

and homocysteine, contributing to hematologic and neurologic disturbances. The National 

Health and Nutrition Examination Survey (NHANES) collected on older adults during 1999-

2002 showed that high folate intakes were related to impaired mental functioning and cognitive 

decline among individuals with a low vitamin B12 status [172]. Considering these findings, 

there has been interest as to whether vitamin B12 fortification in flour should be implemented. 

However, as of yet there is not enough data evaluating the bioavailability of the vitamin from 

fortified flour in specific population groups (such as the elderly with food-bound vitamin B12 

malabsorption and others with gastric atrophy) to make a firm decision [121]. 

1.5.12 Drug-nutrient interactions 

There are some drugs which are thought to interfere with the absorption or metabolism 

of vitamin B12 [50]. These include H2-receptor antagonists, proton pump inhibitors and 

metformin. Cimetidine is a H2-receptor antagonist which is used to treat peptic ulcers and 

alleviate heartburn. Cimetidine inhibits the secretion of gastric acid and pepsin and has been 

reported to inhibit IF secretion [173, 174]. A >1000 mg/day dose may in fact lead to 

https://doi.org/10.1016/bs.afnr.2017.11.005
https://dx.doi.org/10.1186%2Fs12263-018-0591-9
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malabsorption of protein-bound vitamin B12 by peptic ulcer patients (n=9 male) and normal 

subjects (n=4 male) [175], however this malabsorption was shown to be reversible upon 

discontinuation of cimetidine in another study [174] .  

Proton pump inhibitors (PPIs) such as omeprazole and lansoprazole are widely 

prescribed to treat gastroesophageal reflux disease. It has been suggested that prolonged use of 

PPIs may influence vitamin B12 status, by inhibiting gastric acid secretion. The effect of 

omeprazole on vitamin B12 absorption is dose-related, with intakes of 20 mg/day reducing 

food-bound vitamin B12 absorption by 70%, whilst 40 mg/day reducing absorption by 90% 

[176]. At present the current literature on the association between PPI usage and vitamin B12 

status is mainly based on case-reports or retrospective observational studies, which have 

produced relatively inconsistent findings [177].  

Metformin therapy is used as the first line of therapy for individuals with type 2 diabetes 

mellitus. Studies have shown that Metformin induces vitamin B12 malabsorption and impaired 

intrinsic factor secretion in the ileum [178-181]. The mechanism of metformin-related vitamin 

B12 deficiency is still under debate. Metformin delays glucose absorption in the upper small 

intestine affecting the motility of the small bowel, which stimulates bacterial overgrowth and 

consequential vitamin B12 deficiency [178, 179]. Metformin has also been shown to enhance 

competitive inhibition or inactivation of vitamin B12 absorption, leading to alterations in 

intrinsic factor (IF) levels and interactions with the cubulin endocytic receptor. Additionally, 

Metformin inhibits the calcium dependent absorption of the vitamin B12-IF complex at the 

terminal ileum [181], as a result increasing calcium intake may improve the uptake of vitamin 

B12 in metformin users [180]. 

1.6 Assessment of Vitamin B12 status  

Traditionally, measuring serum cobalamin remains the preferred choice for determining 

vitamin B12 deficiency. However, using serum vitamin B12 concentrations alone does not 
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confirm the uncertainties of underlying functional and biochemical deficiencies. Nowadays 

other methods such as measuring plasma methylmalonic acid, serum holotranscobalamin and 

plasma homocysteine are also used [23]. 

1.6.1 Vitamin B12 and Holotranscobalamin 

The measurement of serum vitamin B12 levels is the most widely used assay to screen 

vitamin B12 deficiency. However this method is rarely used alone, as it is known to have a 

poor sensitivity and specificity in detecting vitamin B12 deficiency [182]. Serum B12 assays 

measures both serum holohaptocorrin (HoloHC) and serum holotranscobalamin (holoTC). 

HoloHC, represent 70-90% of vitamin B12, but is biologically inert as no cellular receptors 

exist, except on the liver. On the other hand, HoloTC contains biologically active vitamin B12, 

which can be taken up by cells, and represents 10-30% of circulating vitamin B12 [183]. Given 

that the majority of vitamin B12 is bound to HC, results would mask the true deficiency or 

would falsely infer vitamin deficiency [23]. Vitamin B12 is usually measured using an 

automated method and a competitive-binding immune chemiluminescence, a low cost test [23]. 

Depending on the technique used to measure vitamin B12, vitamin B12 deficiency is usually 

considered when the plasma vitamin B12 concentration is less than 200 pg/mL. However, there 

is no gold standard value to represent subclinical deficiency of vitamin B12 (Table 5) [184]. 

Currently, the TC bound to plasma vitamin B12, is more relevant for assessing the 

functional vitamin B12 status. HoloTC reflects the absorptive capacity of vitamin B12, and any 

deficiency of TC has been previously associated with neurological and haematological 

complications [182]. HoloTC is usually measured by immunoassay, and cut-off values for low 

HoloTC depend on the specific laboratory guidelines [23].  
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Table 5: Biomarkers of vitamin B12 status 

Biomarker (Unit) Assay Type Tentative 

reference 

intervala* 

Tentative 

cut-off value 

for vitamin 

B12 

deficiencyb* 

Tentative cut-

off value for 

repletion of 

vitamin B12* 

 

Plasma B12 

(pmol/L) 

Competitive-binding immune 

chemiluminescence method/ 

protein binding assay 

200-600 <148 >221 

Holotranscobalamin 

(pmol/L)  

Immunological 40-100 <35 >40 

Homocysteine 

(μmol/l) 

Immunological, Liquid 

chromatography– mass 

spectrometry or gas 

chromatography mass 

spectrometry 

8-15 >15 <8 

Methylmalonic acid 

(μmol/l) 

Liquid chromatography– mass 

spectrometry or gas 

chromatography mass 

spectrometry 

0.04-0.37 >0.37 <0.27 

aThe Tentative reference intervals cover approximately 95% of B12 replete individuals. bThe 

tentative cut-off value for vitamin B12 deficiency includes both clinical and subclinical 

deficiency.*The values indicated in this table are based on previously cited literature. Data 

derived from Table 1 available on https://doi.org/10.1038/nrdp.2017.40 [2] 

1.6.2 Homocysteine and Methylmalonic acid 

Homocysteine (Hcy) and methylmalonic acid (MMA) can be used as sensitive biomarkers 

to detect an underlying vitamin B12 deficiency, even when no apparent sign of clinical vitamin 

B12 deficiency or low serum vitamin B12 levels are present [182]. There are two B12-

dependent enzymatic reactions which use MMA and Hcy as substrates. Vitamin B12 in 

combination with folic acid is required to convert Hcy to methionine, and vitamin B12 is used 

to convert MMA to succinyl-CoA [185]. As a result, MMA is a more sensitive indicator of 

vitamin B12 deficiency compared to Hcy. These two biomarkers can be confounded by both 

https://doi.org/1
https://doi.org/10.1038/nrdp.2017.40
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environmental and physiological conditions [161]. Renal failure, heart transplantation, thyroid 

dysfunction, certain medications, genetic variation in the methylenetetrahydrofolate reductase 

(MTHFR) gene and high folate and vitamin B6 deficiency can contribute to elevated Hcy 

concentrations. Furthermore, MMA is elevated in renal impairment and rare inborn errors 

affecting methylmalonate-CoA mutase activity [50, 186]. 

Elevated Hcy and MMA concentrations, have been found to be 99.8% sensitive for 

diagnosing vitamin B12 deficiency [187]. Both Hcy and MMA are usually measured using 

Liquid chromatography– mass spectrometry or gas chromatography mass spectrometry [188]. 

According to Carmel (2006), an inadequate vitamin B12 status is described as serum vitamin 

B12 < 148 pmol/L, or 148–258 pmol/L and MMA > 0.30μmol/L, or tHcy > 13 nmol/L 

(females) and >15 nmol/L (males) [189]. However, it should be noted that the reference range 

depends on the individual techniques used to measure Hcy and MMA; as the published 

estimates for the specificity and sensitivity for diagnosing vitamin B12 deficiency varies 

extensively (Table 5)[184]. 

1.7 Treatment of vitamin B12 deficiency 

1.7.1  Parenteral treatment 

In the United Kingdom and other western countries worldwide, most patients with 

vitamin B12 deficiency are given intramuscular injections of vitamin B12. Intramuscular 

vitamin B12 exists in two forms: cyanocobalamin or hydroxocobalamin. Hydroxocobalamin is 

generally used as the first line of treatment, as it is retained in the body for a longer period of 

time and it can be administered at intervals of up to three months [190]. Approximately 10% 

(100 µg) of injected hydroxocobalamin is retained in the body after administration of 1000 µg 

[22]. 

The standard treatment for patients without neurological symptoms is three injections 

of intramuscular hydroxocobalamin (1000 µg) three times a week, for a duration of two weeks. 
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On the other hand, for patients with neurological involvement, injections are given 

intramuscularly (1000 µg) on alternative days for three weeks or until clear improvement is 

shown. Individuals with pernicious anaemia are given lifelong treatment. Individuals with 

severe anaemia and cardiac symptoms are usually treated with transfusion and diuretic agents 

[22, 23, 191].  

Hydroxocobalamin is usually well-tolerated, with serious adverse reactions being rare. 

However, injections can cause significant amount of pain in thin patients and can be dangerous 

in anticoagulated patients [190]. Side effects which are rarely observed for hydroxocobalamin 

include: chills, fever, hot flushes, itching, nausea, dizziness, skin rash and anaphylaxis [23].  

1.7.2 Oral treatment 

When vitamin B12 deficiency is related to an individual’s diet, a dose of 50-150 µg 

cyanocobalamin is given between meals [23]. Oral therapy is considered during mild or 

subclinical vitamin B12 deficiency and when there are no concerns of compliance or 

abnormalities associated with absorption [192].  

Previous case control studies have suggested that the oral administration of vitamin 

B12, is equally safe and effective at eliminating vitamin B12 deficiency [193, 194]. Vitamin 

B12 taken in the oral route, can be absorbed both actively and passively. In passive absorption, 

the vitamin B12 is absorbed without binding to IF. Approximately 0.5-4% of radioactively 

labelled oral vitamin B12 can be absorbed by passive diffusion in both healthy and patients 

with pernacious anemia [190, 195].  On the other hand, in active absorption, vitamin B12 binds 

to IF in the terminal ileum [190].  

It has been noted that patients with IF deficiency can  still adequately absorb vitamin 

B12, provided that they are given high doses of vitamin B12 (1000 µg daily) [190]. A cochrane 

review of two randomised controlled trials comparing oral with intramuscular administration 
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in 108 participants, found that high oral doses (1000 µg and 2000 µg daily)  are as effective as 

intramuscular injections in responding to neurological and haemotological symptoms [190]. 

However, due to the limited data available to present the support of oral therapy in individuals 

with neurological dysfunction, parenteral vitamin B12 is still the prefered method of treatment.  

At present, oral vitamin B12 is widely prescribed in Canada and Sweden [190]. 

However, high doses of oral vitamin B12 are unavailable for prescription under the NHS in the 

United Kingdom. Given that intramuscular injections require patients to visit a health facility 

or have a health care visitor to administer an injection, using oral vitamin B12 instead, could 

potentially save NHS resources and the time of medical staff [190]. 

1.8 Vitamin B12 Toxicity 

High serum vitamin B12 is defined as a value above 950 pg/ml; this refers to the upper 

limit of biological normality [196]. At present, few studies have looked at the toxic effects 

associated with a high serum vitamin B12 concentration. One study observed that when vitamin 

B12 was administered at 2 mg (2,000 μg) daily by mouth or 1 mg monthly by intramuscular 

(IM) injection to treat pernicious anaemia, no toxic effects were identified [197]. It is known 

that only a certain percentage of vitamin B12 can be absorbed by the body, and any ingested 

amounts which exceed the absorption capacity of vitamin B12 intrinsic factor receptors are 

excreted through the urine or faeces. This could partly explain the low toxicity [38]. On the 

other hand, other studies have noted that high doses of vitamin B12 supplements were 

associated with a greater risk of CVD in individuals with diabetic nephropathy [198] and a 

greater risk of autism spectrum disorder in the offspring of pregnant women [199].  

 It is possible that an increase in plasma vitamin B12 could be a result of a functional 

deficit. The destruction of hepatocytes in chronic hepatitis, can stimulate the binding of vitamin 

B12 to haptocorrin (HC) in the plasma, to form holohatocorrin (holoHC- inactive form of 

vitamin B12) leading to a decline of vitamin B12 attaching to holotranscobalamin (holoTC) II 
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(active form of vitamin B12). As a result, there is an increase in vitamin B12 in the plasma, as 

vitamin B12 cannot be delivered to the cells [200]. Furthermore, elevated vitamin B12 

concentrations could be due to the leakage of vitamin B12 from damaged liver tissue into the 

plasma [196]. As a result, high vitamin B12 levels are not always beneficial and could underlie 

a number of underlying pathologies [196]. 

1.9 Nutrigenetics approach 

Nutrigenetics is a branch of science that investigates the effect of genetic variants in 

response to dietary manipulation. The ultimate goal of nutrigenetics is to investigate the 

molecular and physiological basis of genetic variants associated with health and disease, and 

how these genotype-phenotype associations can be modified by dietary intake [201]. The field 

of nutrigenetics is rapidly evolving, with the hope that one day in the future nutritionists will 

be able to provide personalised dietary recommendations to patients to delay or prevent the 

onset of disease [202].  

1.9.1  Genetic factors and ethnic variation 

Vitamin B12 absorption and metabolism involves complex biological pathways 

containing multiple steps. Genetic variants may alter vitamin B12 tissue status by affecting the 

proteins involved in vitamin B12 absorption, cellular uptake and intracellular metabolism 

[143]. In a study using monozygotic and dizygotic twins, the heritability of B12 levels was 

estimated to be 59%, indicating that the magnitude of genetic influence on vitamin B12 levels 

are considerable [203]. At present, genetic studies of vitamin B12 status suggest that it is a 

multifactorial trait (also called complex trait), where several single nucleotide polymorphisms 

(SNPs) in multiple genes interact with the environment to cause the altered B12 status [204]. 

The genetics of vitamin B12 status and the genetic variation in different ethnicities are 

discussed in detail in chapter 2. 
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A review article from Surendran et al., (2018) which is found in chapter 2 of this thesis, 

identified 59 vitamin B12-related gene polymorphisms associated with vitamin B12 status, 

from the following populations: African American, Brazilian, Canadian, Chinese, Danish, 

English, European ancestry, Icelandic, Indian, Italian, Latino, Northern Irish, Portuguese and 

residents of the USA [14]. The most compelling evidence has been accumulated for the 

fucosyltransferase 2 (FUT2) SNP (rs602662), for which homozygosity of the minor G allele 

has been associated with lower vitamin B12 status. Variants in other B12 metabolic genes, 

including methylmalonyl CoA mutase (MUT), cubulin (CUBN) and transcobalamin-I 

(TCN1) have been reported in European populations [205]. Furthermore, an additional four 

loci, membrane-spanning 4-domains (MS4A3), citrate lyase beta like 

(CLYBL), fucosyltransferase 6 (FUT6) and 5q32 were constricted to the Chinese population 

[206]. It has been suggested that ethnic-specific associations are involved in the genetic 

determination of vitamin B12 concentrations. However, despite recent success in genetic 

studies, most of the identified genes that could explain variation in vitamin B12 concentrations 

were from Caucasian populations. As a result, further research utilizing larger sample sizes of 

non-Caucasian populations is necessary in order to better understand these ethnic-specific 

associations [14]. 

Genes alone are not responsible for explaining the variation in vitamin B12 

concentrations, as lifestyle factors e.g. dietary factors, also influence vitamin B12 

concentrations. Therefore, this is investigated by identifying gene-diet interactions 

(Nutrigenetics). In my thesis, I aimed to investigate the interaction between dietary factors 

(modifiable factor) and genetic markers (non-modifiable factors) on vitamin B12 

concentrations and metabolic disease trait outcomes. 
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1.9.2 Rational for studying gene-diet interactions 

Many SNPs have been shown to be associated with vitamin B12 status and these SNPs 

only represent a fraction of the heritability of vitamin B12 status [14]. It is well known that 

environmental factors, such as diet, can modulate the effects of genes on metabolic traits [12]. 

However, it is unknown whether dietary factors can interact with genes to impact vitamin B12 

status; hence the interaction between genetic and dietary factors must be considered. Findings 

from gene-diet interactions will contribute to identifying the interactions of genes and diet in 

the development of vitamin B12 deficiency.  Therefore, this knowledge is essential for the 

primary prevention of vitamin B12 deficiency, and for developing effective dietary strategies 

for the prevention of vitamin B12 deficiency and its related metabolic outcomes.  

1.9.3 Importance of studying gene-diet interactions in different genetic groups 

 It has been established that genetic studies looking at vitamin B12 status in healthy 

adults, especially large-scale ones, have been unable to capture the level of diversity which 

exists worldwide, as they are mainly based on individuals of European ancestry [14]. The 

under-representation of diverse ethnic groups hampers our full understanding of the genetic 

architecture of vitamin B12 levels [207]. Furthermore, the limited genetic data on non-

Caucasian populations in relation to genetic susceptibility to vitamin B12 deficiency, can also 

impede our ability to translate genetic research into clinical care, and will exacerbate health 

inequalities across the current public health policy [207]. Given that vitamin B12 status can 

also be determined by environmental factors, it is also important to explore gene-diet 

interactions in different ethnic groups, so that it will be eventually possible to personalise diet 

according to each ethnic sub-group.  It is important to note that, different ethnic groups respond 

differently to specific dietary interventions [12]. Therefore, using estimates of genetic risk for 

vitamin B12 deficiency from European-based studies in non-Europeans may result in an 



58 

inaccurate assessment of risk of vitamin B12 deficiency and could result in an inappropriate 

environmental intervention (dietary or physical activity) in under-studied populations.  

1.9.4 Study designs and their role in identifying gene-diet interactions 

Multiple lines of evidence suggest that SNPs may modify gene expression and 

consequently influence metabolic disease outcomes. Besides, it is well known that interactions 

may exist between genes and dietary factors to influence metabolic outcomes [12]. Several 

genes are involved in vitamin B12 metabolism [14] and variants in these genes may modify 

cardio-metabolic disease outcomes [16, 17]. Beyond the independent gene effects, no studies 

have evaluated interactions between vitamin B12 gene polymorphisms and macronutrient 

intake on cardiometabolic disease outcomes. A more detailed understanding of gene- diet 

interactions is needed to generate information required to develop strategies for diet 

modification to reduce the incidence of cardiometabolic disease related traits in individuals 

with specific variants related to vitamin B12 absorption and metabolism. The following section 

describes the potential study designs which can be employed for gene-diet interactions. 

The most commonly used study design is the cross-sectional design. A cross-sectional 

design is a study design, where disease related-outcomes and exposures in study participants 

are measured at a single point in time [208]. One of the limitations of a cross-sectional study 

design is that it is a one-time measurement of exposure and outcome, thus it is difficult to derive 

causal relationships between risk factors and a disease. Another limitation is that these studies 

are prone to confounding. Thus, it is important, that confounding factors are adjusted during 

statistical analysis (within the regression model) [208]. 

A case-control study determines whether an exposure is associated with an outcome of 

interest (e.g. disease). In simple terms, a case-control design, is a study which compares a group 

of individuals who have a disease or an outcome of interest (cases), with patients who are free 
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from a disease/outcome at a given point of time [209]. The study design is very similar to a 

cross-sectional study design, and both studies share many strengths. The main strengths of 

observational studies are that they can be used to generate a hypothesis, or they may be the 

only study design which is feasible or ethically viable to be carried out. Furthermore, 

observational studies are quick, easy and relatively inexpensive. They have the potential for 

large numbers of samples to be collected [210]. Under a nutrigenetics perspective, 

observational studies (cross sectional and case control) can impose substantial limitations. 

Firstly, phenotypes can vary across different time periods. For example, when testing gene-diet 

interactions, TAG concentrations vary upon the time of collection [211], thus only collecting 

fasting blood samples may be a limitation. Further to this, observational studies lack 

replication, making it difficult to conclude whether the findings are due to chance. 

Observational studies rely on FFQs, which are self-reported by participants and this can 

introduce bias. Ultimately, cross-sectional studies are beneficial as they are able to identify 

genetic variants which may be associated with diseases, and these variants are less likely to be 

affected by confounding variables [212].  

The next study design is a randomized clinical trial (RCT). RCTs are part of an 

experimental study design, where volunteers are randomly assigned to receive an experimental 

treatment (intervention) or a control treatment (where they receive the current standard 

treatment: this could be no treatment, a placebo or the best existing treatment currently 

available) [213]. As a result, any observed changes in the outcome e.g. vitamin B12 levels, is 

a result of the intervention treatment. The main advantages of an experimental trial are that 

both participants and trialists are unaware of whether the participant is receiving the treatment 

or control diet, until the study is completed. Although randomised control trials are powerful 

tools, studies are often limited by the sample size. It is difficult to have large sample sizes as it 
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is not cost effective, furthermore participants may drop out or have poor compliance with the 

treatment [214].  

Alternatively, another type of experimental study is the ‘cross over’ study design. In a 

cross over study design, half of the study samples are randomly assigned to a control diet for a 

certain period of time, they then undergo a wash out period, and they then switch to the 

experimental dietary intervention. The other half of the study sample, start off the experimental 

dietary intervention, undergo a wash out period, and then switch to the control diet [215]. In 

this type of study, the groups exchange their respective arms at a specific point of the 

experiment. The advantages of following cross-over studies are that they verify the findings of 

the first phase of the study, by reproducing it in the second phase, consequently reinforcing the 

conclusion of the study. Furthermore, intervention studies minimize the effect of confounding 

factors. However, one of the main concerns of dietary intervention studies is the need for a 

washout period between studies and that the trials often have a small sample size, which may 

reduce the power of detecting gene-diet interaction effect sizes [212, 216]. 

The postprandial study design (sequential meal design) is a type of experimental design. In 

this protocol two test meals are given to participants at different time intervals. The purpose of 

the following test design is to determine how chronic dietary fat or cereal/non-digestible 

carbohydrate supplements manipulate the lipaemic response. Secondly, this test design is used 

to determine the acute impact of specific fatty acids on the first meal on the postprandial 

lipaemic response of the second meal. As a result, looking at the changes in biochemical 

variables during the postprandial state highlights the importance of using the postprandial 

design in investigating gene-diet interactions [217]. An overview of the different study designs 

employed in gene-diet interactions is shown in Table 6. 



61 

Table 6: Types of studies used to perform gene-diet interactions 

Type of 

Study 

design 

Overview Strengths Disadvantages 

Cross-

sectional 

Disease related-outcomes and 

exposures in study participants 

are measured at a single point in 

time. 

• Can be used to generate a hypothesis. 

• Quick and Easy  

• Relatively inexpensive. 

• Potential for a large sample to be collected  

• Provides estimates of prevalence of all 

factors measured 

• It is not possible to say whether the exposure 

or the outcome is the cause, and which is the 

effect. 

• Results are prone to confounding, so it 

important that confounding factors are 

adjusted during statistical analysis (within the 

regression model)  

• Phenotypes can vary across different time 

periods, thus only collecting fasting blood 

samples may be a limitation. 

• Using an FFQ, measures the current diet in a 

group of individuals. The current diet may be 

altered by the presence of a disease. 

• The reliance of FFQs, which are self-reported 

by participants, can introduce Bias. 

Case-

control 

A study which compares a group 

of individuals who have a disease 

or an outcome of interest (cases), 

with patients who are free from a 

disease/outcome at a given point 

of time  

• Can be used to generate a hypothesis. 

• Can study several exposure factors 

simultaneously 

• Quick 

• Easy  

• Phenotypes can vary across different time 

periods, thus only collecting fasting blood 

samples may be a limitation. 

• Selection bias 

• Not useful for rare exposures 
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•  Relatively inexpensive. 

• Potential for a large sample to be collected  

• The reliance of food frequency 

questionnaires, which are self-reported by 

participants, can introduce Bias. 

• Incidence rate cannot be computed 

Randomize

d clinical 

trials 

Volunteers are randomly 

assigned to receive an 

experimental treatment 

(intervention) or a control 

treatment 

• In blinded study designs, both participants 

and trialists are unaware of whether the 

participant is receiving the treatment or 

control diet, until the study is completed. 

However, often in nutrition studies it is 

difficult to blind interventions. 

• Ability to detect causal relationships 

• Studies are usually limited by sample size. 

• It is not cost effective to have a large sample 

size. 

• Participants may have poor compliance with 

the treatment.  

Cross-over  Half of the study samples are 

randomly assigned to a control 

diet for a certain period of time, 

they then undergo a wash out 

period, and they then switch to 

the experimental dietary 

intervention. The other half of the 

study sample, start off the 

experimental dietary 

intervention, undergo a wash out 

period, and then switch to the 

control die 

• Verification of the findings of the first 

phase of the study can be conducted, by 

reproducing it in the second phase, 

consequently reinforcing the conclusion of 

the study. 

• This study has minimal effect from 

confounding factors 

• The small sample size, which may reduce the 

power for detecting gene-diet interaction 

effect sizes. 

Postprandia

l 

In this protocol two test meals 

are given to participants at 

different time intervals. The 

purpose of the following test 

design is to determine how 

chronic dietary fat or cereal/non-

• The frequency of blood sampling, with on 

average 10–13 blood samples taken during 

each postprandial assessment 

• Determination of the postprandial response is 

complex 

•  Lack of standardisation of methodologies, 

test meal size and composition, between 

different studies and research groups  
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digestible carbohydrate 

supplements manipulate the 

lipaemic response. Secondly, this 

test design is used to determine 

the acute impact of specific fatty 

acids on the first meal on the 

postprandial lipaemic response 

of the second meal. 

• Small subject numbers 
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1.9.5 From Nutrigenetics to Personalised nutrition  

It is becoming increasingly evident that genes and nutrients interact and influence an 

individual’s risk of developing metabolic disease related traits [11]. Approximately over 1000 

genes have been shown to be associated with human diseases, [218]; however, many of these 

genes will not increase the risk of developing a disease without exposure to certain dietary 

compounds [219]. Given that 80% of chronic diseases can be prevented by lifestyle and dietary 

modifications [220], it is important that dietary prevention strategies and dietary guidelines are 

revised. It is now possible to individualise diets using dietary, phenotype and genotypic data 

[221]. Greater attention is now being placed in switching dietary interventions from being 

population-based to being ‘personalised’ according to an individual’s genotype. The concept 

of personalised nutrition is continually changing as research is developing in the field. Grimaldi 

et al, describes it as an approach that ‘uses information on individual characteristics to develop 

targeted nutritional advice, products, or services’ [222]. The importance of personalised 

nutrition was shown in a retrospective study, which found that participants who were truly 

matched to a diet based on their genotype, had a twofold to threefold greater reduction in body 

weight  during a 12-month period, compared to individuals falsely matched to a diet [223].  

 At present, personalised nutrition is in its infancy. The success of personalised dietary 

advice relies on its ability to drive dietary change and attract consumer interest [221]. Although 

nutrient-gene interactions are a promising field of research, the molecular and 

pathophysiological mechanisms underlying these interactions is unclear. It is important that 

functional studies are carried out to clarify the biological significance and potential clinical 

applications of gene-diet interactions [12]. Furthermore, it has been shown that gut microbiota 

could interact with gene-diet interactions, to modify the risk of developing metabolic diseases 

[224]. As a result, future studies should profile individuals for metabolites, so that personalised 

dietary advice can be based on an individual’s metabotype [12]. It is essential that before 
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personalised nutrition is introduced; larger, well-powered studies should be conducted in a 

range of ethnic groups. Furthermore, other modifiable factors (e.g. physical activity), which 

could interact with genetic factors should be taken into account. 

1.10 Conclusions 

The findings from these studies indicate that diet modifications, which attempts to 

optimize vitamin B12 concentrations and other lipid traits, must consider genetic factors. Gene-

diet interaction studies are important for clarifying the relationship between nutrients, genetic 

variants and vitamin B12 status. Although nutrigenetics research is developing and garnering 

public health interest, consistent challenges have emerged surrounding the nature of 

nutrigenetics research. Several unregulated websites offering tests and dietary advice are 

available, with limited scientific evidence [225]. It is believed that there are no defined 

standards of how to conduct nutrigenetics studies. Additionally, the majority of nutrigenetics 

studies, have been published as secondary analyses to studies, the purpose of which was not to 

study gene-diet interactions [226]. Future studies will require an appropriate study design and 

a well-powered sample size. Furthermore, certain genetic variants may contribute to 

interindividual variability during postprandial states [211]; therefore, gene-diet interactions 

studies must examine both fasting and postprandial states.  

 In summary, there is a need to increase the number of nutrigenetics studies to establish 

the link between SNPs, dietary factors and health outcomes. It is also important to identify how 

gene-diet interactions influence vitamin B12 metabolic and lipid metabolism pathways at the 

molecular level, in order to determine the mechanism of action. Once this has been determined 

and validated in various ethnic groups, personalised dietary advice can be enforced to prevent 

diet-related diseases.  
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1.11 Thesis aims and outlines of the thesis 

 Based on the hypothesis that SNPs would influence serum vitamin B12 concentrations that 

may be modulated by lifestyle factors across different ethnic groups, the aims of this thesis are 

outlined below and is visually represented in Figure 3 (This diagram is a generic diagram that is 

modified throughout the thesis, depending on the study nature): 

1. To examine the association of selected common SNPs associated with vitamin B12 

concentrations and SNPs associated with metabolic traits with vitamin B12 concentrations and 

metabolic outcomes in different ethnic groups. 

2. To examine the interaction between these SNPs and lifestyle factors [dietary (fat, carbohydrate, 

and protein as total energy %) and physical activity levels] on vitamin B12 concentrations and 

metabolic outcomes using various study designs. 

 

Figure 3: The aims of this thesis 

The diagram shows four possible associations, and four possible interactions. One-sided arrows 

with unbroken lines represent genetic associations and one-sided arrows with broken lines 
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represent interactions between a lifestyle factor and SNPs on serum vitamin B12/ metabolic traits.  

The first aim was to test for the associations between the B12-related SNPs and vitamin B12 status 

and metabolic disease related traits. Next, the association between the metabolic-related SNPs 

and vitamin B12 concentrations and metabolic disease-related traits was tested. The second aim 

was to test whether these genetic associations were modified by lifestyle factors (macronutrient 

intake and physical activity levels). 

 

The hypothesis and aims of each chapter are outlined below and is summarized in Table 7: 

Chapter 2: Based on the candidate gene and GWA studies, associations between genetic loci in 

several genes involved in vitamin B12 metabolism have been identified. The aim of this literature 

review was to establish a reliable list of genetic variations that will allow us to predict the vitamin 

B12 status of an individual by knowing their genotype in these genetic variations. This review 

identified the genetic determinants of circulating vitamin B12 levels by focusing on new findings 

from GWA and candidate gene association studies, as well as results from Mendelian 

randomization analyses conducted so far for vitamin B12 pathway genes. The review also 

discussed the role of the genes involved in B12 status and reported the genetic variants specific to 

particular ethnic groups. 

Chapter 3: Cardiovascular disease (CVD) has remained the leading cause of mortality in Brazil 

since the late 1960s and may be influenced by abnormal concentrations of vitamin B12, 

homocysteine, folic acid and lipids in our body. To date, common variants in genes of the one-

carbon metabolism pathway have been reported to influence the concentrations of vitamin B12, 

folic acid, homocysteine and lipids. However, the interaction between SNPs involved in the one-

carbon metabolism pathway and macronutrient intake on cardiovascular risk factors in the 

Brazilian population has not yet been investigated. Hence, the present study investigated whether 

the association of ten SNPs involved in the one-carbon metabolism pathway with vitamin B12, 
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folic acid, homocysteine and lipid levels, and examined the interaction of these SNPs with lifestyle 

factors (dietary factors and physical activity) in adolescents (n=119) with cardiovascular risk. 

Chapter 4: Observational studies in South Asian populations have suggested an association 

between vitamin B12 status and metabolic traits; however, the findings have been inconclusive. 

Given that there are no gene-diet interaction studies, to date, in the Sri Lankan population, I used 

a genetic approach to explore the relationship between metabolic traits and vitamin B12 status in 

a South Asian Sri Lankan population and investigated whether these relationships were modified 

by lifestyle factors (dietary factors and physical activity) in 109 Sinhalese adults (61 men and 48 

women aged 25-50 years).   

Chapter 5: Low vitamin B12 concentrations have been associated with major clinical outcomes, 

including adiposity, in Indian populations. The Fat mass and obesity associated gene (FTO) is an 

established obesity-susceptibility locus; however, it remains unknown whether it influences 

vitamin B12 status. Hence, I investigated the association of two previously studied FTO 

polymorphisms (rs2388405 and rs8050136)  with vitamin B12 concentrations and metabolic 

disease-related outcomes and examined whether these associations were modified by dietary 

factors and physical activity  in an Asian Indian population (300 Type 2 Diabetic cases, 300 pre-

diabetics and 300 normal glucose-tolerant (NGT)). 

Chapter 6: Adverse effects of maternal vitamin B12 deficiency have been linked to major clinical 

outcomes, including increased body mass index and gestational diabetes, however, less is known 

about vitamin B12 nutrition in non-pregnant women. The aim of this study was to use a gene-

based approach to explore the relationship between metabolic traits and vitamin B12 status in a 

cohort of 117 Minangkabau women (25-60 years) in Padang, West Sumatra, Indonesia, and 

investigated whether these relationships were modified by lifestyle factors (dietary factors and 

physical activity). 
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Chapter 7: Low vitamin B12 status has been shown to be a risk factor for several cardiometabolic 

traits such as obesity, diabetes and cardiovascular disease (CVD). Animal models have shown that 

the modification of dietary fat intake can affect vitamin B12 status. Hence, we investigated 

whether vitamin B12- and metabolic disease-related genetic variants modify vitamin B12 

concentrations and cardiometabolic traits in response to replacement of saturated fatty acids (SFA) 

with monounsaturated (MUFA) or n-6 polyunsaturated (PUFA) fatty acids. A retrospective 

analysis was conducted on 119 participants in the Dietary Intervention and VAScular function 

(DIVAS) study.  

Chapter 8: This chapter focuses on the discussion, which is based on the findings from all the 

studies, and the future prospects of this PhD work.  
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Table 7: Summary of the SNPs that were examined in each chapter 

 

Chapters Population Study 

design 

B12-related SNPs   analysed Metabolic disease 

SNPs analysed 

Journal name and status of  

publication 

Chapter 2: An 

update on 

vitamin B12-

related gene 

polymorphisms 

and B12 status. 

 

Multi-ethnic Literature 

review 
• 59 B12-related SNPs 

from 19 genes were 

analysed. 

• Not applicable Genes & Nutrition (Published, 

DOI number:  10.1186/s12263-

018-0591-9) 

 

 

Chapter 3: The 

Influence of 

One-carbon 

Metabolism 

Gene 

Polymorphisms 

and Gene–

environment 

Interactions on 

Homocysteine, 

Vitamin B12, 

Folate and 

Lipids in a 

Brazilian 

Adolescent 

Population 

Brazilian  Cross-

sectional 

study  

• Fucosyltransferase 

[FUT2]- rs602662 

• Transcobalamin 2 

[TCN2]- rs1801198 

• 5-methyltetrahydrofolate-

homocysteine 

methyltransferase or 

methionine synthase 

[MTR]- rs1805087a 

•  5-

methyltetrahydrofolate-

homocysteine 

methyltransferase 

reductase or methionine 

synthase reductase 

[MTRR]- rs1801394a 

• Betaine-homocysteine S-

methyltransferase 

• Catechol-o-

methyl 

transferase 

[COMT]-

rs4680 and 

rs4633 

Journal of Diabetology 

(Published, DOI number: 

10.4103/jod.jod_37_18) 
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[BHMT]-rs3797546 and 

rs492842b 

• methylenetetrahydrofolate 

reductase [MTHFR]- 

rs1801131c 

• methylenetetrahydrofolate 

reductase [MTHFR]-

rs1801133d 

Chapter 4: A 

genetic 

approach to 

examine the 

relationship 

between vitamin 

B12 status and 

metabolic traits 

in a South Asian 

population 

Sri Lankan Cross-

sectional 

study 

• MTHFR- rs1801133 

• Carbamoyl-phosphate 

synthase 1 [CPS1]- 

rs1047891 

•  Cubulin [CUBN]- 

rs1801222 

•  CD320 molecule 

[CD320]- rs2336573 

•  TCN2- rs1131603 

•  Citrate lyase beta like 

[CLYBL]- rs41281112 

•  FUT2- rs602662 

•  Transcobalamin 1 

[TCN1]- rs34324219 

• Fucosyltransferase 6 

[FUT6]- rs778805 

•  Methylmalonyl-CoA 

mutase [MUT]- 

rs1141321) 

• Fat mass and 

obesity-

associated 

[FTO]- 

rs9939609 and 

rs8050136 

•  Melanocortin 

4 Receptor 

[MC4R]- 

rs17782313 

and rs2229616 

•  Transcription 

factor 7-like 2 

[TCF7L2]- 

rs12255372 

and rs7903146 

•  Potassium 

voltage-gated 

channel 

subfamily J 

member 11 

[KCNJ11]- 

rs5219 

International Journal of 

Diabetes in Developing 

Countries (Published, DOI 

number: 

https://doi.org/10.1007/s13410-

019-00749-8) 
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• Calpain 10 

[CAPN10]- 

rs3792267, 

rs2975760 and 

rs5030952 

Chapter 5: 

Evidence for the 

association 

between FTO 

gene variants 

and vitamin B12 

concentrations 

in an Asian 

Indian 

population 

Indian Case-

Control  
• Not applicable • FTO-

rs9939609 and 

rs2388405 

Genes & Nutrition (Published, 

DOI number: 

https://doi.org/10.1186/s12263-

019-0649-3) 

Chapter 6: A 

nutrigenetic 

approach for 

investigating the 

relationship 

between vitamin 

B12 status and 

metabolic traits 

in Indonesian 

women 

Indonesian Cross-

sectional 

study 

• MTHFR- rs1801133 

•  CPS1- rs1047891 

• CUBN- rs1801222 

•  CD320- rs2336573 

•  TCN2- rs1131603 

•  FUT2- rs602662 

• TCN1- rs34324219 

•  FUT6- rs778805 

• MUT- rs1141321 

• FTO- 

rs9939609 and 

rs8050136 

• MC4R- 

rs17782313 

and rs2229616 

• TCF7L2- 

rs12255372 

and rs7903146 

• KCNJ11- 

rs5219 

• CAPN10- 

rs3792267 and 

rs5030952 

Journal of Diabetes & 

Metabolic Disorders 

(Published, DOI number: 

https://doi.org/10.1007/s40200-

019-00424-z) 

Chapter 7: 

DIVAS A 

genetic 

British Dietary 

intervention 

study  

• FUT2- rs602662, 

rs492602 and rs16982241 

• TCF7L2- 

rs12255372 

and rs7903146 

Lipids in Health and Disease 

(Under review) 
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approach to 

investigate the 

relationship 

between vitamin 

B12 status and 

cardiometabolic 

traits in response 

to changes in 

dietary fat 

composition in 

adults with 

moderate 

cardiovascular 

disease risk   

•  MC4R- 

rs17782313 

and rs2229616 

•  FTO- 

rs9939609 and 

rs8050136. 

 

aSNPs which have shown associations with folate 

b SNPs which have shown associations with homocysteine 

cSNPs which have shown associations with folate and homocysteine 

d SNPs which have shown associations with vitamin B12, folate and homocysteine 
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Chapter 2  

An update on vitamin B12-related gene polymorphisms and B12 

status 

For this literature review, I extracted and interpreted genetic variants related to vitamin B12 

status. I conducted a literature search and identified 10,534 articles from the PubMed database. 

Following this, 10,482 articles were excluded according to the established exclusion criteria. 

In addition, the reference lists of identified publications were hand searched to identify any 

further studies. Further exclusions were applied and as a result, only 23 articles were selected 

for analysis. I was also responsible for contacting corresponding authors to provide any 

additional information where needed. I wrote the manuscript and revised the manuscript based 

on comments from the co-authors. I was also involved in drafting the responses to the 

comments from the reviewers.  

 

Published (The published version of the paper is attached as an appendix at the end of 

the thesis) 

Surendran, S., Adaikalakoteswari, A., Saravanan, P., Shatwaan, I. A., Lovegrove, J. 

A. and Vimaleswaran, K. S. (2018) An update on vitamin B12-related gene polymorphisms 

and B12 status. Genes & Nutrition, 13 (1). pp. 1555-8932. ISSN 1865-3499 

doi: https://doi.org/10.1186/s12263-018-0591-9 

 

2.1 Abstract 

Background: Vitamin B12 is an essential micronutrient in humans needed for health 

maintenance. Deficiency of vitamin B12 has been linked to dietary, environmental and genetic 

http://centaur.reading.ac.uk/view/creators/90000176.html
http://centaur.reading.ac.uk/view/creators/90000176.html
http://centaur.reading.ac.uk/view/creators/90005601.html
http://centaur.reading.ac.uk/75711/
http://centaur.reading.ac.uk/75711/
https://doi.org/10.1186/s12263-018-0591-9
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factors. Evidence for the genetic basis of vitamin B12 status is poorly understood. However, 

advancements in genomic techniques have increased the knowledge-base of the genetics of 

vitamin B12 status. Based on the candidate gene and genome wide association (GWA) studies, 

associations between genetic loci in several genes involved in vitamin B12 metabolism have 

been identified.  

Objective: The objective of this literature review was to identify and discuss reports of 

associations between single nucleotide polymorphisms (SNPs) in vitamin B12 pathway genes, 

and their influence on the circulating levels of vitamin B12.  

Methods: Relevant articles were obtained through a literature search on PubMed through to 

May 2017. An article was included if it examined an association of a SNP with serum or plasma 

vitamin B12 concentration. Beta coefficients and odds ratios were used to describe the strength 

of an association, and a P< 0.05 was considered as statistically significant. Two reviewers 

independently evaluated the eligibility for the inclusion criteria and extracted the data.  

Results: From twenty-three studies which fulfilled the selection criteria, sixteen studies 

identified SNPs that showed statistically significant associations with vitamin B12 

concentrations. Fifty-nine vitamin B12-related gene polymorphisms associated with vitamin 

B12 status were identified in total, from the following populations: African American, 

Brazilian, Canadian, Chinese, Danish, English, European ancestry, Icelandic, Indian, Italian, 

Latino, Northern Irish, Portuguese and residents of the United States.  

Conclusion: Overall, the data analysed suggests that ethnic-specific associations are involved 

in the genetic determination of vitamin B12 concentrations. However, despite recent success 

in genetic studies, the majority of identified genes that could explain variation in vitamin B12 

concentrations were from Caucasian populations. Further research utilizing larger sample sizes 
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of non-Caucasian populations is necessary in order to better understand these ethnic-specific 

associations.  

 

2.2 Introduction 

Vitamin B12, also known as cobalamin (Cbl), is an essential water-soluble micronutrient 

required to be ingested by humans to maintain health. The nutritional deficiency of vitamin 

B12 has been linked to many complications including an increased risk of macrocytic anaemia, 

neuropsychiatric symptoms [227], cardiovascular diseases [228],  and the onset of different 

forms of cancer [229, 230]. To maintain adequate vitamin B12 status, individuals must ingest 

sufficient dietary vitamin B12 and retain the ability to absorb vitamin B12. The absorption, 

transport and cellular uptake of vitamin B12 is dependent upon the co-ordinated action of the 

binding proteins: haptocorrin (HC), intrinsic factor (IF), transcobalamin II (TC) and other 

specific cell receptors. After vitamin B12 binds to HC in the stomach and IF in the duodenum, 

it binds to TC within the enterocyte and is then released into the blood stream. The vitamin 

B12-TC complex then binds to the transcobalamin receptor (TC-R) and is taken up by cells via 

endocytosis  [231]. 

Genetic variants may alter vitamin B12 tissue status by affecting the proteins involved 

in vitamin B12 absorption, cellular uptake and intracellular metabolism [143]. In a study using 

monozygotic and dizygotic twins, the heritability of B12 levels was estimated to be 59%, 

indicating that the magnitude of genetic influence on vitamin B12 levels are considerable [203]. 

At present, genetic studies of vitamin B12 status suggest that it is a multifactorial trait, where 

several single nucleotide polymorphisms (SNPs) in multiple genes interact with the 

environment to cause the altered B12 status [204]. Most of the SNPs related to vitamin B12 

status have been examined using a candidate gene approach [204]. However, it is now possible 

to use an unbiased genome-wide association (GWA) study to associate DNA sequence 
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variations across the human genome with the risk factors of developing a disease [232]. Despite 

a number of informative genome-wide association studies and candidate gene analyses, the 

complex relationship between an individual’s genotype and their vitamin B12 status remains 

poorly understood. This article is the first literature review  to discuss the results of genetic 

studies associated with vitamin B12 status in healthy individuals. Understanding the possible 

underlying genetic factors of vitamin B12 metabolism will lead to an increased understanding 

of the biological mechanisms underlying vitamin B12 status.  

2.3 Materials and Methods 

2.3.1 Study identification 

In order to identify published articles, literature searches were completed using the 

PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/), from the earliest date of indexing 

until May 2017. The following keywords were used to identify articles from PubMed: ‘vitamin 

B12 and genetics’ (n=2,792), ‘vitamin B12 and gene polymorphisms’ (n=447), ‘genetic 

variants of vitamin B12’ (n=115), ‘genetic variants of cobalamin’ (n=95), ‘genetics of 

cobalamin’ (n=2,574), ‘genetics of vitamin B12’(n= 2,721)’,‘vitamin B12 and genes (n=932) 

and ‘cobalamin and genes’ (n=858). In addition, reference lists of identified publications were 

hand searched to identify other studies potentially eligible for inclusion. 

No limits on geographical location were placed in the literature search, and only articles 

written in English were selected. After inclusion and exclusion criteria were applied, a 

comprehensive list of relevant articles was included in this review. 

2.3.2 Study selection 

The abstracts of  all articles with relevant titles were reviewed first and were further 

assessed if they reported original data on testing for an association of a SNP with plasma or 

serum vitamin B12 concentrations. Articles were excluded if: 1) they included non-human 

https://www.ncbi.nlm.nih.gov/pubmed/
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subjects 2) they were limited to a subset of the population (e.g. pregnant women / carrying a 

disease) and 3) the sample size of the population was less than 10. 

Based on the search criteria and keywords used, 10,534 articles were identified from 

the PubMed database. Following this, 10,482 articles were excluded according to the 

established exclusion criteria, and 52 articles were then considered as potentially relevant for 

the review. The full text of the 52 articles was read, which resulted in the exclusion of a further 

29 articles. As a result, only 23 articles were selected for analysis (Figure 4). A P< 0.05 was 

considered as statistically significant. 

 

Figure 4: Flow diagram of studies identified in the literature search for the identification 

of genetic variants associated with vitamin B12 concentrations 

2.3.3 Data extraction: 

The studies were identified by a single investigator (SS) and the following data were 

double-extracted independently by two reviewers (VKS and IAS): first author, publication 
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year, location or ethnicity of participants, sample size, mean age, study design, SNP position, 

name and rs ID, genotype and allele distribution by vitamin B12 status. For the outcome data, 

the beta coefficients of vitamin B12 concentrations per risk allele, odds ratios (ORs) with their 

corresponding 95% confidence intervals (95% CIs) were extracted. Any discrepancies over 

extracted data were settled through discussion between the two independent reviewers (VKS 

and IAS). Finally, corresponding authors were contacted to provide any additional information 

where needed.  

2.4  Results of Database search: Genes associated with vitamin B12 status 

The following section reviews studies of genetic variants which have been associated 

with vitamin B12 status. These variants have been grouped as: a) co-factors or regulators 

essential for the transport of vitamin B12 (b) membrane transporters actively facilitating 

membrane crossing (c) involved in the catalysis of enzymatic reactions in the one carbon cycle  

(d) involved in cell cycle regulation, (e) mitochondrial proteins and (f) other genes (Figure 5 

and 6. A summary of GWA and candidate gene association studies that have been reported to 

be associated with circulating plasma or serum B12 concentrations are presented in Table 8 

and Table 9. The location and function of the most frequently studied genes associated with 

vitamin B12 concentrations are summarized in Table 10.
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Figure 5: Diagram representing the genes associated with vitamin B12 status 

The diagram shows the proteins involved in the metabolism of vitamin B12 from dietary intake 

to reaching the circulatory system. Genes identified to harbour variants regulating serum 

levels of B12 are surrounded by dashed lines. B12: vitamin B12; CUBN: cubilin (intrinsic 

factor-cobalamin receptor); FUT2: fucosyl-transferase 2; FUT6: fucosyl-transferase 6; HC: 

Haptocorrin (TCN1); H. pylori: Helicobacter pylori; IF: Intrinsic factor; PON1: serum 

paraoxonase/arylesterase 1; R-A-P: Receptor-Associated-Protein; TCII: Transcobalamin II 

(TCN2); TCII-R: Transcobalamin II receptor (CD320). 



81 

 

Figure 6: Diagram representing the genes associated with vitamin B12 status 

The diagram shows the proteins involved in the metabolism of vitamin B12 from the 

extracellular space to being internalised within the cell. Genes identified to harbour variants 

regulating serum levels of B12 are surrounded by dashed lines. Ado-B12: Adenosyl-

cobalamin; ABDC4: ATP-binding cassette, sub-family D (ALD), member 4; CD320: CD320 

Molecule; CLYBL: Citrate Lyase Beta Like; DNMT2: DNA methyltransferase 2 gene; LMBD1: 

LMBR1 domain containing 1; LMBRD1: LMBR1 Domain Containing 1; MMAA: 

Methylmalonic Aciduria (Cobalamin Deficiency) CblA Type; MMAB: Methylmalonic Aciduria 

(Cobalamin Deficiency) CblB Type; MMACHC: Methylmalonic aciduria and homocystinuria, 

cblC type; MMADHC:Methylmalonic Aciduria (Cobalamin Deficiency) CblD Type, With 

Homocystinuria; MS4A3: Membrane-Spanning 4-Domains, Subfamily A, Member 3 

(Hematopoietic Cell-Specific); MTHFR: 5-methyl-tetrahydrafolate reductase; MTR:5-

Methyltetrahydrofolate-Homocysteine Methyltransferase; MTRR: 5-Methyltetrahydrofolate-

Homocysteine Methyltransferase Reductase; MUT: Methylmalonyl CoA Mutase; PRELID2: 

PRELI Domain Containing 2; THF: Tetrahydrofolate; 5,10-Methyl THF: 5,10-Methyl-

tetrahydrofolate 
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Table 8: Genome-wide association studies showing the association of SNPs with vitamin B12 concentrations  

Chromosom

e location 

Gene name (Gene 

symbol) 

Reference 

SNP 

Cluster ID 

Sample size & 

Ethnicity 

Age 

(years) 

Minor 

allele + 

Minor 

allele 

frequency 

Effect size  P-value References 

1p34.1 Methylmalonic aciduria 

and homocystinuria type C 

protein 

(MMACHC) 

rs1227266

9 

Icelandic sample: 

n = 37283  

  

63 ± 24 

 

A = 0.002 Effect: A  allele  

Other: G allele  

 

β  = 0.51 pmol/L 

 

 

3.00 x 

10−9 

Grarup et al., 

2013 [12] [205] 

[205]  

1q42.2 Intergenic rs583228 Initial sample:  

n = 1999 

Chinese Han men 

 

 

 

 

38 ± 11 

 

 

T = 0.220 Effect: T allele 

Other: C allele 

 

β = Not available 

 

 

7.68 x 10-6 

 

Lin et al., 2012 

[19] 

Replication 

sample: 

 n = 1496  

Chinese men 

 

37± 11 Effect: T allele 

Other: C allele 

 

β = Not available 

>0.05 

Combined total: 

n = 3495 

 Effect: T allele 

Other: C allele 

 

β = 25.50 pg/ml 

SE = 7.19 

3.92 x 

10−4 
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2q34 Carbamoyl-Phosphate 

Synthase 1 

(CPS1) 

rs1047891 Icelandic sample: 

n = 37283  

                       

                                                      

63 ± 24 A = 0.372 Effect: C allele  

Other: A allele  

 

β = 0.04 pmol/L 

7.60 x 

10−6 
 

 

 

 

Grarup et al., 

2013 [12] 

Danish Inter99 

population: 

 n = 5481 

 

 

46 ± 8 

 

 

Effect: C allele  

Other: A allele  

 

β = 0.10 pmol/L 

 

5.50 x 10-4 

 

Danish - Health 

2006: 

 n  = 2812       

49 ± 13 Effect: C allele  

Other: A allele  

 

β = 0.03 pmol/L 

 

>0.05 

 

Combined total: 

 n  = 45574 

 Effect: C allele  

Other: A allele  

 

β = Not available 

 

3.00 x 10-8 

4q31.21 Methylmalonic aciduria 

(cobalamin deficiency) 

cblA type 

(MMAA) 

rs2270655 Parents of PMNS 

cohort*: 

n  = 1001 

Indian 

 

 

36 ± 5 

 

 

 

 

 

C = 0.157# Effect allele: C 

 

β = -0.07 pmol/L 

>0.05 Nongmaithem et 

al., 2017 [22] 

[233] [233]  

Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

Effect allele: C 

 

β  = 0.00 pmol/L 

 

>0.05 
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PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect allele: C 

 

β = -0.09 pmol/L 

 

>0.05 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect allele: C 

 

β = -0.20 pmol/L 

 

2.00 x 10-2 

4q31.21 Methylmalonic aciduria 

(cobalamin deficiency) 

cblA type 

(MMAA) 

rs2270655 Icelandic sample: 

 n  = 37283  

 

 

 

 

                                                                                       

63 ± 24 C = 0.059 Effect: G allele  

Other: C allele  

 

β = 0.07 pmol/L 

 

 

 

 

3.50 x 

10−5 

 

 

Grarup et al., 

2013 [12] [205] 

[205]  

Danish Inter99 

population: 

 n  = 5481 

 

 

46 ± 8 

 

 

Effect: G allele  

Other: C allele  

 

β  = 0.30 pmol/L 

 

2.80 x 

10−7 

 

Danish - Health 

2006: 

 n  = 2812       

  

49 ± 13 Effect: G allele  

Other: C allele  

 

β = 0.25 pmol/L 

 

5.80 x 

10−8 

 

Combined total: 

 n  = 45576 

 Effect: G allele  

Other: C allele  

 

β = Not available 

2.20 x 10-

13 

4q31.21 Methylmalonic aciduria 

(cobalamin deficiency) 

cblA type 

(MMAA) 

 

 

 

rs1146994

96 

 

 

 

 

 

 

 

 

 

Icelandic sample: 

 n  = 25960 

63 ± 24 

 

 

 

 

 

 

 

T = 

0.046** 

Effect: T 

 Other: C 

 

β = -0.07 pmol/L 

 

 7.60 x 10-

6 

Grarup et al., 

2013 [12] 
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5q32 Intergenic rs1051555

2 

Initial sample:  

 n  = 1999 

Chinese Han men 

 

 

 

38 ± 11 

 

 

C = 0.162 Effect: C allele 

Other: T allele 

 

β = Not available 

 

 

8.52 x 10-7 

 

 

Lin et al., 2012 

[19] 

Replication 

sample: 

  n  = 1496  

Chinese men 

37 ± 11 Effect: C allele 

Other: T allele 

 

β = Not available 

 

5.15 x 10-3 

Combined total: 

 n  = 3495 

 Effect: C allele 

Other: T allele 

 

β = 43.93 pg/ml 

SE = 7.98 

3.94 x 

10−8 

6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

chr6:4950

8102 

Icelandic sample: 

 n  = 25960 

  

63 ± 24 

 

Not 

available 

Effect: C allele  

Other: G allele  

 

β = 0.07 pmol/L 

 

 

1.60 x 10-

18 

Grarup et al., 

2013 [12] 

6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

rs1141321  

(rs947355

8) 

Icelandic sample: 

 n  = 37283  

 

 

 

                                                                                       

63 ± 24 T = 0.373 Effect: C allele  

Other: T allele  

 

β = 0.06 pmol/L 

 

 

 

1.40 x 

10−16 

 

 

Grarup et al., 

2013  [12] 

Danish Inter99 

population: 

 n  = 5481 

46 ± 8 

 

 

Effect: C allele  

Other: T allele  

 

β = 0.12 pmol/L 

 

 

1.40 x 

10−5 

 

Danish- Health 

2006: 

 n  = 2812       

49 ± 13 Effect: C allele  

Other: T allele  

 

β = 0.11 pmol/L 

1.40 x 

10−7 
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Combined total: 

 n  = 45574 

 Effect: C allele  

Other: T allele  

 

β = Not available 

3.60 x 

10−26 

6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

rs1141321  

(rs947355

8) 

Initial sample: 

 n  = 1999   

Chinese Han men 

38 ± 11 T = 0.237 Effect: T allele  

Other: C allele 

 

β= -30.34  pg/ml 

SE = 8.91 

5.51 x 

10−4 

Lin et al., 2012 

[19] [206] [206]  

6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

rs1141321  

(rs947355

8) 

NHS-CGEMS‡: 

 n  = 1658  

Caucasian women 

 

 

 

 

 

 

59 ± 6 

 

 

T = 0.350 Effect: T allele  

Other: C allele  

 

β = −0.03 pg/ml 

SE = 0.01 

 

4.27 x 10-2 

 

 

 

Hazra et al., 

2009 [20] 

[234][234] 

SHARe§: 

 n  = 1647  

Caucasian women 

59 ± 10 

 

 

Effect: T allele  

Other: C allele  

 

β = −0.03 pg/ml 

SE = 0.01 

 

1.87 x 10-2 

 

SHARe§: 

 n  = 1458  

Caucasian men 

59 ± 10 Effect: T allele  

Other: C allele  

 

β = −0.07 pg/ml 

SE = 0.01 

 

3.96 x 10-7 

 

Combined total:  

 n  = 4763 

 Effect: T allele  

Other: C allele  

 

β = −0.04 pg/ml 

SE = 0.01 

 4.05 x 10-

8 
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6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

rs9473555 Icelandic sample: 

 n  = 25960  

  

63 ± 24 

 

C = 0.402 Effect: C allele 

 Other: G allele  

 

β = -0.06 pmol/L 

 

 

5.40 x 10-

17 

Grarup et al., 

2013 [12] 

6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

rs9473555 Initial sample: 

 n = 1999   

Chinese Han men 

38 ± 11 C = 0.238 Effect: C allele  

Other: G allele 

 

β  = -31.00  pg/ml 

SE = 8.860 

4.06 x 10-4 Lin et al., 2012 

[19] 

6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

rs9473555 NHS-CGEMS‡: 

 n  = 1658  

Caucasian women 

 

 

 

 

 

 

59 ± 6 

 

 

C = 0.350 Effect: C allele  

Other: G allele  

 

β= −0.03 pg/ml 

SE = 0.01 

 

 

 

 

4.27 x 10-2 

 

 

 

Hazra et al., 

2009 [20] 

SHARe§: 

 n  = 1647  

Caucasian women 

59 ± 10 Effect: C allele  

Other: G allele  

 

β= −0.03 pg/ml 

SE = 0.01 

 

2.26 x 10-2 

 

SHARe§: 

 n  = 1458  

Caucasian men 

59 ± 10 Effect: C allele  

Other: G allele  

 

β= −0.07 pg/ml 

SE = 0.01 

 

3.71 x 10-7 

 

Combined total:  

 n  = 4763 

 Effect: C allele  

Other: G allele  

 

β= −0.04 pg/ml 

4.91 x 10-8 
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SE = 0.01 

 

6q15 Nearest gene: 

Sperm Acrosome 

Associated 1 

(SPACA1) 

Chr6_8879

2234 

Icelandic sample: 

 n  = 37283  

  

63 ± 24 

 

G = 0.006 Effect: G allele  

Other: A allele  

 

β = 0.26 pmol/L 

 

 

2.80 x 10-7 Grarup et al., 

2013 [12] [205] 

[205]  

7q21.3 Paraoxonase 1 

 (PON1) 

rs3917577 n  = 3114  

Canadian (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

G = 0.020 Effect: A allele  

Other: G allele  

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

OR: 0.67 (95% CI: 

0.54, 0.81) pmol/L 

 

7.20 x 10-5 Zinck et al., 

2015 [18]   

8q21.13 Nearest gene: 

Zinc Finger and BTB 

Domain Containing 10 

(ZBTB10) 

 

rs6251506

6 

Icelandic sample: 

 n  = 37283  

  

63 ± 24 

 

G = 0.025 Effect: G allele  

Other: A allele  

 

β = 0.12 pmol/L 

 

5.40 x 10-7 Grarup et al., 

2013 [12] 

9p21.1 NONE 

(Intergenic) 

rs1237746

2 

Initial sample:  

 n  = 1999 

Chinese Han men 

 

38 ± 11 

 

 

T = 0.366 Effect: T allele 

Other: C allele 

 

β = Not available 

 

3.34 x 10-7 

 

 

Lin et al., 2012 

[19] 

Replication 

sample: 

  n  = 1496  

Chinese men 

37 ± 11 Effect: T allele 

Other: C allele 

 

β = Not available 

 

>0.05 
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Combined total: 

 n  = 3495 

 Effect: T allele 

Other: C allele 

 

β = 28.53 pg/ml 

SE = 5.99 

2.02 x 

10−6 

10p12.31 

 

Cubulin 

(CUBN) 

rs1801222 n  = 3114  

Canadian (85% 

Caucasian, 15% 

non-Caucasian)  

20 – 79 

(range) 

A = 0.100 Effect: G allele 

 Other: A allele  

 

Vitamin B12 

deficiency (< 148 

pmol/L): 

OR: 1.61 (95% CI: 

1.24, 2.09) pmol/L 

 

3.00 x 10–

4 

Zinck et al., 

2015 [18]   

10p12.31 

 

Cubulin 

(CUBN) 

rs1801222 n  = 3114 

Canadian (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

A = 0.100 Effect: G allele  

Other: A allele  

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

 OR: 1.39 (95% CI: 

1.23, 1.58)  pmol/L 

 

2.00 x 10–

7 

Zinck et al., 

2015 [18]    

10p12.31 Cubulin    

( CUBN) 

rs1801222 Icelandic sample: 

 n = 37283  

 

 

                                                                                       

63 ± 24 A = 0.407 Effect: G allele  

Other: A allele  

 

β = 0.10 pmol/L 

1.10 x 

10−52 

 

 

 

 

Grarup et al., 

2013  [12] 

Danish Inter99 

population: 

 n  = 5481 

46 ± 8 

 

 

Effect: G allele  

Other: A allele  

 

β  = 0.14 pmol/L 

 

7.60 x 

10−8 
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Danish - Health 

2006: 

 n  = 2812       

 

49 ± 13 Effect: G allele  

Other: A allele  

 

β = 0.17 pmol/L 

 

2.90 x 

10−18 

 

Combined total: 

 n = 45576 

 Effect: G allele  

Other: A allele  

 

β = Not available 

 

3.30 x 10-

75 

10p12.31 Cubulin    

( CUBN) 

rs1801222 NHS-CGEMS‡: 

 n  = 1658  

Caucasian women 

 

 

 

 

 

 

59 ± 6 

 

 

A = 0.280 Effect: A allele  

Other: G allele  

 

β = −0.05 pg/ml 

SE = 0.01 

9.04 x 10-5 

 

 

Hazra et al., 

2009 [20]   

SHARe§: 

 n  = 1647  

Caucasian women 

59 ± 10 

 

 

Effect: A allele  

Other: G allele  

 

β = −0.04 pg/ml 

SE = 0.02 

6.32 x 10-3 

 

SHARe§: 

 n  = 1458  

Caucasian men 

59 ± 10 Effect: A allele  

Other: G allele  

 

β = −0.05 pg/ml 

SE = 0.02 

3.56 x 10-4 

 

Combined total:  

 n  = 4,763 

 Effect: A allele  

Other: G allele  

 

β = −0.05 pg/ml 

SE = 0.01 

 

2.87 x 10-9 
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10p12.31 

 

Cubulin 

(CUBN) 

rs4748353 n  = 3114  

Canadian (85% 

Caucasian, 15% 

non-Caucasian)  

20 – 79 

(range) 

C = 0.000 Effect: C allele  

Other:  T allele  

 

Vitamin B12 

deficiency (< 148 

pmol/L): 

OR: 2.14 (95% CI: 

1.36, 3.37) pmol/L 

 

 

8.00 x 10–

4 

Zinck et al., 

2015 [18]     

10p12.31 

 

Cubulin 

(CUBN) 

rs1125436

3 

n  = 3114  

Canadian (85% 

Caucasian, 15% 

non-Caucasian) 

20  – 79 

(range) 

G = 0.010 Effect: A allele 

Other: G allele 

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

OR: 0.81 (95% CI: 

0.70, 0.93) pmol/L 

 

3.00 x 10-3 Zinck et al., 

2015 [18]    

10p12.31 

 

Cubulin 

(CUBN) 

rs1125436

3 

GWAS Meta-

analysis: 

 

InCHIANTI 

study: 

  n  = 1175  

Italian  

  

SardiNIA study: 

  n  = 1115  

Italian  

  

BLSA study¶: 

  n  = 640  

Residents from 

the USA 

 

 

 

 

 

InCHIA

NTI: 

68  ± 16 

 

SardiNI

A: 

45 ± 18 

 

BLSAg: 

68 ± 16 

 

 

G = 0.300 Effect: A allele  

Other: G allele 

 

β = -39.16 pg/ml 

SE = 9.18 

 

7.24 x 10-8 

 

 

Tanaka et al., 

2009 [21]   

Replication study: 47 ± 13 Effect: A allele  >0.05 
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Progetto 

Nutrizione study:  

n  = 687  

Italian 

 

 

 

  

Other: G allele 

 

β = 3.62 pg/ml 

SE = 10.94 

 

Combined meta-

analysis (GWAS 

Meta-analysis + 

Replication 

study): 

 n  = 3613 

 Effect: A allele  

Other: G allele 

 

β = -21.49 pg/ml 

SE = 7.03 

 1.11 × 

10−6 

 

10p12.31 

 

Cubulin 

(CUBN) 

rs1224389

5 

Initial sample: 

 n  = 1999   

Chinese Han men 

38 ± 11 A = 0.243 Effect: A allele  

Other: G allele 

 

β  = 23.49  pg/ml 

SE = 9.06 

 

7.11 x 10-3 Lin et al., 2012 

[19] 

10p12.31 

 

Cubulin 

(CUBN) 

rs1278084

5 

Parents of PMNS 

cohort*: 

n  = 1001 

Indian 

 

 

36 ± 5 

 

 

 

 

 

G = 0.415# Effect allele: G 

 

β = 0.09   pmol/L 

 

 

 

 

 

 

 >0.05 

 

 

 

Nongmaithem et 

al., 2017 [22] 

Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

Effect allele: G 

 

β = 0.09 pmol/L 

 

>0.05 
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PMNS children*: 

n  = 690 

Indian 

 

 

 

11 ± 1 

 

Effect allele: G 

 

β = 0.08 pmol/L 

 

>0.05 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect allele: G 

 

β = 0.03 pmol/L 

>0.05 

10p13 DNA methyltransferase 

gene 

(DNMT2) / TRNA 

Aspartic Acid 

Methyltransferase 1 

(TRDMT1) 

rs2295809 n  = 3114  

Canadian  (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

T = 0.240 Effect: A allele  

Other: T allele  

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

OR: 0.82 (95% CI: 

0.73, 0.92) pmol/L 

 

1.00 x 10-3 Zinck et al., 

2015 [18]     

10p13 DNA methyltransferase 

gene 

(DNMT2) / TRNA 

Aspartic Acid 

Methyltransferase 1 

(TRDMT1) 

rs5607712

2 

Icelandic sample: 

 n  = 25960 

 

 

 

 

63 ± 24 

 

A = 0.335 Effect: A allele  

Other: C allele  

 

β = 0.09 pmol/L 

 

 

 

 

 

4.80 x 

10−21 

Grarup et al., 

2013 [12] 
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11q12.1 Intergenic 

 

Nearest gene: 

Transcobalamin 1 (TCN1) 

rs1174560

53 

Icelandic sample: 

 n  = 25960 

 

 

63 ± 24 

 

A = 0.024 Effect: G allele  

Other: A allele  

 

β = 0.16 pmol/L 

 

 

 

 

 

1.90 x 

10−9 

Grarup et al., 

2013 [12] 

11q12.1 Membrane Spanning 4-

Domains A3 

(MS4A3) 

rs2298585   Icelandic sample: 

 n  = 25960 

 

  

63 ± 24 

 

T = 0.001 Effect: T allele  

Other: C allele 

 

β = 0.21  pmol/L 

 

 

 

 

 

>0.05 Grarup et al., 

2013 [12] [205] 

[205]  

11q12.1 Membrane Spanning 4-

Domains A3 

(MS4A3) 

rs2298585   Initial sample:  

 n  = 1999 

Chinese Han men 

 

 

 

 

38 ± 11  

 

 

T = 0.120 Effect: T allele 

Other: C allele 

 

β = Not available 

 

1.71 x 10-

10 

 

 

Lin et al., 2012 

[19] 

Replication 

sample: 

  n  = 1496  

Chinese men 

37 ± 11 Effect: T allele 

Other: C allele 

 

β = Not available 

 

1.58 x 10-6 

 

Combined total: 

 n  = 3495 

 Effect: T allele 

Other: C allele 

 

β = 71.80 pg/ml 

SE = 9.04 

2.64 x 

10−15 

 

11q12.1 Transcobalamin 1 

(TCN1) 

rs526934 Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

G = 0.216# Effect allele: G 

 

β = -0.07 pmol/L 

 

>0.05 Nongmaithem et 

al., 2017 [22] 
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PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1  Effect allele: G 

 

β = -0.10 pmol/L 

 

>0.05 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect allele: G 

 

β = -0.16 pmol/L 

 

2.00 x 10-2 

11q12.1 Transcobalamin 1 

(TCN1) 

rs526934 n  = 3114  

Canadian  (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

G = 0.080 Effect: A allele 

Other: G allele 

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

OR: 1.38 (95% CI: 

1.21, 1.57) pmol/L 

 

1.40 x 10–

6 

Zinck et al., 

2015 [18]    

11q12.1 Transcobalamin 1 

(TCN1) 

rs526934 Icelandic sample: 

 n  = 25960 

 

  

63 ± 24 

 

G = 0.296 Effect: G allele  

Other: A allele  

 

β = -0.12  pmol/L  

 

 

 

 

 

2.30 x 

10−48 

Grarup et al., 

2013 [12] 

11q12.1 Transcobalamin 1 

(TCN1) 

rs526934 Initial sample: 

 n  = 1999   

Chinese Han men 

8 ± 11 G = 0.189 Effect: G allele 

 Other: A allele 

 

β= -30.39  pg/ml 

SE = 9.66 

1.78 x 10-3 Lin et al., 2012 

[19] 
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11q12.1 Transcobalamin 1 

(TCN1) 

rs526934 NHS-CGEMS‡: 

 n  = 1658  

Caucasian women 

 

 

 

 

 

 

59 ± 6  

 

 

G = 0.270 Effect: G allele  

Other: A allele  

 

β = −0.05 pg/ml 

SE = 0.01 

 

1.27 x 10-3 

 

 

Hazra et al., 

2009 [20] 

SHARe§: 

 n  = 1647  

Caucasian women 

59 ± 10 

 

 

Effect: G allele  

Other: A allele  

 

β = −0.06 pg/ml 

SE = 0.02 

 

6.69 x 10-5 

 

SHARe§: 

 n  = 1458  

Caucasian men 

59 ± 10 Effect: G allele  

Other: A allele  

 

β = −0.06 pg/ml 

SE = 0.02 

 

1.64 x 10-4 

 

Combined total:  

 n  = 4763 

 Effect: G allele  

Other: A allele  

 

β = −0.05 pg/ml 

SE = 0.01 

 

2.25 ×10-

10 
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11q12.1 Transcobalamin 1 

(TCN1) 

rs526934 GWAS Meta-

analysis: 

 

InCHIANTI 

study: 

  n  = 1175  

Italian  

  

SardiNIA study: 

  n  = 1115  

Italian  

  

BLSA study¶: 

  n  = 640  

Residents from 

the USA 

 

 

 

 

 

InCHIA

NTI: 

68 ± 16 

 

SardiNI

A: 

45 ± 18  

 

BLSAg: 

68 ± 16 

 

 

G = 0.330 Effect: A allele  

Other: G allele 

 

β = 36.76 pg/ml 

SE = 10.35 

 8.33 x 10-

7 

 

Tanaka et al., 

2009 [21]   

Replication study: 

Progetto 

Nutrizione study:  

n = 687  

Italian  

47 ± 14 Effect: A allele  

Other: G allele 

 

β = 12.83 pg/ml 

SE = 13.24 

 

>0.05 

Combined meta-

analysis (GWAS 

Meta-analysis + 

Replication 

study): 

 n  = 3613 

 Effect: A allele  

Other: G allele 

 

β = 27.62 pg/ml 

SE = 8.15 

 

1.51 x 10-6 

 

11q12.1 Transcobalamin 1 

(TCN1) 

rs3432421

9 

Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

A = 

0.041†† 

Effect allele: A 

 

β = -0.30 pmol/L 

 

2.00 x 10-2 

 

Nongmaithem et 

al., 2017 [22] 

PMNS children*: 

n  = 690  

11 ± 1 

 

Effect allele: A 

 

>0.05 
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Indian 

 

 

 

β = -0.14 pmol/L 

 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect allele: A 

 

β = -0.65 pmol/L 

 

9.50 x 10-7 

11q12.1 Transcobalamin 1 

(TCN1) 

rs3432421

9 

Icelandic sample: 

 n  = 37283  

 

 

                                                                                       

63 ± 24 A = 0.119 Effect: C allele  

Other: A allele  

 

β = 0.21 pmol/L 

 

 

 

8.80 x 

10−71 

 

 

 

 

Grarup et al., 

2013 [12] 

Danish Inter99 

population: 

 n  = 5481 

46 ± 8 

 

 

Effect: C allele  

Other: A allele  

 

β = 0.40 pmol/L 

3.20 x 

10−23 

 

Danish - Health 

2006: 

 n  = 2812       

49 ± 13 Effect: C allele  

Other: A allele  

 

β = 0.30 pmol/L 

 

3.50 x 

10−24 

 

Combined total: 

 n  = 45576 

 Effect: C allele  

Other: A allele  

 

β = Not available 

 

1.10 x 10-

111 

11q12.1 Transcobalamin 1 

(TCN1) 

rs3452891

2 

Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

T = 

0.006†† 

Effect allele: T 

 

β = -0.79 pmol/L 

 

1.00 x 10-2 Nongmaithem et 

al., 2017 [22] 
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PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect allele: T 

 

β = 0.38 pmol/L 

 

>0.05 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect allele: T 

 

β = -0.47 pmol/L 

 

3.00 x 10-2 

11q12.1 Transcobalamin 1 

(TCN1) 

rs3452891

2 

Icelandic sample: 

 n  = 25960 

63 ± 24  

 

T = 0.036 Effect: T allele 

 Other: C allele  

 

β = 0.17 pmol/L 

 

 

 

 

 

2.10 x 

10−15 

Grarup et al., 

2013 [12] 

13q32.3 Citrate Lyase Beta Like 

(CLYBL) 

 

 

rs4128111

2 

 Initial sample:  

 n  = 1999 

Chinese Han men 

 

 

 

 

38  ± 11 

 

 

T = 0.044 Effect: T allele 

Other: C allele 

 

β = Not available 

 

1.09 x 10-8 

 

 

Lin et al., 2012 

[19] 

Replication 

sample: 

  n  = 1496  

Chinese men 

37 ± 11 Effect: T allele 

Other: C allele 

 

β = Not available 

 

7.41 x 10-3 

Combined total: 

 n  = 3495 

 Effect: T allele 

Other: C allele 

 

β = −83.60 pg/ml 

SE = 13.62 

9.23 x 

10−10 

 

13q32.3 Citrate Lyase Beta Like 

(CLYBL) 

 

 

rs4128111

2 

Icelandic sample: 

 n  = 37283  

 

 

 

 

                                                                                       

63 ± 24 T = 0.052 Effect: C allele  

Other: T allele  

 

β = 0.17 pmol/L 

 

 

 

9.60 x 10-

27 

 
 

 

Grarup et al., 

2013  [12] 
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Danish Inter99 

population: 

 n  = 5481 

 

 

46 ± 8 

 

 

Effect: C allele  

Other: T allele  

 

β = 0.24 pmol/L 

 

1.30 x 10-3 

 

Danish - Health 

2006: 

 n  = 2812       

49 ± 13 Effect: C allele  

Other: T allele  

 

β = 0.29 pmol/L 

 

2.50 x 

10−7 

 

Combined total: 

 n  = 45576 

 Effect: C allele  

Other: T allele  

 

β = Not available 

 

8.90 x 10-

35 

14q24.3 ATP Binding Cassette 

Subfamily D Member 4 

(ABCD4) 

rs3742801 Icelandic sample: 

 n  = 37283  

 

 

 

 

63 ± 24 T = 0.294 Effect: T allele  

Other: C allele  

 

β = 0.05 pmol/L 

 

 

 

5.30 x 

10−8 

 

 

 

 

Grarup et al., 

2013  [12] 

Danish Inter99 

population: 

 n  = 5481 

46 ± 8 

 

 

Effect: T allele  

Other: C allele  

 

β = 0.09 pmol/L 

 

7.60 x 

10−4 

 

Danish - Health 

2006: 

 n  = 2812       

 

49 ± 13 Effect: T allele  

Other: C allele  

 

β = 0.08 pmol/L 

 

4.50 x 

10−5 

 

Combined total: 

 n  = 45571 

 Effect: T allele  

Other: C allele  

 

β = Not available 

1.70 x 

10−13 



101 

14q24.3 ATP Binding Cassette 

Subfamily D Member 4 

(ABCD4) 

rs4619337 Icelandic sample: 

 n  = 25960  

 

  

63 ± 24 

 

C = 

0.292‡‡ 

Effect: C allele  

Other: T allele  

 

β = 0.05 pmol/L 

 

 

 

 

 

3.40 x 10-8 Grarup et al., 

2013 [12] 

19p13.2 Actin Like 9 

(ACTL9) 

rs2340550  Initial sample:  

 n  = 1999 

Chinese Han men 

 

 

 

38  ± 11 

 

 

A = 0.134 Effect: A allele 

Other: G allele 

 

β = Not available  

 

9.34 x 10-7 

 

 

Lin et al., 2012 

[19] 

Replication 

sample: 

  n  = 1496  

Chinese men 

37 ± 11 Effect: A allele 

Other: G allele 

 

β = Not available  

 

>0.05 

Combined total: 

 n  = 3495 

 Effect: A allele 

Other: G allele 

 

β = 23.39 pg/ml 

SE = 8.56 

6.32 x 10-3 

19p13.2 CD320 molecule 

(CD320) / Transcobalamin 

II Receptor (TcblR) 

rs2336573 n  = 3114  

Canadian  (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

T = 0.010 Effect: C allele 

Other: T allele  

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

OR: 0.62 (95% CI: 

0.45, 0.86)  pmol/L 

 

3.0 x 10-3 Zinck et al., 

2015 [18]    
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19p13.2 CD320 molecule 

(CD320) / Transcobalamin 

II Receptor (TcblR) 

rs2336573 Icelandic sample: 

 n  = 37283  

 

 

 

 

                                                                                       

63 ± 24 T = 0.031 Effect: T allele  

Other: C allele  

 

β  = 0.32 pmol/L 

 

 

 

1.10 x 10-

51 

 

 

 

 

Grarup et al., 

2013  [12] 

Danish Inter99 

population: 

 n  = 5481 

 

 

46 ± 8 

 

 

Effect: T allele  

Other: C allele  

 

β  = 0.22 pmol/L 

 

5.70 x 10-3 

 

Danish - Health 

2006: 

 n  = 2812       

 

49 ± 13 Effect: T allele  

Other: C allele  

 

β  = 0.31 pmol/L 

 

1.70 x 

10−8 

 

Combined total: 

 n  = 45575 

 Effect: T allele  

Other: C allele  

 

β = Not available 

 

8.40 x 

10−59 

19p13.2 CD320 molecule 

(CD320) / Transcobalamin 

II Receptor  

(TcblR) 

rs8109720 Icelandic sample: 

 n  = 25960 

  

63 ± 24 

 

Not 

available 

Effect: G allele 

 Other: A allele  

 

β = 0.32 pmol/L 

 

 

 

 

 

5.80 x 10-

52 

Grarup et al., 

2013 [12] 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs281379 Parents of PMNS 

cohort*: 

n  = 1001 

Indian 

 

 

36 ± 5 

 

 

 

 

 

A = 0.222# Effect allele: A 

 

β = 0.20 pmol/L 

 

 

 

4.60 x 10-4 

 

 

 

 

 

Nongmaithem et 

al., 2017 [22] 

Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

Effect allele: A 

β = 0.05  pmol/L 

 

>0.05 

PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect allele: A 

 

β = 0.24  pmol/L 

 

4.50 x 10-4 
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PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect allele: A 

β = 0.13 pmol/L 

 

>0.05 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs492602 n  = 3114  

Canadian  (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

A = 0.210  Effect: G allele 

 Other: A allele  

 

Vitamin B12 

deficiency (< 148 

pmol/L): 

OR: 0.60 (95% CI: 

0.54, 0.70) pmol/L 

 

2.00 x 10–

4 

Zinck et al., 

2015 [18]   

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs492602 n  = 3114  

Canadian  (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

A = 0.210 Effect: G allele 

 Other: A allele  

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

OR: 0.71 (95% CI: 

0.65, 0.81) pmol/L 

 

9.00 x 10–

8 

Zinck et al., 

2015 [18]    

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs492602 NHS-CGEMS‡: 

 n  = 1658  

Caucasian women 

 

 

 

 

 

 

59 ± 6  

 

 

G = 0.440 Effect: G allele 

Other: A allele  

 

β = 0.09 pg/ml 

SE = 0.01 

 

 

5.39 x 10-

11 

 

 

Hazra et al., 

2009 [20] 

SHARe§: 

 n  = 1647  

Caucasian women 

59 ± 10 

 

 

Effect: G allele 

Other: A allele  

 

β = 0.04 pg/ml 

SE = 0.02 

5.89 x 10-3 
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SHARe§: 

 n  = 1458  

Caucasian men 

59 ± 10 Effect: G allele 

Other: A allele  

 

β = 0.05 pg/ml 

SE = 0.01 

 

2.36 x 10-4 

 

Combined total:  

 n  = 4763 

 Effect: G allele 

Other: A allele  

 

β = 0.06 pg/ml 

SE = 0.01 

 

1.30 x 10-

14 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs492602 NHS-CGEMS‡: 

n  = 1637 

Caucasian women 

 

 

 

59 

(Mean) 

 

 

G = 0.490 Effect: A allele 

Other: G allele  

 

β = -0.08 pg/ml 

SE = 0.01 

 

2.68 x 10-

10 

 

Hazra et al., 

2008 [29]   

Replication: 

n  = 1059 

Caucasian women 

 

63 

(Mean) 

 

Effect: A allele 

 Other: G allele  

 

β = -0.10 pg/ml 

SE = 0.02 

 

5.60 x 10-9 

 

Combined  meta-

analysis: 

n  = 2696 

 Effect: A allele 

Other: G allele  

 

β = -0.09 pg/ml 

SE = 0.01 

 

5.36 x 10-

17 
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19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs516316 Icelandic sample: 

 n  = 25960 

 

  

63 ± 24 

 

C = 

0.469‡‡ 

Effect: C allele  

Other: G allele 

β = 0.17  pmol/L 

 

 

 

 

 

3.60 x 

10−103 

Grarup et al., 

2013 [12] 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs601338 Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

A = 0.230# Effect: A 

Other: G 

 

β = 0.05 pmol/L 

 

>0.05 Nongmaithem et 

al., 2017 [22] 

PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect: A 

Other: G 

 

β = 0.25 pmol/L 

 

3.8 x 10-5 

 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

 

Effect: A 

Other: G 

 

β = 0.18 pmol/L 

 

4.30 x 10-3 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs601338 n  = 25960 

Icelandic  

63 ± 24 

 

G = 0.384 Effect: G allele  

Other: A allele  

 

β = -0.16  pmol/L 

 

 

2.40 x 

10−95 

Grarup et al., 

2013 [12] 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs601338 NHS-CGEMS‡: 

 n  = 1658  

Caucasian women 

 

 

 

 

 

 

59 ± 6 

 

A = 0.450 Effect: A allele 

Other: G allele  

 

β = 0.09 pg/ml 

SE = 0.01 

 

 

 

4.25 x 10-

11 

 

 

Hazra et al., 

2009 [20] 

SHARe§: 

 n  = 1647  

Caucasian women 

59 ± 10 

 

 

Effect: A allele 

Other: G allele  

 

2.63 x 10-3 
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β = 0.05 pg/ml 

SE = 0.01 

 

SHARe§: 

 n  = 1458  

Caucasian men 

59 ± 10 Effect: A allele 

Other: G allele  

 

β = 0.05 pg/ml 

SE = 0.01 

 

4.02 x 10-4 

 

Combined total:  

 n  = 4763 

 Effect: A allele 

Other: G allele  

 

β = 0.06 pg/ml 

SE = 0.01 

 

6.92 × 10-

15 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs601338 NHS-CGEMS‡: 

n  = 1658 

Caucasian women 

 

59 

(Mean) 

 

 

G = 0.490 Effect: G allele 

Other: A allele  

 

β = -0.08 pg/ml 

SE = 0.01 

 

4.11 x 10-

10 

Hazra et al., 

2008 [29]   

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs602662 Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

A = 0.233# Effect allele: A 

 

β = 0.10 pmol/L 

 

>0.05 Nongmaithem et 

al., 2017 [22] 

PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect allele: A 

 

β = 0.25 pmol/L 

 

1.90 x 10-5 

 

PS children†: 

n  = 534  

5 ± 0 

 

Effect allele: A 

 

1.40 x 10-3 
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Indian 

 

 

β = 0.20 pmol/L 

 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs602662 n  = 3114 

Canadian (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

G = 0.230 Effect: A allele 

 Other: G allele  

 

Vitamin B12 

deficiency (< 148 

pmol/L): 

OR: 0.61 (95% CI: 

0.47, 0.80)  pmol/L 

 

3.00 x 10–

4 

Zinck et al., 

2015 [18]   

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs602662 n  = 3114 

Canadian (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

G = 0.230 Effect: A allele  

Other: G allele  

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

 OR: 0.74 (95% CI: 

0.66, 0.84) pmol/L 

 

1.20 x 10–

6 

Zinck et al., 

2015 [18]    

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs602662 Icelandic sample: 

 n  = 37283  

 

 

 

 

 

 

63 ± 24 G = 0.404 Effect: A allele  

Other: G allele  

 

β = 0.16 pmol/L 

 

 

4.10 x 

10−96 

 

 

 

 

Grarup et al., 

2013  [12] 

Danish Inter99 

population: 

 n  = 5481 

 

 

46 ± 8 

 

 

Effect: A allele  

Other: G allele  

 

β  = 0.19 pmol/L 

 

3.50 x 

10−13 

 



108 

Danish - Health 

2006: 

 n  = 2812       

49 ± 13 Effect: A allele  

Other: G allele  

 

β = 0.23 pmol/L 

 

1.90 x 10-

34 

 

Combined total  

 n  = 45568  

                                                                                       

 Effect: A allele  

Other: G allele  

 

β = Not available 

2.40 x 

10−139 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs602662 NHS-CGEMS‡: 

 n  = 1658  

Caucasian women 

 

 

 

 

 

 

59 ± 6 

 

G = 0.440 Effect: G allele  

Other: A allele  

 

β = - 0.08 pg/ml 

SE = 0.01 

 

 

 

 

 

3.09 x 10-

10 

 

Hazra et al., 

2009 [20] 

SHARe§: 

 n  = 1647  

Caucasian women 

59 ± 10 

 

 

Effect: G allele  

Other: A allele  

 

β = -0.05 pg/ml 

SE = 0.02 

 

3.80 x 10-4 

 

SHARe§: 

 n  = 1458  

Caucasian men 

59 ± 10 Effect: G allele  

Other: A allele  

 

β = - 0.05 pg/ml 

SE = 0.01 

 

2.80 x 10-4 

 

Combined total:  

 n  = 4763 

 Effect: G allele  

Other: A allele  

 

β = - 0.07 pg/ml 

SE = 0.01 

 

1.83 x 10-

15 
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19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs602662 

 

GWAS Meta-

analysis: 

 

InCHIANTI 

study: 

  n  = 1175  

Italian  

  

SardiNIA study: 

  n  = 1115  

Italian  

  

BLSA study¶: 

  n  = 640  

Residents from 

the USA 

 

 

 

 

 

InCHIA

NTI: 

68 ± 16 

 

SardiNI

A: 

45 ± 18 

 

BLSAg: 

68 ± 16  

 

 

G = 0.470 Effect: A allele  

Other: G allele 

 

β = 44.20 pg/ml 

SE = 8.26 

 2.43 x 10-

12 

 

Tanaka et al., 

2009 [21]     

Replication study: 

Progetto 

Nutrizione study:  

N = 687  

Italian  

47 ± 13 Effect: A allele  

Other: G allele 

 

β = 58.65 pg/ml 

SE = 10.43 

2.19 x 10-

10 

 

Combined meta-

analysis (GWAS 

Meta-analysis + 

Replication 

study): 

 n  = 3613 

 Effect: A allele  

Other: G allele 

 

β = 49.77 pg/ml 

SE = 6.47 

 

2.83 x 10-

20 

 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs602662 NHS-CGEMS‡: 

n  = 1658 

Caucasian women 

 

 

 

59 

(Mean) 

 

 

G = 0.490 Effect: G allele  

Other: A allele  

 

β = -0.08 pg/ml 

SE = 0.01 

 

 

 

6.54 x 10-

10 

 

Hazra et al., 

2008 [29]   
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Replication: 

n  = 1056 

Caucasian women 

 

63 

(Mean) 

 

 Effect: G allele  

Other: A allele  

 

β = -0.08 pg/ml 

SE = 0.02 

 

1.13 x 10-6 

 

Combined meta-

analysis: 

n  = 2714 

  Effect: G allele  

Other: A allele  

 

β = -0.08 pg/ml 

SE = 0.01 

 

3.52 x 10-

15 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs838133 Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

T = 0.205# Effect allele: A 

 

β = 0.05 pmol/L 

 

>0.05 Nongmaithem et 

al., 2017 [22] 

PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect allele: A 

 

β = 0.27 pmol/L 

 

2.00 x 10-4 

 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect allele: A 

 

β = 0.06 pmol/L 

 

>0.05 

19q13.33 Fucosyl transferase 2 gene 

(FUT2) 

rs1047781 Initial sample:  

 n  = 1999 

Chinese Han men 

 

 

 

 

38  ± 11 

 

 

T = 0.459 Effect: T allele 

Other: A allele 

 

β = Not available 

 

4.63 x 10-

17 

 

 

Lin et al., 2012 

[19] 
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Replication 

sample: 

  n  = 1496  

Chinese men 

 

37 ± 11 Effect: T allele 

Other: A allele 

 

β = Not available 

 

 

6.79 x 10-

22 

 

Combined total: 

 n  = 3495 

 Effect: T allele 

Other: A allele 

 

β = 70.21 pg/ml 

SE = 5.53 

3.62 x 

10−36 

19p13.3 Fucosyltransferase 6  

(FUT6) 

rs708686 Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

T = 0.335# Effect: T allele  

 

β = 0.13 pmol/L 

 

1.0 x 10-2 

 

Nongmaithem et 

al., 2017 [22] 

PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect: T allele  

 

β = 0.22 pmol/L 

 

2.20 x 10-4 

 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect: T allele  

 

β = 0.23 pmol/L 

 

2.70 x 10-4 

19p13.3 Fucosyltransferase 6  

(FUT6) 

rs708686 N = 25960 

Icelandic  

63 ± 24  

 

T = 

0.301‡‡ 

 

 

 

Effect: T allele  

Other: C allele 

 

β = 0.05 pmol/L 

 

2.90 x 

10−9 

Grarup et al., 

2013 [12] 
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19p13.3 Fucosyltransferase 6 / 

Fucosyltransferase 3 

(FUT6/FUT3) 

rs3760775  Parents of PMNS 

cohort*: 

n  = 1001 

Indian 

 

 

36 ± 5  

 

 

 

 

A = 0.188# Effect allele: A 

 

β  = 0.24 pmol/L 

 

 

 

 

 

6.00 x 10-6 

 

 

Nongmaithem et 

al., 2017 [22] 

Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

Effect allele: A 

 

β  = 0.24 pmol/L 

 

9.90 x 10-5 

 

PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect allele: A 

 

β  = 0.31 pmol/L 

 

2.90 x 10-6 

 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect allele: A 

 

β  = 0.24 pmol/L 

 

2.10 x 10-4 

19p13.3 Fucosyltransferase 6  

(FUT6) 

rs3760776 Parents of PMNS 

cohort*: 

n  = 1001 

Indian 

 

 

36 ± 5  

 

 

 

 

T = 0.161# Effect allele: T 

 

β  = 0.10 pmol/L 

 

 

>0.05 

 

Nongmaithem et 

al., 2017 [22] 

Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

Effect allele: T 

 

β = 0.23 pmol/L 

 

4.40 x 10-4 

 

PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect allele: T 

 

β = 0.30 pmol/L 

 

 3.30 x 10-

6 
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PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

 

Effect allele: T 

 

β = 0.18 pmol/L 

 

6.50 x 10-3 

19p13.3 Fucosyltransferase 6  

(FUT6) 

rs3760776 n  = 25960 

Icelandic  

63 ± 24 

 

A = 0.071 Effect: A allele  

Other: G allele  

 

β = 0.07 pmol/L 

 

 

 

 

 

4.40 x 

10−6 

Grarup et al., 

2013 [12] 

19p13.3 Fucosyltransferase 6  

(FUT6) 

rs3760776 Initial sample:  

 n  = 1999 

Chinese Han men 

 

 

 

 

38  ± 11 

 

 

A = 0.212 Effect: A allele 

Other: G allele 

 

β = Not available 

 

 

4.23 x 10-

10 

 

 

Lin et al., 2012 

[19] 

Replication 

sample: 

  n  = 1496  

Chinese men 

37 ± 11 Effect: A allele 

Other: G allele 

 

β = Not available 

 

1.98 x 10-4 

 

Combined total: 

 n  = 3495 

 Effect: A allele 

Other: G allele 

 

β = 49.78 pg/ml 

SE = 6.82 

3.68 x 

10−13 

 

19p13.3 Fucosyltransferase 6  

(FUT6) 

rs7788053 Icelandic sample: 

 n  = 37283  

 

 

 

 

                                                                                       

63 ± 24 A = 0.254 Effect: A allele  

Other: G allele  

 

β = 0.05  pmol/L 

 

 

 

2.10 x 

10−7 

 

 

 

 

Grarup et al., 

2013  [12] 

Danish Inter99 

population: 

 n  = 5481 

 

 

46 ± 8 

 

 

Effect: A allele  

Other: G allele  

 

β = 0.05 pmol/L 

 

>0.05 
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Danish - Health 

2006: 

 n  = 2812       

49 ± 13 Effect: A allele  

Other: G allele  

 

β = 0.07 pmol/L 

 

7.20 x 10-4 

Combined total: 

 n  = 45575 

 Effect: A allele  

Other: G allele  

 

β = Not available 

 

1.70 x 10-

10 

19p13.3 Fucosyltransferase 6  

(FUT6) 

rs7806069

8 

Parents of PMNS 

cohort*: 

n  = 1001 

Indian 

 

 

36 ± 5  

 

 

 

 

A = 

0.130†† 

Effect allele: A 

 

β  = 0.21 pmol/L 

 

 

 

 

 

 

2.90 x 10-4 

 

 

 

 

Nongmaithem et 

al., 2017 [22] 

Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

Effect allele: A 

 

β  = 0.20 pmol/L 

 

3.70 x 10-3 

 

PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect allele: A 

 

β  = 0.27 pmol/L 

 

1.20 x 10-4 

 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect allele: A 

 

β  = 0.19 pmol/L 

 

8.20 x 10-3 

21q22.3 Cystathionine beta 

synthase 

(CBS) 

rs2124459 n  = 3114  

Canadian  (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

C = 0.180 Effect: T allele  

Other: C allele  

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

OR: 0.82 (95% CI: 

0.73, 0.93) pmol/L 

 

2.00 x 10-3 Zinck et al., 

2015 [18]     
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22q12.2 Transcobalamin 2 

(TCN2) 

rs757874 n  = 3114  

Canadian  (85% 

Caucasian, 15% 

non-Caucasian) 

20 – 79 

(range) 

T = 0.080 Effect: G allele 

 Other: T allele  

 

Vitamin B-12 below 

adequate (< 220 

pmol/L): 

OR: 1.42 (95% CI: 

1.11, 1.72) pmol/L 

 

3.30 x 10–

4 

Zinck et al., 

2015 [18]     

22q12.2 Transcobalamin 2 

(TCN2) 

rs1131603 Adults: 

n  = 724  

Indian 

 

38 ± 11 

 

C = 0.023# Effect: C allele 

 

β = 0.43 pmol/L 

 

4.00 x 10-2 Nongmaithem et 

al., 2017 [22] 

PMNS children*: 

n  = 690  

Indian 

 

 

 

11 ± 1 

 

Effect: C allele 

 

β = 0.05 pmol/L 

 

>0.05 

PS children†: 

n  = 534  

Indian 

 

 

5 ± 0 

 

Effect: C allele 

 

β = 0.44 pmol/L 

 

5.00 x 10-2 

22q12.2 Transcobalamin 2 

(TCN2) 

rs1131603 Icelandic sample: 

 n  = 37283  

 

 

 

 

                                                                                       

63 ± 24 C = 0.055 Effect: C allele  

Other: T allele  

 

β = 0.19 pmol/L 

 

 

 

4.30 x 

10−28 

 

 

 

 

Grarup et al., 

2013  [12] 

Danish Inter99 

population: 

 n  = 5481 

 

 

 

 

46 ± 8 

 

 

Effect: C allele  

Other: T allele  

 

β = 0.33 pmol/L 

 

1.80 x 

10−9 
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All studies have a cross-sectional study design. 

SNP, Single Nucleotide Polymorphism 

* Pune Maternal Nutrition Study (PMNS) 

† Parthenon Study (PS) 

‡ Nurses’ Health Study (NHS) NCI-Cancer Genetic Markers of Susceptibility (CGEMS) project 

§ Framingham-SNP-Health Association Resource (SHARe) 

¶ Baltimore Longitudinal Study of Aging (BLSA) 

#Data refers to the HapMap-GIH population, with data collected from Gujarati Indians from Houston, Texas 

**Data refers to European populations collected from: Utah Residents (CEPH) with Northern and Western European Ancestry, Toscani in Italia, 

Finnish in Finland, British in England and Scotland and Iberian Population in Spain 

††Data refers to South Asian populations collected from: Gujarati Indian from Houston, Texas, Punjabi from Lahore, Pakistan, Bengali from 

Bangladesh, Sri Lankan Tamil from the UK and Indian Telugu from the UK 

‡Data refers to the HapMap-CEU population, with data collected from Utah Residents (CEPH) with Northern and Western European Ancestry

Danish - Health 

2006: 

 n  = 2812       

49 ± 13 Effect: C allele  

Other: T allele  

 

β = 0.33 pmol/L 

 

5.30 x 

10−17 

 

Combined total: 

 n  =  45575 

 Effect: C allele  

Other: T allele  

 

β = Not available 

4.90 x 

10−49 

22q12.2 Transcobalamin 2 

(TCN2) 

rs5753231 Icelandic sample: 

 n  = 25960 

 

 

63 ± 24 

 

T = 0.210 Effect: C allele 

 Other: T allele  

 

β = 0.06 pmol/L 

 

 

 

 

 

7.50 x 

10−10 

Grarup et al., 

2013 [12] 
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Table 9: Candidate gene association studies examining the association of SNPs with vitamin B12 concentrations 

Chromos

ome 

location 

Gene name  

(Gene symbol) 

Reference 

SNP Cluster 

ID 

Sample size & 

Ethnicity 

Study design Age 

(years) 

Minor allele 

frequency 

Effect size  P-value References 

1p34.1 Methylmalonic 

aciduria and 

homocystinuria type 

C protein 

(MMACHC) 

rs10789465 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 C = 0.469† Not available 1.00 x 10-3 Andrew et al., 

2013 [13] 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

rs1801131 n  = 988 

French women 

Cross-

sectional  

40 – 65 

(range)  

C =  0.290 Not available >0.05 

 

De Batlle et al., 

2016 [79] 

 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

Rs1801131 

 

n  = 6784 

Danish 

Cross-

sectional  

30 – 60 

(range)  

C =  0.340 Not available >0.05 

 

Thuesen et al., 

2010 [57] 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

Rs1801131 

 

n  = 220 

Brazilian 

Cross-

sectional  

1 – 8  

(range) 

C = 0.240 Not available >0.05 

 

Aléssio et al., 

2004 [78] 

 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

rs1801133 n  = 988 

French women 

Cross-

sectional  

40 – 65 

(range) 

T =  0.360 Not available >0.05 

 

De Batlle et al., 

2016 [79] 

 

 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

rs1801133 n  = 731   

English (White 

Caucasian) 

Cross-

sectional  

85 T = 0.330 β = 5.00 x 10-5 

pmol/L‡ 

>0.05 

 

Mendonca et al., 

2016 [28] 

 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

rs1801133 Elderly individuals:  

n  = 262  

Brazilian 

 

Cross-

sectional  

60 – 91 

 (range) 

 

 

T = 0.370 Not available 

 

 

 

>0.05 

 

Barnabe et al., 

2015 [77] 
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Children: 

n  = 106  

Brazilian 

 

0.5 – 6 

(range) 

T = 0.290 Not available 

 

>0.05 

 

 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

rs1801133 n  = 6784 

Danish 

Cross-

sectional  

30 – 60 

(range)  

T =  0.290 Effect allele: Not 

available 

Other allele: Not 

available 

 

Low serum 

vitamin B12: 

OR: 1·78 (95% 

CI: 

1.25, 2.54) 

pmol/L 

3.00 x 10-3 Thuesen et al., 

2010 [57] 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

rs1801133 n  = 153  

Spanish 

 

 

Cross-

sectional  

13 – 19 

(range)  

T = 0.380 Not available 

 

 

>0.05 Al-Tahan et al., 

2008 [81] 

 

 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

rs1801133 

 

n  = 10601 

Norwegian 

Cross-

sectional  

56 T = 0.280 Not available >0.05 Hustad et al., 

2007 [80] 

 

1p36.3 Methylenetetrahydro

folate Reductase 

(MTHFR) 

rs1801133 n  = 220 

Brazilian 

Cross-

sectional  

1 – 8 

(range) 

T = 0.320 Not available >0.05 Aléssio et al., 

2004 [78] 

 

1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs1805087 n  = 731   

English (White 

Caucasian) 

Cross-

sectional  

85 G = 0.180 β = 4.00 x 10-3 

pmol/L‡  

>0.05 Mendonca et 

al.,2016 [28] 
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1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs1805087 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 G = 0.161† Not available >0.05 Andrew et al., 

2013 [13] 

1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs1805087 n  = 6784 

Danish 

Cross-

sectional  

30 – 60 

(range)  

G = 0.200 Not available >0.05 

 

Thuesen et al., 

2010 [57] 

1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs2275568 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 A = 0.460† Not available >0.05 Andrew et al., 

2013 [13] 

1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs2789352 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 T = 0.381† Not available >0.05 Andrew et al., 

2013 [13] 

1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs3768142 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 G = 0.384† Not available >0.05 Andrew et al., 

2013 [13] 

1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs10733118 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 T = 0.381† Not available >0.05 Andrew et al., 

2013 [13] 

1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs10925257 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 G = 0.155† Not available >0.05 Andrew et al., 

2013 [13] 
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1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs11800413 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 G = 0.431† Not available >0.05 Andrew et al., 

2013 [13] 

1q43 5-

Methyltetrahydrofol

ate-Homocysteine 

methyltransferase 

(MTR) 

rs12060264 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 A = 0.438† Not available >0.05 Andrew et al., 

2013 [13] 

2q23.2 Methylmalonic 

Aciduria and 

Homocystinuria,Cbl

D Type 

(MMADHC) 

rs7580915 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 G = 0.228† Not available >0.05 Andrew et al., 

2013 [13] 

4p14 Replication Factor C 

Subunit 1 

(RFC1) 

rs1051266 Elderly individuals:  

n  = 262  

Brazilian 

 

Cross-

sectional  

60 – 91 

 (range) 

 

 

A = 0.430 Not available 

 

 

 

>0.05 Barnabe et al., 

2015 [77] 

 

 

Children: 

n  = 106  

Brazilian 

 

 

 

1– 6 

(range) 

A/G = 0.500 Not available 

 

>0.05 

4q31.21 Methylmalonic 

aciduria (cobalamin 

deficiency) cblA 

type 

(MMAA) 

rs4835011 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 G = 0.080† Not available >0.05 Andrew et al., 

2013 [13] 

4q31.21 Methylmalonic 

aciduria (cobalamin 

deficiency) cblA 

type 

(MMAA) 

rs4835012 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 G = 0.178† 

 

Not available 3.00 x 10-2 

 

Andrew et al., 

2013 [13] 
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4q31.21 Methylmalonic 

aciduria (cobalamin 

deficiency) cblA 

type 

(MMAA) 

rs4835014 

 

n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 T = 0.031† 

 

Not available >0.05 Andrew et al., 

2013 [13] 

4q31.21 Methylmalonic 

aciduria (cobalamin 

deficiency) cblA 

type 

(MMAA) 

rs11728906 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 G =  0.235† Not available >0.05 Andrew et al., 

2013 [13] 

5q14.1 Betaine-

homocysteine S-

methyltransferase 

(BHMT) 

rs3733890 

 

n  = 6784 

Danish 

Cross-

sectional  

30 – 60 

(range)  

A = 0.290 

 

Not available >0.05 Thuesen et al., 

2010 [57] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs10380 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 T = 0.156† 

 

Not available >0.05 Andrew et al., 

2013 [13] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs162031 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 T =  0.205† Not available >0.05 Andrew et al., 

2013 [13] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs162036 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 G = 0.186† 

 

Not available 4.00 x 10-2 Andrew et al., 

2013 [13] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs162040 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 C = 0.124† Not available >0.05 Andrew et al., 

2013 [13] 
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5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs162048 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 G =  0.164† Not available 5.00 x 10-2 Andrew et al., 

2013 [13] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs326120 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 G = 0.155† Not available >0.05 Andrew et al., 

2013 [13] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs1532268 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 A = 0.308† 

 

Not available 1.00 x 10-2 Andrew et al., 

2013 [13] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs1801394 n  = 6784 

Danish 

Cross-

sectional  

30 – 60 

(range)  

A =  0.430 Not available >0.05 Thuesen et al., 

2010 [57] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs1801394 

 

n  = 220 

Brazilian 

Cross-

sectional  

1 – 8 

(range) 

A = 0.490 Not available >0.05 

 

Aléssio  et al., 

2004 [78] 

 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs2966952 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 T = 0.167† 

 

Not available >0.05 Andrew et al., 

2013 [13] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs3776455 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 G = 0.389† Not available  2.00 x 10-3  Andrew et al., 

2013 [13] 

5p15.31 Methionine synthase 

reductase 

(MTRR) 

rs6555501 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 C = 0.473† 

 

Not available >0.05 Andrew et al., 

2013 [13] 
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6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

rs6458687 n  = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 T = 0.372† Not available >0.05 Andrew et al., 

2013 [13] 

6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

rs6458690 n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 G = 0.363† Not available 2.00 x 10-4 Andrew et al., 

2013 [13] 

6p12.3 Methylmalonyl-CoA 

Mutase 

(MUT) 

rs9381784 n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 T = 0.363† 

 

Not available 3.00 x 10-2 

 

Andrew et al., 

2013 [13] 

6q13 LMBR1 Domain 

Containing 1 

(LMBRD1) 

rs991974 

 

n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 T = 0.044† Not available >0.05 Andrew et al., 

2013 [13] 

6q13 LMBR1 Domain 

Containing 1 

(LMBRD1) 

rs1457498 

 

n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 T = 0.084† Not available >0.05 Andrew et al., 

2013 [13] 

6q13 LMBR1 Domain 

Containing 1 

(LMBRD1) 

rs3778241 n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 T = 0.398† Not available >0.05 Andrew et al., 

2013 [13] 

6q13 LMBR1 Domain 

Containing 1 

(LMBRD1) 

rs3799105 

 

n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 C = 0.384† Not available >0.05 Andrew et al., 

2013 [13] 

6q13 LMBR1 Domain 

Containing 1 

(LMBRD1) 

rs6455338 

 

n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 C = 0.387† Not available >0.05 Andrew et al., 

2013 [13] 
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6q13 LMBR1 Domain 

Containing 1 

(LMBRD1) 

rs9294851 n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study) 

48 ± 13 T =  0.384† Not available >0.05 Andrew et al., 

2013 [13] 

11q12.1 Transcobalamin 1 

(TCN1) 

rs526934 

 

n = 731   

English (White 

Caucasian) 

Cross-

sectional  

85 G =  0.270 β = 4.00 x 10-3  

pmol/L‡ 
>0.05 Mendonca et al., 

2016 [28] 

 

12q24.11  Methylmalonic 

aciduria (Cobalamin 

deficiency) cblB 

type 

(MMAB) 

rs2287182 n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 A = 0.128† 

 

Not available >0.05 Andrew et al., 

2013 [13] 

12q24.11 Methylmalonic 

aciduria (Cobalamin 

deficiency) cblB 

type  

(MMAB) 

rs3759387 n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 A = 0.235† 

 

Not available >0.05 Andrew et al., 

2013 [13] 

12q24.11 Methylmalonic 

aciduria (Cobalamin 

deficiency) cblB 

type  

(MMAB) 

rs7134594 n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 C =  0.487† Not available >0.05 Andrew et al., 

2013 [13] 

12q24.11 Methylmalonic 

aciduria (Cobalamin 

deficiency) cblB 

type  

(MMAB) 

rs7957619 n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 A =  0.110 † Not available >0.05 Andrew et al., 

2013 [13] 

12q24.11 Methylmalonic 

aciduria (Cobalamin 

deficiency) cblB 

type  

(MMAB) 

rs12314392 n = 262  

Caucasian women 

of North European 

descent 

Cross-

sectional 

(Twin Study)  

48 ± 13 G = 0.433 † Not available >0.05 Andrew et al., 

2013 [13] 
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19p13.2 

 

 

 

 

 

  

CD320 molecule 

(CD320) / 

Transcobalamin II 

Receptor (TcblR) 

rs2336573 n = 591 

Caucasian women 

 

 

Cross-

sectional  

77 ± 7 

 

 

A = 0.050 Not available  >0.05 Kurnat-Thoma et 

al., 2015 [59] 

n = 198 

African American 

women 

 

75 ± 6 A = 0.330 Not available 4.0 x 10-2 

n = 797 

Combined total 

 

 

 

 

 

 

 

 

 

 Not available 2.0 x 10-2 

 

 

 

 

 

19q13.33 Fucosyl transferase 

2 gene 

(FUT2) 

rs492602 n = 731   

English (White 

Caucasian) 

Cross-

sectional  

85 A = 0.450 β = 0.05  pmol/L‡ <0.001 Mendonca et al., 

2016 [28] 

 

 

19q13.33 Fucosyl transferase 

2 gene 

(FUT2) 

rs602662 Vegetarian: 

n = 553 

North Indian  

Cross-

sectional  

50 (41 – 

59) 

 

Median 

(interqua

rtile 

range) 

A = 0.310 Effect: A allele 

Other: G allele 

 

β = 0.12 pmol/L 

5.0 x 10-3 Tanwar et al., 

2013 [27] 

Non-Vegetarian: 

n = 593 

North Indian  

Cross-

sectional  

47 (37 – 

55) 

 

Median 

(interqua

Effect: A allele 

Other: G allele 

 

β = 0.12 pmol/L 

4.0 x 10-3 
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rtile 

range) 

Combined total: 

n = 1146 

North Indian  

Cross-

sectional  

49 (40 – 

57) 

 

Median 

(interqua

rtile 

range) 

Effect: A allele 

Other: G allele 

 

β = 0.12 pmol/L 

4.0 x 10-5 

22q12.2 Transcobalamin 2 

(TCN2) 
rs1801198 NORCAP cohort*: 

n = 2411 

Norwegian  

 

Serum holoTC 

could be analysed 

in only 2379 

individuals 

Cross-

sectional  

50 – 64 

(range)   

G = 0.440 Effect: C allele 

Other: G allele 

 

Total holo-TC: 

β = 0.02 pmol/L‡ 

 

 

>0.05‡ 

 

 

Riedel et al.,2011 

[55] 

Effect: C allele 

Other: G allele 

 

Plasma Cbl: 

β = 0.03 pmol/L‡ 

>0.05‡ 

22q12.2 Transcobalamin 2 

(TCN2) 
rs1801198 n = 122 

Portuguese 

Cross-

sectional  

46 ± 13 

 

G = 0.480 Not available Vitamin 

B12: 

>0.05 

Holo-TC: 

<0.05 

Castro et al., 2010 

[52]   

22q12.2 Transcobalamin 2 

(TCN2) 

rs1801198 n = 554 

Participants of 

Latino ancestry 

residing in USA 

Cross-

sectional  

69 ± 6 G = 0.350 Not available Vitamin 

B12: 

>0.05 

 

Garrod et al., 

2010 [56] 
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Total holo 

TC: 

>0.05 

 

22q12.2 Transcobalamin 2 

(TCN2) 
rs1801198 n = 613 

Northern Irish Men 

(Caucasian) 

Cross-

sectional  

30 – 49 

(range) 

G = 0.450 Not available 1.00 x 10-2 Stanislawska-

Sachadyn et 

al.,2010 [54] 

22q12.2 Transcobalamin 2 

(TCN2) 
rs1801198 n = 6,784 

Danish 

Cross-

sectional  

30 – 60 

(range)  

G =  0.440 Not available >0.05 Thuesen et al., 

2010 [57] 

22q12.2 Transcobalamin 2 

(TCN2) 

rs1801198 n = 207 

Brazilian 

Cross-

sectional  

1 – 8 

(range) 

G = 0.360 Not available >0.05 Alessio et al., 

2007 [58] 

22q12.2 Transcobalamin 2 

(TCN2) 
rs4820888 

 

n = 591 

Caucasian women 

 

 

Cross-

sectional  

77 ± 7 

 

 

G = 0.430 Not available >0.05 Kurnat-Thoma et 

al., 2015 [59] 

n = 198 

African American 

women 

 

75 ± 6 G = 0.450 Not available  >0.05 

n = 797 

Combined total 

 

 

  Not available 2.0 x 10-2 

22q12.2 Transcobalamin 2 

(TCN2) 
rs9606756 NORCAP cohort*: 

n = 2411 

Norwegian  

 

Serum holoTC 

could be analysed 

in only 2379 

individuals 

Cross-

sectional  

50 – 64 

(range) 

G = 0.120 Effect: A allele 

Other: G allele 

 

Total holo-TC: 

β = -0.21 pmol/L‡ 

 

 

<0.001‡ 

 

 

 

Riedel et al.,2011 

[55] 

Effect: A allele >0.05‡ 
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All studies have a cross sectional design 

SNP, Single Nucleotide Polymorphism 

*NORwegian Colorectal CAncer Prevention (NORCCAP) cohort 

†Data refers to HapMap European population, with data collected from Utah Residents (CEPH) with Northern and Western European Ancestry 

‡The specific data available is not published elsewhere and was obtained by contacting the corresponding author

Other: G 

allelePlasma Cbl: 

β = -0.02 pmol/L‡ 

22q12.2 Transcobalamin 2 

(TCN2) 
rs9606756 n = 6784 

Danish 

Cross-

sectional  

30 – 60 

(range)  

G =  0.120 Not available >0.05 Thuesen et al., 

2010 [57] 

1p36.3 

 

 

 

19q13.33 

 

Methylenetetrahydro

folate Reductase 

(MTHFR) 

+ 

Fucosyl transferase 

2 gene 

(FUT2) 

rs180133 

rs180131 

rs492602 

n = 988 

Brazilian 

Cross-

sectional  

5 ± 3 rs180133 

T = 0.320 

rs180131 

C = 0.220 

rs492602 

G = 0.390 

 

β for GRS= −0·11 

pmol/L 

 <0·001 Cobayashi et al., 

2015 [105] 
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Table 10: A summary of the most frequently studied genes associated with vitamin B12 concentrations 

Vitamin B12-

related 

proteins 

Gene name Location Function 

Co-factors or 

regulators of 

co-factors 

essential for the 

transport of 

vitamin B12 

 

Methylmalonic aciduria 

and homocystinuria, cblC 

type (MMACHC) 

1p34.1 The MMACHC gene encodes a chaperone protein MMAACHC (cblC protein) which binds to 

vitamin B12 in the cytoplasm and appears to catalyse the reductive decyanation of 

cyanocobalamin into cob(II)alamin [235].  

Transcobalamin 1 

(TCN1) 

11q12.1 It encodes a glycoprotein called Transcobalamin 1, also known as haptocorrin (HC), which binds 

to vitamin B12. It shields dietary vitamin B12 from the acidic environment of the stomach [236].  

Fucosyltransferase 2 

(FUT2) 

19q13.33 It encodes the enzyme fucosyltransferase 2 (FUT2), which is involved in the synthesis of antigens 

of the Lewis blood group [231]. These antigens mediate the attachment of gastric pathogens to the 

gastric mucosa, which can affect the absorption of vitamin B12 [109].  

Fucosyltransferase 6 

(FUT6) 

19p13.3 It encodes the enzyme fucosyltransferase 6 (FUT6), which is involved in forming Lewis associated 

antigens. These antigens attach gastric pathogens to the gastric mucosa. It has been shown that 

these gastric pathogens can reduce the absorption of vitamin B12 in the gut [43,44]. 

https://www.omim.org/geneMap/11/388?start=-3&limit=10&highlight=388
https://www.omim.org/geneMap/19/784?start=-3&limit=10&highlight=784
https://www.omim.org/geneMap/19/139?start=-3&limit=10&highlight=139
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Transcobalamin 2 

(TCN2) 

22q12.2 It encodes a transport protein called transcobalamin 2 (TC), which binds to vitamin B12 within 

the enterocyte. The TC-B12 complex enters the portal circulation [59] 

[237][237][237][237][237][237][237][237][237][237][237][237][237][237][237][237][237][237

][237][237][237][237][237][237][236][236][236][236][236][236][236][236][236][236][236][23

6][236][236]and makes vitamin B12 available for cellular uptake in target tissues [238].  

Membrane 

transporters 

that actively 

facilitates 

membrane 

crossing 

Cubilin (CUBN) 10p13 It encodes the intestinal receptor Cubilin, which is expressed in the renal proximal tubule and 

intestinal mucosa [239]. Cubilin recognizes the vitaminB12-intrinsic factor complex, and binds to 

another protein called Amnionless to facilitate the entry of vitamin B12 into the intestinal cells 

[240].  

ATP Binding Cassette 

Subfamily D Member 4 

(ABCD4) 

14q24.3 ABCD4 codes for an ABC transporter. It has been postulated that ABCD4 is involved in 

intracellular cobalamin processing [241], and is involved in transporting vitamin B12 from 

lysosomes to the cytosol. In the cytosol, vitamin B12 can be converted into methylcobalamin 

(MeCbl) and adenosylcobalamin (AdoCbl) [241].  

CD320 Molecule 

(CD320) 

19p13.2 It encodes the membrane receptor transcobalamin receptor (TCblR), which binds to the 

transcobalamin-vitamin B12  complex, and mediates the uptake of vitamin B12 into cells [[242].  

Proteins 

involved in the 

catalysis of 

enzymatic 

Methylenetetrahydrofola

te reductase (MTHFR) 

1p36 MTHFR codes for a critical enzyme involved in homocysteine remethylation. MTHFR catalyses 

the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate in an irreversible 

reaction [[243].  

https://www.omim.org/geneMap/22/162?start=-3&limit=10&highlight=162
https://www.omim.org/geneMap/10/65?start=-3&limit=10&highlight=65
https://www.omim.org/geneMap/14/326?start=-3&limit=10&highlight=326
https://www.omim.org/geneMap/19/196?start=-3&limit=10&highlight=196
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reactions in the 

one carbon 

cycle 

 Methionine synthase 

reductase (MTRR) 

5p15.31 This gene is responsible for maintaining adequate levels of activated vitamin B12 

(methylcob(III)alamin), which maintains the enzyme methionine synthase in its active state [83].  

Proteins 

involved in cell 

cycle 

regulation 

Membrane Spanning 4-

Domains A3 (MS4A3) 

 11q12.1 

  

MS4A3 encodes a protein involved as a hematopoietic cell cycle regulator [244]. MS4A3 gene may 

have a role in the cell-cycle regulation in the GI tract, thus affecting the renewal of intestinal and 

gastric epithelial cells, and absorption of vitamin B12 [206, 244].  

Mitochondrial 

protein 

Methylmalonic aciduria 

(cobalamin deficiency) 

cb1A type (MMAA) 

4q31 MMAA encodes a protein that may be involved in the translocation of vitamin B12 into the 

mitochondria [245]. In addition, MMAA could play an important role in the protection and 

reactivation of Methylmalonyl-coA mutase (MCM) in vitro [246].  

Methylmalonyl-CoA 

Mutase (MUT) 

 6p12.3   It encodes a Mitochondrial enzyme methylmalonyl-CoA mutase (MUT), which catalyses the 

isomerization of methylmalonyl-CoA to succinyl-CoA. This isomerization requires vitamin B12 

as a cofactor in the form of 5-prime-deoxyadenosylcobalamin (AdoCbl) [168]. 

Citrate Lyase Beta Like 

(CLYBL) 

 13q32.3  It encodes a human mitochondrial enzyme, which is co-expressed with other co-enzymes in the 

mitochondrial B12 pathway [247].    

https://www.omim.org/geneMap/11/389?start=-3&limit=10&highlight=389
https://www.omim.org/geneMap/6/520?start=-3&limit=10&highlight=520
https://www.omim.org/geneMap/13/255?start=-3&limit=10&highlight=255
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2.4.1 Co-factors or regulators of co-factors essential for the transport of vitamin 

B12  

2.4.1.1 Methylmalonic aciduria and homocystinuria, cblC type (MMACHC) 

The Methylmalonic aciduria and homocystinuria, cblC type (MMACHC) gene is 

located in the chromosome region 1p34.1 [248]. The MMACHC gene encodes a chaperone 

protein MMACHC (cblC protein) which binds to vitamin B12 in the cytoplasm and appears to 

catalyse the reductive decyanation of cyanocobalamin into cob(II)alamin [235].  

Among the common variations,  SNP rs12272669 has been associated with vitamin 

B12 status, where ‘A’ allele carriers had higher vitamin B12 concentrations compared with ‘G’ 

allele carriers (P=3.00 x 10−9, β=0.51 pmol/L) in 37,283 Icelandic individuals [205]. 

Furthermore, SNP rs10789465 was associated with vitamin B12 concentrations (P=1.00 x 10-

3) in a candidate gene association study comprising 262 Caucasian women of North European 

descent [170]. Currently, it is unknown how these variants affect the regulation of the 

MMACHC gene. 

2.4.1.2  Transcobalamin 1 (TCN1)  

The Transcobalamin 1 (TCN1) gene is located on chromosome 11, and codes for the 

vitamin B12 binding protein, Transcobalamin I (TCI; also called haptocorrin (HC) or R binder)  

[249-251]. TCI is involved in facilitating the entry of vitamin B12 into the cells, via receptor-

mediated endocytosis [252]. Six studies have reported associations between variants within the 

TCN1 gene and circulating vitamin B12 concentrations [205, 206, 233, 234, 253, 254]. 

Nongmaithem et al. [233] investigated the association between several nucleotide 

variations within the TCN1 gene and vitamin B12 levels in a GWA study comprising 534 

healthy children from Mysore, India. Carriers of the ‘G’ allele of the rs526934 variant were 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Nongmaithem%20SS%5BAuthor%5D&cauthor=true&cauthor_uid=28334792
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found to have lower circulating vitamin B12 concentrations (β=-0.16 pmol/L, P=0.02) 

compared to ‘A’ allele carriers [233]. This finding was in accordance with the studies 

conducted in Chinese, Icelandic, Italian and individuals residing in the US (predominantly non-

Hispanic white) [205, 206, 234, 254]. Furthermore, additional variants of the TCN1 gene 

(rs34528912 and rs34324219) were observed to be associated with vitamin B12 status (P < 

0.05) in individuals of Icelandic, Indian and Danish  backgrounds [205, 233].  

Although no functional data are available to confirm the functional effect of these SNPs 

on vitamin B12 concentrations, the results from these studies suggest that the SNPs may have 

important physiological consequences for the role of the TCN1 protein in relation to vitamin 

B12 levels. 

2.4.1.3  Fucosyltransferase 2 (FUT2)  

The fucosyltransferase 2 (FUT2 gene), also known as the Se gene (secretor), is located 

on chromosome 19. The FUT2 gene codes for a secretor enzyme α(1,2) fucosyltransferase 

which fucosylates oligosaccharides producing H type 1 and 2 antigens. H antigens are 

precursors of ABO and Lewis b histo-blood group antigens that are expressed on mucosal 

surfaces [231]. Recent studies have shown suggestive associations between variants of FUT2 

with diabetes and body mass index [16, 255-257]. 

For the FUT2 gene, seven SNPs including: rs281379, rs492602, rs516316, rs601338, 

rs602662, rs838133 and rs1047781 were previously reported to be associated with vitamin B12 

levels [205, 206, 233, 234, 253, 254, 258-260]. To identify loci associated with plasma vitamin 

B12, a meta-analysis of three genome wide association scans (n=4763) was carried out in a 

Caucasian population residing in the US [234]. The SNP rs601338, also known as 428 G/A 

nonsecretor variant allele (W143X variant), was significantly associated with plasma vitamin 

B12 levels (P=6.92 x 10-15), with the  allele ‘A’ being positively associated with plasma vitamin 
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B12 levels (β=0.06 pg/ml) [234]. This finding was further confirmed in another study looking 

at 37,283 Icelandic adults (P=2.40 x 10−95, β=0.162 pmol/L) [205], as well as in two Indian 

populations of children (β= 0.18 pmol/L – 0.25 pmol/L) [233]. Notably, the minor allele 

frequency (MAF) of rs601338 varies widely between ethnicities, contributing to genetic 

heterogeneity in FUT2-B12 associations. In  previous reports by Grarup et al. [205] and Hazra 

et al. [260], the frequency of the minor allele ‘G’ for the associated SNP (rs601338) was 

between 38.4% and 49.0%, for Icelandic and Caucasian populations from the US, respectively. 

In contrast, the allele ‘A’ was found to be the minor allele in the Indian population 

(MAF=23.0%) [233]. The presence of the ‘A’ allele is associated with higher vitamin B12 

concentrations, compared to ‘G’ allele carriers. This indicates that in the Indian population, a 

greater number of individuals carry the ‘G’ allele and hence could partly explain why they are 

expected to have a lower vitamin B12 status [258]. The FUT2 rs601338 variant is less common 

in East Asians than Europeans [MAF= 3.5%; HapMap HCB (Han Chinese in Beijing, China) 

and MAF= 1.2%; HapMap JPT (Japanese in Tokyo, Japan)], and may explain why the locus 

has not been identified in Chinese individuals in previous studies [206].  Another common non-

synonymous SNP rs1047781 (A385T) has been shown to be a potential functional variant 

associated with vitamin B12 status and a major FUT2 secretor defining SNP in East Asians, 

and has also been reported to reduce the expression of Fucosyltransferases [261, 262]. Lin et 

al. found that the ‘T’ allele of the SNP rs1047781 was significantly associated with higher 

vitamin B12 concentrations in 3,495 Chinese men (P=3.62 x 10−36, β = 70.21 pg/ml) [206]. 

This genetic marker is present only in East-Asians; hence, it could not be replicated in a study 

conducted in Icelandic individuals [205].  

To date, three studies have shown an association between the SNP rs492602 and 

vitamin B12 concentrations [234, 253, 260]. The SNP rs492602 is in complete linkage 

disequilibrium (LD) with FUT2 W143X (rs601338) (r2= 1), as shown in the Nurses’ Health 
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Study [260]. Hazra et al. [234] found that the ‘A’ allele of the SNP rs492602 variant was 

associated with lower vitamin B12 concentrations (β= -0.06 pg/ml, P= 1.30 × 10-14) amongst 

4,763 Caucasians  from the US, this finding was similarly observed in a GWA study (2,696 

women) by the same authors (β= -0.09 pg/ml, P= 5.36 ×10-17) [260]. In a subsequent study in 

3,114 Canadian adults, the ‘G’ allele was shown to be associated with a lower risk (P=2.0 x 

10–4, Odds Ratio: 0.60, 95% CI 0.54-0.70) of vitamin B12 deficiency (< 148 pmol/L) [253]. 

Finally, the most commonly studied variant of the FUT2 gene is the SNP rs602662. 

This SNP was also reported to be in LD with the SNPs rs601338 (r2 = 0.76) and rs516316 (r2 

= 0.83) in Caucasian populations from the US and Iceland [205, 260]. Zinck, et al. [253], 

reported that ‘A’ allele carriers of the rs602662 variant were at a lower risk of vitamin B12 

deficiency (< 148 pmol/L) (OR: 0.61, 95% CI 0.47-0.80, P=3.0 x 10–4) in a population of 3,114 

Canadian adults [253]. Similarly,  a higher vitamin B12 status was observed in carriers of the 

‘A' allele in four different studies looking at Caucasians (β= 0.04-43.27  pmol/L) [205, 234, 

254, 260] and Indians (β= 0.10-0.25 pmol/L) [233, 258]. Furthermore, additional variants of 

the FUT2 gene were observed to be associated with vitamin B12 levels (P < 0.05) in the 

following SNPs: rs1047781, rs516316, rs838133 and rs281379 [205, 206, 233]. 

It has been proposed that host genetic variation in the FUT2 gene may alter the 

composition of the gut microbiome. Individuals, who are nonsecretors (homozygous for the 

non-functional FUT2 phenotype), lack terminal fucose residues on mucin glycans [263, 264]. 

As a result, the gut microbial community of individuals with FUT2 deficiency may reduce in 

composition and diversity, as microbes cannot adhere or utilize host-derived glycans [264, 

265]. Variations in the FUT2 gene can potentially alter the susceptibility to Helicobacter Pylori 

(H. pylori) infection, and its related gastric-induced vitamin B12 malabsorption [266-271]. 

Gastric pathogens such as H. pylori, attach to α1,2-fucosylated glycan’s on epithelial cells, or 

structures masked by fucosylation with the help of these H antigens in individuals with the 
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secretor status [266-271]. Infections with H. pylori in the human intestine, have been reported 

to interfere with the release of intrinsic factor needed for vitamin B12 absorption [271]. 

Interestingly, a study in Northern Portugal found that the SNP rs602662 ‘A’ allele has been 

linked to a non-secretor status (null H antigens), and this may decrease the risk of bacterial 

infection from pathogens such as H. pylori, and explains why subjects who carry ‘A’ allele 

have a high vitamin B12 status [272]. Alternatively, independent of H. pylori-mediated 

gastritis, individuals who carried FUT2 secretor variants who were also heterozygous for a GIF 

(a fucosylated glycoprotein needed for vitamin B12 absorption) mutation, had lower vitamin 

B12 concentrations [273].  

2.4.1.4  Fucosyltransferase 6 (FUT6)  

The fucosyltransferase 6 (FUT6) gene is located on chromosome 19, and encodes a 

Golgi stack membrane protein; involved in the formation of Sialyl-Lewis X, an E-selectin 

ligand [206]. These Lewis associated antigens are associated with H. pylori adherence to the 

gastric and duodenal mucosa [274, 275]. Overgrowth of H. pylori has been linked to vitamin 

B12 deficiency, as gastric bacteria reduces the secretion of IF which is needed to form the 

vitamin B12-IF complex [206, 271].  

In light of the potential physiological link between the FUT6 gene and vitamin B12 

deficiency, three studies investigated the relationship between variants in the FUT6 gene and 

vitamin B12 status. Lin et al. first observed [206] that the ‘A’ allele of the rs3760776 variant 

was associated with higher vitamin B12 levels (β=49.78 pg/ml, P=3.68 × 10-13) in a sample of 

3,495 men of Chinese Han and Chinese descent [206]. Similarly, homozygous ‘A’ allele 

carriers of Icelandic (β=0.068 pmol/L, P=4.4×10−6) [205] and Indian (β=0.18-0.30 pmol/L) 

[233] populations had high serum vitamin B12 concentrations. Interestingly, this gene variant 

may have the potential to serve as a genetic marker for Type 2 diabetes [257].  
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Furthermore, additional variants of the FUT6 gene (rs708686 [205, 233], rs78060698 

[233], rs3760775 [233] and rs7788053 [205]) were observed to be associated with a higher 

vitamin B12 status in individuals of the Indian, Icelandic  and Danish populations (P < 0.05). 

Bioinformatic analysis has shown that the FUT3, FUT5 and FUT6 genes form a cluster on 

chromosome 19p13.3 [276]. Interestingly, the SNPs: rs3760775, rs10409772, rs12019136, 

rs78060698, rs17855739, rs79744308, rs7250982, rs8111600 from this cluster were in LD with 

the FUT6 SNP rs3760775 (r2 = 0.57 – 0.84) in South Asian populations. Available data has 

shown differences in the LD structure between South Asian populations and individuals of East 

Asian and European origin [233]. The variation of LD patterns across ethnicities could account 

for the heterogeneity of vitamin B12 concentrations [277].  

Nongmaithem et al. [233] noted that alternative allelic states of the SNP rs78060698 

variant, may influence the binding affinity of HNF4α (a key regulator of FUT6 expression) to 

the FUT6 protein. FUT6 is responsible for synthesizing α(1,3) fucosylated glycans, which act 

as a biological interface for the host-microbial interaction [278]. It is plausible that the SNP 

rs78060698 maintains the structure of glycans, which in turn control intestinal host-microbial 

interactions leading to altered concentrations of vitamin B12 [233, 279].  Another hypothesis, 

is that genetic variants may disrupt the formation of fucosyltransferases which mediate the 

glycosylation of B12 binding proteins and their receptors, thus influencing vitamin B12 

concentrations [233].  

2.4.1.5  Transcobalamin 2 (TCN2)  

The TCN2 gene  also known as transcobalamin 2 is located on chromosome 22. This 

gene has the function of making a vitamin B12  binding protein called transcobalamin II (TC) 

found in human serum [280].  Data suggests that TCN2 genetic variants are associated with 

Alzheimer’s disease and clinical manifestations of autoimmune gastritis in individuals with 
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low vitamin B12 status [281, 282]. TC is involved with absorption and transporting vitamin 

B12 into the cell. Only 10-20% of vitamin B12 is attached to TC, the remainder is attached to 

holo-haptocorrin (transcobalamin 1) [253, 283, 284]. Five studies have reported associations 

between variants within the TCN2 gene and vitamin B12 levels [205, 233, 253, 283, 285].     

The most commonly reported TCN2 polymorphism in Caucasian populations is the 

SNP rs1801198, where the C to G substitution at nucleotide 776 (TCN2 776C>G) results in an 

amino acid exchange of proline to arginine at codon 259 (P259R). In a candidate gene 

association study of 613 Irish men, a significant association was observed between the SNP 

rs1801198   and serum vitamin B12 levels (P=0.01). Individuals with the homozygous wildtype 

‘CC’ genotype had lower vitamin B12 levels (mean: 243.5 pmol/L) compared to those with 

‘GG’ genotype (mean: 279.7 pmol/L) [285]. In contrast, it was observed that Holo-

transcobalamin (Holo-TC) concentrations were significantly associated with the SNP 

rs1801198, in a population of 122 individuals from Portugal, where the G allele carriers 

(median 54.2 pmol/L) had lower Holo-TC levels compared to the C variant (P < 0.05; median 

66.3 pmol/L) [283]. Four other studies reported no significant associations between the SNP 

rs1801198 and vitamin B12 concentrations in Caucasian populations (P>0.05) [286-289]. It 

was found that the minor allele frequency (G allele) of the SNP rs1801198 ranged between 

35% to 48% in  Brazilian (36%) [289], Latino (35%) [287], Nordic (44%) [286, 288], Northern 

Irish (45%) [285] and Portuguese (48%) [283] individuals. Additional variants of the TCN2 

gene (rs757874, rs4820888, rs1131603 and rs5753231) were associated with vitamin B12 

status (P<0.05) in individuals of Indian, Canadian,  US, African American, and Scandinavian 

background [205, 233, 237, 253, 286]. 

It has been suggested that the 776GG homozygous variant encodes a protein with a 

lower binding affinity to vitamin B12 in comparison to the wildtype ‘C’ allele [287]. 

Additionally, other studies have indicated that variations in the TC protein reduce the binding 
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of vitamin B12 to TC or prevent the TC-R from recognising the vitamin B12-TC complex 

[231].  

2.4.2 Genes that code for membrane transporters that actively facilitate 

membrane crossing 

2.4.2.1 Cubulin (CUBN)  

 Cubulin (CUBN) also known as the intestinal intrinsic factor receptor or intrinsic factor-

cobalamin (IF-B12) receptor is located on chromosome 10. CUBN is expressed on the intestinal  

and kidney epithelial cells and is involved with the uptake of the intrinsic factor-vitamin B12 

(vitaminB12-IF) complex  [234, 290, 291]. CUBN polymorphisms have been associated with 

maternal neural tube defects risk, megaloblastic anaemia, coronary heart disease and gastric 

cancer in individuals with low vitamin B12 status [292-296].  

Studies of the association between vitamin B12 status and the variants within CUBN 

have yielded conflicting results. Hazra et al. [234] was first to report an association between 

the ‘G’ allele of the rs1801222 (Ser253Phe) variant and higher vitamin B12 status (β= 0.05 

pg/ml, P=2.87×10-9) in 4,763 individuals from the US population [234]. This association was 

confirmed in another study looking at 45,571 Icelandic and Danish individuals (β = 0.10 - 0.17 

pmol/L; P=3.3 x10-75) [205]. In contrast, a study in 3,114 Canadian individuals (85% Caucasian 

and 15% Non-Caucasian) showed that the ‘G’ allele of the rs1801222 variant was associated 

with a higher risk of vitamin B12 deficiency (OR: 1.61 pmol/L, 95% CI 1.24-2.09, P=3.0 x 10–

4)[253]. Genotypic frequency of the risk conferring minor allele ‘A’ was compared between 

three different studies (Canadian, Nordic and individuals of European ancestry living in the 

USA). It was found that Canadian individuals carried the lowest frequency of the risk allele 

‘A’, at 10% [253]. On the other hand, Hazra et al. [234]  and Grarup et al. [205], observed that 

the minor allele frequency ‘A’ was 28.0% and 40.7% in Caucasian individuals residing in the 
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USA and Nordic populations, respectively. Interestingly, several other genetic variants 

within CUBN (rs4748353, rs11254363 and rs12243895) were found to be either positively or 

negatively associated with vitamin B12 levels in residents from China, [206] Canada [253], 

USA and Italy [254]. 

To date several hypotheses have attempted to explain how CUBN variants are involved 

with lower vitamin B12 concentrations. One hypothesis is that CUBN is co-expressed with the 

protein amnionless (AMN, Chromosome 14) forming the cubam complex [240]. Cubilin has 

additionally been suggested to function together with megalin (LRP2, chromosome 2) [297], 

thus any polymorphisms in either AMN or LRP2 genes can affect B12 absorption leading to 

B12 malabsorption and deficiency. Another hypothesis is that polymorphisms affecting 

CUBN, decreases the transport and the absorption of vitamin B12 in the ileum [234]. 

Functional studies on rs11254363, rs1801222, rs12243895 and rs4748353 are required to 

explain how these variants affect the regulation of the CUBN gene. 

2.4.2.2  ATP-binding cassette Subfamily D Member 4 (ABCD4)  

The ATP-binding cassette Subfamily D Member 4 (ABCD4) gene is located on 

chromosome 14. This gene codes for the ABCD4 protein, which is a membrane transporter 

involved in transporting vitamin B12 out of lysosomes [298]. It has been shown that 

polymorphisms of the ABCD4 gene affect the functioning of the ABCD4 protein and the 

intracellular processing of vitamin B12 [241]. 

There has been only one study to date investigating the association between vitamin 

B12 status and ABCD4 variants. Grarup et al. [205] examined 45,571 Nordic adults and 25,960 

Icelandic adults in a GWA study [205], where the ‘T’ allele of the rs3742801 and ‘C’ allele of 

the rs4619337 variants were associated with higher vitamin B12 levels (β=0.045-0.093 pmol/L, 

 



141 

P=5.3×10−8 ; β=0.05,  P= 3.4 × 10-8, respectively), suggesting an impact of this gene on vitamin 

B12 status.  

Previous research has shown that the protein LMBD1 (which is responsible for the 

lysosomal export of vitamin B12), interacts with the ABCD4 protein. The mechanisms of 

interaction between LMBD1 and ABCD4 remain unclear, but it is believed that polymorphisms 

in human LMBRD1 gene and ABCD4 can prevent translocation of the vitamin B12 from the 

lysosome to the cytoplasm [241, 299].  

2.4.2.3  CD320 molecule (CD320)  

The CD320 gene also known as the ‘CD320 molecule’ gene is located on chromosome 

19. This gene codes for the transcobalamin receptor (TCblR), which binds and engulfs holoTC 

by endocytosis [300]. At present, two SNPs: rs2336573 and rs8109720 have shown association 

with vitamin B12 levels [205, 237, 253]. 

The most commonly studied variant of the CD320 gene is the rs2336573 variant, a 

missense polymorphism that results in an amino acid change from glycine to arginine, at the 

codon position 220. Zinck et al. found that the ‘C’ allele of the rs2336573 variant was 

associated with a lower risk (OR: 0.62, 95% CI 0.45-0.86, P=0.003) of vitamin B12 below 

adequate (< 220 pmol/L) among 3114 Canadian adults [253]. In contrast, an earlier study 

looking at a population of 45,571 adults from Iceland and Denmark found that the ‘T’ allele 

was associated with higher B12 levels (β = 0.22 - 0.32 pmol/L; P=8.4×10−59) [205]. A previous 

study has shown that this polymorphism is associated with the maternal risk of developing 

neural tube defects [292]. Cell culture models have shown that SNPs in the CD320 receptor 

can lead to a reduction in vitamin B12 uptake [300]. 
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2.4.3 Involved in the catalysis of enzymatic reactions in the one carbon cycle 

2.4.3.1  Methylenetetrahydrofolate reductase (MTHFR) 

The methylenetetrahydrofolate reductase (MTHFR) gene is located on chromosome 1 

[301] and  codes for a critical enzyme involved in homocysteine remethylation. MTHFR 

catalyses the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate in an 

irreversible reaction [243]. The two most well-known MTHFR gene polymorphisms are the 

C677T (rs1801133) and A1298C (rs1801131) variants. Both variants have been associated 

with reduced enzyme activity and an altered distribution of intracellular folate [302, 303]. 

 The majority of candidate gene association studies have shown no association (P>0.05)  

with  MTHFR gene polymorphisms (rs1801131 and rs1801133) and vitamin B12 

concentrations in Brazilian [304, 305], North European [259], French [306], Norwegian [307] 

and Spanish [308] populations. However, Thuesen, et al. reported that ‘T’ allele carriers of the 

C677T genotype variant were associated with an increased prevalence of low serum vitamin 

B12 (OR 1·78; 95% CI 1·25, 2·54; P=0·003) in a population of 6,784 Danish adults [288]. 

There are no explanations to date, which have linked the biological mechanism of TT 

homozygosity and B12 deficiency. It could be postulated that the C677T polymorphism is 

associated with a decrease in intestinal absorption of vitamin B12 [309]. 

2.4.3.2  Methioninesynthase reductase (MTRR) 

The MTRR gene, also known as the ‘methionine synthase reductase’ gene is located on 

chromosome 5. This gene is responsible for maintaining adequate levels of activated vitamin 

B12 (methylcob(III)alamin), which maintains the enzyme methionine synthase in its active 

state [310]. Currently four SNPs: rs162036, rs162048, rs1532268 and rs3776455 have shown 

associations with vitamin B12 levels in healthy individuals [170]. 
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 The  first SNP MTRR rs162036 (Lys350Arg) is a missense polymorphism [311], 

which was found to be associated with vitamin B12 levels (P=4.00 x 10-2) in 262 women of 

North European descent (No effect size available) [170]. The same authors also identified a 

significant association (P < 0.05) between the SNPs rs162048, rs1532268 and rs3776455 with 

vitamin B12 levels. This study provides the first evidence that MTRR polymorphisms 

(rs162036, rs162048, rs1532268 and rs3776455) significantly influence the circulating vitamin 

B12 concentrations. 

2.4.4 Involved in cell cycle regulation 

2.4.4.1  Membrane Spanning 4-Domains A3 (MS4A3)  

 The Membrane Spanning 4-Domains A3 (MS4A3) gene is located on chromosome 11, and 

codes for the MS4A3 protein (also called HTm4). It has been suggested from limited studies 

that the MS4A3 protein may play a role in cell cycle regulation of hematopoietic cell 

development by inhibiting the G1/S cell cycle transition [244]. The only studied variant within 

this gene in relation to vitamin B12 concentrations is rs2298585, which was investigated in 

3,495 men, all of Chinese origin. In this study [206], the ‘T’ allele of the rs2298585 variant 

was associated with higher serum vitamin B12 concentrations (β=71.80 pg/ml, P=2.64 x 10-15) 

[206]. Another study investigated this SNP in 37,283 Icelandic individuals, but found no 

statistical significance (β=0.214 pmol/L, P=0.075) [205]. 

It has been  suggested that polymorphisms of the MS4A3 gene may affect the cell-cycle 

regulation in the GI tract, thus affecting the renewal of intestinal and gastric epithelial cells 

leading to vitamin B12 malabsorption [312] . However, data from animal studies have 

demonstrated that MS4A3 is restricted to differentiating cells in the central nervous system and 

hematopoietic cells [313].  
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2.4.5 Mitochondrial protein 

2.4.5.1  Methylmalonic aciduria (cobalamin deficiency) cb1A type (MMAA) 

The MMAA gene, also known as the ‘methylmalonic aciduria (cobalamin deficiency) cb1A 

type’, is located on chromosome 4q31.1-2 [314]. MMAA encodes a protein (MMAA) that may 

be involved in the translocation of vitamin B12 into the mitochondria [245]. In addition, 

MMAA could play an important role in the protection and reactivation of methylmalonyl-coA 

mutase (MCM) in vitro [246]. Three studies have reported associations between variants within 

the MMAA gene and vitamin B12 concentrations [170, 205, 233]. 

 Andrew et al. was first to report that the SNP rs4835012 was significantly associated 

with vitamin B12 concentrations (P= 3.00 x 10-2) in 262 Caucasian women of North European 

descent (no effect size available) [170]. More recently in a GWA study looking at 534 Indian 

children, the ‘C’ allele of the SNP rs2270655 was significantly associated with lower vitamin 

B12 concentrations (β = -0.20 pmol/L, P= 2.00 x 10-2) [233]. This association was confirmed 

in another study looking at 45,576 Danish and Icelandic adults (β = -0.07 - -0.30, P=2.20 x 10-

13) [205]. While these SNPs might be involved with determination of vitamin B12 

concentrations, their precise biochemical role is unknown.  

2.4.5.2  Methylmalonyl-CoA mutase (MUT) 

 The MUT gene also known as the methylmalonyl-CoA mutase is located on 

chromosome 6. The MUT gene provides instructions for the formation of methylmalonyl-CoA 

mutase (MUT), which is a mitochondrial enzyme. MUT acts as a catalyst which isomerizes 

methylmalonyl-CoA to succinyl-CoA [315]. MUT requires 5-prime-deoxyadenosylcobalamin 

(AdoCbl), which is a form of B12 that works with MUT to form succinyl-CoA. Succinyl-CoA 

participates in the TCA cycle (tricarboxylic cycle) to yield energy [316]. The MUT gene is 

involved in homocysteine metabolism, and it is dependent on vitamin B12 for its function 
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[317]. Four studies have reported associations between variants within the MUT gene 

(chr6:49508102, rs1141321, rs9473555, rs6458690 and rs9381784) and vitamin B12 status 

[170, 205, 206, 234]. 

In a meta-analysis of data from 4,763 Caucasian individuals from the US, participants 

homozygous for the rs9473558 (now merged into rs1141321) ‘T’ allele (β = −0.04 pg/ml ,P= 

4.05 x 10-8) and MUT rs9473555 ‘C’ allele ( β = −0.04 pg/ml, P= 4.91 x 10-8)  were inversely 

associated with plasma vitamin B12 levels [234]. These findings were confirmed in other 

studies involving Icelandic (β= -0.061 pmol/L; β=-0.062 pmol/L, respectively) [205] and 

Chinese populations (β= -30.34 pg/ml; β= -31.0 pg/ml, respectively) [206].  

2.4.5.3  Citrate lyase beta like (CLYBL)  

The citrate lyase beta like (CLYBL) gene is located at chromosome 13 and codes for a 

human mitochondrial protein. The functions of CLYBL include metal ion binding, carbon-

carbon lyase activity and citrate (pro-3s)-lyase activity [206]. Approximately 5% of humans 

have a stop codon polymorphism in CLYBL which is associated with low levels of plasma 

vitamin B12, but the mechanistic link of this to vitamin B12 is currently unknown [318]. 

The association between the CLYBL variant rs41281112 and vitamin B12 levels has 

been studied in two different populations. Lin et al. [206] found that the ‘T’ allele was 

associated with lower serum vitamin B12 levels among 3,495 men of Chinese Han and Chinese 

descent (β=-83.60 pg/ml, P= 9.23×10-10) [206]. Similarly, Grarup et al. [205] found that the 

‘T’ allele of  the SNP rs41281112 variant was associated with lower serum vitamin B12 levels 

(β=-0.29- -0.17 pmol/L, P=8.9 x 10-35)  in 45,571 adults,  all of Icelandic and Danish origin 

[205].  

At present, molecular functioning studies have elucidated that the polymorphism 

rs41281112 (G<A)  changes the amino acid from Arginine to a stop codon resulting in a loss 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1141321


146 

of protein expression [318]. As a result, Lin et al. [206] proposed that the rs41281112 variant 

interferes with the binding of CLYBL protein to metal ions, potentially leading to a lower uptake 

of vitamin B12 [206].  

2.4.6 Other genes 

Our review also identified that SNPs in actin like 9 (ACTL9,rs2340550) [206], serum 

paraoxonase/arylesterase 1 (PON1, rs391757)[253], cystathionine beta synthase (CBS, 

rs2124459)[253], carbamoyl-phosphate synthase 1 (CPS1, rs1047891) [205] and DNA 

methyltransferase gene/ tRNA aspartic acid methyltransferase 1  (DNMT2/TRDMT1, 

rs56077122[205] and rs2295809[253])  genes were associated with vitamin B12 status in 

Canadian, Chinese, Danish and Icelandic populations. The SNPs in the intergenic regions 

[rs583228, rs10515552, rs12377462 [206], rs117456053, rs62515066 and Chr6:88792234 

[205] were found to be associated with vitamin B12 status, however, plausible underlying 

biological mechanism as to why these SNPs were associated with vitamin B12 concentrations 

have not been identified.  

2.4.7 Ethnic-specific genetic differences in B12 deficiency 

 In the past, vitamin B12 deficiency within populations in the Indian subcontinent, Mexico, 

Central and South America and certain regions of Africa was solely attributed to dietary 

habits/low consumption of meat [3]. We now know that genetic factors also influence vitamin 

status in individuals [319]. Indian populations have a high prevalence of vitamin B12 

deficiency, typically attributed to the high number of vegetarians present in the population. 

However, non-vegetarians in India have been observed to have lower vitamin B12 

concentrations compared to Caucasian populations [258, 320]. In addition, a recent systematic 

review showed that B12 deficiency is common during pregnancy in other populations where 

vegetarianism is rare [68]. Poor dietary intake, low bioavailable B12 in meat products (i.e., 
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food processing and reheating of food) as well as a possible underlying genetic predisposition 

to vitamin B12 status could be the reasons for such observation in non-vegetarian populations 

[9, 321].  

 Although several studies have explored the association of SNPs with vitamin B12 status, 

only a limited number of genetic loci have been reported to support the presence of ethnic 

differences in vitamin B12 status in non-European populations [206, 233]. We can assume four 

genetic mechanisms which possibly account for these differences: 1) difference in effect allele 

frequencies 2) genetic heterogeneity across different ethnic groups 3) variance in LD structure, 

and 4) gene-gene and gene-environment interactions [322]. A key example of ethnic specificity 

has been demonstrated in the FUT2 gene, whereby different mutations leading to nonsecretor 

status have been identified (the secretor status of FUT2 gene is associated with a low vitamin 

B12 status) [323]. The 428G→A polymorphism (rs601338) is characteristic for the nonsecretor 

allele in Europeans and appears in about 20% of the Caucasian population [324]. In South-East 

and East-Asians populations, the SNP rs601338 is rare and the more common FUT2 missense 

mutation rs1047781 is associated with nonsecretor status [325].  

Genetic variants associated with circulating vitamin B12 have been studied in the 

following populations: African American (n=1) [237], Brazilian (n=4) [289, 304, 305, 326],  

Canadian (n=1) [253], Caucasian (n=4) [234, 237, 259, 260], Chinese (n=1)[206],  Danish 

(n=2) [205, 288], European ancestry (n=1) [170], French (n=1) [306], Icelandic (n=1) [205], 

Indian (n=2) [233, 258], Italian ancestry and residents of the USA (n=1) [254], Latino (n=2) 

[287, 308], Northern Irish (n=1) [285], Norwegian (n=2) [286, 307] and Portuguese (n=1) 

[283]. To date, the majority of genetic association studies of vitamin B12 status have been 

performed in Caucasian populations, and a few have reported associations in high-risk 

populations such as Mexico and India [258, 327]. More studies exploring a wider range of 

ethnicities with large sample sizes may help to identify novel SNPs that may be associated with 
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vitamin B12 status. Studying the genetic structure of chromosomal regions that are associated 

with variability in vitamin B12 levels in different populations, can help us understand the 

evolutionary aspects of B12 associations and their relationship with environmental exposures. 

It is important that before any diet-related recommendations based on genotypes are given at 

the population level, associations between the SNPs and various health outcomes need to be 

confirmed [222]. 

2.5 Conclusion 

In summary, our review has identified significant associations of vitamin B12 status 

with 59 B12-related SNPs from 19 genes. Among these genes; five were co-factors or 

regulators for the transport of vitamin B12 (FUT2, FUT6, MMACHC, TCN1 and TCN2); three 

were membrane transporters actively facilitating the membrane crossing of vitamin B12 

(ABCD4, CUBN and CD320); three were involved in the catalysis of enzymatic reactions in 

the one carbon cycle (CBS, MTHFR and MTRR); one was involved in cell cycle regulation 

(MS4A3); three were mitochondrial proteins (CLYBL, MMAA and MUT) and lastly four genes 

had an unknown function (ACTL9, CPS1, DNMT2/TRDMT1 and PON1). Our review 

highlights the complex nature of the B12 genetics where several genes/ SNPs from various 

parts of B12 metabolic pathway contribute to the susceptibility to vitamin B12 deficiency. 

Identification of gene variants involved in this metabolic pathway using large scale genetic 

association studies in diverse ethnic populations would contribute to our understanding of the 

pathophysiology of B12 deficiency and help in discovering biomarkers of vitamin B12-related 

chronic diseases.  
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Chapter 3  

The influence of one-carbon metabolism gene polymorphisms and 

gene-environment interactions on homocysteine, vitamin B12, 

folate and lipids in a Brazilian adolescent population 
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3.1 Abstract: 

Background: Several single nucleotide polymorphisms (SNPs) have been associated with the 

metabolism of vitamin B12, folic acid, homocysteine and lipids. However, the interaction 

between SNPs involved in the one-carbon metabolism pathway and macronutrient intake on 

cardiovascular risk factors in the Brazilian population has not yet been investigated. Hence, 

this study investigated the association of ten SNPs involved in the one-carbon metabolism 

pathway with vitamin B12, folic acid, homocysteine and lipid levels, and examined the 

interaction of these SNPs with lifestyle factors (dietary and physical activity levels) in 

adolescents with cardiovascular risk.  

Methods: A total of 113 adolescents (10-19 years old), from a public school in the city of 

Goiânia, Goiás, Brazil underwent anthropometric, biochemical, food consumption evaluations 

and genetic tests.  

Results: After adjusting for potential confounders, SNPs rs4633 (catechol-O-

methyltransferase, COMT), rs602662 (fucosyltransferase 2, FUT2) and rs1801394 (5-

methyltetrahydrofolate-homocysteine methyltransferase reductase, MTRR) showed significant 

associations with folic acid (P=0.042), vitamin B12 (P=0.009) and oxidized-low density 

lipoprotein (ox-LDL) (P=0.041) concentrations, respectively. The COMT SNP rs4680 showed 

a significant interaction with carbohydrate intake on ox-LDL concentrations (Pinteraction=0.005). 

In addition, the FUT2 SNP rs602662, showed a significant interaction with protein intake on 

homocysteine concentrations (Pinteraction=0.007). However, after correction for multiple testing, 

none of these associations and interactions were statistically significant. 

Conclusion: For the first time, we provide evidence for the interactions between COMT SNP 

rs4680 and carbohydrate intake on ox-LDL levels and the FUT2 SNP rs602662 and protein 

intake on homocysteine concentrations, respectively. However, given that our findings did not 
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reach Bonferroni significance, replication of our results in a larger sample size is required to 

confirm our findings. 

3.2 Introduction: 

Cardiovascular disease (CVD) has remained the leading cause of mortality in Brazil since 

the latter part of the 1960s [328, 329]. Although effective tobacco control policies and access 

to improved healthcare have led to drastic improvements in cardiovascular health, an upward 

trend in unhealthy eating habits and physical inactivity has been observed in the Brazilian 

population [329]. Smoking, obesity, hypertension, hyperlipidaemia, and insulin resistance have 

long been recognized as major risk factors for CVDs [330]; however the aetiology of CVD is 

not yet fully understood [331]. There has recently been renewed interest in the relationship 

between elevated homocysteine levels and the development of CVD [24].  

Epidemiological studies have shown that hyperhomocysteinaemia is a well-known 

independent  risk factor for atherosclerotic vascular disease and hypercoagulability states [24]. 

It is known to mediate adverse effects on vascular endothelium and smooth muscle cells [332]. 

In addition, hyperhomocysteinaemia reduces high-density lipoprotein (HDL) synthesis [333] 

and enhances the synthesis of lipoprotein A [334]. Some studies have indicated that up to 25% 

of coronary events may be attributed to the increase in homocysteine levels [335], which have 

been shown to inversely correlate with B-complex vitamins, such as folate and vitamin B12. 

Although B vitamins have a role in reducing blood homocysteine concentrations, the effect of 

these vitamins on cardiovascular function remain unclear [4]. A few studies have indicated that 

high folate and vitamin B12 status are associated with a reduced risk of coronary heart disease 

[336, 337]. Therefore, maintaining the concentrations of homocysteine, vitamin B12, folate 

and lipids within the body is of grave importance.   

The one carbon metabolism pathway is a network of biochemical reactions involved in the 

transfer of single-carbon units (CH3 or methyl group), controlled by different enzymes and 
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nutritional cofactors [338]. Cells require one-carbon units for nucleotide synthesis and 

methylation reactions. Currently, common variants in genes of the one-carbon metabolism 

pathway have been reported to influence concentrations of homocysteine, folate, vitamin B12 

and lipids [234]. A few studies have examined whether the association between genetic variants 

involved in the one-carbon metabolism pathway and homocysteine concentrations are modified 

by lifestyle factors such as diet [339, 340]. However, no studies, to date, have examined the 

interaction between one-carbon metabolism-related genes and lifestyle factors on vitamin B12, 

folate and lipid concentrations. Hence, seven genes involved in the one carbon metabolism 

were selected for our study [betaine-homocysteine S-methyltransferase (BHMT), catechol-o-

methyl transferase (COMT), fucosyltransferase 2 (FUT2), methylenetetrahydrofolate reductase 

(MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase or methionine synthase 

(MTR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase or methionine 

synthase reductase (MTRR) and transcobalamin 2 (TCN2)].   

In this study, the aim was to examine whether 10 SNPs involved in the one-carbon 

metabolism pathway are associated with vitamin B12, homocysteine, folic acid and lipid-

related outcomes, and whether dietary intake and physical activity levels have a modifying 

effect on these associations. Interaction and association analyses were carried out in 113 

adolescents with cardiovascular risk factors from the city of Goiânia, Goiás, Brazil.   
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3.3 Materials and methods 

3.3.1 Study Participants  

This cross-sectional study was conducted in a public school in the city of Goiânia, Goiás, 

Brazil, between March to May 2014. A total of 454 students were initially enrolled into the 

study, and 201 students were found to be eligible for participation. After screening through 

lifestyle, socioeconomic and clinical history, only 113 adolescents (aged 10-19 years) were 

selected to answer a food frequency record and provided a blood sample for biochemical and 

DNA analysis. Full details of the methodology have been explained previously [341]. Table 

11 shows the characteristics of the study participants.  

Table 11: The characteristics of study participants stratified by sex 

 All (N=113) Boys (N=47) Girls (N=66) P value* 

Age (yrs) 

 

13.87 ± 2.37 13.32 ± 2.35 14.26 ± 2.32 0.037 

Height (m) 

 

1.62 ± 0.11 1.63 ± 0.14 1.61 ± 0.08 0.205 

Weight (kg) 

 

63.53 ± 17.59 66.36 ± 20.13 61.51 ± 15.37 0.169 

BMI (kg/m2) 

 

24.01 ± 4.92 24.33 ± 5.07 23.79 ± 4.84 0.567 

Vitamin B12 (pg/ml) 

 

519.80 ± 232.15 534.62 ± 252.96 509.24 ± 217.50 0.569 

Homocysteine (μmol/l) 

 

7.04 ± 2.99 7.90 ± 2.91 6.42 ± 2.92 0.009 

Folic acid (ng/ml) 

 

11.02 ± 3.27 10.78 ± 3.62 11.20 ± 3.01 0.519 

Triacylglycerol (mg/dl) 94.05 ± 54.16 99.00 ± 59.00 90.53 ± 50.61 

 

0.415 
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Abbreviations: BMI Body mass index  

Data presented as Mean ± SD 

*P values are showing the differences in mean values between Boys and Girls.  

P values were calculated by using Independent t test 

 

Participants were selected on the basis that they were overweight/ obese and/or were 

previously diagnosed with dyslipidaemia, but not with CVD [341]. The presence of 

dyslipidaemia was identified by the use of specific medications or when the interviewees 

reported having hypercholesterolemia or hypertriglyceridemia, previously diagnosed by a 

physician. Individuals were not included in the study if they were previously diagnosed with 

CVD, they used lipid-lowering drugs and they were supplemented with folic acid, cobalamin 

and/or pyridoxine and/or nutritional treatment.  

Total Cholesterol (mg/dl) 155.42 ± 26.34 150.47 ± 24.51 158.95 ± 27.20 0.091 

HDL (mg/dl) 46.29 ± 11.79 

 

43.60 ± 11.47 

 

48.21 ± 11.72 

 

0.040 

LDL (mg/dl) 90.28 ± 21.00 

 

87.04 ± 18.19 92.59 ± 22.64 0.167 

VLDL (mg/dl) 18.85 ± 10.82 19.83 ± 11.75 18.15 ± 10.15 

 

0.419 

Oxidized-LDL (U/L) 6.42 ± 13.69 5.92 ± 11.47 6.77 ± 15.12 0.749 

Total energy (Kcal/day) 2521.63 ± 

585.84 

3010.08 ± 594.92 2173.79 ± 213.40 <0.0001 

Carbohydrate intake (energy 

%) 

47.70 ± 20.59 40.86 ± 19.56 52.56 ± 20.05 0.003 

Fat intake (energy %) 25.36 ± 13.22 22.84 ± 11.58 27.16 ± 14.09 0.087 

Protein intake (energy %) 16.99 ± 8.38 14.56 ± 6.94 18.72 ± 8.92 0.006 
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The present study was approved by the Federal University of Goiás (addendum in protocol 

number 422.329, 07/10/2013). Written informed consent was obtained from students whose 

age was above 18 years, and for those whose age was less than 18 years consent was obtained 

from their parents or guardians. Participants were allowed to leave the study at will and opt out 

from any of the procedures. All clinical investigations were conducted according to the 

principles expressed in the Declaration of Helsinki.  

3.3.2 Anthropometric and biochemical measurements  

Details of anthropometric measurements have been described previously [341]. In brief, 

at baseline, all participants were measured for weight, height, and waist circumference (WC) 

using standard study protocols [341]. The Body Mass Index (BMI) was estimated as weight (in 

kg) divided by the square of body height (m). BMI was classified according to the WHO (2007) 

classification for BMI/age according to sex [342]. Individuals below the 15th percentile were 

considered below normal weight, those between the 15th and 85th percentiles were classified 

as normal-weight, those who fit between the 85th and 97th percentiles were classified as 

overweight, and those above the 97th percentile were considered obese. 

For the determination of biochemical parameters, blood samples (12 ml) were collected by 

peripheral venous puncture in the morning, after a 12 hour fast. The blood samples were used 

to measure homocysteine, vitamin B12, folic acid, lipid profile [including oxidized-low density 

lipoprotein (ox-LDL)] concentrations, and for DNA extraction. Vitamin B12 and homocysteine 

concentrations were analysed using a chemiluminescence method. HDL-cholesterol (HDL-C) 

was determined after precipitation of the LDL and very-low-density lipoprotein (VLDL) 

fractions. The Friedewald formula was applied to obtain the measurement of LDL and VLDL 

cholesterol [343]. Plasma ox-LDL levels were measured using commercially available 

sandwich enzyme-linked immunosorbent assay (Mercodia AB, Uppsala, Sweden) [344]. 
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3.3.3 Assessment of Dietary intake and physical activity 

Study participants undertook a food consumption record, where all foods and beverages 

consumed over two days were reported in a diary. Prior to completing the record, participants 

were given oral and written instructions to help them record all the food and beverages that 

they had consumed e.g. place of consumption and preparation method. This method was used 

to collect participant’s usual food intake, highlighting household measures and portion sizes. 

After completion of the record, a trained member of research staff reviewed the record with the 

respondent. All information provided by the participants was double-checked for accuracy. 

Energy and nutrient intake from the recorded data was calculated based on the Avanutri ® 

software (Avanutri Informática Ltda, Rio de Janeiro, Brazil), with emphasis on lipids, B12 and 

folic acid. Wherever appropriate, nutrient intake values were adjusted to energy by the nutrient 

(energy-adjusted) residual method [345].  

The Global Physical Activity Questionnaire (GPAQ), short form was used to assess 

physical activity. Individuals were divided into physically active and inactive individuals. 

3.3.4 SNP Selection and Genotyping 

Ten common SNPs involved in the one carbon metabolism pathway were selected based 

on the published reports [254, 340, 346-349]: rs1801133 (677C>T) and rs1801131 (1298A>C) 

of MTHFR; rs1805087 (2756A>G) of MTR; rs1801394 (66A>G) of MTRR; rs1801198 

(776G>C) of TCN2; rs4680 (158G>A) and rs4633 of  COMT; rs3797546 and rs492842 of 

BHMT; and rs602662 of FUT2. The MTHFR rs1801133 and MTHFR rs1801131 SNPs [1-4] 

are essential variants known to influence circulating homocysteine. Whilst variations in the 

BHMT gene may contribute to hyperhomocysteinemia [5], it is unknown whether the SNPs 

rs3797546 and rs492842 alter homocysteine levels. Previous studies indicate that the SNPs 

MTR rs1805087, MTRR rs1801394 [14], MTHFR rs1801133 and MTHFR rs1801131 [1-4] are 
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associated with folate concentrations. Furthermore, genome-wide significant associations with 

serum B12 have been reported for the SNPs TCN2 rs1801198 [6] and FUT2 rs602662 [4, 7]. 

The most commonly studied, MTHFR SNP rs1801133 has shown associations with total 

cholesterol, HDL-C, and LDL-C [8, 9]. The COMT gene is known to be involved in 

cardiovascular, endocrine and sympathetic pathways [350-352]. The COMT rs4680 SNP is an 

extensively studied polymorphism, which has shown associations with triacylglycerol (TAG) 

[10, 11], total cholesterol, and LDL-C levels [12].  Currently, no studies have examined the 

association between COMT rs4633 with incident CVD or metabolic traits. 

DNA was then extracted from peripheral leukocytes in the blood, using a commercial kit 

(Roche TM Diagnostics GmbH, Mannheim, Germany) following the manufactures guidelines 

accordingly. The purity and concentration of the DNA samples were assessed using a 

Nanodrop ® ND-1000 spectrophotometer (Thermo Scientific, Wilmington, N.C., USA). The 

10 SNPs involved in the one carbon metabolism were genotyped by using real-time polymerase 

chain reaction using the QuantStudio TM OpenArray TaqMan TM platform (Life 

Technologies, Foster City, Calif., USA) with personalised cards for 12K Flex system 

QuantStudio ® (Life Technologies) with validated TaqMan Assay. The frequency of each SNP 

in this study sample was in agreement with the Hardy-Weinberg equilibrium (P>0.05) (Table 

12).  

Table 12: Genotype distribution of SNPs involved in the one carbon-metabolism pathway 

Gene 

symbol 

SNP  

rs 

number 

Major 

allele/ 

Minor 

allele 

Common 

homozygotes 

(%) 

Heterozygotes 

(%) 

Rare 

homozygotes 

(%) 

Minor 

allele 

frequency 

HWE 

P 

value 

MTHFR  
 

rs1801131 A/C 
 

56 (49.9) 43 (38.1) 13 (11.5) 0.31 0.29 

MTHFR  

 

rs1801133 C/T 55 (48.7) 41 (36.3) 12 (10.6) 0.30 0.31 
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Abbreviations: HWE, Hardy Weinberg Equilibrium; MTHFR, methylene tetrahydrofolate 

reductase; MTR, 5-methyltetrahydrofolate-homocysteine methyltransferase; MTRR, 5-

methyltetrahydrofolate-homocysteine methyltransferase reductase;TCN2, transcobalamin 2; 

COMT, catechol-O-methyltransferase; BHMT, betaine-homocysteine methyltransferase; 

FUT2, fucosyltransferase 2 

 

3.3.5 Statistical Analysis 

Statistical analyses were carried out using the SPSS software (version 22; SPSS Inc., 

Chicago, IL, USA). Data distribution was verified by the Shapiro-Wilk test. Individuals with 

BMI of ≥ 25 kg/m2 were categorised as obese and those with a BMI of < 25 kg/m2 were 

classified as non-obese. Descriptive statistics for continuous variables are shown as means and 

standard deviation (SD). The mean differences between continuous variables and the genotypes 

were analysed by the independent sample t test. 

Linear regression was used to examine the association of the SNPs involved in the one 

carbon metabolism pathway with vitamin B12, folic acid, homocysteine and lipid 

concentrations (TAG, HDL-cholesterol, LDL-cholesterol, and ox-LDL). The interaction 

between the SNPs and dietary factors on determining vitamin B12, folic acid, homocysteine 

MTR  
 

rs1805087 A/G 77 (68.1) 32 (28.3) 2 (1.8) 0.16 0.52 

MTRR  
 

rs1801394 A/G 45 (39.8) 49 (43.4) 16 (14.2) 0.37 0.66 

TCN2  
 

rs1801198 G/C 60 (53.1) 33 (29.2) 10 (8.8) 0.26 0.10 

COMT  
 

rs4680 G/A 35 (31) 48 (42.5) 24 (21.2) 0.45 0.33 

COMT  

 

rs4633 C/T 44 (38.9) 51 (45.1) 16 (14.2) 0.37 0.84 

BHMT  rs3797546 T/C 67 (59.3) 27 (23.9) 7 (6.2) 0.20 0.08 

BHMT  rs492842 T/C 35 (31) 43 (38.1) 27 (23.9) 0.46 0.07 

 

FUT2  rs602662 G/A 34 (30.1) 52 (46.0) 24 (21.2) 0.45 0.62 
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and lipid concentrations were determined by including the interaction term (SNP*diet) in the 

general linear regression models. Models were adjusted for age, sex, BMI and total energy 

intake, wherever appropriate. The dominant model was applied only for those SNPs which had 

a frequency of rare homozygotes less than ≤19%. Correction for multiple testing was applied 

using Bonferroni correction [adjusted P value for association was <0.00071 (10 SNPs * 7 

outcomes (B12, folic acid, homocysteine, TAG, HDL-C, LDL-C, and ox-LDL concentrations) 

=70 tests)] and for interaction <0.00018 (10 SNPs * 7 outcomes (B12, folic acid, homocysteine, 

TAG, HDL-C, LDL-cholesterol, and ox-LDL concentrations)* 4 lifestyle factors= 280 tests). 

All data are expressed as mean ± SD. 

3.3.6 Power calculation 

Given that there were no previously reported effect sizes, we were unable to perform a 

power calculation. However, based on the effect sizes that were observed for the associations, 

we performed a retrospective power calculation using the QUANTO software, Version 1.2.4 

(May 2009). Power calculations were carried out in the form of least detectable effects based 

on the assumption of significance levels and powers of 5 and 80%, respectively. At 80% power, 

the minimum detectable effects ranged from beta 7.5 U/L (ox-LDL) for a SNP with MAF of 

15% to beta 8.5 U/L for a SNP with MAF 50% for a sample size of 113 individuals.  

3.4 Results 

3.4.1 Characteristics of the participants  

The clinical characteristics of the studied population are shown in Table 11. The sample 

consisted of 47 boys and 66 girls. The mean age ± SD of the student group was 13.32 ± 2.35 

years for boys and 14.26 ± 2.32 years for girls. When the metabolite means were categorized 

by sex, plasma homocysteine and HDL concentrations were found to show significant 

differences between boys and girls (P=0.009, P=0.040, respectively). In the study population, 

dietary intake of carbohydrate (energy %) and protein intake (energy %) was higher in girls 
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than boys (P=0.003, P=0.006 respectively), while there was no significant difference observed 

(P=0.087) in dietary intake of fat (energy %) between girls and boys (Table 11).  

3.4.2 Association between SNPs and vitamin B12, folic acid, homocysteine and lipid 

traits 

When analysing associations between 10 SNPs involved in genes related to the one-carbon 

metabolism cycle and biochemical indexes, we found that COMT rs4633 was significantly 

associated with folic acid (Passociation=0.042). Folic acid was significantly lower in CC common 

homozygous individuals (10.25 ± 2.99 ng/ml) than in pooled TT and CC individuals (11.67 ± 

3.29 ng/ml) (Passociation=0.042) (Table 13). Furthermore, homozygosity for the G allele at the 

FUT2 rs602662 SNP was significantly associated with lower vitamin B12 concentrations 

compared with the wild-type group where vitamin B12 concentrations was 24.27% lower in 

GG individuals than in AA individuals (Passociation=0.009) (Table 13). In addition to these 

findings, the minor allele (G) of the MTRR rs1801394 SNP, was significantly associated with 

elevated ox-LDL levels (Passociation=0.041) (Table 13). After Bonferroni correction, none of the 

results were considered statistically significant (P>0.00071).
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Table 13: Association between SNPs involved in the one-carbon metabolism pathway and vitamin B12, homocysteine, folic acid and 

lipid traits 

SNPs MAF Vitamin B12 

(pg/ml) 

Homocysteine 

(μmol/l) 

Folic acid 

(ng/ml) 

High-density 

lipoprotein 

cholesterol 

(mmol/l) 

Low-density 

lipoprotein  

cholesterol 

(mmol/l) 

 

Triglycerides 

(mmol/l) 

Oxidized-low 

density 

lipoprotein 

cholesterol 

(U/L) 

MTHFR gene 

(rs1801131) 

0.31        

AA  524.23 ± 223.49 6.90 ± 2.96 11.26 ± 3.34 47.18 ± 12.84 87.55 ± 21.54 95.05 ± 62.54 7.90 ± 18.65 

A/C  520.21 ± 241.74 7.19 ± 3.07 10.87 ± 3.20 45.68 ± 10.60 92.54 ± 20.21 92.73 ± 45.32 5.07 ± 5.67 

Dominant model  

(AA vs AC+ CC) 

P value 

  

0.916 

 

0.895 

 

0.682 

 

0.708 

 

0.180 

 

0.739 

 

0.209 

MTHFR gene 

(rs1801133) 

0.30        

CC  562.36 ± 238.63 6.80 ± 3.00 11.51 ± 3.18 46.04 ± 10.33 90.67 ± 22.87 86.33 ± 46.07 4.28 ± 5.21 
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C/T  491.42 ± 224.74 7.37 ± 3.00 10.75 ± 3.37 46.25 ± 13.14 89.08 ± 19.51 100.26 ± 61.36 8.95 ± 19.12 

Dominant model  

(CC vs CT+ TT) 

P value 

  

0.058 

 

0.100 

 

 

0.158 

 

0.468 

 

0.519 

 

0.300 

 

0.106 

MTR gene 

(rs1805087) 

0.16        

AA  523.97 ± 221.74 7.22 ± 3.29 11.03 ± 3.31 46.64 ± 12.73 89.42 ± 20.73 92.83 ± 58.11 6.70 ± 14.34 

A/G  518.59 ± 518.59 6.77 ± 2.21 11.08 ± 3.27 45.82 ± 9.78 91.71 ± 22.29 95.44 ± 46.26 6.01 ± 12.72 

Dominant model  

(AA vs AG+ GG) 

P value 

  

0.815 

 

0.301 

 

0.919 

 

0.886 

 

0.517 

 

0.893 

 

0.836 

 

MTRR gene 

(rs1801394) 

0.37        

AA  560.53 ± 249.40 6.61 ± 2.58 10.96 ± 3.42 46.29 ± 9.67 90.78 ± 23.02 93.98 ± 62.30 3.13 ± 3.81 

A/G  494.11 ± 218.14 7.35 ± 3.27 11.14 ± 3.20 46.38 ± 13.09 89.60 ± 19.91 93.28 ± 48.75 8.95 ± 17.46 
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Dominant model  

(AA vs AG + GG) 

P value 

  

0.265 

 

0.394 

 

0.508 

 

0.827 

 

0.814 

 

0.958 

 

0.041 

TCN2 gene 

(rs1801198) 

0.26        

GG  523.88 ± 221.89 6.99 ± 2.60 11.34 ± 3.26 46.93 ± 12.74 90.70 ± 22.25 91.88 ± 50.19 5.99 ± 13.23 

G/C  530.67 ± 263.13 6.94 ± 3.16 10.67 ± 3.14 44.95 ± 9.83 90.09 ± 19.48 98.53 ± 61.99 7.82 ± 15.69 

Dominant model  

(GG vs GC + CC) 

P value 

  

0.982 

 

0.751 

 

0.231 

 

0.213 

 

0.776 

 

0.463 

 

0.497 

COMT gene (rs4680) 0.45        

GG  495.54 ± 234.10 6.98 ± 3.20 10.02 ± 2.81 44.00 ± 10.67 86.71 ± 20.17 102.14 ± 65.53 5.14 ± 6.30 

GA  546.98 ± 249.81 6.88 ± 2.32 11.56 ± 3.24 45.58 ± 11.29 87.71 ± 22.27 95.27 ± 57.18 7.07 ± 17.47 

AA  515.50 ± 181.22 7.08 ± 3.94 11.59 ± 3.61 49.21 ± 13.83 96.83 ± 17.83 81.13 ± 27.52 7.20 ± 14.86 

Additive model P 

value 

 0.825 0.843 0.094 0.258 0.186 0.376 0.658 
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COMT gene (rs4633) 0.37        

CC  511.77 ± 248.82 6.98 ± 3.28 10.25 ± 2.99 45.05 ± 10.87 87.91 ± 19.92 99.84 ± 61.18 4.99 ± 6.00 

C/T  532.07 ± 221.84 7.00 ± 2.77 11.67 ± 3.29 47.25 ± 12.36 90.99 ± 21.46 89.36 ± 49.63 7.54 ± 17.11 

Dominant model  

(CC vs CT + TT) 

P value 

  

0.907 

 

0.740 

 

0.042 

 

0.524 

 

0.337 

 

0.364 

 

0.146 

BHMT gene 

(rs3797546) 

0.20        

TT  536.31 ± 233.97 7.04 ± 3.18 11.51 ± 3.33 46.21 ± 11.33 89.57 ± 21.17 94.55 ± 56.16 6.68 ± 15.25 

T/C  523.41 ± 224.50 6.53 ± 2.03 10.54 ± 2.90 46.59 ± 12.48 92.18 ± 21.76 99.29 ± 54.96 6.74 ± 12.72 

Dominant model 

(TT vs TC + CC) 

P value 

 0.971 0.151 0.231 0.461 0.495 0.811 0.791 

BHMT gene 

(rs492842) 

0.46        

TT  554.89 ± 254.53 6.65 ± 2.66 11.92 ± 3.21 47.57 ± 11.81 85.91 ± 24.16 90.83 ± 43.39 6.47 ± 12.79 
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TC  492.35 ± 196.18 7.64 ± 3.30 10.14± 3.16 45.77 ± 10.46 93.84 ± 17.92 97.05 ± 55.94 8.74 ± 18.36 

CC  469.70 ± 201.74 6.91 ± 3.14 11.27 ± 3.35 44.26 ± 11.06 89.37 ± 21.64 99.07 ± 68.56 3.34 ± 4.95 

Additive model P 

value 

 0.293 0.602 0.095 0.872 0.179 0.915 0.220 

FUT2 gene 

(rs602662) 

0.45        

GG  471.41 ± 193.77 6.93 ± 3.35 11.47 ± 3.31 44.68 ± 10.01 84.50 ± 20.31 90.12 ± 54.27 8.21 ± 13.26 

GA  494.73 ± 220.75 7.18 ± 2.46 10.69 ± 3.19 47.21 ± 13.38 90.52 ± 20.81 93.40 ± 54.93 4.99 ± 13.69 

AA  622.50 ± 268.60 6.84 ± 3.64 11.15 ± 3.40 46.29 ± 10.37 97.79 ± 21.98 104.17 ± 56.13 7.42 ± 15.24 

Additive model P 

value 

 0.009 0.677 0.620 

 

0.622 0.063 0.664 0.374 

Values are given as mean ± SD. P values for differences between genotypes were obtained using linear regression model adjusted for age, sex and 

BMI. Adjusted P value after correction for multiple testing was 0.00071. 

Abbreviations: MAF, minor allele frequency;MTHFR, methylene tetrahydrofolate reductase; MTR, 5-methyltetrahydrofolate-homocysteine 

methyltransferase; MTRR, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase;TCN2, transcobalamin 2; COMT, catechol-O-

methyltransferase; BHMT, betaine-homocysteine methyltransferase; FUT2, fucosyltransferase 2; SNPs, Single-nucleotide polymorphisms; SD, 

Standard deviation 
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3.4.3 Interaction between SNPs and B12, folic acid, homocysteine  

An interaction was observed between the BHMT SNP rs492842 and dietary fat intake on 

vitamin B12 levels (P=0.034). In addition, further interactions were found between the FUT2 

SNP rs602662 with dietary protein intake (P= 0.007) and carbohydrate intake (P= 0.031) on 

homocysteine concentrations (Table 14). We found that rare AA homozygotes of the FUT2 

SNP rs602662 had higher homocysteine levels (Mean ± SE: 8.038 ± 0.896 μmol/l) compared 

to the GG allele carriers (Mean ± SE: 5.857 ± 1.039 μmol/l) among those in the highest tertile 

of protein intake (Mean ± SE: 148.618± 5.777 g/day); however,  the difference in the means of 

homocysteine concentrations between the genotype groups in the highest tertile of protein 

intake was not statistically significant (P=0.227), which could be because of the small sample 

size.  

Table 14: Interaction between SNPs and dietary factors on vitamin B12, homocysteine 

and Folic acid traits 

P values for the interaction between SNPs and dietary factors on vitamin B12 

Interaction between SNP * 

rs1801131 fat energy 

intake 

Interaction between SNP 

rs1801131* protein energy 

intake 

Interaction between SNP 

rs1801131* carbohydrate 

energy intake 

0.685 0.095 0.074 

Interaction between SNP 

rs1801133* fat energy 

intake 

Interaction between SNP 

rs1801133* protein energy 

intake 

Interaction between SNP 

rs1801133* carbohydrate 

energy intake 

0.429 0.067 0.115 

Interaction between SNP 

rs1805087* fat energy 

intake 

Interaction between SNP 

rs1805087* protein energy 

intake 

Interaction between SNP 

rs1805087* carbohydrate 

energy intake 

0.368 0.539 0.206 

Interaction between SNP 

rs1801394* fat energy 

intake 

Interaction between SNP 

rs1801394* protein energy 

intake 

Interaction between SNP 

rs1801394* carbohydrate 

energy intake 

0.733 0.070 0.743 
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Interaction between SNP 

rs1801198* fat energy 

intake 

Interaction between SNP 

rs1801198* protein energy 

intake 

Interaction between SNP 

rs1801198* carbohydrate 

energy intake 

0.789 0.109 0.631 

Interaction between SNP 

rs4680* fat energy intake 

Interaction between SNP 

rs4680* protein energy 

intake 

Interaction between SNP 

rs4680* carbohydrate 

energy intake 

0.662 0.265 0.559 

Interaction between SNP 

rs4633* fat energy intake  

Interaction between SNP 

rs4633* protein energy 

intake 

Interaction between SNP 

rs4633* carbohydrate 

energy intake 

0.455 0.490 0.799 

Interaction between SNP 

rs3797546* fat energy 

intake 

Interaction between SNP 

rs3797546* protein energy 

intake 

Interaction between SNP 

rs3797546* carbohydrate 

energy intake 

0.353 0.979 0.281 

Interaction between SNP 

rs492842* fat energy 

intake 

Interaction between SNP 

rs492842* protein energy 

intake 

Interaction between SNP 

rs492842* carbohydrate 

energy intake 

0.034 0.678 0.331 

Interaction between SNP 

rs602662* fat energy 

intake 

Interaction between SNP 

rs602662* protein energy 

intake 

Interaction between SNP  

rs602662* carbohydrate 

energy intake 

0.087 0.144 0.533 

P values for the interaction between SNPs and dietary factors on homocysteine 

Interaction between SNP * 

rs1801131 fat energy 

intake 

Interaction between SNP 

rs1801131* protein energy 

intake 

Interaction between SNP 

rs1801131* carbohydrate 

energy intake 

0.806 0.803 0.625 

Interaction between SNP 

rs1801133* fat energy 

intake 

Interaction between SNP 

rs1801133* protein energy 

intake 

Interaction between SNP 

rs1801133* carbohydrate 

energy intake 

0.975 0.621 0.433 

Interaction between SNP 

rs1805087* fat energy 

intake 

Interaction between SNP 

rs1805087* protein energy 

intake 

Interaction between SNP 

rs1805087* carbohydrate 

energy intake 

0.123 0.922 0.389 
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Interaction between SNP 

rs1801394* fat energy 

intake 

Interaction between SNP 

rs1801394* protein energy 

intake 

Interaction between SNP 

rs1801394* carbohydrate 

energy intake 

0.252 0.645 0.456 

Interaction between SNP 

rs1801198* fat energy 

intake 

Interaction between SNP 

rs1801198* protein energy 

intake 

Interaction between SNP 

rs1801198* carbohydrate 

energy intake 

0.869 0.212 0.341 

Interaction between SNP 

rs4680* fat energy intake 

Interaction between SNP 

rs4680* protein energy 

intake 

Interaction between SNP 

rs4680* carbohydrate 

energy intake 

0.062 0.189 0.054 

Interaction between SNP 

rs4633* fat energy intake 

Interaction between SNP 

rs4633* protein energy 

intake 

Interaction between SNP 

rs4633* carbohydrate 

energy intake 

0.596 0.359 0.133 

Interaction between SNP 

rs3797546* fat energy 

intake 

Interaction between SNP 

rs3797546* protein energy 

intake 

Interaction between SNP 

rs3797546* carbohydrate 

energy intake 

0.713 0.614 0.209 

Interaction between SNP 

rs492842* fat energy 

intake 

Interaction between SNP 

rs492842* protein energy 

intake 

Interaction between SNP 

rs492842* carbohydrate 

energy intake 

0.232 0.227 0.606 

Interaction between SNP 

rs602662* fat energy 

intake 

Interaction between SNP 

rs602662* protein energy 

intake 

Interaction between SNP  

rs602662* carbohydrate 

energy intake 

0.334 0.007 0.031 

P values for the interaction between SNPs and dietary factors on folic acid 

Interaction between SNP * 

rs1801131 fat energy 

intake 

Interaction between SNP 

rs1801131* protein energy 

intake 

Interaction between SNP 

rs1801131* carbohydrate 

energy intake 

0.378 0.642 0.774 

Interaction between SNP 

rs1801133* fat energy 

intake 

Interaction between SNP 

rs1801133* protein energy 

intake 

Interaction between SNP 

rs1801133* carbohydrate 

energy intake 

0.595 0.587 0.722 



170 

Interaction between SNP 

rs1805087* fat energy 

intake 

Interaction between SNP 

rs1805087* protein energy 

intake 

Interaction between SNP 

rs1805087* carbohydrate 

energy intake 

0.834 0.887 0.498 

Interaction between SNP 

rs1801394* fat energy 

intake 

Interaction between SNP 

rs1801394* protein energy 

intake 

Interaction between SNP 

rs1801394* carbohydrate 

energy intake 

0.641 0.826 0.327 

Interaction between SNP 

rs1801198* fat energy 

intake 

Interaction between SNP 

rs1801198* protein energy 

intake 

Interaction between SNP 

rs1801198* carbohydrate 

energy intake 

0.845 0.759 0.547 

Interaction between SNP 

rs4680* fat energy intake 

Interaction between SNP 

rs4680* protein energy 

intake 

Interaction between SNP 

rs4680* carbohydrate 

energy intake 

0.610 0.495 0.228 

Interaction between SNP 

rs4633* fat energy intake 

Interaction between SNP 

rs4633* protein energy 

intake 

Interaction between SNP 

rs4633* carbohydrate 

energy intake 

0.721 0.248 0.050 

Interaction between SNP 

rs3797546* fat energy 

intake 

Interaction between SNP 

rs3797546* protein energy 

intake 

Interaction between SNP 

rs3797546* carbohydrate 

energy intake 

0.188 0.394 0.754 

Interaction between SNP 

rs492842* fat energy 

intake 

Interaction between SNP 

rs492842* protein energy 

intake 

Interaction between SNP 

rs492842* carbohydrate 

energy intake 

0.084 0.971 0.447 

Interaction between SNP 

rs602662* fat energy 

intake 

Interaction between SNP 

rs602662* protein energy 

intake 

Interaction between SNP  

rs602662* carbohydrate 

energy intake 

0.521 0.775 0.115 

 

P values were obtained by using a general linear model adjusted for age, sex and BMI. 

Abbreviations: SNPs, Single-nucleotide polymorphisms; BMI, Body mass index 
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3.4.4 Interaction between SNPs and dietary factors on lipid concentrations 

Interactions were observed between the COMT SNPs (rs4680 and rs4633) and dietary 

carbohydrate intake on HDL-C concentrations (P=0.011 and P=0.036, respectively). 

Furthermore, an interaction was found between the COMT SNP (rs4680) and dietary 

carbohydrate intake on ox-LDL concentrations (P=0.005) (Table 15). However, none of the 

interactions between the SNPs and dietary intake on lipid outcomes reached statistical 

significance after correction for multiple testing.   

Table 15: Interaction between SNPs and dietary factors on lipid traits 

Interaction between SNPs and dietary factors on HDL-C  

Interaction between SNP * 

rs1801131 fat energy 

intake 

Interaction between SNP 

rs1801131* protein energy 

intake 

Interaction between SNP 

rs1801131* carbohydrate 

energy intake 

0.964 0.402 0.899 

Interaction between SNP 

rs1801133* fat energy 

intake 

Interaction between SNP 

rs1801133* protein energy 

intake 

Interaction between SNP 

rs1801133* carbohydrate 

energy intake 

0.393 0.471 0.994 

Interaction between SNP 

rs1805087* fat energy 

intake 

Interaction between SNP 

rs1805087* protein energy 

intake 

Interaction between SNP 

rs1805087* carbohydrate 

energy intake 

0.651 0.298 0.499 

Interaction between SNP 

rs1801394* fat energy 

intake 

Interaction between SNP 

rs1801394* protein energy 

intake 

Interaction between SNP 

rs1801394* carbohydrate 

energy intake 

0.896 0.712 0.676 

Interaction between SNP 

rs1801198* fat energy 

intake 

Interaction between SNP 

rs1801198* protein energy 

intake 

Interaction between SNP 

rs1801198* carbohydrate 

energy intake 

0.414 0.822 0.649 

Interaction between SNP 

rs4680* fat energy intake 

Interaction between SNP 

rs4680* protein energy 

intake 

Interaction between SNP 

rs4680* carbohydrate 

energy intake 

0.898 0.536 0.011 
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Interaction between SNP 

rs4633* fat energy intake 

Interaction between SNP 

rs4633* protein energy 

intake 

Interaction between SNP 

rs4633* carbohydrate 

energy intake 

0.846 0.620 0.036 

Interaction between SNP 

rs3797546* fat energy 

intake 

Interaction between SNP 

rs3797546* protein energy 

intake 

Interaction between SNP 

rs3797546* carbohydrate 

energy intake 

0.274 0.162 0.555 

Interaction between SNP 

rs492842 fat energy intake 

Interaction between SNP 

rs492842* protein energy 

intake 

Interaction between SNP 

rs492842* carbohydrate 

energy intake 

0.604 0.960 0.513 

Interaction between SNP 

rs602662* fat energy 

intake 

Interaction between SNP 

rs602662* protein energy 

intake 

Interaction between SNP  

rs602662* carbohydrate 

energy intake 

0.650 0.123 0.813 

Interaction between SNPs and dietary factors on LDL-C  

Interaction between SNP * 

rs1801131 fat energy 

intake 

Interaction between SNP 

rs1801131* protein energy 

intake 

Interaction between SNP 

rs1801131* carbohydrate 

energy intake 

0.529 0.467 0.798 

Interaction between SNP 

rs1801133* fat energy 

intake 

Interaction between SNP 

rs1801133* protein energy 

intake 

Interaction between SNP 

rs1801133* carbohydrate 

energy intake 

0.640 0.656 0.737 

Interaction between SNP 

rs1805087* fat energy 

intake 

Interaction between SNP 

rs1805087* protein energy 

intake 

Interaction between SNP 

rs1805087* carbohydrate 

energy intake 

0.456 0.933 0.876 

Interaction between SNP 

rs1801394* fat energy 

intake 

Interaction between SNP 

rs1801394* protein energy 

intake 

Interaction between SNP 

rs1801394* carbohydrate 

energy intake 

0.487 0.384 0.222 

Interaction between SNP 

rs1801198* fat energy 

intake 

Interaction between SNP 

rs1801198* protein energy 

intake 

Interaction between SNP 

rs1801198* carbohydrate 

energy intake 

0.127 0.664 0.250 
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Interaction between SNP 

rs4680* fat energy intake 

Interaction between SNP 

rs4680* protein energy 

intake 

Interaction between SNP 

rs4680* carbohydrate 

energy intake 

0.509 0.709 0.299 

Interaction between SNP 

rs4633* fat energy intake 

Interaction between SNP 

rs4633* protein energy 

intake 

Interaction between SNP 

rs4633* carbohydrate 

energy intake 

0.743 0.915 0.067 

Interaction between SNP 

rs3797546* fat energy 

intake 

Interaction between SNP 

rs3797546* protein energy 

intake 

Interaction between SNP 

rs3797546* carbohydrate 

energy intake 

0.594 

 

0.097 0.306 

Interaction between SNP 

rs492842* fat energy 

intake 

Interaction between SNP 

rs492842* protein energy 

intake 

Interaction between SNP 

rs492842* carbohydrate 

energy intake 

0.380 0.392 0.402 

Interaction between SNP 

rs602662* fat energy 

intake 

Interaction between SNP 

rs602662* protein energy 

intake 

Interaction between SNP  

rs602662* carbohydrate 

energy intake 

0.399 0.462 0.610 

Interaction between SNPs and dietary factors on Triglycerides  

Interaction between SNP * 

rs1801131 fat energy 

intake 

Interaction between SNP 

rs1801131* protein energy 

intake 

Interaction between SNP 

rs1801131* carbohydrate 

energy intake 

0.970 0.792 0.504 

Interaction between SNP 

rs1801133* fat energy 

intake 

Interaction between SNP 

rs1801133* protein energy 

intake 

Interaction between SNP 

rs1801133* carbohydrate 

energy intake 

0.938 0.798 0.266 

Interaction between SNP 

rs1805087* fat energy 

intake 

Interaction between SNP 

rs1805087* protein energy 

intake 

Interaction between SNP 

rs1805087* carbohydrate 

energy intake 

0.648 0.362 0.245 

Interaction between SNP 

rs1801394* fat energy 

intake 

Interaction between SNP 

rs1801394* protein energy 

intake 

Interaction between SNP 

rs1801394* carbohydrate 

energy intake 

0.176 0.285                      0.857 
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Interaction between SNP 

rs1801198* fat energy 

intake 

Interaction between SNP 

rs1801198* protein energy 

intake 

Interaction between SNP 

rs1801198* carbohydrate 

energy intake 

0.490 0.719 0.317 

Interaction between SNP 

rs4680*  fat energy intake 

Interaction between SNP 

rs4680* protein energy 

intake 

Interaction between SNP 

rs4680* carbohydrate 

energy intake 

0.290 0.408 0.923 

Interaction between SNP 

rs4633* fat energy intake 

Interaction between SNP 

rs4633* protein energy 

intake 

Interaction between SNP 

rs4633* carbohydrate 

energy intake 

0.185 0.220 0.770 

Interaction between SNP 

rs3797546* fat energy 

intake 

Interaction between SNP 

rs3797546* protein energy 

intake 

Interaction between SNP 

rs3797546* carbohydrate 

energy intake 

0.127 0.741 0.457 

Interaction between SNP 

rs492842* fat energy 

intake 

Interaction between SNP 

rs492842* protein energy 

intake 

Interaction between SNP 

rs492842* carbohydrate 

energy intake 

0.237 0.216 0.989 

Interaction between SNP 

rs602662* fat energy 

intake 

Interaction between SNP 

rs602662* protein energy 

intake 

Interaction between SNP  

rs602662* carbohydrate 

energy intake 

0.360 0.082 0.817 

Interaction between SNPs and dietary factors on LDL-ox 

Interaction between SNP * 

rs1801131 fat energy 

intake 

Interaction between SNP 

rs1801131* protein energy 

intake 

Interaction between SNP 

rs1801131* carbohydrate 

energy intake 

0.161 0.962 0.582 

Interaction between SNP 

rs1801133* fat energy 

intake 

Interaction between SNP 

rs1801133* protein energy 

intake 

Interaction between SNP 

rs1801133* carbohydrate 

energy intake 

0.399 0.972 0.908 

Interaction between SNP 

rs1805087* fat energy 

intake 

Interaction between SNP 

rs1805087* protein energy 

intake 

Interaction between SNP 

rs1805087* carbohydrate 

energy intake 

0.493 0.126 0.784 
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Interaction between SNP 

rs1801394* fat energy 

intake 

Interaction between SNP 

rs1801394* protein energy 

intake 

Interaction between SNP 

rs1801394* carbohydrate 

energy intake 

0.235 0.781 0.672 

Interaction between SNP 

rs1801198* fat energy 

intake 

Interaction between SNP 

rs1801198* protein energy 

intake 

Interaction between SNP 

rs1801198* carbohydrate 

energy intake 

0.832 0.100 0.489 

Interaction between SNP 

rs4680* fat energy intake 

Interaction between SNP 

rs4680* protein energy 

intake 

Interaction between SNP 

rs4680* carbohydrate 

energy intake 

0.353 0.348 0.005 

Interaction between SNP 

rs4633* fat energy intake 

Interaction between SNP 

rs4633* protein energy 

intake 

Interaction between SNP 

rs4633* carbohydrate 

energy intake 

0.217 0.372 0.984 

Interaction between SNP 

rs3797546* fat energy 

intake 

Interaction between SNP 

rs3797546* protein energy 

intake 

Interaction between SNP 

rs3797546* carbohydrate 

energy intake 

0.846 0.227 0.270 

Interaction between SNP 

rs492842* fat energy 

intake 

Interaction between SNP 

rs492842* protein energy 

intake 

Interaction between SNP 

rs492842* carbohydrate 

energy intake 

0.624 0.466 0.690 

Interaction between SNP 

rs602662* fat energy 

intake 

Interaction between SNP 

rs602662* protein energy 

intake 

Interaction between SNP  

rs602662* carbohydrate 

energy intake 

0.743 0.298 0.112 

 

P values were obtained by using a general linear model adjusted for age, sex and BMI. 

Abbreviations: SNPs, Single-nucleotide polymorphisms; BMI, Body mass index 

 

3.4.5 Gene-physical activity interactions on vitamin B12, folic acid, homocysteine and 

lipid profile 

In addition to the genetic component of metabolic traits and markers of one-carbon 

metabolites, physical inactivity could be an important contributor that could interact with an 
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individual’s genetic predisposition.  Our results showed that the MTHFR SNP rs1801131 

showed a significant interaction with physical activity on folic acid concentrations 

(Pinteraction=0.034). Folate plays a critical role in the methylation pathway  and is involved in the 

methylation of DNA, creatine and acetylcholine, all of which are important for physical 

activity. It is important to note that physical activity levels may interact with folate metabolism 

by increasing intestinal folate absorption or stimulating the methionine synthase enzyme due 

to an increased metabolic demand and the associated possible increase in turnover of 

methylated molecules required for exercise [353]. In addition, the three SNPs individually: 

MTHFR SNP rs1801133, BHMT rs492842 and FUT2 rs602662 all showed a significant 

interaction with physical activity on triglyceride concentrations (Pinteraction=0.030, 0.004 and 

0.014, respectively). Finally, the BHMT SNP rs3797546 showed an interaction with physical 

activity on ox-LDL levels. However, these interactions were not statistically significant after 

correction for multiple testing (Pinteraction >0.00018) (Table 16). To date all the gene-physical 

activity interactions observed in this study are novel, thus we are unable to compare our 

findings with previous literature. It important that in the future, replications of these findings 

are made preferably in an independent larger cohort with adequate statistical power utilising 

more direct measures of physical activity, in order to confirm or refute our findings. 

Table 16: P values for the interaction between SNPs and physical activity levels on 

vitamin B12, homocysteine, folic acid and lipid traits 

Gene rs 

number 

Model B12 Homocysteine Folic 

acid 

HDL LDL Triglycerides LDL-

ox 

MTHFR  rs1801131 Dominant 0.758 0.640 0.034 0.570 0.764 0.139 0.496 

MTHFR rs1801133 Dominant 0.589 0.810 0.404 0.446 0.541 0.030 0.760 

MTR rs1805087 Dominant 0.607 0.560 0.940 0.440 0.890 0.345 0.134 
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P values were obtained by using a general linear model adjusted for age, sex and BMI. 

Abbreviations: SNPs, Single-nucleotide polymorphisms; BMI, Body mass index 

 

3.4.6 Discussion 

To our knowledge, this is the first genetic epidemiological study to investigate the 

interactions between SNPs involved in the one-carbon metabolism pathway and 

environmental/lifestyle factors on vitamin B12, folic acid, homocysteine and lipid levels 

(HDL-C, LDL, TAG and ox-LDL) in the Brazilian adolescent population. Our study provides 

evidence for novel interactions between SNP rs4680 (COMT gene) and carbohydrate intake on 

ox-LDL levels and the SNP rs602662 (FUT2 gene) and protein intake on homocysteine 

concentrations in Brazilian adolescents. Given that ox-LDL and hyperhomocysteinaemia are 

well-known independent risk factors for atherosclerotic vascular disease [24, 354], our findings 

have significant public health implications. 

Genes involved in one carbon metabolism are of particular interest because of their role 

in CVDs [355]. From the 10 SNPs which were investigated in this study, association of the 

SNP rs4633 at the COMT gene with folic acid concentrations (P=0.042), the SNP rs602662 at 

MTRR rs1801394 Dominant 0.106 0.325 0.238 0.956 0.915 0.701 0.563 

TCN2  rs1801198 Dominant 0.414 0.321 0.941 0.517 0.726 0.186 0.887 

COMT  rs4680 Additive  0.543 0.058 0.783 0.537 0.663 0.113 0.681 

COMT  rs4633 Dominant 0.221 0.253 0.993 0.828 0.400 0.056 0.597 

BHMT  rs3797546 Dominant 0.146 0.274 0.255 0.811 0.250 0.209 0.050 

BHMT rs492842 Additive  0.947 0.281 0.423 0.513 0.483 0.004 0.677 

FUT2  rs602662 Additive  0.613 0.100 0.458 0.147 0.724 0.014 0.491 
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the FUT2 gene with vitamin B12 levels (P=0.009) and finally the SNP rs1801394 at the MTRR 

gene with ox-LDL concentrations (P=0.041) were observed. Even though the findings were 

not significant after Bonferroni correction, the association between the FUT2 SNP rs602662 

and vitamin B12 concentrations is in accordance with previous studies [205, 233, 234, 253, 

254, 258, 260]. Since the current sample size is relatively small, further studies utilizing a larger 

sample size is required to confirm the observed associations. 

To date, only one study has shown a gene-diet interaction on ox-LDL concentrations in 

a population from the Attica region in Greece [356]. In this study, there was an interaction of 

the MTHFR SNP rs1801133 with the Mediterranean diet on ox-LDL concentrations. A high 

adherence to the Mediterranean diet was found to be associated with decreased ox-LDL 

concentrations in T allele carriers of SNP rs1801133 [356]. Further to this, many studies have 

reported that MTHFR variants (C677T and A1298C) are linked to higher homocysteine levels, 

when folate consumption is low [357, 358]. In the present study, we identified significant gene-

diet interactions between SNP rs4680 at the COMT gene and carbohydrate intake on ox-LDL 

concentrations and the SNP rs602662 at the FUT2 gene and protein intake on homocysteine 

concentrations. However, further stratification of participants based on their consumption of 

low, medium and high dietary carbohydrate/protein did not show a statistically significant 

association between the SNP and the outcome in any of the tertiles, which could account for 

the small sample size. This is the first study to provide evidence for gene-diet interactions at 

the COMT and FUT2 gene loci, on ox-LDL and homocysteine concentrations, respectively, 

and hence, we do not have any previous studies to compare our findings. 

Total carbohydrate intake has increased considerably in Brazil in the last few decades 

[359]. Data from two population-based surveys conducted in women over 35 years of age from 

Rio de Janeiro, reported that the carbohydrate intake has increased from 352g (95% CI 325 to 

382) in 1995 to 437 g (95% CI 415 to 458) in 2005 [359]. Interestingly, our study in this 
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Brazilian adolescent population has identified an interaction between COMT SNP rs4680 and 

carbohydrate intake on ox-LDL concentrations. Despite our study being the first to report this 

gene-diet interaction, previous studies have shown that carbohydrate restricted diets can 

promote weight loss and is associated with reduced cardiovascular disease risk [360]. However, 

the exact mechanism by which the COMT SNP rs4680 interacts with dietary carbohydrate to 

influence ox-LDL concentrations is unknown and requires further studies to understand the 

mechanism contributing to this association. Furthermore, in our study we observed an 

interaction of the FUT2 SNP rs1805087 with protein consumption on homocysteine levels. 

However, we have no previous studies to confirm and validate this novel finding. The findings 

in this paper suggest that that the inheritance of ox-LDL and homocysteine levels are complex, 

where several genes/polymorphisms are likely to contribute to the alteration of ox-LDL or 

homocysteine levels through gene-gene and gene-diet interactions. More in depth research 

implementing animal studies, nutrigenomics and metabolomics are needed to clarify the effects 

of SNPs and carbohydrate on ox-LDL concentrations, and protein on homocysteine 

concentrations, respectively.  

One of the main limitations of our study is the small sample size. Given that there are no 

previously reported effect sizes for the FUT2 and COMT SNP-diet interactions on blood 

homocysteine and ox-LDL concentrations, we were unable to calculate the statistical power of 

our study. Our retrospective power calculation showed that the minimum detectable effects for 

ox-LDL levels ranged from beta 7.5 U/L (ox-LDL) for a SNP with MAF of 15% to beta 8.5 

U/L for a SNP with MAF 50%. Hence, if the actual effect sizes were lower than this, our study 

would be underpowered. However, our study did find significant associations and gene-diet 

interactions despite the small sample size; but the findings requires a replication given that the 

significant P values did not reach the Bonferroni corrected P value. Another limitation is that 

our study was cross-sectional, and therefore we were unable to examine the causal relationship 
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between the SNP-diet interactions on blood homocysteine and ox-LDL concentrations. 

Therefore, randomized controlled trials with prospective genotyping are required to explore 

the causality using genetic markers. Given that our study relied on a usual food record, we 

cannot negate the possibility of misreporting and measurement error. A further limitation of 

the current study is the lack of a control group, as only individuals with cardiovascular risk 

factors were included. On the other hand, the main strength of our study is that we examined 

the effect of ten SNPs on vitamin B12, folic acid, homocysteine concentrations and lipid traits 

during adolescence, a critical period where lifestyle habits are usually followed through to 

adulthood. By studying this population, we were able to identify different genotypes of interest, 

which could be further investigated to improve the understanding of the role of these 

micronutrients in relation to the prevention of hyperhomocysteiemia and increased ox-LDL 

concentrations. Additionally, little is known about gene-diet interactions which influence ox-

LDL concentrations; thus, our study adds to the limited body of research. 

3.4.7 Conclusion 

Our study shows an interaction between COMT SNP rs4680 and carbohydrate intake on 

ox-LDL levels among adolescents with cardiovascular risk factors. Furthermore, a borderline 

interaction was observed between FUT2 SNP rs602662 and protein intake on homocysteine 

concentrations. After correction for multiple testing, none of the SNP-environment interactions 

on homocysteine, folate, B12 or lipid concentrations were detected. Hence, our findings 

warrant confirmation in larger, well characterized and well powered prospective studies/ 

randomized controlled trials, before any public health recommendations and personalised 

nutrition advice can be developed for the adolescent Brazilian population. 
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Chapter 4  

A genetic approach to examine the relationship between vitamin 

B12 status and metabolic traits in a South Asian population 

I was the lead co-ordinator for this study. I was responsible for writing up the documents 

required to gain ethical approval to conduct the study both in the University of Colombo, Sri 

Lanka and the University of Reading, UK. I was involved in recruiting participants for the 

study and organizing the locations of the study visits. I spent three months in 2017 in Colombo, 

Sri Lanka to conduct this study. I was primarily involved in data collection, which involved 

collecting anthropometric measurements, conducting food frequency questionnaires and 

physical activity questionnaires. I was also involved in transporting the blood samples to LGC 

genomics for genetic analysis in the United Kingdom. 

For this study, I developed an analysis plan before I undertook the statistical analysis. I 

screened and validated the dataset to perform statistical analysis. I performed the entire 

statistical analysis using the SPSS software; I undertook a literature review as part of the 

introduction to the study and wrote the manuscript. I revised the manuscript based on the 

comments from all the co-authors before the manuscript was submitted to the International 

Journal of Diabetes in Developing Countries. I was also involved in drafting the responses to 

the comments from the reviewers. 

Published (The Published paper is attached as an appendix at the end of the thesis) 
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Surendran S, Alsulami S1, Lankeshwara R, Jayawardena R, Wetthasinghe K Sarkar S, Ellahi 

B, Lovegrove JA, Anthony DJ, Vimaleswaran KS (2019). A genetic approach to examine the 

relationship between vitamin B12 status and metabolic traits in a South Asian population. 

International Journal of Diabetes in Developing Countries (Published). 

4.1 Abstract   

Background: Observational studies in South Asian populations have suggested an association 

between vitamin B12 status and metabolic traits; however, the findings have been inconclusive. 

Hence, the aim of the present study was to use a genetic approach to explore the relationship 

between metabolic traits and vitamin B12 status in a Sri Lankan population and to investigate 

whether these relationships were modified by dietary intake.   

Methods: A total of 109 Sinhalese adults (61 men and 48 women aged 25-50 years), from 

Colombo city underwent anthropometric, biochemical, dietary intake analysis and genetic 

tests. Genetic risk scores (GRS) based on 10 metabolic single nucleotide polymorphisms 

(SNPs) (metabolic-GRS) and 10 vitamin B12 SNPs (B12-GRS) were constructed.  

Results: The B12-GRS was significantly associated with serum vitamin B12 (P=0.008), but 

not with metabolic traits (P>0.05); whereas, the metabolic-GRS had no effect on metabolic 

traits (P>0.05) and vitamin B12 concentrations (P>0.05). An interaction was observed between 

B12-GRS and protein energy intake (%) on waist circumference (P=0.002). Interactions were 

also seen between the metabolic-GRS and carbohydrate energy intake (%) on waist to hip ratio 

(P=0.015).  

Conclusion: Our findings suggest that a genetically lowered vitamin B12 concentration may 

have an impact on central obesity in the presence of a dietary influence; however, our study 

failed to provide evidence for an impact of metabolic-GRS on lowering B12 concentrations. 

Given that our study has a small sample size, further large studies are required to confirm our 

findings.  
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4.2  Introduction 

In recent years, the incidence of obesity in Sri Lanka has increased markedly [361]. The 

prevalence of being overweight or obese in Sri Lankan adults is 34.4% (25.2% and 9.2%, in 

2005 and 2006 respectively), with an upward trend being observed [361, 362]. Obesity 

increases the risk for certain health conditions, such as insulin resistance, diabetes mellitus and 

hypertension [363]. South Asians have been observed to exhibit increased visceral fat and waist 

circumference (WC), hyperinsulinemia and insulin resistance; this has been termed the ‘South 

Asian phenotype’ [364]. Despite a known genetic contribution, the increase in obesity has been 

largely associated with changes in lifestyle habits [365, 366]. It is imperative that modifiable 

risk factors for obesity and associated metabolic problems are identified, especially if they can 

be easily addressed. 

Vitamin B12 is a micronutrient that has been identified as a modifiable risk factor 

associated with the progression of metabolic disorders. In humans, vitamin B12 acts as an 

essential co-enzyme involved in DNA synthesis and cellular energy production [161].  

Subclinical deficiency of vitamin B12 has been linked to higher levels of homocysteine; this 

may have important consequences in the progression of chronic diseases, by inducing oxidative 

stress and inflammation [367]. Vitamin B12 deficiency has also been linked to many other 

complications including an increased risk of obesity [7, 84, 85], diabetes [67, 69, 70] and 

cardiovascular disease [115]. Currently, one study has investigated the effect of genetically 

instrumented vitamin B12 concentrations on body mass index (BMI) in individuals with 

European ancestry; however, there were no associations between the vitamin B12 genetic risk 

score (GRS) and BMI [16].  

Genetic studies have implicated several gene loci in the predisposition to vitamin B12 

deficiency, but no study has yet been carried out in the Sri Lankan population [14].  The 

mechanisms by which obesity and its comorbidities are related to vitamin B12 deficiency are 
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poorly understood.  Hence, we conducted a gene-based approach to explore the relationship 

between metabolic traits and vitamin B12 status in a Sinhalese cohort and investigated whether 

these relationships were modified by dietary intake in the Genetics of Obesity and Diabetes 

(GOOD) study. 

4.3 Methodology 

4.3.1 Study Participants  

 The Genetics of Obesity and Diabetes (GOOD) study is a cross-sectional study that was 

conducted in the city of Colombo, Sri Lanka, between April to August 2017. Healthy adults 

between the ages of 25-50 years were enrolled into the study. Exclusion criteria were: having 

a previous history of type 2 diabetes, cardiovascular disease or hypertension, having a BMI of 

more than 40 kg/m2 or being classed morbidly obese by a physician, being blood related to 

other participants in the study, having any communicable disease, being pregnant or lactating, 

taking dietary or vitamin supplements and taking medications that affect lipid metabolism or 

hypertension (Figure 7).  

The study was conducted in accordance with the principles of the Declaration of 

Helsinki and was approved by the Ethical Review Committee of the University of Colombo 

(EC-17-107) and the University of Reading Research Ethics Committee (17/25). All 

participants provided informed written consent before participating. 
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Figure 7: Flowchart of the subject recruitment process 

  

4.3.2 Anthropometric Measures  

 Body weight was measured to the nearest 100 grams using an electronic scale (Seca 

815, Seca GmbH. Co. kg, Germany) and height was measured to the nearest millimeter using 

a stadiometer (Seca 217, Seca GmbH. Co. kg, Germany). The BMI calculation was based on 

the body weight (kg) divided by the square of body height (m). Waist circumference and hip 
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circumference was measured using a metal tape (Lufkin W606PM®, Parsippany, NJ, USA). 

Body fat percentage was estimated using a hand-held bio-electrical impedance analysis 

technique (Omron Body Fat Monitor BF306, Omron, Milton Keynes, United Kingdom).  

4.3.3 Biochemical Analysis  

 Blood samples (10 ml) were collected by a trained phlebotomist in the morning, after a 

12 hour overnight fast. Fasting serum insulin and vitamin B12 levels were determined using 

the chemiluminescent microparticle immunoassay method on an Architect i1000 analyser 

(Abbott Laboratories, IL, USA). Fasting plasma glucose concentrations were measured using 

the glucose hexokinase method using the Beckman Coulter AU5800 analyser (Beckman 

Coulter®, California, United States). Glycated haemoglobin (HbA1c) was estimated by high-

performance liquid chromatography using the BioRad D10 HPLC analyser (Biorad, Hercules, 

CA, USA).  

4.3.4 Dietary intake analysis  

Dietary intakes were assessed using a previously validated and published [368] interviewer 

administered food frequency questionnaire (FFQ) containing 85 food items. In brief, 

participants were asked to estimate the usual frequency (number of times per day, week or 

month/never) and the portion sizes of various food items. The recorded data was analysed with 

the NutriSurvey 2007 database (EBISpro, Germany) to estimate energy as well as macro- and 

micronutrient consumption[345].  

  “The Global Physical Activity Questionnaire” (GPAQ), developed by the World Health 

Organization (WHO) was used to measure physical activity [369]. Individuals were classified 

as vigorously active, when they both exercised and engaged in demanding work activities, and 

moderately active, when the participants either exercised or carried out heavy physical work. 

The remaining study participants were classified into the sedentary group. 
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4.3.5 SNP selection and Genotyping  

We selected 10 metabolic disease-related SNPs (associated with obesity and diabetes): Fat 

mass and obesity-associated [FTO]- rs9939609 and rs8050136, Melanocortin 4 Receptor 

[MC4R]- rs17782313 and rs2229616, Transcription factor 7-like 2 [TCF7L2]- rs12255372 and 

rs7903146, Potassium voltage-gated channel subfamily J member 11 [KCNJ11]- rs5219, 

Calpain 10 [CAPN10]- rs3792267, rs2975760 and rs5030952) for our analysis based on 

previously published candidate gene association and genome-wide association (GWA) studies 

for metabolic disease-related traits [370-378].  

The 10 vitamin B12-related SNPs (Methylenetetrahydrofolate reductase [MTHFR]- 

rs1801133, Carbamoyl-phosphate synthase 1 [CPS1]- rs1047891, Cubulin [CUBN]- 

rs1801222, CD320 molecule [CD320]- rs2336573, Transcobalamin 2 [TCN2]- rs1131603, 

Citrate lyase beta like [CLYBL]- rs41281112, Fucosyltransferase 2 [FUT2]- rs602662, 

Transcobalamin 1 [TCN1]- rs34324219, Fucosyltransferase 6 [FUT6]- rs778805 and 

Methylmalonyl-CoA mutase [MUT]- rs1141321) were chosen on the basis of the recent review 

article  by Surendran et al. [14].  

Blood samples for the measurement of DNA were transported in dry ice to the UK. Genomic 

DNA was extracted from a 5 ml whole blood sample from each participant and genotyping was 

performed at LGC Genomics (http://www.lgcgroup.com/services/genotyping), which employs 

the competitive allele-specific PCR-KASP® assay. 

  The Hardy-Weinberg equilibrium (HWE) P values were computed for the following 20 

SNPs. The SNPs FUT2 rs602662 and CAP10 rs3792267 deviated from HWE; however, these 

SNPs were not excluded from analysis. The FUT2 SNP rs602662 previously departed from 

HWE in a GWA study conducted in India; the authors ruled out that the deviation was not due 

to a genotyping error and still used this SNP for analysis in their study [233]. In addition, the 

http://www.lgcgroup.com/services/genotyping
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KASPTM genotyping technology used in our study has been independently assessed to be over 

99.8% accurate. Validation of the KASPTM genotyping was conducted at LGC genomics, 

where the genotyping results were assessed by two project managers separately to confirm that 

the data was accurate, and this ruled out genotyping artefacts as possible reasons for deviation 

from HWE. The reasons for deviation from HWE could be due to population or racial grouping 

substructure (Sub-grouping), non-random mating, linkage disequilibrium (incomplete mixing 

of different ancestral population) or chance findings [379]. 

4.3.6 Statistical Analysis 

The SPSS statistical package (version 22; SPSS Inc., Chicago, IL, USA) was used for the 

statistical analysis. Allele frequencies were estimated by gene counting (Table 17). The 

normality of variable distribution was verified by the Shapiro-Wilk test, and data not normally 

distributed were log transformed prior to analysis. We performed an independent t-test to 

compare the means of the quantitative variables between men and women. Comparison of the 

means between the two groups was analysed by the Chi Square test for categorical outcomes.
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Table 17: Genotype distribution of vitamin B12 related SNPs and metabolic disease-related SNPs 

Gene rs number Major 

allele 

Minor 

allele 

Common 

Homozygotes  

(%) 

Heterozygotes 

(%) 

Rare 

Homozygotes  

(%) 

Minor 

allele 

frequency 

HWE P 

value 

 

MTHFR rs1801133 C T 89 (81.7) 19 (17.4) 1 (0.9) 0.100 0.990 

CPS1 rs1047891 C A 56 (51.9) 44 (40.7) 8 (7.4) 0.278 0.873 

CUBN rs1801222 C T 78 (72.2) 29 (26.9) 1 (0.9) 0.144 0.338 

CD320 rs2336573 C T 99 (90.8) 10 (9.2) 0 (0) 0.046 0.616 

TCN2 rs1131603 T C 107 (98.2) 2 (1.8) 0 (0) 0.009 0.923 

CLYBL rs41281112 C T 105 (96.3) 4 (3.7) 0 (0) 0.018 0.845 

FUT2 rs602662 G A 60 (55.6) 30 (27.8) 18 (16.7) 0.306 0.000 

TCN1 rs34324219 C A 107 (98.2) 2 (1.8) 0 (0) 0.009 0.923 

FUT6 rs778805 C T 29 (26.6) 53 (48.6) 27 (24.8) 0.491 0.776 

MUT rs1141321 G A 28 (25.7) 60 (55.0) 21 (19.3) 0.470 0.271 

CAPN10 rs3792267 G A 79 (72.5) 24 (22.0) 6 (5.5) 0.165 0.035 
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CAPN10 rs2975760 T C 66 (60.6) 38 (34.9) 5 (4.6) 0.220 0.874 

CAPN10 rs5030952 C T 101 (92.7) 8 (7.3) 0 (0) 0.037 0.691 

KCNJ11 rs5219 C T 49 (45.0) 45 (41.3) 15 (13.8) 0.344 0.373 

TCF7L2 rs12255372 G T 57 (52.3) 45 (41.3) 7 (6.4) 0.271 0.633 

TCF7L2 rs7903146 C T 45 (41.3) 54 (49.5) 10 (9.2) 0.340 0.274 

FTO rs9939609 T A 48 (44.0) 47 (43.1) 14 (12.8) 0.344 0.641 

MCR rs17782313 T C 48 (44.0) 50 (45.9) 11 (10.1) 0.330 0.700 

FTO rs8050136 C A 48 (44.0) 47 (43.1) 14 (12.8) 0.340 0.641 

MC4R rs2229616 G A 99 (91.7) 9 (8.3) 0 (0) 0.042 0.651 

 

MAF; minor allele frequency, HWE; Hardy Weinberg Equilibrium, X2; Chi-Squared value
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A schematic representation of the study design is presented in figure 8. The 

unweighted, risk-allele GRS method was calculated for each participant as the sum of risk 

allele counts across each SNP, which predicted vitamin B12 status or metabolic disease risk. 

The B12-GRS was generated from the SNPs in the genes MTHFR, CPS1, CUBN, CD320, 

TCN2, CLYBL, FUT2, TCN1, FUT6, MUT, which have been shown to be associated with 

vitamin B12 concentrations. Furthermore, another unweighted GRS was created using allele 

markers previously reported to be associated with metabolic disease traits. The metabolic-GRS 

was generated from the SNPs in the genes CAP10, KCNJ11, TCF7L2, FTO and MC4R. A value 

of 0,1 or 2 was assigned to each SNP, which denotes the number of risk alleles on that SNP. 

These values were then calculated by adding the number of risk alleles across each SNP. The 

average number of risk alleles per person for the B12-GRS was 8.69 (SD = 1.70), which ranged 

from 5 to 15. The sample was stratified, by the median, into a “low genetic risk group,” for 

those with a GRS ≤ 9 risk alleles (n = 79), and into a “high genetic risk group,” for those with 

a GRS ≥ 10 risk alleles (n = 30). For the metabolic-GRS, the average number of risk alleles per 

person was 7.00 (SD = 2.28), which ranged from 1 to 13. The sample was stratified, into a “low 

genetic risk group,” for those with a GRS ≤ 8 risk alleles (n = 88), and into a “high genetic risk 

group,” for those with a GRS ≥ 9 risk alleles (n = 21). Linear regression was used to examine 

the association of the two GRS scores with the biochemical and anthropometric outcomes 

(glucose, insulin, HbAC1, vitamin B12, body fat %, BMI, WC and WHR). The interaction 

between the two GRS scores and dietary factors on biochemical and anthropometric outcomes 

was determined by including interaction terms (GRS*diet) in the regression model. Models 

were adjusted for age, sex, BMI, and total energy intake, wherever appropriate.  
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Figure 8: Diagram representing the study design 

The diagram shows four possible associations, and four possible interactions. One-sided 

arrows with unbroken lines represent genetic associations and one-sided arrows with broken 

lines represent interactions between a lifestyle factor and GRS on serum vitamin B12/ 

metabolic traits.  We tested the association between the metabolic-GRS and vitamin B12 

concentrations and metabolic disease-related traits. We then tested the associations between 

the B12 –GRS and vitamin B12 status and metabolic disease related traits. Lastly, we tested 

whether these genetic associations were modified by lifestyle factors (macronutrient intake and 

physical activity levels).  
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Correction for multiple testing was applied using Bonferroni correction [adjustment P value 

for association analysis was <0.00313 [2 GRS * 8 biochemical and anthropometric outcomes 

(Fasting blood glucose, fasting insulin, glycated haemoglobin, vitamin B12, Fat %, BMI, WC 

and WHR)=16 test)] and for interaction < 0.00078 [2 GRS * 8 biochemical and anthropometric 

* 4  lifestyle factors (dietary carbohydrate energy %, dietary protein energy %, dietary fat 

energy % and physical activity levels))= 64]. Given that there are no studies on GRS and no 

previously reported effect sizes for the South Asians, we were unable to perform a power 

calculation.  

 

4.4 Results  

4.4.1 Characteristics of the participants  

In this study, 109 participants (mean age, 38.34 ± 6.92 years; BMI, 24.58 ± 4.12 kg/m2) were 

included. Table 18 illustrates the main characteristics of the study participants stratified 

according to sex. No significant difference between men and women were observed in the 

levels of fasting glucose, insulin, HbAC1 and plasma vitamin B12 (P>0.05).  
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Table 18: Anthropometric and biochemical characteristics of men and women participants (n=109, Men 61: women 48) 

 Total (n=109) Men (n=61) Women (n=48) P value* 

     

Age (yrs) 38.24 ± 6.92 37.34 ± 6.97 39.38 ± 6.77 0.129 

Height (cm) 164.97 ± 9.15 170.95 ± 6.18 157.36 ± 6.16 <0.0001 

Weight (kg) 67.07 ± 13.05 71.76 ± 11.81 61.11 ± 12.17 <0.0001 

BMI (kg/m2) 24.58 ± 4.12 24.51 ± 3.52 24.68 ± 4.80 0.844 

Waist circumference (cm) 83.73 ± 17.97 89.83 ± 14.04 75.99 ± 19.52 <0.0001 

Hip circumference (cm) 91.16 ± 17.78 92.27 ± 13.83 89.75 ± 21.87 0.488 

WHR 0.92 ± 0.11 0.98 ± 0.08 0.85 ± 0.11 <0.0001 

Fat (%) 27.25 ± 7.37 23.52 ± 5.12 32.00 ± 7.08 <0.0001 

Obesity cases** 40.37% 37.70% 43.75% 0.523 

Fasting Blood Glucose (mg/dL) 85.64  ± 12.64 87.41 ± 15.41 83.40 ± 7.40 0.100 

Fasting Blood Insulin (pmol/L) 68.55 ± 49.97 71.77 ± 59.12 64.46 ± 35.28 0.451 

Fasting Blood HbA1C (mmol/mol) 35.62  ± 5.91 35.20 ± 5.99 36.16 ± 5.84 0.402 

Fasting Blood B12 (pmol/L) 380.65  ± 132.83 389.80 ±  

135.00 

369.02 ± 130.52 

0.420 

Physical Activity Levels  

(Low %/ moderate %/ high %) 

72.5/ 19.3/ 8.3 

 

70.5/19.7/9.8 75.0/18.8/6.3 

0.777 
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Total energy (kcal/d) 2097.92  ± 456.01 2173.68 ± 

427.82 

2001.65 ± 

476.72 0.050 

Protein (energy %) 11.29 ± 2.31 11.25 ± 2.41 11.33 ± 2.20 0.853 

Fat (energy %) 21.87 ± 5.31 21.64 ± 5.22 22.16 ± 5.45 0.613 

Carbohydrate (energy %) 69.62 ± 8.80 69.89 ± 10.29 69.28 ± 6.52 0.721 

Dietary fibre (g) 16.78  ± 8.18 17.24 ± 8.46 16.20 ± 7.85 0.513 

Polyunsaturated fatty acids  (g) 3.32  ± 1.69 3.36 ± 1.66 3.27 ± 1.75 0.779 

 

Abbreviations: BMI Body mass index; SD indicates standard deviations; WHR, waist to hip ratio 

Data presented as Mean ± SD 

* P < 0.05, statistically significant differences in mean values between men/women, unadjusted 

**Obesity cases refers to the percentage of individuals with a BMI of over 25. 
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4.4.2 Association between B12-GRS and Obesity GRS with biochemical and 

anthropometric measurements 

A significant association between B12-GRS and serum vitamin B12 was observed (P = 0.008) 

(Table 19 and Figure 9); However, this finding was not significant after correction for 

multiple testing. No associations between the B12-GRS and metabolic traits (P > 0.05) were 

observed (Table 19). Furthermore, no associations between the metabolic-GRS and vitamin 

B12 or metabolic traits (P>0.05) were observed (Table 20). 
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Table 19: Association between the B12-GRS with obesity traits, biochemical traits and anthropometric measurements 

Values are given as mean ± standard deviation.  

P values for differences between ≤9 and ≥10 risk alleles were obtained using linear regression model adjusted for age, sex and BMI. 

† P values were obtained by using a general linear model adjusted for age and sex 

Abbreviations: HbAC1 glycated haemoglobin; BMI body mass index; WC waist circumference; WHR waist to hip ratio 

SNPs Log Glucose 

(mg/dL) 

Log Insulin 

(pmol/L) 

Log HbA1C 

(mmol/mol) 

Vitamin B12 

(pmol/L) 

Fat 

(%) 

Log BMI Log WC WHR 

≤ 9 risk alleles 1.931 ± 0.046 1.773 ± 0.261 1.545 ± 0.070 402.101 ± 129.265 27.098 ± 7.757 1.388 ± 0.074  1.912 ± 0.123 0.921 ± 0.116 

≥ 10 risk  

alleles 

1.923 ± 0.068 1.722 ± 0.201 1.549 ± 0.068 324.167 ± 127.344 27.651 ± 6.331 1.377 ± 0.065 1.900 ± 0.131 0.919 ± 0.111 

P value 0.782 0.553 0.652 0.008 0.576 0.515 † 0.785 0.525 
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Table 20: Association between the metabolic-GRS and obesity traits, biochemical traits and anthropometric measurements 

Values are given as mean ± standard deviation. 

 P values for differences between ≤8 and ≥9 risk alleles were obtained using linear regression model adjusted for age, sex and BMI. 

† P values were obtained by using a general linear model adjusted for age and sex 

Abbreviations: HbAC1 glycated haemoglobin; BMI body mass index; WC waist circumference; WHR waist to hip ratio 

SNPs Log Glucose 

(mg/dL) 

Log Insulin 

(pmol/L) 

Log HbA1C 

(mmol/mol) 

Vitamin B12 

(pmol/L) 

Fat 

(%) 

Log BMI WC WHR 

≤  8 risk 

alleles 

1.929 ± 0.056 1.760 ± 0.243 1.545 ± 0.070 382.227 ± 139.729 26.651 ± 7.375 1.384 ± 0.072 1.912 ± 0.123  0.928 ± 0.119 

≥ 9 risk 

alleles 

1.930 ± 0.035 1.753 ± 0.267 1.551 ± 0.070 374.048 ± 101.471 29.761 ± 6.949 1.387 ± 0.069 1.893 ± 0.136  0.887 ± 0.087 

P value  0.550 0.777 0.772 0.962 0.247 0.732 † 0.722 0.796 
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Figure 9: Association between the B12-GRS and serum vitamin B12 levels 

Vitamin B12 decreasing alleles ranged from 5 to 15. Individuals with ≤9 or ≥10 alleles were 

grouped to obtain a reasonable number of individuals in each group. Error bars indicate 

Standard error.

4.4.3 Interaction between the B12-GRS and dietary factors on biochemical and 

anthropometric measurements 

An interaction was found between the B12-GRS and protein energy (%) on log transformed 

WC (P=0.002). However, further stratification of participants based on their consumption of 

low, medium and high dietary protein (energy %) did not show statistically significant 

associations between the GRS and the outcome in any of the tertiles, which could account for 

the small sample size (Table 21).  
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Table 21: Interaction between the B12-GRS and lifestyle factors on anthropometric measurements 

Interaction between the GRS and lifestyle factors on Log waist circumference (cm) 

Interaction between B12-GRS * fat 

energy %  

Interaction between B12-GRS * protein 

energy % 

Interaction between B12-GRS * 

carbohydrate energy % 

Interaction between B12-GRS * 

Physical activity levels 

0.002 ± 0.004  

(0.727) 

0.037 ± 0.011 

(0.002) 

-0.003 ± 0.003  

(0.344) 

 

-0.051 + 0.037 

(0.173) 

Interaction between metabolic-GRS 

* fat energy %  

Interaction between metabolic-GRS * 

protein energy % 

Interaction between metabolic-GRS * 

carbohydrate energy % 

Interaction between metabolic-GRS 

* Physical activity levels 

-0.007 ± 0.006  

(0.212) 

-0.024 ± 0.009 

(0.011) 

0.007 ± 0.003  

(0.031) 

0.020 ± 0.044 

(0.654) 

Interaction between the GRS and dietary factors on waist to hip ratio 

Interaction between B12-GRS * fat 

energy %  

Interaction between B12-GRS * protein 

energy % 

Interaction between B12-GRS * 

carbohydrate energy % 

Interaction between-B12 GRS * 

Physical activity levels 

0.002 ± 0.004 

(0.660) 

0.013 ± 0.010 

(0.196) 

-0.003 ± 0.002  

(0.241) 

0.018 ± 0.032 

(0.584) 

Interaction between metabolic-GRS 

* fat energy %  

Interaction between metabolic-GRS * 

protein energy % 

Interaction between metabolic-GRS * 

carbohydrate energy % 

Interaction between metabolic-GRS 

* Physical activity levels 

-0.009 ± 0.005 

(0.079) 

-0.012 ± 0.008 

(0.158) 

0.007 ± 0.003 

(0.015) 

0.038 ± 0.039 

(0.323) 

Interaction between the GRS and lifestyle factors on Log BMI 
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Values are beta coefficients ± standard errors. P values are inserted in brackets 

P values were obtained by using a general linear model adjusted for age, sex and BMI  

† P values were obtained by using a general linear model adjusted for age and sex 

Interaction between B12-GRS * fat 

energy %  

Interaction between B12-GRS * protein 

energy % 

Interaction between B12-GRS * 

carbohydrate energy % 

Interaction between B12-GRS * 

Physical activity levels 

-0.002 ± 0.003 

(0.539†) 

0.009 ± 0.008 

(0.259†) 

-0.001 ± 0.002 

(0.762†) 

0.015 ± 0.023 

(0.513†) 

Interaction between metabolic-GRS 

* fat energy %  

Interaction between metabolic-GRS * 

protein energy % 

Interaction between metabolic-GRS * 

carbohydrate energy % 

Interaction between metabolic-GRS 

* Physical activity levels 

-0.004 ± 0.004 

(0.245†) 

-0.004 ± 0.006 

(0.480†) 

0.002 ± 0.002 

(0.322†) 

-0.005 ± 0.028 

(0.851†) 
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4.4.4 Interaction between the metabolic-GRS and dietary factors on biochemical and 

anthropometric measurements 

We observed a significant interaction between the metabolic-GRS and carbohydrate energy 

intake (%) on waist to hip ratio (Pinteraction = 0.015) (Figure 10 and Table 21). Individuals who 

carried 8 or less risk alleles for metabolic disease had 7.47 % lower WHR measurements (cm) 

in the highest tertile of carbohydrate energy intake (%) (Mean ± S.D: 78.00 ± 7.90%) compared 

to those with 9 or more risk alleles (P= 0.035) (Table 21). 

 

Figure 10: Interaction between the metabolic-GRS and carbohydrate energy intake (%) 

on waist-to-hip ratio (cm) (Pinteraction = 0.015).  

Among those who consumed a high carbohydrate diet, individuals who carried 9 or more risk 

alleles had significantly higher levels of waist-to-hip ratios compared to individuals carrying 

8 or less risk alleles (P = 0.035). Error bars indicate Standard error. 
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 Interactions were also seen between the metabolic-GRS and carbohydrate energy (%) 

on log fasting insulin concentrations (P=0.011) and log WC (P=0.031), and the metabolic-GRS 

and protein energy (%) on log fasting insulin levels and (P= 0.032) and log WC (P=0.011) 

(Table 21 and Table 22). 

Table 22: Interaction between the B12-GRS and metabolic-GRS and lifestyle factors on 

biochemical outcomes 

Interaction between the GRS and lifestyle factors on Log glucose (mg/dL) 

Interaction between 

B12-GRS * fat 

energy %  

Interaction between 

B12-GRS * protein 

energy % 

Interaction between 

B12-GRS * 

carbohydrate energy % 

Interaction between the 

B12-GRS * Physical 

activity levels 

0.002 ± 0.002 

(0.416) 

-0.004 ± 0.005 

(0.437) 

-0.000 ± 0.001 

(0.866) 

0.035 ± 0.016 

(0.053) 

Interaction between 

metabolic-GRS * fat 

energy %  

Interaction between 

metabolic-GRS * 

protein energy % 

Interaction between 

metabolic-GRS * 

carbohydrate energy % 

Interaction between 

metabolic-GRS * 

Physical activity levels 

0.001 ± 0.003 

(0.609) 

0.004 ± 0.004 

(0.295) 

-0.002 ± 0.002 

(0.258) 

-0.013 ± 0.020 

(0.518) 

Interaction between the GRS and lifestyle factors on Log insulin (pmol/L) 

Interaction between 

B12-GRS * fat 

energy %  

Interaction between 

B12-GRS * protein 

energy % 

Interaction between 

B12-GRS * 

carbohydrate energy % 

Interaction between B12-

GRS * Physical activity 

levels 

-0.005 ± 0.008 

(0.545) 

-0.009 ± 0.022 

(0.681) 

0.003 ± 0.005 

(0.591) 

-0.035 ± 0.067 

(0.600) 

Interaction between 

metabolic-GRS * fat 

energy %  

Interaction between 

metabolic-GRS * 

protein energy % 

Interaction between 

metabolic-GRS * 

carbohydrate energy % 

Interaction between 

metabolic-GRS * 

Physical activity levels 

0.018 ± 0.010 0.037 ± 0.017 -0.016 ± 0.006 -0.076 ± 0.080 
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(0.076) (0.032) (0.011) (0.345) 

Interaction between the GRS and lifestyle factors on Log HbA1C (pmol/L) 

Interaction between 

B12-GRS * fat 

energy %  

Interaction between 

B12-GRS * protein 

energy % 

Interaction between 

B12-GRS * 

carbohydrate energy % 

Interaction between B12-

GRS * Physical activity 

levels 

-0.000 ± 0.003 

(0.954) 

-0.007 ± 0.007 

(0.299) 

0.001 ± 0.002 

(0.711) 

0.019 ± 0.022 

(0.387) 

Interaction between 

metabolic-GRS * fat 

energy %  

Interaction between 

metabolic-GRS * 

protein energy % 

Interaction between 

metabolic-GRS * 

carbohydrate energy % 

Interaction between 

metabolic-GRS * 

Physical activity levels 

0.001 ± 0.003 

(0.802) 

0.001 ± 0.006 

(0.810) 

-0.001 ± 0.002 

(0.543) 

-0.041 ± 0.026 

(0.116) 

Interaction between the GRS and lifestyle factors on vitamin B12 (pmol/L) 

Interaction between 

B12-GRS * fat 

energy %  

Interaction between 

B12-GRS * protein 

energy % 

Interaction between 

B12-GRS * 

carbohydrate energy % 

Interaction between B12-

GRS * Physical activity 

levels 

-2.377 ± 5.093 

(0.642) 

13.481 ± 13.969 

(0.337) 

-0.722 ± 3.337 

(0.829) 

-46.714 ± 43.442 

(0.285) 

Interaction between 

metabolic-GRS * fat 

energy %  

Interaction between 

metabolic-GRS * 

protein energy % 

Interaction between 

metabolic-GRS * 

carbohydrate energy % 

Interaction between 

metabolic-GRS * 

Physical activity levels 

-6.189 ± 6.856 

(0.369) 

7.017 ± 11.531 

(0.544) 

-0.806 ± 4.181 

(0.848) 

36.492 ± 53.889 

(0.500) 

Interaction between the GRS and lifestyle factors on body fat (%) 

Interaction between 

B12-GRS * fat 

energy %  

Interaction between 

B12-GRS * protein 

energy % 

Interaction between 

B12-GRS * 

carbohydrate energy % 

Interaction between the 

B12-GRS * Physical 

activity levels 

0.031 ± 0.124 -0.326 ± 0.342 0.049 ± 0.082 -0.548 ± 1.068 
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(0.804) (0.343) (0.550) (0.609) 

Interaction between 

metabolic-GRS * fat 

energy %  

Interaction between 

metabolic-GRS * 

protein energy % 

Interaction between 

metabolic-GRS * 

carbohydrate energy % 

Interaction between 

metabolic-GRS * 

Physical activity levels 

0.084 ± 0.160 

(0.601) 

0.060 ± 0.273 

(0.826) 

-0.037 ± 0.099 

(0.709) 

0.637 ± 1.270 

(0.617) 

 

Values are beta coefficients ± standard errors. P values were inserted in brackets 

P values were obtained by using a general linear model adjusted for age, sex and BMI  

Abbreviations: HbAC1 glycated haemoglobin; BMI body mass index 

 

4.4.5 Interaction between the B12-GRS and physical activity on biochemical and 

anthropometric measurements 

No statistically significant interactions were observed between the two GRSs (vitamin B12 

and metabolic) and physical activity on biochemical and anthropometric measurements (Table 

21 and Table 22). After correction for multiple testing, none of these gene-diet and gene-

physical activity interactions remained statistically significant. 

4.5 Discussion: 

To our knowledge, this is the first study to use a genetic approach to explore the relationship 

between metabolic traits and vitamin B12 status in a South Asian population. Our study 

confirmed the strength of the association between B12-GRS and B12 concentrations and 

demonstrated the impact of genetically instrumented B12 concentrations on waist 

circumference, an indicator of central obesity, through the influence of dietary protein intake. 

Furthermore, our study has also showed a significant effect of metabolic-GRS on waist to hip 

ratio through the influence of high carbohydrate intake. Given that the total daily intake of 
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protein is low and carbohydrate is high in Sri Lankan adults [380], our findings, if replicated 

in future studies, might carry significant public health implications in terms of revising the 

food-based dietary guidelines which could prevent central obesity and the associated CVD-

related outcomes. 

In this study, we constructed a GRS consisting of ten vitamin B12 decreasing SNPs in 

genes involved in vitamin B12 metabolism [14]. The B12-GRS was associated with vitamin 

B12 levels, suggesting that it would be an ideal instrument for vitamin B12 status. Given the 

lack of association between the B12-GRS and metabolic disease traits in our study, we were 

unable to provide evidence for linear decreases in vitamin B12 concentrations having 

substantive effects on metabolic disease traits. However, we found a significant interaction 

between the B12-GRS and protein energy (%) on log WC. Interestingly, individuals who 

carried 9 or less alleles had lower WC when consuming a high protein diet compared to those 

consuming a low protein diet. Although no statistically significant differences in WC were 

observed between the alleles of the B12-GRS, the impact of the B12-GRS on WC was observed 

only under the influence of a high protein diet. Further investigations are required to confirm 

this finding to determine the clinical significance and potential applications as part of weight 

management interventions. 

At present, carbohydrates constitute the majority of the energy intake among South Asian 

countries such as Sri Lanka (~71.2%) [380]; in contrast, the consumption of carbohydrates is 

lower in Western countries (~45 %) [381]. Furthermore, high carbohydrate intake has been 

associated with an increased risk of diabetes in a South Indian population [382], and an increase 

in WC among pre-menopausal (20-45 years) Sri Lankan women [383]. In the present study, 

we found a significant interaction between the metabolic-GRS and carbohydrate energy 

percentage on waist-to-hip ratio, where the individuals carrying more than 9 risk alleles had a 

higher waist-to-hip ratio among those in the highest tertile of carbohydrate energy percentage. 
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There are no previous reports of the risk variants used in our GRS, but Goni et al [384] found 

that carbohydrates (total and complex) interacted with a GRS of 16 obesity/lipid metabolism 

polymorphisms to modify the effect on body fat mass in 711 individuals of Caucasian ancestry. 

In our study, we only observed interactions of the metabolic-GRS on WC and waist-to-hip 

ratio, which suggests that effects are likely to be on central obesity as opposed to common 

obesity. 

South Asians have a higher risk of developing obesity related non-communicable diseases 

relative to white Caucasians despite lower BMI levels; this has been termed the ‘South Asian 

phenotype’. The distinctive features of this phenotype include a higher WC, abdominal 

adiposity combined with insulin resistance, and a greater predisposition to diabetes [364]. The 

role of vitamin B12 in promoting this adverse phenotype has been suggested by Yajnik et al., 

who demonstrated that offspring born to mothers with a low vitamin B12  and high folate status 

had a greater risk of developing insulin resistance during childhood [69]. According to Yajnik 

et al., vitamin B12 deficiency prevents the generation of tetrahydrofolate from 5-

methyltetrahydrofolate in the one-carbon metabolism cycle; as a result, homocysteine levels 

accumulate leading to altered lean tissue deposition and reduced protein synthesis [69]. 

Furthermore, vitamin B12 is involved in the conversion of methylmalonyl-CoA to succinyl-

CoA by the enzyme methylmalonyl-CoA mutase (adenosyl-B12 as a cofactor). Subsequently, 

vitamin B12 deficiency results in elevated methylmalonyl-CoA, inhibiting the mitochondrial 

enzyme carnitine palmitoyltransferase, which may promote lipogenesis and insulin resistance 

[69, 385].   

No studies to date, have investigated interactions between the two GRSs and physical 

activity on metabolic traits and B12 concentrations in Asian Sri Lankans. Although, 60% of 

Sri Lankan adults are reported to be highly physically active [386], no significant interactions 

were found between the two GRSs and physical activity on metabolic traits, which could be 
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due to a small sample size and measurement bias associated with self-reported physical activity 

questionnaire. The strengths of our study include the use of a validated food frequency 

questionnaire [368] to measure macronutrient intake, the comprehensive measurements of 

lifestyle factors, and the use of GRSs which increased the statistical power of our study [387]. 

Nevertheless, some limitations need to be acknowledged. The first limitation concerns the 

relatively small sample size of the study; however, we were still able to identify significant 

gene-diet interactions. Furthermore, we used Bonferroni correction to correct for multiple 

testing and this can often lead to larger power, specifically where studies have a small sample 

size and a small number of disease-associated markers. This is also true for when studies have 

a large allele frequency difference due to a small sample size [388].  Secondly, information 

about the type of oil used for frying, the estimation of different dietary fat components 

(monounsaturated or saturated fatty acids) and vitamin B12 intake was not collected. This 

could have limited our in-depth analysis of interactions of specific macronutrients and vitamins 

with the two GRSs. Furthermore, the study was limited to Sinhalese adults in Colombo, and 

the conclusions may not be applicable to other ethnic groups in Sri Lanka. Finally, none of the 

genetic associations or gene-lifestyle interactions were statistically significant after correction 

for multiple testing; however, given that this is the first study using a genetic approach to 

establish a relationship between vitamin B12 status and metabolic disease outcomes in South 

Asians, we have taken into consideration of the significant findings; hence, further large studies 

are required to replicate our findings. 

4.6  Conclusion 

In summary, our study suggests that a genetically lowered vitamin B12 concentration may 

have an impact on central obesity in the presence of a dietary influence; however, our study 

failed to show an impact of the metabolic-GRS on lowering B12 concentrations through a 

dietary influence. Our study also showed a significant effect of the metabolic-GRS on waist to 
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hip ratio, another indicator of central obesity, through the influence of a high carbohydrate 

intake. However, after correction for multiple testing, none of these findings were statistically 

significant. Hence, further replication studies are highly warranted on large samples to confirm 

or refute our findings. 
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Chapter 5  

Evidence for the association between FTO gene variants and 

vitamin B12 concentrations in an Asian Indian population  

 

For this study, I developed an analysis plan before I undertook the statistical analysis. I screened 

and validated the dataset to perform statistical analysis. I performed the entire statistical analysis 

using the SPSS software; I undertook a literature review as part of the introduction to the study 

and wrote the manuscript. I revised the manuscript based on the comments from all the co-authors 

before the manuscript was submitted to the Journal of Genes and Nutrition.  

 

Published (The published paper is attached as an appendix at the end of the thesis) 

Shelini Surendran, Ramamoorthy Jayashri, Lauren Drysdale, Dhanasekaran Bodhini, 

Nagarajan Lakshmipriya, Coimbatore Subramaniyam Shanthirani, Vasudevan Sudha, Julie A. 

Lovegrove, Ranjit M. Anjana, Viswanathan Mohan, Venkatesan Radha, Rajendra Pradeepa, 

Karani S. Vimaleswaran (2019). Evidence for the association between FTO gene variants and 

vitamin B12 concentrations in an Asian Indian population.  Genes & Nutrition (Published). 

 

5.1 Abstract 

Background: Low vitamin B12 concentrations have been associated with major clinical 

outcomes, including adiposity, in Indian populations. The Fat mass and obesity associated gene 

(FTO) is an established obesity-susceptibility locus; however, it remains unknown whether it 

influences vitamin B12 status. Hence, we investigated the association of two previously studied 
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FTO polymorphisms with vitamin B12 concentrations and metabolic disease-related outcomes 

and examined whether these associations were modified by dietary factors and physical 

activity. 

Methods: A total of 176 individuals with type 2 diabetes, 152 with pre-diabetes and 220 

normal glucose-tolerant individuals were randomly selected from the Chennai Urban Rural 

Epidemiology Study. Anthropometric, clinical and biochemical investigations, which included 

body mass index (BMI), waist circumference, vitamin B12, homocysteine and folic acid were 

measured. A validated food frequency questionnaire was used for dietary assessment and self-

reported physical activity measures were collected. An unweighted genetic risk score (GRS) 

was calculated for two FTO single nucleotide polymorphisms (rs8050136 and rs2388405) by 

summation of the number of risk alleles for obesity. Interaction analyses were performed by 

including the interaction terms in the regression model. 

Results: The GRS was significantly associated with increased BMI (P=0.009) and risk of 

obesity (P=0.023). Individuals carrying more than one risk allele for the GRS had 13.13% 

lower vitamin B12 concentrations, compared to individuals carrying zero risk alleles 

(P=0.018). No associations between the GRS and folic acid and homocysteine concentrations 

were observed. Furthermore, no statistically significant GRS-diet or GRS-physical activity 

interactions with vitamin B12, folic acid, homocysteine or metabolic-disease outcomes were 

observed. 

Conclusion: The study shows for the first time that a genetic risk score using two FTO SNP’s 

is associated with lower vitamin B12 concentrations; however, we did not identify any 

evidence for the influence of lifestyle factors on this association. Further replication studies in 

larger cohorts are warranted to investigate the association between the GRS and vitamin B12 

concentrations. 
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5.2 Introduction 

Obesity and its related comorbidities are leading causes of mortality and morbidity worldwide 

[389]. It is estimated that >12% of the Indian population is either overweight or obese [390]. 

Epidemiological studies have documented that the increased accessibility of low-cost, high-

calorie and nutrient-poor foods, were among the major driving forces for the epidemic of 

obesity [391-393]. This has led to a substantial increase in the prevalence of obesity-associated 

metabolic problems, such as type 2 diabetes mellitus (T2DM), dyslipidaemia and hypertension 

in India [394]. Furthermore, several studies have also demonstrated that obesity is associated 

with substantial nutrient deficiencies, including vitamin B12 [6, 395, 396]. 

 Vitamin B12 deficiency is a major public health problem in India and a recent cross-

sectional study conducted in 630 healthy adults in a South Indian population, reported that 35% 

of adults were vitamin B12 deficient [397]. An adequate vitamin B12 concentration is essential 

for growth, development and health. In addition, it is essential for DNA synthesis, 

haematological development and maintenance of the myelin nerve sheaths [398-400]. The 

primary causes of vitamin B12 deficiency are age, consumption of vegetarian diets and the 

inability to absorb vitamin B12 from food (via genetic defects or disease) [14, 190]. To date, 

several studies have indicated that vitamin B12 status may be influenced by excess body weight 

[7, 401]. However a pooled analysis of 19 studies found no evidence for an inverse relationship 

between vitamin B12 and BMI levels and reported that the majority of observational studies 

had a high risk of bias and heterogeneity [93]. In the light of these findings, using a genetic 

approach to explain the genetic mechanisms for obesity and its link with vitamin B12 

concentrations could be a better option, in terms of reducing any influence from unmeasured 

confounding factors.  

Genome-wide association studies have identified several genetic variants related to 

obesity and type 2 diabetes risk [402, 403].To date, the Fat mass and obesity associated (FTO) 
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gene has been identified as the strongest common genetic predictor of obesity [11]. Individuals, 

who are homozygous for FTO risk alleles, are on average, at 1.67-fold increased odds of obesity 

and three kg heavier in comparison to individuals without any risk alleles [404]. While several 

studies have reported the association between the FTO gene on measures of body weight and 

composition, various dietary parameters and physical activity levels have also been shown to 

contribute [405-407]. Recently, a cross-sectional study in an Indian population showed that 

physical activity and dietary intake may modify the association between the FTO gene variants 

and obesity-related traits [408].We used FTO gene variants as instruments to establish the 

relationship between obesity and B12 status and tested whether this relationship was modified 

by lifestyle factors. The two main objectives of this study were firstly to determine whether the 

FTO single nucleotide polymorphisms (SNPs), rs8050136 and rs2388405, were associated 

with obesity traits, vitamin B12, folic acid, and homocysteine and secondly whether these 

associations were modified by diet and physical activity levels in Asian Indians. 

5.3 Methodology 

5.3.1 Study population 

 A total of 900 unrelated study subjects were randomly recruited from the Chennai 

Urban Rural Epidemiology Study (CURES) follow-up study, which is an epidemiological 

study conducted on a representative population of Chennai, (formerly Madras) in southern 

India. The methodology of the study is published elsewhere [409, 410] and is briefly outlined 

here (Figure 11). In Phase 1 of CURES, 26,001 (aged ≥20 years) individuals were recruited 

based on a systematic random sampling technique. In the baseline survey, of the 26,001 

individuals screened, all the individuals with diabetes (Phase 2, n = 1,382) and 1 in every 

10 individuals (Phase 3, n = 2,207) underwent further detailed investigations, and these 

constituted the cohort for the follow-up study (n = 3,589).  From these 3,589 individuals, 

900 individuals, 300 normal glucose-tolerant (NGT), 300 prediabetic and 300 T2DM 
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individuals were randomly selected for this study. Only 548 individuals had samples 

available for genetic analysis (220 NGT, 152 prediabetic and 176 T2DM individuals). 

Individuals were excluded from participation if they were known cases of type I diabetes, had 

diabetes secondary to other causes, e.g., chronic pancreatitis, if they were 80 years of age or 

were taking vitamin B12 supplements. Table 23 shows the characteristics of the study 

participants.  

 

 

Figure 11: Flow diagram describing the selection of study participants 
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Table 23: Baseline characteristics of the CURES study participants: Comparison of non-obese and obese individuals 

Characteristics n 
Non-Obese 

individuals 
n Obese individuals P value * 

Age (yrs) 320 52.2 ± 13.0 579 48.8 ± 10.8 <0.001 

BMI (kg/m2) 320 21.9 ± 2.0 579 29.4 ± 4.0 <0.001 

WC (cm) 320 80.5 ± 8.3  578 93.1 ± 9.7 <0.001 

Hip (cm) 320 88.5 ± 6.2 578 102.6 ± 9.5 <0.001 

WHR 320 0.91 ± 0.09 578 0.91 ± 0.09 0.991 

Fasting plasma glucose (mg/dl) 299 118 ± 55 553 116 ± 42 0.618 

Fasting serum insulin (μIU/ml) 320 8.1 ± 6.1 579 9.9 ± 6.3  <0.001 
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Glycated Haemoglobin (%) 320 6.5 ± 1.8 579 6.6 ± 1.6 0.414 

Vitamin B12 levels (pg/mL) 320 425 ± 263 579 412 ± 273 0.495 

Homocysteine  

320 14.0 ± 8.9 579 13.6 ± 9.0 0.511 

(μmol/L) 

Folic  
320 8.73 ± 5.71 579 8.29 ± 5.79 0.276 

(ng/ml) 

Total energy intake (kcal) 194 2526 ± 791 335 2600 ± 753 0.280 

 Protein energy % 194 11.4 ± 1.1 335 11.4 ± 1.1 0.889 
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Carbohydrate energy % 194 63.6 ± 6.3 335 64.8 ± 5.8 0.033 

Fat Energy %  194 24.1 ± 4.5 335 23.7 ± 4.7 0.400 

Total Fibre (g) 194 31.1 ± 10.3 335 32.2 ± 11.1 0.227 

Physical Activity Level 186 

Low (78.0%) 

280 

Low (83.2%) 

0.009a 
Medium (20.4%) Medium (15.0%) 

High (1.6%) High (1.8%) 

 

Data shown are represented as means ± SD 

P values were calculated by using the Independent t test 

* P values for the differences in the means/proportions between non-obese and obese individuals 

aP values were calculated by using the Chi Squared test 

Abbreviations: CURES Chennai Urban Rural Epidemiological Study; BMI Body mass index; WC waist circumference; WHR waist to hip ratio 
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The Madras Diabetes Research Foundation Institutional Ethics Committee granted the 

ethical approval and informed consent was obtained from the study participants. All clinical 

investigations were conducted according to the principles expressed in the Declaration of 

Helsinki (ICH GCP). 

5.3.2 Phenotype measurements 

Anthropometric measurements including weight, height and waist circumference were 

measured using standardized techniques. The body mass index (BMI) was calculated using 

the formula, weight (kg)/height (m2) and obesity was classified as BMI ≥ 25 according to 

WHO Asia Pacific Guidelines for Asians (The Asia Pacific perspective 2000). Fasting 

plasma glucose (glucose oxidase–peroxidase method), was measured using Hitachi-912 

Autoanalyzer (Hitachi, Mannheim, Germany). Glycated haemoglobin (HbA1c) was estimated 

by high-performance liquid chromatography using a Variant™ machine (Bio-Rad, Hercules, 

CA, USA).  Serum insulin, serum vitamin B12 and folic acid concentration was estimated using 

the electrochemiluminescence using a Roche e601Cobas immunoassay analyser (Roche 

Diagnostics, Indianapolis, Indiana, USA). The intra- and inter-assay coefficients of variation 

for vitamin B12 assay were 0.95% and 4.08%. Serum homocysteine was measured using 

enzymatic assay using the Beckman Coulter AU2700 (Fullerton, CA, USA) Biochemistry 

analyser. 

5.3.3 Dietary assessments and physical activity: 

Dietary intakes were assessed using a previously validated and published [35] 

interviewer administered semi-quantitative food frequency questionnaire (FFQ) containing 222 

food items to estimate food intake over the past year. The length of the interview ranged from 

20 and 30 min during which participants were asked to recall their usual portion size and usual 

frequency (number of times per day, week, month or year/never) of foods listed within the FFQ 

https://link-springer-com.dblibweb.rdg.ac.uk/article/10.1007%2Fs00439-008-0506-8#CR26
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over the year. Common household measures such as household cups, bowls, ladles, spoons (for 

the cooked foods like vegetables), wedges, circles of different diameter and visual atlas of 

different sizes of fruits (small, medium, large) were shown to assist the individuals in 

estimating portions. A detailed description of the development of FFQ and the data on 

reproducibility and validity had been published previously [411]. The recorded data was 

analysed with the EpiNu® software to estimate energy as well as macronutrient and dietary 

fibre intake. 

A validated self-report questionnaire was used to measure physical activity 

questionnaire [412]. Based on exercise, leisure time activities and job-related activities 

respondents were categorized into three groups indicating activity level (vigorously active, 

moderately active and sedentary). Individuals were graded as vigorously active if they did 

leisure time exercise and had physically demanding work, whereas individuals who either 

exercised or had physically demanding work were categorized as moderately active. All others 

were categorized as sedentary. 

5.3.4 SNP selection and genotyping 

Genetic variants within the FTO gene have shown consistent and strong associations with 

obesity [11]. Evidence suggests that the FTO gene confers an increased risk of obesity by 

approximately 1.20-fold, and a corresponding increase in BMI by 0.39 kg/m2 per minor allele 

[413]. The BMI-increasing allele in the FTO gene is less prevalent in Asian (~ 30%) and 

African populations (~ 12%), than in European ancestry populations (~ 42%). However, the 

effect of the risk alleles on BMI variance is somewhat similar in the Asian (0.2%), African 

(0.1%) and European populations (0.3%) [413-415]. 

Of particular interest are intronic SNPs, which may harbour ‘intronic enhancers’ that 

may exert functional effects and contain potential transcriptional factor binding sites. 
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Furthermore, some of these intronic variants have been shown to increase disease risk or 

modulate the genotype-phenotype relationship [416]. The SNP rs8050136 of the FTO gene has 

shown consistent and strong associations with obesity and type 2 diabetes [11, 417]. 

Additionally, the SNP rs2388405 was previously selected for analysis in a case-control study 

conducted in a Chinese population, due to its possibility of being an ‘intronic enhancer’ [418] 

and also in a study in a Han Chinese population [419] and a Caucasian population [420]. Hence, 

we selected these two intronic SNPs of the FTO gene with a known minor allele frequency 

(MAF) >15% in the South Asian population: rs8050136 (intron 1, MAF = 29%; HapMap South 

Asian population) and rs2388405 (intron 4, MAF = 40%; HapMap South Asian population).  

The standard Phenol-chloroform method was used to extract DNA from whole blood 

[421]. The SNPs rs8050136 and rs2388405 were genotyped by polymerase chain reaction on 

a GeneAmp PCR system 9700 thermal cycler (Applied Biosystems, Foster City, CA) using the 

primers “F: 5ˈTTT GTT TTG GCT TTC TGC AGT CT3ˈ, R: CAA AAA CCA CAG GCT 

CAG A3ˈ and F: 5ˈTCT GTG GGA ATC TCC GCT TTC AGT, R: 5ˈGAG CCC TTG CGC 

ATT GCC AG3ˈ respectively. The PCR products were digested with MluCI (rs8050136) and 

ScaI (rs2388405) restriction enzymes (New England Biolabs, Inc., Beverly, MA) and the 

digested products were resolved by a 3 % agarose gel electrophoresis. Based on the analysis of 

200 blind duplicates (20 %), there was 100% concordance in the genotyping. Furthermore, a 

few variants were confirmed by direct sequencing with an ABI 310 genetic analyser (Foster 

City, CA).  

5.3.5 Statistical analysis: 

The SPSS statistical package (version 22; SPSS Inc., Chicago, IL, USA) was used for 

the statistical analysis. Allele frequencies were estimated by gene counting. The Chi-square 

test was used to compare the proportions of genotypes or alleles. The genotypic frequencies 
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in all participants showed no significant departure from the Hardy Weinberg Equilibrium 

(HWE) (P > 0.05) for the FTO rs8050136 (MAF: 0.13 and HWE: P=0.749) and rs2388405 

(MAF: 0.09 and HWE: P=0.259) SNPs. 

 Generalised obesity was defined according to the World Health Organization Asia 

Pacific Guidelines for Asians as non-obese (BMI < 25 kg/m2 ) and obese (BMI ≥ 25 kg/m2 ) 

[422].We performed an independent t-test to compare the means of the quantitative variables 

between individuals with normal-glucose tolerance (NGT) vs pre-diabetes and NGT vs T2D). 

Comparison of the proportion of individuals engaging in different types of physical activity 

levels (vigorously active, moderately active and sedentary) between NGT individuals vs pre-

diabetes and NGT individual’s vs T2D was analysed by the Chi Square test.  

 The unweighted, risk-allele GRS method was calculated for each participant by 

summation of the number of risk alleles for obesity. The GRS was generated from the SNPs 

rs8050136 and rs2388405 of the FTO gene. A value of 0, 1 or 2 was assigned to each SNP, 

which denotes the number of risk alleles for obesity on that SNP. These values were then 

calculated by adding the number of risk alleles across each SNP. The risk allele score was then 

divided into individuals carrying 0 risk allele vs more than 1 risk alleles. Association analyses 

between the GRS and continuous and categorical variables were carried out by linear and 

logistic regression models, respectively. Linear and logistic regression models were also used 

for interaction analyses between GRS and dietary factors (continuous variables) / physical 

activity (categorical variable) on continuous and categorical outcomes respectively, where the 

interaction terms were included into the models and were adjusted for age, BMI, sex, T2D, 

T2D medication and total energy intake when appropriate.  

 Correction for multiple testing was applied using Bonferroni correction [adjustment P 

value for association analysis was <0.0083 [1 GRS * 6 biochemical and metabolic traits 



225 

(vitamin B12, Homocysteine, folic acid, obesity, BMI, waist circumference) = 6 tests)] and for 

interaction <0.0017 [1 GRS* 6 biochemical and metabolic traits * 5  lifestyle factors (dietary 

carbohydrate energy %, dietary protein energy %, dietary fat energy %, dietary fiber intake (g) 

and physical activity levels)= 30 tests]. Given that there are no studies on GRS and no 

previously reported effect sizes for the South Asians, we were unable to perform a power 

calculation for the present study. 

5.4 Results 

5.4.1 Characteristics of the participants  

Based on the clinical and biochemical characteristics of the individuals from the CURES 

study as illustrated in Table 23, individuals with obesity (n=579) had higher fasting plasma 

insulin (<0.001) compared to non-obese individuals (n=320). We also observed that obese 

individuals consumed higher quantities of dietary carbohydrate (energy %) than non-obese 

individuals (P=0.033). Additionally, a significant difference in physical activity levels between 

non-obese individuals and obese individuals was observed (P=0.009). The baseline 

characteristics which compares individuals with NGT, pre-diabetes and T2D is shown in Table 

24.  
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Table 24: Baseline characteristics of the CURES study participants: Comparison of NGT, Pre-diabetics and T2D individuals 

Characteristic n 

Participants with 

normal glucose 

tolerance (NGT) 

n Pre-diabetics P value * n 

Participants with 

type 2 diabetes 

(T2D) 

P value ** 

Age (yrs) 300 48.2 ± 11.9 300 48.4 ± 11.7 0.849 300 53.6 ± 11.0 <0.001 

BMI (kg/m2) 300 25.8 ± 5.0 300 27.4 ± 5.2 <0.001 299 26.9 ± 4.6 0.010 

WC (cm) 300 85.9 ± 11.4 300 89.6 ± 11.1 <0.001 298 90.3 ± 10.1 <0.001 

Hip (cm) 300 96.4 ± 11.0 300 98.7 ± 11.6 0.015 298 97.6 ± 9.6  0.174 

WHR 300 0.89 ± 0.09 300 0.91 ± 0.09 0.022 298 0.93 ± 0.08 <0.001 

Fasting plasma glucose 

(mg/dl) 
274 90 ± 6 283 103 ± 18 <0.001 296 154 ± 61 <0.001 

Fasting serum insulin 

(μIU/ml) 
300 8.3 ± 5.6  300 8.1  ± ± 5.6 0.757 300 11.3 ± 6.9 <0.001 

Glycated Haemoglobin 

(%) 
300 5.7 ± 0.6 300 5.9 ± 0.6 <0.001 300 8.1 ± 2.0 <0.001 

Vitamin B12 levels 

(pg/mL) 
300 450 ± 332 300 409 ± 246 0.086 300 389 ± 211 0.008 

Homocysteine  300 13.1 ± 6.1 300 13.3 ± 7.4 0.650 300  14.9 ± 11.7 0.020 
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(μmol/L) 300 

300 

13.1 ± 6.1 

10.16 ± 6.35 

300 

300 

13.3 ± 7.4 

7.99 ± 6.17  

0.650 

<0.001 

300 

300 

 14.9 ± 11.7 

7.17 ± 4.11 

0.020 

<0.001 Folic  

(ng/ml) 300 

248 

10.16 ± 6.35 

2581 ± 750 

300 

124 

7.99 ± 6.17  

2588 ± 807 

<0.001 

0.932 

300 

157 

7.17 ± 4.11 

2548 ± 767 

<0.001 

0.675 Total energy intake (kcal) 

 Protein energy % 248 11.3 ± 1.2 124 11.3 ± 1.1 0.912 157 11.4 ± 1.1  0.328 

Carbohydrate energy % 248 64.1 ± 6.5 124 64.8 ± 5.5 0.284 157 64.4 ± 5.5  0.657 

Fat Energy %  248 24.0 ± 4.8 124 23.5 ± 4.4 0.299 157 23.9 ± 4.5 0.879 

Total Fibre (g) 248 31.9 ± 10.7 124 31.1 ± 10.8 0.510 157 32.2 ± 11.0 0.832 

Physical Activity Level 228 Low (77.6%) 105 Low (82.9%) 0.230 133 Low (85.7%) 0.143a 

  

Medium (21.1%) 

 

Medium (14.3%) 

  

Medium (12.3%) 

 

High (1.3%) High (2.9%) High (1.5%) 

  

Data shown are represented as means ± SD 

P values were calculated by using the Independent t test 

*P values for the differences in the means/ proportions between NGT and pre-diabetic individuals 

** P values for the differences in the means/ proportions between NGT and T2D individuals 

aP values were calculated by using the Chi Squared test 

Abbreviations: CURES Chennai Urban Rural Epidemiological Study; BMI Body mass index; WC waist circumference; WHR waist to hip ratio 
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5.4.2 Association between GRS and obesity-related phenotypes 

We were able to identify an association between GRS and BMI (P=0.009). Individuals who 

carried more than one risk allele had higher BMI levels (Mean ± SE: 27.55 ± 4.98) compared 

to individuals with zero risk alleles (Mean ± SE: 26.43 ± 5.03) (Table 25 and Figure 12). 

 

Figure 12: Association between the GRS and BMI 

Obesity risk increasing alleles ranged from 0 to 3. The white bars indicate individuals with 0 

risk alleles and the black bars indicate individuals carrying ≥1 alleles. Individuals who carried 

1 or more risk alleles had significantly higher BMI compared to individuals carrying 0 risk 

alleles (P = 0.009)]. Error bars indicate Standard error.
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Table 25: Association between the FTO-GRS with vitamin B12, folic acid, homocysteine and obesity traits   

Risk alleles 

in all 

participants 

n 

Vitamin 

B12 

(pg/mL) 

n 
Homocysteine 

(μmol/L) 
n 

Folic acid 

(ng/ml) 
n 

BMI 

(kg/m2) 
n WC (cm) n 

Odds Ratio 

(95% CI) of 

Obesity 

0 380 
410 ± 

202 
390 13.2 ± 7.7 390 8.89 ± 5.92 390 26.4 ± 5.0 390 

87.6 ± 

11.1 
194 

1.63 (1.07-

2.49) 

≥1 154 
356 ± 

189 
157 14.8 ± 8.9 157 7.89 ± 5.48 157 27.6 ± 5.0 156 

90.0 ± 

11.6 
353 

P valuea 0.018 0.077 0.147 0.009† 0.747 *0.023 

Risk alleles 

in NGT 

individuals 

n 

Vitamin 

B12 

(pg/mL) 

n 
Homocysteine 

(μmol/L) 
n 

Folic acid 

(ng/ml) 
n 

BMI 

(kg/m2) 
n WC (cm) n 

Odds Ratio 

(95% CI) of 

Obesity 

0 151 
416 ± 

199 
157 12.5 ± 5.7 157 

10.45 ± 

6.42 
157 25.7 ± 5.0 157 

85.0 ± 

11.2 
157 

1.71 (0.92 -

3.21) 
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≥1 61 
327 ± 

167 
63 13.9 ± 5.9 63 8.99 ± 6.02 63 27.2 ± 5.4 63 

88.5 ± 

12.6 
63 

P valueb 0.004 0.102 0.143 0.054†† 0.694 0.092** 

Values are given as mean ± standard deviation. 

aP values for differences between 0 and 1 risk alleles were obtained using linear regression model adjusted age, BMI, Type 2 diabetes status, 

Type 2 diabetes medication and sex  

† P values were obtained by using a general linear model adjusted for age, Type 2 diabetes status, Type 2 diabetes medication and sex 

* P values were adjusted for age, sex and Type 2 diabetes status using binary logistic regression 

bP values for differences between 0 and 1 risk alleles were obtained using linear regression model adjusted age, BMI and sex  

†† P values were obtained by using a general linear model adjusted for age and sex 

** P values were adjusted for age and sex using binary logistic regression 

 

Abbreviations: BMI body mass index; WC waist circumference; WHR waist to hip ratio; NGT normal glucose tolerant 
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There was a significant association between the GRS and obesity (Passociation=0.023), 

where individuals carrying more than one risk allele had 1.6 times increased risk of obesity 

compared to those carrying zero risk alleles (Table 25). However, after Bonferroni correction, 

none of these associations remained statistically significant. Moreover, no statistically 

significant associations were observed between GRS and waist circumference (P=0.747) 

(Table 25). 

 

5.4.3 Association between the GRS and vitamin B12, homocysteine and folic acid 

levels 

We found that the GRS was significantly associated with vitamin B12 concentrations 

(P=0.018) (Table 25 and Figure 13), and individuals carrying more than one risk allele had 

13.1% lower vitamin B12 concentrations (Mean ± SE: 355 ± 189 pg/mL), compared to 

individuals carrying zero risk alleles (Mean ± SE: 410 ± 202 pg/mL). However, this finding 

was not significant after correction for multiple testing. 
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Figure 13: Association between the GRS and serum vitamin B12 concentrations 

Obesity risk increasing alleles ranged from 0 to 3. The white bars indicate individuals with 0 

risk alleles and the black bars indicate individuals carrying ≥1 alleles. Individuals who carried 

1 or more risk alleles had significantly lower B12 concentrations compared to individuals 

carrying 0 risk alleles (P = 0.018)]. Error bars indicate Standard error. 

 

There were no statistically significant associations between GRS and homocysteine or 

folic acid concentrations (Table 25). 

5.4.4 Interaction between the GRS and lifestyle factors on vitamin B12, folic acid, 

homocysteine and obesity traits 

None of the lifestyle factors (dietary intake (carbohydrate, protein, fat, fibre) or physical 

activity) significantly interacted with the GRS on biochemical and anthropometric 

measurements after correction for multiple testing (Tables 26 and 27).  
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Table 26: Interaction between the FTO-GRS and lifestyle factors on vitamin B12, folic acid, homocysteine and obesity traits   

  
BMI (kg/m2) WC (cm) 

Vitamin 

B12(pg/mL) 

Homocysteine 

(μmol/L) 

Folic acid (ng/ml) 

Interaction between the GRS and 

carbohydrate energy (%) 

-0.08 ± 0.09 0.02 ± 0.11 1.40 ± 3.55 -0.03 ± 0.13 0.01 ± 0.10 

P value †0.387 0.882 0.694 0.830 0.952 

Interaction between the GRS and 

Fat energy (%) 

0.23 ± 0.12 0.18 ±0.15 0.98 ± 4.87 -0.07 ± 0.18 0.09 ± 0.14 

P value †0.052 0.225 0.841 0.709 0.539 

Interaction between the GRS and 

Protein energy (%) 

0.37 ± 0.50 0.77 ± 0.59 6.10 ± 19.95 0.03 ± 0.75 0.20 ± 0.58 

P value †0.451 0.196 0.760 0.968 0.728 
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Interaction between the GRS and 

Fibre (g) 

0.08 ± 0.05 0.14 ± 1.49 1.68 ± 1.90 -0.01 ± 0.07 0.04 ± 0.05 

P value †0.081 0.925 0.376 0.898 0.503 

Interaction between the GRS and 

physical activity levels 

1.14 ± 1.16 -0.14 ± 1.46 23.02 ± 51.29 0.99 ± 1.93 0.46 ± 1.51 

P value †0.327 0.924 0.654 0.609 0.760 

 

Values are beta coefficients ± standard errors.  

P values were obtained by using a general linear model adjusted for age, BMI, Type 2 diabetes status, Type 2 diabetes medication and sex 

† P values were obtained by using a general linear model adjusted for age, Type 2 diabetes status, Type 2 diabetes medication and sex 

Abbreviations: BMI body mass index; WC waist circumference; WHR waist to hip ratio 
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Table 27: Interaction between the FTO-GRS and lifestyle factors on obesity  

 

Interaction between the GRS and dietary factors on Obesity Interaction between the 

GRS and physical activity 

levels on Obesity 

GRS * Fat energy % 
GRS * carbohydrate 

energy % 
GRS * protein energy % GRS * fibre (g) 

Odds Ratio (95% 

CI) 
1.096 (0.980-1.227) 0.962 (0.889-1.040) 1.113 (0.729-1.762) 1.034 (0.984-1.086) 1.026 (0.263-4.003) 

P Value 0.109 0.326 0.578 0.182 0.970 

Values are beta coefficients ± standard errors.  

 P values were obtained by using binary logistic regression adjusted for age, T2D, Type 2 diabetes medication and sex
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5.4.5 Discussion 

Both obesity and vitamin B12 deficiency, are modifiable risk factors for several chronic 

diseases. Moreover, both risk factors have been shown previously to be associated with one 

another. This is the first study to use a genetic approach to establish a relationship between 

obesity and vitamin B12 levels in an Asian Indian population. Our study confirmed the strength 

of the association between the GRS generated from the two FTO SNPs and BMI and 

demonstrated the impact of genetically instrumented BMI on serum B12 concentrations. These 

results suggest that increases in BMI could potentially contribute to the adverse health effects 

associated with vitamin B12 deficiency. Given that low vitamin B12 concentrations in Asian 

Indians are common [397, 423], our study highlights the importance of considering obesity as 

a risk factor for vitamin B12 deficiency with implications on the possible targeting of relevant 

obesity prevention strategies. 

 Variants of the FTO gene are known to be the strongest genetic predictor of obesity to 

date [424, 425]. It has been suggested that risk variants at the FTO locus trigger the 

overexpression of ghrelin mRNA, leading to higher levels of the hunger hormone, ghrelin, to 

be secreted [426], which in turn makes individuals over consume energy-dense foods [427, 

428]. In general, the two selected intronic SNPs rs2388405 and rs8050136 could potentially be 

relevant as intronic enhancers, as they may enhance the expression of the FTO gene [416]. In 

support of this, in a previous study conducted in a South Indian population (CURES), the FTO 

SNP, rs8050136, was associated with an increased risk of obesity [371]. Given the strong role 

of the FTO locus in obesity [11, 371], FTO was considered as a suitable candidate to establish 

the genetic link between obesity-related traits and vitamin B12 concentrations. 

Reduced vitamin B12 concentrations in the obese population are thought to result from 

a nutrient-poor diet, increased nutrient requirements in relation to an increased body size and 
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the physiological effects of obesity on nutrient absorption/metabolism [84, 85]. Additionally, 

obesity is a well-known risk factor for T2DM [429] and gastroesophageal reflux disease 

(GERD) [430]. As a result, obese individuals are more likely to take metformin and proton 

pump inhibitors (PPIs), which have been shown to reduce serum B12 levels by inhibiting the 

absorption of the vitamin [93, 431]. In our study, we found a significant association between 

FTO GRS and vitamin B12 concentrations in South Asian adults. Several studies in India, have 

reported significant associations between vitamin B12 status and obesity related traits [4-7]. A 

study conducted in North India, reported that there was a negative correlation between waist 

circumference and reduced levels of vitamin B12 [4]. A study looking at 2,403 school-going 

adolescents (11–17 years) from Haryana, India reported that more than half (51.2%) of obese 

adolescents were vitamin B12 deficient [6]. Furthermore, recent findings from the CURES (n 

= 1500 individuals) demonstrated that the prevalence of vitamin B12 deficiency significantly 

increased in those with abdominal obesity and the mean levels of vitamin B12 significantly 

decreased with increasing degrees of glucose tolerance [5]. However, in this study, we were 

unable to identify a similar trend when considering the GRS, which could be due to the smaller 

sample size of our study (data not shown). However, our data confirms the association between 

vitamin B12 concentrations and obesity and suggests that individuals genetically predisposed 

to obesity are at a higher risk of vitamin B12 deficiency. 

Current literature suggests that the genetic profile of an individual can shape the 

microbiome of the host, and indeed an altered gut flora has been associated with vitamin B12 

deficiency [14, 264]. In a study in rodents, it was found that the type of dietary lipids (lard or 

fish oil) influenced the structure of the microbiome as there was an interaction between gut 

microbiota and saturated lipids in promoting white adipose tissue inflammation [432]. 

Chakraborty et al postulated that a higher concentration of inflammatory cytokines could 

impair vitamin B12 absorption or biosynthesis [6]. Another study reported that low vitamin 
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B12 status induced excess triacylglycerol biosynthesis and secretion of pro-inflammatory 

cytokines [433]. Whether the FTO genotypes influence the association between obesity and 

vitamin B12 concentrations by modulating the gut microbiota composition and inducing 

metabolic inflammation requires further investigation utilizing faecal samples.  

The main strength of this  study was the use of a validated food frequency questionnaire 

[372], which has shown high reproducibility and validity for total carbohydrates and dietary 

fibre, and the use of a GRS. Moreover, the sampling was representative of the overall 

population of Chennai. Nevertheless, some limitations need to be acknowledged. Although the 

majority of Indian adults are physically inactive and consume a diet high in carbohydrates [382, 

405], no significant interactions were found between the GRS and lifestyle factors on vitamin 

B12 and metabolic disease outcomes in our study, which could be attributed to the small sample 

size. The GRS only used two variants from the FTO gene, and we cannot fully exclude that 

other variants of the FTO gene may also be important.  Another limitation was the use of a 

cross-sectional design to investigate genetic effects at a single point in time and hence no cause 

effect inferences can be drawn, for which a longitudinal analysis design over a specific time 

period would be needed. 

5.5 Conclusion 

In summary, our study suggests that genetic variations at the FTO locus appear to 

influence serum vitamin B12 concentrations. However, we were unable to show an impact of 

the GRS on lowering B12 concentrations through a dietary influence. Longitudinal studies 

could help to establish the effect of genetic influences on vitamin B12 concentration.  
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Chapter 6  

A nutrigenetic approach for investigating the relationship between 

vitamin B12 status and metabolic traits in Indonesian women 

For this study, I developed an analysis plan before I undertook the statistical analysis. I 

screened and validated the dataset to perform statistical analysis. I performed the entire 

statistical analysis using the SPSS software; I undertook a literature review as part of the 

introduction to the study and wrote the manuscript. I revised the manuscript based on the 

comments from all the co-authors before the manuscript was submitted to the journal.  

Published (The published version of the paper is attached as an appendix at the end of 

the thesis) 

Surendran S, Aji AS, Ariyasra U, Sari SR, Malik SG, Tasrif N, Yani FF, Lovegrove JA,Sudji 

IR, Lipoeto NI, Vimaleswaran KS  (2019). A nutrigenetic approach for investigating the 

relationship between vitamin B12 status and metabolic traits in Indonesian women. Journal of 

Diabetes & Metabolic Disorders (Published). 

6.1 Abstract 

Purpose: Adverse effects of maternal vitamin B12 deficiency have been linked to major 

clinical outcomes, including increased body mass index and gestational diabetes, however, less 

is known about vitamin B12 nutrition in non-pregnant women. Hence, the aim of the present 

study was to explore the relationships between metabolic traits and vitamin B12 status in a 

cohort of healthy Indonesian women and to investigate whether these relationships were 

modified by dietary intake using a genetic approach.   

Methods: A total of 117 Minangkabau women (aged 25-60 years), from the city of Padang, 

West Sumatra underwent anthropometric, biochemical, dietary intake analysis and genetic 
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tests. Genetic risk scores (GRS) based on nine vitamin B12 associated single nucleotide 

polymorphisms (SNPs) (B12-GRS) and nine metabolic SNPs (metabolic-GRS) were 

constructed.  

Results: The B12-GRS and metabolic-GRS had no effect on vitamin B12 (P>0.160) and 

metabolic traits (P>0.085). However, an interaction was observed between the B12-GRS and 

dietary fibre intake (g) on glycated haemoglobin (HbA1C) levels (P interaction=0.042), where 

among those who consumed a low fibre diet (4.90 ± 1.00 g/day), individuals carrying ≥9 risk 

alleles for vitamin B12 deficiency had significantly higher HbA1C levels (P=0.025) compared 

to those carrying ≤8 risk alleles.  

Conclusion: Our study showed a significant impact of the B12-GRS on HbA1C concentrations 

through the influence of a dietary factor, however, our study failed to provide evidence for an 

impact of metabolic-GRS on lowering B12 concentrations. Further replication studies utilizing 

larger sample sizes are needed to confirm our findings.  

 

6.2 Introduction 

Vitamin B12 adequacy plays a critical role in a multitude of physiological processes, including 

DNA synthesis, haematological development and neurological function [2, 50]. Moreover, 

vitamin B12 is now known to play a much more profound and wide-ranging role in maternal 

health as well as foetal development [70, 434]. Low maternal plasma concentrations of vitamin 

B12 have shown negative correlations with body mass index (BMI) levels in healthy women 

[401] and have been associated with pregnancy complications such as gestational diabetes 

mellitus [70], recurrent pregnancy loss [435], higher BMI [69] and neural tube defects [436]. 

Notably, the harmful effects of maternal malnutrition are not just confined to pregnancy 

complications and birth defects. Findings from the Pune Maternal Nutrition Study (PMNS) in 

India have shown that low maternal vitamin B12 increases the risk of insulin resistance and 
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relative adiposity in 6- to 7-y-old children, with the highest levels of insulin resistance 

occurring when mothers had a combination of a high folate and low vitamin B12 status [69].  

 Suboptimal vitamin B12 status is common in many parts of the world [59]. Published 

data on vitamin B12 status of any life-stage group in Indonesian women is lacking with the 

exception of an earlier report in 2017 showing that the prevalence of a vitamin B12 deficient 

diet was 34.5% in 606 Indonesian pregnant women (14-49 years) [437]. The Minangkabau 

culture in Indonesia is of particular interest, as it is the world’s largest matrilineal system of 

kinship, where women hold greater power in both family and society [438]. Food supply is 

centred around women and compelling evidence suggests that adequate nutrition protects 

against metabolic disorders related to obesity [439], as a result understanding the dietary 

patterns of women in relation to their genetic susceptibility is of great importance.  

Although vitamin B12 deficiency is associated with a wide range of chronic diseases 

and conditions, including obesity, and with increasing severity of metabolic dysfunction, such 

as insulin dysregulation [4-7], the relationship between low vitamin B12 status and obesity 

related traits has remained inconsistent [93]. It is possible that certain genotypes might jointly  

contribute to obesity and vitamin B12 deficiency [93] and the implementation of a genetic 

approach to establish the relationship between vitamin B12 and obesity could be a more 

desirable option over observational studies, as results are less prone to confounding factors. 

While genetic studies have implicated several gene loci in the predisposition to vitamin B12 

deficiency, no study has yet been carried out in the Indonesian  population [14]. Hence, for the 

first time we used a genetic approach to explore the relationship between metabolic traits and 

vitamin B12 status and investigated whether these relationships were modified by lifestyle 

factors in a cohort of Minangkabau women in Padang. Identifying the impact of vitamin B12 

status on metabolic traits will help us to reduce the burden of metabolic diseases through 

implementation of policies for screening of vitamin B12 deficiency. 
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6.3 Methodology 

6.3.1 Study participants 

The Minangkabau Indonesia Study on Nutrition and Genetics (MINANG) study is a cross-

sectional pilot study that was conducted in the city of Padang, West Sumatra, Indonesia, from 

December 2017 to January 2018. This study was conducted as part of the ongoing GeNuIne 

(Gene-Nutrient Interactions) Collaboration, the main objective of which is to investigate the 

effect of gene-nutrient interactions (nutrigenetics) on metabolic disease outcomes using 

population based studies from various ethnic groups [12]. The study was conducted in 

accordance with the principles of the Declaration of Helsinki and was approved by the Ethical 

Review Committee of the Medical Faculty, Andalas Univesity (No.311/KEP/FK/2017). All 

participants provided written informed consent before participating. Participants were allowed 

to leave the study at will and opt out from any of the procedures. One hundred and thirty-three 

women were recruited from community health centers in two sub districts in Padang City to 

represent both urban (50% Padang Timur) and rural areas of Padang (50% Kuranji) population. 

Inclusion criteria were healthy women (between 25-60 years old) with Minangkabau ethnicity. 

Among the 133 eligible adults, 10 adults were excluded from the study. Exclusion criteria 

included the following: having a previous history of type 2 diabetes, cardiovascular disease or 

hypertension (n=6), having a BMI of more than 40 kg/m2 or being classified as morbidly obese 

by a physician (n=0), being blood related to other participants in the study (n=0), having any 

communicable disease (n=4), being pregnant or lactating (n=0) and taking dietary or vitamin 

supplements (n=0). Among the 123 remaining adults, 5 volunteers did not undergo blood 

sample collection and were excluded from the study and one participant did not undertake the 

validated semi-quantitative food frequency questionnaire (FFQ) [440]. The final sample 

consisted of 117 women who completed an FFQ and underwent blood sample collection for 

biochemical and genetic analysis (Figure 14).  
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Figure 14: Flow chart of the subject recruitment process 

6.3.2 Anthropometric Measures  

 Body weight was measured to the nearest 100 g using an electronic scale (Seca 803, 

Seca GmbH. Co. kg, Hamburg, Germany) and height was measured to the nearest mm using a 

stadiometer (OneMed Medicom stature meter, YF.05.05.V.A.1022, Indonesia). The BMI was 

estimated as weight (kg) divided by the height (m) squared. BMI was classified according to 

the Asia-Pacific classification for BMI/age according to sex [441].The waist (cm) 

circumference was measured in a standing position with the feet positioned close together. The 

waist circumference (WC) was measured using a metal tape (Medline-OneMed Medicom, 

Jakarta, Indonesia) midway between the lower border of the rib cage and the iliac crest, at the 

end of gentle expiration. Body fat percentage was measured using the Tanita MC780 multi 

frequency segmental body composition analyser. 
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6.3.3 Biochemical measures 

For the determination of biochemical parameters, blood samples (5 ml) were collected by 

a trained phlebotomist in the morning, after a 12 hour fast. The blood samples were used to 

measure vitamin B12, glucose, insulin and glycated hemoglobin (HbA1c). All biochemical 

samples were assayed using the xMark Microplate Spectrophotometer (Bio-Rad Laboratories 

Inc, Hercules, California, USA). Serum concentrations of vitamin B12, glucose, insulin and 

HbA1c were assessed using enzyme-linked immunosorbent assay (ELISA) kits from Bioassay 

Technology Laboratory (Shanghai, China). 

6.3.4 Assessment of dietary intake and physical activity 

Data collection was completed by a qualified nutritionist in the home or in an integrated 

health service post. Dietary intakes were assessed using a previously validated and published 

semi-quantitative food frequency questionnaire (SQ-FFQ) containing 223 food items [440]. In 

brief, participants were asked to estimate the usual frequency (number of times per day, week 

or month) and the portion sizes of various food items.  Portion size photographs of all relevant 

foods (including some prepared dishes) were used by participants while completing the SQ-

FFQ, to aid the estimation of portion size intake [442]. All information provided by the 

participants was double-checked for accuracy. The recorded data was analyzed with the 

Indonesian Food Database and Nutrisurvey (EBISpro, Germany) to estimate energy as well as 

macro- and micronutrient consumption. Wherever appropriate, nutrient intake values were 

adjusted to energy by the nutrient (energy-adjusted) residual method [345].  

  “The Global Physical Activity Questionnaire” (GPAQ), developed by the World Health 

Organization (WHO) was used to measure physical activity [369]. Total time in moderate-to-

vigorous physical activity was calculated according to the WHO STEPwise method and was 

expressed as metabolic equivalent minutes per day (METmins/day). Furthermore, participants 
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were classified as “active” if they accumulated ≥600 METmins/week or “inactive” if they did 

<600 METmins/week. Sedentary behaviour (SB, mins/day) was determined from the last 

question of the GPAQ, based on how long the participants spent sitting while working, in a 

vehicle, watching television, or lying down, except sleeping [369]  

6.3.5 SNP selection and genotyping 

We selected nine vitamin B12-related SNPs (Methylenetetrahydrofolate reductase 

[MTHFR]- rs1801133, Carbamoyl-phosphate synthase 1 [CPS1]- rs1047891, Cubulin 

[CUBN]- rs1801222, CD320 molecule [CD320]- rs2336573, Transcobalamin 2 [TCN2]- 

rs1131603, Fucosyltransferase 2 [FUT2]- rs602662, Transcobalamin 1 [TCN1]- rs34324219, 

Fucosyltransferase 6 [FUT6]- rs778805 and Methylmalonyl-CoA mutase [MUT]- rs1141321) 

based on the recent review article by Surendran et al. [14].  

The nine metabolic disease-related SNPs were selected for our analysis based on 

previously published candidate gene association and genome-wide association (GWA) studies 

for metabolic disease-related traits [370-378]: Fat mass and obesity-associated [FTO]- 

rs9939609 and rs8050136, Melanocortin 4 Receptor [MC4R]- rs17782313 and rs2229616, 

Transcription factor 7-like 2 [TCF7L2]- rs12255372 and rs7903146, Potassium voltage-gated 

channel subfamily J member 11 [KCNJ11]- rs5219, Calpain 10 [CAPN10]- rs3792267 and 

rs5030952) 

Genomic DNA was isolated from peripheral blood leukocytes using the PureLink 

Genomic DNA Mini Kit (Invitrogen, Carlsbad, USA) with spin column methods. The DNA 

concentration was determined using a NanoDrop spectrophotometer. Genotyping was 

performed at LGC Genomics (http://www.lgcgroup.com/services/genotyping), which employs 

the competitive allele-specific PCR-KASP® assay. 

http://www.lgcgroup.com/services/genotyping
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6.3.6 Statistical analysis 

The SPSS statistical package (version 22; SPSS Inc., Chicago, IL, USA) was used for 

the statistical analysis. Results from the descriptive analyses are presented as means and 

standard deviations (SD) for continuous variables and as percentages for categorical variables. 

Generalized obesity was defined according to the Asia-Pacific classification of BMI  for Asians 

as non-obese (BMI < 23 kg/m2) and obese (BMI ≥ 23 kg/m2) [441]. We performed an 

independent t-test to compare the means of the quantitative variables between non-obese 

individuals vs obese individuals. Comparison of the proportion of individuals engaging in 

different types of physical activity levels (vigorously active, moderately active and sedentary) 

between non-obese vs obese individuals was analyzed by the Chi Square test. The normality 

of variable distribution was verified by the Shapiro-Wilk test; WC, body fat percentage, 

glucose, insulin, HbAC1 and vitamin B12 levels were not normally distributed in our study 

population; therefore, the data were natural log-transformed prior to analysis.  

Allele frequencies were estimated by gene counting. The Chi-square test was used to 

compare the proportions of genotypes or alleles. Fifteen of the SNPs were in Hardy Weinberg 

Equilibrium (HWE) (P > 0.05) (Table 28). HWE was not calculated for the SNPs TCN2 

rs1131603 and TCN1 rs34324219 as no minor alleles were present. The SNP FUT2 rs602662 

deviated from HWE; however, this SNP was not excluded from analysis. The KASPTM 

genotyping technology used in this study, has been independently assessed to be over 99.8% 

accurate [443]. Validation of the KASPTM genotyping was conducted at LGC genomics and 

the quality of the genotyping results were independently assessed and confirmed by the project 

manager. This ruled out genotyping artefacts as possible reasons for deviation from HWE. 

Hence, it is possible that the SNP FUT2 rs602662 could have deviated from HWE due to 

population or racial grouping substructure (Sub-grouping), non-random mating, linkage 

disequilibrium (incomplete mixing of different ancestral population) or chance findings [379]. 
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Interestingly, the SNP FUT2 rs602662 deviated from HWE within the Sri Lankan 

(GOOD) population and  in a GWA study conducted in India; the authors ruled out that the 

deviation was not due to a genotyping error and still used this SNP for analysis in their study 

[233]. It is possible, that FUT2 rs602662 does not reach HWE in South / South East Asian 

populations. An alternative reason could be that the HWE is not reached in this population, due 

to the small sample size and the possibility of interbreeding (especially as consanguineous 

marriages are common in these populations). 
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Table 28: Genotype distribution of vitamin B12 related SNPs and metabolic disease-related SNPs 

 

Gene rs number Major 

allele 

Minor 

allele 

Common 

Homozygotes  (%) 

Heterozygotes 

(%) 

Rare 

Homozygotes  (%) 

Minor 

allele 

frequency 

HWE 

P 

value 

MTHFR rs1801133 C T 92 (79.30) 24 (20.70) 0 (0.00) 0.10 0.214 

CPS1 rs1047891 C A 48 (41.00) 56 (47.90) 13 (11.10) 0.35 0.579 

CUBN rs1801222 C T 84 (74.30) 27 (23.90) 2 (1.80) 0.14 0.920 

CD320 rs2336573 C T 86 (74.10) 29 (25.00) 1 (0.90) 0.13 0.390 

TCN2 rs1131603 T C 117 (100) 0 (0.00) 0 (0.00) 0 N/A 

FUT2 rs602662 G A 111 (94.90) 4 (3.40) 2 (1.70) 0.03 0.000 

TCN1 rs34324219 C A 117 (100) 0 (0.00) 0 (0.00) 0 N/A 

FUT6 rs778805 T C 33 (28.20) 61 (52.10) 23 (19.70) 0.46 0.586 

MUT rs1141321 G A 67 (59.30) 40 (35.40) 6 (5.30) 0.23 0.993 

CAP10 rs3792267 G A 108 (91.50) 9 (7.60) 1 (0.80) 0.05 0.123 
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CAP10 rs5030952 C T 77 (66.40) 31 (26.70) 8 (6.90) 0.20 0.063 

KCNJ11 rs5219 C T 55 (47.00) 47 (40.20) 15 (12.80) 0.33 0.329 

TCF7L2 rs12255372 G T 97 (82.90) 20 (17.10) 0 (0.00) 0.09 0.312 

TCF7L2 rs7903146 C T 95 (81.90) 21 (18.10) 0 (0.00) 0.09 0.284 

FTO rs9939609 T A 70 (60.30) 39 (33.60) 7 (6.00) 0.23 0.618 

MC4R rs17782313 T C 89 (76.10) 26 (22.20) 2 (1.70) 0.13 0.929 

FTO rs8050136 C A 69 (60.00) 39 (33.90) 7 (6.10) 0.23 0.638 

MC4R rs2229616 G A 116 (99.10) 1 (0.90) 0 (0.00) 0.00 0.963 

 

MAF; minor allele frequency, HWE; Hardy Weinberg Equilibrium, X2; Chi-Squared value  

 



251 

 A schematic representation of the study design is presented in Figure 15. The 

unweighted, risk-allele GRS method was calculated for each participant as the sum of risk 

allele counts across each SNP which predicted vitamin B12 status. The B12-GRS was 

generated from the vitamin B12-related SNPs in the MTHFR, CPS1, CUBN, CD320, TCN2, 

FUT2, TCN1, FUT6, MUT genes. Furthermore, another unweighted GRS was created using 

allele markers previously reported to be associated with metabolic disease traits. The 

Metabolic-GRS was generated from the SNPs in the CAP10, KCNJ11, TCF7L2, FTO and 

MC4R genes. A value of 0, 1 or 2 was assigned to each SNP, which denotes the number of risk 

alleles on that SNP. These values were then calculated by adding the number of risk alleles 

across each SNP. The average number of risk alleles per person for the B12-GRS was 8.18 

(SD = 1.36), which ranged from 5 to 12. The sample was stratified, by the median, into a “low 

genetic risk group,” for those with a GRS ≤ 8 risk alleles (n = 73), and into a “high genetic risk 

group,” for those with a GRS ≥ 9 risk alleles (n = 44). For the metabolic-GRS, the average 

number of risk alleles per person was 4.66 (SD = 1.76), which ranged from 2 to 9. The sample 

was stratified, by the median, into a “low genetic risk group,” for those with a GRS ≤ 4 risk 

alleles (n = 61), and into a “high genetic risk group,” for those with a GRS ≥ 5 risk alleles 

(n = 56). Linear regression was used to examine the association of the two GRS scores with 

the biochemical and anthropometric outcomes (vitamin B12, glucose, insulin, HbA1c, BMI, 

WC and body fat percentage). The interaction between the two GRS scores and dietary factors 

on biochemical and anthropometric outcomes was determined by including interaction term 

(GRS*lifestyle factor) in the regression model. Models were adjusted for age, BMI, and total 

energy intake, wherever appropriate. Correction for multiple testing was applied using 

Bonferroni correction [2 GRS * 7 biochemical and anthropometric measurements (vitamin 

B12, glucose, insulin, HbA1c, BMI, WC, body fat percentage) * 5 lifestyle factors (dietary 

carbohydrate (energy %), dietary protein (energy %), dietary fat (energy %), dietary fibre (g) 



252 

and physical activity levels) = 70 tests; 0.05/70 = 0.000714; P<0.000714]. All data are 

expressed as mean ± SD. Given that there are no studies on GRS in relation to B12 status and 

metabolic outcomes and no previously reported effect sizes for the South-East Asians, we were 

unable to perform a power calculation. 

 

Figure 15: Diagram representing the study design.  

Four possible associations and four possible interactions were examined. One-sided arrows 

with unbroken lines represent genetic associations and one-sided arrows with broken lines 

represent interactions between a GRS and a lifestyle factor on serum vitamin B12/ metabolic 

traits.  The association of the metabolic-GRS with vitamin B12 and metabolic disease-related 

traits and the association of B12–GRS with vitamin B12 and metabolic disease related traits 

were tested. Lastly, the impact of lifestyle factors (macronutrient intakes and physical activity 

levels) on these genetic associations was investigated.  
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6.4 Results  

6.4.1 Characteristics of the participants  

In this study, 117 women (mean age, 40.40 ± 10.20 years; BMI, 25.10 ± 4.20 kg/m2) were 

included. Table 29 illustrates the main characteristics of the study participants.

Table 29: Anthropometric and biochemical characteristics of women participants 

  
All women Non-obese* Obese** 

P value*** 

(N=117) (N=32) (N=85) 

Age (yrs) 40.40 ± 10.20 35.70 ± 11.30 42.10 ± 9.20 0.006 

Height (cm) 152.90 ± 5.20 154.90 ± 4.70 152.20 ± 5.20 0.012 

BMI (kg/m2) 25.10 ± 4.20 20.10 ± 2.10 27.00 ± 3.10 <0.001 

WC (cm) 83.10 ± 12.50 72.80 ± 13.30 87.00 ± 9.70 <0.001 

Body fat (%) 35.70 ± 7.00  27.00 ± 5.20 39.00 ± 4.30 <0.001 

Fasting serum Glucose 

(mg/dl) 
92.20 ± 20.20 85.70 ± 9.00 94.70 ± 22.70 0.033 

Fasting serum Insulin 

(mIU/L) 
32959  ± 26327 30372 ± 26179 33933 ± 26470 0.517 

HbA1C (ng/ml) 662 ± 624 638 ± 606 672 ± 633 0.794 
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Fasting vitamin B12 

(pg/mL) 
591 ± 579 426 ± 137 433 ± 193 0.795 

Physical Activity Levels 

Sedentary (39.30%) Sedentary (46.90%) Sedentary (36.50%) 

0.490a Moderate (49.60%) Moderate (40.60%) Moderate (52.90 %) 

Vigorous (11.10%) Vigorous (12.50 %) Vigorous (10.60 %) 

Total energy (kcal/d) 1774 ± 609 1849 ± 585 1746 ± 619 0.416 

Protein (g) 76.90 ± 36.50 80.50 ± 29.00 75.50 ± 39.00 0.514 

Fat (g) 59.00 ± 33.10 67.30 ± 27.70 55.80 ± 34.60 0.096 

Carbohydrate (g) 233 ± 71 230 ± 70 235 ± 72 0.714 

Dietary fibre (g) 8.80 ± 4.50 9.70 ± 4.80 8.50 ± 4.40  0.222 

Saturated Fat (g) 20.90 ± 11.10 23.70 ± 11.10 19.80 ± 10.90 0.085 

MUFA (g) 8.20 ± 4.50 9.80 ± 5.20 7.50 ± 4.20 0.015 
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PUFA (g) 6.30 ± 3.50 6.80 ± 3.20 6.10 ± 3.60 0.332 

 

Data shown are represented as means ± SD 

P values were calculated by using the Independent t test 

*Non-Obese individuals refers to the percentage of individuals with a BMI of under 23 according to 

the Asia-Pacific classification of BMI. 

**Obesity cases refers to the percentage of individuals with a BMI of equal to or over 23 according to 

the Asia-Pacific classification of BMI. 

***P values for the differences in the means/ proportions between non-obese and obese individuals 

aP values were calculated by using the Chi Squared test 

Abbreviations: BMI Body mass index; WC Waist circumference; MUFA Monounsaturated fatty acids; 

PUFA Polyunsaturated fatty acids. 

 

6.4.2 Association between B12-GRS and metabolic-GRS with biochemical and 

anthropometric measurements 

 After correction for multiple testing, none of the associations of the B12-GRS with vitamin 

B12 and metabolic traits (P> 0.160) were statistically significant (Table 30). Furthermore, no 

associations between the metabolic-GRS and vitamin B12 or metabolic traits (P>0.085) were 

observed (Table 31). 
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Table 30: Association of the B12-GRS with obesity traits, biochemical traits and anthropometric measurements 

GRS BMI (kg/m2) WC (cm) 

 

Body Fat (%) 

Fasting serum 

glucose (mg/dl) 

Fasting serum 

insulin (mIU/L) HbAC1 (ng/ml) 

Vitamin B12 

(pg/ml) 

 

≤ 8 risk 

alleles 
24.90 ± 4.10 82.10 ± 13.20 

 

 

35.40 ± 7.10 89.90 ± 9.30 31331 ± 24636 625 ± 579 452 ± 187 

 

 

≥ 9 risk  

alleles 
25.50 ± 4.30 84.60 ± 11.00 

 

 

 

36.30 ± 6.90 96.10 ± 30.60 35659 ± 29008 726 ± 693 392 ± 156 

P value 0.468† 0.456* 

 

 

 

0.898* 0.193* 0.328* 0.444* 0.160* 

Values are given as mean ± standard deviation.  

P values for differences between ≤8 and ≥9 risk alleles were obtained using linear regression model adjusted for age, sex and BMI. 

† P values were obtained by using a general linear model adjusted for age and sex 

*P values were based on the log transformed values 

Abbreviations: BMI body mass index; WC waist circumference; HbAC1 glycated haemoglobin 
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Table 31: Association of the metabolic-GRS with obesity traits and biochemical and anthropometric measurements 

GRS BMI (kg/m2) WC (cm) 

 

 

Body Fat (%) Fasting serum 

glucose (mg/dl) 

Fasting serum insulin 

(mIU/L) 

Glycated 

Haemoglobin 

(ng/ml) 

Vitamin 

B12 

(pg/ml) 

 

≤ 4 risk alleles 24.50 ±4.10 82.30 ± 14.40 

 

35.00 ± 6.80 95.00 ± 26.00 33764 ± 27805 670 ± 651 436 ± 174 

 

≥ 5 risk  alleles 25.80 ± 4.20 83.90 ± 10.20 

 

36.50 ± 7.20 89.20 ± 10.30 32082 ± 24837 654 ± 598 426 ± 184 

P value 0.085† 0.570* 

 

 

 

0.383* 0.361* 0.785* 0.653* 0.778* 

Values are given as mean ± standard deviation  

P values for differences between ≤4 and ≥5 risk alleles were obtained using linear regression model adjusted for age, sex and BMI. 

† P values were obtained by using a general linear model adjusted for age and sex 

*P values were based on the log transformed values 

Abbreviations: BMI body mass index; WC waist circumference; HbAC1 glycated haemoglobin
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6.4.3 Interaction between the B12-GRS and dietary factors on biochemical and 

anthropometric measurements 

We observed an interaction between the B12-GRS and dietary fibre intake (g) on log 

transformed HbA1C (Pinteraction= 0.042) (Figure 16 and Table 32). Individuals who carried 9 

or more risk alleles for vitamin B12 deficiency had 8.10 % higher HbAC1 concentrations 

(ng/ml) in the lowest tertile of fibre intake (g) (Mean ± S.D: 4.90 ± 1.00 g) compared to those 

with 8 or less risk alleles for vitamin B12 deficiency.  

Table 32: Interaction between the B12-GRS and metabolic-GRS and lifestyle factors on 

biochemical outcomes and anthropometric measurements 

Interaction between the GRS * lifestyle factors on BMI 

B12-GRS * fat 

energy %  

B12-GRS * 

carbohydrate 

energy % 

B12-GRS * 

protein energy % 

B12-GRS * 

fibre (g) 

B12-GRS * 

Physical 

activity levels 

0.933†  0.685†  0.993†  0.155†  0.682† 

metabolic-GRS * 

fat energy %  

metabolic-GRS * 

carbohydrate 

energy % 

metabolic-GRS * 

protein energy % 

metabolic-

GRS * fibre 

(g) 

metabolic-

GRS * 

Physical 

activity levels 

 0.422†  0.230†  0.110†  0.273† 0.757† 

Interaction between the GRS * lifestyle factors on Log waist circumference (cm) 

B12-GRS * fat 

energy %  

B12-GRS * 

carbohydrate 

energy % 

B12-GRS * 

protein energy % 

B12-GRS * 

fibre (g) 

B12-GRS * 

Physical 

activity levels 

 0.444  0.875  0.395  0.547  0.706 

metabolic-GRS * 

fat energy %  

metabolic-GRS * 

carbohydrate 

energy % 

metabolic-GRS * 

protein energy % 

metabolic-

GRS * fibre 

(g) 

metabolic-

GRS * 

Physical 

activity levels 
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 0.812  0.072  0.032  0.648  0.796 

Interaction between the GRS * lifestyle factors on Log Body fat (%) 

B12-GRS * fat 

energy %  

B12-GRS * 

carbohydrate 

energy % 

B12-GRS * 

protein energy % 

B12-GRS * 

fibre (g) 

B12-GRS * 

Physical 

activity levels 

0.275  0.064  0.034  0.697   0.419 

metabolic-GRS * 

fat energy %  

metabolic-GRS * 

carbohydrate 

energy % 

metabolic-GRS * 

protein energy % 

metabolic-

GRS * fibre 

(g) 

metabolic-

GRS * 

Physical 

activity levels 

 0.775  0.844 0.568  0.423  0.253 

Interaction between the GRS * lifestyle factors on Log fasting serum glucose (mg/dl) 

B12-GRS * fat 

energy %  

B12-GRS * 

carbohydrate 

energy % 

B12-GRS * 

protein energy % 

B12-GRS * 

fibre (g) 

B12-GRS * 

Physical 

activity levels 

 0.347  0.260  0.368  0.380  0.315 

metabolic-GRS * 

fat energy %  

metabolic-GRS * 

carbohydrate 

energy % 

metabolic-GRS * 

protein energy % 

metabolic-

GRS * fibre 

(g) 

metabolic-

GRS * 

Physical 

activity levels 

 0.634  0.771  0.929  0.537  0.056 

Interaction between the GRS * lifestyle factors on Log fasting serum insulin (mIU/L) 

B12-GRS * fat 

energy %  

B12-GRS * 

carbohydrate 

energy % 

B12-GRS * 

protein energy % 

B12-GRS * 

fibre (g) 

B12-GRS * 

Physical 

activity levels 

 0.757  0.341  0.073  0.215  0.629 

metabolic-GRS * 

fat energy %  

metabolic-GRS * 

carbohydrate 

energy % 

metabolic-GRS * 

protein energy % 

metabolic-

GRS * fibre 

(g) 

metabolic-

GRS * 
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Physical 

activity levels 

 0.108  0.104  0.890 0.947  0.723 

Interaction between the GRS * lifestyle factors on Log HbAC1 (ng/ml) 

B12-GRS * fat 

energy %  

B12-GRS * 

carbohydrate 

energy % 

B12-GRS * 

protein energy % 

B12-GRS * 

fibre (g) 

B12-GRS * 

Physical 

activity levels 

 0.175  0.091  0.150  0.042  0.475 

metabolic-GRS * 

fat energy %  

metabolic-GRS * 

carbohydrate 

energy % 

metabolic-GRS * 

protein energy % 

metabolic-

GRS * fibre 

(g) 

metabolic-

GRS * 

Physical 

activity levels 

 0.298  0.166  0.155  0.851  0.969 

Interaction between the GRS * lifestyle factors on Log Vitamin B12 (pg/ml) 

B12-GRS * fat 

energy %  

B12-GRS * 

carbohydrate 

energy % 

B12-GRS * 

protein energy % 

B12-GRS * 

fibre (g) 

B12-GRS * 

Physical 

activity levels 

 0.772  0.936  0.270  0.157  0.078 

metabolic-GRS * 

fat energy %  

metabolic-GRS * 

carbohydrate 

energy % 

metabolic-GRS * 

protein energy % 

metabolic-

GRS * fibre 

(g) 

metabolic-

GRS * 

Physical 

activity levels 

 0.983  0.682  0.298  0.171 0.242 

     

P values were obtained by using a general linear model adjusted for age, sex, and BMI 

† P values were obtained by using a general linear model adjusted for age and sex  

Abbreviations: BMI body mass index 
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Figure 16: Interaction between the B12-GRS and dietary fibre intake (g) on log HbAC1 

(ng/ml) (Pinteraction = 0.042) 

Among those who consumed a low fibre diet, individuals who carried 9 or more risk alleles 

had significantly higher levels of log HbAC1 compared to individuals carrying 8 or less risk 

alleles (P = 0.025). Error bars indicate Standard error. 

 

Interactions were also seen between the B12-GRS and protein (energy %) on log 

transformed body fat percentage (P = 0.034). However, further stratification of participants 

based on their consumption of low-, medium- and high-dietary protein (energy %) did not show 

a statistically significant association between the GRS and the outcomes in any of the tertiles. 
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6.4.4 Interaction between the metabolic-GRS and dietary factors on biochemical and 

anthropometric measurements 

An interaction was found between the metabolic-GRS and protein (energy %) on log 

transformed WC (P=0.032) (Table 32 and Figure 17). Individuals who carried 5 or more risk 

alleles for metabolic disease had 2.15% lower WC measurements (cm) in the lowest tertile of 

protein energy intake (%) (Mean ± S.D: 1.91 ± 0.06 %) compared to those with 4 or less risk 

alleles (P= 0.027) (Figure 17).  

 

Figure 17: Interaction between the metabolic-GRS and protein energy (%) on log waist 

circumference (Pinteraction = 0.032) 

Among those who consumed a low protein diet, individuals who carried 5 or more risk alleles 

had significantly lower waist circumference measurements compared to individuals carrying 

4 or less risk alleles (P = 0.027). Error bars indicate Standard error.
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6.4.5 Interaction between the B12-GRS and physical activity on biochemical and 

anthropometric measurements 

No statistically significant interactions were observed between the two GRSs (vitamin 

B12 and metabolic traits) and physical activity on biochemical and anthropometric 

measurements (P>0.056) (Table 32).  

After correction for multiple testing (Bonferroni corrected <0.000714), none of these GRS-

lifestyle interactions were considered statistically significant. 

6.5 Discussion 

To our knowledge, this is the first study to use a nutrigenetic approach to explore the 

relationship between vitamin B12 status and metabolic traits in Indonesian women. Our study 

demonstrated the impact of genetically instrumented B12 concentrations on HbA1C levels, a 

marker of glycaemic control [444], through the influence of dietary fibre intake. Given that 

previous studies have shown that the consumption of dietary fibre is inadequate in Indonesian 

adults [445-447], our findings, if replicated in future studies, may have significant public health 

implications in terms of encouraging a consumer education campaign targeted around 

increasing fibre intake, in order to reduce HbA1C levels, which may be associated with 

improved glycaemic control.  

 In the present study, we constructed a GRS consisting of nine vitamin B12 decreasing 

SNPs in genes involved in vitamin B12 metabolism [14]. Our study showed that individuals 

carrying less than 8 risk alleles for vitamin B12 deficiency had higher vitamin B12 

concentrations, compared to those carrying more than 9 risk alleles. However, there was no 

statistically significant difference between individuals carrying 8 or less risk alleles vs 9 or 

more risk alleles for the B12-GRS, which could be attributed to the small sample size. 

Furthermore, we were unable to identify any association between the B12-GRS and metabolic 

disease traits in our study, implying that linear decreases in vitamin B12 may not have a role 
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in the development of metabolic disease traits. Our finding goes in line with a Mendelian 

Randomization study investigating the effect of genetically instrumented vitamin B12 

concentrations on BMI, where there was no evidence to suggest the causal role of decreased 

serum vitamin B12 levels in obesity [16]. 

Interestingly, in our study, we found a significant interaction between the B12-GRS 

and dietary fibre intake (g) on log HbA1C levels, where, among those who consumed a low 

fibre diet (Mean ± S.D: 13.60 ± 4.30), individuals carrying more than 9 risk alleles had 

significantly higher HbAC1 levels compared to those carrying 8 or less risk alleles. The average 

fibre intake in Indonesia is 10.5 g/day [448], which is lower compared to the mean fibre intake 

in the UK ( ~18g/day) and USA (~16g/day) [373]. In comparison to the mean fibre intake in 

Indonesia, the results in our study reported a lower mean fibre intake (8.80 ± 4.50 g). It is 

important that dietary intakes of fibre are increased in this population, as it may help maintain 

lower levels of HbAC1 levels in individuals carrying more than 9 risk alleles of the B12-GRS. 

Even though our study is the first to report this gene-diet interaction, a meta-analysis conducted 

from 15 randomized studies have shown that high fibre intake can reduce HbAC1 levels in type 

2 diabetic subjects [449]. High fibre intake is generally recommended to reduce the risk of 

gestational diabetes (GDM) in pregnant women [450]. It has been shown that each 10g/day 

increment in total fibre intake, corresponds to a 26% reduced risk of GDM [450]. It is possible 

that high dietary fibre may increase satiety and consequently reduce total energy intake [451, 

452]. Increased dietary fibre intake may also affect glucose homeostasis, by delaying gastric 

emptying, resulting in a slower absorption of glucose into the blood stream [450]. Additionally, 

low vitamin B12 status prevents erythropoiesis and prolongs the lifespan of erythrocytes, 

resulting in increased HbA1c levels [453]. This is the first study to provide evidence for an 

interaction between B12-GRS and HbA1c; hence, we do not have any previous studies to 

compare our findings with. 
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Accurately determining obesity has become an exceedingly important step in 

preventing the onset of metabolic syndrome or cardiometabolic diseases, which are brought 

about through excess adiposity. The underestimation of obesity, particularly in young women 

who appear to have a healthy BMI measure, could falsely lead to incorrect conclusions about 

body composition and future risk of diseases associated with increased adiposity, such as breast 

cancer [454]. The ability to measure body fat percentage is currently the preferred method of 

determining body composition over BMI, as it distinguishes between fat and lean body mass 

[455]. To date, little is known about the average body fat percentage in healthy Indonesian 

women. Although, a recent study conducted in 308 Indonesian women of Javanese ethnicity 

living in Yogyakarta Special Region Province (aged between 18-65), reported lower body fat 

% values (33.30 ± 7.70%) compared to our present study  (35.70 ± 7.00 %) [456]. Within our 

study, an interaction between the B12-GRS and protein intake (energy %) on log transformed 

body fat percentage was observed. The exact mechanism of how dietary protein results in a 

more favourable body composition profile in individuals genetically predisposed to vitamin 

B12 deficiency is not known. A previous study conducted in 1,834 participants in Canada 

reported that  high protein diets could reduce overall body fat percentage, even in the absence 

of energy restriction [457]. Further to this, it has been hypothesised that high protein diets 

increase the release of the anorectic gut hormone peptide YY (PYY), thus enhancing greater 

inter-meal satiety and reducing weight gain [458]. This suggestion for a novel interaction of 

protein (energy intake) in relation to body fat distribution in individuals genetically predisposed 

to vitamin B12 deficiency warrants further replication. 

In a review analysing the nutrient intakes of pregnant women in Indonesia, it was 

reported that pregnant Indonesian women generally have protein intakes below the estimated 

average requirements [459]. The association between low protein intake and obesity outcomes 

has attracted interest amongst health care professionals. Observational studies in the USA have 
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reported that body weight and WC were reduced when protein was consumed above the 

recommended daily allowance [0.8 g/kg body weight (BW)] [460]. It has been noted in animal 

models, that pregnant rats consuming a low protein diet were more prone to GDM and to having 

offspring with a low birthweight [461, 462]. In our study, we found a significant interaction 

between the metabolic-GRS and protein energy (%) on log WC, where individuals consuming 

a low protein diet, despite carrying 5 or more risk alleles, had a lower waist to hip ratio 

compared to individuals carrying 4 or less risk alleles.  There are no previous reports of the risk 

variants used in our GRS, but Goni et al [36] found that total protein intake interacted with a 

GRS of 16 obesity/lipid metabolism polymorphisms to modify the effect on body fat mass in 

711 individuals of Caucasian ancestry. In our study, we only observed interaction of the 

metabolic-GRS with WC but not BMI, which suggests that effects of the GRS are likely to be 

on central obesity as opposed to common obesity in Indonesian women. 

Significant interactions between genetic variants and physical activity on obesity traits 

have been reported in several studies from Europe and Asia [463, 464]. However, this is the 

first study to investigate interactions between the two GRSs and physical activity on metabolic 

traits and B12 concentrations in Indonesian women. In our study, as much as 39% of the women 

had low physical activity levels. These findings were much higher than the findings reported 

from another cross sectional study conducted across five major cities in Indonesia, who 

reported that 20% of women had a low physical activity status [465]. Although the majority of 

women in our study were physically inactive, no significant interactions were found between 

the GRSs and physical activity on metabolic traits/B12 status, which could be due to the small 

sample size of our study.  

Major strengths of our study are that this is the first study of its kind to evaluate vitamin 

B12 status among Indonesian women. Furthermore, this study used a comprehensive, 

validated, interviewer administered food frequency questionnaire [440] to measure the long-
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term macronutrient intake of the population. Nevertheless, several limitations of this study need 

to be considered. One of the main limitations of the study is the small sample size (N=117); 

however, we were still able to identify significant associations and gene-lifestyle interactions. 

Measurement errors in dietary assessment are inevitable since self-reported data on dietary 

intake are all subject to bias. We only included dietary data on total energy and macronutrient 

intake, but no data on specific foods or more specific types of micronutrients, which may 

potentially interact with GRS. Circulating concentrations of other vitamin B12 biomarkers, 

such as Holo-transcobalamin (holoTC) or Methylmalonic Acid (MMA) were not measured. 

Furthermore, all the women included in our analysis were of Minangkabau descent, and thus it 

is unknown whether our results can be generalized to other communities in Indonesia. 

6.6 Conclusion 

In conclusion, our study showed a significant effect of the B12-GRS on HbA1C 

concentrations, through the influence of a low dietary fibre intake. Additionally, our study 

failed to provide evidence for an impact of metabolic-GRS on lowering B12 concentrations. 

After correction for multiple testing, none of the interactions were statistically significant; 

hence, further replication studies utilizing larger sample sizes are needed to confirm our 

findings, before public health recommendations and personalised nutrition advice can be 

developed for Minangkabau Indonesian women. 
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Chapter 7  

A genetic approach to investigate the relationship between vitamin 

B12 status and cardio-metabolic traits in response to changes in 

dietary fat composition in 

adults with moderate cardiovascular disease risk   

For this study, I collected and transferred the blood serum samples from the freezer in the 

Department of Food and Nutritional Sciences at the University of Reading to Royal Berkshire 

Hospital (Reading, UK) for vitamin B12 analysis. In addition, I organised the genotyping of 

the selected genetic variants at the LGC Genomics, UK. I was involved in generating and 

cleaning the dataset to perform statistical analysis. I developed the analysis plan, ran the entire 

statistical analysis using the SPSS software and wrote the first draft of the manuscript. I revised 

the manuscript based on the comments from all the co-authors. This paper has been submitted 

to the journal ‘Lipids in Health and Disease’. 

Under review 

Authors: Shelini Surendran, Michelle Weech, Kim G. Jackson, Julie A. Lovegrove and Karani 

S. Vimaleswaran  

 

7.1 Abstract 

Background: Low vitamin B12 status has been reported to be a risk factor for several 

cardiometabolic traits such as obesity, diabetes and cardiovascular disease (CVD). Animal 

models have shown that the modification of dietary fat intake can affect vitamin B12 status. 

Hence, we investigated whether vitamin B12- and metabolic disease-related genetic variants 
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modify vitamin B12 concentrations and cardiometabolic traits in response to replacement of 

saturated fatty acids (SFA) with monounsaturated (MUFA) or n-6 polyunsaturated (PUFA) 

fatty acids.  

Methods: This describes a secondary analysis of the Dietary Intervention and VAScular 

function (DIVAS) study. The DIVAS study was a randomized, single-blind, parallel-

group dietary intervention, in which 119 men and women aged 21-60 y from the United 

Kingdom with moderate CVD risk followed one of three isoenergetic diets rich in SFA, MUFA 

or n-6 PUFA for 16 weeks. Genetic risk scores (GRS) based on three vitamin B12 associated 

single nucleotide polymorphisms (SNPs) (B12-GRS) and six metabolic SNPs (metabolic-

GRS) were constructed.  

Results: After the 16-week intervention, post-hoc tests indicated no significant interactions 

between changes in vitamin B12 concentrations and the three dietary groups and the B12- and 

metabolic-GRSs . For the metabolic-GRS, individuals with 6 or more risk alleles showed a 

significant reduction in 24-hour ambulatory systolic blood pressure after the MUFA diet (n = 

13; -7± 8 mm Hg) compared to the SFA (n = 15; 2 ± 7 mm Hg /or n-6 PUFA dietary groups (n 

= 16; 2 ± 9 mm Hg) (Pinteraction = 0.012). However, this interaction was not considered 

statistically significant after correction for multiple testing.  

Conclusions: In summary, this post-hoc analysis demonstrated a greater sensitivity of the 

metabolic-GRS to dietary fat composition with a 9 mmHg lower 24-hour ambulatory systolic 

blood pressure observed following substitution of SFA with MUFA, but not n-6 PUFA. 

However, our findings failed to provide evidence for an impact of the B12-GRS on 

cardiometabolic traits. Further large intervention studies incorporating prospective genotyping 

are required to confirm or refute our findings.  
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7.2 Introduction 

Vitamin B12 is an essential micronutrient associated with the one carbon metabolic 

pathway, a cycle related to the synthesis of DNA, protein and lipids [72, 466]. In recent years, 

new functional roles of vitamin B12 have emerged, linking the water-soluble vitamin to various 

non-communicable diseases. Observational studies have provided evidence for an association 

of low serum B12 concentrations with unfavourable metabolic phenotypes, including future 

type 2 diabetes (T2D) [70], insulin resistance [67], cardiovascular disease (CVD) [10, 115], 

obesity[84] and dyslipidaemia [9]. The basis of low vitamin B12 concentrations and its 

association with these metabolic phenotypes is still under debate and could be the result of 

several mechanisms. It has been hypothesised that low vitamin B12 leads to adipocyte 

dysfunction by modulating lipid metabolism and enhancing cellular inflammation [467]. 

Furthermore, vitamin B12 insufficiency has been shown to disturb the methylation of genes 

involved in the regulation of cholesterol biosynthesis, such as sterol regulatory element binding 

transcription factor 1 (SREBF1) and LDL receptor, consequently increasing the expression of 

cholesterol biosynthesis in adipose tissue  [468]. On the other hand, it has been suggested that 

vitamin B12 deficiency is more prevalent in obese subjects due to increased vitamin B12 

demands secondary to an increased  surface area of the body [84, 91] or as a result of 

individuals consuming a diet low in micronutrient density [92].   

At present the true prevalence of vitamin B12 deficiency in the United Kingdom is 

currently unknown. A recent nationwide survey  reported the estimated prevalence of vitamin 

B12 deficiency (≤150 pmol/L) in 299 women of childbearing age (19-36 yrs) to be 12.4% 

[469]. In addition, a cross sectional analysis involving 689 men in the UK (226 omnivores, 231 

vegetarians and 232 vegans) reported that 52% of vegans, 7% of vegetarians and 0.44% of 

omnivores were vitamin B12 deficient (<118 pmol/L) [470]. Vitamin B12 concentrations of 

individuals are highly heterogenous, with interindividual variability persisting as a result of 
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environmental and genetic factors [14]. Several single nucleotide polymorphisms (SNPs) in 

the fucosyltransferase 2 (FUT2) gene have shown associations with circulating vitamin B12 

and, to date, rs492602 and rs602662 have been the most extensively studied [14]. Furthermore, 

recent studies have shown suggestive associations between variants of FUT2 with diabetes 

(Type 1 and Type 2) and BMI [16, 255-257]. Given that obesity and being overweight may 

modulate the status of vitamin B12 [7, 84], it is important to examine the role of genes involved 

in obesity-related traits with vitamin B12 status. 

In the Dietary Intervention and VAScular function (DIVAS) study, the isoenergetic 

replacement of 9.5–9.6% total energy (TE) dietary saturated (SFAs) with cis-monounsaturated 

(MUFAs) fatty acids for 16 weeks in 195 UK adults at moderate CVD risk resulted in beneficial 

effects on lipid biomarkers and ambulatory night-time blood pressure [471]. Given that the 

modification of dietary fat intake has been shown to affect vitamin B12 status in rats [472], this 

post-hoc analysis presents additional outcome measures from the DIVAS study exploring the 

effect of dietary fat composition on vitamin B12 status in individuals with moderate CVD risk. 

To investigate whether genetic polymorphisms contribute to any observable changes in vitamin 

B12 status and cardiometabolic disease risk markers, a retrospective post hoc analysis of the 

DIVAS study was conducted. We examined whether nine SNPs (6 metabolic SNPs and 3 

vitamin B12 SNPs) modified the response of vitamin B12 concentrations and cardiometabolic 

traits, after substitution of SFA with MUFA or polyunsaturated fatty acids (n-6 PUFA) in 119 

participants at moderate CVD risk. 

7.3 Methodology 

7.3.1 Study participants 

  The DIVAS study was a single-blinded, parallel, randomised controlled trial. A 

detailed description of the study criteria and methods has been previously published 

elsewhere [471, 473]. In brief, non-smoking men and women, aged between 21 and 60 years 
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with moderate risk of CVD, were recruited from Reading, UK and the surrounding area in 

three cohorts between November 2009 and July 2012. A scoring tool [473] was used to 

determine the presence of single or multiple CVD risk factors, including elevated fasted 

measures of serum total cholesterol (TC) and glucose, low high-density lipoprotein (HDL) 

cholesterol, raised blood pressure, increased BMI or waist circumference (WC), and a family 

history of premature myocardial infarction or T2D. Participants who were eligible had a risk 

score of ≥2 combined points, reflecting a moderate CVD risk (≥50% above the population 

mean). Other criteria for exclusion were the presence of abnormal fasting blood biochemistry, 

and taking dietary/vitamin supplements or medication for hypertension, raised lipids, or 

inflammatory disorders [473]. Table 33 shows the characteristics of the study participants at 

baseline. 



274 

Table 33: Baseline characteristics of study participants in the whole group and stratified by sex 

Characteristics n 
Total 

participants 
n Men n Women P value * 

Age (years) 119 47 ± 9 53 48 ± 9 66 46 ± 9 0.257 

BMI (kg/m2) 119 26.4 ± 4.0 53 26.7 ± 3.5 66 26.2 ± 4.3 0.494 

WC (cm) 111 90.7 ± 11.9 49 96.2 ± 11.1 62 86.4 ± 10.8 <0.0001 

WHR 100 0.87 ± 0.09 39 0.94 ± 0.07 61 0.82 ± 0.06 <0.0001 

24 h Ambulatory Systolic BP (mm Hg) 97 122 ± 11 39 126 ± 9 58 120 ± 11 0.007 

24 h Ambulatory Diastolic BP (mm Hg) 97 75 ± 8 39 78 ± 7 58 74 ± 7 0.019 

Total Cholesterol (mmol/L) 109 5.61 ± 1.09 47 5.81 ± 1.09 62 5.45 ± 1.07 0.090 

HDL Cholesterol (mmol/L) 109 1.54 ± 0.36 47 1.37 ± 0.32 62 1.68 ± 0.33 <0.0001 

LDL Cholesterol (mmol/L) 109 3.80 ± 0.98 47 4.11 ± 0.97 62 3.57 ± 0.93 0.004 

TAG (mmol/L) 109 1.29 ± 0.60 47 1.64 ± 0.60 62 1.02 ± 0.45 <0.0001 

Glucose (mmol/L) 109 5.12 ± 0.43 47 5.24 ± 0.44 62 5.03 ± 0.40 0.008 

Insulin (pmol/L) 119 1.40 ± 0.24 53 1.43 ± 0.25 66 1.37 ± 0.22 0.097 

HOMA-IR 109 1.09 ± 0.71 47 1.25 ± 0.89 62 0.97 ± 0.49 0.054 

Vitamin B12 (ng/L) 96 413.5 ± 161.6 42 413.1 ± 171.7 57 413.8 ± 155.3 0.982 

Data shown are represented as means ± SD, wherever appropriate. P values for the differences in the means between men and women. P values 

were calculated by using an independent t-test  

BMI body mass index, BP blood pressure, HDL high- density lipoprotein cholesterol, HOMA-IR homeostasis model assessment—insulin 

resistance, LDL low- density lipoprotein cholesterol, TAG triacylglycerol, WC waist circumference, WHR waist to hip ratio
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The West Berkshire Local Research ethics committee (09/ H0505/56) and the 

University of Reading Research Ethics Committee (09/40) gave a favourable ethical opinion 

for conduct, and each volunteer gave written informed consent before participating. The trial 

was registered at www.clinicaltrials.gov as NCT01478958. All protocols and procedures 

were performed according to the Declaration of Helsinki. In our retrospective analysis, 119 

of the 195 participants who completed the DIVAS study consented to genetic analysis and were 

included in the present study. Only 96 participants had samples available for vitamin B12 

analysis. 

7.3.2 Study design and diets  

A detailed description of the DIVAS study design and methods has been reported elsewhere 

[471, 473]. Clinical visits took place at the Hugh Sinclair Unit of Human Nutrition, University 

of Reading, during weeks 0 (baseline; V1) and 16 (after intervention; V2) [471]. The 

participants were randomly assigned to one of three 16 weeks of dietary intervention diets, 

based on a minimization program that matched for age, sex, BMI, and total CVD risk score. 

The three isoenergetic intervention diets (%TE target compositions, SFA:MUFA:n–6 PUFA) 

were rich in SFAs (17:11:4), MUFAs (9:19:4), or n–6 PUFAs (9:13:10). All three intervention 

diets provided 36% TE from total fat, and intakes of other macronutrients were unchanged. 

After the intervention, a greater SFA exchange than the target 8% TE was achieved: SFA vs 

MUFA was 9.5% TE and SFA vs n-6 PUFA was 9.6% TE [473]. Dietary intakes were 

determined from 4-d weighed diet diaries completed at baseline (week 0) and during the 

intervention (weeks 8 and 16), which were analysed by using Dietplan 6.6 (Forestfield 

software).  
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7.3.3 Anthropometric measurements and biochemical parameters 

In brief, volunteers attended the Hugh Sinclair Unit of Human Nutrition (University of 

Reading) at baseline (visit 1) and week 16 (visit 2) after an overnight fast. Study participants 

were asked to refrain from alcohol or organised exercise regimens 24 h before visits. 

Participants were provided with a low fat (<10 g fat) evening meal to standardise short-term 

fat intake and only drank low-nitrate water during this time. After a 12 h overnight fast, a blood 

sample was taken at each visit.  

Serum vitamin B12 concentrations were measured using an electrochemiluminescence 

immunoassay (ECLIA) kit on a Roche 6000 series e601 immunoassay analyser (Roche 

Diagnostics GmbH, Hoffmann-La Roche ltd, Mannheim, Germany) at Royal Berkshire 

Hospital. Fasting serum glucose and lipids (TC, triacylglycerol (TAG), and HDL cholesterol) 

were measured using an ILAB600 clinical chemistry analyser (reagents and analyser: Werfen 

UK Ltd). The LDL cholesterol concentration was calculated using the Friedewald formula 

[343]. Fasting plasma insulin levels were determined by commercial ELISA kits (Dako Ltd, 

High Wycombe, UK). The homeostasis model assessment of insulin resistance (HOMA-IR) 

was calculated using the fasting glucose and insulin data [fasting insulin (pmol/L) x fasting 

glucose (mmol/l)]/135] [474].  

At weeks 0 and 16, BMI was calculated as weight (in kg) divided by the square of body 

height (m). Height was recorded to the nearest 0.5 cm using a wall-mounted stadiometer and 

weight was measured using a digital scale (Tanita Europe) using standard settings (standard 

body type and 1 kg for clothing). Twenty-four hour ambulatory blood pressure (ABP) was 

measured every 30 min from 07:00 to 21:59 and every 60 min from 22:00 to 06:59, 

approximately 48 h before the clinical visits, using A/A grade automated oscillometric ABP 

monitors (A&D Instruments Ltd.). Participant activity forms which contained the recordings 
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of participants’ sleep times, were used to calculate the mean 24-h day and night blood pressure 

measurements [471]. 

7.3.4 SNP selection and genotyping 

In total, nine SNPs were examined in the present study. SNPs for vitamin B12-GRS 

were selected using the tagSNP approach. TagSNPs in the gene fucosyltransferase 2 (FUT2) 

were selected using genotype data from the International HapMap collected in individuals of 

Northern and Western European ancestry (CEU) (HapMap Data Rel 27 Phase 2+3, Feb 09, 

NCBI B36 assembly, dbSNP b126). The Haploview software V3.3 

(http://www.broadinstitute.org/haploview/haploview-downloads) was used to assess the 

linkage disequilibrium (LD) structure between SNPs. Tagger software was used to select 

tagSNPs with the ‘pairwise tagging only’ option and an r2 threshold of >0.8 (±10kb upstream 

and downstream of the genes). In the tagSNP selection, after excluding SNPs with low minor 

allele frequency (<5%), there were 3 tagSNPs (rs602662, rs492602 and rs16982241) 

representing the common genetic variations across the FUT2 gene. The six metabolic disease-

related SNPs were selected for our analysis based on previously published candidate gene 

association and genome-wide association (GWA) studies for cardiometabolic disease-related 

traits and associations of the SNPs with dietary intake of macronutrients [370-372, 475-481]: 

Fat mass and obesity-associated [FTO]- rs8050136 and rs9939609, Melanocortin 4 Receptor 

[MC4R]- rs17782313 and rs2229616 and Transcription factor 7-like 2 [TCF7L2]- rs7903146 

and rs12255372. 

DNA was extracted from the buffy coat using a QIAamp DNA blood kit (QIAGEN) 

and stored at −20 °C from 119 of the participants who consented for genotyping. The 

genotyping of the SNPs was outsourced to LGC Genomics 
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(http://www.lgcgroup.com/services/ genotyping), which employs the competitive allele-

specific PCR-KASP® assay. 

7.3.5 Statistical analysis 

Statistical analysis was carried out using the SPSS software (version 21; SPSS Inc, 

Chicago, IL, USA). All biochemical outcomes were expressed as means ± standard deviation 

(SD) in the tables and text, and as standard error in the figure. All the tested variables were 

checked for normality prior to statistical analysis; BMI, HOMA-IR and insulin levels were not 

normally distributed in our study population; therefore, the data were natural log-transformed 

prior to analysis. The minor allele frequency was calculated by gene counting. Nine of the 

SNPs were in Hardy Weinberg Equilibrium (HWE) (P > 0.05) (Table 34). HWE was not 

calculated for the SNP MC4R rs2229616 as no minor alleles were present. Independent t-tests 

were used to compare means between men and women at baseline. 
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Table 34: Genotype distribution of vitamin B12-related SNPs and metabolic disease-related SNPs 

Gene rs number Major 

allele 

Minor 

allele 

Common 

Homozygotes   

n (%) 

Heterozygotes n 

(%) 

Rare Homozygotes 

n (%) 

Minor allele 

frequency 

HWE 

P value 

  

FUT2 rs602662 G A 34 (28.6) 60 (50.4) 25 (21.0) 0.46 0.877 

FUT2  rs492602 A G 38 (31.9) 58 (48.7) 23 (19.3) 0.44 0.918 

FUT2  rs16982241 G A 91 (76.5) 26 (21.8) 2 (1.7) 0.13 0.928 

TCF7L2  rs7903146 C T 62 (52.1) 46 (38.7) 11 (9.2) 0.29 0.564 

TCF7L2 rs12255372 G T 66 (55.9) 42 (35.6) 10 (8.5) 0.26 0.378 

MC4R rs17782313 T C 70 (59.8) 38 (32.5) 9 (7.7) 0.24 0.243 

MC4R rs2229616 G A 113 (95.0) 6 (5.0) 0 (0) 0.03 -* 

FTO rs8050136 C A 40 (33.9) 57 (48.0) 21 (17.8) 0.42 0.929 

FTO rs9939609 T A 41 (34.5) 57 (47.9) 21 (17.6) 0.42 0.877 

Abbreviations: HWE; Hardy Weinberg Equilibrium 

* HWE was not calculated for the SNP MC4R rs2229616 as no minor alleles were present. 
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7.3.6 Genetic Risk Score 

The unweighted, risk-allele GRS method was calculated for each participant as the sum of risk 

allele counts across each SNP which predicted vitamin B12 status or metabolic disease risk. 

The B12-GRS was generated from the SNPs in the gene FUT2 (rs602662, rs492602 and 

rs16982241), which have been shown to be associated with vitamin B12 concentrations. 

Furthermore, another unweighted GRS was created using allele markers previously reported to 

be associated with metabolic disease traits. The metabolic-GRS was generated from the SNPs 

in the genes FTO (rs8050136 and rs9939609), TCF7L2 (rs7903146 and rs12255372) and 

MC4R (rs17782313 and rs2229616). A value of 0, 1 or 2 was assigned to each SNP, which 

denotes the number of risk alleles on that SNP. These values were then calculated by adding 

the number of risk alleles across each SNP. The average number of risk alleles per person for 

the B12-GRS was 4 (SD = 1), which ranged from 2 to 6. The sample was stratified, by the 

median into a “low genetic risk group” for those with a GRS ≤ 3 risk alleles (n = 41), and into 

a “high genetic risk group” for those with a GRS ≥ 4 risk alleles (n = 78). For the metabolic-

GRS, the average number of risk alleles per person was 5 (SD = 2), which ranged from 2 to 11. 

The sample was stratified, by the median, into a “low genetic risk group” for those with a 

GRS ≤ 5 risk alleles (n = 68), and into a “high genetic risk group” for those with a GRS ≥ 6 

risk alleles (n = 51). The baseline and week 16 associations for the two GRSs with continuous 

phenotypes were evaluated by the general linear model (GLM). Moreover, potential 

interactions between the two GRSs and dietary intervention on changes in vitamin B12 

concentrations and cardiometabolic traits over the 16-week intervention were analysed by 

using GLM, where an interaction term was included in the model. Potential confounders 

associated with the outcomes were adjusted in all GLM analyses (i.e. age, sex, BMI, and 

ethnicity). When a significant diet x genotype interaction was found, data were split by 

genotype group and analysed further by using GLM. A Bonferroni correction was applied and 
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the significant P value was 0.0019 [0.05/2 GRSs * 13 phenotypic outcomes (vitamin B12, 24 

h ambulatory systolic blood pressure, 24 h ambulatory diastolic blood pressure, total 

cholesterol, HDL cholesterol, LDL cholesterol, TAG, glucose, insulin, HOMA-IR, BMI, WC 

and WHR)]. 

7.4  Results 

Baseline clinical and biochemical characteristics of the individuals from the retrospective 

analysis from the DIVAS study are presented in Table 1.Men had higher WC, WHR, 24 h 

ambulatory systolic and diastolic blood pressures, fasting LDL cholesterol, TAG and glucose 

concentrations (P<0.019) and lower levels of fasting HDL cholesterol (P<0.0001) compared to 

women (Table 33). No significant differences in fasting serum vitamin B12 concentrations (P 

= 0.982) between men (413 ± 171 (ng/L) and women (414 ± 155 (ng/L) were observed in this 

study (Table 33). Additionally, there was no overall   significant difference (P>0.539) 

in dietary vitamin B12 intake (Table 35) and serum vitamin B12 concentrations (Table 35), 

between the dietary intervention groups after the 16-week intervention. 
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Table 35: Reported daily composition of vitamin B12 and serum vitamin B12 at baseline (week 0) and after diets rich in SFAs, MUFAs, 

and n–6 PUFAs (week 16) in adults with moderate risk of cardiovascular disease  

 SFA  MUFA  n-6 PUFA  **P value 

Baseline 

(n=40) 

Post 

(n=39) 

Δ  (n=37) Baseline 

(n=35) 

Post 

(n=34) 

Δ  (n=33)  Baseline 

(n=42) 

Post 

(n=40) 

Δ  (n=40)   

 

0.539 
Dietary vitamin B12  (μg/day) 5.29 ± 

2.20 

5.25 ± 

1.93 

-0.02 ± 

1.65 

4.74 ± 

1.55 

5.22 ± 

2.28 

0.46 ± 2.27 6.89 ± 

6.47 

6.11 ± 

3.32 

-0.86 ± 

7.56 

  *P=0.939   *P=0.254   *P=0.474   

Vitamin B12 (ng/L) Baseline 

(n=27) 

Post 

(n=27) 

Δ  (n=26) Baseline 

(n=27) 

Post 

(n=27) 

Δ  (n=26) Baseline 

(n=36) 

Post 

(n=34) 

Δ  (n=34)  

 

0.188 
384 ± 

164 

384 ± 151 -0.08 ± 

71.66 

395 ± 116 379 ± 

112 

-20.0 ± 

66.4 

457 ± 

182 

436 ± 160 -26.4 ± 

56.5 

  *P=0.995   *P=0.138   *P=0.010   

Values are given as means ± standard deviations. Dietary intakes estimated from 4-d weighed diet diaries at baseline (week 0) and after 

intervention (mean of weeks 8 and 16).  

 *The difference between baseline and Post-intervention intakes were identified by using paired-samples T test. 

** The overall effect of diet based on change from baseline after 16-week intervention was derived by univariate analysis (general linear model) 

for between-group comparisons adjusting for BMI, age, sex and ethnicity. 
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 The genotype distributions of the polymorphisms involved in the B12-GRS and 

metabolic-GRS are shown in Table 34. The participants’ characteristics at the beginning of the 

dietary interventions (week 0) are presented in Table 36 according to the B12-GRS and 

metabolic-GRS scores. There was an association between the B12-GRS and fasting HDL 

cholesterol concentration (Passociation = 0.035), where individuals who carried 4 or more risk 

alleles for vitamin B12 deficiency had higher concentrations ( 1.58 ± 0.37 mmol/L) compared 

to those with 3 or less risk alleles (1.47 ± 0.33 mmol/L). There was a significant association 

between the B12-GRS and fasting TAG concentration (Passociation = 0.016), where individuals 

carrying 4 or more risk alleles for vitamin B12 deficiency had 19.6 % lower TAG levels (1.19 

± 0.56 mmol/L) compared to individuals carrying 3 or less risk alleles (1.48 ± 0.65 mmol/L). 

However, these findings were not significant after correction for multiple testing (Bonferroni 

corrected P>0.0019). None of the variables (including vitamin B12, 24 h ambulatory systolic 

and diastolic blood pressure, total cholesterol, HDL cholesterol, LDL cholesterol, TAG, 

glucose, insulin, HOMA-IR, BMI, WC and WHR) were associated with the metabolic-GRS at 

baseline (Table 36). After 16 weeks of dietary intervention, there was no significant association 

of the B12-GRS and metabolic GRSs with changes in the vitamin B12 concentrations after 

Bonferroni correction (Table 37 and Table 38).  
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Table 36: Association of the B12-GRS and metabolic-GRS with obesity traits and fasting biochemical traits 

 

Number 

of risk 

alleles 

BMI 

(kg/m2) 

WC 

(cm) 

WHR 24 h 

Ambulatory 

SBP (mm 

Hg) 

24 h 

Ambulatory 

DBP (mm 

Hg) 

Total 

cholesterol 

(mmol/L) 

HDL-C 

(mmol/L) 

LDL-C 

(mmol/L) 

TAG 

(mmol/L) 

 Glucose 

(mmol/L) 

 Insulin 

(pmol/L) 

HOMA-

IR 

Vitamin 

B12 

(ng/L) 

Vitamin B12-GRS 

≤3 risk 

alleles 

26.3 ± 

3.4 

91.4 

± 

10.4 

0.87 ± 

0.07 

124 ± 11 76.9 ± 7.3 5.79 ± 1.14 1.47 ± 

0.33 

4.02 ± 

1.03 

1.48 ± 

0.65 

5.18 ± 

0.40 

28.0 ± 

14.05 

1.04 ± 

0.49 

435 ± 

185 

≥4 risk 

alleles 

26.5 ± 

4.2 

90.3 

± 

12.8 

0.87 ± 

0.10 

121 ± 10 74.7 ± 7.6 5.51 ± 1.06 1.58 ± 

0.37 

3.69 ± 

0.94 

1.19 ± 

0.56 

5.06 ± 

0.44 

29.5 ± 

19.2 

1.11 ± 

0.80 

403 ± 

149 

P value 0.657†* 0.207 0.625 0.197 0.219 0.685 0.035 0.367 0.016 0.075 0.729* 0.529* 0.311 

Metabolic-GRS 

≤5 risk 

alleles 

26.1 ± 

3.38 

89.4 

± 

10.8 

0.86 ± 

0.08 

121 ± 10 75.1 ± 7.4 5.66 ± 1.04 1.56 ± 

0.37 

3.84 ± 

0.95 

1.31 ± 

0.58 

5.13 ± 

0.48 

27.7 ± 

12.4 

1.04 ± 

0.50 

411 ± 

144 

≥6 risk 

alleles 

26.9 ± 

4.6 

92.4 

± 

13.1 

0.88 ± 

0.10 

124 ± 11 75.8 ± 7.7 5.54 ± 1.15 1.53 ± 

0.34 

3.76 ± 

1.02 

1.27 ± 

0.64 

5.10 ± 

0.34 

30.8 ± 

22.7 

1.16 ± 

0.92 

417 ± 

185 

P value 0.335†* 0.913 0.947 0.435 0.870 0.309 0.928 0.350 0.142 0.714 0.634* 0.711* 0.784 

 

Values are given as mean ± standard deviation  

P values for differences between ≤3 and ≥4 risk alleles were obtained using linear regression model adjusted for age, BMI, ethnicity and sex 

† P values were obtained by using a general linear model adjusted for age, ethnicity and sex 

*P values were based on the log transformed values 
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Table 37: Changes in anthropometric traits and fasting biochemical traits after dietary intervention over 16 weeks according to the B12-

GRS 

B12-GRS 

SFA diet 

P association 

MUFA diet 

P 

association 

n-6 PUFA diet 

P association P interaction 

 

≤3 risk 

alleles 
 

≥ 4 risk 

alleles 

≤ 3 risk 

alleles 
 

≥ 4 risk 

alleles  

≤ 3 risk 

alleles 
 

≥ 4 risk 

alleles  

Log BMI (kg/m2) 

-0.00 ± 

0.01 

-0.00 ± 

0.01 0.479 † 

0.01 ± 

0.01 

0.01 ± 

0.01 0.530† 

0.00 ± 

0.01 

0.00 ± 

0.01 0.135† 0.900†† 

WC (cm) 

-0.66 ± 

4.99 

-1.11 ± 

3.44 0.770 

-1.91± 

2.88 

-1.51 ± 

3.18 0.545 

-0.43 ± 

2.32 

-0.08 ± 

3.79 0.881 0.798 

WHR 

1.26 ± 

4.29 

-1.57 ± 

3.97 0.115 

-1.87 ± 

4.36 

-0.66 ± 

4.03 0.354 

0.03 ± 

3.78 

0.11 ± 

4.48 0.978 0.166 

24 h Ambulatory systolic blood 

pressure (mm Hg) 

-1.80 ± 

8.32 

1.74 ± 

7.37 0.162 

-4.91 ± 

5.59 

-0.29 ± 

9.57 0.087 

-0.73 ± 

8.84 

1.41 ± 

8.64 0.424 0.822 

24 h Ambulatory diastolic blood 

pressure (mm Hg) 

-0.10 ± 

6.08 

1.48 ± 

4.32 0.156 

-1.82 ± 

4.69 

0.18 ± 

6.48 0.203 

-0.46 ± 

5.87 

-0.28 ± 

6.17 0.869 0.788 

Total cholesterol (mmol/L) 

0.41 ± 

0.64 

0.30 ± 

0.48 0.256 

-0.55 ± 

0.89 

-0.36 ± 

2.73 0.923 

-0.05 ± 

0.71 

-0.33 ± 

1.57 0.704 0.849 

HDL Cholesterol (mmol/L) 

0.64 ± 

2.01 

-0.22 ± 

1.39 0.085 

-0.02 ± 

0.15 

0.01 ± 

0.18 0.987 

0.50 ± 

1.89 

0.05 

±2.04 0.524 0.566 

LDL Cholesterol (mmol/L) 

-0.29 ± 

2.48 

0.54 ± 

1.58 0.392 

-1.28 ± 

3.30 

0.12 ± 

1.92 0.105 

0.14 ± 

3.61 

0.02 ± 

1.81 0.955 0.393 

TAG (mmol/L) 

-0.67 ± 

2.10 

0.34 ± 

1.41 0.123 

-0.01 ± 

0.42 

0.03 ± 

0.33 0.990 

-0.10 ± 

0.29 

-0.85 ± 

2.41 0.344 0.078 
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Glucose (mmol/L) 

-0.46 ± 

2.08 

-0.01 ± 

0.32 0.579 

0.05 ± 

0.33 

0.62 ± 

2.13 0.278 

-0.12 ± 

0.46 

-0.20 ± 

1.45 0.763 0.563 

Log Insulin (pmol/L) 

-0.09 ± 

0.28 

-0.01 ± 

0.21 0.098 

-0.01 ± 

0.09 

0.01 ± 

0.19 0.944 

0.02 ± 

0.21 

-0.03 ± 

0.16 0.605 0.331 

Log HOMA-IR 

-0.09 ± 

0.30 

-0.01 ± 

0.22 0.121 

-0.01 ± 

0.10 

0.02 ± 

0.21 0.966 

0.02 ± 

0.24 

-0.02 ± 

0.18 0.612 0.397 

vitamin B12 (ng/L) 

20.52 ± 

75.53 

-9.14 ± 

69.51 0.403 

-37.60 ± 

90.80 

-12.16 ± 

53.71 0.255 

-38.45 ± 

59.12 

-20.57 ± 

55.66 0.210 0.214 

 

P values for association between GRS and changes of means over 16 weeks with one of three diets were obtained by using general linear model 

adjusted for age, sex, BMI, and ethnicity. P values for interaction between genotypes and changes of means over 16 weeks of intervention with 

one of three diets were obtained by using general linear model adjusted for age, sex, BMI, and ethnicity. Values are mean ± SD  

† P values for association between GRS and changes of means over 16 weeks with one of three diets were obtained by using general linear 

model adjusted for age, sex and ethnicity. 

†† P values for interaction between GRS and changes of means over 16 weeks of intervention with one of three diets were obtained by using 

general linear model adjusted for age, sex and ethnicity. 

Abbreviations: BMI body mass index, HDL high- density lipoprotein, HOMA-IR homeostasis model assessment—insulin resistance, LDL- low- 

density lipoprotein, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids, SFA saturated fatty acids, TAG triacylglycerol, WC 

waist circumference, WHR waist to hip ratio 
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Table 38: Changes in anthropometric traits and fasting biochemical traits after dietary intervention over 16 weeks according to the 

metabolic-GRS 

 

Metabolic-GRS 

SFA diet 

P association 

MUFA diet 

P 

association 

n-6 PUFA diet 

P 

association 

P 

interaction 

≤ 5 risk 

alleles 

≥ 6risk 

alleles 

≤ 5 risk 

alleles 

≥ 6 risk 

alleles 

≤ 5 risk 

alleles 

≥ 6 risk 

alleles 

Log BMI (kg/m2) 

-0.00 ± 

0.01 

0.00 ± 

0.01 0.843 † 0.01 ± 0.01 0.01 ± 0.01 0.780 † 0.00 ± 0.01 0.00 ± 0.01 0.241 † 0.569 † † 

WC (cm) 

-0.95 ± 

3.77 

-0.94 ± 

4.34 0.404 

-1.60 ± 

3.21 

-1.74 ± 

2.89 0.812 

-0.15 ± 

2.71 

-0.29 ± 

4.09 0.656 0.937 

WHR 

-0.55 ± 

4.79 

-0.79 ± 

3.58 0.311 0.15 ± 4.55 

-2.56 ± 

2.91 0.251 

-0.52 ± 

3.62 0.95 ± 4.88 0.094 0.168 

24 h Ambulatory systolic blood 

pressure (mm Hg) 

-0.11 ± 

8.03 

1.60 ± 

7.49 0.409 1.63 ± 7.33 

-7.00 ± 

7.95 0.007 

-0.56 ± 

8.61 1.92 ± 8.74 0.475 0.012 

24 h Ambulatory diastolic blood 

pressure (mm Hg) 

-0.06 ± 

4.70 

2.27 ± 

4.94 0.348 1.05 ± 6.01 

-2.79 ± 

5.19 0.115 

-1.31 ± 

5.69 0.64 ± 6.27 0.415 0.069 

Total cholesterol (mmol/L) 0.29 ± 0.45 

0.38 ± 

0.61 0.102 

-0.48 ± 

2.75 

-0.33 ± 

0.71 0.947 

-0.43 ± 

1.61 0.09 ± 0.55 0.081 0.781 

HDL Cholesterol (mmol/L) 0.44 ± 1.65 

-0.297 ± 

1.59 0.206 0.03 ± 0.13 

-0.07 ± 

0.21 0.079 0.29 ± 2.52 0.09 ± 0.26 0.874 0.541 

LDL Cholesterol (mmol/L) 0.20 ± 2.77 

0.34 ± 

0.54 0.400 0.30 ± 2.16 

-1.63 ± 

2.76 0.056 

-0.01 ± 

2.47 0.17 ± 2.78 0.960 0.153 

TAG (mmol/L) 0.53 ± 1.67 

-0.44 ± 

1.62 0.071 

-0.04 ± 

0.41 0.12 ± 0.21 0.354 

-0.31 ± 

1.57 

-1.01 ± 

2.45 0.209 0.201 
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Fasting blood glucose (mmol/L) 

-0.04 ± 

0.31 

-0.25 ± 

1.61 0.862 

-0.08 ± 

0.20 1.39 ± 2.79 0.024 0.04 ± 0.42 

-0.51 ± 

1.82 0.347 0.006 

Log fasting Insulin (pmol/L) 

-0.05 ± 

0.24 

-0.01 ± 

0.22 0.967 0.02 ± 0.19 

-0.02 ± 

0.12 0.532 

-0.00 ± 

0.20 

-0.02 ± 

0.16 0.950 0.785 

Log HOMA-IR 

-0.06 ± 

0.26 

-0.02 ± 

0.23 0.926 0.03 ± 0.20 

-0.02 ± 

0.13 0.441 0.00 ± 0.22 

-0.02 ± 

0.18 0.822 0.833 

Vitamin B12 (ng/L) 

-14.17 ± 

52.66 

0.08 ± 

38.51 0.437 

-21.29 ± 

88.03 

-54.61 ± 

59.53 0.072 

-17.84 ± 

69.06 

-2.40 ± 

91.26 0.544 0.533 

 

P values for association between GRS and changes of means over 16 weeks with one of three diets were obtained by using general linear model 

adjusted for age, sex, BMI, and ethnicity. P values for interaction between genotypes and changes of means over 16 weeks of intervention with 

one of three diets were obtained by using general linear model adjusted for age, sex, BMI, and ethnicity. Values are mean ± SD  

† P values for association between GRS and changes of means over 16 weeks with one of three diets were obtained by using general linear 

model adjusted for age, sex and ethnicity. 

†† P values for interaction between GRS and changes of means over 16 weeks of intervention with one of three diets were obtained by using 

general linear model adjusted for age, sex and ethnicity. 

Abbreviations: BMI body mass index, HDL high- density lipoprotein, HOMA-IR homeostasis model assessment—insulin resistance, LDL low- 

density lipoprotein, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids, SFA saturated fatty acids, TAG triacylglycerol, WC 

waist circumference, WHR waist to hip ratio
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 At 16 weeks, after adjustment for age, sex, ethnicity and baseline BMI, a significant 

interaction between the metabolic-GRS and dietary intervention (SFA vs MUFA vs n-6 PUFA) 

on changes in 24 h ambulatory systolic blood pressure (Pinteraction = 0.012) was observed (Table 

38 and Figure 18). Individuals with 6 or more risk alleles for the metabolic-GRS had 

significantly lower 24 h ambulatory systolic blood pressure levels after the MUFA (n = 13; -7 

± 8 mm Hg) compared with the SFA (n = 15; 2 ± 7 mm Hg; P = 0.033) and n-6 PUFA-rich 

diets (n = 16; 2 ± 9 mm Hg; P = 0.001) (Passociation= 0.009) (Table 38 and Figure 18).  

 

Figure 18: Mean (±SE) of changes in 24 h ambulatory systolic blood pressure following 

three intervention diets [rich in either saturated fatty acids (SFA), monounsaturated fatty 

acids (MUFA), and n-6 polyunsaturated fatty acids (PUFA)] according to the metabolic-

GRS (Pinteraction = 0.012).  

A general linear model analysis was performed with adjustments for age, sex, body mass index, 

and ethnicity. Individuals carrying ≥ 6 risk alleles had lower 24 h ambulatory systolic blood 
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pressure after consuming the MUFA diet compared to the SFA or n-6 PUFA diets (Passociation 

= 0.007). Error bars indicate Standard error. 

 In addition, we also observed an interaction between the metabolic-GRS and the dietary 

fat intervention (SFA vs MUFA vs n-6 PUFA) on changes in fasting glucose concentrations 

(Pinteraction = 0.006) (Table 38), where individuals with 6 or more risk alleles had significantly 

higher fasting glucose concentrations after the MUFA (n = 21; 1.39 ± 2.79 mmol/L) compared 

with the SFA (n = 26; -0.25 ± 1.61 mmol/L; P = 0.045) and n-6 PUFA-rich diets (n = 14; -0.51 

± 1.82 mmol/L; P = 0.045) (Passociation = 0.020). However, these interactions were not 

statistically significant after correction for multiple testing (Table 38).  

7.5 Discussion 

 To our knowledge, this is the first report to investigate the relationship between vitamin 

B12 concentrations and cardiometabolic traits, after replacing dietary SFA with MUFA or n-6 

PUFA in adults at moderate risk of CVD by using a genetic approach. Our findings from this 

retrospective analysis of the DIVAS study failed to show an impact of the B12-GRS on 

cardiometabolic traits in the presence of a dietary intervention manipulating fatty acid intake 

for 16 weeks. However, our analysis showed that individuals carrying 6 or more risk alleles 

(42.9% of the study population) of the metabolic-GRS had significantly lower 24 h ambulatory 

systolic blood pressure after the 16-week replacement of SFA with MUFA. Our findings 

indicate that the metabolic-GRS influences inter-individual variation in 24 h ambulatory 

systolic blood pressure and a 9.5% percentage replacement of SFA with MUFA could 

potentially be implemented as a dietary approach to reduce CVD risk in individuals at increased 

genetic risk.  

 The quantity and quality of fats consumed in the diet are important features that 

influence the risk of hypertension [482]. In a meta-analysis of 9 randomized controlled trials 

which examined the long-term effects (≥ 6 months) of a high-MUFA (>12%TE MUFA) vs 
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low-MUFA (≤12%TE MUFA) diet on markers of CVD risk, it was shown that high-MUFA 

diets significantly reduced systolic and diastolic blood pressures, compared with individuals 

consuming low-MUFA diets [483]. It is important to note that the studies included in the meta-

analysis had inconsistent total energy intakes, furthermore some of the studies compared high 

carbohydrate diets or high protein diets as the comparator, whereas others used high PUFA 

diets [483]. To date, twin studies have demonstrated the heritability of blood pressure to range 

between 39-63% [484], with lower estimates of heritability from the general population (20-

40%) [485]. Our retrospective data analysis demonstrated a significant interaction between 

metabolic-GRS and dietary fat composition on 24 h ambulatory systolic blood pressure in 

adults at moderate CVD risk, where the substitution of SFA with MUFA reduced 24 h 

ambulatory systolic blood pressure despite individuals carrying 6 or more risk alleles compared 

to the SFA and n-6 PUFA-rich diets. Our findings are also in line with previous 

epidemiological studies which have shown that blood pressure is positively correlated with 

high intakes of SFA [486-488] and that the replacement of SFA with n-6 PUFA may not be 

beneficial in reducing blood pressure [489, 490]. Hence, from interpreting our study findings 

it is possible that the replacement of 9.5% of SFA with MUFA might overcome the genetic 

risk of increased blood pressure. [491] MUFA-rich foods, such as oleic acid  (a major 

component of olive oil), have been implicated in lowering blood pressure by modifying 

membrane phospholipid composition and inducing hypotensive effects through the α2-

adrenergic receptor system in rats [492]. Animal studies have reported impaired endothelial 

vasodilator function [493] and an activation of sympathetic nervous system activities [494] in 

rats fed with SFA. It has been suggested that the detrimental effect of SFA on blood pressure 

might be secondary to a decrease in insulin sensitivity,   which is likely to have contributed to 

the activation of the sympathetic nervous system and the resulting blood pressure increase of 

these rats[494, 495]. However, the association between fasting plasma insulin and hypertension 
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have been inconsistent among human studies [496-498]. Linoleic acid, the primary form of 

dietary n-6 PUFA, has previously been shown to induce hypotensive effects and 

hyperpolarization of pig coronary artery vascular smooth muscle cells (VSMC) through a 

mechanism which activates the Na+/K+-ATPase pump. The activation of the Na+/K+-ATPase 

pump alters the membrane potential of VSMC, leading to the relaxation of the coronary arteries 

[499]; but our analysis in humans at moderate risk of CVD was unable to confirm any beneficial 

effect of replacing  9.6% of SFA with n-6 PUFA on blood pressure. Our finding is in 

accordance with a recent systematic review based on five previous human epidemiological (n 

= 33,834), and four intervention studies (n = 483) which also reported conflicting evidence of 

the impact of n-6 PUFA-rich diets on blood pressure [490]. Hence, given the findings from 

our data analysis, it can be assumed that an increase in MUFA in the diet is likely to regulate 

systolic blood pressure among individuals carrying 6 or more risk alleles of the metabolic-

GRS, however, further analysis is required to confirm these findings.  

 Furthermore, the metabolic-GRS was found to modify the association between the 

MUFA rich diet and changes in fasting glucose concentrations. Among individuals consuming 

the MUFA rich diet, those carrying ≥ 6 risk alleles of the metabolic-GRS had a tendency for a 

greater increase in glucose concentrations after 16 weeks compared to individuals consuming 

an SFA or n-6 PUFA rich diet. Even though this contradicts the impact of MUFA on metabolic 

disease outcomes [491, 500], a recent meta-analysis of nine randomized controlled intervention 

trials (n = 1,547) also failed to identify any significant difference in fasting glucose 

concentrations when comparing high- (>12% of Total Energy Consumption) with low-MUFA 

diets (≤12% of Total Energy Consumption) [483]. Hence, MUFA-rich diets may not be 

beneficial in reducing glucose concentrations in individuals at genetic risk of developing 

metabolic disease-related outcomes. Unexpectedly, our data analysis indicated a significant 

reduction in fasting glucose concentrations after 16 weeks amongst those consuming a n-6 
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PUFA-rich or SFA-rich diet when they carried more than 6 risk alleles of the metabolic-GRS. 

However, these findings should be interpreted with caution, given the potentially negative 

effects associated with consuming a high SFA diet [501] and the complex role of factors 

influencing metabolic disease outcomes [502]. This finding was not considered statistically 

significant after correction for multiple testing; hence, further large studies are warranted to 

explore this gene-diet interaction. 

The present study has some limitations. Our data analysis showed an effect of the 

plasma vitamin B12-GRS in the opposite direction to what we expected, where an increased 

genetic risk of vitamin B12 deficiency was positively associated with increased fasting HDL 

cholesterol and decreased TAG at baseline. In addition, our analysis indicated a significant 

fasting glucose increasing effect amongst those replacing 9.5% of SFA with MUFA when they 

carried more than 6 risk alleles of the metabolic-GRS. In attempting to explain these 

discrepancies it is important to note that this study included six individuals who had vitamin 

B12 deficiency (< 200 ng/L), which could likely have influenced these outcomes. Furthermore, 

we were unable to see any associations of the B12-GRS with any of the other outcomes, which 

could be attributed to the small sample size of the study. In comparison to cross-sectional 

studies, randomized clinical trials are often limited by the sample size; in the DIVAS study, 

only 119 participants out of 195 consented for analysis of genetic data and thus the sample size 

for the analysis was limited. Importantly, our data analysis did not measure circulating 

concentrations of other vitamin B12 biomarkers, such as holo-transcobalamin (holoTC) or 

methylmalonic acid. Furthermore, the DIVAS study included an ethnically diverse population 

(Asian-7% and Black- 7%); however, to avoid population stratification, ethnicity was adjusted 

for in the analyses. Even after excluding other ethnic groups and only analysing Caucasian 

individuals, our findings still remained the same (data not shown). One of the main strengths 

of the DIVAS study was that it examined the effects of dietary fatty acid manipulation for a 
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long duration (16 wk) on vitamin B12 concentrations and cardiometabolic traits in a robust 

randomised controlled intervention study. Secondly, the dietary fat manipulation in this 

intervention study had minimal impact on other dietary components and total energy intake, 

effectively negating the confounding effect of these variables on the effects of the GRS on 

dietary response. 

In conclusion, our data analysis was able to show an interaction between the metabolic-

GRS and dietary fat intake on 24 h ambulatory systolic blood pressure. The results suggest a 

greater sensitivity of individuals carrying 6 or more risk alleles (42.9% of the population) to 

dietary fat composition, with an 24 h ambulatory systolic blood pressure lowering effect 

observed following substitution of SFA with MUFA but not with n-6 PUFA. However, our 

analysis was unable to provide evidence for an impact of the B12-GRS on vitamin B12 

concentrations and cardiometabolic traits in response to the 16-week dietary fat intervention. 

Future studies with a larger sample size examining B12-GRS and metabolic-GRS, particularly 

prospectively genotyped dietary intervention studies, are required to confirm the gene-diet 

interactions identified in our study. 
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Chapter 8  

Discussion and conclusion 

8.1 Discussion 

The field of Nutrigenetics has been important in providing evidence for the interaction 

between genes and nutrients in the development of chronic diseases, such as obesity, insulin 

dysregulation and adverse cardiometabolic outcomes. The findings from this thesis has 

contributed to the field of nutrigenetics by demonstrating that genetic heterogeneity in gene-

diet interactions related to vitamin B12 concentrations and metabolic traits exist across 

different ethnic groups. The results in this thesis allow nutritionists to better understand how 

genetic variants related with B12 absorption and metabolism interact with dietary factors in the 

development of metabolic disorders. The field of nutrigenetics will one day allow nutritionists 

to provide personalised dietary recommendations to their patients based on their genotype in 

order to delay or prevent the development of diseases related to low vitamin B12 status. 

Although, several nutrigenetic studies have examined the interaction between genes and 

nutrition on chronic disease outcomes, the findings have yielded inconsistent results due to two 

main factors (i) genetic heterogeneity between individuals and (ii) small sample sizes with 

limited replication, hence, it has not been possible to develop a personalised diet for each ethnic 

group [12]. Up unto now it has been difficult to conduct nutrigenetic studies in less 

economically developed countries, due to the limited infrastructure, funding and expertise  

[12]. This thesis has set out to use a genetic approach to examine the association between 

selected common single nucleotide polymorphisms (SNPs) associated with vitamin B12 

concentrations and SNPs associated with metabolic traits on vitamin B12 concentrations and 

metabolic outcomes in different ethnic groups. Also, the interaction between these SNPs and 
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dietary factors (protein, carbohydrate and fat) on vitamin B12 concentrations and cardio-

metabolic traits was investigated.  

One of the reasons for examining different ethnic groups was to replicate the findings 

from one study into another independent cohort from another population. A total of three 

different study designs from five different populations [Brazilian adolescents, Sri Lankan 

adults, South Asian Indian adults, Indonesian adult women and British adults] were used to test 

our objectives. The studies included in this PhD were: one case-control study [Chennai Urban 

Rural Study (CURES; Asian Indian, n=900)], three cross-sectional cohort studies [Genetics of 

obesity and Diabetes study (GOOD study; Sinhalese Sri Lankan adults, n=109), The 

Minangkabau Indonesia Study on Nutrition and Genetics (MINANG study; Indonesian 

women; n=118) and Brazilian adolescents (n=113)] and a 16 week-dietary randomized, single-

blind, parallel-group dietary intervention [Dietary Intervention and VAScular function 

(DIVAS study; British adults, n=119)]. The general linear regression model was used for 

statistical analysis using the SPSS version 25, to conduct association and interaction analyses. 

Potential confounders such as age, sex and body mass index (BMI) were adjusted wherever 

necessary. A summary of the findings from this thesis is presented below.  

8.1.1 Impact of genes and diet on homocysteine, vitamin B12, folate and lipids in a 

Brazilian adolescent Population 

Cardiovascular diseases (CVD) have remained the leading cause of mortality in Brazil 

and are major causes of disability affecting the quality of life [328, 329]. Genes involved in the 

one carbon metabolism are of particular interest because of their role in CVD [355]. However, 

the interaction between SNPs involved in the one-carbon metabolism pathway and 

macronutrient intake on cardiovascular risk factors in the Brazilian population has not yet been 

investigated. The aim of this study was to examine the association of ten SNPs involved in the 
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one-carbon metabolism pathway [methylenetetrahydrofolate reductase (MTHFR)- rs1801133 

and rs1801131; 5-methyltetrahydrofolate-homocysteine methyltransferase or methionine 

synthase (MTR)- rs1805087 ; 5-methyltetrahydrofolatehomocysteine methyltransferase 

reductase or methionine synthase reductase (MTRR)- rs1801394; transcobalamin 2 (TCN2)- 

rs1801198, catechol-O-methyltransferase (COMT)- rs4680 and rs4633; betaine-homocysteine 

S-methyltransferase (BHMT)- rs3797546 and rs492842; and fucosyltransferase 2 (FUT2)-  

rs602662] with vitamin B12, folic acid, homocysteine and blood lipids [high- (HDL), low- 

(LDL) density lipoproteins, triacylglycerol (TAG) and oxidized-LDL (ox-LDL)], and to 

investigate whether lifestyle factors (dietary factors/physical activity levels) modified the 

association of the SNPs in 113 Brazilian adolescents (aged 10-19 years) with cardiovascular 

risk. 

 The results of this study confirm the association of the fucosyltransferase 2 (FUT2) 

SNP rs602662 with vitamin B12. Additionally, associations were observed between the SNP 

rs4633 at the catechol-O-methyltransferase (COMT) gene with folic acid concentrations and 

finally the SNP rs1801394 at the 5-methyltetrahydrofolate-homocysteine methyltransferase 

reductase (MTRR) gene with ox-LDL concentrations. No gene-lifestyle interactions were 

observed on vitamin B12 concentrations. Additionally, none of the vitamin B12 associated 

SNPs interacted with lifestyle factors to influence cardio-metabolic outcomes.  

This study provided evidence for the interactions between COMT SNP rs4680 and 

carbohydrate intake on ox-LDL levels and the FUT2 SNP rs602662 and protein intake on 

homocysteine concentrations. However, upon stratification of participants based on their 

consumption of dietary carbohydrate/protein (low, medium and high intake), no statistically 

significant associations between the SNPs and the outcomes in any of the tertiles were detected, 

which could potentially be due to the small sample size. This is the first study to provide novel 

gene-diet interactions at the COMT and FUT2 gene loci, on ox-LDL and homocysteine 
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concentrations; hence, we have no other studies to compare our findings with. Given that ox-

LDL and homocysteine are well-known independent risk factors for cardiovascular disease 

[24, 354], our findings may have significant public health implications. However, it is 

important to note that after correction for multiple testing, none of these associations and 

interactions were statistically significant.  

The main strength of this study is that SNPs were examined on vitamin B12, folic acid, 

homocysteine and lipid traits during early stages of life when lifestyle and behavioral factors 

have had less time to substantially modify the phenotype and hence, this study on Brazilian 

adolescents has significant importance. Furthermore, this study population is characterized by 

obesity and/or dyslipidemia which make it suitable for a study on lipids. Additionally, little is 

known about gene–diet interactions which influence ox-LDL concentrations, and thus our 

study adds to the limited body of research. After correction for multiple testing, none of the 

SNP–environment interactions were detected. Hence, our findings warrant confirmation in 

larger and well-powered prospective studies, before any public health recommendations can 

be developed for the adolescent Brazilian population. 

8.1.2 Impact of genes and diet on vitamin B12 concentrations and metabolic diseases 

in an Asian Sri Lankan population 

The prevalence of obesity in Sri Lanka has increased markedly in recent years [361], 

with approximately 34.4% of the Sri Lankan adult population being diagnosed as overweight 

or obese [361, 362]. Although, vitamin B12 deficiency has been linked to obesity [7, 84, 85] 

and diabetes [67, 69, 70], no study to date has tested the genetic link between metabolic traits 

and vitamin B12 status in a Sinhalese cohort. Furthermore, no study has investigated the status 

of vitamin B12 within the Sinhalese population. Hence, the objective of this study was to use 

a gene-based approach to explore the relationship between metabolic traits and vitamin B12 
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status in 109 Sinhalese adults (61 men and 48 women, aged 25-50 years), and to investigate 

whether these relationships were modified by lifestyle factors (dietary factors/physical activity 

levels).  

Genetic risk scores (GRS) based on ten metabolic disease-related genetic variants [Fat 

mass and obesity-associated (FTO)- rs9939609 and rs8050136, Melanocortin 4 Receptor 

(MC4R)- rs17782313 and rs2229616, Transcription factor 7-like 2 (TCF7L2)- rs12255372 and 

rs7903146, Potassium voltage-gated channel subfamily J member 11 (KCNJ11)- rs5219, 

Calpain 10 (CAPN10)- rs3792267, rs2975760 and rs5030952] and ten vitamin B12-related 

genetic variants [Methylenetetrahydrofolate reductase (MTHFR)- rs1801133, Carbamoyl-

phosphate synthase 1 (CPS1)- rs1047891, Cubulin (CUBN)- rs1801222, CD320 molecule 

(CD320)- rs2336573, Transcobalamin 2 (TCN2)- rs1131603, Citrate lyase beta like (CLYBL)- 

rs41281112, Fucosyltransferase 2 (FUT2)- rs602662, Transcobalamin 1 (TCN1)- rs34324219, 

Fucosyltransferase 6 (FUT6)- rs778805 and Methylmalonyl-CoA mutase (MUT)- rs1141321] 

were constructed. 

This study confirmed the association between the B12-GRS and serum vitamin B12 

concentrations. However, no association between the B12-GRS and metabolic traits were 

observed. Furthermore, the metabolic-GRS did not show any association with vitamin B12 

concentrations and metabolic traits. The findings in this study have suggested that a genetically 

lowered vitamin B12 concentration may have an impact on central obesity in the presence of a 

dietary influence (protein energy intake %). However, further stratification of participants 

based on their consumption (low, medium and high dietary intake) of dietary protein (energy 

%) did not show statistically significant associations between the GRS and the outcome in any 

of the tertiles, which could account for the small sample size. Additionally, the metabolic GRS 

interacted with carbohydrate energy intake (%) to influence waist to hip ratio levels, where 

individuals carrying more than 9 risk alleles had a higher waist-to-hip ratio among those in the 
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highest tertile of carbohydrate energy percentage. Given that the daily consumption of protein 

is low and carbohydrate intake is high in Sri Lankan adults [380], my findings may have 

significant public health implications in terms of revising dietary guidelines, which could 

prevent central obesity and its related CVD-related outcomes.  

 

8.1.3 Impact of genes and diet on vitamin B12 concentrations and metabolic diseases in 

an Indonesian women population (Minangkabau community) 

Optimal vitamin B12 status is essential for women to maintain adequate maternal health and 

to avoid foetal developmental complications [70, 434]. Additionally, low vitamin B12 

concentrations have shown negative correlations with body mass index (BMI) in healthy 

women [401]. Currently, the data on vitamin B12 status in healthy Indonesian women is 

unknown and the relationship between low vitamin B12 status and obesity related traits has 

yielded conflicting results [93]. Thus, I used a genetic approach to explore the relationship 

between metabolic traits and vitamin B12 status and investigated whether these relationships 

were modified by lifestyle factors (dietary intake or physical activity levels) in an Indonesian 

women population (117 adults, aged 25-60 years). The Minangkabau population from 

Indonesia was selected in this study on the basis that women hold a higher authoritarian role in 

society and that all food choices in the family are dictated by women [438].  

 Genetic risk scores (GRS) based on nine B12-related SNPs [Methylenetetrahydrofolate 

reductase (MTHFR)- rs1801133, Carbamoyl-phosphate synthase 1 (CPS1)- rs1047891, 

Cubulin (CUBN)- rs1801222, CD320 molecule (CD320)- rs2336573, Transcobalamin 2 

(TCN2)- rs1131603, Fucosyltransferase 2 (FUT2)- rs602662, Transcobalamin 1 (TCN1)- 

rs34324219, Fucosyltransferase 6 (FUT6)- rs778805 and Methylmalonyl-CoA mutase (MUT)- 

rs1141321] and nine metabolic disease-related SNPs [Fat mass and obesity-associated (FTO)- 
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rs9939609 and rs8050136, Melanocortin 4 Receptor (MC4R)- rs17782313 and rs2229616, 

Transcription factor 7-like 2 (TCF7L2)- rs12255372 and rs7903146, Potassium voltage-gated 

channel subfamily J member 11 (KCNJ11)- rs5219, Calpain 10 (CAPN10])- rs3792267 and 

rs5030952] were constructed.  

 This study replicated the non-significant findings observed in the Sri Lankan study and 

confirmed the lack of association between the B12-GRS and metabolic traits, and the 

metabolic-GRS with vitamin B12 and metabolic traits. However, unlike in the Sri Lankan 

study, the B12-GRS in the Indonesian population did not show any associations with B12 

concentrations, which could potentially be accounted to the higher mean vitamin B12 status 

observed in the Indonesian study (436 ± 427.18 pmol/L) compared to the Sri Lankan study 

(380.65  ± 132.83 pmol/L). In the Indonesian study, we observed a novel interaction between 

the B12-GRS and dietary fibre intake (g) on glycated haemoglobin. Individuals who consumed 

a low fibre diet (4.90 ± 1.00 g/day) and those who carried ≥9 risk alleles for vitamin B12 

deficiency had significantly higher HbA1C levels compared to those carrying ≤8 risk alleles. 

Previous studies have shown that dietary fibre consumption is low in the Indonesian 

population, and thus our findings are important as it could encourage a consumer education 

campaign centred around encouraging fibre intake to reduce HbA1C levels, which could 

improve glycaemic control in the Indonesian population.  

8.1.4 Impact of genes and diet on vitamin B12 concentrations and metabolic diseases 

in an Asian Indian population 

 Asian Indians exhibit a unique phenotype collectively known as the ‘South Asian 

Phenotype’ which consists of higher levels of total and visceral fat, higher waist circumference 

and an increased susceptibility to Type 2 diabetes [364]. Approximately >12% of the Indian 

population is either overweight or obese [390]. Although there is a strong genetic component 
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to developing the ‘South Asian Phenotype’, consuming an unhealthy diet and leading a 

sedentary lifestyle can further contribute to this phenotype [405, 408]. Several studies have 

implicated that obesity is related to many micronutrient deficiencies including vitamin B12 [6, 

395, 396]. 

Our study examined whether dietary intake and physical activity levels modified 

associations between a GRS using two previously studied FTO SNPs (rs8050136 and 

rs2388405) and vitamin B12 concentrations and metabolic disease-related outcomes in 900 

Asian Indians (300 normal glucose-tolerant individuals, 300 prediabetic and 300 type 2 

diabetes individuals). In this study, participants were randomly recruited from the Chennai 

Urban Rural Epidemiology Study (CURES), a cross-sectional case-control epidemiological 

study conducted on a representative population of Chennai in Southern India [410].  

 To date, the FTO (Fat mass and obesity associated) gene, has been the strongest obesity 

risk loci in several populations [11]. Our study confirmed the association between FTO gene 

variants and obesity traits. A novel finding of this study was the potential association between 

the FTO-GRS and vitamin B12 concentrations, after adjustment for age, sex, BMI and type 2 

diabetes. Carriers of more than one risk allele for the FTO-GRS had lower vitamin B12 

concentrations, compared to individuals carrying zero risk alleles. The mechanism explaining 

the differences in vitamin B12 concentrations in the FTO-GRS could potentially be due to the 

FTO genotypes modulating gut microbiota and inducing metabolic inflammation, consequently 

impairing B12 absorption [6, 432]. Interestingly, associations between obesity-related SNPs 

and vitamin B12 concentrations in other populations investigated in this thesis (Brazil, Sri 

Lanka, UK and Indonesia) were not observed. It is possible that these associations were not 

observed due to the following reasons [322]: (1) difference in effect allele frequencies, (2) 

genetic heterogeneity across different ethnic groups, (3) variance in linkage disequilibrium 

structure and (4) gene-gene and gene-environment interactions (5) Variations in sample sizes 
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of the study (6) number of metabolic-SNPs assessed. Additionally, no significant interactions 

were observed between the FTO-GRS and lifestyle factors (diet and physical activity) in the 

Indian population. 

 Given that low vitamin B12 concentrations in Asian Indians are common [397, 423] 

and that 28-44% of Asians carry at least one copy of the FTO risk allele [415], our study 

highlights the importance of considering obesity as a risk factor for vitamin B12 deficiency 

with implications on the possible targeting of relevant obesity prevention strategies. Following 

such advice could substantially reduce vitamin B12 deficiency among Asian Indians. 

8.1.5 Impact of genes and diet on vitamin B12 concentrations and cardio-metabolic 

diseases in a British population 

Given that the modification of dietary fat intake has been shown to affect vitamin B12 

status in a previous animal study [472], a post-hoc analysis of the Dietary Intervention and 

VAScular function (DIVAS) study was carried out with the aim of replicating similar findings 

in humans. In this study, I investigated whether vitamin B12- and metabolic disease-related 

genetic variants modified vitamin B12 concentrations and cardiometabolic traits in response to 

replacement of saturated fatty acids (SFA) with monounsaturated (MUFA) or n-6 

polyunsaturated (PUFA) fatty acids in British adults at 1.5-fold higher risk of CVD. Genetic 

risk scores (GRS) based on three vitamin B12 related tagSNPs [(FUT2)- rs602662, rs492602 

and rs16982241] representing the entire common genetic variations across the FUT2 gene were 

selected. Furthermore, seven metabolic disease-related genetic variants [(FTO)- rs8050136, 

rs9939609 and rs10163409, (MC4R)- rs17782313 and rs2229616 and (TCF7L2)- rs7903146 

and rs12255372] were constructed. 

No significant associations of the B12-GRS and metabolic-GRS with vitamin B12 

concentrations were observed within the participants. However, it should be noted that the 
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mean vitamin B12 concentrations were lower in participants who carried ≥4 risk alleles of the 

B12-GRS and ≥6 risk alleles of the metabolic-GRS. Our data analysis showed an effect of the 

B12-GRS in the reverse direction to what was expected, where an increased genetic risk of 

vitamin B12 deficiency was positively associated with increased fasting HDL cholesterol and 

decreased TAG at baseline, these findings were not replicated in other study populations which 

had used a different study design (cross-sectional) in my thesis (Brazil, Sri Lanka, India and 

Indonesia). Our findings from this retrospective analysis of the DIVAS study failed to show an 

impact of the B12-GRS on vitamin B12 concentrations and cardiometabolic traits in the 

presence of a dietary intervention manipulating fatty acid intake for 16 weeks. Furthermore, 

the post-hoc tests indicated no significant interactions between changes in vitamin B12 

concentrations and the three dietary groups with the metabolic-GRSs.  

Interestingly, the DIVAS study showed two novel interactions between the metabolic-GRS and 

the dietary fat intervention on metabolic traits. My study demonstrated that isoenergetically 

substituting a high SFA diet with a 9.5% replacement of MUFA had a significant effect on 

lowering ambulatory systolic blood pressure in individuals carrying 6 or more risk alleles 

(43.8% of the study population) of the metabolic-GRS. Additionally, our study indicated the 

metabolic-GRS modified the association between the MUFA-rich diet and changes in fasting 

glucose concentrations. Among individuals consuming the MUFA-rich diet, those carrying ≥ 

6 risk alleles of the metabolic-GRS had a tendency for a greater increase in glucose 

concentrations after 16 weeks compared to individuals consuming an SFA or n-6 PUFA rich 

diet. Further studies are warranted to confirm these results and investigate the mechanisms 

underlying the effect of these genes on blood pressure levels in response to replacing SFA with 

MUFA.  

8.1.6 General trends observed across the study population 
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Differences in macronutrients existed among the five groups studied in this thesis. In general, 

Sri Lankans and Indians had similar macronutrient intakes, whereas Minangkabau women from 

Indonesia had intakes like those of Brazilian adolescents. Carbohydrate intakes as a percentage 

of calories were higher among South Asians (Sri Lankan: 69.6 ± 8.8 % and Indian: 64.3 ± 6.3 

%) than the other groups (Brazil: 47.7 ± 20.6 %, Indonesian: 54.1 ± 9.4 % and British: 49.1 ± 

7.1%) (Table 39). The acceptable macronutrient distribution range (AMDR) for carbohydrate 

in adolescents (aged 14 and over) and adults is 45-65 percent of total energy [503]. The Sri 

Lankan population consumed carbohydrates above the AMDR. Furthermore, the Indian 

population was very close to the upper limit of the acceptable intake of carbohydrates. The 

British, Indonesian and Brazilian population were well within the AMDR for carbohydrate 

intake. The percent of calories from protein was highest among the Brazilian adolescent 

population (17.0 ± 8.4 %) and lowest among the South Asian populations (Sri Lankan: 11.3 ± 

2.3 % and Indian: 11.3 ± 1.1 %). British adults with moderate cardiovascular risk had the 

highest total fat intakes as percentage of calories (34.1 ± 5.4 %), compared to the other 

populations studied (Brazil: 25.4 ± 13.2 %, Sri Lanka: 21.9 ±  5.3%, Indian: 23.8 ±  4.7 and 

Indonesian: 28.9 ±  8.0%) (Table 38). All of the populations in this thesis had macronutrient 

intakes within the AMDR for protein (10-35%) and fat (20-35%) intake [503]. 

 Aspects of the sampling strategy could have affected our comparisons between the five 

groups. Firstly, we did not examine age differences between macronutrient intakes. The 

Brazilian population included only adolescents, whereas in the Sri Lankan population adults 

up to the age of fifty years were included. The Indian, Indonesian and British populations all 

included adults over the age of fifty. It is important to note, that the younger populations are 

more likely to adopt new dietary patterns, as opposed to older populations, making it easier to 

propose dietary advice. Indian adults were sampled in both urban and rural areas, whereas the 
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MINANG study was conducted in a rural area. Further to this, the DIVAS, GOOD and 

Brazilian population were conducted in urban areas.  More future studies, which look at both 

rural and urban populations are needed, as well as controlling for potential confounders such 

as socio-economic factors [504]. Furthermore, the studies did not report what days of the week 

sampling took place. It is important to note, that the nutrient intake in the weekend may vary 

in comparison to the weekdays [505]. 

 The highest levels of insufficient physical activity (<600 MET mins/week using the 

GPAQ) were reported in the CURES study (82.0%), whereas the lowest levels of insufficient 

physical activity levels were reported in the Brazilian adolescent population (31%) (Table 39). 

There are many limitations, which act to limit the generalisability of the physical activity levels 

including: the sample size of the cohort and the inclusion of cohorts with high-risk (DIVAS, 

CURES and the Brazilian population). Additionally, there are inter-cultural differences that 

exist between how ‘moderate’ and ‘vigorous’ physical activity is reported [506]. In the future, 

physical activity should also be measured with the combined use of a piezoelectric pedometer 

and accelerometer, instead of relying on subjective measures.   

 The observations described in this analysis both confirm previous findings and offer 

new-light on population-based differences in vitamin B12 levels. Compared with the 

Indonesian population, South Asians demonstrated lower vitamin B12 concentrations. 

Although the Brazilian adolescent population had indicators of cardiovascular risk, higher 

vitamin B12 concentrations were observed in this population compared with healthy 

participants from the Indian and Sri Lankan population. Furthermore, the lowest levels of 

vitamin B12 across the five populations in this study was from the DIVAS study (Table 39), 

which could be accounted by the populations older age group. It is difficult to generalise these 

findings, as some of the populations included cohorts at risk of disease and furthermore the 

sample size of the population was limited.
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Table 39: Macronutrient Intakes, Biochemical and physical activity levels: A Comparison of the Brazilian, GOOD, CURES, MINANG 

and DIVAS studies 
 

Brazil 

(N=113)a 

Sri Lanka GOOD 

study (n=109) 

India CURES study 

(n=548) 

Indonesia 

MINANG study 

(n=117)b 

DIVAS (n=119)c 

Macronutrient 

Protein (%) 17.0 ± 8.4 11.3 ± 2.3 11.3 ± 1.1 16.9 ± 3.3 15.6 ± 2.9 

Carbohydrate (%) 47.7 ± 20.6 69.6 ± 8.8 64.3 ± 6.3 54.1 ± 9.4 49.1 ± 7.1 

Fat (%) 25.4 ± 13.2 21.9 ± 5.3 23.8 ± 4.7 28.9 ± 8.0 34.1 ±  5.4 

Total Fibre (g) N/A 16.8  ± 8.2 32.2 ± 11.3 8.8 ± 4.5 N/A 

Total energy (Kcal/day) 2522 ± 586 2098  ± 456 2597 ± 773 1774 ± 609 2148 ± 572 

Anthropometric  

Age (yrs) 14 ± 2 38 ± 7 49.39 ± 11.45 40 ± 10 47 ± 9 

BMI (kg/m2) 24.0 ± 4.9 24.6 ± 4.1 26.75 ± 5.04 25.1 ± 4.2 26.4 ± 4.0 

WHR N/A 0.92 ± 0.11 0.90 ± 0.09 N/A 0.87 ± 0.09 

Fat (%) N/A 27.25 ± 7.37 N/A 35.70 ± 7.00 N/A 

24 h Ambulatory Systolic 

BP (mm Hg) 

N/A 120 ± 15 129 ± 20 113 ± 9 122 ± 11 

24 h Ambulatory diastolic 

BP (mm Hg) 

N/A 75 ± 16 80 ± 12 77 ± 6 75 ± 8 

Biochemical  

Vitamin B12 (pg/ml) 520 ± 232 516  ± 180 417 ± 255  591 ± 579 414 ± 162 

Homocysteine (μmol/l) 7.04 ± 2.99 N/A 13.67 ± 8.09 N/A N/A 

Folic acid (ng/ml) 11.02 ± 3.27 N/A 8.59 ± 5.81 N/A N/A 
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Triacylglycerol (mg/dl) 94.05 ± 54.16 144.19 ± 86.81 146.54 ± 116.88 97.67 ± 42.80 114.16 ± 53.10 

HDL (mg/dl) 46.29 ± 11.79 42.56 ± 8.24 40.89 ± 8.85 58.99 ± 10.20 59.46 ± 13.90 

LDL (mg/dl) 90.28 ± 21.00 134.03 ± 28.60 114.37 ± 35.56 127.77 ± 39.17 146.72 ± 37.84 

VLDL (mg/dl) 18.85 ± 10.82 28.84 ± 17.36 N/A N/A N/A 

Oxidized-LDL (U/L) 6.42 ± 13.69 N/A N/A N/A N/A 

Fasting plasma glucose 

(mg/dl) 

N/A 86  ± 13 116 ± 49 92 ± 20 92 ± 8 

Fasting serum insulin 

(μIU/ml) 

N/A 9.9 ± 7.2 9.23 ± 6.25 32959  ± 26327 4.17 ± 2.52 

Glycated Haemoglobin 

(%) 

N/A 5.4 ± 0.5 6.5 ± 1.7 N/A N/A 

Physical activity levels 

(%) 

 

Low 31 72.5 82.0 39.3 N/A 

Medium 69 19.3 16.2 49.6 N/A 

High 8.3 1.8 11.1 N/A 
aChildren with risk factors for cardiovascular disease were included  

bWomen were included for analysis 

cAdults with moderate risk factors for cardiovascular disease were included 
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Several genetic loci have supported the presence of ethnic differences for metabolic 

traits and vitamin B12 status within the populations studied in this thesis. The FTO rs8050136 

genotype is an example of genetic heterogeneity according to race. The minor allele ‘A’ of the 

SNP rs8050136 was present in 13% of Indian participants vs 23% Indonesian participants 

(Table 40). Although India and Sri Lanka are geographically close, the minor allele was more 

frequent in the Sinhalese population (34%). Furthermore, the prevalence of the rs8050136 

minor allele in the British DIVAS population (42%) was the most prevalent in the population, 

and was in agreement with previous reported values for the Caucasian population 

(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs=rs8050136).  

 The FUT2 SNP  rs602662 is one of the most commonly studied variant related to 

vitamin B12 status. The rs602662 SNP is an example of a B12 SNP that has demonstrated 

ethnic specificity, for example, within the Indonesian population the minor allele frequency 

was extremely low (0.03%) in comparison to the DIVAS (46%), GOOD (31%) and Brazilian 

population (41%). Although no genotyping errors were identified, the SNP rs602662 did not 

reach HWE within the Indonesian and Sri Lankan populations (Table 40). It is possible that 

the Hardy-Weinberg equilibrium is not met in South Asian / South East Asian populations. An 

alternative reason could be that the HWE was not reached in these populations, due to the small 

sample size and the possibility of interbreeding (especially as consanguineous marriages are 

common in these populations). 

https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs=rs8050136
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Table 40: Genotype frequencies: A Comparison of the Brazilian, GOOD, CURES, MINANG and DIVAS studies 

 

Gene rs number 
Major 

allele 

Minor 

allele 

Common 

Homozygotes  (%) 

Heterozygotes 

(%) 

Rare 

Homozygotes  (%) 

Minor 

allele 

frequency 

HWE ethnicity 

FTO 

rs8050136 C A 291 (75.2) 90 (23.5) 6 (1.6) 0.13 0.749 India 

rs8050136 C A 69 (60.0) 39 (33.9) 7 (6.1) 0.23 0.638 Indonesia 

rs8050136 C A 40 (33.9) 57 (48.0) 21 (17.8) 0.42 0.929 British 

rs8050136 C A 48 (44.0) 47 (43.1) 14 (12.8) 0.34 0.641 Sri Lanka 

rs2388405 T C 342 (83.6) 62 (15.2) 5 (1.2) 0.09 0.259 India 

rs9939609 T A 70 (60.3) 39 (33.6) 7 (6.0) 0.23 0.618 Indonesia 

rs9939609 T A 41 (34.5) 57 (47.9) 21 (17.6) 0.42 0.877 British 

rs9939609 T A 48 (44.0) 47 (43.1) 14 (12.8) 0.34 0.641 Sri Lanka 

MC4R rs17782313 T C 89 (76.1) 26 (22.2) 2 (1.7) 0.13 0.949 Indonesia 
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rs17782313 T C 70 (59.8) 38 (32.5) 9 (7.7) 0.24 0.243 British 

rs17782313 T C 48 (44.0) 50 (45.9) 11 (10.1) 0.33 0.700 Sri Lanka 

rs2229616 G A 116 (99.1) 1 (0.9) 0 (0.0) 0.00 0.963 Indonesia 

rs2229616 G A 113 (95.0) 6 (5.0) 0 (0) 0.03 0.778 British 

rs2229616 G A 99 (91.7) 9 (8.3) 0 (0) 0.04 0.651 Sri Lanka 

TCF7L2 

rs12255372 G T 97 (82.9) 20 (17.1) 0 (0.0) 0.09 0.312 Indonesia 

rs12255372 G T 66 (55.9) 42 (35.6) 10 (8.5) 0.26 0.378 British 

rs12255372 G T 57 (52.3) 45 (41.3) 7 (6.4) 0.27 0.633 Sri Lanka 

rs7903146 C T 95 (81.9) 21 (18.1) 0 (0.0) 0.09 0.284 Indonesia 

rs7903146 C T 62 (52.1) 46 (38.7) 11 (9.2) 0.29 0.564 British 

rs7903146 C T 45 (41.3) 54 (49.5) 10 (9.2) 0.34 0.274 Sri Lanka 

KCNJ11 

rs5219 C T 55 (47.0) 47 (40.2) 15 (12.8) 0.33 0.329 Indonesia 

rs5219 C T 49 (45.0) 45 (41.3) 15 (13.8) 0.34 0.373 Sri Lanka 

CAP10 rs3792267 G A 108 (91.5) 9 (7.6) 1 (0.8) 0.05 0.123 Indonesia 
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rs3792267 G A 79 (72.5) 24 (22.0) 6 (5.5) 0.17 0.035 Sri Lanka 

rs5030952 C T 77 (66.4) 31 (26.7) 8 (6.9) 0.20 0.063 Indonesia 

rs5030952 C T 101 (92.7) 8 (7.3) 0 (0) 0.04 0.691 Sri Lanka 

rs2975760 T C 66 (60.6) 38 (34.9) 5 (4.6) 0.22 0.874 Sri Lanka 

MUT 

rs1141321 G A 67 (59.3) 40 (35.4) 6 (5.3) 0.23 0.993 Indonesia 

rs1141321 G A 28 (25.7) 60 (55.0) 21 (19.3) 0.47 0.271 Sri Lanka 

FUT6 

rs778805 T C 33 (28.2) 61 (52.1) 23 (19.7) 0.46 0.586 Indonesia 

rs778805 C T 29 (26.6) 53 (48.6) 27 (24.8) 0.49 0.776 Sri Lanka 

TCN1 

rs34324219 C A 117 (100) 0 (0.0) 0 (0.0) 0.00 N/A Indonesia 

rs34324219 C A 107 (98.2) 2 (1.8) 0 (0) 0.01 0.923 Sri Lanka 

FUT2 

rs602662 G A 111 (94.9) 4 (3.4) 2 (1.7) 0.03 0.000 Indonesia 

rs602662 G A 34 (28.6) 60 (50.4) 25 (21.0) 0.46 0.877 British 

rs602662 G A 34 (30.1) 52 (46.0) 24 (21.2) 0.45 0.625 Brazil 

rs602662 G A 60 (55.6) 30 (27.8) 18 (16.7) 0.31 0.000 Sri Lanka 
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rs492602 A G 38 (31.9) 58 (48.7) 23 (19.3) 0.44 0.918 British 

rs16982241 G A 91 (76.5) 26 (21.8) 2 (1.7) 0.13 0.928 British 

TCN2 

rs1131603 T C 117 (100) 0 (0.0) 0 (0.0) 0.00 N/A Indonesia 

rs1131603 T C 107 (98.2) 2 (1.8) 0 (0) 0.01 0.923 Sri Lanka 

rs1801198 G C 60 (53.1) 33 (29.2) 10 (8.8) 0.26 0.100 Brazil 

CD320 

rs2336573 C T 86 (74.1) 29 (25.0) 1 (0.9) 0.13 0.390 Indonesia 

rs2336573 C T 99 (90.8) 10 (9.2) 0 (0) 0.05 0.616 Sri Lanka 

CUBN 

rs1801222 C T 84 (74.3) 27 (23.9) 2 (1.8) 0.14 0.920 Indonesia 

rs1801222 C T 78 (72.2) 29 (26.9) 1 (0.9) 0.14 0.338 Sri Lanka 

CPS1 

rs1047891 C A 48 (41.0) 56 (47.9) 13 (11.1) 0.35 0.579 Indonesia 

rs1047891 C A 56 (51.9) 44 (40.7) 8 (7.4) 0.28 0.873 Sri Lanka 

MTHFR 

rs1801133 C T 92 (79.3) 24 (20.7) 0 (0.0) 0.10 0.214 Indonesia 

rs1801133 C T 89 (81.7) 19 (17.4) 1 (0.9) 0.10 0.990 Sri Lanka 

rs1801133 C T 55 (48.7) 41 (36.3) 12 (10.6) 0.30 0.310 Brazil 
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rs1801131 A C 56 (49.9) 43 (38.1) 13 (11.5) 0.31 0.293 Brazil 

CLYBL rs41281112 C T 105 (96.3) 4 (3.7) 0 (0) 0.02 0.845 Sri Lanka 

BHMT  

rs3797546 T C 67 (59.3) 27 (23.9) 7 (6.2) 0.20 0.081 Brazil 

rs492842 T C 35 (31) 43 (38.1) 27 (23.9) 0.46 0.071 Brazil 

COMT  

rs4680 G A 35 (31) 48 (42.5) 24 (21.2) 0.45 0.335 Brazil 

rs4633 C T 44 (38.9) 51 (45.1) 16 (14.2) 0.37 0.844 Brazil 

MTR rs1805087 A G 77 (68.1) 32 (28.3) 2 (1.8) 0.16 0.521 Brazil 

MTRR rs1801394 A G 45 (39.8) 49 (43.4) 16 (14.2) 0.37 0.655 Brazil 

 

Abbreviations: HWE Hardy-Weinberg equilibrium



316 

 

 

8.1.7 Limitations and strengths 

A major limitation to this thesis was that some of the studies had relatively small sample 

sizes; this may have affected our results by having a wider confidence interval. However, 

despite this limitation, we were still able to observe gene-diet interactions on vitamin B12 and 

cardio-metabolic disease outcomes. In this PhD project, most of the studies employed a cross-

sectional study design (Brazilian adolescents, CURES, GOOD, MINANG) which investigated 

the genetic effects at a single point in time, thus we were unable to examine the causal 

relationship between the SNP–diet interactions on vitamin B12 concentrations and metabolic 

traits. Furthermore, some of the studies might have introduced biases, including the inclusion 

of type 2 diabetes participants in the CURES study (selection bias); however, there was 

adjustment for diabetes status in the statistical analysis. The cross-sectional studies investigated 

gene-diet interactions; where the dietary component was based on macronutrient intake. 

However, no data on specific types of micronutrient was available, and this could have limited 

further potential gene-diet interactions from being observed. Furthermore, the data collected 

from FFQs and physical activity questionnaires, were based on self-reported data and this could 

have led to measurement bias. The data was limited in some of the studies, for example the 

GOOD, MINANG and DIVAS studies did not investigate folate or homocysteine 

concentrations in their participants. Additionally, none of the studies investigated other vitamin 

B12 biomarkers, such as Holo-transcobalamin (holoTC) or Methylmalonic Acid (MMA), 

which have been shown to have greater sensitivity for vitamin B12 status.  

The main strengths of this thesis were that different study designs were employed 

(cross-sectional and intervention) to confirm the observed findings. Three of the cross-sectional 

studies used FFQs (CURES, GOOD, MINANG) [368, 411, 440] that were validated to measure 

long-term macronutrient intake of the population. Vitamin B12 status has not been previously 
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reported in healthy Indonesian women and Sri Lankan adults, thus this thesis was the first to 

investigate vitamin B12 status in Sri Lanka and Indonesia (women only). Further to this, four 

of the studies (CURES, GOOD, MINANG and DIVAS) calculated genetic risk scores (GRS) 

for the risk of vitamin B12 deficiency and cardio-metabolic related traits. The benefits of using 

a GRS as opposed to using a single gene, is that GRS can increase the statistical power of the 

study [387] and can provide better information for disease association compared to the single 

SNPs. The use of the tagging approach allowed me to select three tagSNPs representing the 

entire common genetic variations across the FUT2 gene in the DIVAS study. Furthermore, my 

thesis was the first to report gene-diet interactions on vitamin B12 concentrations and metabolic 

traits in Sri Lanka and Indonesia.  

8.2 Conclusion 

In conclusion, my research identified novel interactions between the B12-GRS and 

dietary factors (protein intake and fibre intake) on central obesity indicators within the Sri 

Lankan and Indonesian populations. Furthermore, the B12-related SNP FUT2 rs602662 

showed a significant interaction with protein intake on homocysteine concentrations (a marker 

of cardiovascular disease) in the Brazilian adolescent population. However, no gene-lifestyle 

interactions on cardio-metabolic outcomes were observed in the British population. Given that 

high fibre and protein diets are recommended for preventing metabolic disease outcomes [460] 

[449], the gene-diet interaction findings observed in my study will have significant public 

health implications, where people carrying risk alleles for vitamin B12 deficiency could be 

advised to alter their diet according to their ethnic background. Interestingly, in the Indian 

population, I found the relationship between vitamin B12 and obesity in the other direction to 

what was observed in the Indonesian, Brazilian and Sri Lankan populations. In the CURES 

Indian study, I found that being genetically predisposed to obesity could in fact lower vitamin 

B12 concentrations, without influence from dietary factors. Ultimately, the findings in this 
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thesis contribute to a better understanding of how genetic variants related to B12 absorption 

and metabolism interacts with lifestyle factors in the progression of metabolic traits (Figure 

19).  

Replications of the findings from this thesis require confirmation from studies with a 

larger population size and must include individuals from different ethnic groups. It is important 

that more randomized controlled trials are carried out in the future, to identify the cause and 

effect of a dietary intervention on a metabolic outcome (based on an individual’s genotype). 

Furthermore, it is important that prospective genotyping is carried out to prevent any issues 

related to having an unbalance in genotype groups, which could confound the results. This 

thesis only addressed vitamin B12 concentrations, and only two of the studies in this thesis 

(Indian and Brazilian) studied folate and homocysteine levels, therefore there is a need to take 

these risk factors into consideration in order to implement dietary strategies to prevent the 

metabolic disease-related outcomes. One of the benefits of this thesis was the use of genetic 

risk scores to provide evidence for the genetic effects of the phenotypes observed and this 

increased the statistical power of our study. It is important that future nutrigenetic studies utilize 

a comprehensive panel of SNPs associated with vitamin B12 or metabolic disease related traits 

to calculate a genetic risk score. 

 In conclusion, my study has demonstrated significant interactions between the B12-

GRS and dietary intake on metabolic traits. However, these gene-diet interactions require 

replication in an independent cohort utilizing a larger number of samples and functional studies 

to understand the role of these interactions at the molecular level are highly warranted before 

implementing personalised nutrition strategies to overcome the burden of metabolic diseases. 
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Figure 19: The main study findings of this thesis 
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8.3 Future prospects 

 In this thesis, I found that the relationship between B12 deficiency and metabolic 

outcomes may be influenced by dietary factors such as protein and fibre intake. It is important 

that the gene-diet interactions observed in this thesis are replicated, before public health 

recommendations can be enforced. Also, it is important to further investigate whether people 

with increased weight require more B12 containing foods, for the possibility of implementing 

B12 deficiency screening programmes in the population. If low vitamin B12 concentrations 

stimulate metabolic diseases through a dietary influence, it is important that mechanistic studies 

are carried out to determine how vitamin B12 interacts with adipose tissue metabolism or how 

epigenetic mechanisms contribute to the epidemic of metabolic diseases. Current literature 

suggests that the genetic profile of an individual can shape the microbiome of the host, and an 

altered gut flora has been associated with vitamin B12 deficiency [14, 264]. This possibly 

requires investigation, given the known link between an altered distribution in gut microbiota 

and obesity. 

 In the future, validation of the findings of this thesis will be carried out by replicating 

the study in a cohort with an increased sample size and power. Moreover, it is difficult to truly 

isolate the macronutrient accountable for any nutrigenetic effects, especially for fat and 

carbohydrates, as one macronutrient usually compensates the other [507]. Therefore, dietary 

intervention studies are more favourable as they place strong emphasis on compliance to the 

dietary exposure. Dietary intervention studies have the potential to avoid measurement bias 

found within FFQs and to uncover relationships between SNPs, diet and metabolic traits. 

Additionally, longitudinal research studies are required to examine the causal relationship 

between the SNP–diet interactions on vitamin B12 concentrations and metabolic traits. Future 

studies should also measure specific dietary micronutrients for more in-depth gene-diet 

interactions to be carried out.   
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Future research should include more long-term, randomised controlled studies that 

robustly measure both body composition (e.g. dual-energy X-ray absorptiometry, magnetic 

resonance imaging and/or computed tomography scans) and body size (e.g. body weight or 

BMI) [93]. Additionally, investigating how different clinical outcomes associated with vitamin 

B12 deficiency is affected by B12 supplements at different doses is another area that requires 

attention. It is also necessary to study the effects of adiposity on vitamin B12 status across all 

body sizes and to measure vitamin B12 status using markers such as homocysteine, 

methylmalonic acid (MMA) and holotranscobalamin. Looking into groups that are more at risk 

of vitamin B12 deficiency, such as elderly individuals, pregnant women, vegetarians, other 

patient groups (e.g. Type 2 diabetes patients taking metformin medication), ethnic minorities 

and elite athletes must also be considered. 

 It is yet to be elucidated whether the relationship between vitamin B12 and cardio-

metabolic traits, can be modified in response to other dietary sources (e.g. fortified foods); such 

evidence will have important implications on setting dietary requirements in a clinical setting. 

Insights from this PhD thesis show promise for the use of personalised nutrition in the area of 

vitamin B12 and obesity, whereby certain vitamin B12-related SNPs may be used to predict an 

individual’s risk of developing metabolic traits and may be modified according to an 

individual’s lifestyle (dietary pattern/physical activity levels).  Nutrigenetic research is 

urgently required, given the importance of developing public health strategies to decrease the 

prevalence and impact of overweight and obesity.  

Although extraordinary improvements have been accomplished in identifying several 

gene-diet interactions, little is known about the underlying cardio-metabolic pathways of these 

gene-diet interactions [508, 509]. Nutrigenomics is an approach which explores the effect of 

specific nutrients on gene expression and their metabolic consequences [510]. The definition 

of nutrigenomics has further extended to ‘nutritional factors which protect the genome from 
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any damage’. Nutrigenomics focuses on the impact of dietary factors on the genome, proteome 

(the complete set of proteins expressed by an organism) and the metabolome (the total number 

of metabolites). Researchers are now able to demonstrate that certain nutritional interventions 

are positive in a select proportion of the population, whilst others show no effect, and some 

may act unfavourably [511]. This field of research, will ultimately help in understanding how 

the diet interacts with metabolic pathways and their role in diet-related diseases [512]. On the 

other hand, nutrigenetics explores the effect of genetic variation on the interaction between a 

particular diet and disease [513]. The role of nutrigenomics and nutrigenetics will help 

revolutionise our ability to design optimal dietary advice for health maintenance and for 

metabolic disease prevention [221]. Currently, a large gap exists between nutrition 

recommendations and an individual’s eating behaviour [514]. Population-based dietary advice, 

where a ‘one size fits all’ approach is given, has been relatively unsuccessful in benefitting the 

patient, due to a myriad of factors including: lack of motivation and failure of patient 

compliance [514]. Evidence now suggests that the use of genetic testing or personalised advice 

as a catalyst, can demonstrate behavioural changes in nutrition [515, 516].  

‘Foodomics’ approaches are becoming increasingly essential tools in preventative 

health care. This approach combine ‘omics’ (i.e. transcriptomics, proteomics, metabolomics) 

technologies  to prevent and treat non-communicable diseases [508]. The ‘Foodomics’ 

approach is used to help understand the gene-based differences among individuals in response 

to specific dietary patterns, and to identify the interactions of bioactive compounds from dietary 

components at a biochemical, molecular and cellular level [517]. An example of the foodomics 

approach was shown in the work of Valdes et al., who studied the effect of rosemary extracts 

on colon cancer cells, using multi-platform ‘omics’ analyses for clarifying the signalling and 

metabolic pathways involved in cancer progression [518].  
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Precision nutrition is another technique that aims to develop more comprehensive 

nutritional recommendations based on an individual’s internal and external environment [519]. 

This approach suggests that it is possible to understand the complex relationship between an 

individual and their food consumption, individuals physical activity level, their food behaviour, 

microbiota, metabolome and their phenotype (health status), in order to offer nutritional 

interventions/ advice which can benefit the individual [510, 519]. As a result, precision 

nutrition requires a greater degree of scientific certainty and replication studies, compared to 

the other methods [510]. 

The majority of studies assessing the link between genetic variation and disease risk 

have been studied in populations with European ancestry (78%). At present, there is a need to 

study more diverse ethnic groups, in order to translate our understanding of genetic disease 

architecture into clinical practice. At present, approximately 85% of the Genotype-Tissue 

Expression project study (examines the genes in tissues obtained from different people and 

studies how inherited changes in genes lead to common diseases) contains samples from 

European descent [207], again highlighting the need for more studies in minority populations. 

At present, the ability to study minority populations have been hindered, and this may be due 

to previous experiences of these populations being exploited/mistrusted in biomedical research 

[207]. In order to generate reliable phenotype data from diverse ethnic groups, it is important 

that less economically developed regions contain adequate funding, equipment for biochemical 

and genetic testing and experienced personnel [207]. 

 In summary, knowledge in the field of nutrigenetics holds a promising future in 

preventing the development of dietary-related chronic diseases. Although, there are many 

studies which show interactions between genes and lifestyle factors, there are inconsistences 

in the evidence given which may limit the application of nutrigenetics to the general public at 

present [514]. There is a need to utilize larger studies that are well-powered and that examine 
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lifestyle/dietary behaviours across various ethnic groups in order to implement personalised 

nutrition. 
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Chapter 9  

Appendices 

9.1 Research plan: The Influence of One‑carbon Metabolism Gene Polymorphisms 

and Gene–environment Interactions on Homocysteine, Vitamin B12, Folate 

and Lipids in a Brazilian Adolescent Population 

 

Main study objective: 

To determine whether 10 SNPs from seven selected candidate genes related to the one-carbon 

metabolism cycle were associated with vitamin B12, homocysteine, folic acid and lipid-related 

outcomes and whether these associations were modified by environmental factors (diet and 

physical activity). 

 1)To work out which genetic model to use for each SNP: additive, dominant or recessive 

2) To test the association between the 10 SNPs and folic acid levels 

3) To test the association between the 10 SNPs and Hcy levels 

4) To test the association between the 10 SNPs and vitamin B12 levels 

5) To test the interaction between the 10 SNPs and dietary factors on folate levels 

6) To test the interaction between the 10 SNPs and dietary factors on Hcy 

7) To test the interaction between the 10 SNPs and dietary factor on vitamin B12 levels 

Previous Studies looking at the association of the 10 SNPs with biochemical traits: 

Gene symbol SNP rs number Vitamin B12 Folate Hcy 

MTHFR  rs1801133  [520] [254, 520-522] 

MTHFR  rs1801131  [523, 524] [523] 

MTR rs1805087  [234]  

MTRR rs1801394  [234]  

TCN2 rs1801198 [285]   

COMT rs4680   [525] 

COMT rs4633   [338] 

BHMT rs492842   It is unknown whether 

this SNP is associated 

with Hcy, although 

previous studies have 

implicated associations 

between the BHMT gene 

and homocysteine. 



353 

 

BHMT rs3797546   It is unknown whether 

this SNP is associated 

with Hcy, although 

previous studies have 

implicated associations 

between the BHMT gene 

and homocysteine. 

FUT20 rs602662 [234, 254]   

 

 

Co-variates in this study: 

• Age will be coded according the two age ranges[341] : 

- (10-14 years) = Recoded as 0 

-(15-19 years) = Recoded as 1 

• Gender will be coded 0 (Male) or 1 (Female) [341] 

• BMI was estimated and classified according to the WHO (2007) for BMI/age 

according to gender and was coded  into 4 groups:[341] 

- below 15th percentile=below normal weight -> Recoded as 1 

- between 15th and 85th percentile= normal-weight -> Recoded as 2 

-between 85th and 97th percentile= overweight -> Recoded as 3 

- above 95th percentile=obese. -> Recoded as 4 

 

Plan of action: 

Objective 1: To work out which genetic model to use for each SNP: additive, dominant 

or recessive. 

Aims: Statistical test used: 1) Reason for statistical test used 

2) Outcome of statistical test used 

3) covariates (when appropriate) 

1a) To determine the 

frequencies of each 

of the genotypes, so 

that an appropriate 

genetic model can be 

selected. 

Descriptive 

statistics- 

Frequencies 

1) Reason for test:  exposure variables 

(SNPs)  are categorical variables 

2) To be given the frequencies of the 

common homozygous, heterozygous 

and rare homozygous genotypes. 

Therefore, an appropriate model can 

be given to the SNP: dominant, 

recessive or additive. As well as this, 

the minor allele frequency can be 

calculated. 
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Objective 2: To test the association between the 10 SNPs and Folic acid levels 

2a) Testing the 

association between 

each SNP and folic 

acid levels  

One-Way Anova; 

Post hoc Tukey 

1) Reason for test:  exposure variable (SNP) 

is a categorical variable and the outcome 

variable (folic acid) is a continuous variable.  

2) Outcome of test: Identifying the difference 

of folic acid levels between different 

genotypes (common, heterozygotes and 

rare).     

2b) Adjusting for 

covariates to check if 

the covariates 

influence the 

association between 

each SNP and folic 

acid levels 

Univariate linear 

regression   

1) Reason for test: exposure variable (SNP) 

is a categorical variable and the outcome 

variable (folic acid levels) is a continuous 

variable. 

2) Outcome of test: identifying the impact of 

the variants on folic acid levels 

3) Covariates to be adjusted: Age, gender, 

BMI [341]  

Objective 3: To test the association between 10 SNPs and Homocysteine levels (Hcy) 

3a) Testing the 

association between 

each SNP and Hcy 

levels  

One-Way Anova; 

Post hoc Tukey 

1) Reason for test: The exposure variable 

(SNP) is a categorical variable and the 

outcome variable (Hcy levels) is a 

continuous variable.  

2) Outcome of test: Identifying the difference 

of Hcy levels between different genotypes.      

3b) Adjusting for 

covariates to check if 

the covariates 

influence the 

association between 

each SNP and Hcy 

levels. 

Univariate linear 

regression   

1) Reason for test: exposure variable (SNP) 

is a categorical variable and the outcome 

variable (Hcy levels) is a continuous 

variable. 

2) Outcome of test: identifying the impact of 

the variants on Hcy levels 

3) Covariates to be adjusted: Age, gender, 

BMI [341] 

Objective 4:To test the association between the 10 SNPs and vitamin B12 (cbl) 

4a) Testing the 

association between 

each SNP and cbl 

levels  

One-Way Anova; 

Post hoc Tukey 

1) Reason for test:  exposure variable (SNP) 

is a categorical variable and the outcome 

variable (cbl levels) is a continuous variable.  

2) Outcome of test: Identifying the difference 

of cbl levels between different genotypes.      

4b) Adjusting for 

covariates to check if 

the covariates 

influence the 

association between 

each SNP and cbl 

levels 

Univariate linear 

regression   

1) Reason for test: exposure variable (SNP) 

is a category variable and outcome variable 

(cbl levels) is a continuous variable  

2) Outcome of test: identifying the impact of 

the variants on cbl levels 

3) Covariates to be adjusted: Age, gender, 

BMI [341] 

Objective 5: To test the association between the 10 SNPs and lipid concentrations 

(TAG, HDL-cholesterol, LDL-cholesterol, and ox-LDL) 

5a) Testing the 

association between 

One-Way Anova; 

Post hoc Tukey 

1) Reason for test:  exposure variable (SNP) 

is a categorical variable and the outcome 
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each SNP and each 

lipid concentration 

variable (each lipid concentration) is a 

continuous variable.  

2) Outcome of test: Identifying the difference 

of lipid concentrations between different 

genotypes.      

5b) Adjusting for 

covariates to check if 

the covariates 

influence the 

association between 

each SNP and each 

lipid concentration 

Univariate linear 

regression   

1) Reason for test: exposure variable (SNP) 

is a category variable and outcome variable 

(each lipid concentration) is a continuous 

variable  

2) Outcome of test: identifying the impact of 

the variants on lipid concentration. 

3) Covariates to be adjusted: Age, gender, 

BMI [341] 

Objective 6: To test the interaction between the 10 SNPs and dietary factors on Folic 

acid levels 

6a) Testing the 

interaction between 

the macronutrient 

and SNPs on folic 

acid levels  

Univariate linear 

regression 

1) Reason for test: exposure variable (SNP) 

is a categorical variable and the outcome 

variable (folic acid levels) is a continuous 

variable. 

2) Outcome of test: identifying the impact of 

the gene variants and the macronutrients: 

carbohydrate, protein and fat on folic acid 

levels. 

3) Covariates to be adjusted: Age, gender, 

BMI [341]. 

6b) Testing to find 

out if high or low 

macronutrients are 

causing the 

interaction 

Univariate linear 

regression 

1) Reason for test: exposure variable (SNP) 

is a categorical variable and outcome 

variable (Folic acid levels) is a continuous 

variable. 

2) Outcome of test: identifying the impact of 

gene variants and the consumption of 

different quantities of the macronutrient on 

folic acid levels 

3) Covariates to be adjusted: Age, gender, 

BMI.[341] 

(Data split based on tertiles of carbohydrate, 

protein and fat) [253] 

Objective 7: To test the interaction between the 10 SNPs and dietary factors on Hcy 

levels 

7a) Testing the 

interaction between 

the macronutrient 

and SNPs on Hcy 

levels  

Univariate linear 

regression 

1) Reason for test: exposure variable (SNP) 

is a categorical variable and the outcome 

variable (Hcy levels) is a continuous 

variable. 

2) Outcome of test: identifying the impact of 

the gene variants and the macronutrients: 

carbohydrate, protein, fat on folic acid levels. 

3) Covariates to be adjusted: Age, gender, 

BMI  [341]. 
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7b) Testing to find 

out if high or low 

macronutrients are 

causing the 

interaction 

Univariate linear 

regression 

1) Reason for test: exposure variable (SNP) 

is a categorical variable and outcome 

variable (Hcy levels) is a continuous 

variable. 

2) Outcome of test: identifying the impact of 

gene variants and the consumption of 

different quantities of the macronutrient on 

Hcy levels 

3) Covariates to be adjusted: Age, gender, 

BMI  [341]. 

(Data split based on: Tertiles of 

carbohydrate, protein and fat) [253] 

Objective 8: To test the interaction between the 10 SNPs and dietary factors on cbl 

levels 

8a) Testing the 

interaction between 

the macronutrient 

and SNPs on cbl 

levels  

Univariate linear 

regression 

1) Reason for test: exposure variable (SNP) 

is a categorical variable and the outcome 

variable (cbl levels) is a continuous variable. 

2) Outcome of test: identifying the impact of 

the gene variants and the macronutrients: 

carbohydrate, protein, fat on cbl levels. 

3) Covariates to be adjusted: age, gender, 

BMI [341] 

8b) Testing to find 

out if high or low 

macronutrients are 

causing the 

interaction 

Univariate linear 

regression 

1) Reason for test: exposure variable (SNP) 

is a categorical variable and outcome 

variable (cbl levels) is a continuous variable. 

2) Outcome of test: identifying the impact of 

gene variants and the consumption of 

different quantities of the macronutrient on 

cbl levels 

3) Covariates to be adjusted: Age, gender, 

BMI [341] 

(Data split based on tertiles of carbohydrate, 

protein and fat)[253] 

Objective 9: To test the interaction between the 10 SNPs and dietary factors on lipid 

concentrations (TAG, HDL-cholesterol, LDL-cholesterol, and ox-LDL) 

9a) Testing the 

interaction between 

the macronutrient 

and SNPs on lipid 

concentrations 

Univariate linear 

regression 

1) Reason for test: exposure variable (SNP) 

is a categorical variable and the outcome 

variable (lipid concentrations) is a 

continuous variable. 

2) Outcome of test: identifying the impact of 

the gene variants and the macronutrients: 

carbohydrate, protein, fat on lipid 

concentrations. 

3) Covariates to be adjusted: age, gender, 

BMI [341] 

9b) Testing to find 

out if high or low 

Univariate linear 

regression 

1) Reason for test: exposure variable (SNP) 

is a categorical variable and outcome 



357 

 

macronutrients are 

causing the 

interaction 

variable (lipid concentrations) is a 

continuous variable. 

2) Outcome of test: identifying the impact of 

gene variants and the consumption of 

different quantities of the macronutrient on 

lipid concentrations 

3) Covariates to be adjusted: Age, gender, 

BMI [341] 

(Data split based on: Tertiles of 

carbohydrate, protein and fat)[253] 

SPECIAL NOTES 

When looking at 

carbohydrates, 

proteins and fat in 

grams, you will need 

to adjust for Kcal. If 

you are using energy 

intake of the 

macronutrients you 

do not need to adjust 

for Kcal. 

Compute variables • For Carbohydrate interactions: 

1g of Carbohydrates = 4kcal 

• For Fat interactions: 

1g=9 kcal 

• For Protein interactions: 

1g= 4kcal [526] 

 When significant 

interactions with 

macronutrients are 

detected, further 

investigation will 

take place to 

underline the specific 

type of macronutrient 

responsible for the 

interaction.  

 

 

 

Univariate linear 

regression  

No subgroups of protein and carbohydrates 

were recorded in this data set. 

 

 

For fat interactions: 

• Test for interaction between SNPs 

with saturated fatty acid intake, SNPs 

with monounsaturated fatty acid 

intake and SNPs with 

polyunsaturated fatty acid intake. 

Tertiles will be made for each of 

these sub-groups. 

 

 After carrying out 

the interaction 

analysis using 

Univariate liner 

regression and 

obtaining P values, 

make sure any 

problems due to 

multiple 

comparisons are 

counteracted 

Bonferroni 

Correction 

1) This method adjusts for multiple 

comparison and reduces experiment-

wise error rate in genetic association 

studies[527] 
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9.2  Research plan – A genetic approach to examine the relationship between 

vitamin B12 status and metabolic traits in a South Asian population 

 

Main objectives: 

The purpose of this study is to use a genetic approach to explore the relationship between 

metabolic traits and vitamin B12 status in a Sri Lankan population and to investigate whether 

these relationships were modified by dietary intake.   

 

Hypothesis: 

I will test the hypotheses that low plasma vitamin B12 concentrations caused by genetic 

variants are associated with an increased risk of obesity and type 2 diabetes, and that the effect 

of genetic variants associated with high BMI on obesity traits is partly mediated through the 

reduction of serum vitamin B12 concentration. The latter hypothesis requires that genetically 

increased obesity traits are associated with low vitamin B12 concentration and with increased 

risk of diabetes/obesity traits. 

 

Specific aims: 

 

 
 

 

Diagram representing the study design. The diagram shows four possible associations, and 

four possible interactions. One-sided arrows with unbroken lines represent genetic 

associations and one-sided arrows with broken lines represent interactions between a lifestyle 

factor and GRS on serum vitamin B12/ metabolic traits.   
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1. I will test the association between the metabolic-GRS and vitamin B12 concentrations 

and metabolic disease-related traits.  

2. I will then test the associations between the B12–GRS and vitamin B12 status and 

metabolic disease related traits.  

3. Lastly, I will test whether these genetic associations are modified by lifestyle factors 

(macronutrient intake and physical activity levels).  

 

 

Previous Studies looking at the association of the 10 B12-related SNPs with vitamin B12 

concentrations: 

Gene rs number Studies which show an 

association with vitamin B12 

Methylenetetrahydrofolate 

reductase (MTHFR) rs1801133 

[288] 

Carbamoyl-phosphate 

synthase 1 (CPS1) rs1047891 

[205] 

Cubulin (CUBN) rs1801222 [205, 234, 253] 

CD320 molecule (CD320) rs2336573 [205, 237, 253] 

Transcobalamin 2 (TCN2) rs1131603 [205, 233] 

Citrate lyase beta like 

(CLYBL) rs41281112 

[205, 206] 

Fucosyltransferase 2 

(FUT2) rs602662 

[205, 233, 234, 253, 254, 258, 

260] 

Transcobalamin 1 (TCN1) rs34324219 [205, 233] 

Fucosyltransferase 6 

(FUT6) rs778805 

[205] 

Methylmalonyl-CoA mutase 

(MUT) 

rs1141321 

 

 

[205, 206, 234] 

 

 

Previous Studies looking at the association of the 10 metabolic disease-related SNPs with 

diabetes and obesity traits: 

 

Gene 

 

  

rs number 

 

  

Studies which show 

its association with 

Type 2 diabetes in 

South Asian 

populations 

Studies which 

show its 

association with 

obesity in South 

Asian 

populations 

Calpain 10 (CAPN10) rs3792267 [374, 528]  

Calpain 10 (CAPN10) rs2975760 [528]  

Calpain 10 (CAPN10) rs5030952 [528]  

Potassium voltage-gated 

channel subfamily J member 

11 (KCNJ11) rs5219 

[529]  

Transcription factor 7-like 2 

(TCF7L2) rs12255372 

[372, 373, 530-532]  
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Transcription factor 7-like 2 

(TCF7L2) rs7903146 

[372, 373, 530, 532-

536] 

[479, 537] 

Fat mass and obesity 

associated (FTO) rs9939609 

[538, 539] [370, 479, 539-

546] 

Melanocortin 4 Receptor 

(MC4R) rs17782313 

 [370, 545, 547-

550] 

Fat mass and obesity 

associated (FTO) rs8050136 

 [371, 542, 544, 

546] 

MC4R 

rs2229616 

 [551] (South East 

Asian population) 

 

Disease cut off-values: 

1) Only normal glucose tolerant (NGT) individuals were included in this study. According to the 

World Health Organization (WHO) NGT individuals are those with 2-h plasma glucose value 

< 7.8 mmol/l (140 mg/dl) [552] 

2) Generalized obesity was defined according to the World Health Organization Asia Pacific 

Guidelines for Asians as non-obese (BMI < 25 kg/m2 ) and obese (BMI ≥ 25 kg/m2 )[422]. 

3) Vitamin B12 status is defined as: 

<148 pmol/L (%) – deficient individuals 

148-221 pmol/L- suboptimal individuals  

>221 pmol/L – normal individuals [2] 

 

 

Plan of action: 

Objective 1: To work out whether each SNP was in Hardy-Weinberg equilibrium 

Aims: Statistical test 

used: 

1) Reason for statistical test used 

2) Outcome of statistical test used 

3) covariates (when appropriate) 

1a) Determine whether the 

observed genotype counts are in 

Hardy-Weinberg equilibrium 

(HWE) 

Chi-Squared test 1. Reason for test:  To compare 

observed genotype counts with 

the values expected under 

Hardy-Weinberg  

2. Outcome of statistical test: To 

test whether a population is in 

HWE at a locus [408, 553] 

Objective 2: To produce descriptive statistics for all the sample members who 

completed an assessment on demographics, fasting biochemical and anthropometric 

measurements. 

2a) To determine the 

descriptive statistics of the 

sample members who 

completed an assessment on 

demographics, fasting 

biochemical and 

anthropometric measurements. 

Descriptive 

statistics: 

Descriptives for 

continuous 

variables 

 

Or 

 

Descriptive 

statistics: 

Frequencies for 

1. Reason for statistical test used: To 

determine baseline measures of the 

outcomes of interest (Will be 

discussed in detail in the point below) 

in all participants of the study 

2. Outcome of statistical test used: To 

determine the mean and standard 

deviation of the following 

demographic, anthropometric and 

biochemical variables:  

• Age (yrs) 
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categorical 

variables 
• Height (cm) 

• Weight (kg) 

• BMI (Kg/m2) 

• WC (cm) 

• Hip (cm) 

• WHR  

• Fat (%) 

• Fasting plasma glucose 

(mg/dl) 

• Fasting serum insulin 

(μIU/ml) 

• Glycated Haemoglobin 

(HbA1c) 

• Glucose (mmol/l) 

• Insulin (mg/dl) 

• Vitamin B12 levels 

(pmol/L) 

• Physical Activity 

Levels [Sedentary (%); 

Moderate (%); 

Vigorous (%)] 

• Total energy (kcal/d) 

• Protein (g) 

• Fat (g) 

• Carbohydrate (g) 

• Dietary fibre (g) 

• Polyunsaturated Fatty 

acid (PUFA) (g) 

•  

2b) To stratify the descriptive 

statistics table into men and 

women. 

 

Students t test  1. Outcome of statistical test used: To 

identify if there are any statistically 

significant differences in the 

demographic, anthropometric and 

biochemical variables between the 

tertiles of vitamin B12 concentration 

between men and women in each 

tertile [408]. 

 

Objective 3: To test the association between the B12-GRS and metabolic-GRS on 

fasting biochemical/anthropometric measurements (Vitamin B12, glucose, Insulin, 

Hbac1, vitamin B12, BMI, Fat % and WHR). 

3a) Testing the association 

between the GRSs with fasting 

biochemical/anthropometric 

measurements, whilst adjusting 

for covariates.   

Univariate linear 

regression   

1) Reason for test: exposure variable 

(GRS) is a categorical variable and the 

outcome variable (fasting biochemical 

trait/anthropometric trait) is a 

continuous variable. 

2) Outcome of test: To identify the 

impact of the genetic variants on the 
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levels of the fasting metabolic trait/ 

anthropometric trait. 

3) Covariates to be adjusted: Age, 

gender, BMI  (BMI was not adjusted, 

when BMI was the continuous 

outcome) [341]. 

Objective 4: To test the interaction between the two GRSs (B12-GRS and metabolic-

GRS) and dietary factors on fasting biochemical/anthropometric measurements 

(Vitamin B12, glucose, Insulin, Hbac1, vitamin B12, BMI, Fat % and WHR). 

4a) Testing the interaction 

between macronutrients and 

SNPs on fasting biochemical 

and anthropometric 

measurements. 

Univariate linear 

regression 

1) Reason for test: exposure variable 

(SNP) is a categorical variable and the 

outcome variable (fasting biochemical 

measurement/ anthropometric 

measurement) is a continuous 

variable. 

2) Outcome of test: identifying the 

impact of the gene variants and the 

macronutrients: carbohydrate, protein, 

fat on fasting biochemical 

measurement/anthropometric 

measurement  

3) Covariates to be adjusted: Age, 

gender, BMI [341] 

 

 

4b) Testing to find out if high, 

low or medium consumption of 

these macronutrients are 

causing the interaction  

Univariate linear 

regression 

1) Reason for test: exposure variable 

(SNP) is a categorical variable and 

outcome variable (fasting biochemical 

measurement/anthropometric 

measurement) is a continuous 

variable. 

2) Outcome of test: identifying the 

impact of gene variants and the 

consumption of different quantities of 

the macronutrient on fasting 

biochemical 

measurement/anthropometric 

measurement  

3) Covariates to be adjusted: Age, 

gender, BMI [341].  

 

(Data split based on: Tertiles of 

carbohydrate, protein and fat). 

SPECIAL NOTES: 

When looking at carbohydrates, 

Proteins and Fat in grams, you 

will need to adjust for Kcal. If 

you are using the percentage 

energy intake of the 

Compute 

variables 
• For Carbohydrate interactions: 

1g of Carbohydrates = 4kcal 

• For Fat interactions: 

1g=9 kcal 

• For Protein interactions: 
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macronutrients, you do not 

need to adjust for Kcal, as it has 

already been adjusted for. 

1g= 4kcal [526] 

 When significant interactions 

with macronutrients are 

detected, further investigation 

will take place to underline the 

specific type of macronutrient 

responsible for the interaction.  

 

 

 

Univariate linear 

regression  

if interactions with fat intake are 

significant, then 

• Test for interaction between 

SNPs and saturated fatty acid 

intake, SNPs and 

monounsaturated fatty acid 

intake and SNPs and 

polyunsaturated fatty acid 

intake. Tertiles will be made 

for each of these dietary sub-

groups. 

 

After carrying out the 

interaction analysis using 

Univariate linear regression and 

obtaining P values, make sure 

adjustments are made to P 

values when several dependent 

or independent statistical tests 

are being performed 

simultaneously on a single data 

set. 

Bonferroni 

Correction 

2) This method adjusts for 

multiple comparison and 

reduces experiment-wise error 

rate in genetic association 

studies [527] 
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9.3  Research analysis plan: Evidence for the association between FTO gene 

variants and vitamin B12 concentrations in an Asian Indian population 

 

Main study objective: 

To investigate the association of two previously studied FTO polymorphisms (rs8050136 and 

rs2388405) with vitamin B12 concentrations and metabolic disease-related outcomes and 

examined whether these associations were modified by dietary factors and physical activity. 

 

Abbreviations:  

• BMI: Body Mass Index 

•  WHR: Waist to Hip Ratio 

•  WC: Waist Circumference 

• SNP: Single Nucleotide Polymorphism 

• TG: Triglyceride 

• HDL: High Density Lipoprotein 

• LDL: Low Density Lipoprotein 

• HbAC1: Glycated Haemoglobin 

 Specific aims of study: 

1) Firstly, we assessed the relationship between genetic variants thought to have a role in 

metabolic disease related traits with biochemical and metabolic traits (Homocysteine, folic 

acid, obesity, BMI, waist circumference). 

2) Secondly, we assessed the effect of genetic variants thought to have a role in metabolic 

disease-related traits on serum vitamin B12. 

3) Finally, we tested the interaction between the metabolic disease-related SNPs and dietary 

factors on fasting vitamin B12 levels and (Homocysteine, folic acid, obesity, BMI, waist 

circumference). 

 
Diagram representing the study design  
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Previous Studies looking at the association of the two SNPs with obesity related traits: 

Gene  rs number  

Studies which have previously 

investigated the association of 

this SNP with obesity traits. 

Fat mass and obesity 

associated (FTO) rs2388405 

[418] [419] [420]. 

Fat mass and obesity 

associated (FTO) rs8050136 

[371, 542, 544, 546] 

 

 

Disease cut off-values: 

1. In The CURES 2003 study, diabetes was diagnosed  'based on the past medical 

history, drug treatment for diabetes, and/or using the ADA fasting criteria’ [410]. 

2. Generalized obesity was defined according to the World Health Organization Asia 

Pacific Guidelines for Asians as non-obese (BMI < 25 kg/m2 ) and obese (BMI ≥ 

25 kg/m2 ) [422]. 

3. Vitamin B12 status is defined as: 

<148 pmol/L (%) – deficient individuals 

148-221 pmol/L- suboptimal individuals  

>221 pmol/L – normal individuals [2] 

 

 

Objective 1: To work out whether each SNP was in Hardy-Weinberg equilibrium 

Aims: Statistical test 

used: 

1) Reason for statistical test used 

2) Outcome of statistical test used 

3) covariates (when appropriate) 

1a) Determine whether the 

observed genotype counts 

are in Hardy-Weinberg 

equilibrium (HWE) 

Chi-Squared test 3. Reason for test:  To compare 

observed genotype counts with the 

values expected under Hardy-

Weinberg  

4. Outcome of statistical test: To test 

whether a population is in HWE at a 

locus [408, 553] 

Objective 2: To produce descriptive statistics for the sample members who completed an 

assessment on demographics, fasting biochemical and anthropometric measurements. 

2a) To determine the 

descriptive statistics of 

sample members who 

completed an assessment on 

demographics and 

anthropometric measures of 

the outcomes of interest. 

Descriptive 

statistics: 

Descriptives for 

continuous 

variables 

 

Or 

 

Descriptive 

statistics: 

Frequencies for 

1. Reason for statistical test used: To 

determine demographic and anthropometric 

measures of the outcomes of interest (Will be 

discussed in detail in the point below) in all 

participants of the study 

2. Outcome of statistical test used: To 

determine the mean and standard deviation of 

the following demographic, anthropometric 

and biochemical variables:  

• Age (yrs) 

• BMI (Kg/m2) 

• WC (cm) 
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categorical 

variables 
• WHR  

• Obese cases (%) 

• Fasting plasma glucose 

(mg/dl) 

• Fasting serum insulin 

(μIU/ml) 

• Glycated Haemoglobin 

(HbA1c) 

• Glucose (mmol/l) 

• Insulin (mg/dl) 

• Vitamin B12 levels (pmol/L) 

• PAL [Sedentary (%); 

Moderate (%); Vigorous (%)] 

• Total Carbohydrate energy % 

• Fat energy % 

• Protein energy % 

• Dietary fibre (g) 

 

 

2b) To stratify the 

descriptive statistics table 

into individuals who are 

diabetics, pre-diabetics and 

Normal Glucose tolerance 

individuals (NGT).  

Students t test 1. Reason for statistical test used: To compare 

the mean and standard deviations of 

demographic, anthropometric and 

biochemical variables between each group  

2. Outcome of statistical test used: To 

identify if there are any statistically 

significant differences in the demographic, 

anthropometric and biochemical variables 

between each group (diabetics, pre-diabetics, 

NGT and combined individuals). 

 

Objective 3: To test the relationship between genetic variants thought to have a role in 

metabolic disease with biochemical and metabolic traits (Homocysteine, folic acid, obesity, 

BMI, waist circumference). 

3a) To test for the 

association between the 

GRS and 

biochemical/anthropometric 

trait  

Univariate linear 

regression   

1) Reason for test: The exposure variable 

(GRS) is a categorical variable and the 

outcome variable (biochemical 

trait/anthropometric trait) is a continuous 

variable. 

2) Outcome of test: identifying the impact of 

the variants on the levels of the metabolic 

trait/anthropometric trait  

3) Covariates to be adjusted: Age, gender, 

BMI (BMI was not adjusted, when BMI was 

the continuous outcome). 

-When using the combined group (Diabetics, 

pre-diabetics and NGT), diabetes was 

adjusted as a confounder [341]. 
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Special notes: For the BMI SNPs, the effect 

allele was the allele which raises BMI. This 

allele was compared with BMI raising alleles 

from Speliotes et al. [414, 554] 

Objective 4: To test the effect of genetic variants thought to have a role in metabolic disease-

related traits on serum vitamin B12 

4a) Testing the association 

between the GRS with 

fasting vitamin B12 

concentrations 

 

Univariate linear 

regression 

1) Reason for test: exposure variable (GRS) is 

a categorical variable and the outcome 

variable (vitamin B12 concentrations) is a 

continuous variable. 

2) Outcome of test: identifying the impact of 

the variants on the levels of vitamin B12  

3) Covariates to be adjusted: Age, gender, 

BMI (BMI was not adjusted, when BMI was 

the continuous outcome). 

-When using the combined group (Diabetics, 

pre-diabetics and NGT), diabetes was 

adjusted as a confounder [341]. 

 

Special notes: For the BMI SNPs, the effect 

allele was the allele which raises BMI. This 

allele was compared with BMI raising alleles 

from Speliotes et al. [414, 554] 

Objective 6: Testing the interaction between the metabolic disease-related SNPs and dietary 

factors on vitamin B12 levels 

6a) Testing the interaction 

between macronutrients and 

SNPs on vitamin B12 levels 

in each group  

Univariate linear 

regression 

1) Reason for test: The exposure variable 

(GRS) is a categorical variable and the 

outcome variable (vitamin B12 levels) is a 

continuous variable. 

2) Outcome of test: identifying the impact of 

the gene variants and the macronutrients: 

carbohydrate, protein, fat on vitamin B12 

levels  

3) Covariates to be adjusted: Age, gender, 

BMI [341] 

 

-When using the combined group (Diabetics, 

pre-diabetics and NGT), diabetes was 

adjusted as a confounder. 

 

6b) Testing to find out if 

high, low or medium 

consumption of these 

macronutrients are causing 

the interaction  

Univariate linear 

regression 

1) Reason for test: The exposure variable 

(GRS) is a categorical variable and the 

outcome variable (vitamin B12 levels) is a 

continuous variable. 

2) Outcome of test: identifying the impact of 

gene variants and the consumption of 

different quantities of the macronutrient on 

vitamin B12 levels. 
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3) Covariates to be adjusted: Age, gender, 

BMI [341].  

-When using the combined group (Diabetics, 

pre-diabetics and NGT), diabetes was 

adjusted as a confounder. 

(Data split based on: Tertiles of carbohydrate, 

protein and fat) [253]. 

SPECIAL NOTES: 

When looking at 

carbohydrates, proteins and 

fat in grams, you will need 

to adjust for Kcal. If you are 

using the percentage energy 

intake of the 

macronutrients, you do not 

need to adjust for Kcal, as it 

has already been adjusted 

for. 

Compute 

variables 
• For carbohydrate interactions: 

1g of carbohydrates = 4kcal 

• For fat interactions: 

1g=9 kcal 

• For protein interactions: 1g= 4kcal 

[526] 

 When significant 

interactions with 

macronutrients are detected, 

further investigation will 

take place to underline the 

specific type of 

macronutrient responsible 

for the interaction.  

 

 

 

Univariate linear 

regression  

For fat interactions: 

• To Test for the interaction between 

SNPs with saturated fatty acid intake, 

SNPs with monounsaturated fatty 

acid intake and SNPs with 

polyunsaturated fatty acid intake. 

Tertiles will be made for each of these 

sub-groups. 

 

After carrying out the 

interaction analysis using 

Univariate linear regression 

and obtaining P values, 

make sure adjustments are 

made to P values when 

several dependent or 

independent statistical tests 

are being performed 

simultaneously on a single 

data set. 

Bonferroni 

Correction 

3) This method adjusts for multiple 

comparison and reduces experiment-

wise error rate in genetic association 

studies [527] 
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9.4  Research plan – A nutrigenetic approach for investigating the relationship 

between vitamin B12 status and metabolic traits in Indonesian women 

(Replication of the Sri Lankan GOOD study) 

 

Main objectives: 

The aim of the present study was to explore the relationships between metabolic traits and 

vitamin B12 status in a cohort of healthy Indonesian women and to investigate whether these 

relationships were modified by dietary intake using a genetic approach.   

 

Hypothesis: 

I will test the hypotheses that low plasma vitamin B12 concentrations caused by genetic 

variants are associated with an increased risk of obesity and type 2 diabetes, and that the effect 

of genetic variants associated with high BMI on obesity traits is partly mediated through 

reduction of serum vitamin B12 concentration. The latter hypothesis requires that genetically 

increased obesity traits are associated with low vitamin B12 concentration and with increased 

risk of diabetes/obesity traits. 

 

Specific aims: 

 

 
 

Diagram representing the study design: The diagram shows four possible associations, and 

four possible interactions. One-sided arrows with unbroken lines represent genetic 

associations and one-sided arrows with broken lines represent interactions between a lifestyle 

factor and GRS on serum vitamin B12/ metabolic traits.   
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1. I will test the association between the metabolic-GRS and vitamin B12 concentrations 

and metabolic disease-related traits (glucose, insulin, HbA1c, BMI, WC, body fat 

percentage) 

2. I will then test the associations between the B12 –GRS and vitamin B12 status and 

metabolic disease related traits.  

3. Lastly, I will test whether these genetic associations are modified by lifestyle factors 

(macronutrient intake and physical activity levels).  

 

 

Previous Studies looking at the association of the 10 B12-related SNPs with vitamin B12 

concentrations: 

Gene SNP rs number Studies which show an 

association with vitamin 

B12 

Methylenetetrahydrofolate 

reductase (MTHFR) rs1801133 

[288] 

Carbamoyl-phosphate 

synthase 1 (CPS1) rs1047891 

[205] 

Cubulin (CUBN) rs1801222 [205, 234, 253] 

CD320 molecule (CD320) rs2336573 [205, 237, 253] 

Transcobalamin 2 (TCN2) rs1131603 [205, 233] 

Fucosyltransferase 2 

(FUT2) rs602662 

[205, 233, 234, 253, 254, 258, 

260] 

Transcobalamin 1 (TCN1) rs34324219 [205, 233] 

Fucosyltransferase 6 

(FUT6) rs778805 

[205] 

Methylmalonyl-CoA mutase 

(MUT) 

rs1141321 

 

 

[205, 206, 234] 

 

 

Previous Studies looking at the association of the 10 metabolic disease-related SNPs with 

diabetes and obesity traits: 

 

Gene 

 

  

SNP rs number 

 

  

Studies which show its 

association with Type 

2 diabetes in South 

Asian populations 

Studies which show its 

association with 

obesity in South Asian 

/ South East Asian 

populations 

Calpain 10 (CAPN10) rs3792267 [374, 528]  

Calpain 10 (CAPN10) rs5030952 [528]  

Potassium voltage-

gated channel 

subfamily J member 11 

(KCNJ11) rs5219  

[529]  

Transcription factor 7-

like 2 (TCF7L2) rs12255372 

[372, 373, 530-532]  

Transcription factor 7-

like 2 (TCF7L2) rs7903146 

[372, 373, 530, 532-

536] 

[479, 537] 
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Fat mass and obesity 

associated (FTO) rs9939609 

[538, 539] [370, 479, 539-546] 

Melanocortin 4 

Receptor (MC4R) rs17782313 

 [370, 545, 547-550] 

Fat mass and obesity 

associated (FTO) rs8050136 

 [371, 542, 544, 546] 

MC4R rs2229616  [551] 

 

 

Disease cut off-values: 

4) Only normal glucose tolerant (NGT) individuals were included in this study. 

According to the World Health Organization (WHO) NGT individuals are those with 2-h 

plasma glucose value < 7.8 mmol/l (140 mg/dl) [552] 

5) Generalized obesity was defined according to the World Health Organization Asia 

Pacific Guidelines for Asians as non-obese (BMI < 25 kg/m2 ) and obese (BMI ≥ 25 kg/m2 

)[422]. 

Vitamin B12 status is defined as [2]: 

<148 pmol/L (%) – deficient individuals 

148-221 pmol/L- suboptimal individuals  

>221 pmol/L – normal individuals 

 

Plan of action: 

Objective 1: To work out whether the SNPs are in Hardy Weinberg 

Aims: Statistical test 

used: 

1) Reason for statistical test used 

2) Outcome of statistical test used 

3) covariates (when appropriate) 

1a) Determine whether the 

observed genotype counts are in 

Hardy-Weinberg equilibrium 

(HWE) 

Chi-Squared test 1.Reason for test:  To compare 

observed genotype counts with the 

values expected under Hardy-

Weinberg  

2. Outcome of statistical test: To 

test whether a population is in 

HWE at a locus [408, 553] 

Objective 2: To produce descriptive statistics for all the sample members who 

completed an assessment on demographics, fasting biochemical and anthropometric 

measurements. 

2a) To determine the 

descriptive statistics of the 

sample members who 

completed an assessment on 

demographics, fasting 

biochemical and 

anthropometric measurements. 

Descriptive 

statistics: 

Descriptives for 

continuous 

variables 

 

Or 

 

Descriptive 

statistics: 

Frequencies for 

categorical 

variables 

1. Reason for statistical test used: To 

determine baseline measures of the 

outcomes of interest (Will be 

discussed in detail in the point below) 

in all participants of the study 

2. Outcome of statistical test used: To 

determine the mean and standard 

deviation of the following 

demographic, anthropometric and 

biochemical variables:  

• Age (yrs) 

• Height (cm) 

• Weight (kg) 
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• BMI (Kg/m2) 

• WC (cm) 

• Hip (cm) 

• WHR  

• Fat (%) 

• Fasting plasma glucose 

(mg/dl) 

• Fasting serum insulin 

(μIU/ml) 

• Glycated Haemoglobin 

(HbA1c) 

• Glucose (mmol/l) 

• Insulin (mg/dl) 

• Vitamin B12 levels 

(pmol/L) 

• Physical Activity 

Levels [Sedentary (%); 

Moderate (%); 

Vigorous (%)] 

• Total energy (kcal/d) 

• Protein (g) 

• Fat (g) 

• Carbohydrate (g) 

• Dietary fibre (g) 

• Polyunsaturated Fatty 

acid (PUFA) (g) 

•  

2b) To stratify the descriptive 

statistics table into men and 

women. 

 

Students t test  1. Outcome of statistical test used: To 

identify if there are any statistically 

significant differences in the 

demographic, anthropometric and 

biochemical variables between the 

tertiles of vitamin B12 concentration 

between men and women in each 

tertile [408]. 

 

Objective 3: To test the association between the B12-GRS and metabolic-GRS on 

fasting biochemical/anthropometric measurements (Vitamin B12, glucose, insulin, 

HbA1c, BMI, WC, body fat percentage) 

3a) Testing the association 

between the GRSs with fasting 

biochemical/anthropometric 

measurements, whilst adjusting 

for covariates.   

Univariate linear 

regression   

1) Reason for test: exposure variable 

(GRS) is a categorical variable and the 

outcome variable (fasting biochemical 

trait/anthropometric trait) is a 

continuous variable. 

2) Outcome of test: To identify the 

impact of the genetic variants on the 

levels of the fasting metabolic trait/ 

anthropometric trait. 
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3) Covariates to be adjusted: Age, 

gender, BMI  (BMI was not adjusted, 

when BMI was the continuous 

outcome) [341]. 

Objective 4: To test the interaction between the two GRSs (B12-GRS and metabolic-

GRS) and dietary factors on fasting biochemical/anthropometric measurements 

(Vitamin B12, glucose, insulin, HbA1c, BMI, WC, body fat percentage) 

4a) Testing the interaction 

between macronutrients and 

SNPs on fasting biochemical 

and anthropometric 

measurements. 

Univariate linear 

regression 

1) Reason for test: exposure variable 

(SNP) is a categorical variable and the 

outcome variable (fasting biochemical 

measurement/ anthropometric 

measurement) is a continuous 

variable. 

2) Outcome of test: identifying the 

impact of the gene variants and the 

macronutrients: carbohydrate, protein, 

fat on fasting biochemical 

measurement/anthropometric 

measurement  

3) Covariates to be adjusted: Age, 

gender, BMI [341] 

 

 

4b) Testing to find out if high, 

low or medium consumption of 

these macronutrients are 

causing the interaction  

Univariate linear 

regression 

1) Reason for test: exposure variable 

(SNP) is a categorical variable and 

outcome variable (fasting biochemical 

measurement/anthropometric 

measurement) is a continuous 

variable. 

2) Outcome of test: identifying the 

impact of gene variants and the 

consumption of different quantities of 

the macronutrient on fasting 

biochemical 

measurement/anthropometric 

measurement  

3) Covariates to be adjusted: Age, 

gender, BMI [341].  

 

(Data split based on: Tertiles of 

carbohydrate, protein and fat). 

SPECIAL NOTES: 

When looking at carbohydrates, 

Proteins and Fat in grams, you 

will need to adjust for Kcal. If 

you are using the percentage 

energy intake of the 

macronutrients, you do not 

Compute 

variables 
• For Carbohydrate interactions: 

1g of Carbohydrates = 4kcal 

• For Fat interactions: 

1g=9 kcal 

• For Protein interactions: 

1g= 4kcal [526] 
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need to adjust for Kcal, as it has 

already been adjusted for. 

 When significant interactions 

with macronutrients are 

detected, further investigation 

will take place to underline the 

specific type of macronutrient 

responsible for the interaction.  

 

 

 

Univariate linear 

regression  

if interactions with fat intake are 

significant, then 

• Test for interaction between 

SNPs and saturated fatty acid 

intake, SNPs and 

monounsaturated fatty acid 

intake and SNPs and 

polyunsaturated fatty acid 

intake. Tertiles will be made 

for each of these dietary sub-

groups. 

 

After carrying out the 

interaction analysis using 

Univariate linear regression and 

obtaining P values, make sure 

adjustments are made to P 

values when several dependent 

or independent statistical tests 

are being performed 

simultaneously on a single data 

set. 

Bonferroni 

Correction 

3. This method adjusts for 

multiple comparison and 

reduces experiment-wise error 

rate in genetic association 

studies [527] 
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9.5 Analysis plan: A genetic approach to investigate the relationship between 

vitamin B12 status and cardiometabolic traits in response to changes in dietary 

fat composition in adults with moderate cardiovascular disease risk   

 

  

Hypothesis:  

 

The modification of dietary fat intake has been shown to affect vitamin B12 status in rats [472], 

this post-hoc analysis will present additional outcome measures from the DIVAS study 

exploring the effect of dietary fat composition on vitamin B12 status in individuals with 

moderate CVD risk. The main of this study is to investigate whether genetic polymorphisms 

contribute to any observable changes in vitamin B12 status and cardiometabolic disease risk 

markers, a retrospective post hoc analysis of the DIVAS study will be conducted. Thus, in the 

current study I will aim to investigate whether nine SNPs (6 metabolic SNPs and 3 vitamin 

B12 SNPs) modified the response of vitamin B12 concentrations and cardiometabolic traits, 

after substitution of SFA with MUFA or polyunsaturated fatty acids (n-6 PUFA) in 119 

participants at moderate CVD risk. 

 

 

Objectives:  

 

To prove this hypothesis, we will   

 

• Examine association between (6 metabolic SNPs and 3 vitamin B12 SNPs) 

and changes 13 phenotypic outcomes (vitamin B12, 24 h ambulatory systolic blood 

pressure, 24 h ambulatory diastolic blood pressure, total cholesterol, HDL cholesterol, LDL 

cholesterol, TAG, glucose, insulin, HOMA-IR, BMI, WC and WHR) after a 16-weeks 

dietary fat intervention. 

• Investigate interaction between 6 metabolic SNPs and 3 vitamin B12 SNPs and the 

three intervention diets on changes in 13 phenotypic outcomes after 16-weeks intervention.  
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Plan of action: 

 

Objectives   Statistical 

test   

Fixed factor   Dependent factor   Covariates   

Association   General Linear 

regression   

The metabolic-GRS was generated 

from the SNPs in the genes FTO 

(rs8050136 and rs9939609), TCF7L2 

(rs7903146 and rs12255372) and 

MC4R (rs17782313 and rs2229616). 

 

The B12-GRS was generated from the 

SNPs in the gene FUT2 (rs602662, 

rs492602 and rs16982241). 

Changes in vitamin B12 

concentrations and cardiometabolic 

traits (24 h ambulatory systolic blood 

pressure, 24 h ambulatory diastolic 

blood pressure, total cholesterol, 

HDL cholesterol, LDL cholesterol, 

TAG, glucose, insulin, HOMA-IR, 

BMI, WC and WHR) at baseline (visit 

1) and after 16 weeks (visit 2) in  

Age, gender, BMI, and 

ethnicity [13]  

Interaction   General Linear 

regression   

The metabolic-GRS was generated 

from the SNPs in the genes FTO 

(rs8050136 and rs9939609), TCF7L2 

(rs7903146 and rs12255372) and 

MC4R (rs17782313 and rs2229616). 

 

The B12-GRS was generated from the 

SNPs in the gene FUT2 (rs602662, 

rs492602 and rs16982241) 

 

The three-intervention diet (group 1 

high SFA diet, group 2 high MUFA 

diet, and group 3 High PUFA diet)  

Changes in vitamin B12 

concentrations and cardiometabolic 

traits at baseline (visit 1) and after 16 

weeks (visit 2). 

Age, gender, BMI, and 

ethnicity [13]  

 


