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Abstract 

This thesis contains analyses of the solar spectral irradiance (SSI) and near-infrared water vapour 

continuum from high-resolution observations by a ground-based, sun-pointing Fourier transform 

spectrometer in the wavenumber region 2000-10000 cm-1 (1-5 µm). This was performed 

primarily using the Langley method on observations during 18 September 2008. Particular focus 

was placed on a detailed assessment of the uncertainty budget for each of these analyses.  

The solar spectral irradiance was found to be ~8% lower than the commonly-used satellite-based 

ATLAS3 SSI in the region 4000-7000 cm-1 (where ATLAS3 is most uncertain). This 

disagreement with ATLAS3 is in line with several other modern analyses. There is good 

agreement with ATLAS3 and other spectra in the 7000-10000 cm-1 region (where these spectra 

are considered more accurate).  

This thesis contains the first published results of water vapour continuum absorption in the 

atmosphere in the 1.6 and 2.1 µm atmospheric windows (in which laboratory measurements 

show some significant disagreement) with robust uncertainties. The derived water vapour 

continuum in these windows is stronger than the widely-used MT_CKD model (v3.2) by a factor 

of ~100 and ~5 respectively. These results also show that MT_CKD is a reasonably accurate 

representation of the continuum in the 4 µm window. These results are broadly consistent with 

laboratory measurements of the foreign continuum, but are inconsistent with the highest such 

measurements of the self-continuum. 

The effect of the self and foreign continuum in atmospheric conditions is assessed, with 

comparisons to the Langley-derived spectra from this work. These results show that the 

difference between MT_CKD and this work in the 1.6 and 2.1 µm windows may come primarily 

from the observed differences in the foreign continuum, with a smaller contribution from the 

self-continuum. These results show inconsistency with several sets of laboratory room 

temperature spectra within the experimental uncertainties. 
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Chapter 1: 

Introduction 

1.1: Introduction  

Weather and climate processes are driven by the absorption, scattering and emission 

of solar radiation by the Earth’s atmosphere and surface. The difference between the 

incoming shortwave radiation emitted by the Sun and the outgoing longwave 

radiation emitted by the Earth is crucial for determining how the climate warms or 

cools (e.g. Stephens et al. [2012]). The amount of energy emitted by the Earth is 

dependent on how much of the incoming shortwave radiation reaches the surface and 

troposphere; much of it is absorbed in the atmosphere by water vapour, methane, 

carbon dioxide and other gases. These same gases also absorb and emit longwave 

radiation (see Section 2.3.1), reducing the amount which is free to escape into space. 

Understanding the Earth’s energy budget therefore requires understanding of the 

spectroscopy of gases in the atmosphere.  

The work in this thesis focuses on two major spectroscopic challenges in 

atmospheric science. The first of these is the spectral distribution of the incoming 

solar radiation (i.e. where in the electromagnetic spectrum this shortwave radiation 

lies). This spectral distribution is important; since shortwave absorption in the 

atmosphere is strongly dependent on wavelength; more radiation in a localised part 

of the spectrum can mean more of the radiation is absorbed in the atmosphere, or 

more of it reaches the surface to be absorbed and emitted as longwave radiation. The 

second challenge is in understanding components of the shortwave atmospheric 

absorption that are not well-understood; in this case the water vapour continuum, a 

feature of the water vapour absorption that cannot be fully explained by current 

spectroscopic theory, and inadequately characterised by existing observations. 

 

 



Chapter 1 - Introduction 

 
 

Page 2 

 

1.2: Earth’s energy balance and solar radiation 

Central to any discussion about climate change is the Earth’s energy balance. The 

energy flows into, outward and within the Earth system are shown in Figure 1.1 

(from Stephens et al. [2012]). This Figure contains several points of note. The 

incoming and outgoing energy flows do not match; there is an energy imbalance at 

the top of atmosphere of 0.6 ± 0.4 W m-2. This indicates that more energy is entering 

the Earth system via shortwave solar radiation than is leaving it via reflected solar 

and emitted longwave radiation. Such an energy imbalance will cause more energy to 

enter the system than leaves it, which increases the temperature of the system. Thus, 

the Earth’s energy imbalance is the key driver of anthropogenic global warming [Von 

Schuckmann et al., 2016]. Most of this imbalance manifests as an increase in ocean 

heat content [Trenberth et al., 2014]. Well-constrained values of the Earth’s albedo 

and incoming solar radiation are therefore extremely important for quantification of 

this energy imbalance. The top of atmosphere energy imbalance (like many of the 

fluxes such as the sensible heat flux) is not directly measured but inferred from 

residuals and indirect observations (such as ocean heat uptake for the TOA energy 

imbalance).  

The integrated values shown on Figure 1.1 do not tell the full story however. The 

spectral distribution of the incoming shortwave (and outgoing longwave) energy is 

also extremely important, since this spectral distribution determines the proportion of 

energy that is absorbed by greenhouse gases such as carbon dioxide and water 

vapour. As will be discussed in Section 1.3, water vapour is of considerable 

importance both in the shortwave and the longwave spectral regions, and its 

absorption spectrum is the primary focus of this thesis.  
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Figure 1.1: Energy flows inside the Earth system, from Stephens et al. [2012], and 

their associated uncertainties. All values are global and annual averages, and are 

presented in W m-2 on this Figure.  

The total amount of incoming solar radiation is well understood as it is strongly 

constrained by observations (see e.g. Dudok de Wit et al. [2017]). This is shown on 

Figure 1.1 by the small (± 0.1 W m-2) uncertainty. However, as this energy is 

distributed spectrally, the amount of energy absorbed, scattered and reflected by the 

atmosphere and surface is dependent on where in the spectrum this energy lies 

(shown in more detail in Section 2.2). 

 Much (~40%) of the solar energy is emitted in the visible part of the electromagnetic 

spectrum (0.4-0.7 μm), which is affected less by atmospheric absorption (e.g. Petty 

[2005]). Most of this visible energy reaches the surface. The ultraviolet contribution 

from 0-0.4 μm is significantly smaller (~10%), but varies strongly with the solar 

cycle, an 11-year change in the Sun’s output corresponding to changes in its 

magnetic field e.g. Ball et al. [2014]. Additionally, UV radiation is strongly absorbed 

by stratospheric ozone and molecular oxygen, making it particularly important for 

middle-atmosphere dynamics (e.g. Zhong et al. [2008]; Ineson et al. [2011]). 

Of primary interest to this thesis is the remaining ~50% of this radiation, which is 

emitted by the Sun at infrared wavelengths (0.7 μm and longer). Specifically, this 

work focuses on part of the near-infrared spectrum between 1-5 μm (or 2000-10000 

cm-1 in wavenumber, as is the convention hereafter). This is described more in 

Section 1.3 and 1.4.  



Chapter 1 - Introduction 

 
 

Page 4 

 

Many studies (e.g. Arvesen et al. [1969]; Thuillier et al. [2003]; Menang et al. 

[2013]) have presented estimates of the near-infrared extraterrestrial solar spectrum. 

The region 2000-10000 cm-1 contains ~25% of the total incoming solar radiation and 

is strongly absorbed by water vapour in select spectral bands (see Section 1.3); it is 

therefore important to accurately characterise it. However, several of these studies 

show no agreement within their k = 2 (2 standard deviations) uncertainties, 

indicating that they cannot be reconciled. The differences in the spectra are up to 

10% in the 4000-7000 cm-1 region, which corresponds to a difference of ~16 W m-2
, 

which corresponds to an offset of 4 W m-2 in Figure 1.1 when averaged globally. 

This is the subject of Chapter 4 of this thesis. In practice, many applications use 

semi-empirical models, such as that of Kurucz and Bell [1995], or composite data 

such as the NRLSSI2 spectrum [Coddington et al., 2015]. The latter of these will be 

discussed further in Chapter 4.  

1.3: Absorption of solar radiation in Earth’s 

atmosphere 

Figure 1.1 shows several of the energy fluxes in purple boxes. These are the parts of 

the Earth’s energy budget that have the highest relative uncertainty. The focus of this 

thesis is the contribution from atmospheric absorption, which has a relative 

uncertainty greater than 10%. This uncertainty also affects the surface absorbed 

radiation, since any energy that is absorbed in the atmosphere will not reach the 

surface directly. Gases absorbing radiation in the atmosphere will heat up and emit 

thermal radiation via Planck’s law (see Section 2.2), leading to a heating of the 

atmosphere, and a cooling via emission of thermal radiation. Additional absorption in 

the atmosphere therefore creates temperature gradients, which drives dynamical and 

meteorological processes.  Absorption in the atmosphere changes the rate of 

evaporation from the surface (via the latent heat flux shown in Figure 1.1), affecting 

the hydrological cycle which in turn affects energy transport in the Earth-atmosphere 

system [Wild and Liepert, 2010]. 

Figure 1.2 (from Vardavas and Taylor, [2007]) shows the solar spectrum alongside 

the contributors to the absorption and scatter in the clear-sky atmosphere. The 



Chapter 1 - Introduction 

 
 

Page 5 

 

darkest grey region is the difference between the emission spectrum of a 5900 K 

blackbody and the observed solar emission spectrum. These are different due to the 

breakdown of the blackbody approximation, and extinction via gases in the solar 

atmosphere. The ratio of the lighter to medium grey shaded regions is an indicator of 

how much of the solar energy reaches the surface; where the region is darker 

indicates less radiation reaches the surface. 

In the region of interest to this thesis (λ > 1 μm) the spectrum has a structure of 

absorption bands (where no radiation reaches the surface) and windows (where most 

of the radiation reaches the surface, although some radiation is still absorbed in 

spectral lines within these windows). This structure is predominantly due to water 

vapour absorption. The absorption in the band regions is very strong due to 

rotational-vibrational transitions of the water molecule; an increase in absorption in 

these regions would not cause a significant change in energy transmitted to the 

surface, although additional continuum absorption does increase the height in the 

atmosphere at which radiation is absorbed. An increase in absorption in the windows 

however would be much more important, since energy would be absorbed that 

otherwise would have been directly incident on the surface. The spectroscopic basis 

of the near-infrared region is covered in Chapter 2. 

Water vapour absorption in the near-IR is extremely important for determining the 

hydrological sensitivity, i.e. the degree to which precipitation and the broader 

hydrological cycle change as a response to a change in temperature [Takahashi, 

2009; DeAngelis et al., 2015]. DeAngelis et al. indicate that uncertainty in the rate of 

change of precipitation with respect to temperature in climate models is primarily 

due to poor representation of shortwave absorption, of which water vapour is a 

significant part. This is explained in part due to the poor parameterisation of this 

shortwave absorption in the low-resolution wide-band radiation schemes in the 

GCMs, but this may also be due to lack of understanding of the underlying 

spectroscopy. 

Additionally, a change in shortwave heating is more effective than a change in 

longwave heating (e.g. via CO2 absorption) at changing the global-mean 

precipitation response to warming (e.g. Allen and Ingram [2002]). Allen and Ingram 

point out that since most tropospheric air parcels are at near saturation, an increase in 
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temperature leads to a direct increase in atmospheric water vapour via the Clausius-

Clapeyron relation. Therefore, the effect of shortwave heating by water vapour 

becomes significantly more important in a warming climate. 

One of the primary contributors to the near-IR absorption is the water vapour 

continuum, described in Section 1.4. Chapter 5 presents a derivation of this 

continuum in the windows at 4, 2.1 and 1.6 μm. This absorption is potentially 

responsible for much of the uncertainty in the shortwave absorption shown on Figure 

1.1; e.g. Rädel et al. [2014] demonstrate that using different estimates of the near-IR 

continuum could result in a ~3 W m-2 difference in atmospheric absorption, with a 

corresponding difference (in the opposite direction) in the surface radiation. This will 

be discussed further in Section 1.4. 

 

Figure 1.2: Emission spectrum of the Sun. The medium grey shaded regions indicate 

energy absorbed and Rayleigh scattered in the atmosphere in clear skies, the light 

grey regions indicate energy that reaches the surface. From Vardavas and Taylor 

[2007]. The dark grey regions are the difference between a 5900 K blackbody and 

the observed emission spectrum. 
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Characterising the atmospheric absorption for a given time and place is done using a 

radiation code, or by observations where applicable. Radiation codes vary from full 

line-by-line treatments, e.g. the Reference Forward Model (RFM) [Dudhia, 2017] or 

the Line-By-Line Radiative Transfer Model (LBLRTM) [Clough et al., 2005], to the 

wide-band models used in most general circulation models (GCMs) (e.g. Hogan and 

Bozzo [2018]; Zhao et al. [2018]). Band models are used since they improve 

computational efficiency, at some decrease in their ability to accurately characterise 

the radiation budget. Line-by-line simulations therefore provide a benchmark for 

GCM radiation codes to match, such as in the Radiative Forcing Model 

Intercomparison Project (RFMIP, Pincus et al. [2015]; Forster et al. [2016]). In this 

thesis, the RFM is the preferred radiation code used to calculate atmospheric 

absorption. This is described in more detail in Section 2.3.6.1. 

A radiative transfer code relies on a database of spectroscopic parameters, to 

determine how much absorption occurs at a given wavelength (for a given 

atmospheric profile). The most popular of these is the HITRAN database [Gordon et 

al., 2017]; the current version is HITRAN 2016, which is used in this thesis. This is 

described further in Section 2.3.6.2. Such a line database model is derived via both 

theoretical calculations (e.g. Barber et al. [2008] and laboratory observations (e.g. 

Tashkun et al. [2015]). 

One of the significant gaps in such databases is the representation of the water 

vapour continuum. Shine et al. [2016c] assesses the potential for inclusion of the 

continuum in spectroscopic databases in detail. The continuum is typically modelled 

in GCMs (e.g. Zhao et al. [2018]) and line-by-line models via the MT_CKD 

(Mlawer-Tobin_Clough-Kneizys-Davies, named after its creators) continuum 

[Mlawer et al., 2012]. This is a semi-empirical model derived in part from 

observations. The reliance on observations comes in part from the lack of a robust 

theoretical framework for the continuum. This is discussed further in Sections 1.4 

and 2.4.  

The importance of the continuum and lack of understanding (see Section 1.4) is the 

primary motivation for this thesis. Chapter 5 presents observations of the continuum 

absorption in the 2000-10000 cm-1 region, which demonstrates the great uncertainty 

in the strength of the continuum in laboratory experiments (see Section 1.4).  
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1.4: The water vapour continuum 

1.4.1: Introduction 

The following Section describes the water vapour continuum in the infrared region. 

More information can be found in Shine et al. [2012, 2016c] and Daniel [2004]. As 

discussed in Section 1.3, the near-infrared spectrum is characterised by its spectral 

band-window structure, where parts of the spectrum are completely opaque to 

radiation and parts are mostly transparent over typical atmospheric paths. Pervading 

the entirety of this spectrum (and extending out into the longwave) is the water 

vapour continuum. The strength of the continuum varies smoothly with wavenumber. 

It is stronger in the water vapour bands and weaker in the windows, underlying the 

pattern of the water vapour spectral line absorption. Since the bands are saturated 

(from the perspective of an observer looking up from the surface), the continuum in 

these regions is less important. In the windows this continuum is much more 

significant, contributing a significant portion of the atmospheric absorption in these 

regions, particularly between spectral lines.  

The net effect of the continuum is that more energy is deposited in the atmosphere 

(particularly the troposphere, where most of the water vapour lies) than would be the 

case without the continuum. Since weather and climate dynamics are driven in part 

by temperature gradients in the atmosphere, it is important to quantify this 

absorption. Any radiation absorbed in the atmosphere does not reach the surface, 

which changes the surface-atmosphere partitioning of energy and is therefore 

important for understanding the circulation and dynamics of the surface-troposphere 

system. 

The continuum also impacts upon remote sensing of the Earth’s atmosphere and 

surface. Some remote sensing platforms e.g. the Orbiting Carbon Observatory 2 

(OCO-2) [Oyafuso et al., 2017] have channels observing in the 2.1 and 1.6 μm 

windows, as does the MODIS satellite [Platnick et al., 2017], which is used to 

measure cloud properties, surface albedo and aerosol optical depth. 
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Section 1.4.2 describes the mechanisms behind the continuum, and our current 

understanding of the situation in the near-IR. Section 1.4.3 investigates how the 

continuum impacts the Earth’s energy budget and impact on remote sensing. 

1.4.2: Theoretical and experimental perspectives on the continuum 

As discussed in Shine et al. [2012], the water vapour continuum was first observed 

experimentally in the late 19th century, although it was not until Elsasser [1938] that 

this feature was explained from a theoretical perspective. These observations showed 

that there was additional absorption by water vapour in regions that spectral line 

theory did not predict, which pervaded the entire infrared spectrum and typically 

decreased in strength with wavenumber (following the band-window structure of 

water vapour absorption). Elsasser postulated that the continuum absorption was due 

to the far wings of broadened (see Section 2.1.4) water vapour spectral lines. This 

theory was successful in describing the behaviour seen in measurements at that time. 

Bignell et al. [1963] presented a continuum derived from atmospheric measurements 

in the mid-infrared window (at ~8-12 μm), and further into the longwave between 

13-20 μm. They found that the optical depth (see Section 2.3) was proportional to the 

square of the vapour pressure; this is a property associated with the self-continuum 

explained in further detail in the next paragraphs. The far-wing theory was not 

completely robust however; it relies on an assumption about the line-shape and 

broadening of water vapour spectral lines that is not the case in reality. 

Developments in the late 1960s led different groups to postulate that the continuum 

could be caused (at least in part) by water dimers (see Figure 1.3), bound complexes 

of two water vapour molecules in the atmosphere. The water vapour spectrum is 

already complex; the dimer spectrum adds an additional bond axis, further 

complicating the structure. The high density of spectral lines from the dimer 

manifests itself as continuous absorption at practical resolution. This contrasts with 

the far-wing theory, which relies on an adjustment to the water vapour monomer 

lineshape. The continuum was observed to have a negative exponential temperature 

dependence; this can be considered evidence of the dimer theory, as the dimers will 

dissociate when subject to more energetic collisions. Varanasi et al. [1968] 

demonstrated that this temperature dependence has an exponential factor close to the 
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dimer dissociation energy D0; this temperature dependence is still practically used 

today (see e.g. Section 5.2).  

Vigasin [1985] postulated that this dimer theory was not complete; he used a 

thermodynamic argument to explain that quasi-bound dimers (i.e. weakly bound 

monomer pairs) should be of roughly equal importance in atmospheric conditions. 

The dimer concentration in the atmosphere is ~0.06 % of the monomer concentration 

e.g. Shillings et al. [2011]. 

 

Figure 1.3: Schematic of a water dimer. The molecules are weakly bound across the 

middle bond axis. Figure by Martin Chaplin, London South Bank University  

(http://www1.lsbu.ac.uk/water/water_dimer.html). 

The continuum is generally considered to have two primary components; these are 

the self-continuum (via interactions between water vapour molecules and far-wings 

of water monomers), and foreign continuum (via interactions between water vapour 

and other molecules in air, such as molecular nitrogen and oxygen). These have 

different properties; the self-continuum has negative temperature dependence and 

varies with the square of the vapour pressure, whereas the foreign continuum has no 

or very minor temperature dependence and varies with the product of the vapour 

pressure and overall pressure. The ratio of the self to foreign continuum depends on 

the spectral region in question and the ambient conditions. The case inside the near-

infrared windows will be explored further in Chapter 6. 

Most historical measurements (presented in Shine et al. [2012]) focus on the 

continuum in the mid and far infrared and in the microwave, which is important for 

climate (since it absorbs longwave radiation that would otherwise radiate out to 

space). The shortwave bands in the near-infrared (2000-10000 cm-1) however have 
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had a comparative dearth of measurements. These are discussed in more detail in 

Section 5.2. Available measurements differ in the 1.6 and 2.1 μm spectral regions by 

~1-2 orders of magnitude and do not agree within their respective measurement 

uncertainties.  

As discussed in Section 1.3, the continuum is usually represented in models using the 

MT_CKD (currently version 3.2, although many applications use version 2.5) semi-

empirical model of Mlawer et al. [2012]. This spectrum is an extension of the CKD 

model [Clough et al., 1989]. Section 2.4 goes into more detail on the formalism of 

MT_CKD. It includes both a lineshape parameterisation and a collision-induced 

contribution; the former dominates in the atmospheric windows, the latter in the 

bands. Since there have been more measurements in the longwave, MT_CKD is 

rather well constrained in this spectral region. The case in the shortwave is less clear, 

due to the lack of measurements and the disagreement between them. While there 

appears to be some consensus at 4 μm between measurements and MT_CKD, 

contemporary FTS measurements in the laboratory (e.g. Ptashnik et al. [2011a, 2013, 

2015]) indicate absorption stronger by ~1-2 orders of magnitude than MT_CKD in 

the 2.1 and 1.6 μm windows. Measurements using cavity ring-down spectroscopy 

(CRDS) by a group in Grenoble e.g. Mondelain et al. [2013, 2014] show much lower 

continuum absorption coefficients, which better agree with MT_CKD. This is 

described further in Section 5.2.  

It is important to emphasise that MT_CKD is a semi-empirical parameterisation, 

rather than a physical model of the continuum. While several attempts at ab initio 

calculations of the water dimer spectrum exist e.g. Salmi et al. [2008], these have not 

yet proved successful in predicting the absorption strength in the windows, 

particularly in atmospheric conditions. Agreement with MT_CKD is therefore not an 

indicator of a given measurement being robust, but more an assessment of whether 

MT_CKD is adequately modelling the continuum absorption strength.  

The laboratory (e.g. Ptashnik et al. [2011a, 2013]) FTS measurements are typically 

taken at temperatures well above typical atmospheric temperatures to obtain vapour 

pressures high enough to extract the continuum from baseline noise. Thus, while 

these observations are extremely useful for probing the physical properties of the 

continuum absorption, the absorption strength in atmospheric conditions cannot be 
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determined without making some assumption about the temperature dependence. 

Ptashnik et al. [2011b] postulate that the “temperature dependence [from 

observations in the mid-infrared window] is suggestive of a transition from the 

dominance of true bound dimers at lower temperatures to quasi-bound dimers at 

higher temperatures”, indicating there may be some deviations at lower temperatures 

(such as those found in the atmosphere) from the standard negative exponential 

temperature dependence.  

Most of the measurements used to adjust MT_CKD are assessments of the 

continuum absorption coefficient in laboratory conditions, ideally at a range of 

temperatures (to more carefully assess the temperature dependence). There have been 

several (see e.g. Grant [1990]) sets of measurements of the longwave continuum in 

atmospheric conditions, but significantly fewer in the shortwave. Reichert and 

Sussmann [2016] presented a combined self and foreign near-infrared continuum 

taken from observations at the Zugspitze field site in the German Alps. Good 

measurements were obtained in the band regions. The high altitude of these 

measurements (above the layer where much of the atmospheric water vapour lies) 

meant that the observed continuum is much weaker due to the pressure-squared 

dependence of the self-continuum and the linear vapour pressure dependence of the 

foreign. In the windows, the uncertainties were larger than the continuum strength, 

making these measurements somewhat unreliable. These measurements are explored 

in more detail in Section 5.2, and in Shine et al. [2016a, 2016b]. 

Preliminary results of a near-infrared combined self + foreign continuum were 

presented in Menang [2012], consisting of analyses of Fourier transform 

spectrometer (FTS) measurements taken in the field. This thesis aims to update these 

preliminary results with a more robust uncertainty estimate, and a new calibration of 

the spectrometer used in this field campaign (see Sections 1.5 and 3.4).  

1.4.3: Impacts of the continuum for atmospheric science 

The impacts of the continuum in the longwave are many, and important in the 

microwave [Payne et al., 2011], far-infared [Turner et al., 2012] and mid-infrared 

[Paynter and Ramaswamy, 2011]. The focus of this work is the shortwave (near-

infrared) continuum; this section therefore focuses on this part of the spectrum.  
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As mentioned in Section 1.3, additional shortwave absorption changes the surface-

atmosphere partitioning of energy, affects the hydrological cycle and has effects on 

dynamical processes. Rädel et al. [2014] present an assessment of the global 

radiative and climate effect of different versions of the shortwave near-infrared 

continuum (the CKD model and the CAVIAR continuum of Ptashnik et al. [2011a], 

see Section 5.2). Relative to the case with no continuum, the global mean absorption 

in clear skies is increased by ~1.5 and ~2.8 W m-2 respectively; using the stronger 

(CAVIAR) continuum results in a 3 W m-2 difference in the energy partition between 

the atmosphere and surface compared to using CKD. These values are potentially 

quite conservative, as the Tomsk measurements e.g. Ptashnik et al. [2015] show 

greater absorption strength than the CAVIAR continuum. The CAVIAR continuum 

was extrapolated from measurements at elevated temperatures (between 431 and 350 

K) in the 1.6 μm window, due to the large uncertainties in the room-temperature 

measurements in this window. This introduces additional uncertainty into this 

calculation, depending on the variation of the continuum strength with temperature.  

This effect is particularly important in a warming climate via water vapour feedback; 

while using the CAVIAR continuum only increases the overall absorption in clear 

skies by 0.1%, it contributes to 15% of the increase in absorption with increasing 

water vapour. The increased shortwave absorption in CAVIAR compared to CKD 

resulted in a 3% reduction in the precipitation response to warming. This occurs 

since an increase in atmospheric shortwave absorption reduces the amount of latent 

heating required to balance the surface energy budget (e.g. DeAngelis et al. [2015]) 

Paynter and Ramaswamy [2014] present a detailed study of the shortwave continuum 

effect on GCM climate simulations using the GFDL model. They found that the 

continuum reduces the temperature gradient between the surface and atmosphere, 

resulting in smaller convective (sensible) and latent heat fluxes and “reducing the 

energy transport between the surface and the boundary layer, which in turn results in 

decreased convection and precipitation.” 

As described in Section 1.4.1, many satellite applications use these windows, such as 

the MODIS and OCO-2 platforms referenced in that Section.  In the OCO-2 case, the 

continuum increases the amount of absorption in this window relative to the no-

continuum case. This is considered in e.g. Oyafuso et al. [2017], in which the authors 
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could not reconcile the variation of measurements of CO2 absorption with airmass 

between winter and summer. This difference could be resolved if the continuum were 

significantly stronger than predicted (in the MT_CKD model, see Section 1.4.2). 

Recent measurements, summarised in Section 1.4.2 and elaborated upon further in 

Section 5.2 indicate that this may indeed be the case, despite the claim in Oyafuso et 

al. that “unrealistically large multiplicative factors… for the water vapour continuum 

are required [to reconcile this difference]”.  

Shine et al. [2012] explores the possible impact of the near-infrared continuum on 

cloud remote sensing in the 2.1 μm window. The authors take an increase in 

shortwave absorption (in this case going from MT_CKD to the CAVIAR continuum 

of Ptashnik et al. [2011a]) as a decrease in albedo (less radiation is reflected from the 

top of the cloud), which if unaccounted for will bias any retrieval of cloud droplet 

size. This effect is particularly important in the tropics, where water vapour content 

is higher, and for observing at large solar zenith angles (see Section 2.2); both 

conditions result in an increase in continuum absorption. Given these conditions, 

they show that the difference between MT_CKD and CAVIAR could lead to a bias 

in cloud drop mean effective radius of ~1.5 μm (independent of droplet size). This 

effect could be more significant in the 1.6 μm window, where the difference between 

CAVIAR and MT_CKD is unknown due to the lack of room temperature CAVIAR 

measurements in this window. 

The shortwave continuum is therefore clearly both a phenomenon which is not well 

understood, but also one that is potentially important for a variety of applications. 

These two factors were the main motivations for the work performed in this thesis.  

1.5: Objectives of this work 

The aim in this work is to help resolve these issues via analysis of high resolution 

Fourier transform spectrometer (FTS) measurements of near-infrared solar radiation 

through the atmosphere. These measurements were taken in Camborne, Cornwall, 

UK at a Met Office field site at 88 m above sea level and were taken across the 

course of a 2-month (July-September 2008) period. The measurements were 

performed by Liam Tallis (University of Reading), Tom Gardiner and Marc Coleman 
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(National Physical Laboratory) during the CAVIAR (Continuum Absorption at 

Visible and Infrared wavelengths and its Atmospheric Relevance) project.  

This spectrometer was absolutely calibrated, meaning that it can directly observe 

spectral irradiance, from which via the use of a radiation code or the Langley method 

the top of atmosphere spectral solar irradiance can be derived. Using the Langley 

method (discussed in Section 3.3.2), one can also independently obtain atmospheric 

optical depth, which via the use of a line-by-line code and some characterisation of 

aerosol and Rayleigh scattering can be used to derive the water vapour continuum 

absorption contribution to the optical depth. The methodology used to characterise 

and ultimately derive SSI and continuum absorption are presented in the subsequent 

Chapters. 

Chapter 2 focuses on fundamental spectroscopy and aims to explain the behaviour of 

gases and aerosols in the near-infrared when exposed to radiation. It also discusses 

some of the basic physics behind emission of solar radiation, and the technical details 

of the line-by-line radiation code used extensively throughout the thesis. 

Chapter 3 focuses on the technical aspects of the Fourier Transform spectrometer, 

including the fundamental principles of how one works, and the specific 

spectrometer used in the field campaign. Work performed during this thesis is 

included here, regarding updates to the calibration and uncertainty budget of the 

measurements. This section also details the analytical methods used in the thesis, 

particularly the Langley and radiative closure methods used to derive the continuum 

optical depth and solar spectral irradiance (SSI). 

Chapter 4 primarily contains a paper published in Geophysical Research Letters in 

2017 [Elsey et al., 2017], which uses the Camborne measurements to derive a new, 

updated version of the CAVIAR spectrum from Menang et al. [2013], featuring a 

new calibration and updated uncertainty budget. Section 4.3 of this Chapter also 

contains work done since Elsey et al. [2017], regarding additional datasets published 

before and since the publication of that paper.  

Chapter 5 presents new observations of the water vapour continuum absorption in 

atmospheric conditions, featuring (to the author’s knowledge) the first derivation of 

the continuum in the 1.6 and 2.1 μm atmospheric windows from radiometrically 
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calibrated observations. These are the first values that include fully characterised 

uncertainties. This Chapter also features a literature review of near-infrared 

laboratory continuum observations, particularly regarding the MT_CKD continuum 

model used in many radiative transfer applications.  

Chapter 6 presents a comparison of these new continuum observations with the 

laboratory measurements and assesses the relative contribution of the self and foreign 

continuum to atmospheric absorption, and its implication for the MT_CKD model. 

Chapter 7 presents conclusions and future work, particularly ways in which a future 

measurement campaign could improve the derivation of SSI and continuum.
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Chapter 2: 

Radiative processes in the terrestrial atmosphere 

This chapter will cover various aspects of molecular spectroscopy and radiative 

transfer necessary for this thesis. A full treatment of many of these topics is outside 

of the scope of the thesis; more information is available in the References. Section 

2.1 focuses on the fundamental physics of molecular spectroscopy, in particular that 

of the water vapour molecule. Section 2.2 focuses more on the basic physics of the 

Sun, to provide some background for Chapter 4. Section 2.3 looks at radiative 

transfer in the atmosphere and the means with which we can approximate this 

numerically. Section 2.4 focuses on the water vapour continuum, and the ways this is 

implemented into the numerical model. References will be made to the state of 

current observations where applicable, particularly regarding the near-infrared solar 

spectral irradiance (SSI) and continuum on which this thesis focuses. It is important 

to note that in general, spectroscopists focusing on the near-IR tend to work in 

spectral wavenumber ν  = 1/λ, (in units of cm-1) and that convention is followed here. 

2.1: Molecular spectroscopy  

Molecules absorb electromagnetic radiation at specific wavelengths depending on 

their electronic and molecular structure. This absorption (alongside scattering) is 

responsible for the distribution of energy from the Sun throughout the atmosphere, 

which ultimately drives dynamical processes and leads to the patterns of weather we 

see day to day. This absorption is governed by the rules of quantum mechanics, and a 

full treatment is well outside of the scope of this work. Below is a basic overview of 

some of the principles that govern molecular absorption. More information can be 

found in e.g. Banwell and McCash [1994]. 

In quantum mechanics, atoms and molecules absorb radiation only at specific 

wavelengths, corresponding to a change in the discrete electronic, vibrational or 

rotational (in order of decreasing energy) energy levels of the molecule. Electronic 

transitions generally occur at wavelengths in the visible and UV regions of the 



Chapter 2 – Radiative processes in the terrestrial atmosphere  

 
 

Page 18 

 

spectrum, and are unimportant in the scope of this thesis.1 While there is coupling 

between the electronic and nuclear (vibrational, rotational) motion of a molecule, it is 

here assumed the Born-Oppenheimer approximation holds (i.e. the wavefunction of 

these two motions can be separated). In the near-infrared, the vibrational and 

rotational levels are of most interest. These are generally notated by the rotational 

quantum number J and vibrational quantum number v. While the electronic and 

nuclear motions are considered de-coupled, there is strong coupling between 

rotational and vibrational modes which cannot be neglected. Absorption spectra are 

generally made up of lines from a vibrational mode, surrounded by lines from 

corresponding rotations at that vibrational level.  

In general, a molecule cannot absorb radiation unless it has an electric or magnetic 

dipole moment (more specifically, unless the rotation or vibration leads to a change 

in dipole moment). This dipole moment arises from the distribution of the electrons 

inside a molecule. For example, water vapour is very polar (i.e. has a large dipole 

moment), since it has a high degree of asymmetry due to the oblique angle between 

the two hydrogen atoms. There are a very large number of possible rotational and 

vibrational modes due to this (and the three possible axes of rotation). Conversely, 

the carbon dioxide molecule has zero dipole moment, meaning that of the three 

vibrations possible from the geometry of the molecule, only the asymmetric stretch 

mode (v2) and bending mode (v3) are infrared active2, since these are the only 

possible vibrations which lead to a change in dipole moment. Figure 2.1 shows this 

graphically for water vapour. Typically a transition (absorption or emission) is 

notated by the vibrational quantum numbers of the transition, e.g. 010 ← 000 

denotes a transition from the ground state to the first excited state of the ν2 mode.  

The difference in structure leads to very different absorption spectra between the two 

molecules. While the CO2 spectrum is relatively sparse, the water vapour spectrum 

has a band-window structure rich in individual rotational-vibrational lines. More 

specific information on the absorption by water vapour is presented in Section 2.1.5. 

                                                           
1 Some electronic lines of certain species do extend into the near-IR about as far as 1 µm, but are 
not important for this thesis. 
2 While the ν2 symmetric stretch band is not conventionally infrared active, it is Raman-active. 
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Figure 2.1: Water vapour vibration and rotation modes, adapted from Liou [2002].  

2.1.1: Rotational spectroscopy 

Rotational transitions occur when a photon is absorbed or emitted by a molecule. 

Purely rotational transitions are only relevant at low energies (ν < 2500 cm-1). The 

concepts in this section are explained further in Banwell and McCash, [1994], Atkins 

et al. [2017] and Bernath [2005]. While a rigorous treatment involves a solution to 

the Schrödinger equation, a semi-classical treatment gives a close approximation and 

is useful for conceptualisation. Consider the simplest case (a diatomic molecule, e.g. 

Figure 2.1). In this case, the molecule has three axes of rotation, about the bond axis, 

and two rotations perpendicular to the bond axis (Figure 2.1b). The rotation of a 

system is dictated by its moment of inertia I, and is given by 

(2.1) 𝐼 = Σ 𝑚𝑖 𝑟𝑖
2 

where mi is the mass of atom i and ri is the radius from the centre of mass, and the 

summation is over all atoms i in the molecule. In the diatomic case, IA is zero, and IB 

= IC. The energy associated with a rotation is given by: 
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(2.2) 𝐸 =
1

2
𝐼 𝜔2. 

Angular momentum is classically given by: 

(2.3) 𝐿 = 𝐼 𝜔. 

This angular momentum on the quantum scale is discrete, and dictated by the 

rotational quantum number J (e.g. Liou 2002): 

(2.4) 𝐿 =
ℎ

2𝜋
√𝐽 (𝐽 + 1) 

where ℎ is the Planck constant. Here J is an integer, meaning this angular momentum 

is quantised. Combining Equations (2.2), (2.3) and (2.4) yields: 

(2.5) 𝐸 =
𝐽(𝐽+1)ℏ2

2𝐼
. 

The quantity 
ℏ2

2𝐼
 is often referred to as the rotational constant B. ℏ is the reduced 

Planck constant, equal to  
ℎ

2𝜋
. 

 To find the energy of a rotational transition, we need to look at changes in the 

rotational quantum number J. This can only change in accordance with specific rules, 

known as selection rules (see e.g. Banwell and McCash [1994]. It is found that ΔJ = 

±1. Given a transition from J to J+1 and substituting this into Equation (2.5): 

(2.6) Δ𝐸 =
ℏ2

2𝐼
(( 𝐽 + 1)( 𝐽 + 2) − ( 𝐽 ( 𝐽 + 1)    =   

ℏ2

𝐼 
( 𝐽 + 1)   =  2𝐵( 𝐽 + 1)  

Given E = hc/λ = hcν (with ν wavenumber), B becomes: 

(2.7) �̃�  =
ℏ

4𝜋𝐼𝑐
 

Thus, we can determine the frequency spacing between individual spectral lines. 

(2.8) 𝜈 = 2�̃� ( 𝐽 + 1) 

Since �̃� only depends reciprocally on the moment of inertia, it is apparent that 

molecules with high moments of inertia will have very small spacing between 

spectral lines, whereas molecules with lower moments of inertia will have larger 

spacing. As such, diatomic molecules with large differences in mass between the two 

atoms will have a much sparser absorption spectrum compared to those with similar 

masses, since the centre of gravity will tend toward the larger atom in this case and 

the moment of inertia will be reduced. This case considers the bond between the 
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atoms to be rigid; a more rigorous treatment includes a correction term to account for 

this not being the case, and relaxes the permitted selection rules in some cases (see 

Section 2.1.3). 

The diatomic case is the simplest possible; while a similar treatment can be made for 

a linear triatomic molecule (e.g. CO2), it is extremely difficult for cases such as water 

vapour (an ‘asymmetric top’) which have three separate and different moments of 

inertia (i.e. IA ≠ IB ≠ IC).  

2.1.2: Vibrational transitions 

Vibrational transitions occur when an absorption or emission of a photon results in a 

change in the vibrational energy level of the molecule. A (non-linear) molecule has 

3N degrees of freedom, where N is the number of atoms that make up the molecule. 

These degrees of freedom encompass translation, rotation and vibration. Accounting 

for the three translational and three rotational degrees of freedom, the remaining 3N 

– 6 (3N – 5 in the linear case, since the rotation about the bond axis has zero moment 

of inertia) degrees of freedom are vibrational. For complex molecules it is the 

vibrational spectrum which leads to much of the spectral structure. For example, 

water vapour has 3 vibrational modes (9 – 6). These vibrational modes are shown in 

Figure 2.1, along with their characteristic wavenumbers.  

A pure vibration can be conceptualised using the simple harmonic oscillator. Since 

we are dealing with quantised energy levels, this particular case can be modelled 

using the quantum harmonic oscillator (see e.g. Atkins et al. [2017]). 

A vibration can be thought of as like the displacement of a mass on a spring. Any 

change from the equilibrium position req will be met by a restoring force via Hooke’s 

Law: 

(2.9) 𝐹 =  −𝑘 (𝑟 − 𝑟𝑒𝑞) 

with k the spring constant. The time-independent Schrödinger equation can be 

written: 

(2.10) −
ℏ

2𝑚


2𝜓

x2 + 𝑉(𝑥)𝜓 =  𝐸𝜓   
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Here m is the mass of the system, x the position vector, 𝜓 the wavefunction, E energy 

and V the potential energy. In this case, it can be found that, using a quadratic 

potential: 

(2.11) 𝐸𝑛 = (𝑛 +
1

2
) ℎ𝑐𝜈 

with n the vibrational quantum number and ν wavenumber. The difference between 

energy levels n and n+1 is therefore hcν. 

This case is an approximation: in reality Hooke’s Law does not hold. A more 

sophisticated treatment using an anharmonic quantum oscillator can be found in e.g. 

Banwell and McCash [1994] or Bernath [2005]. 

2.1.3: Rotational-vibrational transitions 

The spectrum of water vapour (and other gases) in the near-IR is made up of a 

combination of rotational and vibrational transitions. Figure 2.2 shows a typical 

structure of a combination rotation-vibration band, in this case the ν1 and ν3 bands of 

water vapour (dominated by the ν3 band). Typically, a vibrational transition (Δv = 1 

with v = vibrational quantum number) is associated with what is known as a P-

branch and an R-branch, i.e. transitions of ΔJ = -1 and =1 respectively. Some 

transitions where the rigid rotor approximation breaks down also have a “Q-branch”, 

where ΔJ = 0. This Q branch is typically stronger than the P and R branches. The 

vibrational mode on Figure 2.2 shows a transition where this Q branch is supressed. 

Since water vapour has a complex rotational spectrum (due to the 3 axes of rotation), 

this structure is less clear than in a simpler molecule (e.g. CO2). 
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Figure 2.2: Plot of P and R branches of the ν3 water vapour absorption band at 

~3700 cm-1. Model run generated from the RFM using HITRAN 2016, for path from 

top of atmosphere to surface in the US standard atmosphere. 

These branches are typically asymmetric in strength, since the energy levels of 

particles in a semi-classical gas follow the Boltzmann distribution: 

(2.12)         𝑁𝑖 = 𝑔𝑖𝑁0𝑒
−𝐸𝑖−𝐸0

𝑘𝐵𝑇  

Here Ni is the number of particles at energy level Ei, N0 is the number at the ground 

state energy E0, kB is the Boltzmann constant and T is the temperature of the gas. As 

temperature increases the number of molecules in higher states increases relative to 

the ground state. gI is a term that arises from degeneracy; in most cases particles with 

the same energy level can exist with different orientations of their angular 

momentum vector, which increases the number of possible particles within a given 

energy level.  

This degeneracy is important, since it means that the ground state is often not the 

most populated state, so that the spectrum is not dominated by J = 0 to J = 1 

transitions. Figure 2.3 shows the population of a gas at 300 K ignoring (left) and 

including (right) degeneracy. This second distribution looks similar to the envelope 

of the H2O R branch in Figure 2.2; more available molecules in a given state means 

more molecules that can make transitions of ΔJ = ±1 and thus a stronger absorption 

line. 

 

P-branch 

R-branch 
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Figure 2.3: Relative population as a function of J calculated not including (left) and 

including (right) degeneracy. This degeneracy leads to the absorption structure 

observed in e.g. Figure 2.2. From Banwell and McCash [1994] 

2.1.4: Line broadening 

A given spectral line is associated with a particular wavenumber. In a real spectrum 

however, these lines do not resemble δ-functions; the absorption is spread out over a 

wider spectral region. At a given wavenumber ν, the absorption coefficient k is given 

by:  

(2.13) 𝑘(𝜈) = 𝑆𝑓(𝜈 − 𝜈0) 

where 𝜈0 is the transition wavenumber of a given spectral line, and S is the line 

intensity. 𝑓(𝜈 −  𝜈0) is a lineshape function, which determines how a line is 

broadened out from its central wavenumber to those around it. This function is a 

result of a combination of several physical factors, the most important of which are 

natural broadening, collision broadening and Doppler broadening. To ensure that line 

strength and broadening are decoupled, the lineshape is normalised to unit area: 

(2.14) ∫ 𝑓(𝜈 − 𝜈0) 𝑑𝜈 = 1
∞

0
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which substituting into (2.13) and integrating over all wavenumbers gives S as the 

line intensity as expected. This lineshape function is generally symmetric and peaked 

at the transition wavenumber 𝜈0. 

 It is important to note that due to line broadening, the absorption at a given 

wavenumber is not just dependent on molecular transitions at that wavenumber, but 

also the combined contributions of the wings of transitions at all wavenumbers 

around it. This broadening can be very significant; for closely spaced lines at high 

pressure broadening can completely mask this line structure, as in Figure 2.4 (from 

Petty [2005]). Even when measuring in micro-windows between spectral lines (as 

will be shown later on in the thesis), it is important to model the spectral lines within 

several wavenumbers either side to account for this effect. 

 

Figure 2.4: Plot demonstrating the effect of line broadening with several closely 

spaced lines. As the lines become more broadened, the spectral features become 

more difficult to discern. In this case, the broadening is collision broadening (see 

Section 2.1.4.2) at 100 mb (left) and 1000 mb (right). From Petty [2005] 

More information on line broadening is available in e.g. Liou [2002], Pett [2005] and 

Banwell and McCash [1994] 

2.1.4.1: Natural broadening 

Heisenberg’s uncertainty principle states that: 

(2.15) Δ𝐸 Δ𝑡 ≥
ℏ

2
 

here ΔE is the uncertainty in the energy of a process and Δt is the uncertainty in the 

time of this process. The inference here is that neither the energy and time (or 
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equivalently position and momentum) of a particle can be known to arbitrary 

precision. As such, if a process (e.g. the absorption of a photon by a molecule) has a 

short (and precise) lifetime, there must be a corresponding increase in the uncertainty 

of the energy of that process. Since via E = hcν energy and wavenumber are linked, 

increasing the uncertainty in energy increases that in wavenumber, causing a 

broadening in the absorption. 

This effect is typically negligible in atmospheric conditions due to the dominance of 

collision broadening in the troposphere and Doppler broadening in the high 

atmosphere but is useful as an introduction to collision broadening since it also 

operates using this mechanism. 

2.1.4.2: Collision broadening 

Collision broadening is a term which refers to any type of line broadening caused by 

the proximity of particles in a gas to one another. Molecules can affect the energy 

levels (and thus line positions) of other molecules by this proximity, and interaction 

between molecules can interrupt radiative processes, which causes the inherent 

uncertainty in the energy of this process to increase (c.f. natural broadening). The 

reduction in radiative lifetime caused by pressure broadening is much greater than 

that of natural broadening in the atmosphere. 

Collision broadening and natural broadening are (generally, although not necessarily 

rigorously) described using a Lorentzian lineshape: 

(2.16) 𝑓𝐿(𝜈 − 𝜈0) =
𝛼𝐿/𝜋

(𝜈− 𝜈0)2+𝛼𝐿
2 

Here 𝑓𝐿(𝜈 −  𝜈0) is the Lorentzian lineshape function, and αL is the Lorentzian half-

width parameter, often referred to as the line-width (units cm-1). In simple terms, αL 

gives the wavenumber at which in a given spectral line the absorption strength is half 

that at line centre. Since the amount of broadening is determined by the number of 

collisions between molecules, αL depends on the pressure and temperature of the gas. 

It is typically modelled via: 

(2.17) 𝛼𝐿 =  𝛼0 (
𝑝

𝑝0
) (

𝑇0

𝑇
)

𝑛

 

with 𝛼0a reference linewidth for that particular line (e.g. from HITRAN, see Section 

2.3.6.2) taken at a reference pressure and temperature p0 and T0 respectively. n is an 
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empirically defined exponent that dictates the temperature dependence of the line 

broadening. It is possible to further separate 𝛼𝐿into foreign and self-broadening 

coefficients (i.e. the degree to which the line is broadened by collisions with air and 

with other molecules of the same type respectively).  

Conservation of energy dictates that as a line is broadened, the absorption strength in 

the centre of that line must decrease correspondingly. The increase in the far-wing 

absorption (and the decrease in the absorption at line centre) scales with pressure and 

temperature as indicated by Equation (2.17). This lineshape is an approximation; it is 

not necessarily accurate outside of the limit where αL << ν0. Since αL is generally much 

smaller than 1 cm-1, any inaccuracy from the Lorentzian lineshape will not affect lines 

in the near-IR significantly (although as will be discussed later in the thesis, this does 

not apply to the continuum). 

2.1.4.3: Doppler broadening 

Doppler broadening refers to line broadening where a radiative process undergoes a 

Doppler shift, since molecules in a gas travel with some velocity V  relative to an 

observer. This velocity is dependent on temperature; the probability p(V) of such a 

molecule within a gas traveling at this velocity is given by the Maxwell-Boltzmann 

distribution: 

(2.18) 𝑝(𝑉𝑠) =
1

𝑉0√𝜋
𝑒

−(
𝑉

𝑉0
)

2

 

Here V0 is the root mean squared velocity of molecules in this gas (V0 = √
2𝑘𝐵𝑇

𝑚
), 

where m is the mass of a given molecule in the gas. A photon is Doppler shifted by a 

wavenumber proportional to the velocity of the molecule V (assuming a stationary 

source): 

(2.19) 𝜈′ = 𝜈 (𝑐 − 𝑉) 

 with 𝜈′the Doppler shifted frequency and c the speed of light. When the molecule 

has some relative velocity, a photon can absorb at a frequency different to the 

transition frequency ν0. Combining (2.18) and (2.19) yields the Doppler lineshape 

function fG for the resultant line broadening: 
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(2.20) 𝑓𝐺(𝜈 − 𝜈0) =
1

𝛼𝐷√𝜋
exp (−

(ν−ν0)2

𝛼𝐷
2 ) 

Here αD  = 𝜈0√
2𝑘𝐵𝑇

𝑚𝑐2 . The initial probability distribution is a Gaussian, as is the 

resulting lineshape function. As the temperature of the gas increases, the spread in 

velocities also increases and thus the lineshape function becomes wider. Physically, 

as the spread becomes wider there are fewer molecules at a velocity which is 

(relatively) stationary to the observer. This lineshape has less pronounced line wings 

than the Lorentzian lineshape, but has a wider central peak. 

2.1.4.4: Voigt and Hartmann-Tran lineshape profiles 

Collision broadening is dependent on atmospheric pressure, since higher pressure 

reduces the mean free path between molecules. Its influence is therefore most seen in 

the absorption spectra of tropospheric species such as water vapour, and is the most 

important source of line broadening in the model simulations in this thesis (see 

Section 2.3.6.1 and 3.4.5.2). Doppler broadening is (relatively) more important in the 

upper atmosphere, as it is only dependent on temperature. This relative importance is 

strongly wavenumber dependent.  

A typical α0 (see Eq. 2.17) for water vapour at ~6600 cm-1 is ~0.05 cm-1 (taken from 

HITRAN, neglecting self-broadening effects since p >> e, where e is the vapour 

pressure). The pressure dependence dominates over the temperature dependence, so 

the latter is not considered in this calculation (although is considered in the more 

detailed model calculations used later in this thesis). Assuming p = 200 hPa gives αL  

~0.01 cm-1; this value increases with increasing pressure. A water vapour line at 

6600 cm-1 has a αD of ~ 10-4 cm-1 (assuming a temperature of ~250 K); therefore in 

these conditions collision broadening dominates (
𝛼𝐿

𝛼𝐷
 ~ 100).  

Figure 2.5 shows a) a schematic of a Gaussian and a Lorentzian line with the same 

half-width (from Petty [2005]), and b) the relative half-widths of idealised water 

vapour lines at diferent wavenumbers with altitude. This schematic indicates the 

region of the atmosphere at which pressure broadening begins to become important 

relative to Doppler broadening. 
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Figure 2.5: Schematic of an absorption line with Gaussian and Lorentzian 

broadening (a, from Petty [2005]), and the broadened width of idealised NIR (α0 = 

0.05) water vapour lines as a function of height for a US standard atmosphere (b).  

The Voigt half-width was calculated using the approximation of Olivero and 

Longbothum [1977]. 

Since collision broadening generally dominates in the lower atmosphere and Doppler 

broadening in the upper atmosphere (although this varies with wavenumber), it holds 

that at intermediate points the two both contribute significantly to broadening and a 

combination lineshape must be used. This is commonly done using the Voigt 

lineshape; simply a convolution of the Lorentzian and Gaussian lineshapes, i.e.:  

(2.21)  𝑓𝑣(𝜈 −  𝜈0) =  ∫ 𝑓𝐿(𝜈′) 𝑓𝐺(𝜈 − 𝜈′)
∞

−∞
 𝑑𝜈′  

Most atmospheric radiative transfer models use this convention. Water vapour 

absorption is dominated by pressure broadening; as such most of the broadening is in 

the limit where the Voigt lineshape is mostly Lorentzian in nature.  

There have been several attempts to construct more sophisticated lineshapes, to 

represent more of the physics involved in molecular transitions in the atmosphere. 

The IUPAC [Tennyson et al., 2014] recommends the adoption of the Hartmann-Tran 

profile. A lineshape function is a function of many physical variables; in the case of 

the Voigt profile simply the Lorentzian and Gaussian half-widths, and the line shift 

from pressure broadening (alluded to in Section 2.1.2). The Hartmann-Tran lineshape 

however includes more physics, including for example a parameterisation of soft 

collisions, where the velocity of two molecules (and thus the broadening) after a 

collision depends on the speed of the collision, and can cause line narrowing (the 
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Dicke effect). This is primarily important at band centre rather than at the wings, and 

should not be important for measuring continuum absorption. 

Adding additional variables improves the accuracy of the lineshape, which in the 

case of the Voigt profile can be ~10% inaccurate [Tran et al., 2007], at the expense 

of computation time. The IUPAC report recommends the use of Hartmann-Tran due 

to a relatively small increase in computation time relative to the increase in accuracy. 

This is not yet applicable for all atmospherically relevant lines, since the required 

data is not available for all of the lines within the HITRAN database. This increase in 

accuracy is important in detailed spectroscopy, but detailed assessments of its 

relevance in atmospheric applications are not yet available. 

2.1.5: Water vapour near-infrared spectrum  

The near-infrared spectrum of water vapour is complex and includes thousands of 

spectral lines (see e.g. Barber et al. [2006]). These lines follow a band-window 

structure, as shown in Figure 2.6. This band-window structure arises from the 

rotational-vibrational structure of the water vapour molecule. The fundamental ν1 and 

ν3 modes of water vapour (see Figure 2.1 and Figure 2.2) have almost the same 

central wavenumber (~3700 cm-1). The ν2 bending mode has a wavenumber around 

half (~1500 cm-1) of the ν1 and ν3 modes. The band-window structure is a 

consequence of these bands and their overtones, along with combination bands 

(where several transitions occur at once, e.g. 101 ← 000 where the ν1 and ν3 

vibrations occur simultaneously) and hot bands, where transitions occur from states 

other than the ground state (e.g. the transition 202 ← 101 would be a combination 

hot band). These vibrational bands cluster around certain wavenumbers as a result of 

this, as shown in Figure 2.6. Each of these vibrational transitions in turn has a series 

of rotational transitions, exhibiting P, Q (depending on the selection rules of that 

particular transition) and R structure as shown in Figure 2.2. 

Also present in the NIR spectrum on Figure 2.6 is absorption from isotopologues of 

H2O, such as HDO. The absorption feature at ~2800 cm-1 for example is the ν1 

fundamental of HDO, which is shifted relative to H2O due to the doubled mass of 

one of the hydrogen atoms. While HDO makes up a very small fraction of the total 

water vapour in the atmosphere (0.2 % according to HITRAN), the presence of 

strong absorption bands in a spectral region that is otherwise mostly transparent 
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results in the absorption features being prominent. It is important to note here that 

HITRAN assumes a constant isotopologue concentration; in reality however the 

relative concentration changes, as evaporation and condensation change the amount 

of HDO present. Analysing the relative fraction (e.g. using FTIR) is a novel tool for 

determining the source and dynamics of water vapour (e.g Schneider et al. [2006]). 

 

 

Figure 2.6: Near-infrared water vapour spectrum, shown here as optical depth on a 

logarithmic scale for a vertical path from top of atmosphere to the surface using the 

US Standard atmosphere. The regions above ~5 optical depths are completely 

saturated; no solar radiation entering the top of the atmosphere reaches the surface. 

Also included is the MT_CKD 2.5 continuum absorption: this will be expanded upon 

later in this Chapter. Model run taken from the Reference Forward Model with 

HITRAN 2016. 

These lines follow the physical principles presented previously in this Chapter, 

including line broadening. Figure 2.7 shows the effect of different pressures on the 

line strength and broadening. Additional to these lines (as shown on Figure 2.6) is 

the water vapour continuum, a phenomenon not represented solely by spectral line 

theory and is the subject of this thesis. This will be explained further in Section 2.4. 
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Figure 2.7: Effect of reducing atmospheric pressure at each level by 25% on RFM + 

HITRAN-modelled line widths, for a small region on the edge of the 2 μm water 

vapour band, using a vertical path from the top of atmosphere to the surface using 

the US Standard atmosphere.  

2.2: Solar radiation 

The primary energy input into the Earth is radiation from the Sun. This energy input 

drives dynamics and meteorological processes in the atmosphere, and gives rise to 

weather and climate. It is also absorbed and re-emitted by the Earth’s surface at 

lower wavenumbers, which is re-absorbed by the atmosphere. Understanding solar 

radiation is therefore vital for studies of weather and climate using models. 

Solar radiation is emitted at different wavelengths in the electromagnetic spectrum, 

which are absorbed and scattered by gases, aerosols and clouds in the atmosphere 

based on their spectroscopic and bulk properties. It is therefore also important to 

understand the spectral variation of solar radiation, often referred to as the solar 

spectral irradiance (SSI). This will be discussed in more detail in Chapter 4. 

The Sun emits radiation approximately according to the blackbody distribution. The 

spectral radiance of a blackbody Bν   at frequency ν is given by the Planck function: 
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(2.22) 𝐵𝜈 (𝜈, 𝑇) =
2ℎ𝜈3

𝑐2

1

𝑒

ℎ𝜈
𝑘𝐵𝑇−1

 

where T is the temperature of the blackbody. The visible disk (i.e. the photosphere) 

of the Sun is a blackbody of T ~ 5800K; the blackbody spectrum of an emitted at 

5800 K roughly equates with the observed spectrum of the Sun (see Figure 2.8). 

More information on this section is available in e.g. Liou [2002]. 

 

Figure 2.8: Schematic of radiation observed at the top of atmosphere (from 

Coddington et al. [2015]) compared with a 5800 K blackbody scaled to the Earth-

Sun distance. Deviations from this blackbody spectrum are partly due to absorption 

and emission processes within the solar atmosphere above the photosphere. The 

observational spectrum is taken at solar minimum (see Section 2.2.1). 

2.2.1: Solar structure  

Figure 2.9 shows a schematic of the different regions of the Sun. Most of the mass is 

concentrated at the core, with energy transported from the core to the surface 

predominantly via radiation (in the radiation zone) and convection (in the convection 

zone). Radiation that reaches Earth comes predominantly from the photosphere, 

although this is subject to absorption by gases within the corona and chromosphere 

of the solar atmosphere.  
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Figure 2.9: Schematic of the interior structure of the Sun. Taken from Liou [2002]. 

The photosphere varies in temperature; its effective temperature is ~ 5800K but is 

significantly variable, particularly during periods of strong magnetic activity. 

Regions where the Sun is cooler appear as dark sunspots when observing it. These 

generally tend to undergo an 11-year cycle; this cycle has a small effect on the 

observed total solar irradiance (see Section 2.2.3). The period where there are fewest 

sunspots is referred to as the solar minimum. 

2.2.2: Sun position and distance from Earth 

Solar radiation emitted by the photosphere is emitted isotropically; the amount of 

radiation incident at a given point depends on the distance of that point to the Sun. 

The Earth orbits the Sun at a mean radius r0 = 1.496 x 108 km (known as 1 

Astronomical Unit or AU).  

 The total power emitted by the Sun is determined by integrating over frequency and 

solid angle, and the power P per unit area A is given by the Stefan-Boltzmann law:  
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(2.23)            
𝑃

𝐴
= 𝜎𝑇4 

where σ is the Stefan-Boltzmann constant. The Earth is at a mean radius r0 = 1.496 x 

1011 m from the Sun; the energy incident on the Earth’s surface is therefore diluted 

by the inverse square law. Given the radius of the Sun is ~7 x 108 m, the total power 

received by the surface of the Earth S0 is ~1368 W m-2. The Earth’s surface area is 4x 

larger than the cross-sectional area of the Earth from the Sun, meaning the mean 

energy per unit area incident on the Earth is ~342 W m-2. 

2.2.2.1: Solar zenith angle 

Since the Earth rotates, and has an axial tilt relative to the Sun, observers at latitudes 

and different times of day will see the Sun at different positions in the sky, and is 

measured using the solar zenith angle, defined as: 

(2.24)    cos 𝜃 = sin Φ sin 𝛿 + cos Φ cos 𝛿 cos ℎ 

where Φ is the latitude of the observer, 𝛿 is the solar declination angle (i.e. the axial 

tilt of the Earth relative to the Sun, which varies from 23.44° at the Summer solstice 

to -23.44° at the Winter solstice). h is the hour angle, which is time-dependent and 

relates to the position of the observer relative to the meridian; it is 0 at Solar noon 

and varies from -180° to 180°, changing by 15° per hour. The zenith angle is defined 

from a path directly above the observer, thus θ = 0 means an overhead Sun. This is 

important for measurements of solar radiation, since at a high zenith angle radiation 

must pass through more atmosphere than radiation coming in at a zenith angle of 0.  

2.2.2.2: Orbit eccentricity 

The distance between the Sun and Earth is not constant due to the Earth’s eccentric 

orbit, varying from ~1.017 AU to 0.983 AU throughout the year. The mechanisms 

causing this are well-documented in the literature; what is important for this work is 

how to model this change. In this case, the correction (from Liou [2002]) is:  

(2.25)   𝑆𝜈 =
𝑆𝜈(𝑑𝑛)

1+0.0334𝑐𝑜𝑠(2𝜋((𝑑𝑛−3)/365))
. 

Here Sν is the corrected top of atmosphere (TOA) solar irradiance, Sν(dn) is the 

uncorrected TOA solar irradiance observed on a given day number dn. The subscript 

ν in this instance indicates that the TOA irradiance is spectrally dependent; this 
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method works for measuring total solar irradiance (TSI) as well. This correction has 

an uncertainty of ~0.1%.  

2.2.3: Models and observations of solar radiation 

As seen in Figure 1.1, the incoming solar radiation is a well-characterised component 

of the Earth-atmosphere energy budget, with an uncertainty of ~0.1 W m-2. 

Contemporary measurements of the total solar irradiance from space by the Total 

Irradiance Monitor (TIM) show a value of ~1360 ± 0.5 W m-2  [Kopp and Lean, 

2011; Kopp, 2016; Dudok de Wit et al., 2017] during the 2008 solar minimum. This 

value has been steadily decreasing as instrument technology and methodology 

becomes more sophisticated. Reanalyses of older datasets at the TSI Radiometer 

Facility [Kopp et al., 2007] have shown that, when corrected for, these older, higher 

measurements are consistent with the newer TIM data, as shown in Figure 2.10 and 

Figure 2.11 (updated to present-day versions via Greg Kopp’s webpage).  

 

 

Figure 2.10: Plot of total solar irradiance measurements over time, showing the 

downward trend in observed TSI over time. The oscillating variation in these 

measurements is related to sunspot number. (Figures originally from Kopp et al. 

[2012], updated to present-day from http://spot.colorado.edu/~koppg/TSI/index.html) 

http://spot.colorado.edu/~koppg/TSI/index.html
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Other datasets of TSI do exist, which show a slightly larger value (e.g. Dewitte and 

Nevens [2012]) of 1362 W m-2. However, the 1360 W m-2 figure appears to be an 

accepted value in the literature (e.g. Coddington et al. [2016]). 

 

Figure 2.11: As above, but this time accounting for the reanalysis, showing much 

better agreement between the datasets. (Originally from Kopp et al. [2012], present-

day version from http://spot.colorado.edu/~koppg/TSI/index.html) 

Constructing a climate data record of TSI is important, as the natural variability from 

the 11-year cycle has a net radiative forcing; the IPCC Fifth Assessment Report 

[IPCC, 2014] estimates a forcing of ~0.12 W m-2. The TSI is highest at solar 

maximum, i.e. where there are most sunspots, despite these being regions of lower 

surface temperature. This is due to the presence of faculae, bright spots which have a 

larger net effect on the emitted irradiance than sunspots. At solar maximum, the TSI 

is estimated ~0.1% higher than at solar minimum [Coddington et al., 2015], although 

variations on the order of ~0.3% can take place over shorter timescales, e.g. during 

solar storms [Woods et al., 2004]. 

While a total solar irradiance climate data record exists; constructing one for the 

spectral solar irradiance (SSI) is more challenging. Measurements of solar spectral 

irradiance are myriad in the visible and UV, but in the near-infrared they are 

relatively sparse. Additionally, these measurements are not of the required resolution 
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to fully resolve many solar absorption lines, which are necessary for use of such a 

data record in high-resolution line-by-line calculations as is the case in this thesis. 

While high resolution solar irradiance models and observations exist (e.g. Kurucz 

[2005],  Fontenla et al. [2011]), these are not of the required resolution for line-by-

line radiative transfer modelling. 

 The spectral distribution of solar radiation is important; additional radiation in 

spectral regions which are comparatively opaque (e.g. within a water vapour band) 

will result in that energy being absorbed higher in the atmosphere than if that 

radiation were in a more atmospherically transparent region of the spectrum. 

Chapter 4 presents a detailed description of measurements of near-infrared SSI, 

focusing on the discrepancy between space-based measurements (e.g. ATLAS3, 

Thuillier et al. [2003]) and ground-based (e.g. Bolsée et al. [2014]). These 

measurements present SSI that do not agree within their respective measurement 

uncertainties between 4000-7000 cm-1: the integrated difference between these 

measurements amounts to 16 W m-2, significantly larger than any observed solar 

variability. Chapter 4 presents a reanalysis of the CAVIAR SSI of Menang et al. 

[2013] and indicates a lower SSI than that of ATLAS3, but better agreement with 

more recent analyses of SSI. 

In practice, many weather and climate models (e.g. the UK Met Office Unified 

Model) use a semi-empirical spectrum to model the near-IR (e.g. Walters et al. 

[2014]) in this case the spectrum of Kurucz and Bell [1995]. This and other semi-

empirical spectra are calculated using a physical model of the Sun’s photosphere and 

are tied to observations. For example, the spectrum of Kurucz and Bell [1995] has 

similar spectral irradiance values to ATLAS3. Thus, the use of such spectra warrants 

caution, since more recent observations may supersede the one used to calculate the 

strength of the SSI.  

2.3: Radiative transfer in the terrestrial atmosphere 

Key to understanding the Earth’s energy flows is knowledge of how solar radiation is 

distributed in the atmosphere. This is primarily through extinction by gases, aerosols 

and clouds. In this work, the atmospheric extinction is measured using a 

spectrometer and calculated using a line-by-line radiative transfer code with 
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supplementary aerosol and Rayleigh scattering calculations. More information on the 

technical details of this is presented in Chapter 3. More information on the principles 

explained in this section is available in e.g. Petty [2005] and Liou [2002]. 

2.3.1: Blackbody radiation  

As stated in section 2.2, an object with temperature T will radiate blackbody 

radiation. Figure 2.12 shows the blackbody curves from the Sun (~5800 K) and the 

Earth (effective temperature ~255 K) respectively. These two emission curves 

demarcate shortwave radiation (from the Sun), and longwave radiation (emitted by 

the Earth’s surface). The spectral region relevant to this work (2000-10000 cm-1) 

therefore comes under the shortwave category. While gases in the atmosphere radiate 

like blackbodies, this is typically not important in the near-IR. The two have been 

scaled here so that the area under the curves is (roughly) equal, by multiplying the 

solar blackbody spectrum by the Earth’s albedo, distributing the energy over all 

4𝜋𝑟2 of the Earth’s surface area and accounting for the Earth-Sun distance. Any 

difference between these curves in reality is indicative of an energy imbalance at the 

top of the atmosphere. If there is such an imbalance, the Earth’s blackbody curve will 

adjust to resolve it, i.e. the effective temperature of the Earth will decrease if there is 

more outgoing longwave radiation, or increase if there is more incoming solar 

radiation. 
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Figure 2.12: Blackbody spectra for the Sun (5800 K) and the Earth (255 K), with the 

solar spectrum scaled by the Sun-Earth distance, Earth’s albedo and a factor of ¼ to 

reflect the distribution of Earth’s energy over its surface area. The y-axis has been 

scaled by wavelength. The edges of the two at ~4 μm denotes the transition from 

shortwave to longwave. 

2.3.2: The Beer-Bouger-Lambert law and atmospheric transmission  

This work measures solar radiation reaching the surface through the atmosphere. A 

thorough understanding of how the atmosphere transmits radiation is necessary to 

characterise this radiation. A beam of electromagnetic radiation travelling through a 

medium (non-vacuum) is attenuated by the medium; the irradiance I observed after 

travelling through it is described using the Beer-Bouguer-Lambert law: 

(2.26) 𝐼𝜆(𝑥) =  𝐼0,𝜆 exp(−𝛽𝜆𝑥). 

Here x is the distance travelled through that medium, I0 is the incident radiation and 

β is the extinction coefficient, a function of the physical properties of the medium. 

From this point on the wavelength dependence subscripts will be dropped. 

In the atmosphere this extinction coefficient is usually broken up into two terms 𝛽𝑠 +

 𝛽𝑎, which are the scattering and absorption extinction coefficients repsectively: 

(2.27) 𝛽 =  𝛽𝑠 +  𝛽𝑎 

Absorption in this case relates to the spectroscopic absorption of radiation, in the 

spectral region of interest mostly by water vapour, clouds and aerosols. Scattering 

refers to the redirection of radiation by clouds, gases and aerosols. For the purposes 
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of this thesis the scattering component is broken down into a Mie scattering 

component (primarily due to aerosols) and a Rayleigh scattering component 

(primarily by atmospheric gases). These will be discussed further in Section 2.3.4 

and 2.3.5 respectively. The effect of clouds is removed entirely, as observations were 

made in clear-sky conditions (see Section 3.4.3.1). 

This case also assumes that there is no scatter into the direct beam, i.e. that the 

observed signal is entirely due to the incident beam of radiation (which includes the 

sharp aerosol forward scattered peak). This case holds for the purposes of this work, 

since the field-of-view (FOV) of the optics used to observe the Sun is small; the FOV 

does not cover the entire solar disc, and the scattering phase function for aerosols is 

strongly forward peaked. This is explained in more detail in Section 3.4.5.2. 

The relative amounts of absorption and scattering are important for many radiative 

transfer applications, in this case it is important for characterising the aerosol type; 

this is discussed further in Section 2.3.5. This quantity is referred to as the single 

scattering albedo, and is defined as: 

(2.28) 𝜔 =
𝛽𝑠

𝛽
 

A single scattering albedo of zero implies entirely absorption, whereas a single 

scattering albedo of 1 implies that all the radiation is scattered.  

In practice, it is more appropriate to determine absorption via quantities such as 

number density of a given gas (such as that measured by the radiosonde used in this 

work, see Section 3.4.5.1). We can define a volume extinction coefficient σ such 

that: 

(2.29) 𝛽 = 𝑁𝜎 

where N is the number density of the gas in question. As with the extinction 

coefficient, σ is wavelength dependent. 

When radiation travels through the atmosphere, it travels though the atmosphere at 

an angle θ relative to the zenith. We can define an airmass factor m: 

(2.30) 𝑚 =
1

𝑐𝑜𝑠(𝜃)
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This airmass factor determines the additional proportion of the atmosphere relative to 

the zenith (i.e. the path directly upwards) that a beam of radiation must travel 

through in order to reach an observer, assuming that the atmosphere is homogeneous.  

Putting this together, one can obtain the radiation observed at a height z0 travelling 

through the atmosphere: 

(2.31) 𝐼 = 𝐼0 exp (− ∫ 𝑚𝑁𝜎(𝑧) 𝑑𝑧
∞

𝑧0
)  

Here I0 is the top of atmosphere solar radiation. In the case of observing at the 

surface and integrating from infinity (i.e. the top of atmosphere) to 0, this gives the 

Beer-Bouguer-Lambert law as a function of optical depth τ: 

(2.32) 𝐼 = 𝐼0 exp(−𝑚𝜏)  

In this case, the optical depth does not include scatter into the FOV of the instrument, 

e.g. from aerosols. This optical depth is the quantity that will be looked at when 

deriving the continuum in Chapter 5. This optical depth can be explicitly broken 

down into its constituent components: 

(2.33) 𝜏 =  𝜏𝐻2𝑂 +  𝜏𝑔𝑎𝑠 + 𝜏𝑎𝑒𝑟𝑜𝑠𝑜𝑙 +  𝜏𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ + 𝜏𝑐𝑙𝑜𝑢𝑑𝑠 +

                        𝜏𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 +  𝜏𝑜𝑡ℎ𝑒𝑟 

Here τH2O denotes water vapour line absorption, τgas absorption by other gases, τaerosol 

aerosol absorption and scattering, τRayleigh Rayleigh scattering, τclouds absorption and 

scattering by clouds, τcontinuum continuum absorption (particularly by water vapour) 

and τother other radiative processes, such as Raman scattering which generally do not 

contribute significantly to the overall optical depth. Optical depth is useful for many 

reasons; it gives an idea of how much the atmosphere transmits radiation, but can 

also be used as a vertical coordinate in radiative transfer calculations. Taking the 

ratio of I and I0 in Equation 3.32 gives the atmospheric transmission, i.e. the 

proportion of radiation that has been removed from the beam by the atmosphere.  

2.3.3: Absorption by atmospheric gases 

The spectrum of water vapour was presented in Section 2.1. While it is the main 

contributor to near-infrared absorption, it is not the only one. Figure 2.13 shows the 

contributions to near-infrared absorption between 2000-10000 cm-1 by four major 

gases: water vapour, methane (CH4), carbon dioxide (CO2) and molecular oxygen 
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(O2). Water vapour is responsible for the overall structure of this region. In the 

window regions, e.g. at 2.1 and 1.6 μm (the regions of most interest for this work), 

the clear-sky atmosphere is mostly transparent aside from Rayleigh scatter, aerosol 

scatter, weak absorption lines and continuum absorption.   

 

 

Figure 2.13: Contribution to atmospheric absorption by water vapour (black), 

carbon dioxide (red), methane (blue) and molecular oxygen (green), taken for a mid-

latitude summer atmosphere from surface to top of atmosphere. These optical depths 

were generated using the Reference Forward Model [Dudhia, 2017] and the 

HITRAN 2016 spectroscopic database [Gordon et al., 2017]. 

There are some regions within these windows and on the edge of the windows where 

other gases contribute significantly, for example the CO2 band at 1.6 μm, the 

methane band on the edge of the 1.6 μm window and the oxygen absorption band at 

~8000 cm-1.  

In this work, absorption by these four gases alongside carbon monoxide (CO), 

nitrous oxide (N2O), ozone (O3) and molecular nitrogen (N2) is considered. Water 

vapour mixing ratios are determined from radiosonde observations (see Section 

3.4.5.2).  The CO2 volume mixing ratio is determined from measurements at Mace 

Head Atmospheric Research Station, the closest CO2 monitoring station to the field 

site used to take the FTS measurements. CH4 volume mixing ratios are taken from 
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the Earth System Research Laboratory of the National Oceanic and Atmospheric 

Administration (Ed Dlugokencky, NOAA/ESRL, 

www.esrl.noaa.gov/gmd/ccgg/trends_ch4/). Mixing ratios for other gases are taken 

from climatology, e.g. from the US Standard atmosphere. These values are then fed 

into a line-by-line radiation model (see Section 2.3.6) to calculate the optical depth 

from atmospheric absorption.  

An additional feature of the near-infrared spectrum (not shown on Figure 2.13) is the 

water vapour continuum absorption; this will be discussed in more detail in Section 

2.4 and Chapter 5. As discussed in Chapter 1, water vapour and the continuum 

absorption are extremely important in determining the near-infrared radiation budget.  

2.3.4: Rayleigh scattering  

Scattering processes can be demarcated by a size parameter x where: 

(2.34) 𝑥 =
2𝜋𝑟

𝜆
 

where r is the radius of the scattering particle and λ is the wavelength of the 

incoming radiation. Figure 2.14 (from Petty [2005]) shows the regimes which 

scattering can fall under based on this parameter. For larger particles such as aerosols 

(with sizes ~0.1-1 μm), near-IR radiation falls under the Mie regime, whereas 

molecular scattering (with sizes on the order of several nanometres) falls under the 

simpler Rayleigh regime. The reasoning behind this is that particles of sufficiently 

small size can be taken to be experiencing the same electric field when undergoing a 

scattering process.  

http://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/
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Figure 2.14: Schematic (from Petty [2005]) of scattering regimes for particles with 

radius r (y-axis) and radiation at wavelength λ (x-axis). For this work, most of the 

scattering is in the Mie regime (from aerosols), with some scattering in the Rayleigh 

regime (from gases, but this is mostly dominated by absorption). 

A more detailed treatment of Rayleigh scattering is available in e.g. Petty [2005]. 

The Rayleigh scattering cross section σR for a particle of cross section πr2 is given by: 

(2.35) 𝜎𝑅 ∝   
𝜋𝑟6

𝜆4  

For the purposes of this work, the Rayleigh scattering optical depth is small, but still 

significant compared to the weak continuum absorption. Iqbal [1983] gives the 

transmission TR due to Rayleigh scattering for dry air at standard temperature and 

pressure as: 
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(2.36) 𝑇𝑅 = exp (−𝑚0.008735 𝜆−4.08) 

where m is the airmass factor = 1/cos(θ), and 𝜆 is in µm. This gives an optical depth 

of 0.008735 at 1 μm, and 1.2 x 10-5 at 5 μm. These values are significantly smaller 

than the expected continuum absorption in these regions. More detailed studies such 

as Bucholtz [1995] shows that for a midlatitude summer atmosphere (comparable to 

the conditions in this work), the Rayleigh scattering optical depth is 8.67 × 10-3 at 1 

μm, reducing to 1.315 × 10-3 at 1.6 μm. 

2.3.5: Mie scattering and the effect of clouds and aerosols 

Larger particles undergo Mie scattering, which is more complex than the Rayleigh 

case. This regime is where the assumption that the entire (spherical) particle 

experiences the same electric field breaks down. Mie theory is derived by solving the 

Maxwell equations to obtain a wave equation in 3D space, with boundary conditions 

applied based on the coordinates of the homogeneous sphere. A detailed description 

of this is available in e.g. Liou [2002]. 

Solving these differential equations yields the scattering and extinction efficiencies 

for Mie scattering QS and QE respectively, which are expressed as an infinite sum 

over n terms: 

(2.37) 𝑄𝑆 =
2

𝑥2  ∑ (2𝑛 + 1)(|𝑎𝑛|2 + |𝑏𝑛|2)∞
𝑛=1   

(2.38) 𝑄𝐸 =
2

𝑥2  ∑ (2𝑛 + 1)∞
𝑛=1  𝑅𝑒(𝑎𝑛 + 𝑏𝑛) 

Here an and bn are the Mie scattering coefficients. These are mathematically complex 

variables and are not reproduced in full here. What is important is the fact that they 

are dependent on the properties of the scattering medium. The complexity of these 

terms is such that generally the sum to infinity has to be significantly truncated in 

practical terms to derive QS and QE.  

The scattered radiation is strongly directionally dependent. This is dependent on the 

size parameter (among other things) of the scattering particle, as shown in Figure 

2.15.  
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Figure 2.15: Schematic of radiation scattered by a particle with size parameter x, 

adapted from Petty [2005]. 

The isotropy of the scattered radiation is determined by a phase function p. Consider 

a beam of radiation approaching a particle from direction Ω. This radiation is 

scattered by the particle into a direction Ω’. By integrating over solid angle 𝜙, and 

normalising the phase function to 1, we get: 

(2.39) 
1

4𝜋
1/2𝜋 ∫ 𝑝(Ω′, Ω) 𝑑𝜙 = 1

4𝜋
 

This can be conceptualised as a probability distribution, i.e. the probability that a 

photon will be scattered from Ω into Ω’. The normalisation condition ensures this 

condition satisfies conservation of energy (ignoring absorption in this case).  

For spherical or randomly oriented particles (such as those found typically in the 

atmosphere), this can be simplified as being dependent on the angle between Ω and 

Ω’, i.e. 

(2.40) cos(𝛩) = Ω′ ∙ Ω 

which reduces the phase function normalisation to: 

(2.41) 
1

2
 ∫ 𝑝(cos(Θ)) 𝑑 cos(𝛩) = 1

1

−1
 

In the case of isotropic scattering, this phase function p(cos(Θ)) = 1, i.e. the 

likelihood of scatter in all directions is the same. In many radiative transfer 



Chapter 2 – Radiative processes in the terrestrial atmosphere  

 
 

Page 48 

 

applications (not including this work), this is overly complex; a simpler treatment 

using the asymmetry parameter g is more computationally efficient: 

(2.42) 𝑔 =
1

4𝜋
∫ 𝑝(cos(Θ)) cos (Θ) 𝑑𝜔

 

4𝜋
 

This parameter varies between 1 and -1, and determines the proportion of 

backscattered to forward scattered photons. For isotropic scattering, g = 0, as it does 

for Rayleigh scattering, where the forward and backward scattering are equal 

(despite not being isotropic scattering).  

These parameters are used to generate the aerosol optical depths from the Mie 

scattering codes described in Section 2.3.6.2. However, a reference optical depth is 

necessary in this case; the Mie code calculates the spectral dependence rather than 

the absolute optical depth, since this would require information on the aerosol 

number concentration and size distribution which was not available. This reference 

optical depth is obtained from the sunphotometer measurements described in Section 

3.4.5.2. 

In the visible and near-visible, and in the shorter wavelengths in the NIR, cloud 

droplets are often in this Mie regime. However, due to the difficulty and complexity 

of measuring cloud optical depth, the need for consistent conditions for the Langley 

method and the need to measure a (comparable to cloud optical depth) small 

component of the atmospheric optical depth this was not done here. It is therefore 

necessary to restrict measurements to conditions where clouds are not present (and 

where sub-visible clouds have little effect, see Section 3.4.3.1). 

2.3.6: Radiative transfer models 

Radiative transfer models aim to model the physics of radiation travelling through 

the atmosphere for a given set of conditions, including scattering and absorption 

processes by gases, aerosols and clouds. Of particular interest to this work are line-

by-line radiative transfer models, which solve the radiative transfer equation at a 

given spectral resolution for each spectral line of a mixture of gases, and output 

transmittances or radiances. In this case, it is the atmospheric optical depth that we 

wish to obtain. Note that these codes are generally incapable of handling scattering 

(without coupling to other codes); it is the optical depth due to absorption in clear 

skies that is obtained from these models. 
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There are many models capable of this (e.g. the LBLRTM (Line-by-line Radiative 

Transfer Model) of AER), or the code of Mitsel and Firsov [1995]. In this thesis, the 

Reference Forward Model (RFM) of Dudhia [2017] is preferred. This is due to the 

ease of use, the modular nature of the code (allowing for changes in the continuum 

absorption parameters for example), and the detailed documentation available. 

2.3.6.1: The Reference Forward Model 

The RFM takes as input a spectroscopic line database (e.g. HITRAN, see Section 

2.3.6.2) and temperature, pressure and gas volume mixing ratios from a model 

atmosphere (see Section 2.3.6.3), to calculate the absorption cross-section at each 

wavenumber. Each spectral line is subject to Doppler and collision broadening; the 

Voigt profile is applied to transitions within 25 cm-1 of line centre. Absorption 

outside of this region is considered continuum absorption (Section 2.4). Explicitly, 

for a gas with partial pressure e: 

(2.43) 𝑘(𝜈, 𝑝, 𝑇, 𝑒) =  ∑ 𝑆𝑖(𝑇)𝑓(𝜈 − 𝜈0, 𝑝, 𝑇, 𝑒, … )𝑖  

where Si is the intensity of a given line i, and f the lineshape function (typically 

Voigt, unless otherwise specified in the model). The lineshape function is dependent 

on air pressure, temperature and partial pressure, but also on several other quantities 

found within the HITRAN spectroscopic database.  

Resolving the Voigt lineshape for every spectral line within 25 cm-1 would be 

computationally expensive; instead a fine mesh grid and a wide mesh grid are 

specified. Figure 2.16 (from Dudhia [2017]) shows this schematically. The fine mesh 

grid determines the spectral resolution of the calculations, while the wide mesh grid 

divides this fine mesh grid into 1 cm-1 intervals. For a given spectral line, all of the 

transitions within this 1 cm-1 interval (and the two intervals adjacent) are considered. 

For remote lines (within 25 cm-1), this calculation is only performed at the centre and 

edges of the relevant 1 cm-1 interval. Lines outside of this region are ignored entirely, 

and assumed to be included within the continuum terms.  
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Figure 2.16: Schematic of the RFM line calculation algorithm. The wavenumber 

grid is split into 1 cm-1 intervals. A spectral line within this interval, or in the two 

intervals either side (which the red and green lines fall into) are calculated at each 

fine mesh point (the red and green dots in the yellow shaded region). The blue line is 

outside of these intervals, but is within 25 cm-1. It is thus included but only calculated 

at the edges of this interval and in the centre and interpolated across. Finally, the 

pink line shows continuum absorption; this is calculated and interpolated across the 

fine mesh grid in this 1 cm-1 region. From Dudhia [2017]. 

The optical depth at a given wavenumber in a given layer i is a summation of the 

absorption coefficients of each gas (at that wavenumber, including broadening, 

within that layer) multiplied by the path the radiation takes through the atmosphere: 

(2.44) 𝜏𝑖(𝜈) =  Σ𝑔𝑎𝑠 ∫ 𝑘i(𝜈, 𝑝, 𝑇, 𝑒) 𝑣 𝑛 𝑑𝑧
 

𝑖
 

with v the mixing ratio of the gas and 𝑛 the number density. The RFM uses the 

Curtis-Godson approximation, i.e. assumes that the optical depth of a given layer is 

the same as that of a homogeneous layer with the same mixing ratio of absorption, 

with average values of p, T and e.   

These cross-sections are then used to solve the equations of radiative transfer to 

calculate transmittance or radiance for a given viewing geometry. For this work, this 

is simple, since only the optical depth is considered; the output from the model is 

multiplied by the airmass factor m to account for the changing solar zenith angle 

across the day (Equation 3.31). 
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Figure 2.17 shows a zoomed-in version of the atmospheric optical depth as modelled 

from the top of the atmosphere to the surface for CO2 lines in the 1.6 μm window. 

This is shown for two different resolutions, 0.03 cm-1 (the resolution used in this 

work) and at 1 cm-1. This shows the loss of spectral structure obtained when running 

such a model at a resolution coarser than the width of the spectral line (typically ~0.1 

cm-1. 

 

 

Figure 2.17: Plot of RFM modelled absorption by CO2 at two spectral resolutions, 

using a vertical path of the US Standard atmosphere. Note how the peak absorption 

strength appears much weaker for the low resolution lines; in this case the 

absorption is “blurred” out into the neighbouring wavenumbers. Much of the 

spectral structure is lost in this case.  

Figure 2.18 shows water vapour lines in the band at 1.7 μm at the same spectral 

resolution as one another but using two different atmospheres (a mid-latitude 

summer atmosphere and a sub-arctic Winter atmosphere). This shows the difference 

in optical depth that large differences temperature, humidity and water vapour partial 

pressure lead to. 
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Figure 2.18: Plot of RFM-modelled absorption by water vapour lines at 0.03 cm-1 at 

the edge of the 1.6 μm window from the top of atmosphere to the surface in two 

atmospheres, a humid midlatitude summer atmosphere and a dry sub-arctic winter 

atmosphere. Note the logarithmic scale: the actual difference between the absorption 

is a factor of 10. 

The RFM contains the MT_CKD 2.5 continuum absorption model (see Section 2.4); 

additionally for this work the water vapour continuum of MT_CKD 3.2 was edited 

into the code. This is modelled within RFM as the contribution of lines beyond 25 

cm-1 of their line centre, plus an additional non-Lorentzian term (referred to as a χ-

factor), which modifies the lineshape. When including the continuum absorption, the 

contribution from lines beyond 25 cm-1 of their line centre have to be subtracted from 

the derived absorption cross-section, since this is included within MT_CKD.  

The RFM also includes collision-induced absorption (e.g. that of O2 at 7800 cm-1); 

however, this is not completely accurate in atmospheric conditions, as it does not 

include the O2 continuum from MT_CKD, which contributes significantly to the 

absorption in the window at ~8000 cm-1 (e.g. Figure 5.20). The desired parameters 

are read into the model via a driver file, specifying the chosen physics, gases, model 

atmosphere, spectral range and viewing geometry.  

2.3.6.2: Spectroscopic line databases 

The RFM takes input from a spectroscopic line database in order to calculate the 

absorption cross-sections. This is typically (and in this case) using the HIgh 

Resolution TRANsmission or HITRAN (latest version HITRAN 2016, Gordon et al. 



Chapter 2 – Radiative processes in the terrestrial atmosphere  

 
 

Page 53 

 

[2017]) spectroscopic database, although others such as GEISA [Jaquinet-Housson 

et al., 2017] also exist. These databases have information on millions of observed 

and modelled spectral lines for 39 gases (and many of their isotopologues and 

isotopomers), and include a wide range of parameters (see Gordon et al. [2017] for 

details). These parameters are obtained through both ab initio theoretical calculations 

and laboratory measurements. Each has an associated “uncertainty parameter”, which 

provides rough bounds of the uncertainty in the position and strength of each spectral 

line. These are not rigorously defined, and are more an indicator of the efficacy of 

the experiment or model used to derive the parameters.  

In particular (assuming local thermodynamic equilibrium), the RFM uses the 

transition wavenumber ν and intensity S, the air-broadened and self-broadened 

linewidths γair and γself, the lower state energy EL, the temperature dependence of the 

air-broadened linewidth n, and the air pressure-induced line shift s.  

2.3.6.3: Model atmospheric profiles 

The other primary input into the RFM is a model atmosphere. This contains 

information on temperature, pressure, and volume mixing ratios for various 

atmospheric gases. These are not necessarily limited to Earth’s atmosphere; this can 

be specified for any clear-skies atmosphere in which these parameters are known, 

provided the atmosphere is made up of at least one of the 39 gases included within 

HITRAN.  

Standard profiles of various atmospheres exist in the literature; for example the US 

Standard Atmosphere and the mid-latitude Summer atmosphere (e.g. Petty [2005]). 

These are based on climatology rather than based on measurements of specific 

conditions, and are not used when modelling atmospheric optical depth in Chapter 5. 

For this work, the model atmosphere is generally taken from measurements using a 

radiosonde (see Section 3.4.5.1). This provides temperature, water vapour and 

pressure; the remaining components (mixing ratios for carbon monoxide, methane, 

nitrous oxide, molecular oxygen, molecular nitrogen, carbon dioxide and ozone) are 

taken from climatological values. These model atmospheres have 64 vertical levels, 

each with specified temperature, water vapour etc.  
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2.3.6.4: Mie scattering models 

The atmosphere contains particles which lie within the Mie scattering regime; 

primarily aerosol particulates residing in the lower troposphere. For any applications 

requiring well-resolved radiative transfer in the atmosphere, it is necessary to 

calculate extinction from Mie scattering. Due to the complexity in calculating Mie 

scattering coefficients, this is done using specialised models. This code requires the 

real and imaginary parts of the refractive index (which provides an output single 

scattering albedo) and a size distribution for the aerosols. This size distribution is 

typically a bimodal distribution, split into “fine” and “coarse” mode aerosols. This is 

shown schematically in Figure 2.19 (from Lee et al. [2015]). These distributions have 

associated standard deviations, means and weights, which are included in the 

calculation of aerosol optical depth. These were included in the Mie scattering 

calculations used in this work (see Section 3.4.5.2) 

 

Figure 2.19: Schematic of a bimodal aerosol size distribution, from Lee et al. [2015], 

showing retrieved fine and coarse mode aerosols above Hong Kong using two 

different retrieval methods.  
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2.4:  Near-IR water vapour continuum absorption 

The near-IR water vapour continuum is the main subject of this thesis, particularly 

Chapter 5. As such, some theoretical background is necessary. There have been some 

recent attempts to characterise the near-IR continuum; a detailed literature review is 

presented in Chapter 5. A more general review of the history and impacts of the 

continuum was presented in Chapter 1. This section describes the theoretical basis of 

the continuum, and how it is incorporated into radiative transfer models. 

The majority of applications (e.g. the UK Met Office Unified Model) include the 

CKD (Clough-Kneizys-Davies) or MT_CKD (Mlawer-Tobin-Clough-Kneizys-

Davies) continuum models Mlawer et al. [2012]. This is a semi-empirical model 

which provides continuum from the microwave to the visible (0-20000 cm-1). This 

model is based on observations, particularly in the microwave and far-infrared 

regions. In the 2000-10000 cm-1 spectral region there is a comparative dearth of 

observations, and disagreement between the observations that do exist. Figure 2.20 

(from Shine et al. [2016c]) shows the MT_CKD 2.5 self-continuum (the version used 

in most applications) against other spectra, primarily recent laboratory spectra. The 

most recent version of MT_CKD (3.2) shows slightly stronger absorption in the 2.1 

and 1.6 μm windows (see Chapter 5). 
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Figure 2.20: Comparison of recent observations of near-IR water vapour self-

continuum and MT_CKD 2.5 (from Shine et al. [2016c]). 

The MT_CKD continuum is fundamentally a contribution from two sources; a 

component from the exponentially decaying far-wing contribution (not explained by 

the standard Lorentzian lineshape), and a collision-induced component relating to 

interactions between water vapour and another molecule. In the atmospheric window 

regions, the dominant contributor is the far-wings, and vice versa in the bands. The 

older CKD continuum only includes a contribution from line wings. This was 

modelled in CKD by adjusting the lineshape by a χ-factor, which adjusts the 

lineshape of water vapour monomer lines. This χ-factor is typically greater than one 

in the band regions (where the absorption is too weak in the Lorentzian formulation, 

i.e. the lines become super-Lorentzian) and smaller than one in the windows (where 

the absorption is too strong relative to the Lorentzian, i.e. the lines become sub-

Lorentzian).  

Practically, this is modelled by line contributions beyond 25 cm-1 of a water vapour 

line. This includes the value at 25 cm-1 across the line, known as the “plinth”, as 

shown in Figure 2.21 (from Ptashnik et al. [2011a]). 
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Figure 2.21: Schematic showing the contribution to continuum absorption strength. 

The continuum is the values in the dark shaded regions. The far-wing contributions 

are taken outside of 25 cm-1: the value inside this region is taken as the value at the 

edge: i.e. at 25 cm-1. From Ptashnik et al. [2011a]. 

The continuum lineshape Lcont is given by (e.g. Mlawer et al., [2012]): 

(2.45) 𝐿𝑐𝑜𝑛𝑡(𝜈 ± 𝜈𝑖) =  {

1

𝜋

𝛼𝑖

252             , |𝜈 ± 𝜈𝑖| ≤  25 𝑐𝑚−1    

1

𝜋

𝛼𝑖

(𝜈± 𝜈𝑖)2 
   , |𝜈 ± 𝜈𝑖| ≥  25 𝑐𝑚−1   

 

This lineshape is Lorentzian, with the central peak removed within 25 cm-1 (i.e. 

including the plinth). This is then adjusted by the χ-factor such that:  

(2.46) 𝑓𝑐𝑜𝑛𝑡(𝜈 − 𝜈0) = 𝐿𝑐𝑜𝑛𝑡 𝜒(𝜈 −  𝜈0) 

χ is a function which is derived empirically, and follows a negative exponential. To 

fit the observed features (stronger continuum in bands, weaker in windows), this 

function drops off sharply with wavenumber. As observations became more 

sophisticated however, adjustments had to be made in specific spectral regions to fit 

these. This led to a reformulation of the model, into what is now known as the 

MT_CKD continuum. 

The MT_CKD model is also semi-empirical in nature, and includes this lineshape 

formalism. It also introduces another component, which relates to an interaction 

between water vapour and another molecule. This term is referred to in Mlawer et al. 
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[2012] as a “weak interaction term”. This term is separated into a foreign component 

and a self-component, and in both cases is of the form: 

(2.47) 𝑓𝑊𝐼 =  ∑
𝑆𝑖𝛼𝑊𝐼 / 𝜋

𝛼𝑊𝐼
2 +(𝜈− 𝜈𝑖)2   {ζWI exp (− (

𝜈− 𝜈𝑖

𝛾𝑊𝐼
)

2

)}  𝑖    

Here i is a sum over all lines with intensity S and position ν. ζWI is the “relative 

strength of interaction term”, which varies depending on the energy levels and 

rotational quantum numbers of the transitions being summed over. While this term 

can be interpreted as collision-induced absorption, it is important to note that this is 

not a physical formalism; it is instead a formalism adopted to fit the experimental 

data without the 𝜒-factor of the original CKD model.  

It is important to note that in the region of interest here, MT_CKD is (mostly) not 

based on observations. The most recent update to MT_CKD (3.2) adjusts absorption 

in the 2.1 and 1.6 μm windows to fit the observed absorption from Bicknell et al. 

[2006], but does not agree with other contemporary observations. In addition, the 

temperature dependence of MT_CKD is in question (see Chapter 5). Measurements 

of continuum temperature dependence are obtained from Burch [1982] from 296-338 

K and extrapolated to 260 K. This extrapolation is heavily reliant on assumptions, 

and particularly assumes that the temperature dependence is consistent across the 

spectrum, since these measurements do not cover the near-infrared region beyond 

2300 cm-1.   

The uncertainties in both the continuum strength and the temperature dependence in 

the near-IR are strong motivation for the work performed in this thesis, given the 

potential impacts described in Chapter 1. This will be explored further in Chapters 5 

and 6.  
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Chapter 3: 

Experimental methods in the CAVIAR field 

campaign 

3.1: Introduction 

This chapter contains information on the experimental setup of the field campaigns 

and the methods used in analysing the Fourier transform infrared (FTIR) spectra for 

the solar spectral irradiance measurements presented in Chapter 4 and the 

observations of the water vapour continuum presented in Chapter 5.  

3.2: Fourier transform spectroscopy 

3.2.1: Introduction 

The spectral measurements presented in this thesis are obtained using the FTIR (or 

interchangeably Fourier Transform Spectroscopy (FTS)) technique. This technique is 

described here, but a more rigorous assessment can be found in e.g. Griffiths and de 

Haseth [1986], from which most of the information described in this Section was 

obtained. Banwell and McCash,[1994] provide a more accessible introduction to the 

topic. This technique has many advantages over other infrared spectroscopic 

techniques; primarily the ability to sample over a wide range of wavenumbers very 

quickly. This is important for measurements in the atmosphere, particularly using the 

Langley method (Section 3.3.2). This is because the atmosphere is a changing 

system; a long measurement time could lead to interference from e.g. clouds passing 

over or changes in atmospheric water vapour, which may mask the desired signal.  

A signal can be separated into its constituent frequencies, using a technique known 

as Fourier analysis. This separates the signal into a possibly infinite sum of sine and 

cosine waves: 

(3.1)   𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos
𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝐿
)

𝑁

𝑛=1
. 
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By treating the function as continuous rather than discrete and using the limit L →∞, 

we define the Fourier transform. One can therefore use information about the 

frequency components of a signal to recover the original signal (or vice versa); this is 

exploited in FTIR spectroscopy (for this thesis) using a Michelson interferometer. 

3.2.2: The Michelson interferometer 

The Michelson interferometer works via splitting a beam of radiation into two, and 

obtaining a spectrum from the interference pattern obtained when these beams are 

recombined and observed by a detector. Figure 3.1 shows a schematic of a Fourier 

transform spectrometer, with a Michelson interferometer at point a). The incident 

beam is split into two by a beam splitter, which reflects ~50% of the input beam into 

two “arms”, each of which have a mirror at one end. One of these mirrors is fixed, 

whereas the other is attached to a rail, allowing it to move up and down the arm. 

These beams recombine at the beam splitter and fall upon the detector, which 

measures the intensity of the incoming radiation. The two beams interfere 

constructively or destructively depending on the position of the moving mirror and 

the frequencies of the incoming light. 
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Figure 3.1: A schematic example of a Fourier transform spectrometer, with a 

Michelson interferometer at a), the input radiation source at b), and a sample at c), 

with the detector at d). Note that for the work done in this thesis, the sample is the 

entire atmosphere, and the source is the Sun. The sample therefore is located in 

between the source and the beam splitter. In this case, the beam is collimated going 

through the sample, rather than at a focus like in this Figure. Adapted from Banwell 

and McCash [1994] 

3.2.3: Optical path difference and interferograms 

The observed radiation can be defined in terms of the optical path difference δ 

between the two moving mirrors, given by: 

(3.2)    𝛿 =  2 (𝑥1 − 𝑥2). 

Here x1 is the distance between the beam splitter and the translating mirror, and x2 is 

the difference between the beam splitter and the fixed mirror.  This optical path 

difference is typically observed using the interference fringes of a helium-neon laser, 

with wavelength much smaller (0.633 μm) than those used in the measurements (1-5 

μm). 

The signal observed by the detector I(δ) is dependent on the incoming radiation I0(ν) 

and δ, and can be given by integrating over all of the incoming wavenumbers in the 

beam:  
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(3.3)   𝐼(𝛿) =
1

2
∫ 𝐼0(𝜈) cos(1 + 2𝜋𝜈𝛿)

∞

−∞
 𝑑𝜈 

This of course gives the overall intensity as a function of the path difference; this 

does not provide any spectral information on its own. Figure 3.2 shows an example 

interferogram, and the spectrum resulting from it. Notable here is the centreburst 

centred around δ = 0 (the location of the black lines in Figure 3.2(b)); this is where 

the radiation (of all incident wavenumbers) is interfering constructively, and the 

intensity of the beam is measured by the detector in full. Either side of the 

centreburst, the signal drops and oscillates; the intensity and oscillation of this signal 

is dependent on the interference pattern (i.e. the frequencies of the observed 

radiation).  

 

Figure 3.2: Sample spectrum showing two spectral lines of equal intensity at 

different wavelengths (a), with the individual interferograms (b) and combined 

interferogram (c). The black lines in (b) and (c) show the zero path difference, where 

the radiation interferes constructively. From Griffiths and de Haseth [1986], 
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Considering only the component that varies with δ (the non-varying component is 

not generally important for FTIR spectroscopy since it is simply equal to 0.5I(ν)) and 

taking the cosine Fourier transform yields B, the intensity of the observed spectrum 

(potentially including any corrections from mirror reflectivities < 1 etc.): 

(3.4)     𝐵(𝜈) =  2 ∫ 𝐼(𝛿) cos(−2𝑖𝜋𝜈𝛿)  𝑑𝛿
∞

0
 

Here the integral is performed over one half of the domain and doubled, since this 

function is even (symmetric about 0). This gives the desired information about the 

spectral distribution of the incoming energy. In practice, this integral is instead a 

large sum, and the Fourier transform is performed numerically (e.g. using a Fast 

Fourier Transform (FFT) algorithm, see Griffiths and de Haseth [1986] for more 

information). 

In the example shown in Figure 3.1 the radiation is absorbed after passing through 

the beam splitter, whereas for the work in this thesis the atmosphere absorbs the 

radiation before it is recombined. Figure 3.3 shows an interferogram observed during 

the experiment detailed in this thesis, alongside the corresponding spectrum. 

 

Figure 3.3: Observed interferogram (a) and spectrum (b) from an FTIR observation 

taken using the TSARS radiance source. The interferogram has been truncated to 

show the centreburst more clearly; more data points exist up to x = ~80000.  

In many laboratory applications, this procedure is followed twice; once with the 

sample present and once without. This allows the absorption structure of the sample 

to be observed via the difference of the two observed spectra. In the case of this 
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thesis, this was not possible since observations were taken through the atmosphere. It 

was therefore necessary to perform an absolute radiometric calibration to convert the 

observed FT signal (in arbitrary units) into the spectral irradiance (in W m-2 (cm-1)-1). 

This procedure is detailed in Section 3.4.3.2. 

The resolution of the observed spectrum is inversely proportional to the maximum 

distance travelled by the moving mirror, i.e.  

(3.5)     Δ𝜈 ≈
1

𝛿𝑚𝑎𝑥
 

where δmax is the maximum path difference between the mirrors. This arises from the 

interference of the input beam; two cosine waves with separation Δν will become 

completely out of phase and then in phase again (i.e. can be resolved) every 
1

2Δ𝜈
 path 

differences. A more rigorous derivation of this is available in Griffiths and de Haseth 

[1986].  

3.2.4: Computational methods in FTIR spectroscopy 

In practice, the information obtained from the FT spectrometer is never perfect. It is 

extremely difficult to e.g. ensure that the mirror position is determined exactly when 

measuring the interference pattern (particularly at high resolution, where the path 

differences and therefore measurement time are larger), and to determine the exact 

point where δ = 0 (zero path difference or ZPD). These problems can however be 

mitigated by computational means. 

3.2.4.1: Apodization 

Apodization refers to the truncation of the interferogram in order to calculate the 

Fourier transform. In Equation (3.4), the integral is performed over infinite δ. In 

practice, δ limited by the physical distance travelled by the moving mirror in the 

interferometer (the path length). The FTS used in this work has a path length of    

~2.85 m. While this is large (and allows a very high spectral resolution), an 

apodization factor is still necessary.  
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In this case, a boxcar apodization was used. This is defined as: 

(3.6)   𝐹(𝛿) = {
1, 𝛿 < 𝛿𝑚𝑎𝑥 
0, 𝛿 ≥ 𝛿𝑚𝑎𝑥

  

i.e. 1 for the range of possible δ for the spectrometer and 0 outside. This is the 

simplest type of apodization, and is useful since this does not limit the resolution of 

the spectrum, unlike more complex apodization functions. 

Taking the Fourier transform of this function gives the instrument line-shape, which 

determines the behaviour of this apodization function on the observed spectrum. In 

this case: 

(3.7)    𝑓(𝜈) = 2𝛿𝑚𝑎𝑥 𝑠𝑖𝑛𝑐(2𝜋𝜈𝛿𝑚𝑎𝑥) 

where sinc(x) = sin(x)/x. This function in both interferogram and spectral space are 

shown in Figure 3.4 (for arbitrary x). The shape of a given spectral line is obtained 

via convolution of this sinc function with the “true” spectrum. This results in side 

lobes where the absorption can become negative. This is not an issue in this work 

here due to the ability to measure in microwindows which are sufficiently 

distinguishable from strong lines, minimising the effect of these side lobes.  

 

Figure 3.4: Apodization function used in this work in interferogram (a) and spectral 

(b) domains. 
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Alternative apodization functions are available, which aim to minimise these side 

lobes. A triangular function, i.e.  

(3.8)    𝐹(𝛿) = {
1 −  𝛿/𝛿𝑚𝑎𝑥 , 𝛿 < 𝛿𝑚𝑎𝑥 

0, 𝛿 ≥ 𝛿𝑚𝑎𝑥
  

has a Fourier transform of the form 

 (3.9)    𝑓(𝜈) =  2𝛿𝑚𝑎𝑥  𝑠𝑖𝑛𝑐2(𝜋𝜈𝛿𝑚𝑎𝑥) 

This function has the advantage of minimising the side lobes; however the resolution 

of the spectrum is reduced, since the FWHM (full width at half maximum) of the 

function is increased.  

A more comprehensive account of apodization functions is available in Griffiths and 

de Haseth [1986]. Norton and Beer [1977] present a comprehensive list of 

apodization functions available, all of which provide some trade-off between 

resolution and lobe size. 

3.2.4.2: Zero filling  

Before an interferogram is Fourier transformed to produce a spectrum, it is common 

practice to extend the interferogram by adding zeros to the end, since the FFT 

algorithm requires the array size to be a factor of 2. An additional number of zeros N 

can be added, often equal to the array size (N = 2). This has the effect of smoothing 

the data in the observed spectrum, by increasing the number of points (by adding 

points that lie in between the non-zero-filled data). This improves the appearance of 

the spectrum when observed by eye, since it is unlikely that a spectral line centre will 

lie exactly on a point observed by the spectrometer. While this increases the number 

of points in the spectrum, it does not increase its optical resolution. 

3.2.4.3: Phase correction 

The phase angle 2𝜋𝜈𝛿 determines the behaviour of the interferogram (e.g. Equation 

3.3). This equation relies on the assumption that the interferogram is symmetrical 

about ZPD (δ = 0). In practice, this is often not the case. For example, if an 

observation is taken at some offset ε to the ZPD, the phase angle is therefore 

2𝜋𝜈(𝛿 − 𝜖). Alternatively, electronic or optical filters used in removing high 

frequency noise may produce some offset via a phase lag θ, changing the cosine term 

in Equation 3.3 to cos(2𝜋𝜈𝛿 − 𝜃𝜈). This phase offset can be conceptualised as 
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adding a sine term to Equation (3.3), and is visible as asymmetry in the 

interferogram. Since a sum of real cosine and sine terms can be expressed in the form 

of an exponential, Equation 3.3 becomes:  

(3.10)    𝐼(𝛿) =
1

2
∫ 𝐼0(𝜈) exp(−2𝜋𝑖𝜈𝛿)

∞

−∞
 𝑑𝜈 

with the inverse Fourier transform yielding the desired spectrum: 

(3.11)    𝐵(𝜈) =
1

2
∫ 𝐼0(𝜈) exp(−2𝜋𝑖𝜈𝛿)

∞

−∞
 𝑑𝛿 

with a complex spectrum  𝐵′(𝜈): 

(3.12)   𝐵′(𝜈) = 𝑖 Im(ν) + Re(ν)  

          = 𝑟𝑒𝑖𝜙𝜈  

where r is the magnitude spectrum, equal to |𝐵(𝜈)| = √(Re(ν)2 + Im(𝜈)2). By 

applying a correction of 𝑒𝑖𝜙𝜈 to this complex spectrum, the desired spectrum can be 

obtained. 𝜙𝜈  can be thought of as the angle posed by r in the complex plane in polar 

coordinates, and r the magnitude of the vector. Therefore, using trigonometry:  

 (3.13)      𝜙𝜈 = arctan
Im(𝜈)

Re(𝜈)
 

Rearranging Equation 3.12 (ignoring the imaginary term, since the output spectrum 

must be real) gives: 

 (3.14)    𝐵(𝜈) = Re(𝜈) cos(𝜙𝜈) + Im(𝜈) sin(𝜙𝜈) 

so multiplying the imaginary part of the Fourier transform by the sine of the phase 

angle and the real part by the cosine of the phase angle gives the true spectrum, a 

procedure known as phase correction. 

There are two main methods of phase correction (see e.g. Chase [1982]), which work 

either in spectral space (Mertz, as demonstrated above), or in interferogram space 

(Forman; any multiplication in spectral space is a convolution in interferogram 

space). The FTIR spectra analysed in this work were phase corrected using the Mertz 

method.  Assuming that the phase angle varies slowly with wavenumber, the phase 

information can be obtained by taking a small region around the centreburst, to save 

computational time.  
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This procedure was handled by the OPUS (OPtics User Software) provided with the 

spectrometer. Section 3.4.4.3 details some of the additional work undertaken during 

this thesis on the effect of this phase correction. 

3.3: Retrieval methods  

This section details the different methods used to convert the FTIR spectra and the 

supplementary data (see Section 3.4.2) into spectral irradiance and continuum optical 

depth. The majority of the FTIR methods rely on the Beer-Bouguer-Lambert law 

described in Equation 2.33. 

3.3.1: Radiative closure 

From Equation 2.33:  

(3.15)    𝐼(𝜈) = 𝐼0(𝜈)exp (−𝑚𝜏(𝜈)) 

where I is the observed spectral irradiance as a function of wavenumber, I0 is the 

incoming top of atmosphere radiation, m is the airmass factor (approximately 

1/cos(θ) after accounting for refraction effects) with θ the solar zenith angle, and τ is 

the total atmospheric optical depth. It is therefore possible to derive both the top of 

atmosphere irradiance and the optical depth from I, provided one has knowledge of 

the other, which is referred to here as the closure method. In this work, both I0 (see 

Chapter 4) and τ (Chapter 5) are uncertain to ~10% and 2-3 orders of magnitude 

respectively in parts of the spectral region of interest. Thus, it is preferable to obtain 

them without assuming a value for the other, which is possible via the Langley 

method. 

3.3.2: Langley method 

The Langley method (e.g. Liou, [2002]) exploits observations at multiple solar zenith 

angles to determine τ and I0 independently at any given ν, using the gradient and y-

intercept of a linear fit respectively. Taking the logarithm of Equation (3.15) yields: 

 (3.16)    ln(𝐼) = − 𝑚τ +   ln(𝐼0) 

which by putting into the form of a linear equation with ln(I) as the y-axis and m as 

the x-axis yields −𝜏 (via the gradient of the slope) and ln(I0) via the y-intercept. An 

idealised Langley plot is shown in Figure 3.5. In this case, the uncertainties on the 
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data points are zero and they all fit (almost) perfectly in a straight line. In reality, this 

is not the case, and the uncertainty in 𝜏 and I0 need to be computed accordingly. This 

is explained in Section 3.3.7.  

 

Figure 3.5: Idealised Langley plot for observations taken at different zenith angles, 

the gradient and slope. 

The Langley method relies on several assumptions; the most important being that the 

atmospheric state must remain relatively constant. Changes in temperature, pressure, 

water vapour or aerosol concentrations would cause different absorption from one 

observation to another, causing deviations from the straight line and therefore 

skewing I0 and τ.  It is also important to measure in clear skies, since clouds will 

scatter and absorb radiation which will make it difficult to extract the desired signal. 

3.3.3: Advantages and disadvantages of Langley and closure methods 

Both methods have advantages and disadvantages. The Langley method has the 

advantage of using more data (increasing the reliability of the estimate), does not rely 

on prior knowledge of either I0 or τ, and removes the effect of systematic uncertainty 

(when determining τ) or mitigates the random uncertainty (when determining I0). 

However, it is reliant on being able to obtain observations across the course of a day, 

and those observations being over a period when the atmosphere is sufficiently 

constant. The closure method does not rely on this being the case; I0 and τ can be 

obtained from a single spectrum. This does however require an assumption to be 

made about the value of the other. A large (~10%) uncertainty in τ has a small effect 

Gradient = -0.2209 

Intercept = -2.418 
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on the irradiance observed at the surface, but even a small uncertainty in I0 has a 

considerable effect on the uncertainty on I. In the limit of low optical depth and 

assuming a zenith viewing, Equation 3.15 can be approximated via a first-order 

Taylor expansion: 

 (3.17)      𝐼 = 𝐼0 (1 −  𝜏) 

Differentiating this equation with respect to both I0 and τ gives: 

 (3.18)     𝐼0
𝑑𝐼

𝑑𝐼0
= 𝐼0(1 −  𝜏)  

and 

 (3.19)    𝐼0
𝑑𝐼

𝑑𝜏
=  −𝐼0𝜏. 

Assuming τ of around 0.1, it would take an uncertainty in τ of around 10% to match a 

corresponding 1% uncertainty in I0. It is therefore much more important to 

understand I0 to measure τ than vice versa, which is important for the work presented 

in Chapter 4. 

The evidence presented in Chapter 4 seems to indicate increasing consensus in I0 in 

this spectral region; this I0 was therefore used for the closure calculations performed 

in Chapter 5. The closure experiments in Chapter 4 provided more of a supporting 

role, due to the large uncertainty in the water vapour continuum in this region. This 

uncertainty was included in the uncertainty budget. This was also the case for the 

work in Chapter 5, since the closure method must account for the uncertainty in SSI 

when deriving optical depth, which led to an increased uncertainty estimate relative 

to the Langley method in which this uncertainty was not included.  

In general, for this work, the advantages conferred by the Langley method make it 

the most reliable way of determining I0 and τ, and the Langley derived spectra are 

therefore considered the best estimate. This is explained further in Section 3.4.3. 

3.3.4: Calculation of Rayleigh scattering 

Rayleigh scattering is a second-order effect in the 2000-10000 cm-1 region since it 

scales with 1/λ4. It is still necessary to include a contribution from this effect 

however, since the continuum is also a relatively weak effect. In this instance, optical 

depths obtained for a standard atmosphere from Bucholtz [1995] were used. These 
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vary from 8.6 x 10-3 at 1 μm, 1.3 x 10-3 in the centre of the 1.6 μm window, 3.7 x 10-3 

in the centre of the 2.1 μm window, and 3.3 x 10-3 at 4 μm. These values are mostly 

insensitive to water vapour; the difference between a tropical and winter atmosphere 

at 1.6 μm is 0.6%. It is assumed in this case that all scattered radiation is removed 

from the direct beam observed by the FTIR, as the asymmetry parameter (see Section 

2.3.4) is 0 in the Rayleigh regime. Therefore, using these optical depths is reasonable 

due to the low values and the small field of view of the FTS; very little of the 

forward scattered radiation enters the spectrometer. Figure 3.6 shows the Rayleigh 

scattering contribution to optical depth assumed in this work. 

 

Figure 3.6: Rayleigh scattering optical depth derived for the US Standard 

atmosphere from Bucholtz [1995]. 

3.3.5: Ångström extrapolation and Mie scattering codes 

As will be discussed in Section 3.4.5.2., the measurements of aerosol extinction used 

in this field campaign are obtained in a different part of the spectrum to that of 

interest to this work. There are two methods used in this thesis to extend this aerosol 

extinction out into the near-infrared, which are explained below. 

3.3.5.1: Ångström extrapolation 

The Ångström exponent (see e.g. Toledano et al. [2007]) is one of the most widely-

used methods of extrapolating (or interpolating) aerosol optical depth (AOD) into 

different spectral regions. This method typically exploits observations in several 

channels in the visible part of the spectrum (since water vapour absorption is mostly 
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negligible). At least two different wavelengths are required. Observations show (see 

e.g Schuster et al. [2006]) that aerosol spectral behaviour generally obeys a simple 

power law formula: 

 (3.20)     𝜏(𝜆) = 𝛽𝜆−𝛼 

Here 𝜏 is the aerosol optical depth at wavelength 𝜆, 𝛽 is the aerosol optical depth at 1 

μm and is sometimes referred to as the turbidity coefficient. This gives an indicator 

of the amount of aerosol present in the atmosphere. 𝛼 is the Ångström exponent. 

𝛼 determines the spectral behaviour of the aerosol and can be used as a qualitative 

indicator of aerosol size distribution. Typically for urban-industrial and mixed 

aerosol, as is the case for this work, α is between ~1.2 and 2.1, indicating a 

significant drop-off of AOD with increasing wavelength (decreasing wavenumber). 

In this case, it is AOD that is of particular interest, since this is assumed to be 

removed from the direct beam observed by the FTS. 𝛼 can be obtained by dividing 

Equation 3.20 (renaming 𝜏 to 𝜏1 and 𝜆 to 𝜆1) by 𝜏2(𝜆) = 𝛽𝜆−𝛼2, i.e. an observation 

at a different wavelength. This cancels the turbidity term, and after taking the natural 

logarithm leaves: 

 (3.21)    𝛼 = −
log(

𝜏

𝜏2
)

log (
𝜆1
𝜆2

)
 

Thus, with observations of 𝛽, one can obtain the spectral behaviour at any other 

wavelength. This is of course a simplistic treatment, and does not account for e.g. 

absorption bands in aerosols with low single scattering albedo etc. It is however a 

useful technique in this case, where it is assumed that aerosols are mostly scattering 

(see Section 3.4), the overall absorption is quite low, and the property we wish to 

retrieve is smoothly-varying. In addition, if there is absorption, this is not a problem 

in this case since any radiation removed from the optical beam is considered the 

same regardless of its nature. The Microtops sunphotometer (see Section 3.4.5.2) 

cannot discern between scattered radiation within the forward peak and unscattered 

radiation.  

In this work, observations of AOD were made in 5 wavelength channels. To use all 

of this data simultaneously, and to obtain 𝛽, a linear fit was constructed. Taking the 

natural logarithm of Equation 3.20, it is found: 
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 (3.22)    log(𝜏) = −𝛼 log(𝜆) + log (𝛽) 

By taking a linear fit of log(𝜏) on the y-axis and log(𝜆) on the x-axis, log(𝛽) and -𝛼 

can be obtained via the y-intercept and gradient of this fit respectively. This method 

also allows for the uncertainty in the aerosol scattering to be easily obtained. This is 

first done using a Monte Carlo method (see Section 3.3.7) to find the observed 

spread in log(𝛽) and -𝛼, using the uncertainties (see Section 3.4.5.2) of each data 

point in the sunphotometer data. log(𝛽) and -𝛼, with their respective upper and lower 

limits are then used to obtain 𝜏, with the upper and lower uncertainties in 𝜏 obtained 

by using the upper and lower limits of log(𝛽) and 𝛼.  

3.3.5.2: Mie scattering codes 

The alternate method used in this thesis to obtain aerosol spectral properties in the 

NIR is through the use of a Mie scattering code. The physics involved in such a code 

is discussed in more detail in Section 2.3.5. This section details some of the 

sensitivity to the assumptions necessary to perform the calculations, and how the 

uncertainty budget was obtained. In this case, a code based on the Wiscombe Mie 

scattering code was used. This code takes in refractive indices n and k (real and 

complex respectively), volume concentrations Cn , mean particle size rn  and standard 

deviations 𝜎𝑛 for the size distribution (here using a bimodal distribution with a 

coarse and fine mode). The code assumes an optical depth at 1 μm, this was in this 

case input using the 1.02 μm observations from the sunphotometer. 

Since in situ measurements of these parameters were not obtained in the 

measurement campaign, these are instead taken from standard values for urban-

industrial and mixed aerosols (from Dubovik et al. [2002]). The range of parameters 

is shown below in Table 3.1. The values from the Greenbelt measurements on the US 

eastern seaboard were assumed typical of a site like Camborne [N. Bellouin, pers. 

comm.].  
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Table 3.1: Parameters used in the Mie scattering code, taken from Dubovik et al. 

[2002].  

Since the parameter space was very large, it was not possible to sample the whole 

range. Figure 3.7 shows several examples of aerosol optical depth derived using the 

Mie code for different input parameters. The Mie code does not provide absolute 

optical depth, therefore in this case the model runs are tied to the Microtops 

observations (Section 3.4.5.2) at 1.02 µm, since these are the most relevant to the 

spectral region of interest. The data from these Figures was used to determine an 

estimate of the uncertainty, by looking at the spread of the data and obtaining rough 

minima and maxima. While this is not an especially rigorous assessment, the lack of 

data and the large parameter spread makes a more rigorous treatment not possible. In 

all cases, the AOD drops off with decreasing wavenumber; this is consistent with the 

range of Ångström parameters observed.  
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Figure 3.7: Various sensitivity tests of the Mie scattering code for different input 

parameters. These are for heuristic purposes only, but give an indication of the 

plausible range of spectral behaviour within the parameters in Table 3.1. 

In this work, the Mie scattering code is preferred, since it provides a physical 

derivation of the aerosol extinction rather than a mathematical one. It is also a more 

conservative estimate, which increases the uncertainty in the final value. This is 

necessary, since the aerosol is by far the largest source of uncertainty and it is 

unclear whether the Ångström extrapolation sufficiently quantifies this uncertainty 

without more robust measurements. The Ångström extrapolation does provide some 

physical information however, since it uses all of the available spectral data from the 

measuring system used. 

3.3.6: Airmass correction 

While m is usually defined as sec(θ), this is not strictly true. The atmosphere refracts 

radiation as it travels through, diverting the solar zenith angle by a small amount. 

This is not usually important for zenith angles below 80o [Iqbal, 1983], but is 

nevertheless corrected for in this work. This is done using the PyEphem Python 

library, which is in turn a Python wrapper for the libastro module in the XEphem 

library of astronomical software (http://www.clearskyinstitute.com/xephem/). The 

solar position calculation is specified in Reda and Andreas [2008] and Meeus [1999] 

and includes (surface) pressure-dependent (1013 mb if unspecified) corrections for 



Chapter 3 – Experimental methods in the CAVIAR field campaign  

 
 

Page 76 

 

atmospheric refraction. The stated uncertainty in the sun position is 0.0003%; the 

uncertainty in the airmass is therefore small enough to be negligible.  

3.3.7: Monte Carlo uncertainty evaluation  

A given measurement has two types of uncertainty; random and systematic. Random 

uncertainties vary ostensibly from measurement to measurement e.g. from noise. 

Systematic uncertainties remain the same from measurement to measurement, e.g. 

uncertainty in the original instrument calibration. Systematic errors can in some 

cases be corrected for (e.g. signal loss due to mirror reflectivity <100%), but this 

correction has an associated uncertainty. Section 3.4.1.4 goes into more detail about 

how these uncertainties are calculated in this case. Section 4.2.5 goes into some more 

detail about how this is used in practice in measuring SSI.  

This difference is important in the case of the Langley method; since the final values 

are derived from multiple data points, the systematic uncertainty should remain the 

same for each data point in the analysis. A Monte Carlo method was implemented to 

calculate this. The random uncertainty is sampled once for each data point, and the 

systematic uncertainty is sampled once for each sample (i.e. each time the Monte 

Carlo analysis is performed). The observed values are then adjusted accordingly, and 

a Langley fit is obtained, yielding values of I0 and τ. This analysis is then performed 

100000 times, which produces a distribution of derived I0 and τ. This separates out 

the random and systematic components of the uncertainty, and allows for the “true” 

uncertainty in both I0 and τ to be obtained. This is important, since otherwise the 

uncertainty would be overestimated. 

The uncertainties (shown on Figure 3.17) have some wavenumber dependent 

asymmetry. The errors are assumed Gaussian (in the absence of evidence to the 

contrary); to overcome this asymmetry two distributions were set up for the random 

and systematic uncertainties; which of these is used in the Monte Carlo algorithm is 

determined by a random 50/50 selection. Given a sufficiently large number of 

samples (in this case 105), this should sample from each roughly the same number of 

times.  

In a similar way, this approach is also applicable to the calculation of the Ångström 

parameters log(𝛽) and -𝛼 (Section 3.3.5). In this instance, each data point has a 
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stated uncertainty (see Section 3.4.5.2), which is all assumed to be random in this 

case as no breakdown of the random and systematic components of the instrument 

uncertainty was available.  

3.4: CAVIAR field campaigns 

This section provides details of the field campaigns from which the results in this 

thesis were derived. These field campaigns were part of the CAVIAR (Continuum 

Absorption at Visible and Infrared wavelengths and its Atmospheric Relevance) 

consortium, led by the University of Reading. CAVIAR involved theoretical studies, 

laboratory observations and observations of the Sun through the atmosphere during 

two field campaigns. These measurements were performed by Marc Coleman, Tom 

Gardiner and Nigel Swann (National Physical Laboratory) and Liam Tallis 

(University of Reading). 

This thesis focuses on observations from one of these field sites. While data from the 

Jungfraujoch site (Section 3.4.2) exists, it was found during the PhD that the 

calibration of this data was suspect, and the low water vapour absorption make it 

difficult even in principle to obtain continuum absorption spectra outside of foreign 

continuum in the bands. The Camborne campaign (Section 3.4.1) therefore provides 

the basis of the work in Chapters 4 through 6. Section 3.4.3 focuses more on the 

setup of the Fourier transform spectrometer used in both the Camborne and 

Jungfraujoch field campaigns, its calibration and the uncertainty budget.  

Section 3.4.4 presents some of the additional work undertaken in this thesis to assess 

the calibration and uncertainty in the instrument. Section 3.4.5 presents details of the 

supplementary measurements used to construct atmospheric profiles and obtain the 

non-continuum optical depth, which is subtracted from the total optical depth derived 

from the FTIR measurements to obtain the continuum optical depth. 

3.4.1: Camborne campaign 

The first of the two field campaigns took place at Camborne, Cornwall, UK in July-

September 2008. This site is located at 50.2128° N, 5.2948° W, and is located away 

from major sources of industrial pollution. Due to its proximity to the sea, it is likely 

that depending on the prevailing conditions the majority of aerosol is marine aerosol.  

The site is a UK Met Office synoptic station, and a radiosonde launch site (see 
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Section 3.4.5.1). When conditions permitted (i.e. during daytime, with no clouds 

obscuring the sun), scans were taken using the FTS to obtain spectral irradiance (see 

Section 3.4.3), and observations were taken simultaneously using the Microtops 

sunphotometer (see Section 3.4.5.2). Radiosondes were launched twice daily by the 

Met Office; additional launches were also made during the campaign. 22 August and 

18 September had additional observations from the FAAM (Facility for Airborne 

Atmospheric Measurements) aircraft; these were not used in this analysis however 

(see Section 3.4.5.4). 

While it was expected that there would be a significant number of days with 

sufficiently low aerosol and clear skies over this period, this was not the case in 

practice. Only two days permitted observations over a range of zenith angles 

sufficient to perform a Langley analysis; these were 22 August 2008 and 18 

September 2008. The observations of 18 September 2008 are preferred here, since 

the observations of 22 August 2008 exhibited a spectral drift not present in other 

days of observations (see Section 3.4.4). Some spectra from other days are suitable 

for an analysis using the radiative closure method. Table 3.2 shows the (relevant) 

days on which usable spectra were taken, the temporal coverage of the FTS 

measurements, timings of relevant radiosonde launches and the range of aerosol 

optical depths across the day as observed by the sunphotometer. More information is 

available in Tallis et al. [2011]. 

Experiment 

number 

Day(s) Type of 

measurement 

Time 

coverage 

Radiosonde 

timings 

(UTC) 

Range of 

AOD (9800 

cm-1 channel) 

CAV15 14-25 July 

2008 

UHTBB 

calibration/TSARS 

measurements 

n/a 

 

n/a 

 

n/a 

 

CAV18 11 August 

2008 

TSARS 

measurements 

n/a 

 

n/a 

 

n/a 

 

CAV19 12 August 

2008 

Solar 

measurements 

2 meas. at 

15:05 UTC 

n/a n/a 
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CAV20 13 August 

2008 

Solar 

measurements 

21 meas. 

from  

12:10-

14:21 UTC 

11:00 0.608 (1 

measurement) 

 

CAV21 19 August 

2008 

Solar 

measurements 

12 meas. 

from 

12:09-

12:33 UTC 

11:00, 15:00 0.348-0.092 

CAV22 20 August 

2008 

TSARS 

measurements 

n/a 

 

n/a 

 

n/a 

 

CAV23 22 August 

2008 

Solar 

measurements 

44 meas. 

from 09:32 

to 17:32 

UTC 

05:00, 

09:00, 

11:00, 16:00 

0.085-0.033 

CAV25 18 

September 

2008 

Solar 

measurements 

21 meas. 

from 07:14 

to 13:10 

UTC 

09:00, 

11:00, 12:00 

0.078-0.036 

CAV26 18 

September 

2008 

TSARS 

measurements 

n/a 

 

n/a 

 

n/a 

 

CAV27 23 

September 

2008 

Solar 

measurements 

2 meas. at 

08:32-

08:33 UTC 

11:00 0.077-0.058 

CAV28 24 

September 

2008 

Solar 

measurements 

4 meas. 

from 

07:45-

08:02 UTC 

n/a n/a 
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CAV29 24 

September 

2008 

TSARS 

measurements 

n/a 

 

n/a 

 

n/a 

 

 

Table 3.2: Table showing details of the calibration and Camborne field campaigns, 

sorted by date. 

3.4.2: Jungfraujoch campaign 

In addition to the Camborne campaign, an additional field campaign took place at the 

Sphinx Observatory at the Jungfraujoch in the Swiss Alps (46.5475° N, 7.9852° E). 

This campaign took place from July-August 2009. This campaign aimed to support 

the Camborne measurements, by observing in spectral regions not possible in the 

Camborne campaign. This was possible due to the high altitude of the field site, 

above the majority of the atmospheric water vapour and aerosol. Like the Camborne 

campaign, some measurements were taken co-incident with flights by the FAAM 

aircraft. Unlike Camborne however, radiosonde measurements were not possible at 

the observatory, making the atmospheric profile difficult to ascertain.  

Various aspects of the calibration were found to be an issue for this campaign. It was 

judged that a retrieval of the foreign continuum from the Jungfraujoch data would 

not be possible within the scope of this thesis after some exploratory analysis. While 

calibration is not inherently required to use the Langley method, the low water 

vapour concentrations and relatively low solar zenith angles meant that the Langley-

derived absorption was negative in parts of the spectrum, since there was not enough 

atmospheric absorption for it to be detectable by the instrument. In addition, there 

were some issues with the use of intensity limiting apertures in this campaign (due to 

the low absorption in this spectral region at this height, the detector can become 

saturated); in principle a simple correction factor (an intensity limiting aperture 

should reduce the intensity by a number which does not vary spectrally, in this case 

by a factor of 2) should retrieve the correct spectrum, but this was found not to be the 

case. Because of these issues, the Jungfraujoch spectra were deemed unlikely to yield 

any useful information and are therefore not discussed any further.  
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3.4.3: Details of the CAVIAR FTIR 

The following section describes the setup of the Fourier transform spectrometer used 

in the two campaigns. This section is covered in more detail in Gardiner et al. 

[2012], with Section 3.4.3.5 covered in part in Menang et al. [2013].  

3.4.3.1: The Bruker 125 FTS and optical setup 

The spectrometer used in this campaign is a Bruker IFS 125 M. This spectrometer 

has a high maximum resolution (0.00035 cm-1), with broad spectral coverage 

possible depending on the chosen beam splitter and detector. Two detector/beam 

splitter combinations were used in the campaign. For the purposes of this thesis one 

of these setups provides spectral coverage in the region of interest; this was using a 

calcium fluoride beam splitter with an indium antimonide detector. This provides 

spectral coverage over the region ~800 -12500 cm-1. The detector response peaks at 

around 6000 cm-1, perhaps the most important region for this work. The spectra are 

usually truncated to 2000-10000 cm-1 in this thesis; this is where the spectrometer 

response is believed to be the best and covers the region where the continuum 

uncertainty is greatest. 

The spectrometer is controlled using the OPUS software mentioned in Section 

3.2.4.3. This is the standard proprietary software that comes with the spectrometer 

and handles both acquisition of interferograms and the electronic processing of these 

into usable spectra in cm—1.  

The spectrometer is reliant on several optical mirrors to reflect the solar radiation 

into the laboratory and the spectrometer optics. These optics track the sun over the 

course of a day using a quadrant detector and feedback loop. The radiation is 

reflected by a set of gold mirrors, shown in Figure 3.8 (from Gardiner et al. [2012]). 

Radiation from a source a) (either the Sun or the calibration source, see Section 

3.4.3.2) is collected by the tracker optics in b). The radiation is then focused through 

two apertures inside the FTIR. The external mirrors are subject to wear and tear (see 

Section 3.4.3.2 and 3.4.4.2). Figure 3.9 shows the internal optical setup of the FTIR 

instrument (also from Gardiner et al. [2012]). Aperture A3 limits the instrument 

FOV; A4 is a non-limiting aperture designed to capture any stray light in the system 

to ensure this does not affect a measurement. 
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Figure 3.8: Optical setup of the FTS at the field sites. a) shows the input into the 

FTIR, b) the set of tracker optics and c) the internal optical setup of the 

spectrometer. From Gardiner et al. [2012]. 

 

Figure 3.9: Internal optical setup of the FTIR instrument. OAP indicates off-axis 

parabolic mirrors used to reflect the radiation, B/S the beam splitter, Apt AX an 

aperture and Det the detector. CC1 and CC2 are the cube corner mirrors along each 

arm of the spectrometer. Note that the right hand side of the figure is the same as in 

c) of Figure 3.8. From Gardiner et al. [2012]. 
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The input is aligned by the operator; this introduces a random error into the 

measurement (see Section 3.4.3.4). Uncertainty also arises from the apertures, 

external optics and other sources, also described in Section 3.4.3.4. The internal 

aperture A3 limits the field of view to ensure that only the centre of the solar disc is 

sampled. 

The maximum resolution is 0.0035 cm-1; in practice this was not attainable, since 

taking a measurement takes a given amount of time. This time is increased if the 

scanning mirror is moved the entire length of the arm, which meant that changes in 

the atmosphere (e.g. clouds) could affect a measurement. The spectra in this thesis 

are at 0.03 cm-1; zero filling increases the number of data points above this. Each 

spectrum in this thesis is a composite of 2-8 scans of the interferometer, typically 8. 

This number was chosen to find a good balance between signal to noise and ensuring 

the atmosphere remained constant throughout a measurement.  

To assess whether the atmosphere remains constant during a measurement, one can 

use the direct current (DC) voltage seen by the instrument as a function of time. This 

DC voltage is indicative of the overall signal incident on the detector; this will be 

reduced if there is a large change in water vapour or if a sub-visible cloud passes 

through the field of view. If there is scatter in this DC voltage during a scan (see e.g. 

Figure 3.10), then the measurement is rejected. This threshold is taken to be small; in 

this case a 1% change in the DC voltage was sufficient for a scan to be rejected.  
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Figure 3.10: DC scan voltage as a function of time for 18 September 2008 2008. The 

top curve shows measurements relevant to this thesis, other points are either 

baseline, measurements with scatter (that are thus rejected) or measurements taken 

using optical filters and/or a different beam splitter/detector setup that did not 

produce results relevant to this thesis.  

3.4.3.2: Calibration procedure  

The FTIR detector measures the interferogram as a function of optical path length 

(see Section 3.2.3); the path length is in arbitrary units but converted to cm using the 

wavenumber of the helium neon laser used to measure the interferometer 

displacement. When transforming the interferogram into a spectrum in cm-1, the 

signal strength is also in arbitrary units. In addition, there is an angle and humidity 

dependent correction for mirror reflectivity, which is a multiplicative factor applied 

to this signal. The signal with a mirror reflectivity correction is suitable for Langley 

analysis to derive optical depth, but not compatible with the closure method and does 

not provide information on the solar spectral irradiance (see Chapter 4). An absolute 

calibration to a reference source is therefore required. 

In this case, the calibration source is the Ultra High Temperature BlackBody 

(UHTBB) source at NPL (e.g. Woolliams et al. [2006]). This is a blackbody source at 

3050 K, which is comparable to the equivalent temperature of the Sun’s surface 

when considering the total wavenumber-integrated intensity reaching the surface. 

The UHTBB is extremely stable, to within ~1K. The blackbody was measured with a 

radiometer traceable to SI to ensure the stability throughout FTIR calibration. 
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Gardiner et al. [2012] demonstrate that the radiance Sν reaching the FTIR from the 

Sun is given by: 

(3.23)     𝑆𝜈 = ηcal
𝑉𝑠

𝑉𝑐
𝐵𝜈𝜋𝛼𝑠𝑜𝑙𝑎𝑟

2   

where 𝜂𝑐𝑎𝑙 is the optical efficiency of mirrors BBO and BBF from a) in Figure 3.8, 

VS and VC are the measured values by the FTS (in arbitrary units) from the Sun and 

calibration respectively, Bν is the blackbody radiance observed at aperture A1 in 

Figure 3.8 and 𝛼𝑠𝑜𝑙𝑎𝑟is the solar half-angle divergence, i.e. the angular divergence of 

the solar beam as it enters the FTIR aperture. This details the calibration for a given 

spectrum. An additional multiplicative factor converts the signal from radiance to 

irradiance. Figure 3.11 shows the calibration spectrum used to convert FTIR signal 

into spectral irradiance.  

 

Figure 3.11: Calibration function derived from the UHTBB measurements. This is a 

direct multiplicative factor to the observed solar signal to obtain spectral irradiance, 

following Equation 3.23. 

There is an additional calibration to the external optics as described in Figure 3.12. 

Measurements of the mirror reflectance were taken before and after the Camborne 

campaign using the National Reference Reflectometer [Williams, 1999]. These 

measurements are presented in Figure 3.12. These cover the region 4000-6600 cm-1 

at both low and high humidity; this is sufficient to cover the region of interest for the 

continuum measurements.  Outside this spectral region, these need to be extrapolated 

due to insufficient data. This is done using a simple linear fit to the edges of the 
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reflectivity function. The correction is dependent on the angle of incidence of the 

radiation upon the mirror. The uncertainty arising from the use of a linear fit is 

included in the uncertainty budget; this is low at lower wavenumbers below ~4000 

cm-1 (since the reflectivity tends toward 1), but higher in the higher wavenumbers 

(beyond 6600 cm-1) where there are no measurements. 

 

Figure 3.12: Mirror reflectivity function for different solar zenith angles. The region 

within 4000-6600 cm-1 is where the reflectivity is measured; outside this range is 

where the reflectivity is extrapolated.  

The final major adjustment to the calibration is an adjustment to account for solar 

limb darkening. The solar disk is not uniform; the edges are significantly darker 

since the radiation has to travel through more of the solar atmosphere to reach Earth. 

As the temperature of the sun decreases with distance from the centre of the disk (in 

the photosphere), it follows that towards the edges one can only observe the lower 

temperature photons that are emitted from higher levels in the Sun, rather than higher 

temperature photons in the centre of the solar disk. An additional correction was 

applied, using the model of Hestroffer and Magnan [1998]. This correction is 

important, as the non-uniformity of the solar disk can introduce uncertainties on the 

order of 12% [Gardiner et al., 2012]. The use of such a correction introduces an 

additional source of uncertainty; more details can be found in Gardiner et al. Since 

the measurements were taken close to solar minimum, the effect of sunspots is 

mitigated significantly, and thus solar variation is not considered as a contributor to 

the measurement uncertainty. 
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To assess the stability of the calibration over the course of the measurement 

campaign, a Transfer Standard Absolute Radiance Source (TSARS, e.g. Pegrum et 

al. [2004]) instrument was measured periodically, using the same optical setup as for 

the solar scans. The instrument is a simple integrating sphere, illuminated by external 

lamps. The source is known to be stable over short time periods (~5 hours) as 

measured by a filter radiometer at 800 nm [Gardiner et al., 2012]. Less clear 

however is the stability of the instrument in the spectral region of interest, and the 

use of the TSARS as an adjustment to the calibration factors in e.g. Menang et al. 

[2013], contrary to the recommendation in Section 3(e) of Gardiner et al. [2012]. 

This is discussed in more detail in Section 3.4.4.1.  

Figure 3.13 shows an uncalibrated measurement with the FTS; Figure 3.14a shows 

the calibration curve used to convert this into spectral irradiance and Figure 3.14b 

then shows the mirror reflectance correction used to further correct the spectrum (by 

dividing through by mirror reflectivity R). Figure 3.15 shows the final calibrated 

spectrum.  

 

Figure 3.13: Uncalibrated spectrum as measured directly by the FTIR at 10:51, 18 

September 2008. 
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Figure 3.14: UHTBB calibration curve (upper plot) and mirror reflectivity 

correction function (lower plot) used to convert the spectrum from Figure 3.13 to 

that in Figure 3.15. 

 

Figure 3.15: Final calibrated spectrum derived from Figs 3.15 and 3.16 (for 10:51, 

18 September 2008). 

3.4.3.4: FTIR uncertainty budget 

The uncertainty budget for the FTIR measurements is made up of contributions from 

four primary sources; the external optics, the calibration to the UHTBB, uncertainties 

inherent to a solar measurement, and uncertainties within the FTIR system itself. 

Table 3.3 shows the different contributions to the overall uncertainty budget. Figure 

3.16 shows the relative contribution of each of these types of uncertainty as a 
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function of wavenumber, from Gardiner et al. [2012]. This reference provides a 

more exhaustive account of how these uncertainties were calculated.  

Type Source Systematic or 

random? 

Uncertainty (%) 

Optics     

 Mirror ageing Systematic ~1%, varies 

spectrally 

 Humidity 

correction 

Random 0.2% 

 Alignment Random 3% 

 Apertures Systematic 10-2% 

UHTBB    

 Combined Systematic Varies spectrally 

Solar 

measurements 

   

 Uniformity of 

solar disk 

Random 0.4% 

 Incident angle 

(reflectivity) 

Systematic 1% 

 Limb darkening Random 0.04% 

 Clouds Random 1% 

FTIR    

 Aperture Systematic 10-2 % 

 Response Systematic 1% 

 Ice adsorption n/a n/a (0.1% in small 

region about 3300 

cm-1) 
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 Calibration Systematic 1% 

Table 3.3: Relative contribution of each of the four main types of uncertainty broken 

down into the constituent parts. Values are constant spectrally unless otherwise 

specified. 

 

Figure 3.16: Fractional measurement uncertainty (k = 1) arising from the UHTBB 

(a), solar source (b), FTIR (c) and external optics (d) contributions. From Gardiner 

et al. [2012]. 

The uncertainties are either random, i.e. vary from measurement to measurement, or 

systematic, meaning that at least across the course of a day should remain constant. 

The division of errors from Table 3.3 was not considered in Gardiner et al. [2012]; 

this work was part of the PhD and necessary for the Monte Carlo analysis (see 

Section 3.3.7), since some types of error considered in Gardiner et al. [2012] are 

themselves partly random and partly systematic. Figure 3.17 shows the relative 

contribution of the random and systematic components to the measurement 

uncertainty. These are of roughly the same magnitude, which has consequences for 

the uncertainty in the Langley fits, since random effects contribute more to the 

uncertainty in the slope (optical depth), whereas systematic effects contribute more 

to uncertainty in the intercept (solar spectral irradiance).  
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Figure 3.17: FTIR measurement uncertainty (k = 1) split into the contribution from 

random and systematic sources as a function of wavenumber.  

Figure 3.18 shows the final uncertainty budget for an individual scan of the FTIR 

instrument. The small peak in the negative uncertainty at ~3200 cm-1 is a feature 

where ice can form inside the detector housing, as described in Gardiner et al. 

[2012]. Figure 3.19 shows an example spectrum from 18 September 2008, alongside 

this uncertainty (shown here at k = 2, 95% confidence interval). This uncertainty 

varies from 3.3% to 5.9% (k = 1). The increase at ~6600 cm-1 indicates the regime 

where the mirror reflectivity measurements are extrapolated rather than measured.  
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Figure 3.18: Overall FTIR uncertainty budget, from Gardiner et al. [2012]. 

 

Figure 3.19: Spectrum from 11:24, 18 September 2008 with associated k = 2 

uncertainties (blue shaded regions). 

3.4.3.5: Smoothing and filtering of FTIR data 

The FTIR data is subject to spectral filtering, to ensure that the derived continuum 

absorption in Chapter 5 is determined correctly, without contamination from e.g. 

incorrectly calculated absorption line positions. Data points that exceeded a given 

threshold (typically optical depth > 0.1) in either the observed data or the simulated 

data from a LBL code were rejected, to ensure that retrievals were only made in 

microwindows. This value was variable depending on the measurement day and the 

specific window, since each window and day has a different “baseline” depending on 

atmospheric conditions and spectral properties of the window. 

Noise was detected in the optical depth measurements (see e.g. Figure 3.20); many of 

the instances of this noise coincided with lines in the solar spectrum (as measured in 

Chapter 4). This effect was present both in the Langley-derived spectra and the 

closure-derived spectra, indicating that it is not due to misattributed solar line 

positions in the chosen top of atmosphere spectrum. This may be due to some 

instrumental or physical effect involving a shift in the solar line positions. Regions 

~0.1 cm-1 around solar lines are therefore filtered out to remove this effect, since it 

may have a small effect on the derived continuum even with filtering, if the offset is 

not equal either side of the baseline. 
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Figure 3.20: Noise detected in Langley measurements of optical depth arising 

(potentially) from shifting solar lines throughout a day (e.g. circled regions). 

The data were then smoothed using a moving average filter over 15 cm-1, to smooth 

out the effect of any weak solar or atmospheric lines with uncertain positions. If there 

is an offset, the residual of this offset should be 0, given sufficient smoothing and 

assuming the magnitude of the offset is equal either side of the baseline. Given the 

high resolution of these measurements, this step is necessary to derive a useful 

continuum without extremely high instrumental noise, since it is unlikely that the 

line-by-line code will be able to perfectly match up atmospheric line positions and 

broadening with the measurements. This smoothing also helps filter out any solar 

lines not accounted for by the solar filter, or indeed any other sources of high 

frequency spectral noise. This technique is suitable due to the low spectral variation 

of the continuum absorption.  

3.4.4: Updates to calibration since Gardiner et al. [2012] 

A significant portion of my PhD was spent on reassessing the instrument calibration 

relative to the calibration described in Gardiner et al. [2012], which was used in the 

work of Menang et al. [2013]. Together with the use of the Monte Carlo uncertainty 

evaluation method (Section 3.3.7), this led to a more confident uncertainty estimate 

with a proper consideration of the influence of random and systematic uncertainty 

upon the results. 
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3.4.4.1: TSARS stability  

The largest change in the instrument calibration resulting from my PhD is the 

removal of the TSARS correction present in Tallis et al. [2011] and Menang et al. 

[2013]. The spectral drift present in the 22 August 2008 solar observations was also 

present in measurements of the TSARS on August 20. This was corrected for by 

multiplying the spectra by an adjustment factor (i.e. effectively recalibrating the 

instrument relative to the UHTBB calibration), determined from the ratio of the 

TSARS measurements at a given time close to the solar observations to the TSARS 

measurements at calibration.  

This is problematic, since it assumes that a) the TSARS instrument is stable across 

the measurement campaign, which is not necessarily the case and b) that the TSARS 

is trustworthy enough to take priority over the UHTBB calibration, which was 

recommended not to be the case by Gardiner et al. [2012]. Figure 3.21 shows the 

ratio of the TSARS measurements over the measurement campaign relative to the 

TSARS measurements during calibration, i.e. the adjustment factors used in Menang 

et al. [2013]. In an ideal case, the TSARS measurements would be stable or slowly 

varying throughout the measurement campaign; however Figure 3.21 shows that this 

is clearly not the case. It is difficult to determine whether this drift is a result of the 

TSARS stability itself, or changes in the FTIR response. To assess whether the 

TSARS was generally stable enough for such an adjustment, observations during the 

calibration campaign were reanalysed.  
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Figure 3.21: Ratio of TSARS measurements relative to a TSARS measurement from 

the pre-campaign calibration (CAV15). The black line (CAV22, corresponding the 

the measurements of 22 August 2008) shows a spectral feature at 6600 cm-1 not 

present in the other spectra (a decrease in intensity on the high-wavenumber side of 

the window). See Table 3.2 for dates. 

There was a relative dearth of measurements of the TSARS during the calibration 

phase before the Camborne measurements (CAV15 in Table 2); additional 

measurements would have helped assess its stability and allowed it to be a more 

useful source. There was one day during this calibration phase where TSARS 

measurements were made using the detector and optics used for the continuum 

measurements; the data from this day is shown in Figure 3.22. The observed signal 

from the TSARS is not particularly stable; it tends to vary both in amplitude and 

spectrally over the course of the calibration campaign (Figure 3.22). It additionally 

appears very sensitive to the alignment of the instrument optics, as shown in Figure 

3.22; upon realignment, the intensity changed by up to 20%. This evidence was 

enough to reject the use of the TSARS as a calibration transfer as used in Tallis et al. 

[2011] and Menang et al. [2013] 
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Figure 3.22: Variability of TSARS measurements over a day, taken in 3 distinct 

blocks of several measurements.   

Due to the lack of a stable calibration transfer source (Section 3.4.4.1), it was 

decided that an additional source of uncertainty should be introduced to model the 

uncertainty in our calibration transfer. This was estimated as as 1% across the 

spectrum, after discussions with Tom Gardiner and Marc Coleman. This uncertainty 

was estimated based on experience using the FTS and the TSARS, and serves to 

make the uncertainty budget more conservative to account for the lack of calibration 

transfer. This 1% uncertainty does not significantly impact the uncertainty in the 

derived spectra, but adds additional uncertainty into the spectrum. This uncertainty is 

relatively small, since the solar spectra appear to be stable across the field campaign 

(with the exception of the 22 August 2008 observations). However, the need for such 

an uncertainty estimate emphasises the need for a more robust assessment of the 

calibration during the campaign, from a stable source. Chapter 7 goes into more 

detail on how this could be the case for a future measurement campaign. 

3.4.4.2: Mirror reflectance calibration 

As described in Section 3.4.3.1, the spectrometer is reliant on a set of tracker optics 

to divert the solar beam into the spectrometer. Since these mirrors are exposed to the 

elements, they become “used” over time, which results in a loss of reflectivity. An 

algorithm was written by Marc Coleman and Tom Gardiner at NPL and used in 

previous studies such as Menang et al. [2013]. This code was rewritten during my 

PhD and incorporated into my own retrieval software. It was found however that it 



Chapter 3 – Experimental methods in the CAVIAR field campaign  

 
 

Page 97 

 

was not possible to reconcile my results with those of Menang et al. I later 

discovered a bug in the software in the Menang et al. software that removed this 

reflectivity correction, contrary to what was written in Menang et al.  This results in 

a large offset out toward ~10000 cm-1 in the Menang et al. SSI that meant it was not 

reconcilable with other spectra (see Chapter 4). The application of this correction 

mitigates this significantly, with excellent agreement between various reference 

spectra and the updated CAVIAR spectrum in the 7000-10000 cm-1 region. 

3.4.4.3: Phase correction 

The issues with the spectra of 22 August 2008 and the corresponding TSARS 

spectrum (see Figure 3.21) motivated some work during my PhD on reassessing the 

phase correction used to transform the interferograms into spectra. It was hoped that 

adjustments to phase correction could remove some of the low frequency noise that 

seemed to adjust the shape of the spectrum, for example at ~6600 cm-1 in Figure 3.21 

in the 22 August 2008 scans (this problem did not affect any of the other days). This 

was additionally motivated by the lack of documentation or ability to access the 

source code of the OPUS software used in the phase correction. Chase [1982] shows 

that the Mertz method can introduce significant spectral errors when using single-

sided interferograms, such as those produced by the FTS in this work. These errors 

can be significantly mitigated using the Forman method (referred to as the 

symmetrisation-convolution method in the reference). 

It was not immediately obvious that such an effect would arise from looking at the 

interferograms, which did not seem particularly different by eye to the CAV26 

interferograms. A Mertz phase correction (see Section 3.2.4.3) was applied to these 

interferograms, and compared with the spectra directly taken from the OPUS 

software. 

An attempt was made to perform the same analysis but using a convolution in 

interferogram space (the Forman method); however this was not completed as the 

focus of the PhD was changed shortly after attempting this. 

Figure 3.23 shows the two spectra obtained via the two different phase correction 

methods, and Figure 3.24 the ratio of these spectra. The high frequency differences 

between these spectra could be explained by additional undocumented steps taken 

during the OPUS phase correction. The factor of ~4 difference between the phase 
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correction performed by myself and that from OPUS may be due to some electronic 

filtering or additional gain in the software that was not present in my own software. 

 

Figure 3.23: Spectra derived from the OPUS software (green) vs that from my own 

phase correction algorithm (red).  

 

Figure 3.24:  Ratio of the two spectra shown in Figure 3.23.  

Future work would investigate this in more detail, as described in Chapter 7. 

However, it was decided to postpone this work during my PhD, to focus on the solar 

work presented in Chapter 4, given the advances in the literature that developed 

during my PhD. 
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3.4.5: Supplementary measurements 

This section provides details about the additional measurements and data inputs used 

to characterise the atmospheric optical depth and assess the stability of the 

atmosphere across the course of a day.  

3.4.5.1: Radiosonde ascents 

Vertical profiles of atmospheric temperature, water vapour and pressure are 

necessary to determine the optical depth from spectral line absorption using a line-

by-line code such as the RFM (Section 2.3.6). During the Camborne campaign, 

radiosonde ascents were performed at several times through each measurement day, 

both by the local UK Met Office synoptic site (twice daily, at 11:15 and 23:15) and 

specifically for the CAVIAR campaign. There was reasonable temporal coverage for 

the two days when Langley analysis was possible: four ascents on 22 August 2008 

(05:00, 09:00, 11:15 and 16:00) and three on 18 September 2008 (09:00, 11:15 and 

12:00), which covered the range of useful FTS observations for both days.  

Additional radiosonde ascents were performed on other days, although these are less 

important since Langley analysis was not possible due to lack of temporal coverage 

with the FTS, and the observed AOD was generally higher on these days. Figure 3.25 

shows the measured vertical profiles for 22 August 2008 at 11:15 (solid lines) and 18 

September 2008 at 12:00 (dashed lines). Both days show similar temperature and 

pressure, but with somewhat different water vapour distributions. The sonde 

measurements go up to 15 km: regions above this are filled in using values from the 

US Standard atmosphere. The vast majority of the continuum comes from the 

troposphere (since this is where water vapour is concentrated), so this does not 

significantly affect the retrieval, but allows for some stratospheric lines to be 

resolved and included in the line-by-line simulations. 
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Figure 3.25: Vertical profile of temperature, water vapour and pressure for 22 

August 2008, taken at 11:15 (solid lines) and 18 September 2008, taken at 12:00 

(dashed lines) up to the highest point at which there were radiosonde measurements 

Figure 3.26 shows the same profile, but extended up to the top of the atmosphere 

(only shown for 12:00 18 September 2008 in this case). 

 

Figure 3.26: Vertical profile of temperature, water vapour and pressure for CAV25 

(18 September 2008), taken at 12:00 (dashed lines) and CAV23 (22 August 2008, 

solid lines) 

The radiosonde in question was a Vaisala RS92-SGP [Vaisala, 2013]. The 

atmospheric profiles are corrected for relative humidity bias using the correction of 

Miloshevich et al. [2009]. The stated uncertainty in the temperature profiles is ~0.5 
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°C, 5% in relative humidity and 1 hPa in pressure. An incorrectly reported value of 

one of these variables at a given level will result in an incorrect estimation of the 

broadening and strength of a given spectral line. In practice, the uncertainty from the 

LBL simulations is derived from sensitivity tests, with ~5% variations in each of 

these variables (in the RFM, this uses absolute humidity). This is conservative, given 

the stated uncertainty in the radiosonde manual. This does however allow us to 

account for additional sources of uncertainty, such as the uncertainty in the line 

broadening and strength in HITRAN, since this is not rigorously defined (see Section 

2.3.6.2). Additionally, the radiosonde profile is not a true representation of the ray 

path to the spectrometer; the sonde ascends steadily with its horizontal motion, 

guided by the prevailing wind. This introduces additional uncertainty into the 

simulation. 

Since the measurement is confined to microwindows between spectral lines, it is 

mostly the broadening which contributes to the continuum uncertainty. These 

uncertainties are small compared to those from aerosol scattering and the inherent 

measurement uncertainty from the FTS.  

3.4.5.2: Microtops sunphotometer measurements 

Coincident with the FTS observations were observations of aerosol optical depth 

using a Microtops II handheld sunphotometer [Solar Light Company, 2001]. This 

instrument uses 5 channels with a narrow FOV (2.5°), allowing for measurements of 

the solar disk.  This should therefore provide an estimation of the AOD within the 

FOV of the spectrometer; while the sunphotometer has a larger FOV, there is 

unlikely to be significant amounts of diffuse radiation entering the instrument. The 

sky has a solid angle of 2π sr; integrating over the FOV of the sunphotometer gives a 

solid angle of 0.0005π sr. It is important to emphasise that the sunphotometer cannot 

discern between radiation that is unscattered and radiation that is forward scattered 

within the FOV of the instrument; both are treated in this case as not contributing to 

the AOD.  

The wavelength channels are at 0.38, 0.44, 0.675, 0.936 and 1.02 µm; the 1.02 µm 

channel is the most useful indicator of the AOD in the spectral region of interest. The 

AOD from these measurements is then extrapolated into the wavenumbers of interest 

via one of the two methods described in Section 3.3.5. Figure 3.27 shows AOD over 



Chapter 3 – Experimental methods in the CAVIAR field campaign  

 
 

Page 102 

 

time for the two most relevant days of measurement, 22 August 2008 and 18 

September 2008. There is variation in both days, with a maximum at around 0.08 in 

both, dropping off to about 0.04 at noon. This could potentially indicate some zenith 

angle-dependent bias. These numbers are small in absolute terms (they have very 

little effect on the derived SSI), but are large enough to cause issues for a continuum 

derivation or a Langley analysis in mostly transparent spectral window regions. 

These numbers are smaller in the wavenumbers of interest however, since the aerosol 

extinction drops off with decreasing wavenumber. The uncertainty of the 

sunphotometer is not explicitly stated in the Microtops user manual, although 

literature values (e.g. Ichoku et al. [2002]) estimate an optical depth uncertainty of  ~ 

± 0.02 in the lower wavenumber channels and ± 0.01 or less in the higher 

wavenumber channels. 

 

Figure 3.27: AOD over time for 22 August 2008 (upper panel) and 18 September 

2008 (lower panel) for each of the 5 wavelength channels. 

The aerosol measurements from 22 August 2008 have less variation between the 

wavenumber channels than those of 18 September 2008; this means that the AOD 

drops off less quickly with decreasing wavenumber, leading to larger AOD in the 

spectral region of interest than that of 18 September 2008. This, along with the 

problems due to spectral drift shown in the 22 August 2008 solar measurements are 

the major reasons why the observations of 18 September 2008 are preferred.  

One problem with this however is the large (relative) temporal variation in AOD 

from the start to the end of the day on 18 September 2008. Figure 3.28 shows the 

temporal variation of the AOD from the spectrometer, the combined aerosol + 
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continuum absorption derived using the FTS, the integrated water vapour from the 

HATPRO instrument (see Section 3.4.5.3) and water vapour absorption derived from 

the line-by-line code in a microwindow and in a water vapour spectral line. This 

temporal variation in AOD (the drop off from start to end) is not seen in the 

spectrometer measurements (which lie mostly flat), and given the constancy of the 

water vapour amount (especially given the assumption that the continuum strength is 

lower than the AOD), this variation cannot be explained by the AOD. Given the 

robust calibration and checking used to ensure that the FTIR scans were not affected 

by changing conditions, the robustness of the Microtops measurements was called 

into question. 

 

Figure 3.28: Time variation of water vapour from the HATPRO, simulated and 

observed water vapour optical depths from a microwindow and a line in the 1.6 µm 

window and aerosol optical depth at 10000 cm-1. All values are taken for 18 

September 2008. The uncertainty in the aerosol is ~ ± 0.01, and on the FTS 

measurements is ~ ± 0.005.  

It was decided that the best way to treat the AOD would be to use a daily average, 

given the lack of reconcilability between the time-resolved FTIR and Microtops 

measurements. The variation in AOD is represented as an increased uncertainty in 

the aerosol optical depth used to derive the continuum. This is achieved via 

sensitivity tests of the Mie scattering code using the range of extinction at 1 µm. 

Chapter 7 explains in more detail how this procedure could have been improved, and 

what observations may be necessary to do this. 
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Figure 3.29 shows the AOD used to derive the continuum using the Langley method 

for both 22 August 2008 and 18 September 2008. This was derived ultimately using 

the Mie scattering code, since this allowed for a more conservative estimate of the 

uncertainty and a physical extrapolation of the aerosol optical depth. 

Figure 3.29: Final AOD values used to derive the water vapour continuum using the 

Langley method, with corresponding uncertainties. 

3.4.5.3: HATPRO microwave radiometer 

In addition to the radiosonde measurements, atmospheric water vapour was also 

measured using a HATPRO [Rose and Czekala, 2009] microwave radiometer. This 

was used to measure integrated water vapour across the course of the day. This is 

used as a cross-check to the radiosonde measurements, to ensure that there are no 

changes across the course of a day not picked up by the radiosonde, or spikes in the 

measurements over small time scales (e.g. during an FTS scan). This is shown for 18 

September 2008 in Figure 3.28. 

3.4.5.4: FAAM aircraft data 

During the Camborne and Jungfraujoch campaigns, the Facility for Airborne 

Atmospheric Measurements (FAAM) aircraft was launched, making coincident 

measurements of temperature, water vapour and pressure, as well as aerosol 

measurements from the Passive Cavity Aerosol Spectrometer Probe (PCASP) 

instrument. In general, these measurements were not used however. The atmospheric 

profile derived from the aircraft are more uncertain and not as representative of the 

measurement conditions as the radiosonde profiles, since the aircraft takes a much 
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longer time to measure this profile compared to a radiosonde.  There were 

dropsondes released from the aircraft, but these were not co-located with the 

radiosonde or the spectrometer and thus are not as robust as the sonde ascents. 

The PCASP observations could ostensibly provide information about aerosol size 

distribution and number concentration for use in the Mie scattering code, although 

not aerosol composition (which is required for determining aerosol optical depth). 

After some exploratory work it was determined that this data would not be useful, 

due to the difficulties in implementing it into the model. The data proved to be very 

noisy and did not provide any insight into how the FTS spectra might be affected by 

aerosol, unlike the sunphotometer measurements. In addition, the PCASP measures 

aerosol that has been dried as it enters the inlets of the instrument. This would 

necessitate a correction for ambient relative humidity based on assumptions to 

provide meaningful results for this work. 

3.4.5.5: Model reanalyses 

ECMWF and Met Office reanalysis data exists for the Camborne site, and was used 

previously as a cross-check with the radiosonde ascents (e.g. Tallis et al. [2011]). 

This data was available for the entire measurement campaign but is not as useful as 

the radiosonde data due to the lower vertical and temporal resolution. As such, these 

data were used as a cross-check to ensure that the radiosonde values were reasonable 

(i.e. did not differ significantly from the reanalysis), but not included in any analysis.
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Chapter 4: 

Accurate measurements of NIR solar spectral 

irradiance between 4000-10000 cm-1 

4.1: Introduction   

This Chapter consists of an analysis of the measurements described in Chapter 3; in 

this case to observe the (top of atmosphere) solar spectral irradiance (SSI). This work 

was published in Geophysical Research Letters [Elsey et al., 2017], and is 

reproduced here as the bulk of Chapter 4 of this thesis (Section 4.2). The 

Supplementary to this work has been merged into the body of the text where 

appropriate to aid the narrative flow of the Chapter. Additional references to other 

Chapters of the thesis have been inserted as appropriate. Figure and Section headings 

have been changed for consistency with the format used in the rest of the thesis, and 

references are merged into the References section at the end of the thesis. The SSI 

data is available as Supplementary to the paper; a link has been provided to this in 

the body of the text. Spellings have been changed from American English to British 

English where appropriate. Minor edits have been made to improve the readability of 

the Chapter, and to fix some minor issues with the paper. Some of the methods 

described in Section 4.2.3 are repetitions of those presented in Chapter 3; these are 

left as is to not disrupt the flow of the manuscript.  

The end result of this chapter is an updated version of the CAVIAR solar spectrum 

derived in Menang et al. [2013]. This work was motivated by the updates to the 

uncertainty budget and calibration detailed in Chapter 3, the work of Thuillier et al. 

[2015] and Bolseé et al. [2014], and the need to accurately constrain SSI to observe 

atmospheric optical depth via the closure method.  

The work contained within the paper was performed and written up by myself (Jon 

Elsey) over the course of my PhD, with guidance and comments from the co-authors 

Keith Shine (UoR), Tom Gardiner and Marc Coleman (NPL). I was both lead author 

and corresponding author on this work and led the responses to the reviewers’ 

comments. Revisions to this paper were also performed by myself, with valuable 
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advice and discussion from the co-authors. All figures and data were generated by 

myself. The original measurements used in this work were taken by Tom Gardiner, 

Marc Coleman and Liam Tallis in 2008 during the CAVIAR project, on which Keith 

Shine was the Principal Investigator. 

 

The published manuscript, alongside a plain-language summary can be found via the 

following reference. 

4.2: Paper manuscript 

Elsey, J., Coleman, M. D., Gardiner, T., & Shine, K. P. [2017]. Can measurements 

of the near‐infrared solar spectral irradiance be reconciled? A new ground‐based 

assessment between 4,000 and 10,000 cm−1. Geophysical Research Letters, 44, 

10,071–10,080. https://doi.org/10.1002/2017GL073902 

In addition to the published paper, Section 4.3 of this Chapter presents some 

additional work comparing this analysis with more recent results.   

https://doi.org/10.1002/2017GL073902
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Can measurements of the near-infrared solar spectral irradiance be reconciled? A new ground-

based assessment between 4000-10000 cm-1 

Jonathan Elsey 1, Marc D. Coleman 2, Tom Gardiner 2, Keith P. Shine 1 

1 Department of Meteorology, University of Reading, Earley Gate, Reading, RG6 

6BB, UK 

2 National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK 

Corresponding author: J. Elsey, (j.elsey@pgr.reading.ac.uk) 

Key Points: 

 In light of continuing disagreement in observations of near-infrared solar 

spectral irradiance (SSI), we present a new SSI with full uncertainty 

evaluation 

 This SSI shows good agreement with the commonly-used ATLAS3 SSI at 

shorter wavelengths, but is ~7% lower at longer wavelengths 

 This discrepancy is significant since the near-infrared contains several strong 

water vapour bands, which influence the atmospheric energy budget 

Abstract  

The near-infrared solar spectral irradiance (SSI) is of vital importance for 

understanding the Earth’s radiation budget, and in Earth observation applications. 

Differences between previously published solar spectra (including the commonly-

used ATLAS-3 spectrum) reach up to 10% at the low-wavenumber end of the 4000-

10000 cm-1 (2.5 – 1 μm) spectral region. The implications for the atmospheric 

sciences are significant, since this spectral region contains 25% of the incoming total 

solar irradiance. This work details an updated analysis of the CAVIAR SSI, featuring 

additional analysis techniques and an updated uncertainty budget using a Monte 

Carlo method. We report good consistency with ATLAS3 in the 7000-10000 cm-1 

region where the calibration of ATLAS3 is more certain, but ~7% lower in the 4000-

7000 cm-1 region, in general agreement with several other analyses. 

 

mailto:j.elsey@pgr.reading.ac.uk
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4.2.1 Introduction 

The top of atmosphere incoming solar spectral irradiance (SSI) is identified by the 

Global Climate Observing System as an “essential climate variable” [Bojinski et al., 

2014].  It is the primary driver of meteorological processes, through absorption and 

scattering of radiation [Stephens et al., 2012]. It is therefore essential to ensure that 

this quantity is well constrained. 

Observations of SSI have been performed over the last 50 years (for example, the 

pioneering airborne study of Arvesen et al. [1969]). Many recent SSI measurements 

(primarily from space-based instruments) have focused on ultraviolet wavelengths, 

since these are difficult to measure on Earth due to absorption by oxygen and ozone 

in the stratosphere and mesosphere (e.g. Fligge et al. [2001]), and the large variation 

in the UV over the 11-year solar cycle [Fröhlich and Lean, 2004]. There has been a 

comparative dearth in measurements of spectral region between 4000-10000 cm-1 

(2.5-1 µm, henceforth referred to as the near-infrared (NIR)), due to the difficulty in 

maintaining the stability or sensitivity of space-borne spectroradiometers. About 

25% of the Sun’s energy reaches Earth in this spectral region, which makes it 

important for quantifying the global energy budget, particularly since it is home to 

several strong water vapour, CO2 and other absorption bands. Many meteorological 

models use the semi-empirical spectrum from Kurucz and Bell [1995], e.g. Walters et 

al. [2014]. Such solar models derive directly the line structure and spectral envelope, 

and tie these to observations. The Kurucz and Bell spectrum shows a similar absolute 

level to the ATLAS3 (ATmospheric Laboratory for Applications and Science) 

spectrum from Thuillier et al. [2003]. This is an issue however, as recent 

measurements report a NIR SSI which is up to 8% lower than ATLAS3 (see Section 

4.2.2 for details). 

This controversy has primarily manifested itself in the solar physics literature, but it 

is of significant importance for the understanding of atmospheric processes, as SSI is 

a vital input into radiative transfer schemes used in climate and weather models, and 

in passive remote sensing systems such as MODIS (MODerate Imaging 

Spectroradiometer, [Thome et al., 2001; Platnick and Fontenla, 2008]). For example, 

Menang and Shine [2013] found that using different NIR SSI from recent 

observations leads to ~8% differences in atmospheric absorption and heating rates. It 
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is therefore important to measure the SSI as accurately as possible from a number of 

independent sources. This work presents an update to the CAVIAR (Continuum 

Absorption in the Visible and Infrared and its Atmospheric Relevance) SSI [Menang 

et al., 2013], in an attempt to reconcile these differences. 

 4.2.2 Current state of measurements 

Most modern measurements of SSI are either performed at ground sites, or using 

airborne or space-based instrumentation. The first such campaign was the pioneering 

study by Arvesen et al. [1969], using an aircraft-based spectrometer measuring across 

the spectrum from the ultraviolet to the near-IR. Typically however, these efforts 

have largely focused on the visible and ultraviolet parts of the spectrum. A major 

step forward in measuring the NIR SSI from space was the ATLAS3 spectrum from 

Thuillier et al. [2003], which presented SSI out to 2.4 µm. This was developed using 

measurements from the SOLSPEC (SOLar SPECtrometer) instrument, and was used  

to constrain the SSI derived from semi-empirical models of the photosphere (e.g. 

Fontenla et al. [2006]). Figure 4.1 shows the fractional deviations of some recent 

spectra (including ATLAS3) from the result presented in Section 4.2.5 of this work 

and the associated coverage factor k = 2 (95% confidence) uncertainty limits of each. 

There is consistency between CAVIAR2, ATLAS3 and the other spectra shown 

between 7000-10000 cm-1 (1.4-1 μm) but this is not the case from 4000-7000 cm-1 

(2.5-1.4 μm). This emphasises the lack of consensus between ATLAS3 and 

alternative sources, where deviations vary between 5-10% over large portions of the 

spectrum, and exceed the quoted k = 2 measurement uncertainties. There is however 

better agreement between several of the other spectra, the impact of which will be 

discussed later.  
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Figure 4.1: Fractional deviation of various solar spectra from the CAVIAR2 

spectrum derived in this work, with and without uncertainties (upper and lower 

panels respectively). The shaded regions (upper panel) show the reported k = 2 

uncertainties associated with each spectrum. The gaps are regions in which water 

vapour absorption is too high to retrieve the spectrum from the ground. These 

spectra have been smoothed over 15 cm-1, to remove the effect of solar lines which 

are present in the original CAVIAR2 high-resolution measurements.  

Aside from ATLAS3, of particular interest here are the spectra obtained from 

Thuillier et al. [2014], henceforth referred to as Solar2, and that from Bolsée et al. 

[2014]. The Solar2 spectrum was obtained using SOLSPEC (an updated version of 

the instrument used for ATLAS3). This spectrum was taken using measurements 

made immediately after the instrument was launched into space, and therefore closest 

in time to its absolute calibration (performed using a 3000 K blackbody). This 
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spectrum was ~8% lower than ATLAS3 between 2.5-1.6 μm. A reanalysis of this 

data (Solar2rev) was presented in Thuillier et al. [2015], and was in better agreement 

with ATLAS3; Thuillier et al. [2015] state that they believe ATLAS3 to be more 

reliable than either spectrum. This adjustment of Solar2 was justified by readings of 

the low-power tungsten ribbon lamp used to assess calibration drift in-flight; the 

signal obtained using this lamp reached an “equilibrium” state two years after launch, 

closely matching the signal observed during pre-flight calibration. [Thuillier et al., 

2015] note that they "have no clear explanation" for the drift and note that "it is most 

likely due to some temperature effect and/or the outgassing of the instrument" (see 

BenMoussa et al. [2013] for details on how this may occur). The justification used by 

Thuillier et al. [2015] to favour ATLAS3 over Solar2 has caused controversy (Weber 

[2015]; Bolsée et al. [2016]). This represents an issue with the reliance on space-

based measurements of SSI, since the calibration and optical setup of these 

instruments is more difficult to reliably assess compared to those on the ground. 

Space-based measurements do in principle provide the best form of SSI 

measurement, as neither use of a radiative transfer model (RTM) or measurements 

with varying solar zenith angle (SZA) are required; achieving this in practice 

however is extremely difficult. This is illustrated by the disagreements in the 

processing of the SOLSPEC data. Also, as shown in Harder et al. [2010], SIM 

(Spectral Irradiance Monitor) measurements (used for example in Coddington et al. 

[2015]) are 8% lower than ATLAS3 at wavelengths higher than 1.5 µm; the SIM 

spectrum is adjusted in this region to agree with ATLAS3. The authors stated 

justification for this adjustment is that the uncertainty in SIM is higher than that in 

ATLAS3. Hence, the data from SIM is not independent from ATLAS3 (and is 

therefore not shown in Figure 4.1). SSI data from the SCIAMACHY (Scanning 

Imaging Absorption Spectrometer for Atmospheric Chartography/Chemistry) 

satellite instrument [Weber, 2015]  is also lower than ATLAS3 at 1.6 µm, with a 

spectral shape broadly consistent with Solar2. Weber [2015] shows that the 

SCIAMACHY spectra are all consistent with one another in this region, contrary to 

the claims of Thuillier et al. [2015].  

There is agreement between the airborne spectrum of Arvesen et al. [1969] and 

ATLAS3 at ~1.6 μm, with better agreement with CAVIAR2 toward 2.5 μm.  The 

degree of this agreement changes strongly with wavenumber however, and at 2.4 μm 
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there is no agreement between ATLAS3 and Arvesen et al. even within the k = 2 

uncertainties. The Arvesen et al. analysis uses the Langley method, but the variation 

with solar zenith angle was derived from measurements made on different days and 

at markedly different locations. Thus, the effect of varying water vapour may have 

large implications for their derived SSI, particularly in the band regions of strong 

absorption. The Arvesen et al. measurements also predict a total solar irradiance 

(TSI) of 1390 W m-2, above the 1360 W m-2 from contemporary sources [Kopp and 

Lean, 2011]. Accounting for this difference by normalizing the Arvesen data to 1360 

cm-1 would bring their values closer toward agreement with CAVIAR2 between 2.5-

1.4 μm, assuming that the 1390 -> 1360 W m-2 adjustment factor was applied evenly 

across the spectrum. It is important to emphasise here that, within the uncertainties, 

there is consistency between Arvesen et al. and CAVIAR2 in the entire 4000-10000 

cm-1 range. 

Bolsée et al. [2014] presented an additional set of measurements from a ground-

based spectrometer at the Izaña field site (henceforth referred to as IRSPERAD 

(InfraRed SPEctroRADiometer)). This spectrum (see Figure 4.1) was found to be in 

modest agreement at 1.6 μm with the lower (Solar2) values of the solar irradiance 

reported in Thuillier et al. [2014]. At lower wavenumbers, these also agreed with the 

similar ground-based measurements of Menang et al. [2013], using an absolutely 

calibrated high-resolution spectrometer.  

There are several drawbacks with the use of ground-based instruments. However, 

these can be mitigated through the careful use of various techniques such as the 

Langley method, or the use of a radiative transfer code, provided they are applied in 

relatively transparent regions between major atmospheric absorption bands. Thuillier 

et al. [2015] suggests that the use of ground-based methods could lead to incorrect 

SSI values because of “residual atmosphere absorption and aerosol scattering that 

consequently can make ground measurements necessarily lower than the space 

measurements”. We demonstrate here that this is not the case. Aerosol scattering is 

the most important source of extinction in the micro-windows in between individual 

spectral lines in this region, typically contributing up to 90% of the overall optical 

depth in the centre of the 1.6 µm window. However, the absolute value is small (on 

the order of 0.03 optical depths), and therefore has minimal effect on SSI retrievals. 

In our case, any changes in aerosol optical depth are automatically accounted for in 
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the Langley method if the atmospheric state is constant throughout a day of 

measurements, or incorporated into the uncertainty budget from the Monte Carlo 

method (see Section 4.2.4 for more details).  

Scattering by water vapour and other gases also affects the observed radiation. This 

Rayleigh scattering can be calculated easily in the NIR. Bucholtz [1995] shows that 

for a mid-latitude summer atmosphere (comparable to the conditions in this work), 

the Rayleigh scattering optical depth is 8.67 x 10-3 at 1 µm, reducing to 1.315 x 10-3 

at 1.6 µm.  This is less than 5% of the overall optical depth in the centre of this 

window and does not significantly vary over the course of a day; any impact on the 

derived SSI will be minimal. 

Similarly, absorption due to water vapour in the atmospheric windows has minimal 

effect on SSI. Menang et al. [2013] demonstrated that even for a 20% systematic 

change in absolute humidity over the course of a day, the effect on the derived SSI in 

the windows is less than 1%.  

It is important to emphasise that if the optical depth contributions from any of these 

effects are constant throughout a day, then they will be removed by the Langley 

method (see Section 4.2.4.1). Variability can be detected via changes in the observed 

direct current voltage by the FTS detector (see Section 3.4.3.1) and filtered out, or 

can be included within the statistical uncertainty estimates.  The estimates presented 

in the last paragraph apply to the sea-level Camborne field site used here and in 

Menang et al. [2013]; the high-altitude field site used by Bolsée et al. [2014] is less 

affected. We also note that the optical depth from aerosol and Rayleigh scattering is 

strongly wavenumber dependent, and is largest at the higher wavenumbers (7000-

10000 cm-1) where we show that the various spectra agree well (Figure 4.1).  

An additional advantage of ground-based measurements is the high spectral 

resolution that can be achieved. For example, Gardiner et al. [2012] (see Section 

3.4.3.2) presents a calibration method suitable for measurements of the Sun at the 

0.03 cm-1 resolution presented in this work. By contrast, SOLSPEC has a resolution 

of 4 cm-1 at 1 µm. The optical alignment of a ground-based setup can also be 

constantly monitored and adjusted, in a way which is generally difficult on a satellite.  

There is also more scope for assessing the calibration drift of a ground-based 

instrument. 
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The lack of agreement in the near-IR SSI amongst the various datasets (both space 

and ground-based) is clearly a serious issue. Accepting that there are advantages and 

disadvantages of all observing systems, there is nevertheless a requirement that they 

should agree within their respective uncertainties, and that agreement between 

independent measurements gives the most confidence in any result. This is clearly 

not the case at present. We present an improved and extended analysis of the high 

spectral resolution CAVIAR SSI values from Menang et al. [2013], in light of the 

ongoing controversy, using an updated calibration and assessment of the uncertainty 

budget, and an additional method of deriving SSI. 

4.2.3 Analysis methods 

Section 4.2.5 will focus on two methods of deriving SSI from a ground-based setup; 

the Langley method and the radiative closure method. These methods have their own 

distinct advantages and disadvantages, and together provide a quasi-independent 

assessment of SSI even when using the same observations. To increase the 

confidence in these methods, it is ideal to use measurements from as many days as 

possible and to constrain the atmospheric state to minimise the effect of changes 

throughout a day, particularly in the case of the Langley method.  

The irradiance reaching the surface from the Sun is described by the Beer-Bouguer-

Lambert law  

(4.1)                               𝐼(𝜈) = 𝐼0(𝜈) exp (−𝑚(𝜃)𝜏(𝜈)) 

where 𝜈 is spectral wavenumber, I is the irradiance measured at the surface, I0 is SSI, 

𝜏 is the atmospheric optical depth (including absorption and scattering), and m is the 

airmass factor as a function of SZA θ.  

4.2.3.1 Langley method 

The Langley method is a commonly used method of measuring both τ (calibrating 

sun photometers for example), and SSI (e.g. Arvesen et al. [1969], Menang et al. 

[2013] and Bolsée et al. [2014]). The method is based on Equation (4.1). The second-

order effects of atmospheric refraction and the Earth’s curvature are neglected here. 

The technique is not suitable for measuring in spectral regions where there is strong 

absorption. 
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From Eq. (1), by taking the natural logarithm of both sides, we obtain; 

(4.2)                                  ln(𝐼(𝜈)) = ln(𝐼0(𝜈)) − 𝜏(𝜈)𝑚(𝜃) 

Assuming constant SSI and τ, Eq. (2) describes a linear relationship between the 

logarithm of the observed intensity and the airmass factor allowing an estimate of τ 

from the gradient of the slope, and ln(I0) from the intercept. Since data points are 

taken at discrete intervals throughout a day, an ordinary least squares fit is performed 

to the data. Assuming τ is constant throughout the day, the derived SSI is 

independent of τ. It is desirable to take measurements over a wide range of airmass 

factors, and as the technique relies on the assumption of constant τ, it is preferable to 

have at least one day of mostly clear skies. There should also be supplementary 

atmospheric measurements to monitor any variations in τ.  

4.2.3.2 Radiative closure method 

The radiative closure method also exploits Equation (4.1). In this case, we calculate 

SSI from the measured irradiance and independent estimates of τ. Here, τ is 

calculated using the Reference Forward Model (RFM) [Dudhia, 2017], using line 

parameters from the HITRAN2012 spectroscopic database [Rothman et al., 2013], 

continuum absorption from MT_CKD 2.5 [Mlawer et al., 2012], and atmospheric 

profiles from coincident radiosonde ascents (see Section 4.2.4.3). It is necessary to 

focus on atmospheric windows between strong absorption bands. In contrast to the 

Langley method, one can derive the SSI with a single observation provided there are 

clear skies. However, the reliance on an RTM (and knowledge of the atmospheric 

state) introduces additional uncertainty into the final value. For high-resolution 

measurements, any error in the strength or position of spectral lines in the RTM 

could result in incorrect SSI, necessitating filtering (see Section 4.4). The Langley-

derived values are preferred to those from the closure method, since the lack of 

reliance on a model means that there is less uncertainty. However, the closure-

derived spectra provide an important consistency check. 

4.2.4 Experimental methods 

We use measurements taken during a field campaign between August-September 

2008 at Camborne, UK (50.219° N, 5.327° E). These used an absolutely calibrated 

sun-pointing Fourier transform spectrometer (FTS) at 0.03 cm-1 resolution over the 
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region 2000-10000 cm-1 (5-1.6 µm). The pre-campaign calibration phase took place 

at the National Physical Laboratory (NPL), UK (see Gardiner et al. [2012]). Our 

analysis focuses primarily on measurements of 22 August and 18 September 2008; 

these days had clear-sky conditions over sufficient SZA for use of the Langley 

technique. More details are presented in Chapter 3.4. 

4.2.4.1 Calibration  

The spectrometer calibration is discussed by Gardiner et al. [2012]. To produce a 

reliable SSI, measurements must be radiometrically calibrated against an irradiance 

source of comparable magnitude. Our spectrometer was calibrated against the Ultra 

High Temperature Blackbody (UHTBB), based at NPL which is capable of reaching 

temperatures around 3000 K, and is directly traceable to the International System of 

Units [BIPM, 2006]. While this system is not directly comparable to the effective 

temperature of the Sun’s surface, the attenuation experienced in the UHTBB system 

is minimal, whereas the solar signal travels through the atmosphere. The integrated 

intensity measured by the spectrometer during solar measurements is therefore 

comparable to that of the UHTBB, giving similar behaviour and minimizing 

potential detector response issues.  

The UHTBB is not transportable; as such a transfer source was used in the 

field to assess calibration drift. The spectra from Menang et al. [2013] include a 

correction from this transfer source; however as a result of further analysis of the 

stability of this source this correction was not applied in this work (see Chapter 

3.4.4.1). 

In addition, the instrument relies on an external optical setup which is 

exposed to the elements [Gardiner et al., 2012]. This results in a loss of mirror 

reflectivity over time, which must be corrected for, but this was not done in Menang 

et al. [2013]. Measurements of mirror reflectivity were taken before and after the 

measurement campaign, with the reflectivity values after the campaign taken as 

representative of the mirror reflectivity during the campaign. Hence, the reflectivity 

adjustment is likely an overestimate, which could potentially result in an 

overestimate of the derived SSI. The potential for this overestimate is accounted for 

in the uncertainty budget. 
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4.2.4.2 Spectrometer measurement uncertainty  

The uncertainty in the FTS setup comes primarily from four sources. The first arise 

from the calibration procedure (including the calibration checks from the transfer 

source). The second are from the solar source and atmospheric path itself 

(particularly the non-uniformity of the solar disc, and the effect of sub-visible cirrus). 

The third are uncertainties arising from the external optics, and the fourth is the 

uncertainty from the spectrometer itself, including optical alignment. The combined 

(k = 1) measurement uncertainty varies with wavenumber, between around 3.3% in 

the region where the tracker optics had been directly measured before and after the 

campaign with a reference reflectometer and up to a maximum of 5.9% outside of 

this region. Gardiner et al. [2012] present a detailed assessment of the measurement 

uncertainties, with additional work since Gardiner et al. presented in Chapter 3.4.3.4.  

4.2.4.3 Atmospheric state analyses 

Data were obtained from Vaisala RS92-SGP radiosonde [Vaisala, 2013] launches 

from Camborne, analyses from the UK Met Office, and Microtops sunphotometer 

measurements [Solar Light Company, 2001]. These include estimates of aerosol 

optical depth (AOD), temperature, pressure and water vapour profiles of the 

atmosphere. All other relevant gases are considered to be well mixed. These are 

necessary for quantification of the SSI from the closure method, since in conjunction 

with an RTM they provide values of the atmospheric optical depth. More information 

is presented in Figure 4.2. The AOD values for the relevant spectral region are 

calculated from the sunphotometer measurements using the Ångström exponent 

method [Schuster et al., 2006]. More information is presented in Chapter 3.4.5. 

4.2.4.4 Filtering of observed spectra 

To focus on the higher quality data, several filtering methods were used to remove 

regions of strong absorption, not only in the bands but also in areas of strong 

absorption within windows, such as individual water vapour lines. These filters also 

mitigate or remove the effect of sub-visible clouds and other time-varying extinction 

sources. This filtering follows the procedure of Menang et al. [2013] and is discussed 

in Chapter 3.4.3.5. 
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4.2.5 Results and discussions  

The results presented here have been normalised to 1 astronomical unit. The 

Langley-derived spectrum from 18 September 2008 is our best estimate of the SSI 

(as discussed in Menang et al. [2013]), and is referred to as CAVIAR2.  

The uncertainty in CAVIAR2 is obtained using a Monte Carlo uncertainty evaluation 

method (see Figures 4.2 and 4.3). The Langley method uses multiple measurements, 

which each have a random component which varies from measurement to 

measurement, and a systematic component which is in principle the same for all the 

measurements across a day (see Gardiner et al. [2012]).  

 

Figure 4.2. Spectral variation of uncertainty in a given spectrum, split into the 

random and systematic components. The large jump in the negative systematic 

uncertainty compared to the positive at 6600 cm-1 is primarily due to the absence of 

mirror reflectivity measurements beyond this point, with the consideration that the 

overall reflectivity cannot exceed 100%. See Gardiner et al. [2012] for more details. 

The use of a Monte Carlo method allows the different effects of the random and 

systematic components of the uncertainty in a given measurement upon the Langley 

results to be rigorously assessed in a statistical manner.  The fractional uncertainty 

used to adjust a given spectrum is drawn from a normal distribution based on the 

experimental uncertainties shown in Figure 4.2 (discussed in detail in Gardiner et al. 

[2012]). Figure 4.3a shows the probability density functions for the random and 
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systematic components of uncertainty for a given wavenumber. The systematic 

distribution is generated either from the positive or negative values randomly for 

each sample. Points from these distributions are then selected randomly and are used 

to perturb the observed spectra (black points in Figure 4.3b), with a systematic 

perturbation affecting each spectrum equally (red points, note the log scale), and a 

random perturbation added to each spectrum individually to get the final perturbed 

values (blue points).  

These blue points are used to derive SSI by performing an ordinary least squares fit 

(blue line) and then calculating SSI (i.e. the irradiance at zero airmasses) using the 

intercept of this line. This process is repeated 50000 times (20 examples of this are 

shown in Figure 4.3c) and results in a histogram of derived SSI (Figure 4.3d).  The 

mean and standard deviation of this histogram give the observed SSI and its 

uncertainty. It is important to emphasise that these generated uncertainties do not act 

as an adjustment to the absolute value of the final spectrum, since given enough 

samples the mean result should be indistinguishable from the fit to the original data. 

Gardiner et al. [2012] presents more information about the sources of measurement 

uncertainty. 

The distinction between random and systematic uncertainties is not considered in the 

treatment of Menang et al. [2013], which leads to a less rigorous assessment of the 

overall uncertainty as the random effect (which will mostly average out across a day 

provided there are enough samples) is treated as the same for all spectra. The spectra 

presented in the Figures use the resolution of the Monte Carlo simulations (1 cm-1); a 

spectrum at full resolution (0.03 cm-1) is available in the Supplementary material to 

the online version of this paper (http://dx.doi.org/10.1002/2017GL073902), with 

fractional uncertainties interpolated from the Monte Carlo derived uncertainty (which 

varies smoothly with wavenumber). The lower spectral resolution does not affect the 

envelope of the spectrum.  
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Figure 4.3:  Schematic of the Monte Carlo method used to derive the SSI and its 

uncertainty using the Langley method, at each wavenumber. The example shown is 

an idealised case. 

The uncertainty in the closure method is obtained using the measurement uncertainty 

from Gardiner et al. [2012], with an additional uncertainty due to the use of the 

RTM. The use of supplementary data introduces an additional source of uncertainty 

into the final value of the SSI in this case. The uncertainty in the AOD is determined 

from the statistical fit of the data points (with an optical depth uncertainty of ± 0.01) 

in the Ångström extrapolation (see Figure 4.4). This is in contrast to the Mie 

scattering code used for the AOD extrapolation in Chapter 5 (see Chapter 3.4.5), 

which was implemented after the publication of this paper and is more important for 

determining the water vapour continuum absorption described in Chapter 5 than SSI. 

The AOD in the higher (1.02 μm) wavelength channel is most representative of 

conditions in the spectral region of interest, and generally does not vary significantly 

throughout the course of the day. The exception is toward the end of 22 August, and 

the corresponding spectra were not used to derive the SSI, due to the large change in 

AOD (see Figure 4.4). In the closure method for deriving SSI, these data were used 

to perform an Ångström extrapolation (e.g. Schuster et al. [2006]) to longer 

a) 
b) 

c) 

d) 
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wavelengths, with ordinary least squares fitting used to derive the Ångström 

coefficients.  

The uncertainty in the radiosonde measurements is variable with height, although 

typically the (k=1) uncertainty in temperature is ~0.25 K, that in pressure is around 

0.5 hPa, and that in relative humidity is around 2.5% [Vaisala, 2013]. For the 

purposes of this work, the optical depth uncertainty comes from a combination of the 

AOD uncertainty and the model uncertainty. This model uncertainty included 

sensitivity analyses performed with variation of ~3% in pressure and temperature. 

This is above the stated uncertainty given by the radiosonde manufacturer. However, 

this uncertainty as input into the RTM provides a surrogate for uncertainty in the 

lineshape and line broadening in the model, and that of the HITRAN 2012 database 

itself. This effect is mostly negligible and only affects weak lines because regions 

around strong spectral lines are in any case filtered out.  

 

Figure 4.4. Time series of aerosol optical depth (AOD) at 5 wavelengths across the 

two main measurement days (22 August (upper plot) and 18 September (lower plot) 

2008) measured using a hand-held Microtops Sunphotometer [Solar Light Company 

2001].  

In addition, the effect of uncertainty in the relatively weak water vapour continuum 

(see Chapter 5) is considered. Some recent laboratory studies differ by more than a 

factor of 100 in the centre of the 1.6 µm window (e.g. Shine et al., [2016]). It is 
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important to include this uncertainty, since continuum absorption is second only to 

aerosol scattering as a source of extinction in the microwindows between individual 

water lines, even considering the large uncertainty. The upper limit of the uncertainty 

in the SSI from the closure method includes the optical depth including the highest 

values of the continuum observed in the laboratory in both the 2.5 and 1.6 μm 

windows, using the nominal temperature scaling from Shine et al. [2016c]. This 

effect remains a second-order effect given its low optical depth contribution even in 

the regions which are mostly transparent. The continuum does not affect the SSI 

derived using the Langley method provided water vapour amounts remain constant. 

Figure 4.5 shows the mean of the closure-method spectra from two days’ worth of 

measurements (averaging 44 spectra from 22 August and 21 spectra from 18 

September), alongside CAVIAR2 from 18 September 2008, and their associated k = 

2 uncertainties. There is a high level of consistency between the spectra derived 

using these two quasi-independent methods. Given the fact that the measurements 

are taken on differing days with differing meteorological conditions, the agreement 

between these spectra indicates that neither the methodology nor the atmospheric 

state bias the results. 
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Figure 4.5: Derived CAVIAR spectra using both the Langley method and the mean of 

radiative closure method over two days of measurements, and their associated k = 2 

uncertainties. The gray shaded region indicates the uncertainty in the Langley-

derived values, and the red that in the closure-derived values. The feature at 8000 

cm-1 in the closure-derived spectra is an oxygen continuum band not modelled in the 

RFM. 

Figure 4.6 shows CAVIAR2 alongside ATLAS3 and Solar2. Our measurements in 

the 7000-10000 cm-1 region are consistent with both ATLAS3 and Solar2. Our 

confidence in the space-based instruments is good in this region, and the 

uncertainties in CAVIAR2 are relatively large. The quoted values lie very close to 

one another even without considering the larger uncertainties. This is in contrast with 

Menang et al. [2013], in which there was an underestimation of the SSI in this region 

relative to ATLAS3, due to the missing mirror reflectivity correction and the use in 

CAVIAR of the TSARS transfer standard, which was found to be too variable to use 

as a reliable calibration transfer for its use in CAVIAR2 (see Figure 4.7). The level 

of consistency between ATLAS3 and CAVIAR2 in this region is indication that any 

differences are not a systematic effect across the spectrum. There is also broad 

consistency between the fine structure of the two spectra; however the higher 

spectral resolution of CAVIAR2 means that a direct comparison is not possible. 

Figure 4.7 shows the ratio and absolute values of the CAVIAR and CAVIAR2 

spectra. The envelopes differ due to the additional mirror reflectivity correction and 
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lack of TSARS correction. The apparent differences in some line strengths in Figure 

4.7 are due to different filters used in the two spectra; these do not affect the 

envelope.  

Figure 4.6: Derived spectra from this work and the ATLAS3/Solar2 spectra, with 

associated k = 2 uncertainties. 

 

Figure 4.7:  Comparison of CAVIAR [Menang et al., 2013] against CAVIAR2. 

Figure 4.7a shows the absolute level (and corresponding uncertainties) of the two 

spectra, while Figure 4.7b shows the ratio of the two spectra.  

a) 

b) 

a) 

b) 
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Given the 1-3% uncertainty quoted in Thuillier et al. [2003], there is poor agreement 

between the spectrum derived in this work and ATLAS3 between 4000-7000 cm-1. 

There is good agreement between this work, IRSPERAD and Solar2 in this region 

(as shown in Figure 4.1). This weight of data provides a clear indication that the NIR 

SSI is well represented by these spectra, since there is agreement not only between 

several independent ground-based spectra but also from the initial SOLSPEC 

measurements used to derive Solar2. There is also some consistency between this 

and the unexplained 8% difference between the NIR SSI from SIM relative to 

ATLAS3 (see Section 4.2.2). Relative to the other spectra (e.g. in Figure 4.1), 

CAVIAR2 appears to show larger values in the region starting at ~6700 cm-1 and 

ending at ~7700 cm-1. This is likely to due to a combination of the mirror reflectivity 

correction (which is an extrapolation beyond 6600 cm-1), and the stronger water 

vapour absorption since these data are on the edges of the windows where any effects 

due to changing water vapour start to become more significant [Menang et al., 2013]. 

Nevertheless, the uncertainty budget accounts for these effects and consistency 

within these uncertainties is maintained for all the spectra (the increased uncertainty 

brings it into consistency with ATLAS3 in this narrow region). 

4.2.6 Conclusions  

The uncertainty in near-infrared observations of the SSI is an important issue in 

atmospheric and solar sciences. We have presented an improved reanalysis of the 

high-resolution CAVIAR ESS from Menang et al. [2013], with updated uncertainty 

estimates and calibration, incorporating additional analysis methods and data. This 

reanalysis shows excellent agreement with various spectra in the 7000-10000 cm-1 

(1.4 – 1 μm) region (Figure 4.1). In the 4000-7000 cm-1  (2.5 – 1.4 μm) region we 

show good agreement with Bolsée et al. [2014] and Solar2 (Thuillier et al. [2014]), 

but significant (~7%) differences from the ATLAS3 spectrum of Thuillier et al. 

[2003] and the revised Solar2rev spectrum from Thuillier et al. [2015].  We 

demonstrate that our results are fundamentally consistent with the spectrum of 

Arvesen et al. [1969] within the k = 2 uncertainties, which has varying levels of 

agreement with our work and ATLAS3 across the 4000-7000 cm-1 region. We 

believe that our dataset is significant evidence in favour of the former sets of 

measurements in this spectral region due to our more robust calibration, agreement 

with the various solar spectra in the high-frequency end of the NIR (in contrast with 
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Menang et al. [2013]), our rigorous uncertainty budget, and the agreement between 

various sets of measurements at different sites with different calibration and 

methodology.  

We question the arguments expressed in Thuillier et al. [2015] regarding the 

uncertainty of the ground-based methods. We find no evidence that residual 

atmospheric absorption could lead to a significant bias in our derived SSI. In 

addition, the optical depth due to aerosols and Rayleigh scattering is highest toward 1 

µm, where there is much better agreement between the spectra. Their argument also 

does not resolve the reason for differences between the various space-based 

measurements. Given the range of NIR measurements and our detailed assessment of 

the uncertainty in our measurements, we question whether ATLAS3 should be 

regarded as a reference spectrum at wavelengths greater 1.3 µm.  

The measurements presented in this work are taken close to solar minimum. 

However, in the near-IR the variation due to solar cycles contributes on the order of 

0.25% at 1.6 µm [Lean and DeLand, 2012; Coddington et al., 2015], well below the 

7% difference between this work and ATLAS3. The 27 day solar variability also has 

little effect, since there were only 5 sunspots observed on 22 August and none on 18 

September. [SIDC, 2017] 

These results have significant implications on our understanding of the total solar 

irradiance. Using the stated values of ATLAS3 and CAVIAR2 and integrating over 

the region 4000-10000 cm-1 (interpolating the absolute level in the band regions, with 

lines from Kurucz and Bell [1995]), we find that as a central estimate CAVIAR2 is 

~16 W m-2 (4.5 %) lower than ATLAS3. This is less than the 8% of Menang et al. 

[2013], primarily because of the better consistency beyond 8000 cm-1. As pointed out 

in Weber [2015], a reduction in SSI in the NIR can be accounted for not only by 

uncertainties elsewhere in the spectrum, but also by uncertainties in TSI 

measurements. While there must fundamentally be consistency between 

measurements of TSI and SSI, constraining the SSI in this narrow region to the TSI 

would require reduced uncertainty in both the TSI and SSI. Given the robust nature 

of our uncertainty budget, and the lack of overlap in the k = 2 uncertainties of the 

CAVIAR and ATLAS3 spectra, this indicates that the ATLAS3 uncertainty budget 

may require re-assessment. Indeed, Thuillier et al. [2003] note that their calculated 
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variance (based on their uncertainty estimate) is smaller than the observed variance 

from their measurements, and likely implies some unknown source of uncertainty.  

We stress that we do not believe that there is fundamental inconsistency between the 

TSI from current spectral observations and CAVIAR2 within the uncertainties. 

Accounting for the (k = 1) uncertainties in Solar2 [Thuillier et al., 2009] from the far 

UV out to 1μm leads to a 6 W m-2 uncertainty in this spectral region. Applying the 

same analysis in the near-IR using the ATLAS3 uncertainty from 7000-10000 cm-1 

and the CAVIAR2 uncertainty between 4000-7000 cm-1 (i.e. using the lowest 

uncertainty limits for measurements which we believe are accurate in the respective 

spectral regions) gives a further 8 W m-2. Thus, without even accounting for any 

uncertainty in TSI measurements (believed to be ~0.5 W m-2 [Kopp and Lean, 

2011]), accounting for the k = 2 uncertainties, or any uncertainties in wavelengths 

longer than 2.5 μm (which contributes 50 W m-2 to the TSI), the differences in the 

TSI budget are almost reconciled.  

It is clear that more measurements of the SSI are required, from as wide a range of 

sources as possible. The TSIS-1 mission was launched in late 2017 

[Science.nasa.gov, 2017], which includes a version of SIM with a new calibration 

method. This involves the use of both a tunable laser and a cryogenic radiometer, 

which should provide greater accuracy in both the irradiance scale and the 

spectrometer response. No data is yet publically available from this mission at the 

time of writing. In addition, further ground-based and airborne measurements are 

also required. These should involve the use of a high-intensity calibration source, and 

a robust calibration transfer. One such possibility is the use of radiatively-calibrated 

lasers at specifically chosen frequencies, such that the spectral response of the 

spectrometer can be measured quickly and efficiently in the field. For a system set up 

as in the one in Gardiner et al. [2012], it would be also useful to track the reflectance 

change in the tracker optics over time, rather than once before and once at the end of 

the campaign. In addition, while it is not strictly necessary (since the Langley method 

filters out the non-time-varying components of the atmosphere, and is affected 

minimally by non-time-varying components in the micro-windows), an ideal system 

would be set up at high altitude, to minimise the effect of atmospheric aerosols and 

gaseous absorption.  Such measurements would be useful not least as a cross-check 

to the space-based measurements, but also for long-term monitoring of the SSI across 
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solar cycles. Any such measurement campaigns should particularly focus on a 

rigorous uncertainty budget, in accordance with the Guide to the Expression of 

Uncertainty in Measurement [JCGM, 2008].  

4.3: Additional analysis  

Following the publication of Elsey et al. [2017], Meftah et al. [2017] published a new 

reference SSI from 0.165-3 µm (3333-60606 cm-1), based on a revised analysis of 

measurements taken by the SOLAR/SOLSPEC instrument. These measurements are 

taken over the period 2010-2016 and used to make a composite. The low variability 

in the IR over solar cycles relative to the pre-fight calibration uncertainty means that 

this can be directly compared with the 2008 solar minimum CAVIAR observations. 

These measurements are taken at a lower spectral resolution, and are combined with 

high resolution measurements to present a high-resolution reference spectrum, 

known as SOLAR-ISS. It is the belief of Meftah et al. that these measurements have 

a higher accuracy than ATLAS3.  

The SOLAR-ISS spectrum shows a difference relative to ATLAS3 of ~4 % in the 

NIR region, with a peak difference of ~6.5 % at 4760 cm-1. A comparison of 

ATLAS3 to SOLAR-ISS and CAVIAR2 is shown in Figure 4.8, alongside the k = 2 

uncertainties. The envelopes of SOLAR-ISS and CAVIAR2 overlap within the 

uncertainties. There are regions where there is no overlap; these mostly correspond to 

solar lines missing from SOLAR-ISS (CAVIAR2 has a higher resolution). Within 

these uncertainties the spectra agree well (this agreement can be seen more explicitly 

in Figure 4.9). The relatively small uncertainties in SOLAR-ISS and ATLAS3 mean 

there is no consistency between 4000-7000 cm-1. There is however much better 

agreement between 7000-10000 cm-1, as with CAVIAR2. This lack of consistency 

between ATLAS3 and SOLAR-ISS, and the agreement between SOLAR-ISS and 

CAVIAR2 provides additional strong evidence for the lower SSI in the 4000-7000 

cm-1 region. 
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Figure 4.8: Comparison of the SOLAR-ISS spectrum (blue), ATLAS3 (red) and 

CAVIAR2 spectrum (black), with corresponding k = 2 uncertainties (shaded 

regions). 

 

 

 

Figure 4.9:  Plot showing fractional difference from CAVIAR2 (this work) for the 

SOLAR-ISS spectrum [Meftah et al., 2017], ATLAS spectrum [Thuillier et al., 2003] 

and NRLSSI2 spectrum [Coddington et al., 2016], with corresponding k = 2 

uncertainties (shaded regions). Uncertainties are not shown for NRLSSI2 (see text). 

Of particular note in the climate modelling community is the SSI of Coddington et 

al. [2016], hence the NRLSSI2 (Naval Research Laboratory Solar Spectral 
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Irradiance-2) spectrum. This paper presented a climate data record of monthly and 

daily values of solar irradiance (total and spectral) from 1882-2016, and yearly solar 

irradiance from 1610-2016. This dataset is updated quarterly with preliminary 

values, and is updated at the end of the year with final values. The 4000-10000 cm-1 

component of this data record is obtained from SORCE-SIM observations [Harder et 

al., 2005]; at lower wavenumbers the semi-empirical Kurucz and Bell [1995] 

spectrum is used. The SIM data, as discussed in Section 4.2.2, is forced to agree with 

the ATLAS3 spectrum in this region, so it is not independent of ATLAS3. These 

observations are then scaled by observations of sunspots to obtain the variability over 

time. An additional composite SSI was published in Haberreiter et al. [2017]. As 

with NRLSSI2, this composite uses SIM for its absolute level in the NIR region, and 

is therefore not considered further here. 

The NRLSSI2 spectrum is a useful tool for climate modelers requiring solar 

irradiance values at a given time. Matthes et al. [2017] recommend NRLSSI2 

alongside the SATIRE-S (Spectral And Total Irradiance REconstructions for the 

Satelite era [Ball et al., 2014] semi-empirical spectrum as the recommended SSI in to 

the Coupled Model Intercomparison Project Phase 6 (CMIP6). These two spectra are 

averaged arithmetically to obtain the recommended spectrum and are plotted 

independently here. 

Figure 4.10 shows these spectra relative to CAVIAR2, and Figure 4.9 shows the 

ratio, alongside the SOLAR-ISS and ATLAS3 spectra. The SATIRE-S and 

NRLSSI2 spectra do not have spectroscopic uncertainties; these are therefore not 

included in the plots. Some uncertainty is included in the NRLSSI2 datafiles, 

however it is unclear if this is uncertainty due to the spectroscopy (in which case it is 

negligibly small) or due to uncertainty in the algorithm used to construct the solar 

cycle variability dataset. The NRLSSI2 and SATIRE-S spectra are similar in 

absolute level in the NIR region, yet systematically above the best estimate of 

CAVIAR2, and barely consistent within the k = 2 uncertainties between 4000-5000 

cm-1, and is on the edge of the uncertainty limits between 6000-7000 cm-1. This is in 

part due to the lack of uncertainties in NRLSSI2 and SATIRE-S, but also indicates 

that the central values are potentially too high, if one were to take the CAVIAR2 SSI 

as being indicative of the true value. This is consistent with the forcing of the SIM 

dataset to agree with ATLAS3 (and thus the interdependence of NRLSSI2 on 
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ATLAS3 to some extent). The differences between NRLSSI2 and ATLAS3 could be 

attributed to the scaling of NRLSSI2 to agree with the commonly accepted quiet-Sun 

TSI value of ~1360 W m-2. There appears to be no agreement in parts of the 4000-

7000 cm-1 region between NRLSSI2 and SOLAR-ISS within the k = 2 uncertainties 

of the SOLAR-ISS measurements. 

 

Figure 4.10: Comparison of the NRLSSI2 spectrum (green), SATIRE-S spectrum (dark blue), 

CAVIAR2 spectrum (black), ATLAS3 (red) and NRLSSI2 (light blue) spectra, shown here 

without uncertainties. 

SOLAR-ISS shows lower spectral irradiance than ATLAS3 in the NIR, leading to a 

reduced integrated irradiance relative to ATLAS3. The integrated TSI observed over 

the 0.165-3 µm (60606.06- 3333.33 cm-1) region, when including a 28 W m-2 

contribution from 3-160 µm (3333.33-62.5 cm-1) from SATIRE-S gives a TSI of 

1372 W m-2 , ~11 W m-2 above the best estimate of TSI of ~1360 ± 0.5 W m-2  

[Kopp, 2016]. The authors point out that their integrated irradiance is still above that 

observed from TSI measurements despite the higher spectral accuracy. The authors 

also challenge the use of TSI measurements to correct the ATLAS3 spectrum in 

Thuillier et al. [2003], which had a TSI of ~1390 W m-2 when accounting for 

contributions outside of its spectral region of interest. A uniform correction of ~1.4% 

across the spectrum was applied to agree with a target of 1367.7 W m-2 (the previous 

recommended value), without any justification as to how this energy was spread 

throughout the spectrum. The integrated difference between CAVIAR2 and SOLAR-

ISS (4000-10000 cm-1) is ~7.5 W m-2, interpolating CAVIAR2 linearly between the 
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water vapour bands. Taking the CAVIAR2 values in this region and SOLAR-ISS 

outside would go a significant way to achieving the desired TSI target. The use of a 

TSI argument should not be leaned upon too heavily however, as this difference 

could just as easily be made up in another part of the spectrum, not observed in 

CAVIAR2. 

Additional work is required to reconcile these SSI, in particular observations with 

realistic uncertainty estimates, since given a rigorously estimated uncertainty budget 

no two spectra should disagree within these uncertainties. Nevertheless, Meftah et al. 

[2017] provide additional compelling evidence for a lower SSI in the 4000-7000 cm-1 

region, and reinforces the conclusions of Elsey et al. [2017]. Since the NIR SSI is 

influential in determining atmospheric energy balance due to the presence of strong 

water vapour bands in this region, these results should be considered in climate 

modelling experiments such as CMIP6. 

Since Elsey et al. [2017], Menang [2018] presented an assessment of near-infrared 

heating rates from various different SSI, including ATLAS3, CAVIAR2, 

IRSPERAD and SOLAR-ISS, showing a difference in absorbed irradiance of ~6 W 

m-2 (5% of the total) between CAVIAR2 and ATLAS3. This difference translates to 

a difference in tropospheric heating rates of ~0.1 K day-1
; an increase of around 10%.  
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Chapter 5: 

Observations of the near-IR water vapour continuum 

in the atmosphere 

5.1: Introduction 

This chapter uses the FTS measurements described in Chapter 3 to derive the water 

vapour continuum absorption (hereafter simply ‘continuum’). As discussed in 

Chapter 2.4, the continuum is modelled in the atmosphere using the MT_CKD 

model. The effectiveness of MT_CKD in modelling the near-infrared continuum is 

however uncertain, due to the paucity of observations and the disagreement between 

these. Compounding this issue is the lack of observations at atmospheric 

temperatures, meaning that the accuracy of the MT_CKD continuum is dependent on 

assumptions made about the temperature scaling of the self-continuum, which is 

itself the subject of ongoing study.  

The results presented in this chapter cover the wavenumber region 2000-10000 cm-1, 

and are a more detailed analysis of the results briefly reported in Menang [2012]. As 

with Chapter 4, the results presented here are a combination of derivations using the 

Langley method and the radiative closure method described in Chapter 2, with 

observations primarily from 22 August 2008 and 18 September 2008.  

Since the FTS observations from Camborne are made through the atmosphere, any 

such continuum derived using them (subject to corrections from gaseous absorption 

and other sources of smoothly varying extinction) should provide a useful check to 

MT_CKD, and within the bounds of uncertainty provide upper and lower limits to 

the strength of the continuum in these conditions. Atmospheric measurements of the 

continuum in this spectral region have been published before (e.g. Reichert and 

Sussmann [2016]). However, the conditions at the Zugspitze field site used in that 

study are not suitable for derivation of the self-continuum due to the lack of water 

vapour. The Reichert study also lacks radiometric calibration, instead using a 

Langley method along with a medium-temperature blackbody to generate a 

calibration function. The Camborne measurements therefore represent a unique 
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retrieval of the water vapour continuum from absolutely calibrated measurements of 

solar radiation.  

Retrieving the continuum using the Camborne measurements is more challenging 

than the SSI derived in Chapter 4, since the gradient of the Langley fit is far more 

sensitive to small changes in optical depth due to non-continuum components (such 

as aerosol changes). These aerosol changes are difficult to assess in turn, due to the 

lack of external validation for the Microtops sunphotometer measurements. This 

chapter will dedicate particular attention to assessing the consistency between the 

FTS spectral measurements and the aerosol measurements from the Microtops. 

Another challenge is extrapolating these aerosol measurements from the visible and 

near-visible channels of the Microtops to the desired near-infrared values. 

Atmospheric absorption needs to be modelled accurately, meaning that the 

atmospheric temperature, pressure and water vapour need to be measured using 

radiosondes. Since the continuum in the atmosphere is a combination of a foreign 

component and a self-component, it is only possible to derive a combined total 

continuum absorption coefficient. Derivation of the relative contribution is not 

straightforward, from the small number of measurements available here and the 

relatively constant water vapour partial pressures over the campaign.  

As with the SSI derivation, sharp focus is placed on the derivation of a rigorous 

uncertainty budget. Due to the difficulty in deriving the continuum in these 

conditions, the upper and lower limits of this uncertainty budget are especially 

important since these provide the upper and lower bounds of absorption.  

5.2: Laboratory measurements and MT_CKD 

As discussed briefly in Chapter 1, there have been many recent attempts to derive the 

continuum in various laboratories, with significant disagreement between 

measurements of the self-continuum, particularly at room temperature. In the 1.6 and 

2.1 μm windows, these differences are greater than an order of magnitude with no 

agreement between the uncertainties. Shine et al. [2016c] presents a detailed account 

of these.  

As discussed in Chapter 2, the continuum is parameterised in most radiative transfer 

models by the CKD (Clough-Kneizys-Davies) and more recently the MT_CKD 
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(Mlawer-Tobin_CKD) models [Mlawer et al., 2012]. These are lineshape models (at 

least in the window regions, see Chapter 2.4 for more details), which adjust the 

primarily Lorentzian lineshape of water vapour lines using a χ-factor derived mostly 

from measurements at wavenumbers in the mid and far-infrared ( < 2000 cm-1). The 

continuum is assumed to be due to a combination of far-wing contributions beyond 

the standard Lorentzian and collision-induced absorption between water vapour and 

other molecules; the χ-factor is determined accordingly. An additional spectrally 

dependent correction is then made to the spectrum to scale it to match selected3 

observations. At the time of writing however, the lack of agreement and sparsity of 

observations in the 2.1 μm and 1.6 μm windows makes this approach less viable in 

these windows. 

It is therefore key to determine the absorption strength from observations in the 

2000-10000 cm-1 spectral region, in order to improve MT_CKD and to more 

accurately determine the near-infrared window absorption in radiative transfer 

models. Throughout this chapter reference will be made simply to “MT_CKD” to 

denote the continuum derived from this model, in this case the most recent version at 

the time of writing (MT_CKD 3.2). Other versions of MT_CKD will be specified 

(for example MT_CKD 2.5, which is still used in many radiative transfer models). 

The most recent attempts to observe the continuum in the laboratory will be 

discussed below. This primarily focuses on the laboratory FTS measurements from 

the CAVIAR project [Ptashnik et al., 2011a, 2012], laboratory spectra from the 

Institute for Atmospheric Optics in Tomsk [Ptashnik et al., 2013, 2015] the cavity 

ring-down spectroscopy measurements of Mondelain et al. [2013, 2014] and the 

calorimetric interferometry measurements of Bicknell et al. [2006]. There is also 

some discussion of the atmospheric measurements of Reichert and Sussmann [2016], 

although these are taken at high altitude and thus focus more on the foreign-

continuum. 

The foreign-continuum component could still be significant; CAVIAR measured a 

foreign continuum that contributes ~40% of the total in the 1.6 µm window for a 

typical mid-latitude atmosphere (more so in drier atmospheres, less in moister ones) 

[Ptashnik et al., 2012]. MT_CKD on the other hand has a foreign contribution of 

                                                           
3 The process by which observations are selected for use in successive versions of MT_CKD is 

generally unexplained, aside from a passing reference in the code itself. 
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~10% in all of the NIR windows. The Camborne measurements presented in this 

thesis may therefore be dominated by self-continuum, or be made up of roughly 

equal contributions from the self and foreign continua in these windows. Due to the 

difficulty in separating out the foreign and self-continua, it is not possible to assert 

this for the Camborne measurements. A future campaign (see Chapter 7) may be able 

to deduce this by taking measurements over a wider range of water vapour 

concentrations. 

5.2.1: CAVIAR and Tomsk continua 

5.2.1.1: Self-continuum 

Ptashnik et al. [2011a, 2012] (hereafter the CAVIAR continuum) presented separate 

foreign and self-continua using observations taken by an FTS set up at the 

Rutherford Appleton Laboratory. These measurements ranged from 472-293 K, at 

vapour pressures between 0.015 and 5 atm between 2500-10000 cm-1. The wide 

range of temperatures enables assessment of the temperature dependence of the self-

continuum. Figure 5.1 (from Shine et al. [2016c], redrawn from Ptashnik et al., 

[2011a]) shows the CAVIAR continuum in relation to MT_CKD 2.5 at each of the 

temperatures used in the CAVIAR measurements.  
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Figure 5.1: Laboratory observations of the water vapour self-continuum from 

CAVIAR at different temperatures (dotted points), compared to MT_CKD 2.5 model 

observations at the same temperatures (solid lines) (A), and the ratio of these values 

(B). From Shine et al. [2016c]. 

The MT_CKD 2.5 values are ~10x weaker than the CAVIAR measurements in the 

centres of the 2.1 and 1.6 μm windows; the exact difference varies since the 

temperature dependence implied by the CAVIAR measurements is different to that 

of MT_CKD. The uncertainties in the room-temperature measurements are 

somewhat large (~70%), to the extent that no measurements were reported at room 

temperature in the 1.6 µm window. The uncertainties in the high temperature 

measurements are smaller (~15-20% in the 2.1 μm window and ~25-30% in the 1.6 

μm window). Nevertheless, within these uncertainties the measurements 

“unambiguously show that self-continuum absorption at the centres of all near-IR 

windows is typically an order of magnitude stronger than MT_CKD” [Ptashnik et 

al., 2011a]. Due to the large uncertainty, there are no measurements at atmospheric 
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temperatures (< 293 K), and the room temperature measurements at 1.6 μm are not 

included on Figure 5.1. 

Further sets of FTS measurements [Ptashnik et al., 2013] were taken at the Institute 

for Atmospheric Optics in Tomsk, Russia (henceforth Tomsk continuum). These 

measurements look at the self-continuum, and report values in excess of both the 

CAVIAR measurements and MT_CKD when corrected for temperature. Due to the 

longer gas path cell, these measurements are taken at a lower temperature than the 

CAVIAR measurements (290 and 318 K). The baseline of the spectrometer is 

adjusted based on measurements at 9300 cm-1; it is assumed (justifiably due to the 

extremely weak signal) here that the continuum is negligible. Within the 

measurement uncertainties, they agree well with the CAVIAR observations at 

wavenumbers lower than 5000 cm-1. These uncertainties are smaller than the 

CAVIAR uncertainties due to the better baseline stability and longer path length.  

Ptashnik et al. [2015] repeated these measurements; these presented a ~1.5x weaker 

continuum than the 2013 Tomsk measurements in the 4700 and 6600 cm-1 windows. 

This was predominantly due to the choice of baseline; in this case the MT_CKD 

values in the window at 2500 cm-1 were used. This was motivated partly due to the 

large continuum values from Ptashnik et al. [2013]; MT_CKD represents some of 

the lower observed values in this window and as such was chosen as a conservative 

estimate. It also allows for the continuum to be measured relative to MT_CKD in 

these windows, and where MT_CKD is more directly derived from measurements. 

The Tomsk and CAVIAR datasets present values which are roughly an order of 

magnitude stronger than MT_CKD in the 2.1 μm window at room temperature. The 

Tomsk measurements have a self-continuum 2 orders of magnitude stronger in the 

1.6 μm window. The disagreement between these FTS measurements and MT_CKD 

is strongest within the centres of these two windows. Toward the edge of the 

windows and in the bands however there is much better agreement (Figure 5.3).  

5.2.1.2: Foreign continuum  

The other important contribution to the continuum comes from interactions between 

water vapour and air (i.e. predominantly N2 and O2). Measurements were made of 

the foreign continuum during CAVIAR [Ptashnik et al., 2012] in the 2.1 and 1.6 μm 

windows, by subtracting the self-continuum contribution from their total observed 
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continuum absorption coefficients. As with the self-continuum therefore, the 

uncertainties increase with decreasing temperature (due to the uncertainty in the 

subtracted self-continuum), despite the experimentally-observed lack of temperature 

dependence. Figure 5.2 shows the CAVIAR foreign continuum over the range 2000-

10000 cm-1, demonstrating the consistency with varying temperature (figure from 

Ptashnik et al. [2012]). Also plotted on this figure are the MT_CKD foreign 

continuum values, which are significantly weaker than the CAVIAR values. This 

indicates that, independent of the self-continuum, there is significant evidence for a 

strengthening of the foreign continuum within MT_CKD. Ptashnik et al. [2012] 

suggest that this increased foreign continuum at ~2500 cm-1 may be due to 

bimolecular absorption, a strengthening of the N2 fundamental band via N2-H2O 

interactions. This does not explain the behaviour in the other near-infrared spectral 

windows. The effect of a strengthened foreign continuum and the consistency with 

the continuum of this work is explored further in Chapter 6. 
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Figure 5.2: Foreign continuum derived from laboratory measurements by Ptashnik 

et al. [2012], (coloured lines) at different temperatures relative to MT_CKD (solid 

black line) and the Tipping and Ma H2O-N2 far-wing model (see e.g. Shine et al. 

(2013)). The changes between the observed foreign continuum at different 

temperatures are small, this can be explained by the uncertainties (grey shaded 

regions) and the need to subtract the self-continuum from the total, or by some weak 

temperature dependence of the foreign-continuum. Figure from Ptashnik et al. 

[2012]. 

Another important result from Ptashnik et al. [2012] was that the foreign continuum 

plays a significant role in atmospheric conditions, contributing up to 50% of the total 

continuum absorption in the 1.6 and 2.1 μm windows. This is in contrast to 

MT_CKD, where the self-continuum dominates over the foreign in atmospheric 

conditions. If the inferred CAVIAR self-continuum at atmospheric temperatures is an 

overestimate (see Section 5.2.2), then the relative importance of the foreign 

continuum would increase in these conditions. Thus, the foreign continuum is an 

important component of the atmospheric absorption that should be taken into equal 

consideration with the self-continuum. This is explored further in Chapter 6. 
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5.2.2: Grenoble CRDS continua 

5.2.2.1: Self-continuum 

The other major set of continuum observations in this region are the cavity ring-

down spectroscopy (CRDS) and optical feedback cavity enhanced absorption 

spectroscopy (OF-CEAS) measurements of Mondelain et al. [2013, 2014] in 

Grenoble. The results of Mondelain et al. [2014] are considered more robust, 

henceforth referred to as the Grenoble continuum. These measurements use a laser 

based technique to measure at specific wavenumbers within the 1.6 and 2.1 μm 

windows, predominantly at room temperature with additional OF-CEAS 

measurements at various different temperatures between 296 and 323 K. Their 

reported continuum values are significantly lower (at room temperature) than those 

of any of the sets of FTS measurements. The reason for the discrepancy between the 

two is not known; there are however some explanations which might cause this (see 

Section 5.2.4).  

These measurements are however in reasonable (~50%) agreement with MT_CKD 

(at room temperature, see Figure 5.1) within this region, although this is not the case 

at higher temperatures. In the 2.1 μm window there are observations in 4 

wavenumbers towards the bands and only one in the centre of the window, but there 

are observations at 10 wavenumbers in the middle of the 1.6 μm window. Additional 

sets of measurements [Richard et al., 2017; Lechevallier et al., 2018] were presented 

in the 2.1 µm window which are in general agreement with the Mondelain et al. 

[2014] results. Lechevallier et al. [2018] present values in this window compared 

with MT_CKD 3.2, showing that the increase in continuum strength in this region 

relative to MT_CKD 2.5 is consistent with their measurements. 

The agreement between MT_CKD and the Grenoble measurements is not an 

indicator of the accuracy of either, given the disagreement between the CRDS and 

FTS measurements and the lack of a physical basis for the MT_CKD χ-factors and 

weak interaction terms (see Chapter 2).  

5.2.2.2: Foreign continuum  

Mondelain et al. [2015] presented a foreign continuum measurement at one 

wavenumber (4250 cm-1) at 298 K.  This was done using the cavity ring-down 

technique as with the self-continuum measurements. Their reported values were a 
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factor of ~4.5 stronger than MT_CKD in this region, and a factor of ~2 weaker than 

those of CAVIAR (see Figure 5.3). 

5.2.3: Other measurements 

There also exist combined self and foreign-continuum measurements from Bicknell 

et al. [2006]. These are measured using a calorimetric interferometric method, but 

are isolated to specific wavenumbers within the relevant windows. This method is 

not a direct measurement; it is a relative measurement that must be scaled to known 

absorption, in this case CH4 lines at ~2.2 μm. The lack of significant documentation 

and limited wavelength regions make analysis of these measurements in context a 

challenge, yet they are one of the few extant measurements of H2O continuum 

absorption in the near-IR spectral region. These measurements give absorption 

coefficients that are generally stronger than the Grenoble values and MT_CKD, but 

significantly weaker than the Tomsk and CAVIAR FTS measurements at room 

temperature (Figure 5.1). 

5.2.4: Synthesis 

5.2.4.1: Self-continuum 

Figure 5.3 (from [Shine et al., 2016c]) shows the best estimates of the different 

laboratory spectra at room temperature in the spectral windows of interest (showing 

here self-continuum absorption coefficient) with their uncertainties. Also plotted is 

the MT_CKD 2.5 continuum, showing the differences between the FTS and CRDS 

measurements and MT_CKD. It should be noted that the agreement between the 

CRDS measurements and MT_CKD is not the case at higher temperatures (see 

Section 5.2.6).  

In addition to the 1.6 and 2.1 μm windows mentioned previously, there are also 

measurements in the 4 μm window, from CAVIAR, an FTS study by Baranov and 

Lafferty [2012] focusing on the 4 μm window, older measurements by Burch and Alt 

[1984] using a grating spectrometer, and OF-CEAS measurements by Richard et al. 

[2017] and Lechevallier et al. [2018] at selected wavenumbers. These are shown on 

Figure 5.4 (from Lechevallier et al. [2018]). 
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Figure 5.3: Comparison of observed self-continuum absorption coefficient CS for the 

various laboratory spectra at room temperature. While higher temperature 

measurements exist for CAVIAR in the 1.6 μm window, the uncertainties were too 

large to allow for useful observations at room temperature. From Shine et al. 

[2016c]. 

The data on Figure 5.3 in the 4 μm window seem to agree well, aside from the older 

Burch and Alt measurements. The latest Grenoble OF-CEAS measurements (Figure 

5.4) however show a marked decrease in the observed self-continuum relative to the 

FTS measurements, as is the case between the Grenoble and CAVIAR measurements 

in the 2.1 and 1.6 μm windows. Possible reasons for this are presented in Section 

5.2.5. MT_CKD 2.5 agrees well with the CAVIAR and Baranov and Lafferty FTS 

measurements in this window (Figure 5.3); however as with the other windows this 

agreement should not be taken as evidence for or against a given continuum, due to 

the semi-empirical nature of MT_CKD.  
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Figure 5.4: Comparison of observations of the self-continuum at room temperature 

(exact temperature shown in legend) in the 4 μm window. “This work” refers to the 

source of the figure [Lechevallier et al., 2018]. The solid lines (“V 2.4” through 

“V3.2”) are various versions of the MT_CKD continuum model at 296 K. The OF-

CEAS results are at ~296 K. 

5.4.2.2: Foreign continuum 

 Figure 5.5 shows a comparison between the CAVIAR data, Grenoble data and 

MT_CKD (from Shine et al. [2016c]).  There are several measurements in the 4 μm 

window, from CAVIAR and from Baranov and Lafferty [2012]. Independent of 

temperature, the Baranov and Lafferty [2012] and CAVIAR measurements agree, 

and significantly exceed MT_CKD in this window.  
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It is difficult to make robust comparisons to an observation set that does not include 

significant spectral or temperature coverage, as is the case with the Grenoble CRDS 

foreign continuum. Nevertheless, both datasets showed a marked increase in the 2.1 

μm window relative to MT_CKD. The room temperature Grenoble measurements 

and the CAVIAR measurements at 402 K agree within their stated errors, which 

provides significant evidence that the foreign continuum is at most weakly 

temperature dependent across the range of conditions measured.   

 

Figure 5.5: Retrievals of the foreign continuum in the 4, 2.1 and 1.6 μm windows. 

CAVIAR values are in colour (solid lines), with uncertainties (grey shaded regions). 

The Grenoble measurement (square point at 4200 cm-1) agrees within the 

uncertainties with CAVIAR; both exceed MT_CKD significantly. From Shine et al., 

[2016c]. 

There is a dearth of broadband measurements of the foreign continuum; there are 

even fewer observation datasets than there are for the self-continuum, despite their 

relatively equal importance in the atmosphere (assuming the CAVIAR values are 

accurate). The relative importance and dearth of measurements are strong motivators 

for the work presented in Chapter 6, where the continuum derived in this work will 

be compared with that the available laboratory measurements. 

5.2.5: Discussion of observation techniques 

As with the difference between ground-based and space-based spectra in the SSI 

work, a lot of the debate arises from the use of the associated measurement 

techniques (in this case Fourier transform spectroscopy and cavity ring-down 

spectroscopy/optical feedback cavity enhanced absorption spectroscopy), both of 
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which have their advantages and disadvantages. While FT spectroscopy has a much 

wider spectral range than the laser methods, the observed spectrum is heavily 

dependent on the choice of baseline. Laser methods are much more sensitive on the 

other hand, and provide a more precise assessment of the absorption. However, the 

use of lasers limits the number of wavenumbers that can be chosen within a window 

to observe. Shine et al. [2016c] recommend the use of laser methods due to their 

ability to measure weak absorption more precisely, notably at room temperature. 

The cavity ring-down technique relies on an accurate assessment of the reflectivity of 

the dielectric mirrors used to reflect the laser beam within the cavity. Recent studies 

(e.g. Serdyukov et al. [2016]) show that when the cavity cell is injected with water 

vapour, these mirrors can experience an increase in reflectivity on the order of ~1%. 

Given the high (~0.99) reflectivity of these mirrors, this can significantly impact 

measurements of radiation; and as pointed out in Serdyukov et al. [2016], the higher 

the reflectivity, the larger impact this effect has on the final results. The mirror 

reflectivity is not specified in either of Mondelain et al. [2013, 2014], so the exact 

influence an increase in reflectivity cannot be determined. However, an increase in 

the reflectivity would lead to a longer ring-down time, which would go some way to 

explaining the lower absorption relative to the Bicknell and CAVIAR measurements.  

There may also be some unaccounted for surface effects, since the size of the gas cell 

is much smaller in the CRDS measurements compared to the FTS measurements. 

While these provide qualitative reasons why this may have been the case, it is not 

reasonable to assert that this is the case. 

An important caveat is the requirement for measurements from independent sources 

using the same technique. This is the case for the FTS measurements (from CAVIAR 

and Tomsk), but not the case for the CRDS measurements. There exist measurements 

(unpublished) by Joe Hodges at NIST using the cavity ring-down technique; one 

example is a measurement presented in Figure 5.8. This shows an absolute level 

significantly above the Grenoble CRDS measurements, with very small uncertainties. 

This is concerning given the small (claimed) uncertainties in the CRDS 

measurements; while they are clearly precise they may not be accurate if there is no 

agreement within the uncertainties with independent measurements in the same 

conditions (or indeed measurements with a different method, provided they have 

estimated their uncertainties correctly). This is particularly the case when 
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measurements taken using the same instrument in the same laboratory do not agree 

within their uncertainties, for example the self-continuum of Mondelain et al. [2013, 

2014]. 

The difference in these continua could have profound impacts on modelling of the 

atmospheric energy budget and in remote sensing. A self-continuum on the order of 

the Tomsk FTS measurements would indicate that the continuum would have a 

significant effect on these; however a continuum on the order of MT_CKD and the 

CRDS measurements would have minimal effect. 

5.2.6: Temperature dependence of the observed self-continuum 

Another subtlety involved is the lack of a well-constrained self-continuum 

temperature dependence. Given the fact that most of these measurements are taken at 

above room temperature, any uncertainty in this temperature dependence and 

deviation from the nominal temperature dependence included in MT_CKD will have 

a significant effect on the atmospheric continuum. This especially motivates the need 

for continuum measurements in atmospheric conditions, since most of the continuum 

comes from the lower troposphere, with typical temperatures well below room 

temperature.  

Figure 5.6 shows the observed temperature dependence of the self-continuum in the 

2.1 μm window a) at the low frequency edge (4250 cm-1), b) in the centre of the 

window (4301 cm-1) and c) at the high-frequency edge (4723 cm-1) for the CAVIAR, 

Tomsk [Ptashnik et al., 2013] and Grenoble [Mondelain et al., 2014] measurements, 

along with the MT_CKD temperature dependence. The dashed line shows the 

temperature dependence expected from an exponential fit (exp(D0/kT)) with D0 the 

dimer dissociation energy. In the 1000/T vs. log10(Cs) space chosen for the graph, the 

measurements should lie on a straight line if they have this temperature dependence. 

Within the uncertainties, the CAVIAR and Grenoble measurements appear to agree 

well with this fit, however the Tomsk measurements do not. The Grenoble and high-

temperature CAVIAR measurements in Figure 5.6 agree well, assuming this 

temperature dependence.   

This temperature dependence is itself an assumption however; it is entirely possible 

that deviations from this fit are physical, e.g. due to a change in a dominance of 
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quasi-bound dimers at high temperature to true-bound dimers at low temperature 

[Ptashnik et al., 2011b]. A change in this temperature dependence could result in the 

central values of the room-temperature CAVIAR and Tomsk measurements being 

consistent with the high temperature CAVIAR measurements. 

 

Figure 5.6: Observed temperature dependence in the 2.1 μm window at three 

wavenumbers at the edges and centre of the window.  The uncertainties in the CRDS 

measurements are smaller than the symbol size. (From Shine et al. [2016c]) 

Figure 5.7 shows the observed temperature dependence in the 1.6 μm for these same 

sets of measurements, again at the low frequency edge (5875 cm-1
, first frame), b) in 

the centre of the window (6121 cm-1
, second frame) and c) at the high-frequency edge 

(6665 cm-1, third frame) along with the temperature dependence assumed by 

MT_CKD. At the low 𝜈 edge of the window, there is reasonable agreement between 

this temperature dependence and the observed temperature dependence for the 

various datasets, excluding the Ptashnik et al. [2013] Tomsk measurements. 

Also shown on Figure 5.7 are the measurements of Bicknell et al. [2006]; however 

these are only shown in the centre of the window. These measurements are of both 

the self and foreign continuum; this makes it difficult to isolate the contribution from 

the self-continuum, given the uncertainty in the strength of the foreign continuum 

(see Section 5.4.2.2). This middle frame shows reasonable consistency between the 

CAVIAR and Bicknell et al. measurements (if the assumed temperature dependence 

is correct), but not with the Grenoble measurements, which indicate a much weaker 
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temperature dependence than MT_CKD or the other sets of observations. The third 

frame again shows no consistency between CAVIAR and Grenoble. 

 In all three of these frames, the Tomsk measurements are inconsistent unless there is 

significant deviation from the assumed exponential temperature dependence at lower 

temperatures. The CAVIAR data seems consistent in Figure 5.6 and the first two 

frames of Figure 5.7, but there is some deviation in Figure 5.7. The Grenoble 

measurements are mostly internally consistent (i.e. lie on a straight line), despite the 

lack of consistency in the final two panels of Figure 5.7. 

A lack of theoretical understanding and additional data make the exact temperature 

dependence in the centre of this window difficult to ascertain; there is no compelling 

reason to assume that it will be the same as the temperature dependence in the 2.1 

μm window. Equally however, there is no reason to assume it will be different. The 

Ptashnik et al. [2011a] FTS measurements indicate reasonably consistent 

temperature dependences between these two windows at high temperature.  

 

Figure 5.7: Temperature dependence against self-continuum absorption coefficient, 

this time for the edges and centre of the 1.6 μm window. The CRDS uncertainties are 

again smaller than the symbol size. (From Shine et al. [2016c]). 

Additionally, there have been some recent (unpublished) measurements taken at the 

National Institute of Standards and Technology (NIST) using the cavity ring-down 

technique. These are shown on Figure 5.8 and appear consistent with the temperature 
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dependence of the CAVIAR measurements, but less so with the Grenoble 

measurements. These measurements do not have a detailed uncertainty analysis. 

Nevertheless; they provide some indication that the CAVIAR temperature 

dependence could be extrapolated down to lower temperatures.  

 

Figure 5.8: Similar to Figure 5.7, but including the NIST data point (all 

observations at ν = 6121 cm-1. Stated uncertainties in the Grenoble and NIST 

measurement are smaller than the symbol size. (With thanks to Joe Hodges and Keith 

Shine). 

5.2.7: Atmospheric observations of the near-IR continuum 

Reichert and Sussmann [2016] presented continuum values derived from 

measurements taken at the high altitude Zugspitze site in the German Alps (47.42° N, 

10.98° E; 2964 metres above sea level). This was done using a spectrometer 

calibrated using a combination of Langley-derived top of atmosphere irradiance, a 

medium-temperature (~1970 K) blackbody and an assumed SSI from a radiative 

transfer model [Reichert et al., 2016]. There are several issues with these 
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measurements and with the calibration process however, particularly for the stated 

aim of measuring continuum absorption in the 2.1 and 1.6 μm windows. These are 

expressed more fully in Shine et al. [2016a, 2016b], on which I was a co-author, and 

will be discussed in the following paragraphs. 

These measurements, unlike the previous measurements mentioned in this Chapter, 

were taken in the atmosphere using the Sun as a radiation source. These are 

ostensibly the most immediately comparable measurements to the ones presented in 

this thesis. However, there are a number of significant differences which make 

comparison between these two datasets challenging. The Zugspitze work is taken at 

high altitude, meaning that the vapour pressure is significantly lower, so it is 

expected that the foreign-continuum will dominate over the self-continuum. This 

makes it difficult to compare with the CAVIAR field measurements since this is 

mostly either self-continuum (in the 2.1 μm window) or a combination of the two (in 

the 1.6 μm window); these are very difficult to separate without making some 

significant assumptions about the relative effect of each of these components (in the 

absence of measurements over a wide range of conditions).  

While a high altitude site makes it more difficult to measure the effect of water 

vapour due to the lower vapour pressures (most of the water vapour is concentrated 

in the lower troposphere), this also means that the observation site is above the 

atmospheric boundary layer. This means that the effect of aerosol scattering is 

strongly reduced, which aids the analysis of the measurements and reduces the 

measurement uncertainty. These measurements were also taken near the winter 

solstice, in contrast to the measurements in this work. This means that the 

atmospheric path is longer due to the larger zenith angles, which mitigates the lower 

water vapour concentrations. However, the effect of atmospheric refraction becomes 

more pronounced at these higher zenith angles, which introduces additional 

uncertainty. The lower water vapour concentration does not allow for easy 

measurement in the windows; however this also allows for measurements to be taken 

at band centre, since unlike in the Camborne measurements these are not saturated. 

The large airmass factors involved also present an issue for Langley extrapolation for 

the calibration procedure, since a long extrapolation must be made from the data 

points at the lowest observed airmass (~6 airmasses, Reichert et al. [2016]) to zero 
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airmass. The Reichert and Sussmann results are primarily derived using the closure 

technique, making the calibration of their instrument of primary importance.  

 

Figure 5.9 shows the Reichert results against two versions of the MT_CKD model 

(2.5 and the BPS-MT_CKD 2.0 model developed at GFDL (e.g. Paynter and 

Ramaswamy [2014]) which brings the MT_CKD 2.5 model more in agreement with 

the Mondelain et al. [2013, 2014] values in the 2.1 and 1.6 μm windows. These 

values are only shown where the uncertainty at k = 2 (95% confidence interval) does 

not exceed the central value, i.e. the uncertainties do not overlap with an absorption 

coefficient of zero. These show that it was not possible to derive combined self + 

foreign continuum coefficients in the centres of these windows in their measurement 

conditions.  

 

Figure 5.9: Absorption coefficients (in black) from Reichert and Sussmann [2016], 

alongside MT_CKD 2.5 (light blue line), the BPS-MT_CKD 2.0 model (darker blue), 

the Bicknell et al. measurements (green points) and the Ptashnik et al. [2013] 

measurements (red points). Points are only shown where the continuum values 

exceed the k = 2 uncertainties. Figure from Reichert and Sussmann [2016]. 

Nevertheless, the Reichert papers are significant advances in our understanding of 

the in-band continuum in the atmosphere, and physical values are presented in the 



Chapter 5 – Observations of the near-IR water vapour continuum  

 
 

Page 154 

 

2.1 μm window and band edges. These values seem to be in good agreement with the 

Ptashnik et al. [2013] values, although the large uncertainties mean they are also 

consistent with MT_CKD. Perhaps more important for atmospheric studies is the 

calibration method described in Reichert et al. [2016]; as our understanding of the 

SSI becomes more robust, the calibration method could be used readily in the field to 

get absolute measurements of radiation and absorption without needing to go to the 

lengths described in Chapter 3 and Gardiner et al. [2012]. 

An additional, unpublished set of atmospheric continuum measurements was 

presented by Mlawer et al. [2014]. These do not include uncertainties, which makes 

them difficult to reconcile either with the work presented in Section 5.3 or the 

previous laboratory measurements. Since these results are unpublished, and there 

were significant difficulties in e.g. removing the effects of aerosols, these results are 

not included in the comparisons presented in this thesis. 

5.3: Derivation of continuum using Camborne 

measurements 

5.3.1: Introduction 

The FTS measurements of 22 August 2008 and 18 September 2008 are used here to 

derive an estimate of the continuum absorption in the atmosphere. Optical depths are 

derived using both the Langley method and the radiative closure method using the 

CAVIAR2 SSI from Chapter 4. The continuum is hence derived using this total 

atmospheric optical depth via: 

(5.1)   𝜏𝑐𝑜𝑛𝑡 =  𝜏𝑡𝑜𝑡𝑎𝑙 − 𝜏𝐻2𝑂 −  𝜏𝑔𝑎𝑠 −  𝜏𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ − 𝜏𝑎𝑒𝑟𝑜𝑠𝑜𝑙 −  𝜏𝑜𝑡ℎ𝑒𝑟  

In this case, extinction due to clouds is considered negligible due to the spectra being 

taken only during clear skies, and the DC voltage filtering removing any scans where 

invisible clouds could have passed through the FOV of the instrument. Here, 𝜏𝐻2𝑂 is 

the line absorption due to water vapour, and  𝜏𝑔𝑎𝑠 the line absorption due to other 

atmospheric gases. 𝜏𝑜𝑡ℎ𝑒𝑟 in this case refers to other sources of continuum absorption 

(e.g. from CO2), or collision-induced absorption such as that of O2 at ~8000 cm-1. 

𝜏𝑎𝑒𝑟𝑜𝑠𝑜𝑙 is the aerosol optical depth, referred to in various other places in the thesis as 
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AOD. The values of τx used to generate τcont come from either models or observation 

as discussed below. 

Figure 5.10 shows a schematic of how the various pieces of data described in 

Chapter 3 are put together to derive the continuum.  

 

Figure 5.10: Schematic of the continuum derivation process. The Ångström 

extrapolation is not used in itself, but is used as a constraint on the Mie scattering 

calculations.  

As described in Section 3.3.3, the Langley-derived optical depth spectra are 

preferred, since they have a smaller uncertainty than the closure-derived spectra, as 

no prescribed SSI is required (which has uncertainties). The spectra from 18 

September are considered more robust, since the AOD is smaller (in the spectral 

region of interest, see Chapter 3.4.5.2), and there are spectral features in the spectra 

of 22 August which are spurious (see Chapter 3.4.4.1 and Figure 3.21). The closure-

derived spectra from 18 September are used as a cross-check to the Langley-derived 

values. The closure and Langley-derived spectra from 22 August are used to compare 

to the 18 September spectra; differences in water vapour concentrations between the 

two days mean that they are not directly comparable without making some 

assumptions about the relative effects of the foreign and self-continuum. This will be 

explored further in Chapter 6. 
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5.3.2: Retrieval of continuum optical depth from observed optical depth 

The following section describes the process used to derive the continuum optical 

depth from the Langley-derived optical depths (see Chapter 3.3.2). Each component 

in Equation (5.1) is considered in turn and is subtracted from the total observed 

optical depth to derive the continuum. This is then subject to smoothing to present a 

best-estimate Langley-derived continuum. The subsections describe how each of 

these components of the overall optical depth are derived, with reference to the 

relevant Sections in Chapter 3 as necessary.  

5.3.2.1: Observed optical depth 

As described in Chapter 2.13, the NIR region is home to many spectral lines; these 

are primarily due to water vapour, but with some localised bands due to e.g. CO2 and 

CH4. The absorption in the atmosphere is saturated in much of this region 

(particularly within the strong water vapour bands); the spectrometer therefore 

observes no radiation in these regions. This means that the spectrometer cannot 

measure beyond a certain optical depth.  

Figure 5.11 shows the observed optical depth in the 2000-10000 cm-1 spectral region. 

The observed optical depths are only presented at points where a) a Langley analysis 

was possible (see Chapter 3.3.2 and 3.4.3), and b) where the total optical depth at 

that wavenumber in either the model or the observations did not exceed 0.5. This is 

to ensure that misattribution of spectral lines (either positioning or strength) does not 

affect the derived continuum. The observations show the same band-window 

structure as the atmospheric optical depth (black line on Figure 5.11) derived from 

the model simulations; however since the observations include aerosol extinction, 

Rayleigh scattering and continuum absorption the baseline (i.e. the lower envelope of 

the data points) is higher. 
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Figure 5.11: Observed optical depth from the Langley analysis of 18 September 

2008 in the NIR spectral region (blue), alongside the modelled optical depth (black). 

The observed optical depth is only shown where it or the modelled optical depth is 

less than 0.5. 

The following sections discuss the process by which the continuum is extracted from 

the total optical depth in a small spectral region. This process is applied to all of the 

wavenumbers in the 2000-10000 cm-1 interval. 

5.3.2.2: Optical depth from gaseous absorption 

As described in Chapter 2.3.3 and 2.3.6, absorption (optical depth) by atmospheric 

gases is determined from a line-by-line code, with atmospheric parameters 

determined from radiosonde ascents, and contemporary CO2 and CH4 concentrations 

(Chapter 3.4.5.1) as input. These optical depths are subtracted from the observed 

optical depths, which in principle should leave only continuous absorption (i.e. 

absorption that does not vary sharply with wavenumber, such as via Rayleigh 

scattering, water vapour continuum and aerosol extinction). In practice, this is not 

necessarily the case, since there will be mismatch between line positions, broadening 

and strength from the spectrometer compared to those from HITRAN/RFM, which is 

particularly the case given the high spectral resolution of the FTS observations. 

Sensitivity tests were performed using the range of uncertainty in the radiosonde (in 

temperature, water vapour mixing ratio and pressure) to model such an offset within 

the uncertainty budget. This effect is additionally mitigated via smoothing of the 

final continuum spectrum (see Chapter 3.4.3.5).  
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Optical depths will be compared within the two atmospheric windows of most 

interest; the 1.6 and 2.1 μm windows. Figure 5.12 shows a comparison of the 

modelled (line-by-line) optical depth spectrum with the Langley-derived optical 

depth from 18 September 2008 within the 1.6 μm window. While the baselines are 

significantly different due to the lack of aerosol or continuum in the model run, the 

main spectral features are consistent between them, both in terms of lineshape and 

position as well as intensity. 

There is additional noise in the observed optical depth spectrum shown in Figure 

5.12; this noise matches up with positions of solar lines (see Chapter 3.4.3.5), 

indicating that this may be due to shifting solar lines throughout the day, or some 

instrumental issue. These are filtered out, so do not affect the derived continuum. 

This feature is present both in the Langley-derived spectra and the closure-derived 

spectra (not shown), indicating that it is not due to incorrect line positions in the 

chosen SSI (since this is not required in the Langley method). These artefacts should 

have little impact on the derived continuum since this is subject to smoothing; to 

further mitigate this a filter of ~0.1 cm-1 either side of a solar line (obtained from the 

CAVIAR2 SSI from Chapter 4) is applied to remove these effects (see Section 

3.4.3.5).  

 

Figure 5.12: Total observed optical depth from 18 September 2008, via the Langley 

method, and derived optical depth from a line-by-line simulation using HITRAN 

2016 using radiosonde data for the atmospheric profile. This plot shows a localised 

set of water vapour lines in the 1.6 μm window.  
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Figure 5.13 shows the same within part of the 2.1 μm window. In this case, two of 

the lines are somewhat stronger than those in Figure 5.12, as can be seen in the 

feature at ~4682 cm-1 where the tip of a (relatively) strong water vapour line has been 

filtered out. This prevents incorrect derivation of continuum optical depth, which 

could happen when subtracting a very large optical depth from a model run from a 

markedly smaller optical depth from the observations in regions where the 

atmospheric absorption is saturated. In this part of the window, the noise is less 

obvious.  

 

Figure 5.13: Total observed optical depth from 18 September 2008, via the Langley 

method, and derived optical depth from a line-by-line simulation using HITRAN 

2016, using radiosonde data for the atmospheric profile. This plot shows a localised 

set of water vapour lines in the 2.1 μm window. 

5.3.2.3: Optical depth from Rayleigh scattering 

Rayleigh scattering is a second-order effect in the near-IR due to its strong 

wavelength dependence; however it is not entirely negligible. In this study, mid-

latitude summer Rayleigh optical depths from Bucholtz [1995] are used, and 

subtracted directly from the optical depth observed by the spectrometer. This is 

described in more detail in Chapter 3.3.4. The Rayleigh scattering optical depth is 

shown in Figure 3.6. 
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5.3.2.4: Optical depth from aerosol extinction 

By far the largest source of uncertainty in the calculation of τcont is the contribution of 

aerosol extinction. While most important in the visible and UV spectral regions, 

aerosol extinction is still perhaps the dominant contributor to optical thickness in the 

near-IR atmospheric windows. It is especially difficult to separate from the 

continuum signal since like the continuum, the spectral behaviour of aerosol 

extinction is generally smooth. In addition, most methods of measuring aerosol 

extinction use channels in the visible or near-visible part of the spectrum; therefore 

these measurements have to be extrapolated into the near-infrared. In this work, the 

only source of direct aerosol measurements are concurrent measurements taken using 

the Microtops sunphotometer in 5 different channels between 0.436-1.020 µm.  

The Langley method assumes constant optical depths for all components; however as 

seen in Figure 3.28 τaerosol changes throughout the course of a day. While this has 

little effect on the y-intercept of a Langley fit (the absolute changes are small, and 

therefore the SSI is almost entirely unaffected), the gradient is much more sensitive 

to these changes. This variation is not evident when looking at the derived optical 

depth from the FTS spectra, which led to concerns about the accuracy of the 

Microtops instrument (see Section 3.4.5.2). Figure 3.28 shows the observed time 

variation of τaerosol from the Microtops measurements at 1.02 μm alongside the 

observed time variation of the optical depth from the spectrometer at 1.02 μm with 

the line and Rayleigh contributions removed (i.e. τcont + τaerosol). The time-dependent 

mismatch between the FTS spectra and the Microtops measurements was the primary 

motivation for using the daily average of the Microtops optical depths rather than 

time-varying values. 

Another notional method of assessing τaerosol independent of the sunphotometer is to 

take the spectral values measured at ~9500 cm-1
 by the FTS. The continuum in this 

region as measured in the laboratory is vanishingly small; in e.g. Ptashnik et al. 

[2013] it is assumed to be zero. While this may not be the case in these lower-

temperature conditions, it is at least a useful exercise to determine what kind of near-

IR τaerosol arises from assuming all the extinction in this window to be due to aerosol 

(after removing Rayleigh scattering). The raw optical depth derived in this window is 

relatively large (around 0.1, see Figure 5.11); this is possibly because this window is 
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right on the edge of the range of the detector used in the spectrometer (see Chapter 

3.4.3.1).  

This in turn leads to large implied aerosol values that result in negative continuum 

values in the near-IR windows. The spectral variation of this implied aerosol 

scattering would then be derived using the Mie scattering model. In practice, this 

method is not used, since it leads to unphysical values of the continuum absorption in 

the other near-infrared windows and does not account for other possible contributors 

to the optical depth in the 1.02 µm window (e.g. continuum absorption) or 

spectrometer issues. Chapter 7 describes ways in which this could be improved in a 

future experiment. For example, using a spectrometer with greater sensitivity in the 

near-visible part of the spectrum could better quantify the extinction at these 

wavelengths and improve consistency between the Microtops measurements and the 

FTS. This would act as a better constraint on τaerosol in the spectral regions of interest 

to this work. 

As discussed in Chapter 3.3.5 and 3.4.5.2, a Mie scattering code was used to quantify 

the spectral behaviour of the aerosol extinction in the spectral region of interest, as it 

is more physically-based than the Ångström extrapolation. This was done using the 

average AOD measured across the day, since as will be shown in Figure 5.22 the 

derived τcont (using the closure method) are not consistent if a time-varying τaerosol 

correction is applied. Figure 5.14 shows the aerosol optical depth used for 18 

September. 

 

Figure 5.14: τaerosol for 18 September derived from the Mie scattering calculations 

assuming an optical depth from the Microtops at 1µm, with k = 1 uncertainties. 



Chapter 5 – Observations of the near-IR water vapour continuum  

 
 

Page 162 

 

5.3.2.5: Continuum absorption 

Figure 5.15 shows a step-by-step schematic of the continuum derivation process in a 

small spectral region in the 1.6 μm window, beginning with the derived optical depth 

and subtracting each component of the optical depth in turn. In this case, τother in 

Equation (5.1) is assumed negligible. Figure 5.15 shows the case inside the 1.6 µm 

window for the Langley analysis of 18 September 2008. A comparison of the 

closure-derived to the Langley-derived continuum for both 18 September 2008 and 

22 August 2008 is presented in Section 5.5.1.  

The derived continuum in Figure 5.15 has a smooth baseline, with large peaks and 

troughs, which are caused by mismatches in spectral line positions between the 

model simulations and the spectrometer output (see Section 5.3.2.2). These are 

mitigated by smoothing over 15 cm-1, as shown in Figure 5.16. This smoothing 

introduces minimal change in the baseline (and therefore the derived 

continuum).These results are examined in more detail in Section 5.5.  
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Figure 5.15: Derivation process of the continuum absorption as seen in the 1.6 µm 

window. The observed total optical depth is shown in (a), from which contributions 

from the line-by-line code (b), Rayleigh scattering (c) and aerosol (d) are subtracted 

to obtain the derived continuum (d). The final continuum is then smoothed (see 

Figure 5.16). 

 

 

a) 

b) 
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Figure 5.16: Derived continuum from the Langley analysis of 18 September 2008, 

both smoothed and unsmoothed between 2000-10000 cm-1. 

5.4: Uncertainty budget 

The uncertainty budget is a combination of uncertainty from the observations 

themselves, the ancillary observations used to generate the other contributors to the 

total extinction, uncertainties in the radiative transfer model and line database, and in 

the case of aerosol extinction the assumptions used in determining the near-infrared 

spectral behaviour.  These are all combined to determine the final uncertainty in the 

continuum. The experimental uncertainties were presented in Section 3.4.3.4. The 

uncertainty in aerosol scattering was presented in Section 3.4.5.2, using the method 

discussed in Section 3.3.5.2. When using the closure method, an additional 

uncertainty is introduced through the use of an assumed SSI. In this case, the 

uncertainty is that of the CAVIAR2 spectrum derived in Chapter 4. 

Figure 5.17 shows the relative contribution of each component of the uncertainty 

budget. The contributions from aerosol and the measurement are larger than the 

model uncertainty within the 1.6 µm window. Note that these uncertainties are added 

in quadrature: the line by line uncertainty is therefore dominant in the edges of the 

windows (where the lines are strongest), and the aerosol/observational uncertainties 

dominate in the centres. For part (a) of this Figure, the line-by-line uncertainty 

(discussed in Chapter 3.4.5.1) has been smoothed over 15 cm-1 for visual clarity. The 

relative contribution of the line-by-line uncertainty in between microwindows is 

therefore exaggerated, and underestimated where individual lines are located. Part 



Chapter 5 – Observations of the near-IR water vapour continuum  

 
 

Page 165 

 

(b) of this Figure shows the relative contribution inside the 2.1 µm window, 

indicating that the LBL uncertainty is significantly smaller than the aerosol and 

measurement uncertainty within microwindows without this smoothing. 

 

Figure 5.17: Contribution of each part of the uncertainty budget (in this case for 18 

September 2008): these are added in quadrature to obtain the final uncertainty. Part 

(a) shows the uncertainty across the 1.6 and 2.1 µm windows. The uncertainty in the 

line-by-line simulations is smoothed here as a visual aid; this smoothing is not 

applied when calculating the uncertainty in practice. Part (b) shows the uncertainty 

in a small part of the 2.1 µm window, without smoothing. 

5.4.1: Observational uncertainties 

The observational uncertainties are derived in the same manner as Chapter 4, as 

described in Chapter 3 and in Gardiner et al. [2012]. Again, a Monte Carlo method 

(Section 3.3.7) is used to derive the uncertainty in the Langley fit, this time focusing 
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on the slope rather than the intercept. The uncertainty in the closure-derived optical 

depth is a composite of the uncertainty in optical depth derived from the 

measurement and SSI, and the statistical spread of the observations which are added 

in quadrature.  

5.4.2: Uncertainties in the model-derived optical depth  

The uncertainty in the model-derived optical depth is a combination of uncertainty 

inherent within the radiative transfer model, uncertainty in the spectroscopic 

quantities within HITRAN, and uncertainty in water vapour, temperature and 

pressure from the radiosonde ascent used to construct the atmospheric profiles.  

The uncertainty from HITRAN is not well-quantified (see Section 2.3.6.2); each line 

has an “uncertainty parameter” associated with it which provides a range of 

uncertainties within which the true value lies. Different contributors of data to the 

HITRAN database (whether experimental or theoretical) may have different 

definitions of what these uncertainty parameters may mean, since they are ultimately 

arbitrary. The lack of strong quantification means that these are not included in this 

work. Additional uncertainty from the broadening and strength of lines is included 

via sensitivity tests using 5% uncertainty in the radiosonde-derived atmospheric 

parameters (see Section 3.4.5.1). 

The uncertainty in the model is obtained via sensitivity tests using the stated 

uncertainty in the radiosonde observations. These differences in temperature, 

pressure and WV will result in different amounts of absorption and broadening 

between model runs taken using these adjusted parameters. Most of this uncertainty 

is within spectral lines; since these are predominantly filtered out, only the far-wing 

effects are important for deriving continuum within the microwindows (see Figure 

5.17 (b)). This uncertainty is rather small and is almost negligible when compared 

with the uncertainty from the observations and from the aerosol within these 

microwindows. The uncertainty in other atmospheric extinction (e.g. absorption due 

to non-measured gases, Rayleigh scattering etc.) is more difficult to quantify, since 

these values are either taken from standard atmospheres (in this case the US Standard 

atmosphere), or from observations (in the case of well-mixed gases like CH4 and 

CO2), or otherwise calculated without direct observations (Rayleigh scattering). 

These are assumed to be minor effects however and are only important in narrow 
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spectral regions. They should not contribute significantly to the uncertainty, and are 

therefore neglected. 

5.4.3: Uncertainties in aerosol measurements  

Using the Mie scattering code to generate uncertainties is challenging. The lack of 

well-defined input parameters (since they are coming from climatological values, 

which have a broad range) means that the uncertainty budget needs to be derived in a 

more ad hoc manner. This is discussed in more detail in Section 3.3.5.2. Due to the 

large number of parameters controlling aerosol extinction and the wide ranges 

thereof, it is difficult to determine the exact range of the uncertainties. The best 

estimate of the uncertainties used here is presented in Figure 3.29, derived via 

sensitivity tests using the Mie scattering code for the range of parameters in Dubovik 

et al. [2002]. 

5.5: Results and analysis  

5.5.1: Best estimate of the derived continuum 

 

Figure 5.18: Best estimate of the water vapour continuum (Langley analysis of 18 

September 2008) in the 1.6 and 2.1 µm windows (blue line, k = 1 uncertainties in 

blue and k = 2 uncertainties in cyan) compared with MT_CKD 2.5 (black) and 3.2 

(red). 
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Figure 5.18 shows the final best estimate of the continuum (from the Langley 

analysis of 18 September 2008), with the corresponding best estimate of the 

uncertainty (k = 1 in blue and k = 2 in cyan) on those values, focusing on the two 

windows of interest. Relative to MT_CKD, the central values are significantly 

stronger; a factor of ~10 in the 2.1 μm window and a factor of ~100 in the centre of 

the 1.6 μm window. Of particular interest is the spectral shape of the derived 

continuum; this is similar to the behaviour from the FTS self-continuum 

measurements from the laboratory (e.g. Ptashnik et al. 2011), in that the strength (at 

least in logarithmic space) appears to be reasonably constant across the window. This 

increase in strength also appears consistent with the relative strengths of the FTS 

laboratory measurements and MT_CKD at room temperature (see Chapter 6 for a 

more detailed analysis).  

It is important to emphasise that MT_CKD has no uncertainties associated with it, 

which makes any assertions about consistency with MT_CKD difficult to make. A 

lack of consistency between a given measurement analysis and MT_CKD is 

indicative that the model requires strengthening, assuming that there are no 

systematic errors unaccounted for in the experiment and that the uncertainty budget 

is reasonably characterised. Agreement between a given measurement and MT_CKD 

does not provide compelling evidence for a given continuum being correct; this can 

only be determined through comparison of the relevant experimental data. 

The k = 1 (67% confidence interval) uncertainty limits appear to be inconsistent with 

MT_CKD in this instance. This is despite the large uncertainty introduced from the 

range of plausible aerosol values, and the relative contribution of the measurement 

uncertainty. This indicates that the value is likely not to be consistent with MT_CKD. 

However, the overlap between the two in their k = 2 uncertainties (aside from in the 

low-wavenumber edge of the 2.1 μm window) means that the two are not necessarily 

inconsistent (unlike the room temperature FTS measurements). This is not 

unexpected, given the challenges faced in measuring the continuum in atmospheric 

conditions. The central values in all of the windows here are above zero; this is in 

contrast to the values of Reichert and Sussmann [2016] which showed predominantly 

negative values in the 1.6 μm window. The significantly lower k = 2 uncertainties in 

the low wavenumber edge of the 2.1 μm window are indicative of a stronger 

continuum than predicted by MT_CKD in this region. 
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These values are significantly lower than the values presented in Figure 7.15 of 

Menang [2012]. This is in significant part due to the updated calibration procedure 

used in this thesis. The Menang results also do not include a detailed uncertainty 

estimate; the detailed assessment of the uncertainty budget in this thesis indicates 

that Menang [2012] was over-optimistic in their assessment of the uncertainty.  

Figure 5.19 shows the ratio of the Camborne-derived continuum optical depth to that 

of MT_CKD 2.5 and 3.2, with the corresponding uncertainty. The continuum 

strength is ~4x stronger than MT_CKD 3.2 in the 2.1 µm window, and about 20x 

stronger in the centre of the 1.6 µm window; this is somewhat consistent with the 

CAVIAR self-continuum measurements of Ptashnik et al. [2011] but does not show 

enough of an increase to account for the Tomsk FTS values discussed in Section 

5.2.1. These results indicate that MT_CKD significantly underestimates atmospheric 

absorption in these windows. Chapter 6 will present more detailed analyses of these 

measurements in relation to the laboratory spectra and discuss the relative 

contribution of the foreign and self-continuum.  

 

Figure 5.19: Ratio of the Langley-derived continuum derived from 18 September 

2008 to MT_CKD 3.2 and 2.5, with corresponding k = 1 uncertainties. The k = 2 

uncertainties are not shown, but overlap with zero. 

Figure 5.20 shows the derived continuum optical depth across the 2000-10000 cm-1
 

range, compared with MT_CKD 2.5. In this case, the dark blue line shows the central 

values, the medium blue the k = 1 uncertainties and the cyan the k = 2 uncertainties. 
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Within the regions of interest, the k = 2 uncertainties overlap with the MT_CKD 

uncertainties.  

 

Figure 5.20: Langley-derived continuum optical depth from 2000-10000 cm-1 for 18 

Sept 2008. The blue shaded regions are the k = 1 uncertainties, the cyan regions the 

k = 2 uncertainties. 

There are a few features in this Figure that are noteworthy. The continuum in the 

window at 1.25 μm is also significantly stronger than the MT_CKD water vapour 

continuum; however the presence of a strong O2 continuum band which is not 

present within the RFM is important, since it strengthens the absorption in the centre 

of this window and means that the two cannot be compared directly.  

The derived continuum in the window at ~4 μm appears to be in reasonable 

agreement with MT_CKD in the centre of the window; this is not the case towards 

the edges of the bands either side. This agreement with MT_CKD also indicates 

agreement with the laboratory spectra of Baranov and Lafferty [2012], and with the 

CAVIAR [Ptashnik et al., 2012] data (shown on Figure 5.3). This is in contrast to the 

CRDS measurements of Lechevallier et al. [2018] (shown on Figure 5.5), which are 

lower by roughly an order of magnitude. 

The observed optical depth at ~9500 cm-1 is very large relative to MT_CKD; the 

reason for this is unknown. It was speculated that the feature at 1 μm may be due to 

an underestimation of the required correction or the uncertainty in the mirror 

reflectivity (see Section 3.4.3.2). This was motivated by the mirror reflectivity 

correction being an extrapolation beyond 6600 cm-1, which in this case would lead to 
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an overestimation of the signal. However, the following demonstrates that this is 

unlikely to be the case. An adjustment of the mirror reflectivity would lead to a 

systematic change in the observed irradiances at a given wavenumber. This 

adjustment would be the same for each observation, which means that the gradient in 

the Langley analyses would be mostly unaffected, even when considering the shift 

into logarithmic space (see Figure 5.21). This also applies when calculating the 

uncertainty budget in the optical depth, since the separation of the systematic and 

random component filters out the systematic effect in the uncertainty budget. 

 

Figure 5.21: Idealised Langley plots of a set of dummy observations adjusted by a 

mirror reflectivity factor R, demonstrating the lack of change in gradient even when 

accounting for the shift into logarithmic space.  

Therefore, the only possible effect that the mirror reflectivity could have on this is if 

the reflectivity changed over the period of a single day, e.g. via uncertainty in the 

angular dependence of the mirrors. However, the angular dependence was not 

observed to be particularly important from the NRR observations (see Chapter 3). 

This may have changed as the mirrors became aged; any ageing effects and 

imperfections may not be uniform across the mirrors, which may change this angular 

dependence. This was not considered particularly likely however. 

A more compelling reason is that this is likely in part due to aerosol scattering. The 

uncertainty in the observations across the day and the discrepancy between the FTS 

spectra and the aerosol measurements certainly seem to indicate that the aerosol 

scattering is not correctly accounted for at these wavenumbers. This effect is less 
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pronounced with decreasing wavenumber and should be mostly unimportant in the 

2.1 μm window (see Figures 5.14 and 5.17). The lack of well-constrained aerosol is a 

significant contributor to the uncertainty in the derived continuum (in contrast to the 

SSI, on which it has a minimal effect); ways in which this could be mitigated in a 

future campaign are discussed in Chapter 7. 

Figure 5.22 shows the closure-derived continuum for various times across 18 

September 2008 with a time-varying aerosol correction applied, to show how the 

offset between the FTS spectra and the Microtops measurements affects the 

continuum retrieval. As the observations were taken over short measurement periods 

(a few minutes) with long gaps (around an hour) between them, they are here 

averaged over these short periods. Again, the results are smoothed over 15 cm-1. As 

discussed previously (Section 3.4.5.2), the aerosol measurements across the day 

showed a marked decrease that was not found in the FTS spectra; this manifests itself 

as an increase in continuum optical depth throughout the day. The constancy of the 

integrated water vapour and meteorological conditions throughout the day (Figure 

3.28) indicate that it is very unlikely that the continuum is getting stronger during the 

course of the day, and certainly not by a factor of two. This throws further doubt on 

the observed time variation in τaerosol. As will be discussed in Section 5.5.2.1, the use 

of a day-averaged τaerosol leads to a much more consistent continuum derivation. 

Also of interest here is the pattern observed at ~7500 cm-1 towards the edge of the 

band in the 1.25 μm window, and at the low-wavenumber edge of the 1.6 μm 

window. It appears here that the continuum optical depth is decreasing at these 

wavenumbers into the bands in the early (07:45-10:30 UTC) retrievals, but not in the 

later (12:00-13:10 UTC) retrievals. The cause of this is unknown, but it is likely due 

to some experimental effect and should be accounted for in the uncertainty budget. 
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Figure 5.22: Continuum optical depth derived over 18 September 2008 at different 

times of the day using the closure spectra. Means are taken over observations taken 

over a short (~30 minute) time period. The uncertainties (~ ± 0.04) are large in the 

closure measurements however, meaning that they are generally consistent despite 

the differences. 

5.5.2: Comparison of Langley and closure-derived continuum absorption 

A key consistency check is a comparison between the Langley and closure-derived 

spectra; the methods are quasi-independent, since no reference is made to an SSI in 

the Langley method, and in principle no radiometric calibration is necessary. This is 

split into two sections, one for each day during which a Langley analysis was 

possible. 

5.5.2.1: 18 September 2008 

Figure 5.23 shows the closure-derived continua for 18 September 2008, using the 

average of the Microtops measurements across the day at 1 μm (extrapolated using 

the Mie code) to derive a representative τaerosol correction as in Figure 5.15. Using the 

same τaerosol correction in this manner significantly mitigates the spread shown in 

Figure 5.22; the central values of these data are very close to one another, although 

they do agree within the rather large uncertainties. This agreement is a strong 

indicator that the aerosol is not changing significantly throughout the day.  
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Figure 5.23: Individual closure-derived continuum absorption from the observations 

of 18 September 2008, using a time-averaged AOD correction (as opposed to the 

time-dependent AOD correction used in Figure 5.22). 

The best estimate of the closure-derived continuum (average of these 21 

observations) is presented in Figure 5.24 (a), alongside the Langley-derived 

spectrum. This shows the averaged continuum across the day. The continua are 

barely distinguishable on this Figure, indicating that they are in extremely close 

agreement. Figure 5.24 (b) shows the residual of these two continua, demonstrating 

how consistent the two are in these two windows. The difference is on the order of 

~1% as an average across the two windows.  The uncertainties in the closure-derived 

continuum are larger, since in this case the systematic uncertainty is not directly 

removed via the Monte Carlo technique, and the uncertainties in the chosen SSI are 

incorporated into the uncertainty budget as well. The average AOD across the day 

(i.e. the mean of all of the Microtops AODs measured across 18 September) was used 

to adjust all spectra equally (as in Figure 5.15); this led to consistent optical depths 

across the day (rather than the banded structure seen in Figure 5.22), which is 

consistent with the constant water vapour observed from the HATPRO and 

radiosonde ascents (see Figure 3.28).  
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Figure 5.24: (upper panel): Best estimate of closure-derived continuum absorption 

(black) alongside the best estimate of the Langley-derived continuum absorption 

(blue), with k = 1 uncertainties (shaded regions) from 18 September 2008. The green 

line and blue line are almost indistinguishable due to the extremely close agreement. 

(lower panel): Residual of the closure minus Langley-derive continuum optical 

depth. These points lie two orders of magnitude below the points on Figure 5.24 

(upper). 

This strong agreement is a useful confirmation of the retrieval, since the atmospheric 

optical depths are derived in two quasi-independent ways from the same data. Since 

the Langley method relies on the assumption that the optical depth is constant during 

the day, whereas the closure-derived spectra do not, this supports the view that the 

conditions across the day were not changing significantly enough to affect the 

Langley analysis.  
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5.5.2.2: 22 August 2008 

The observations of 22 August 2008 are not favoured, as explained in Chapter 3.4.4. 

Nevertheless, these can in principle provide a consistency check with the 18 

September 2008 observations. Figure 5.25 shows the derived continuum optical 

depth in the 2.1 and 1.6 μm windows from both the closure and Langley methods. In 

much of the spectrum, these optical depths are negative, like the observations of 

Reichert and Sussmann [2016] (Figure 5.9). This limits the usefulness of the 

Langley-derived 22 August continuum as a cross-check. 

 

Figure 5.25: Closure and Langley-derived continuum absorption from 22 August 

2008 in the 2.1 and 1.6 µm windows. These are shown on an absolute scale, since the 

derived continuum optical depths are negative at some wavenumbers. 

Figure 5.26 shows an example Langley plot at 6000 cm-1; the difference in irradiance 

from one observation to another (with increasing airmass) is extremely small, due to 

the low optical depth. There is also significant scatter, which is indicative of 

changing conditions across the day. When performing the Langley fit, this therefore 

gives very low or even negative optical depth. 
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Figure 5.26: Example Langley plot at 6000 cm-1 using the observations of 22 August 

2008.  

The closure-derived spectra are also negative in much of the region of interest. Part 

of this is due to the difference in spectral shape from the 18 September observations. 

The offset in the closure-derived spectra varies with wavenumber; this is attributable 

to the difference in spectral shape between the 18 September observations and the 22 

August observations, as can be seen in Figure 3.21. The low optical depth may be 

also due to an underestimate of the chosen SSI; however given the evidence 

presented in Chapter 4 this is unlikely to be the case. There may also be issues with 

the Microtops aerosol measurements; although without the ability to cross-check the 

results it is not possible to determine whether there is some systematic offset. 

5.6: Conclusions 

In this Chapter an estimate of the water vapour continuum absorption was 

successfully derived using the FTS observations of 18 September 2008. This 

estimate was obtained from two different methods (Langley and closure), with very 

close agreement between the central values of the two retrievals. This built on the 

previous analysis presented in Menang [2012], but with a rigorously derived 

uncertainty budget and new calibration. This work presents the first derivation (to the 

author’s knowledge) of the near-IR atmospheric continuum in these windows at 

mean sea level with a well-constrained uncertainty budget, and the first to be derived 

using a radiometrically calibrated spectrometer. This is a significant step in our 
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understanding of the strength of the continuum in these windows. The lack of any 

similar robust measurements is an indicator of the difficulty in taking such 

measurements.  

The results show general agreement with the FTS self-continuum observations in the 

laboratory from Ptashnik et al. [2011a]. They demonstrate that MT_CKD 

underestimates the total continuum in the 2.1 and 1.6 μm windows, which could be 

evidence of the self-continuum being stronger (as in the CAVIAR laboratory 

measurements), an increased contribution from the foreign continuum or both. 

Therefore, it is unclear how much of the offset can be made up by changing the 

assumptions made by MT_CKD about the relative strength of the self and foreign 

continuum. This will be the subject of a more detailed analysis in Chapter 6.  

There is good agreement with MT_CKD (and therefore Ptashnik et al. [2015] and 

Baranov and Lafferty [2012]) in the 4 μm window. These results will be compared in 

more detail in Chapter 6.  

There are however numerous problems with the experiment. The data from 22 

August 2008 were ultimately not suited for a continuum retrieval, due to the 

unexplained spectral features in this work, which were not possible to remedy (see 

Section 3.4.4.3). The aerosol measurements on 18 September were not reconcilable 

with the FTS spectra, without some additional unexplained contribution to the optical 

depth or a systematic error in the sunphotometer measurements. This led to a more 

conservative estimate of the uncertainty, which limits the strength of any conclusions 

made, since the k = 2 uncertainties overlap zero optical depth. The lack of alternative 

days for Langley analysis means that the continuum is only derived in one set of 

conditions, which makes it not possible to retrieve the relative contribution from the 

self and foreign continuum. The derived continuum in the 1.02 µm window is 

considerable; while there are few laboratory retrievals in this window, these values 

are unexpectedly large. Chapter 7 includes a discussion on how this experiment 

could be improved, particularly with regards to the calibration of the FTS instrument, 

additional assessment of aerosol optical depth and ways of mitigating the large 

measurement uncertainty.
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Chapter 6: 

Comparison of atmospheric Langley-derived and 

laboratory continua 

6.1: Introduction 

This Chapter will assess how the spectrum derived in Chapter 5 fits into the broader 

literature discussed in Section 5.2. It is not possible to directly compare with the 

results of Reichert and Sussmann [2016] in the 1.6 µm window since no values are 

presented there in that work, but it is possible to compare values in the 2.1 and 4 µm 

windows. This analysis is presented in Section 6.2. 

Of particular interest is a comparison of the Langley-derived spectra from this work 

and the laboratory-derived CAVIAR self-continuum of Ptashnik et al. [2011a] and 

foreign continuum of Ptashnik et al. [2012], and the Grenoble CRDS and OF-CEAS 

measurements of e.g. Mondelain et al. [2013, 2014]. This analysis is presented in 

Sections 6.3 and 6.4. Since the continuum derived in this work is a combined self + 

foreign continuum, it is difficult to directly compare it to either the self or foreign 

laboratory continua individually. This analysis here instead attempts to assess the 

strength of the foreign or self-continuum given an assumed value for the other 

component (i.e. taking an experimental or MT_CKD value of the self or foreign 

continuum). This procedure is explained in more detail in Section 6.3 and in Figure 

6.6.  

This procedure was possible via separating the foreign continuum from within the 

MT_CKD code and implementing it into the RFM. The self-continuum can then be 

retrieved as the difference between the total continuum and the foreign for a given 

path. This foreign or self-continuum can then be scaled by the atmospheric 

measurements. This is explained in more detail in Section 6.3. Figure 6.1 shows the 

self and foreign continuum from MT_CKD for the atmospheric path obtained at 

12:00 GMT on 18 September 2008. The self-continuum dominates in these 

conditions within the windows, while the foreign continuum dominates in the bands. 
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This is not observed to be the case in e.g. Ptashnik et al. [2012]. Due to the difficulty 

in separating out the self and foreign continuum, this work cannot by itself resolve 

this discrepancy. However, given the robustness of the CAVIAR-lab foreign 

continuum measurements, if there was some agreement with the observed self-

continuum too, it would provide some additional evidence toward those 

measurements being representative of the self/foreign partitioning. 

 

Figure 6.1: MT_CKD total column optical depth separated into a contribution from 

the self-continuum (red) and foreign continuum (blue) for atmospheric conditions on 

12:00, 18 September 2008. 

Section 6.3 presents figures similar to Figure 5.6 (showing the temperature 

dependence of the self-continuum at selected wavenumbers), but updated with the 

data from the Langley-derived 18 September 2008 spectra, assuming a nominal 

atmospheric temperature. This is again performed as a ratio to MT_CKD, assuming a 

foreign continuum from either MT_CKD or from laboratory measurements.  

6.2: Comparison with other atmospheric spectra 

Due to the difficulties in taking measurements of the continuum in the atmosphere, 

the only published dataset of the near-IR continuum with which to compare is 

Reichert and Sussmann [2016]. They presented mean continuum coefficients at 10 

cm-1 intervals in the region 2500-7500 cm-1; however due to the extremely large 

uncertainties, robust values in the windows are only quoted between 2500-5000 cm-1. 

The authors also present values that are a direct ratio to MT_CKD 2.5; these are 

compared here in Figure 6.2, shown alongside the equivalent data from this work 
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(i.e. the 18 September 2008 Langley-derived spectrum divided by a model run with 

MT_CKD 2.5 using the conditions of 18 September 2008 as model input). 

 

Figure 6.2: Data points from Reichert and Sussmann [2016] as a ratio to MT_CKD 

2.5 (red), compared with the corresponding data from this work (blue). The error 

bars and shaded regions correspond to the k = 2 uncertainties. 

This analysis shows agreement within the uncertainties between the ratios of the two 

spectra across most of the 2.1 and 4 μm windows. There is disagreement on the 

edges of the 4 µm window; on the high wavenumber end of this window the spectra 

do not agree within their uncertainties.  

The low-wavenumber end of the spectrum is that with the most certainty in the 

absolute level, since the effect of aerosol extinction is lowest at lower wavenumbers. 

This agreement is the case despite the significantly different conditions between 

Reichert and Sussmann and this work; their observations are at a high altitude field 

site, rather than at near sea level. A typical integrated water vapour (IWV) observed 

during their campaign was ~2 mm, compared to the ~17 mm in this work. Therefore, 

it is reasonable to presume that the majority of the Reichert and Sussmann continuum 

is foreign continuum; indeed the authors estimate that this makes up 80-95% of their 

observed continuum.  

Figure 6.3 shows the same ratio, but this time taking only the foreign continuum, 

making the assumption that the self-continuum is well-represented by MT_CKD and 

subtracting the MT_CKD self-continuum from the total Langley optical depth. The 

Langley foreign continuum is estimated by subtracting the MT_CKD self-continuum 
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from the total observed continuum optical depth, and then taking the ratio. This ratio 

is performed to MT_CKD 3.2 since we did not have a version of MT_CKD 2.5 with 

the foreign and self-continua separated; the Reichert ratios are taken direct from the 

Supplementary to their paper (which used MT_CKD 2.5) since I did not have access 

to their atmospheric profiles. The agreement is retained, and improved in some 

portions of the spectrum, e.g. at ~2700 cm-1.  

 

Figure 6.3: Data points from Reichert and Sussmann [2016] as a ratio to MT_CKD 

2.5 (red), compared with the foreign continuum from this work divided by the 

MT_CKD 3.2 foreign (blue). The error bars and shaded regions correspond to the k 

= 2 uncertainties. 

The absolute values of these spectra appear to agree well with MT_CKD, particularly 

in the 4 μm window, where there is also excellent agreement between MT_CKD and 

most of the available laboratory spectra (see Figure 5.3). In the centre of the 

windows, the uncertainties in the Reichert and Sussmann data are significantly 

larger, and less confidence can be placed in these results. Nevertheless, the central 

values agree within the respective uncertainties in most cases, and appear to suggest 

a factor of 10 strengthening of the MT_CKD foreign continuum is required in the 

centre of the 2.1 μm window. This will be examined further in Sections 6.3 and 6.4. 

Reichert and Sussmann derive a mean continuum coefficient via: 

(6.1)    𝑘𝑐𝑜𝑛𝑡 =
∫ 𝑘𝑐𝑜𝑛𝑡(𝑇,𝑛𝑤𝑣,𝑛𝑎𝑖𝑟)  𝑛𝑤𝑣 𝑑ℎ

∞
ℎ𝑜𝑏𝑠

∫ 𝑛𝑤𝑣 𝑑ℎ 
∞

ℎ𝑜𝑏𝑠

=
𝜏𝑐𝑜𝑛𝑡

𝑚 𝐼𝑊𝑉
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where kcont is the mean continuum coefficient, hobs is the height from which the 

observer is taking measurements, nwv and nair the number densities of water vapour 

and air respectively, m is the airmass factor, and IWV is the integrated water vapour 

of the path in molecules cm-2. Given the Langley-derived observations are by 

definition at one airmass, it is possible to perform the same analysis for the Langley-

derived continuum from this work, using the observed IWV from the HATPRO (see 

Section 3.4.5.3). These results are shown in Figure 6.4, compared to the 

corresponding values from Reichert and Sussmann. Note the linear scale, rather than 

the logarithmic scale of Figures 6.2 and 6.3. 

 

Figure 6.4: Mean continuum absorption coefficients from Reichert and Sussmann 

[2016] compared to those derived from this work (blue). The error bars and shaded 

regions correspond to the k = 2 uncertainties. 

There is good agreement between the data; however this may be due to competing 

biases. This may be due to the significantly different water vapour paths and altitudes 

(leading to a different ratio of foreign to self-continuum in either case), calibration 

methods and atmospheric conditions (meaning that any deviation from the MT_CKD 

temperature dependence would cause a bias one way or the other). 
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6.3: Temperature dependence of the self-continuum  

This section assesses the temperature dependence in the self-continuum as obtained 

from the Langley-derived CAVIAR-field measurements. To do this, a representative 

temperature must be chosen, corresponding to the conditions in the atmosphere at the 

time of measurement. Since the temperature, pressure and water vapour volume 

mixing ratio do not change significantly over the course of 18 September 2008, this 

can be estimated by calculating the contribution to the continuum at each layer 

within MT_CKD/RFM. The cumulative sum of these contributions is shown below 

in Figure 6.5, summing from the surface upward. This figure shows that in the 

windows over 90% of the continuum comes from the lowest 2 km of the atmosphere. 

Looking at the temperature profile of this region from the radiosonde data gives a 

temperature range of ~ 290-275 K. This temperature range was therefore chosen to 

be representative of the self-continuum for the Langley-derived data. The continuum 

obtained by estimating the self-continuum at 280 K is henceforth referred to as the 

Langley-estimated self-continuum. 

 

Figure 6.5: Cumulative fractional contribution to the total continuum optical depth 

from the surface upward to 10 km as a function of wavenumber. The lowest point of 

the yellow shaded region indicates the height below which 95% of the continuum 

absorption originates. 
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It is necessary to assume a foreign continuum when calculating the Langley-

estimated self-continuum. This is done both the MT_CKD foreign continuum and the 

CAVIAR-lab foreign continuum. This assumption is reasonable; these are the two 

extant datasets of foreign continuum, and since there is little experimental evidence 

to suggest that the foreign continuum has any significant temperature dependence, 

the elevated-temperature CAVIAR foreign continuum can be used. By making this 

assumption, the Langley-estimated self-continuum can be obtained as detailed in 

Figure 6.6 by removing the atmospheric foreign continuum component.  

Given that the ratio of two absorption cross-sections is the same as the ratio of two 

optical depths (provided the optical depths are obtained in the same conditions), this 

process allows the derivation of a scaling factor which is applied to the MT_CKD 

continuum plotted on e.g. Figure 5.20 in atmospheric conditions. Selecting a 

wavenumber and applying this scaling yields the Langley-estimated self-continuum 

at that wavenumber, which can then be plotted as on Figures 5.6-5.7. It is important 

to note that this process can be “mirrored” i.e. the Langley-estimated foreign 

continuum can be obtained by removing the impact of the self-continuum. This 

however relies on an additional assumption about the temperature dependence of the 

self-continuum; in this case an extra step is included to scale Cself
lab to the 

representative atmospheric temperature.  

Section 6.4 will use this to compare laboratory observations of the foreign continuum 

with the Langley-estimated foreign continuum by removing the self-continuum 

obtained from a) extrapolation of the CAVIAR-lab self-continuum b) directly from 

MT_CKD and c) using the room temperature Tomsk measurements of Ptashnik et al. 

[2015]. 
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Figure 6.6: Schematic of the steps taken to convert the Langley-derived optical depth 

into a Langley-estimated self-continuum. The blue and green lines show the two 

different methods; either using the MT_CKD foreign continuum (blue), or using a 

laboratory foreign continuum (which first must be scaled to atmospheric conditions, 

which is done as a ratio to MT_CKD). The black lines show the remainder of the 

process, ending with the estimation of the Langley self-continuum cross section. This 

process can be done with the self and foreign continua swapped around, in which 

case the Langley-estimated foreign continuum would be derived from the laboratory 

or MT_CKD self-continuum. 

Figures 6.7 shows this case at 4723 cm-1 (in the centre of the 2.1 μm window). 

Figures 6.8-6.10 show the case at various points in the 1.6 μm window. These 

wavenumbers were chosen to highlight some of the additional data available, 

including unpublished data from NIST (courtesy of Joe Hodges), and new data from 

Tomsk using a photoacoustic method (Kapitanov et al. [2018], paper in Russian).  
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Figure 6.7: Temperature dependence of the self-continuum from various sources, 

including the Langley-estimated self-continuum at 4723 cm-1. Uncertainties quoted 

at k = 1. 

The Langley-estimated (using CAVIAR foreign continuum) self-continuum in the 

2.1 μm window appears to be consistent with the observations from both the 

CRDS/OF-CEAS measurements (orange) and the CAVIAR-lab data (blue), if the 

data point at room temperature is ignored in the latter. This indicates that the 

temperature dependence may well be well-represented by the negative exponential fit 

(straight line in on the graph). The situation using the MT_CKD foreign continuum 

appears to be somewhat worse, but is still consistent with CAVIAR within the k = 2 

uncertainties (k = 1 shown on plot, as k = 2 overlap zero). Nevertheless, this data 

appears to agree with the Grenoble and CAVIAR-lab self-continua, with 

significantly better agreement if the CAVIAR foreign continuum is used.  
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Figure 6.8: Temperature dependence of the self-continuum from various sources, 

including the Langley-estimated self-continuum at 6050 cm-1.  

 

 

Figure 6.9: Temperature dependence of the self-continuum from various sources, 

including the Langley-estimated self-continuum at 6171 cm-1.  



Chapter 6 – Comparison of atmospheric Langley-derived and laboratory continua 

 
 

Page 189 

 

 

Figure 6.10: Temperature dependence of the self-continuum from various sources, 

including the Langley-estimated self-continuum at 6206 cm-1.  

The situation in the 1.6 μm window is less clear. The Langley-derived self-

continuum appears to be significantly stronger than the CAVIAR and OF-CEAS 

measurements, as well as the additional data (NIST CRDS data from Joe Hodges at 

6050/6206 cm-1 and photoacoustic data from Tomsk at 6171 cm-1). Nevertheless, the 

k = 2 uncertainties are large (again, k = 1 shown since k = 2 uncertainties extend 

below zero), and a straight line fit through these data would show consistency in this 

case. The NIST CRDS data points do not report uncertainties, but the central values 

appear to be reasonably close to the CAVIAR-lab data, and certainly appear stronger 

than the very weak values which would be implied by extrapolation of the Grenoble 

measurements in temperature. The Kapitanov et al. value has small uncertainties, but 

could yet be consistent with an extrapolation of the CAVIAR-lab data. 

The lack of consistency in the self-continuum between the lab data and the Langley 

data could mean that the derived continuum optical depth was too strong in this 

window (in Chapter 5), or could mean that the foreign continuum was too small in 

both MT_CKD and the CAVIAR-lab measurements. This assumes a straight line 

temperature dependence however; in reality this may change due to e.g. a change in 

the regime from bound to quasi-bound dimers (e.g. Ptashnik et al. [2011b]).  
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6.4: Self and foreign continuum at atmospheric 

temperatures  

6.4.1: Self-continuum 

Figure 6.11 shows an updated version of Figure 5.3, showing only the Grenoble, 

MT_CKD, CAVIAR-lab and CAVIAR-field (Langley-estimated using MT_CKD 

foreign continuum) data for clarity. In addition, the CAVIAR-lab data has been 

extrapolated from high temperature to 280 K. This was performed by taking a linear 

fit through the CAVIAR-lab data points at each number, and (by assuming that the 

temperature dependence is a negative exponential, i.e. is a straight line on the 

previous Figures) taking the value of the derived straight line at 280 K as the “new” 

CAVIAR-lab coefficient.  

 

Figure 6.11: Self-continuum from 2000-7000 cm-1 from MT_CKD (orange line), 

CAVIAR-lab (blue), CAVIAR-field estimated using the MT_CKD foreign-continuum 

(black), Tomsk continuum (green) and various OF-CEAS and CRDS observations 

from Grenoble (red). Uncertainties shown at k = 1. 

Figure 6.12 shows the same case, but with the Langley-estimated self-continuum 

obtained using the CAVIAR-lab foreign continuum.  
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Figure 6.12: Self-continuum from 2000-7000 cm-1 from MT_CKD (orange line), 

CAVIAR-lab (blue), CAVIAR-field estimated using the CAVIAR-lab foreign-

continuum (black), Tomsk continuum (green) and various OF-CEAS and CRDS 

observations from Grenoble (red). Uncertainties shown at k = 1. 

This analysis shows that, contrary to the CAVIAR room temperature continuum 

shown Figure 5.3 (which was directly measured rather than extrapolated from higher 

temperature measurements, but with large uncertainties), the CAVIAR-lab data is 

generally consistent with the CRDS data in the 2.1 μm window, providing the 

assumption about the temperature dependence is robust. Note that the CAVIAR self-

continuum is at lower temperature than the CRDS measurements (which have not 

been extrapolated in temperature), this explains some of the discrepancy.  Assuming 

the CAVIAR-lab foreign continuum leads to a significant decrease in the Langley-

estimated self-continuum in the 2.1 μm window, compared to using the MT_CKD 

foreign continuum. In the high-wavenumber edge of the window, this appears to 

improve the agreement with the extrapolated CAVIAR-lab self-continuum, but less 

so at the lower-wavenumber edge (although there is still consistency within the 

uncertainties).  

The significantly lower values of the foreign continuum in the 1.6 μm window 

relative to the 2.1 μm window lead to a small decrease when using the CAVIAR-lab 

foreign continuum compared to the MT_CKD foreign continuum. This gives an 

implied self-continuum in this window that exceeds even the Tomsk values, although 

these are still consistent with the extrapolated CAVIAR-lab measurements within the 
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k = 1 uncertainties in a small window of the spectrum. There is consistency within 

the k = 2 uncertainties with all of the spectra, since these uncertainties are large. This 

may indicate that the Tomsk self-continuum is accurate, or that there are problems 

with the Langley-estimated continuum (which should be covered within the 

uncertainty budget). 

6.4.2: Foreign continuum 

Figure 6.13 shows foreign continuum in the 2000-7000 cm-1 range, showing the data 

from MT_CKD, CAVIAR-lab, CAVIAR-field (Langley-estimated using the 

MT_CKD self-continuum) and Reichert and Sussmann. Note that Reichert and 

Sussmann is, at least in part, a combined self + foreign continuum. For the purposes 

of Figure 6.13`, it is assumed that since the foreign continuum is dominant in the 

conditions present in Reichert and Sussmann (estimated to be 80-95% of the total 

optical depth), the foreign continuum this is the only contributor to the total.  

 

Figure 6.13: Foreign continuum from 2000-7000 cm-1 from MT_CKD (orange), 

CAVIAR-lab (blue), CAVIAR-field estimated using MT_CKD self (black) and 

Reichert and Sussmann (red). 

Figure 6.14 shows the same case with the CAVIAR-field foreign continuum 

estimated using the CAVIAR-lab self-continuum. 
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Figure 6.14: Foreign continuum from 2000-7000 cm-1 from MT_CKD (orange), 

CAVIAR-lab (blue), CAVIAR-field estimated using MT_CKD (black) and Reichert 

and Sussmann (red). 

The differences in these spectra appear small. This, as is seen in Section 6.4.1, is due 

to the small differences between the MT_CKD and CAVIAR-lab spectra at 2.1 μm 

when extrapolated to 280 K, Additionally, because the self-continuum at 1.6 μm 

implied by the Langley-estimated continuum greatly exceeds that of the CAVIAR-

lab data (Section 6.4.1), the difference in the estimated foreign continuum between 

using these two is small. Nevertheless, there appears to be some agreement between 

the foreign continuum across the spectrum between Reichert and Sussmann, 

CAVIAR-lab and CAVIAR-field within the uncertainties.  

Finally, this CAVIAR-field foreign continuum is estimated using the Tomsk 

continuum, shown in Figure 6.15.  
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Figure 6.15: Foreign continuum from 2000-7000 cm-1 from MT_CKD (orange), 

CAVIAR-lab (blue), CAVIAR-field estimated using the Tomsk self-continuum (black) 

and Reichert and Sussmann (red). 

Using the Tomsk continuum here pushes the Langley-estimated foreign continuum 

below the CAVIAR-lab foreign continuum, although is still consistent within the 

uncertainties. Given the belief that the Tomsk data are too high in both of these 

windows, this provides evidence that the foreign continuum is closer to the level of 

the CAVIAR-lab data than MT_CKD, with particularly good agreement at 2.1 μm.  

6.4.3: Combined continuum 

Figure 6.16 shows the ratio of the combined self and foreign continuum of CAVIAR-

lab and CAVIAR-field to MT_CKD. This data appears to show that the two are 

consistently larger than MT_CKD by a factor of 5 or so in the 2.1 μm window, but 

either a factor of 10 (CAVIAR-lab) or 100 (CAVIAR-field) in the 1.6 μm window. 

Within the uncertainties, the ratios of the total continua are consistent. Since the  
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Figure 6.16: Ratio of the CAVIAR-field (green) and CAVIAR-lab (blue) total 

continuum to MT_CKD. Uncertainties quoted at k = 1. 

6.5: Conclusions 

In this Chapter, the foreign and self-continuum have been estimated in atmospheric 

conditions. This has been done with a direct comparison to the CAVIAR laboratory 

data of Ptashnik et al. [2011a; 2012], and by looking at the atmospheric-derived 

spectra of Reichert and Sussmann [2016]. This analysis appears to show a Langley-

estimated continuum consistent with the CAVIAR-lab data in the 2.1 μm window, 

but significantly stronger at 1.6 μm. This is particularly the case for the foreign 

continuum, where the CAVIAR-lab and MT_CKD data at 280 K are close. There is 

also some agreement within the uncertainties between the Langley-estimated 

continuum and the continuum of Reichert and Sussmann. However, the large 

uncertainties, and assumptions made in performing this analysis, it is not possible to 

make any strong conclusions based on this work. Nevertheless, this data implies that 

the MT_CKD continuum is not a good representation of the total continuum, 

particularly in the 1.6 μm window, and that this strengthening is likely to be due to 

an underestimation of the foreign continuum.
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Chapter 7: 

Summary of results and future work 

7.1: Introduction 

This Chapter will present the conclusions based on the work done in Chapters 3, 4, 5 

and 6, bringing together elements from each. This is presented in Section 7.2. Section 

7.3 presents some ideas about how the results of this thesis could be improved upon 

in a future campaign, and how our understanding of solar spectral irradiance and the 

water vapour continuum could be improved. 

7.2: Conclusions  

7.2.1: Solar spectral irradiance (Chapter 4) 

Chapter 3 presented an updated calibration of the FTS instrument used in this work. 

This is especially important for the work presented in Chapter 4, since observations 

of solar spectral irradiance require an absolutely calibrated instrument. The result of 

this calibration was a new high resolution SSI from 2000-10000 cm-1 (named 

CAVIAR2), which showed significantly better agreement with satellite observations 

in the 7000-10000 cm-1 region (in which there is high confidence in the satellite 

observations) than the previous estimate of Menang et al. [2013], but significantly 

lower values (~10%) in the 4000-7000 cm-1 region than the space-based ATLAS3 

observations of Thuillier et al. [2003], while agreeing well with analyses by Bolsée et 

al. [2014], Thuillier et al. [2014] and Meftah et al. [2017]. Preliminary results from 

the Total and Spectral Solar Irradiance Monitor (TSIS-1) [Pilewskie et al., 2018] are 

beginning to become available. 

Given the weight of evidence for a lower SSI, I recommend the use of an SSI with 

this lower level of near-infrared irradiance for modelling purposes, such as for 

inclusion in CMIP6. The recommended NRLSSI2 spectrum [Coddington et al., 

2015] relies on measurements by the SIM [Harder et al., 2005], which in the near-IR 

is adjusted by a factor of ~10% to agree with ATLAS3. I question the validity of this 

adjustment and recommend a reconsideration of the near-IR calibration of this 
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spectrum. The wavelength-integrated difference between ATLAS3 and CAVIAR2 

approaches 16 W m-2 in this spectral region, which must be made up for by a 

corresponding increase elsewhere in the spectrum. It is worth noting however that the 

ATLAS3 integrated irradiance is significantly higher than the recommended TSI of 

1360 W m-2
 (e.g. Kopp [2016]; Dudok de Wit et al. [2017]). The preliminary TSIS-1 

measurements agree with this TSI within the uncertainties when integrated across the 

spectrum (1359.46 ± 1.51 W m-2), including a contribution from the SATIRE-S solar 

model below 200 nm and above 2360 nm.   

The spectral resolution (0.03 cm-1) of the CAVIAR2 spectrum is well in excess of 

that currently achievable by a space-based measurement system. While this can only 

provide information on solar lines within the atmospheric windows, this can be a 

useful tool to compare with theoretical and semi-empirical spectra such as Kurucz 

and Bell [1995]. A high-altitude field site would allow for even more of these 

spectral lines to be observed, and in the future perhaps even monitored. This provides 

a role for ground-based measurements even in the era of satellite observations, 

particularly for looking at variation of solar irradiance over time, since it is easier in 

principle to assess calibration drift from a ground-based instrument. Additionally, 

given a well-characterised uncertainty budget, any two measurement systems should 

agree within these uncertainties regardless of whether they are space or ground-

based. 

7.2.2: Water vapour continuum (Chapters 5 and 6) 

Chapter 5 presented the first published observations of the near-infrared water 

vapour continuum in the atmosphere with radiometrically calibrated observations and 

a robust uncertainty budget. These observations were primarily from Langley-

derived spectra of 18 September 2008, with consistency checks with closure-derived 

spectra of 18 September (these methods are quasi-independent). While the k = 2 

uncertainties of this data overlap with the MT_CKD 2.5 and 3.2 continuum (and with 

zero absorption), the central value is significantly higher, a factor of 5 greater than 

MT_CKD 3.2 (and a factor of 10 greater than MT_CKD 2.5) in the 2.1 μm window 

and a factor of 100 greater than both MT_CKD 3.2 and 2.5 in the 1.6 μm window. 

This demonstrates that MT_CKD may be unsuited in its current state for modelling 

absorption in these windows. The results also show good agreement with MT_CKD 
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in the 4 μm window, where most observations agree. It is worth reiterating that 

MT_CKD is tied to measurements at these lower wavenumbers; and is not 

necessarily representative of the situation in the wavenumbers of interest in this 

work. The only way to ensure an accurate continuum is for there to be agreement 

between various different sets of measurements from different sources within the 

uncertainties, which is not the case for the 2.1 and 1.6 µm windows on which this 

work focuses. 

In the 4 μm window, and most other near-IR windows at room temperature, the 

Grenoble CRDS measurements are significantly lower, and do not agree within the 

uncertainties. The differences between the FTS data and CRDS data across the 

spectrum appear to be systematic, with the FTS data larger and (Grenoble) CRDS 

data lower. The reason for this is unknown; it is unclear what would cause a 

systematic increase in optical depth in the FTS data across the spectrum. Section 

5.2.5 does discuss a recent study [Serdyukov et al., 2016] which may explain a 

systematic decrease in the CRDS data, but this is by no means conclusive.  

There is an unexpectedly large extinction feature in the 1.02 μm window. This may 

be some continuum feature not observed in the laboratory but may also be due to 

atmospheric aerosol.  

Less success was had with the observations of 22 August 2008. This was primarily 

due to spectral features that were not present in the observations of 18 September 

2008. An attempt was made to correct for these features via phase correction, but this 

was not successful. This was mitigated somewhat in Menang [2012] due to the use of 

the TSARS as a calibration factor; however this overrides the blackbody calibration 

and is not recommended by Gardiner et al. [2012].  

Other days of spectra were available; however these were few and far between, and 

often suffered from large aerosol optical depths, making the continuum retrieval 

extremely uncertain and not useful as a cross-check.  

In Chapter 6, an assessment was made of the relative impact of the foreign and self-

continuum in atmospheric conditions. Assuming a foreign or self-continuum from 

MT_CKD or laboratory data, an estimated foreign and self-continuum was derived 

from the Langley-derived continuum from Chapter 5. These results indicate that the 

foreign continuum in MT_CKD is an underestimate in the 2.1 and 1.6 µm windows, 
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in line with the CAVIAR foreign continuum of Ptashnik et al. [2012]. It is however 

difficult to make any judgements about which of the self-continua are likely to be 

correct, since there are large uncertainties in the spectrum obtained from this work. 

7.3: Future work 

This section details future work that could be undertaken to improve our 

understanding of both solar spectral irradiance and the water vapour continuum. This 

is broken down into two parts; Section 7.3.1 considers solar spectral irradiance, and 

Section 7.3.2 the water vapour continuum. 

7.3.1: Solar spectral irradiance 

There appears to be some consensus on a lower value of near-infrared SSI from 

4000-7000 cm-1 from several measurements (e.g. this work, Meftah et al. [2018], 

Thuillier et al. [2014], Bolseé et al. [2014]), yet the large uncertainties make this 

inconclusive. The best method of reducing this uncertainty is to make measurements 

from a variety of space, aircraft and ground-based spectrometers, with a detailed 

intercomparison of the various data.  

It is important not just to look at the absolute value of SSI, but also to determine its 

change over time, including time periods longer than the lifetime of space-based 

spectrometers. This can currently only be done using ground-based measurements, 

preferably at high altitude. Ideally this would cover a wide spectral range (~100-5000 

nm), allowing for high spectral and temporal resolution datasets for use in GCMs and 

radiation models over time without relying on semi-empirical spectra or reanalysis 

data, and potentially observe any long-term trend in SSI at any wavelength. This 

should be combined with additional theoretical work, to compare solar atmosphere 

models with the high resolution measurements to determine the exact positions and 

strengths of solar lines.  

Characterising the NIR SSI is an important task in itself, but also has implications for 

our understanding of the continuum. If the SSI was known with great accuracy and 

precision, then it becomes possible to calibrate sun-pointing spectrometers to the SSI, 

which would allow for absolute measurements of downwelling radiation and 

atmospheric extinction. This could be used to derive the near-infrared continuum 



Chapter 7 – Summary of results and future work 

 
 

Page 200 

 

absorption, as was attempted by Reichert and Sussmann [2016]. This could also be 

used to assess the calibration drift for radiometrically calibrated instruments without 

having to use a transfer standard source such as the TSARS. The ability to calibrate a 

spectrometer without needing access to a high temperature blackbody would allow 

for many more field sites to make calibrated measurements of atmospheric radiation, 

which would open up many avenues for e.g. deriving the NIR continuum absorption 

in different conditions. 

7.3.2: Water vapour continuum 

Understanding of the water vapour continuum cannot be obtained from either 

atmospheric or laboratory experiments alone. A combination of the two, ideally in 

conditions that allow for synthesis of the two methods is required. Laboratory 

measurements allow for controlled experimental conditions, but do not necessarily 

capture the complex processes that affect the absorption in the atmosphere. It is 

therefore a necessity to confirm any laboratory measurements by direct atmospheric 

observations, as has been done in this thesis. Sections 7.3.2.1 and 7.3.2.2 detail how 

future experiments could improve our understanding of the continuum, both in the 

near-IR windows on which this work focuses and also elsewhere in the spectrum. 

Section 7.3.2.3 discusses further steps once the continuum has been rigorously 

derived in the laboratory. 

7.3.2.1: Laboratory experiments  

Since the results presented in Section 7.2 are by no means conclusive, and more 

atmospheric measurements of the continuum are necessary, an important question to 

answer is how a similar such field experiment might be improved in the future, and 

how we could use both field and laboratory experiments to improve our 

understanding of the continuum. 

One important aspect is for new laboratory measurements of the continuum. The lack 

of reconcilability between the Grenoble and CAVIAR observations is a significant 

problem for modelling groups such as MT_CKD attempting to create a useful 

product for climate and weather models. Ideally, these measurements should come 

from as many independent groups as possible, using a variety of methods. While 

measurements at room temperature are possible, these are not necessarily 

representative of atmospheric conditions. Any future project should aim to measure 
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at as many different temperatures and pressures as possible, to fully capture the range 

of plausible atmospheric conditions and allow for better direct comparison with 

atmosphere-derived spectra.  

One such project is the ASPIC (Advanced Spectroscopy for improved 

characterisation of the near-Infrared water vapour Continuum) project, being 

undertaken by the University of Reading and the Rutherford Appleton Laboratory, 

which aims to build on the CAVIAR measurements using a similar FTS setup. This 

project includes several advances in spectroscopy and optics since the CAVIAR 

experiments.  

The first of these is the use of a new super-continuum laser source. This laser is used 

as a broadband light source and has a much higher intensity than the lamp used in the 

CAVIAR laboratory experiment [Ptashnik et al., 2011a] and is more spatially 

coherent. This allows for even more reflections, which allows for a larger path 

length. The increase in intensity and spatial coherence should allow for a much 

higher sensitivity than the CAVIAR FTS measurements, rivalling that of the CRDS 

measurements but with a much larger cell (mitigating the potential effect of e.g. 

water adsorption on the dielectric mirrors or other surface effects) and significantly 

greater spectral coverage.  

The other advancement in ASPIC is the use of a new optical cavity and multipass 

cell. This, combined with the use of the super-continuum laser allows for many more 

reflections (and therefore a much larger path length, and therefore more absorption) 

than available in CAVIAR (210 m in ASPIC compared to ~20 m in CAVIAR).  

A pilot study was run in 2015, the results of which showed good agreement with the 

CAVIAR lab measurements in the 2.1 μm window (Figure 9 of Shine et al. [2016c]), 

although no measurements were possible in the 1.6 μm window due to a lack of 

baseline stability. This baseline stability will be significantly improved in ASPIC due 

to the new cavity and light source. 

An additional aspect is the use of an NIR (1.5-1.6 μm) laser, to probe directly in the 

centre of the 1.6 μm window and compare with the results from the FTS 

measurements.  

ASPIC should be able to probe down to temperatures approaching those found in the 

lowest levels of the atmosphere (270-315 K); given measurements of the foreign 
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continuum in this project it will therefore be possible to compare the new ASPIC 

results with the results derived in this thesis. 

This project, while capable of deriving the continuum in conditions close to 

atmospheric conditions will not on its own be definitive. Additional measurements 

from other groups are necessary, especially using different methods such as CRDS, 

and taking into account advances in spectroscopy, and the controlled laboratory setup 

may not be able to capture some of the more complex physical processes that occur 

in the atmosphere (which contribute to the continuum). A brief overview of 

experimental advances is presented in Shine et al. [2016c]. 

7.3.2.2: Considerations for future field campaigns 

During my PhD several aspects of the experiment proved difficult to manage and 

contributed to a more conservative estimate of the uncertainty than otherwise may 

have been the case. One challenge not directly related to the experiment itself was 

the time (almost 10 years) between the field campaign and the analysis performed in 

this work. The ability to make supplementary measurements, or to have regular 

access to the FTS software and measurements would have been useful particularly 

during the phase correction portion of the work.  

While the overall calibration of the instrument is considered robust, and the 

uncertainty budget plausible, there were several aspects of the calibration that could 

have been improved. An assessment of the mirror reflectivity over time during the 

campaign would have been extremely useful. In this case, the mirrors were 

considered “used” as soon as they entered the field. In reality however, the 

degradation of these mirrors would have likely taken place gradually, meaning that a 

time-dependent mirror reflectivity calibration would be necessary. 

The TSARS calibration transfer standard was one of the more disappointing aspects 

of the campaign. Its stability was lower than expected, and it did not provide a 

particularly useful calibration check. A future campaign might use a more stable 

source, such as a laser. While this would not provide the necessary spectral coverage, 

a set of lasers in each window would be able to provide a stable calibration transfer 

source which can be used to accurately assess the change in the FTS calibration over 

time. This could in principle be done in each of the infrared windows provided one 

had a set of lasers which could sample a few points within each window. This, 
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alongside a detector more suited for observations at shorter wavelengths (higher 

wavenumbers) beyond 7000 cm-1, which would allow for us to more effectively 

probe the continuum in these windows, which is subject to even fewer sets of 

observations than the NIR windows. As was discussed in Section 7.3.1, a stronger 

constraint on the NIR SSI would allow for an instrument to be calibrated in situ. 

An attempt was made to improve the calibration of the instrument using a different 

phase correction procedure to that done natively by the OPUS FTS software, since 

there were spectral features (e.g. Figure 5.27) which may have been caused by the 

phase correction. This was also motivated by the “black box” nature of the OPUS 

software; the source code is not editable by the end user. However, this was 

unsuccessful, and put on hold due to the new literature regarding the near-infrared 

solar spectral irradiance, which was deemed to be a more important immediate 

problem. A future campaign could mitigate this problem by using open source, 

modifiable software rather than OPUS to perform the numerical filtering necessary to 

turn interferograms into usable spectra. This could be done using the TCCON (Total 

Carbon Column Observing Network, e.g. Wunch et al. [2011]) I2S (Interferogram 2 

Spectra) software for example, which is open source. 

The observations of 22 August 2008 could have been corrected for by some 

normalised factor using the TSARS observations. However, this would have 

overwritten the blackbody calibration and introduced significant additional 

uncertainty into the continuum derivation. 

The most significant contributor to the experimental uncertainty was the uncertainty 

introduced from the Microtops sunphotometer measurements and the extrapolation of 

these measurements into the spectral region of interest. Over the course of the 

project, there were several reasons to question the effectiveness of the Microtops to 

measure aerosol throughout the day, given that these changes were not picked up by 

the much more sensitive high-resolution Fourier Transform spectrometer.  

Part of the problem may have been the handheld nature of the sunphotometer. Since 

this relies on a user to take a measurement by pointing the photometer at the Sun, 

there is the potential for additional error. While it is unlikely that this caused the 

systematic offset shown in Chapter 5, it cannot be ruled out entirely. 
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A future measurement campaign would best take place at a site with dedicated in situ 

aerosol measurement systems, such as an AERONET (AErosol RObotic NETwork, 

e.g. Russell et al. [2010]) site. The closest AERONET site to the Camborne field site 

in 2008 is at Chilbolton, over 200 miles away, making a cross-comparison with the 

observed Camborne AOD highly uncertain and dependent significantly on the 

prevailing wind.  

Ideally, the site should be as far away as possible from any source of aerosols, such 

as industry, agriculture or marine sites. Satellite observations of aerosols are more 

ubiquitous than they were in 2008. An experimental campaign performed today 

could use one of these products to observe aerosol optical depth over a similar area to 

the campaign site as a cross-check to the in-situ measurements. This was considered 

for the work done in this PhD, but no suitable aerosol product was found that could 

explain the observations. Satellite observations use atmosphere windows to measure 

AOD; this adds an element of circularity too, since a continuum must be assumed to 

isolate the aerosol signal.  

For these reasons, a site such as Mauna Loa in Hawaii would be a good place for 

such a field campaign. This site is in a remote location away from industrial and 

agricultural sources of aerosol, and its position 3300 metres above sea level make it 

ideal for removing the effects of aerosol.  

The spectral behaviour of AOD in this work was obtained via a Mie scattering code. 

This is in principle the best way to derive aerosol spectral behaviour. However, the 

uncertainties were quite large in this work, for several reasons. Since no (useful) 

observations of the relevant parameters (size distribution, refractive index…) were 

available, these were estimated from a range of typical parameters and constrained 

somewhat using the observed Ångström exponent. An updated field campaign might 

again use a research aircraft, among other aerosol observing systems to obtain these 

quantities. The FAAM aircraft used for the Camborne experiment measured aerosol 

properties, but this was done using an inlet which dried the aerosol as it entered. This 

is less useful for assessing the radiative impact (as is necessary for a continuum 

retrieval); a future campaign might measure ambient rather than dry aerosol 

properties. 
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An important aspect of the work (see Chapters 5 & 6) is distinguishing the foreign 

continuum from the self-continuum. This is in principle possible by taking 

measurements over a wide range of measurement conditions. This was not the case 

in the CAVIAR campaign, although it was expected that there would be more usable 

measurement days than there were in practice. There were observations from the 

Jungfraujoch observatory, which has significantly lower water vapour 

concentrations. These would not have covered a sufficient range of water vapour to 

determine the relative contribution however, since the concentrations are so low that 

information could only be reliable attained in the band regions, even if the calibration 

were robust. Additionally, the Jungfraujoch experiment took place over a year after 

the Camborne experiment; the calibration of the instrument had changed somewhat. 

Thus, the results may not have been directly comparable, although this would have 

been mitigated by the Langley method or a more robust field calibration standard 

than the integrating sphere used in the Jungfraujoch campaign.  

For observing in the windows, an approach like that of Reichert and Sussmann 

[2016] and Reichert et al. [2016] may have been useful, using the calibration 

procedure from Gardiner et al. [2012] in the laboratory and cross-comparing with 

the Langley method-based calibration from Reichert et al. The Reichert and 

Sussmann experiment was performed in winter, so the solar zenith angles are 

sufficiently large to (ostensibly) observe in the bands despite the lower integrated 

water vapour. Observing over as wide a range of water vapour conditions as possible 

would be the most appropriate way to constrain the atmospheric continuum. As 

mentioned in Section 7.3.1, this requires a robust estimate of the near-infrared solar 

spectral irradiance, further motivating the need for new measurements of SSI. 

Observations at the Jungfraujoch could have in principle resulted in a better 

constraint on the solar spectral irradiance, since the atmospheric optical depth is 

significantly lower, meaning that the observed irradiance is closer to the top of 

atmosphere irradiance. However, since there is good confidence that the conditions 

do not change much throughout the day for 18 September, and that a small change in 

optical depth does not significantly affect the intercept of a Langley plot, there is 

every reason to have confidence in the derived SSI from the Camborne experiment 

alone.  
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Sun-pointing ground-based measurements are not the only method of deriving the 

continuum in atmospheric conditions. An aircraft-based measurement with a high-

resolution spectrometer could in principle derive the continuum for a much wider 

range of conditions than a ground-based measurement and allow for the derivation of 

a vertical profile of the continuum absorption. This has been done in the mid and far-

infrared regions [Green et al., 2012; Newman et al., 2012] as part of the broader 

CAVIAR project. Such a campaign would require a high-quality calibration transfer 

assessment. This method, as with the Reichert et al. method requires knowledge of 

the solar spectral irradiance, since a Langley analysis is difficult with an aircraft 

measurement campaign (as in e.g. Arvesen et al. [1969]) 

It is possible to use a horizontal path to derive the continuum absorption in 

atmospheric conditions from a ground-based system. This allows for in situ 

assessment of the humidity and other atmospheric parameters in the beam path, 

making it more akin to a laboratory measurement than a sun-pointing measurement. 

It also removes the effect of clouds and aerosols which can contaminate a sun-

pointing measurement. This would rely on a well-characterised source; e.g. Rieker et 

al. [2014] observe spectral properties of carbon dioxide and methane lines using a 

frequency comb method, which allows for high precision measurements over a range 

of wavenumbers (5990-6260 cm-1 in Rieker et al.) at very high spectral resolution. 

Such a method would not be without its problems however; the continuum is very 

weak, meaning that the path would need to be as long as possible in order to 

maximise the amount of absorption.  

7.3.2.3: Further steps and incorporation into radiation models 

Once the continuum has been robustly characterised in the laboratory and reconciled 

with atmospheric measurements, the next step is to incorporate this into radiation 

models. This should first involve direct incorporation into HITRAN and other 

spectroscopic databases. This would allow for direct incorporation into radiation 

models without the need for a separate model such as MT_CKD and make it easier 

for model developers to track any changes in the continuum absorption as new 

experimental data is acquired. This step should be made in conjunction with 

theoretical work, to explain the causes of the continuum and reconcile the various 

hypotheses about this, particularly reconciling the dimer and far-wing explanations 

of the continuum. Additionally, such work should go into developing a more 
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sophisticated understanding of the temperature dependence (e.g. by assessing the 

effect of a transition between bound and quasi-bound dimers with temperature and 

how this affects absorption characteristics). An immediate step that could be taken 

after this work is to repeat the analysis of Chapter 6 with an updated temperature 

dependence. Any updated continuum model should be put into line-by-line codes and 

GCM/weather prediction radiation schemes, with intercomparison between the two 

to ensure that the effect is being modelled correctly in the lower-resolution GCM 

radiation schemes.  

Any such work should take place alongside impact studies, looking at how a more 

complete model of the continuum affects the surface-atmosphere energy partition, 

and the changes in the hydrological cycle this causes. This is particularly important 

in a warming climate due to the water vapour feedback. Finally, the impact on 

remote sensing should be considered. Tests should be run to assess how much the 

updated continuum affects retrievals of various properties. In principle, this could 

lead to a reanalysis of old data, if this effect was significant. 
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