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ARTICLE

Closer to critical resting-state neural dynamics
in individuals with higher fluid intelligence
Takahiro Ezaki1,2, Elohim Fonseca dos Reis 3, Takamitsu Watanabe4,5, Michiko Sakaki 6,7 &

Naoki Masuda 3,8,9*

According to the critical brain hypothesis, the brain is considered to operate near criticality

and realize efficient neural computations. Despite the prior theoretical and empirical evidence

in favor of the hypothesis, no direct link has been provided between human cognitive per-

formance and the neural criticality. Here we provide such a key link by analyzing resting-state

dynamics of functional magnetic resonance imaging (fMRI) networks at a whole-brain level.

We develop a data-driven analysis method, inspired from statistical physics theory of spin

systems, to map out the whole-brain neural dynamics onto a phase diagram. Using this tool,

we show evidence that neural dynamics of human participants with higher fluid intelligence

quotient scores are closer to a critical state, i.e., the boundary between the paramagnetic

phase and the spin-glass (SG) phase. The present results are consistent with the notion of

“edge-of-chaos” neural computation.
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Critical brain hypothesis posits that the brain operates
near a critical regime, i.e., boundary between different
phases showing qualitatively different behaviors1–6. This

hypothesis has been investigated for more than two decades
including criticisms such as the presence of alternative mechan-
isms explaining power law scaling in the relevant observables7–10.
Experimental evidence such as the recovery of critical behavior
after interventions, which is difficult to explain by alternative
mechanisms, lends supports to the hypothesis9.

Theoretical and experimental work has shown that neural
systems operating near criticality are advantageous in informa-
tion transmission, information storage, classification, and non-
linear input filtering1,3,5,11–14. These findings align with the idea
of edge-of-chaos computation, with which computational ability
of a system is maximized at a phase transition between a chaotic
phase and a nonchaotic phase15–17. These findings are also in line
with a general contention that cognitive computations occur as
neural dynamical processes18,19.

A prediction from the critical brain hypothesis is that neural
dynamics in individuals with higher cognitive abilities should be
closer to criticality than in those with lower cognitive abilities.
However, whether high cognitive skills are associated with criti-
cality has not been empirically proven. In fact, recent emerging
evidence suggests that human cognitive performance is associated
with appropriate transitions between relatively discrete brain
states during rest20–22, working memory tasks23, and visual per-
ception tasks24. Furthermore, these and other studies18,19,25

support that state-transition dynamics in the brain involve large-
scale brain networks. These arguments are consistent with the
proposal that many cognitive functions seem to depend on net-
work connectivity among various regions scattered over the
whole brain26. On these grounds, in the present study we hypo-
thesize that complex and transitory neural dynamics of the brain
network (i.e., dynamic transitions among discrete brain states)
that are close to criticality are associated with high cognitive
performance of humans.

Two major conventional methods for examining criticality and
edge-of-chaos computation in empirical neural data are not
capable of testing this hypothesis for their own reasons. First,
many of the experimental studies testing the critical brain
hypothesis have examined neuronal avalanches11,12, including the
case of humans5,27,28. Neuronal avalanches are bursts of cas-
cading activity of neurons, whose power-law properties have been
related to criticality. However, studies of neuronal avalanches
have focused on their scale-free dynamics in space and time, with
which statistics of avalanches obey power laws. Scale-free
dynamics of neuronal avalanches is a question orthogonal to
patterns of transitions between discrete states. Second, nonlinear
time series analysis has found that electroencephalography signals
recorded from the brains of healthy controls are chaotic and that
the degree of chaoticity is stronger for healthy controls than
individuals with, for example, epilepsy, Alzheimer’s disease, and
schizophrenia29. However, this method is not usually for inter-
acting time series. Therefore, it does not directly reveal how
different brain regions interact or whether possible critical or
chaotic dynamics are an outcome of the dynamics at a single
region or interaction among different regions.

In the present study, we develop a data-driven method to
measure the extent to which neural dynamics obtained from large-
scale brain networks are close to criticality and complex state-
transition dynamics. The method stands on two established
findings. First, statistical mechanical theory of the Ising spin-
system model posits that the so-called spin-glass phase corre-
sponds to rugged energy landscapes (and therefore, complex state-
transition dynamics)30 and chaotic dynamics31–33. Therefore, we
are interested in how close the given data are to dynamics in the

spin-glass phase. Second, the Ising model has been fitted to var-
ious electrophysiological data6,34–36 and fMRI data recorded from
a collection of regions of interest (ROIs)20,21,24,37,38 during rest or
tasks with a high accuracy. Therefore, we start by fitting the Ising
model to the multivariate fMRI data. Then, we draw phase dia-
grams of functional brain networks at a whole-brain level. By
construction, the dynamical behavior of the system is qualitatively
distinct in different phases. The method determines the location of
a brain in the phase diagram and thus tells us whether the large-
scale brain dynamics of individual participants are ordered, dis-
ordered, or chaotic (i.e., spin-glass) dynamics as well as how close
the dynamics are to a phase transition curve, on which the system
shows critical behavior.

We deploy this method to resting-state fMRI data recorded
from human adults with different intelligence quotient (IQ)
scores. As a cognitive ability of interest, we focus on fluid intel-
ligence, which refers to the ability to think logically and solve
problems with a limited amount of task-related information39.
Fluid intelligence is strongly related to the general intelligence
factor, g39 and predictive of real-world outcomes such as job
performance40. We examine our hypothesis that large-scale brain
dynamics of individuals higher in the intelligence score that
measures fluid intelligence are closer to critical.

Results
Brain dynamics are close to the spin-glass phase transition. We
first fitted the pairwise maximum entropy model (PMEM), which
assumes pairwise interaction between ROIs and otherwise pro-
duces a maximally random distribution, which is a Boltzmann
distribution. The PMEM is equivalent to the inverse Ising model,
where the parameters of the Ising model are inferred from data.
Because the model assumes binary data, we binarized the resting-
state fMRI signals obtained from 138 healthy adults. The binarized
activity pattern at N(= 264) ROIs41 at time t (t ¼ 1; ¼ ; tmax;
tmax ¼ 258) is denoted by S(t)= (S1(t), …, SN(t)) ∈ {−1, +1}N,
where Si(t) = 1 and Si(t) = − 1 (i = 1,…, N) indicate that ROI i is
active (i.e., the fMRI signal is larger than a threshold) and inactive
(i.e., smaller than the threshold), respectively. We fitted the fol-
lowing probability distribution to the population of the 138 par-
ticipants by maximizing a pseudo likelihood (see “Methods”)24,34:

PðSjh; JÞ ¼ exp �EðSjh; JÞ½ �P
S2½�1;1�N exp �EðSjh; JÞ½ � : ð1Þ

In Eq. (1),

EðSjh; JÞ ¼ �
XN
i¼1

hiSi �
1
2

XN
i¼1

XN
j¼1; j≠i

J ijSiSj ð2Þ

is the energy of activity pattern S, h ¼ hi : 1 � i � Nf g, and
J ¼ Jij : 1 � i≠ j � N

n o
, where Ji= Jji. Although we refer to E as

the energy, E does not represent the physical energy of a neural
system but is a mathematical construct representing the frequency
with which activity pattern S appears in the given data. Activity
pattern S appears rarely in the data if E corresponding to S is large
and vice versa. Parameter hi represents the tendency that Si= 1 is
taken because a positive large value of hi implies that Si= 1 as
opposed to Si=−1 lowers the energy and hence raises the
probability that S with Si= 1 appears. Parameter Jij represents a
functional connectivity between ROIs i and j because, if Jij is away
from 0, Si, and Sj would be correlated in general. We denote the
estimated parameter values by ĥ and Ĵ.

Then, to evaluate how close the current data are to criticality,
we drew phase diagrams by sweeping values of J. In the phase
diagrams, we fixed h at ĥ following the theoretical convention30,
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including when the PMEM is applied to data analysis6. We set
h ¼ ĥ also because changing the h values did not qualitatively
change the phase diagrams (Supplementary Fig. 1). Then, we
varied the mean μ and standard deviation σ of J by linearly
transforming J, i.e.,

Jij ¼ ðĴ ij � μ̂Þ σ
σ̂
þ μ: ð3Þ

In (3), μ̂ ¼ 1:57 ´ 10�3 and σ̂ ¼ 3:57 ´ 10�2 are the mean and
standard deviation of the off-diagonal elements of Ĵ estimated for
the empirical data. We chose the parametrization given in Eq. (3)
motivated by the past investigation of the archetypical
Sherrington-Kirkpatrick (SK) model of spin systems30. The SK
model, a type of Ising model, is defined with parameters Jij (1 ≤
i ≠ j ≤N) that are independently drawn from the Gaussian
distribution with the tunable mean and standard deviation and
has extensively been studied for investigating the so-called spin-
glass phase transition owing to its theoretical tractability. In the
spin-glass phase, the system shows a disorderly frozen pattern of
spins rather than uniform or periodic ones. For each set of Jij
values (1 ≤ i ≠ j ≤N) specified by a (μ, σ) pair, we performed
Monte Carlo simulations and calculated observables (see
“Methods”). In this manner, we generated a phase diagram for
each observable in terms of μ and σ.

Two primary observables (called order parameters in physics
literature) employed in studies of spin systems are the
magnetization, denoted by m, and the spin-glass order parameter,
denoted by q. The magnetization is defined by m=

P
1≤i≤N〈Si〉∕N,

where 〈 ⋅ 〉 represents the ensemble average, and quantifies the
mean tendency that Si= 1 as opposed to Si=−1 is taken across
the ROIs. The spin-glass order parameter is defined by q ¼P

1�i�NhSii2=N and represents the degree of local magnetization
at individual ROIs. We show m and q as functions of μ and σ in
Fig. 1a, b, respectively. The obtained phase diagrams were
qualitatively the same as those for the SK model of the same
system size, which was given by Eqs. (1) and (2) with each
Jij (=Jji, i ≠ j) being independently drawn from a Gaussian
distribution with mean μ and standard deviation σ (Fig. 1e, f).
The parameter space is composed of three qualitatively different
phases30. The paramagnetic phase, characterized by m= 0 and
q= 0 in the limit of N → ∞, represents the situation in which
each Si randomly flips between 1 and −1, yielding no
magnetization. The ferromagnetic phase, characterized by
m ≠ 0 and q > 0, represents the situation in which (almost) all
Si’s align in one direction (i.e., Si= 1 or Si=−1). The spin-glass
(SG) phase, characterized by m= 0 and q > 0, represents the
situation in which each Si is locally magnetized but not globally
aligned to a specific direction30. Note that the finite size effect of
our system blurred the boundaries between the different phases.
The current data pooled across the participants lie in
the paramagnetic phase and are close to the boundary to
the SG phase (crosses in Fig. 1a, b). In theory, the spin-glass
susceptibility, χSG ¼ N�1β2

P
1�i;j�Nc

2
ij, where cij= 〈SiSj〉−mimj,

diverges on the boundary between the paramagnetic and SG
phases30. The empirical data yielded a relatively large χSG value in
the phase diagram (Fig. 1c). In contrast, we did not find a
signature of phase transition in terms of the uniform suscept-
ibility defined by χuni = N−1β

P
1≤i,j≤N cij, which characterizes the

transition between the paramagnetic and ferromagnetic phases30

(Fig. 1d). Note that the phase diagrams for χSG and χuni resemble
those obtained from the SK model (Fig. 1g, h).

Next, we examined where brain activity patterns of each
participant were located in the phase diagrams. We did so by
finding the μ and σ values corresponding to the χSG and χuni
values of each participant (see “Methods”). It should be noted

that χSG and χuni can be calculated for each individual only from
the covariance matrix of the data, without estimating the PMEM.
The location of each participant in the phase diagram of χSG is
shown by the circles in Fig. 1c. The cross section of this phase
diagram for μ ¼ μ̂ (along the dashed line shown in Fig. 1c) is
shown in Fig. 1i. We also projected the χSG values for the
individual participants (circles in Fig. 1i) based on the value of σ
estimated for each individual (circles in Fig. 1c). Figure 1i
suggests that the empirical data are located in a range of σ that
constitutes a peak, further confirming that the brain dynamics of
different participants are close to the paramagnetic–SG phase
transition and to different extents. In contrast, the participants
were far from the paramagnetic–ferromagnetic phase boundary.
This is confirmed in Fig. 1j, which is a cross section of the phase
diagram for χuni (along the dashed line shown in Fig. 1d) together
with the χuni values for the single participants.

The χSG value for the individual participants was off the largest
possible values in the phase diagram (Fig. 1i). To examine this
point, we carried out a finite size scaling on χSG (Fig. 1k). To
emulate systems of smaller sizes than N= 264, we selected N

0
out

of the N ROIs uniformly at random and fitted the PMEM. The
estimated parameter values are denoted by ĥ and Ĵ without
confusion. Then, we simulated the equilibrium state of the system
by scanning J according to Eq. (3), where we varied σ while fixing
μ ¼ μ̂. In this manner, we sought to investigate how close the data
were to the SG phase transition at each N 0 value. As shown in
Fig. 1k, the peak value of χSG increased as N 0 increased, suggesting
that the paramagnetic–SG phase transition is approached as the
system size increases. In addition, the position of the peak,
denoted by σpeak, shifted toward the value for the empirical data,
σ̂, as N increased. By regressing σpeak=σ̂ linearly on 1=N 0 (inset of
Fig. 1k), we estimated σpeak=σ̂ ¼ 1:45 ± 0:04 in the limit N 0 ! 1.

The performance IQ is associated with the criticality. To test
our hypothesis that criticality of brain dynamics is associated with
human fluid intelligence, we examined the correlation between
χSG, which encodes the proximity of each participant’s neural
dynamics to the paramagnetic–SG phase transition (Fig. 1c, i), and
the performance IQ score. The performance IQ score is defined
based on tasks that are reflective of fluid intelligence42,43. An
enlargement of Fig. 1c is shown in Fig. 2a, where the participants
are shown in different colors depending on whether they have a
higher performance IQ score (defined by the score value larger
than or equal to the median, 109, n= 68) and a lower score (n=
63). We found that higher-IQ participants tended to be closer to
the paramagnetic–SG phase transition than lower-IQ participants,
as measured by σ (t129 = 3.17, P < 0.002, Cohen’s d= 0.55 in a
two-sample t test). The results were qualitatively the same when
the outliers were excluded (t127= 3.52, P < 10−3, d= 0.62). In
contrast, the two groups were not different in terms of the distance
to the paramagnetic–ferromagnetic phase transition as measured
by μ (t129 = 0.77, P = 0.44, d = 0.13 with the outlier included;
t127 = 0.85, P = 0.40, d = 0.15 with the outlier excluded).

More systematically, we found a mild positive correlation
between χSG and the performance IQ score (r129= 0.24,
PBonferroni= 0.011; also see Fig. 2b). However, the verbal IQ
score, which is based on individuals’ verbal knowledge42,43, was
not correlated with χSG (r126 = 0.06, Puncorrected= 0.50, Fig. 2c).
The correlation between χSG and the performance IQ score was
also significantly larger than the correlation between χSG and the
verbal IQ score (t121 = 2.33, P = 0.021, in the Williams t test for
comparing two nonindependent correlations with a variable in
common44). These results suggest that the criticality of brain
dynamics plays more roles in fluid intelligence than when simply
retrieving verbal knowledge. Note that we partialed out the effects
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of the age and gender in this and the following analysis unless we
state otherwise.

The correlation between the full IQ score42,43 and χSG was
intermediate between the results for the performance and verbal
IQ scores (r130 = 0.19, P = 0.026; also see Fig. 2d), which is
natural because the performance and verbal IQ scores are
components of the full IQ score.

The association between the spin-glass susceptibility, χSG, and the
different types of IQ scores were robust in the following four ways.
First, the exclusion of the two outliers determined by Tukey’s 1.5
criteria45 did not affect the significance of the results (χSG vs
performance IQ: r127 = 0.27, PBonferroni = 0.005; χSG vs verbal IQ:
r124 = 0.13, PBonferroni = 0.27; χSG vs full IQ: r128 = 0.25, P = 0.005).
Second, the results were robust against variation on the threshold
value for binarizing the fMRI signal (Supplementary Fig. 2).
Furthermore, changes in the threshold value did not substantially
alter the phase diagrams (Supplementary Fig. 3). Third, the results
were preserved even when the global signal (see Methods) was
not subtracted from the fMRI signals (χSG vs performance
IQ: r129 = 0.22, PBonferroni = 0.02; χSG vs verbal IQ: r126 = 0.046, -
Puncorrected = 0.61; χSG vs full IQ: r130 = 0.18, P = 0.043; the outliers
were not removed). Fourth, we did not find a gender difference in
the correlation coefficient between χSG and the IQ scores

(performance IQ: Z = 0.33, P = 0.74 in a Z-test for a pair of
correlation coefficients46; verbal IQ: Z = 0.43, P = 0.67; full IQ:
Z = 0.17, P = 0.86). In this gender-difference analysis, we partialed
out the effect of the age but not the gender.

Irrelevance of the paramagnetic–ferromagnetic transition. The
IQ was not correlated with χuni (performance IQ: r129 = 0.10,
Puncorrected = 0.27; verbal IQ: r126 = 0.093, Puncorrected = 0.30; full
IQ: r130 = 0.10, P = 0.24, each test including the outliers; per-
formance IQ: r124 = 0.013, Puncorrected = 0.89; verbal IQ:
r121 = 0.039, Puncorrected = 0.67; full IQ: r125 = 0.020, P = 0.82,
each test excluding the outliers). The specific heat (denoted by C;
see “Methods” for definition) was only mildly correlated with the
performance IQ score (performance IQ: r129 = 0.21, PBonferroni =
0.034; verbal IQ: r126 = −0.0056, Puncorrected = 0.95; full IQ:
r130 = 0.13, P = 0.14, each test including the outliers; perfor-
mance IQ: r125= 0.16, Puncorrected= 0.08; verbal IQ: r122 =
−0.016, Puncorrected = 0.86; full IQ: r126 = 0.10, P = 0.26, each test
excluding the outliers). Because χuni and C diverge in the
paramagnetic–ferromagnetic phase transition but not in the
paramagnetic–SG phase transition30, these negative results lend
another support to the relevance of the SG phase rather than the
ferromagnetic phase to intelligence.
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Consistency with the critical slowing down analysis. The pre-
vious literature used various measures of criticality. We measured
for each participant such a measure, i.e., the scaling exponent of
autocorrelation47,48. This measure quantifies the critical slowing
down phenomenon, which has been observed in critical states of the
brain48. Note that this index quantifies temporal correlation and is
orthogonal to what we have measured. We computed the scaling
exponent for the autocorrelation function of the fMRI signal at each
ROI, using the detrended fluctuation analysis47,48. Then, we took
the average of the scaling exponent over the N = 264 ROIs for each
participant, which is denoted by α. The association between α and
the IQ scores was consistent with the results for χSG (α vs perfor-
mance IQ: r129= 0.29, PBonferroni = 0.002; α vs verbal IQ:
r126 = 0.19, PBonferroni = 0.068; α vs full IQ: r130 = 0.25, P = 0.003).
These results were robust against the removal of outliers (α vs
performance IQ: r128 = 0.28, PBonferroni = 0.002; α vs verbal IQ:
r125 = 0.17, PBonferroni = 0.10; α vs full IQ: r130 = 0.25, P = 0.003).

We then performed a multivariate linear regression of the
performance IQ with χSG and α being the independent variable.
We found a significant regression equation (F2,128 = 8.0, P <
0.001, adjusted R2 = 0.11). Both χSG and α were significantly
correlated with the performance IQ (χSG: β = 0.18, P = 0.039; α:
β = 0.24, P= 0.0067). This result implies that the association
between χSG and the performance IQ that we have found is not a
byproduct of that between α and the performance IQ. The
variance inflation factor for both independent variables was equal
to 1.07; this value is small enough for justifying the use of the
multivariate regression.

Effects of data length and individual variability. We examined
if the limited data length and between-participant variability in
our data influenced our results. First, we investigated how the
estimation of the individual participant’s χSG and χuni depended
on the length of her/his fMRI data (Supplementary Fig. 4a). The
results were qualitatively the same as those obtained with all the
data if we used approximately more than two thirds of the data
(i.e., number of volumes per participant larger than ≈ 150). The
correlation between χSG and the IQ scores and that between χuni
and the IQ scores were also preserved with the aforementioned
data length (Supplementary Fig. 4b, c). Therefore, our main
results based on the χSG and χuni are considered to be reliable in
terms of the data length.

Second, as we did in our previous studies21,37, we divided the
participants into two subgroups of the same size and ran some
of the main analyses for the subgroups. We started by comparing
the pairwise activity correlation, 〈SiSj〉, for each (i, j) pair between
the two subgroups. The 〈SiSj〉 values were strongly correlated
between the subgroups and also between the empirical data and
estimated PMEMs for the two subgroups (Supplementary Fig. 5).
We further confirmed that the phase diagrams were similar
between the two subgroups (Supplementary Fig. 6). Moreover, we
estimated ~μ and ~σ for each participant only using the subgroup of
participants to which the focal participant belongs. The results
were similar to those estimated based on all the participants
(Supplementary Fig. 7). Therefore, we conclude that the
estimation of the phase diagrams (Fig. 1a–h) and their derivatives
(i.e., ~μ and ~σ), which are based on the estimated phase diagrams,
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Fig. 2 Association between the spin-glass susceptibility and the IQ scores. aMagnification of Fig. 1c. The blue and red circles represent participants with
a high performance IQ score (≥109) and a low performance IQ score (<109), respectively. The two overlapping histograms on the horizontal axis are the
distributions of ~μ for each participant group. The histograms on the vertical axis are the distributions of ~σ . b Relationship between χSG and the performance
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are robust enough against fluctuations in data, such as those
caused by a reduced number of participants.

Discussion
We provided empirical support that neural dynamics of humans
with higher intellectual ability are closer to critical. The present
results are consistent with the standing claim of the “critical brain
hypothesis” and “edge-of-chaos computation”, which jointly
dictate that the brain is maximizing its computational perfor-
mance by poising its dynamics close to the criticality, particularly
the criticality involving a chaotic regime.

Here we presented an explicit, albeit only moderate, correlation
between the IQ scores and the distance from criticality at an
individual’s level. Human intelligence has been shown to be
associated with genetic factors, brain size, the volume of specific
brain regions49, and the structure of brain networks26,49. The
present results derived from dynamic fMRI signals provide an
orthogonal account of human intelligence as compared with these
previous studies and are consistent with the view that cognition is
a dynamical process linked to neural dynamics18,19.

A previous study showed that sleep deprivation pulls the brain
dynamics away from the criticality50. This result is consistent
with ours because sleep deprivation generally compromises one’s
cognitive and intellectual functions51.

Previous studies showed that the functional connectivity
between particular pairs of ROIs or between subsystems of the
brain in the resting state was correlated with intellectual
ability49,52. These previous results are consistent with ours in the
sense that the SG susceptibility can be regarded as the square sum
of a type of functional connectivity over the pairs of ROIs and the
intellectual score was positively correlated with the SG suscept-
ibility in our analysis. In contrast to these previous studies, which
looked at individual connectivity between two regions or sub-
networks, we considered N= 264 ROIs scattered over the brain41

as a single functional network. We took this approach for two
reasons. First, intelligence is considered to depend on large-scale
brain networks26,52–54. Second, phase diagram analysis ideally
requires a thermodynamic limit, i.e., infinitely many ROIs. One
strategy to further approach the thermodynamic limit is to use a
single voxel acquired by MRI as a node, significantly scaling up N.
In this case, spatial correlation among ROIs, which we have
ignored in the present study, would be prominent. Because the
spatial dimensionality affects the phase diagrams even qualita-
tively30, this case may require two- or three-dimensional SG
models. We leave this as a future problem. The literature also
suggest that specific brain systems such as the fronto-parietal
network55 and the default-mode network56 predict intelligence of
humans. Running the same analysis for these and other brain
systems to seek specificity of the results warrants future work.
Because the present method requires hundreds of ROIs, we may
benefit from considering voxel-wise networks of a specific brain
system that allow many ROIs for particular brain systems.

In our previous paper, we posed the limited accuracy of fitting
the PMEM to fMRI data when N is large38. The argument was
based on the probability that each of the 2N possible activity
patterns appears compared between the empirical data and the
estimated PMEM. In the present manuscript, we have not used
this accuracy measure, because it cannot be calculated when N is
large. Instead, we validated the model by confirming that the
difference between the empirical data and estimated PMEM in
terms of the signal average, 〈Si〉, and the pairwise correlation,
〈SiSj〉, is small (Supplementary Fig. 8). This approach is based on
the assumption that the average and second order correlation of
signals explain most of the information contained in the given
data, which has been confirmed for smaller N in previous studies

using fMRI data21,24,37,38. Although only comparing 〈Si〉 and
〈SiSj〉 between the data and model is a weaker notion of accuracy
of fit than using the accuracy measure38, the former approach has
widely been accepted, explicitly or implicitly, in the literature57,58.
However, we point out that how to justify the use of PMEMs
when N is large remains an open issue.

There are various types of criticality, corresponding to different
types of phase transitions. Within the framework of the Ising
model, we showed that human fMRI data were in the para-
magnetic phase and were close to the boundary with the SG phase
but not to the boundary with the ferromagnetic phase. Further-
more, high fluid intelligence was associated with the proximity to
the boundary between the paramagnetic and SG phases. In the-
ory, the SG phase yields chaotic dynamics in spin systems
including the SK model31–33, whereas the ferromagnetic phase is
obviously non-chaotic. Therefore, although the definition of the
chaos in the SG phase is different from that observed in cellular
automata15 and recurrent neural networks16,17, our results are
consistent with the idea of enhanced computational performance
at the edge of chaos.

The previous accounts of the critical brain or critical neural
circuits are mostly concerned with phase transitions different
from the paramagnetic–SG phase transition or its analogs.
Examples include phase transitions between quiescent (i.e., sub-
critical) and active (i.e., supercritical) phases as an excitability
control parameter changes11,12,59–61, between ordered and
chaotic phases as connectivity parameters change17, between a
low-activity monostable state and a high-activity multistable
state62, and the divergence of heat capacity5,6,35,36. Note that, in
the theory of the Ising models, the heat capacity diverges on the
boundary between the paramagnetic and ferromagnetic phases,
whereas it increases without diverging on the boundary between
the paramagnetic and SG phases30. Most of these previous results
based on the Ising model related neural dynamics to the
paramagnetic–ferromagnetic phase transition rather than the
paramagnetic–SG transition. Roughly speaking, paramagnetic
and ferromagnetic phases correspond to active and quiescent
phases, respectively. Computational studies also support the
ferromagnetism13,63,64. In contrast, we provided a signature of the
paramagnetic–SG phase transition, not the paramagnetic-
ferromagnetic transition. Fraiman et al. reported that the Ising
model at the paramagnetic–ferromagnetic phase transition
explains properties of functional networks based on fMRI data63.
They used a two-dimensional Ising model with a uniform
strength of interaction between pairs of nodes that are adjacent
on a square lattice (and Jij = 0 for the rest of pairs). Another study
that suggested the paramagnetic–ferromagnetic phase transition
for fMRI signals also assumed a uniform Jij64. In contrast, we did
not constrain the Jij values and instead inferred the Jij values (i.e.,
structure of functional network) using the PMEM. Because these
previous studies63,64 did not assume heterogeneity in Jij as we did,
their results do not contradict ours. In fact, the assumption of
a uniform Jij corresponds to setting σ = 0 in our phase diagrams.
If one varies μ under the condition σ= 0, the only possible
phase transition is the paramagnetic–ferromagnetic transition
(Fig. 1a–d). However, that phase transition point, which is
derived under the condition σ = 0, is far from the location of the
empirical data when σ is allowed to deviate from 0 (crosses in
Fig. 1a–d). Therefore, allowing heterogeneity in Jij may be key to
further clarifying the nature of critical neural dynamics.

We showed that neural dynamics for each participant were
close to but substantially off the criticality separating the para-
magnetic and SG phases. Other studies using the PMEM65 and
other models66 also support off-critical as opposed to critical
neural dynamics in the brain. A study applying the PMEM to
local field potentials suggested that such off-critical dynamics
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may potentially have functional advantages because the off-
critical situation would prevent the dynamics to get past the phase
boundary to enter the other phase under the presence of noise66.
The other phase may correspond to pathological neural dynamics
such as epilepsy. The off-critical neural dynamics that we found
for our participants, regardless of their IQ scores, may benefit
from the same functional advantage.

Applying the current analysis pipeline to various neuroimaging
and electrophysiological data in different contexts, from health to
disease, and during rest and tasks, to evaluate the relevance of the
different types of phase transitions warrants future work. For
example, as a disease progresses, the brain dynamics may be
gradually altered to transit from one phase to another, or to
approach or repel from a phase transition curve. In fact, the
method is applicable to general multivariate time series.
Deployment of the present method to other biological and non-
biological data may also be productive.

One could classify the data from participants with high and low
IQ scores using a simple multivariate Gaussian decoder67. Such a
decoder would assume as input the mean and covariance of the
fMRI data for each participant or its random samples having the
same mean and covariance. In fact, multivariate Gaussian dis-
tributions having the same covariance structure as the empirical
data yielded similar results (Supplementary Fig. 9). Because our
PMEM also assumed the same input but was not optimized for
classifying the participants, an optimized Gaussian decoder will
probably be more efficient than our PMEM in explaining the IQ
scores of the participants. This approach is conceptually much
simpler than the present one, which employ the PMEM and its
phase diagrams. However, the aim of the present study was to
find empirical support of the critical brain hypothesis by relating
the fMRI data to the phase diagrams of an archetypal spin system
rather than to efficiently classify participants.

We found that the SG susceptibility was positively, although
not strongly, correlated with individual differences in the per-
formance IQ score but not in the verbal IQ score. The verbal IQ
reflects individuals’ knowledge about verbal concepts and crys-
talized intelligence43; crystalized intelligence refers to one’s cog-
nitive functioning associated with previously acquired knowledge
and skills. In contrast, the performance IQ reflects fluid intelli-
gence, which refers to active or effortful problem solving and
maintenance of information39. Our results imply that the critical
brain dynamics may be particularly useful for active and flexible
cognitive functions.

Methods
Participants. One-hundred thirty eight (n = 138) healthy and right-handed adult
participants (54 females and 84 males) in the Nathan Kline Institute’s (NKI)
Rockland phase I Sample68 were analyzed. The data collection was approved by the
institutional review board of the Nathan Kline Institute (no. 226781). Written
informed consent was obtained for all the participants. Although the data set
contains a wide range of the age (18–85 yo), the present results were not an age
effect because the IQ values are standardized for age42 and because we have par-
tialed out the effect of age (and the gender) in the present analysis. Participants’ IQ
scores were derived from the Wechsler Abbreviated Scale of Intelligence42. We
used the full scale IQ (full IQ for short), performance IQ, and verbal IQ.

Preprocessing. We used the same MRI data and the same preprocessing pipeline
as our previous study’s69, except that we used resting-state fMRI signals from 264
ROIs, whose coordinates were derived in the previous literature41. In short, we
submitted the resting-state fMRI data in the NKI Rockland phase I Sample with
TR= 2500 ms and for 10 min 55 s for each participant to our preprocessing
pipeline in FSL and applied band-pass temporal filtering (0.01–0.1 Hz).

The obtained fMRI signals xi(t) (i ¼ 1; ¼ ;N; t ¼ 1; ¼ ; tmax, where
tmax ¼ 258) were transformed into their z-values using zi(t) = (xi(t)− μ(x(t)))∕σ(x
(t)), where μ(x(t)) and σ(x(t)) represent the average and standard deviation of xi(t)
over the N ROIs, respectively. Note that μ(x(t)) is the global signal. When we tested
the robustness of the results by not removing the global signal, we set zi(t) = xi(t).

We binarized the signal as follows:

SiðtÞ ¼
þ1 if ziðtÞ � 0;

�1 if ziðtÞ< 0:

�
ð4Þ

Estimation of h and J by pseudo-likelihood maximization. The probability of
each of the 2N activity patterns is equal to its frequency of occurrence normalized
by the tmax time points and 138 participants. We fitted the Ising model to this
probability distribution on the 2N activity patterns.

We estimated the parameter values of the Ising model (i.e., h and J) by
maximizing a pseudo-likelihood (PL)38,70. We approximate the likelihood function
by

Lðh; JÞ �
Ytmax

t¼1

YN
i¼1

~PðSijh; J; S=iðtÞÞ; ð5Þ

where ~P represents the conditional Boltzmann distribution for a single spin,
Si ∈ { −1, 1}, when the Sj values (j ≠ i) are equal to S∕i(t) ≡ (S1(t), …, Si−1(t),
Si+1(t), …, SN(t)), i.e.,

~PðSijh; J; S=iðtÞÞ ¼
exp hiSi þ

PN
j¼1; j≠i J ijSiSjðtÞ

h i
P

S
0
i¼�1;þ1 exp hiS

0
i þ

PN
j¼1; j≠i J ijS

0
iSjðtÞ

h i : ð6Þ

In Eq. (6), one determines the probability of each activity pattern under the
assumption that Sj (j ≠ i) does not change when drawing the value of Si
(i = 1, ⋯ , N). We ran a gradient ascent updating scheme given by

hnewi � holdi ¼ ϵ hSiiempirical � hSii~P
� �

; ð7Þ

Jnewij � Joldij ¼ ϵ hSiSjiempirical
� hSiSji~P

� �
; ð8Þ

where hSii~P and hSiSji~P are the mean and correlation with respect to distribution ~P
(Eq. (6)) and given by

hSii~P ¼ 1
tmax

Xtmax

t¼1

tanh hi þ
XN

j0¼1; j0≠i

J ij0 Sj0 ðtÞ
" #

ð9Þ

and

hSiSji~P ¼ 1
tmax

Xtmax

t¼1

SjðtÞ tanh hi þ
XN

j0¼1; j0≠i

J ij0 Sj0 ðtÞ
" #

; ð10Þ

respectively. It should be noted that this updating rule avoids the calculation of 〈Si〉
and 〈SiSj〉 with the original spin system, Eqs. (1) and (2), which is computationally
formidable with N= 264. As tmax ! 1, the estimator obtained by the PL
maximization approaches the exact maximum likelihood estimator70. In fact, the
Ising model with the estimated parameter values h ¼ ĥ and J ¼ Ĵ produced the
mean and correlation of spins in the empirical data with a sufficiently high
accuracy (Supplementary Fig. 8).

We previously provided MATLAB code for estimating the Ising model from
data by PL maximization38. The code is publicly available on GitHub repository
(https://github.com/tkEzaki/energy-landscape-analysis).

Monte Carlo simulation. We used the Metropolis method71 to calculate the
observables of the Ising model estimated from the empirical data and the SK
model. In each time step, a spin Si was chosen uniformly at random for being
updated. The selected spin was flipped with probability minfe�ΔE ; 1g, where
ΔE = E(Sflipped)− E(S), S is the current spin configuration, and Sflipped is the spin
configuration after Si is flipped. The initial condition was given by Si= 1 with
probability 1/2 (and hence Si = −1 with probability 1/2), independently for dif-
ferent i’s. We recorded the spin configuration S every N time steps.

For the empirical data, we discarded the first 106 ×N time steps as transient and
then recorded 107 samples of S in total. Based on the 107 samples, we calculated the
averages of the observables (i.e., ∣m∣, q, χSG, χuni, and C). For drawing the phase
diagrams with the N = 264 ROIs, we further averaged each observable over ten
independent simulations starting from different initial spin configurations. In
Fig. 1k, we averaged the χSG value over 40 combinations of N 0 ROIs out of the 264
ROIs as well as over 107 samples and ten initial conditions.

For the phase diagram for the SK model, we discarded the first 104 ×N time
steps as transient and then collected 5 × 104 samples of S from each of 103

realizations of J. We drew the phase diagrams on the basis of the 5 × 104 ×
103 = 5 × 107 samples.

Estimation of μ and σ for single participants. The estimation of the empirical
interaction matrix, Ĵ, requires a large amount of data, or practically, concatenation
of fMRI data across different participants. Therefore, one cannot directly compute
the mean and standard deviation of Ĵ (i.e., μ and σ) for each participant. Given this
constraint, we estimated μ and σ for each participant (denoted by ~μ and ~σ) using
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the χSG and χuni values for the participant (denoted by ~χSG and ~χuni) as follows
(Supplementary Fig. 10).

First, we examined the phase diagrams in terms of χSG and χuni generated for the
collection of all participants (Fig. 1c, d). Specifically, we calculated χSG(μ, σ) and
χuni(μ, σ) values at μ = μk (k = 1, …, 25), where μ1 = −0.002, μ2 = −0.0015, …,
μ25 = 0.01, and σ = σℓ (ℓ = 1, …, 21), where σ1 = 0, σ2 = 0.0075, …, σ21 = 0.15.

Second, at each μk(k = 1, …, 25), we computed the value of �σk satisfying
χSGðμk; �σkÞ ¼ ~χSG (Supplementary Fig. 10a, c) using a linear interpolation of
χSG(μk, σℓ) (ℓ = 1, …, 21), i.e., �σk ¼ ασ‘0 þ ð1� αÞσ‘0þ1, where ‘

0 (1 � ‘0 � 21) is
the integer satisfying χSGðμk; σ‘0 Þ � ~χSG < χSGðμk; σ‘0þ1Þ, and α ¼ ½χSGðμk; σ‘0þ1Þ�
~χSG�=½χSGðμk; σ‘0þ1Þ � χSGðμk; σ‘0 Þ�. Because χSG(μk, σℓ) increases with ℓ in the
paramagnetic phase, the ‘0 value is uniquely determined for each k, if it exists. In
this manner, we obtained a piecewise linear curve whose knots were (μk; �σk)
(k = 1, …, 25). On this curve, χSG(μ, σ) is approximately equal to ~χSG
(Supplementary Fig. 10e, g). It should be noted that we have assumed that ð~μ; ~σÞ to
be estimated is near ðμ̂; σ̂Þ computed for the entire population (represented by the
cross in Fig. 1a–d). More precisely, we are searching ð~μ; ~σÞ in the vicinity of the
paramagnetic–SG phase boundary on the paramagnetic side. This assumption is
supported by the empirical values of m and q for individual participants, i.e.,
m = −8.0 × 10−3 ± 7.8 × 10−3 (mean ± SD) and q = 3.4 × 10−3 ± 0.4 × 10−3.

Third, we calculated a piecewise linear curve on which χuni(μ, σ) was
approximately equal to ~χuni (Supplementary Fig. 10f, g). To this end, we applied the
same algorithm as the one used in the previous step but by fixing σℓ
(Supplementary Fig. 10b) and finding �μ‘ (Supplementary Fig. 10d), exploiting the
fact that χuni(μk, σℓ) monotonically increases with μ in the paramagnetic phase.

Finally, we computed (~μ, ~σ) for the individual as the intersection of the two
piecewise linear curves (Supplementary Fig. 10g).

Specific heat. The specific heat is defined by

C ¼ hE2i � hEi2
NT2 ; ð11Þ

where T is the temperature. We set T = 1 because we implicitly did so in Eqs. (1)
and (2).

To compute C for each participant, we first drew a phase diagram for C in terms
of μ and σ for the entire population (Supplementary Fig. 11a). The obtained phase
diagram was similar to that for the SK model (Supplementary Fig. 11b). Then, we
determined the C value for each participant as the point in the phase diagram
corresponding to the (μ, σ) for the participant. Because the phase diagram for C is
drawn for discrete values of μ and σ, we applied the standard bilinear interpolation
to determine the C value corresponding to a given (μ, σ).

Statistics and reproducibility. Statistical tests were performed using SPSS 24.0.
The details of each analysis are found in prior sections.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data set used in this study (Nathan Kline Institute Rockland phase I Sample) is
publicly available (http://fcon_1000.projects.nitrc.org/indi/pro/nki.html).

Code availability
The code used in this study is available upon request.
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