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Abstract

European summer weather extremes can have wide-reaching and severe societal im-

pacts, therefore the ability to forecast seasonal anomalies several weeks or months in

advance would be extremely beneficial. This thesis investigates the relationship between

the circumglobal teleconnection (CGT), the Indian summer monsoon (ISM) and European

summer weather.

It is shown that the representation of the CGT in the ECMWF seasonal forecast

model is too weak. The model has errors in the basic state, including a northward

displacement of the jet stream, and these may be important in the representation of the

CGT. Results from relaxation experiments, in which the model is corrected to reanalysis in

specific regions, suggest that northwest Europe is more important in forcing the CGT and

in the downstream development of errors in the CGT pattern than west-central Asia and

the ISM, although the link between ISM precipitation and the extratropical circulation is

weak in all experiments.

Thermal forcing experiments in the ECMWF model suggest that the ISM does force

an extratropical, CGT-like response over east Asia, the North Pacific and North America,

with upper tropospheric anticyclonic anomalies in these regions associated with increased

monsoon heating. However, the response over Europe occurs largely through westward-

propagating Rossby waves, as opposed to the eastward-propagating waves associated with

the CGT. The frequency of blocking over Europe is also shown to be related to variations

in ISM heating, with a larger number of blocked days when ISM heating is reduced,

which may have implications for European circulation predictability. However, it remains

unclear whether this occurs as a result of perturbations to the jet via the North Pacific, or

through the westward-propagating response. This westward-propagating response, which

is also seen in barotropic model experiments, was found to be crucial in the downstream

reinforcement of the wave train between Asia and North America.
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Chapter 1:

Introduction

1.1 Introduction and motivation

Variations in summer climate across Europe can have wide reaching and severe effects

on both society and industry. In recent years, a number of extreme weather events have

occurred in the summer in Europe which have highlighted the vulnerability of society

to seasonal climate extremes. Possibly the most notable and widespread was the 2003

European heatwave, which was the hottest for at least 500 years in some parts of Europe

(Luterbacher et al., 2004), with the highest temperatures located over central and southern

Europe (Figure 1.1). Estimates of heat-related deaths range from 35,000–70,000, with

some estimates exceeding these figures, most of which occurred during July and August

(Robine et al., 2008). There were also widespread crop failures and loss of livestock across

Europe, which were estimated to have cost European farming e13.1 billion. As recently

as 2018, much of northern and western Europe experienced a prolonged heatwave that led

to severe wildfires in many regions, while the UK experienced its joint-warmest summer

on record (Met Office, 2018).

In contrast, there have also been a number of severe summer flooding events in

recent years, such as those in 2007 and 2012 in the UK (Figure 1.2). In both of these

years, frequent areas of low pressure associated with a southerly jet location resulted

in exceptionally wet summers. The UK as a whole experienced its wettest June–July

period on record in 2007, a record which was subsequently broken in 2012. In both years,

thousands of homes were flooded and insured losses ran into the hundreds of millions of
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Chapter 1: Introduction

Figure 1.1: August 2003 temperature relative to 2000, 2001, 2002 and 2004 average (NASA
Terra satellite).

pounds, although losses in 2012 were less than those seen in 2007 due to the improvements

made to flood defences in the wake of the 2007 floods (Pitt, 2008; Hughes and Gambrill,

2012).

(a) (b)

Figure 1.2: Flooding in the UK in recent summers: (a) in 2007 at Walham power sub-
station, Gloucester and (b) in 2012 at Tewkesbury.
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Chapter 1: Introduction

Extreme weather events such as these have emphasised the need for more accurate

long-range forecasts for the European summer. In the event of either a heatwave or a

flood, availability of skillful forecasts several weeks or months in advance would allow gov-

ernments and businesses to plan ahead to mitigate potential impacts. This could include

stockpiling water resources in the increased likelihood of a drought, or strengthening flood

defences given an increased chance of excess rainfall.

A seasonal forecast attempts to provide useful information about the expected climate

several weeks to months ahead. Reliable seasonal forecasts, on timescales of greater than

two weeks to around one year, have only recently become possible thanks to increases in

computer power and an improved understanding of the physical processes that operate on

a seasonal timescale. Predictability of meteorological variables on an extended timescale

relies largely on the existence of slow variations in soil moisture, sea ice and snow cover and

sea surface temperature (SST) (Charney and Shukla, 1981). The slowly varying nature

of SSTs in the equatorial Pacific associated with El Niño Southern Oscillation (ENSO)

make it the largest known source of year-to-year climate variability. Aside from ENSO,

SST anomalies in the Atlantic and Indian Oceans are also causes of seasonal climate

variability.

However, despite recent advances in the understanding of global seasonal-scale

drivers, seasonal forecasts still lack skill in some regions at certain times of the year,

and one of these is the European summer. Figure 1.3, taken from Mishra et al. (2019),

is an example of this, and shows seasonal forecast skill for surface temperature for Eu-

rope in four different coupled seasonal forecast models for summer compared to winter.

While some parts of Europe, particularly southern Europe, have significant positive skill

in some models, none have significant skill for northern and western Europe in summer.

The current state of seasonal forecasting for the European summer is explained in more

detail in Chapter 2.

The potential benefits of better, more accurate long-range forecasts for the European

summer are clear. As outlined above, advance warning of an increased likelihood of flood

or drought several weeks or months in advance would allow the necessary preparations

and precautions to be made. One potential source of predictability on a seasonal timescale

is via teleconnection mechanisms. A possible source of extratropical teleconnections in

the northern hemisphere summer is the Indian summer monsoon (ISM) and this thesis

focusses on one potential teleconnection mechanism in particular which may link the ISM
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Chapter 1: Introduction

Figure 1.3: Anomaly correlation coefficient (ACC) between the predicted ensemble mean
of each individual coupled seasonal forecast model and the observed seasonal winter (DJF;
top row) and summer (JJA; bottom row) surface temperature obtained from ERA-Interim
over the European region (20°W–70°E and 25°N–75°N) for the period 1992–2012. The
individual seasonal forecast models are GloSea5, ECMWF, National Centers for Envi-
ronmental Prediction (NCEP) and MeteoFrance (MF) (from left to right). Forecasts are
initialised in November for DJF and in May for JJA. Areas covered in red are indicative of
positive correlation, while areas covered in blue indicate negative correlation. Dots in each
grid point indicate significant positive correlation at 5% significance level using one-sided
Student t-test and controlling for false discovery rate. From Mishra et al. (2019).

to Europe - the circumglobal teleconnection (CGT, Ding and Wang, 2005).

The CGT is a hemispheric wave train that can influence seasonal temperature and

precipitation anomalies in many parts of the northern hemisphere. Figure 1.4 shows the

correlation between a 200 hPa geopotential height index centred in west-central Asia (box)

and 200 hPa geopotential height elsewhere, for August. The location of the main positive

centres of action of the CGT are over east Asia, the North Pacific, North America and

northwest Europe, while there are negative centres over eastern Europe and the western

and eastern North Pacific. The variations in the strength of the CGT were hypothesised

by Ding and Wang (2005) to be at least partly driven by variations in ISM precipitation,

and so the potential of the ISM as a source of subseasonal to seasonal predictability for

Europe is investigated in this thesis. Further details about the CGT mechanism can be

found in Chapter 2.
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Chapter 1: Introduction

Figure 1.4: Correlation between ERA-Interim 200 hPa geopotential height at the base
point (box, 35°–40°N, 60°–70°E) and 200 hPa geopotential height elsewhere in August.
This is the CGT pattern as defined by Ding and Wang (2005). Further details can be
found in Chapters 2 and 4.

1.2 Thesis aims and structure

Summer extremes of both temperature and precipitation in Europe are of great im-

portance to society, and both positive and negative anomalies can have large impacts over

wide regions. This thesis therefore aims to investigate the relationship between European

summer seasonal forecast skill and the representation of the CGT in a seasonal forecast

model, and the possible link between these and ISM precipitation. The following research

questions are addressed:

1. How well is the CGT represented in a state-of-the-art seasonal forecast model?

2. What is the role of the Indian summer monsoon in driving the CGT?

3. How does the Indian summer monsoon influence circulation variability over Europe?

The rest of the thesis is structured as follows. Chapter 2 contains an overview of

the scientific background for the thesis, and a description of the relevant literature. This

includes an overview of drivers of European summer weather and the causes of variability

of the ISM, as well as current seasonal forecast skill for the European summer and the

ISM. Also included are descriptions of possible teleconnection mechanisms associated with

the ISM, including the CGT.

Page 5



Chapter 1: Introduction

In Chapter 3, the data, including observational and reanalysis datasets, are de-

scribed, along with details of the models used. Also included in Chapter 3 is a description

of the relaxation technique which is implemented in Chapter 5, and the thermal forcing

technique used in experiments in Chapter 6.

In Chapter 4, the overall skill of the model is examined, the performance of the

ECMWF model at representing the CGT is analysed, and causes for errors in its repre-

sentation investigated. The work in this chapter answers research question 1 given above,

and has been published in a peer-reviewed journal (Beverley et al., 2019).

In Chapter 5, a set of relaxation experiments are described in which the circulation

in several regions thought to be important for the CGT is relaxed towards ERA-Interim.

These were carried out to further explore the teleconnection mechanism and its links to

extratropical summer seasonal forecast skill, and were motivated by research questions 2

and 3 above. These experiments motivated the use of a barotropic model, which is used

to investigate the impact of biases in the model basic state and forcing on the propagation

of Rossby waves related to the CGT.

Chapter 6 contains work motivated by results from Chapters 4 and 5. Based on

findings from the barotropic model experiments at the end of Chapter 5, further experi-

ments in the ECMWF model were carried out. In these experiments, a constant thermal

forcing, both positive and negative, is applied over India to examine the impact of in-

creased or decreased forcing from the ISM on the strength of the CGT in the model and

on the circulation over Europe. This also relates to research questions 2 and 3.

Finally, in Chapter 7, the results and conclusions of this thesis are presented. This

includes addressing the questions posed above, followed by a discussion of possible direc-

tions for future work.
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Chapter 2:

Scientific background

This chapter contains a review of literature and the scientific background that is

relevant for the subsequent chapters of this thesis. The first section includes an overview

of the range of large-scale circulation patterns and drivers, both local and remote, that

affect the European climate, followed by details of the current state of European summer

seasonal forecast skill. An overview of the different causes of Indian summer monsoon

(ISM) interannual and intraseasonal variability is then given, along with details of ISM

seasonal forecast skill. Teleconnections associated with the ISM are then described, with

particular emphasis on those which have a potential impact on European summer weather.

2.1 Factors affecting European weather

2.1.1 Local drivers

Although weaker in summer than in winter, the Atlantic jet and the associated storm

track are still the dominant circulation systems affecting the European summer climate.

The midlatitude jet stream owes its existence to the equator-to-pole temperature gradient

which arises due to differences in solar heating between equatorial and midlatitude regions.

There are two main processes which govern the location of the jet stream. The first is

the poleward transport of momentum associated with the upper branch of the Hadley

circulation. Air rises near the equator and conservation of angular momentum leads to an

eastward acceleration as it moves polewards, leading to the formation of the subtropical
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Chapter 2: Scientific background

jet stream at upper levels. The second process involves the transient eddies that are

prevalent in the troposphere. These lead to the transport of vorticity and heat which also

has the net effect of accelerating the westerly wind, in particular at lower levels. These

jet streams are referred to as eddy-driven jets, and tend to occur through the depth of the

troposphere. In winter, there is separation between the subtropical jet and eddy-driven

jet, with the subtropical jet near North Africa and the eddy-driven jet further north, but

in summer there is no clear separation (Woollings, 2010).

Associated with the jet stream is the North Atlantic storm track. The European

climate is strongly influenced by midlatitude storms which track across the North Atlantic

from the eastern coast of North America. The path along which these storms preferentially

appear and propagate is termed the storm track. As with the jet stream, the storm track

arises due to the meridional gradient in temperature between equatorial regions and the

midlatitudes. This means that the troposphere is baroclinically unstable and cyclones

and anticyclones grow on this instability to convert available potential energy to eddy

kinetic energy (Charney, 1947; Eady, 1949; Simmons and Hoskins, 1978).

Closely linked to the position of the jet stream and storm track is the North Atlantic

Oscillation (NAO, Walker, 1924b) and its summer equivalent, termed the Summer North

Atlantic Oscillation (SNAO, Folland et al., 2009). The NAO and SNAO represent the

leading mode of surface pressure variability in the North Atlantic region in the winter and

summer, respectively. The NAO is typically defined as a measure of the anticorrelation

between surface pressure or geopotential over Iceland and the Azores, whereas the SNAO

has a more northerly location and smaller spatial scale, with the southern node over

northwest Europe and a smaller-scale Arctic node (Hurrell et al., 2003). The positive

phase of the SNAO has been shown to be associated with warm and dry conditions over

northwest Europe, including the United Kingdom and much of Scandinavia (Folland et al.,

2009). This is the opposite of the pattern seen in winter, when a positive NAO Index is

associated with a more northerly jet stream location and wetter and stormier conditions

across northern Europe (Woollings et al., 2010). The summer storm track has been

shown to be characterised by meridional shifts between two distinct paths. When it has a

more southerly location, this is associated with enhanced precipitation over northwestern

Europe and decreased precipitation over southern Europe (Dong et al., 2013b). These

shifts are closely related to the phase of the SNAO. This was the case in the summer of

2012, when a negative phase of the SNAO led to the UK experiencing its wettest summer
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Chapter 2: Scientific background

since 1912, while there were droughts and wildfires in Spain (Dong et al., 2013a).

A further influence on European weather is blocking events. The term ‘blocking’

is generally used to refer to a weather pattern where the prevailing westerly winds and

midlatitude storms are blocked by a persistent anticyclonic anomaly. Due to their broad

spatial scale and persistence, blocking areas of high pressure can affect the circulation

patterns and therefore weather conditions over a large region for several weeks (Rex, 1950;

Tyrlis and Hoskins, 2008). Europe is one of several regions in the northern hemisphere

which experience blocking events frequently and they can lead to extreme weather events

in both winter and summer. In winter, blocks are associated with extended spells of cold,

dry weather, such as the winter of 2009/2010, which was also associated with a record

negative NAO Index (Osborn, 2011). In summer, blocking events have been shown to be

associated with droughts and heatwaves (Della-Marta et al., 2007; Schaller et al., 2018;

Sousa et al., 2018), such as during the central European heatwave of 2003 (Black et al.,

2004; Garćıa-Herrera et al., 2010). A number of different theories have been proposed for

the initiation of blocking events. One of these is that blocking events in the Euro-Atlantic

region can be triggered by tropical convection, such as in the Caribbean (Hoskins and

Sardeshmukh, 1987; Douville et al., 2011) or tropical Atlantic (Cassou et al., 2005), and

mechanisms such as this, by which weather in the tropics can affect the weather and

climate in Europe, are discussed in more detail in Section 2.1.2.

A number of studies have found links between northern European summer weather

and North Atlantic sea surface temperatures (SSTs) in the preceding winter or spring.

Colman (1997), and subsequently Colman and Davey (1999), found that July–August

surface temperatures over much of northwest Europe are predictable using a statistical

linear regression based on the January–February North Atlantic SST, with observed cor-

relations ranging from 0.4–0.7. Sutton and Hodson (2005) investigated the link between

low frequency variations of European summer weather and the North Atlantic and found

that multidecadal variability of summertime climate in both North America and western

Europe are closely linked to the Atlantic Multidecadal Oscillation (AMO), a result which

was later confirmed by Ghosh et al. (2017). Ossó et al. (2018) found that July–August

precipitation over the British Isles can be predicted using a statistical model based on

the March–April North Atlantic SST anomaly. They showed that this skill comes from a

lagged relationship between a particular pattern of east Atlantic atmospheric circulation,

which has a strong influence on rainfall in the British Isles, and a North Atlantic SST
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index, with a statistically significant model correlation skill of 0.56 compared to obser-

vations. This provides the potential for improving on the current poor skill of seasonal

predictions of precipitation in the European summer.

2.1.2 Remote drivers

The word “teleconnection” is often used to describe the link between low frequency

variability of circulation patterns, temperatures and precipitation in remote locations on

Earth (Bjerknes, 1969). Teleconnections act to restore atmospheric energy budget im-

balances caused by meridional differences in solar heating, SST anomalies, such as those

associated with El Niño Southern Oscillation (ENSO, e.g. Philander, 1983; Trenberth,

1997), and internal variability associated with midlatitude storms. One of the primary

drivers of tropical–extratropical teleconnections is Rossby waves associated with tropical

convection. Rossby waves are large-scale waves that occur as a result of the latitudinal

variation of the Coriolis parameter (Rossby, 1939). Stationary Rossby waves such as those

described in Hoskins and Karoly (1981) are key components of teleconnection pathways,

and Schubert et al. (2011) showed that they account for more than 60% of the monthly

mean surface temperature variability in many regions of the extratropical northern hemi-

sphere. The dispersion relationship that describes the propagation of Rossby waves on a

background zonal flow U is:

ω = Ukx − (β − Uyy) kx/
(
k2x + k2y

)
, (2.1)

where ω is the wave’s frequency, β is the northward gradient of the vertical component of

planetary vorticity, (β − Uyy) represents the poleward gradient of absolute vorticity and

the wavenumber k ≡ (kx, ky). This means that the phase speed is always westward with

respect to the zonal wind U , and waves with the longest wavelength propagate westward

most rapidly.

Following Sardeshmukh and Hoskins (1988) and James (1995), the equation governing

the forcing of Rossby waves can be derived from the barotropic vorticity equation for a

single level in the atmosphere:
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∂ζ

∂t
+ v · ∇ζ = −ζD, (2.2)

where ζ is the absolute vorticity, v is the wind field and D is the horizontal divergence

∂u/∂x + ∂v/∂y. The velocity field v can be decomposed into v = vψ + vχ where vψ is

the rotational component and vχ is the divergent component of the wind field. From this,

Equation 2.2 can be written as:

∂ζ

∂t
+ vψ · ∇ζ = −ζD − vχ · ∇ζ. (2.3)

Equation 2.3 represents the partitioning between the Rossby wave propagation terms

on the left hand side, which involve just the rotational part of the wind field, and the

forcing terms on the right hand side, which involve the divergent part of the wind. The

forcing terms can therefore be grouped into one term, the Rossby wave source (RWS):

RWS = −ζD − vχ · ∇ζ. (2.4)

Therefore, the interaction of the basic state vorticity gradient with upper level di-

vergence, such as that associated with convective precipitation, can act as a source of

Rossby waves, and the wave activity associated with this provides a potential source of

predictability on subseasonal to seasonal timescales. The schematic shown in Figure 2.1,

taken from James (1995), shows how Rossby waves can be excited by a tropical heating

source, even though ζ is usually small in the vicinity of the heating. The divergent flow

is largest around the edge of the heating region, away from the region where D is large.

Closer to the subtropics the gradients of ζ become large, so the RWS (labelled S in the

schematic) can be large in the subtropics, remote from the region of maximum heating.

In the northern hemisphere summer (JJA), the main areas of RWS can be found over the

Mediterranean and west-central Asia, associated with divergence related to the ISM, the

eastern Pacific, close to North America, and the eastern North Atlantic (Hoskins et al.,

1989; Shimizu and de Albuquerque Cavalcanti, 2011).

ENSO is one of the most significant drivers of global teleconnections, and the vari-

ations of SSTs in the Pacific Ocean associated with it can affect weather patterns as far
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Figure 2.1: Schematic illustration of the forcing of a train of Rossby waves by a maximum
of tropical heating. The hatched region indicates the region where the Rossby wave source
function is large. From James (1995).

afield as Africa and North America. During an El Niño event the Walker circulation

weakens or reverses, causing the warm pool, which in normal conditions is situated in

the West Pacific and Maritime Continent, to spread eastwards along the equator. This

results in a deepening of the thermocline in the East Pacific, associated with reduced cold

upwelling in this region. During a La Niña event the opposite occurs, with increased cold

upwelling in the East Pacific resulting in cooler SSTs in the Central and East Pacific.

Precipitation in the equatorial Pacific tends to occur in the location of the warmest SSTs

or steepest SST gradients, so the variations of SSTs associated with the different phases

of ENSO can affect the location from which Rossby waves are excited. This in turn can

result in differing impacts in those regions known to be affected by ENSO, such as parts

of North and South America, Africa, Asia and Australia (Ropelewski and Halpert, 1987).

The effects of ENSO on European climate are much less well understood, and the

main impacts occur during mid- to late-winter. Walker (1923, 1924a) and Walker and

Bliss (1932) were the first to identify a link between the Southern Oscillation Index (SOI)

and the NAO and European climate in the winter. They found that an El Niño event

(negative SOI) corresponds to negative rainfall anomalies in Scandinavia and positive

rainfall anomalies over western Europe between approximately 35°N and 50°N, consistent

with a negative phase of the NAO. Later studies, such as that of van Loon and Madden
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(1981), also show similar findings indicating a significant relationship between ENSO

and winter sea level pressure and temperature in the North Atlantic/European sector,

although exact details of the impacts have varied in different periods of the 20th century

(Gouirand and Moron, 2003). Broadly speaking, the European signal in late winter is

similar to the negative phase of the NAO for El Niño events and the positive phase for

La Niña (Brönnimann, 2007). The positive NAO-like phase is pronounced for La Niña

events (Pozo-Vázquez et al., 2001), and can also be associated with a weakening of the

North Atlantic jet stream (Cassou and Terray, 2001).

The ENSO–Europe signal in the summer is generally much weaker, with no clear

signal in the temperature and sea level pressure fields. This is due to differences in the

background state, such as the more northerly location of the jet stream and the weaker

amplitude of ENSO during the boreal summer. However, significant relationships have

been found between ENSO and precipitation in some parts of Europe. Muñoz-Dı́az and

Rodrigo (2005) showed that in summer La Niña events lead to drought across southwest

Spain, whereas an opposite signal is seen over parts of France (Mariotti et al., 2002). The

phase of the SNAO can also be affected by ENSO, with La Niña conditions associated

with a negative SNAO phase, although this relationship is weak and the effect in El Niño

conditions is not significant (Folland et al., 2009).

Another important driver of tropical–extratropical teleconnections is the Madden-

Julian Oscillation (MJO, Madden and Julian, 1971, 1972). The MJO consists of large-

scale patterns of atmospheric circulation and convection which propagate slowly eastwards

at around 5 m s−1, with each cycle lasting approximately 30–60 days. It is known to influ-

ence the variability of precipitation in many regions of the tropics, including the monsoon

regions of Asia and Australia, parts of North and South America and also in Africa (Jones

et al., 2004; Donald et al., 2006; Lorenz and Hartmann, 2006). Given its wide-ranging

impacts on tropical precipitation, the MJO can subsequently affect the weather in extra-

tropical regions through the excitation and modulation of Rossby wave trains. Cassou

(2008) found a link between the MJO and the NAO in winter, whereby the probability

of a positive phase of the NAO is significantly increased around 10 days after phase 3 of

the MJO, when convection is located over the Indian Ocean, and significantly decreased

around 10 days after phase 6, when convection is situated over the equatorial West Pa-

cific, and vice versa. There is no known link between the MJO and European summer

weather, however the MJO is known to be a major driver of monsoon active/break peri-
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ods (Annamalai and Slingo, 2001) through its summer manifestation, the boreal summer

intraseasonal oscillation (BSISO). Through affecting monsoon precipitation variability,

the MJO could therefore have an impact on European summer weather.

2.2 European seasonal forecasting

It is difficult to predict European summer weather and climate on forecast lead times

of longer than a few days. Recent research has led to improvements in European winter

seasonal forecasts (e.g. Scaife et al., 2011; Stockdale et al., 2015; Dunstone et al., 2016),

however there has been less of a focus on the summer season and so seasonal forecasts

often show little skill (Mishra et al., 2019). As described in Section 2.1, there are a

large number of drivers of European summer weather, both local, such as the SNAO and

blocking, and remote, via teleconnections, such as those from ENSO. This makes seasonal

forecasting for Europe particularly challenging as there are a large number of different

factors to consider.

There are large differences in European forecast skill between summer and winter.

One possible reason for this is that the drivers of European weather vary between summer

and winter. There are also many differences in skill between different models. Figure 2.2,

taken from Mishra et al. (2019), shows the forecast skill for surface temperature for four

different coupled seasonal forecast models, for both winter (DJF) and summer (JJA). The

four models are the Met Office Global Seasonal forecasting system version 5 (GloSea5),

ECMWF System 4, National Centers for Environmental Prediction (NCEP) System 2

and MeteoFrance System 5. Of note is that all of the four models have limited skill

for northwest Europe in the summer, with the GloSea5 and ECMWF models showing

negative correlations over the British Isles and southern parts of Scandinavia. The skill

for southern Europe and the Mediterranean varies more widely between the models in

summer, with GloSea5 and ECMWF exhibiting significant skill in these regions, whereas

the skill in the NCEP and MeteoFrance models is generally not significant. Comparing

summer to winter in each model, it can be seen that generally there is more skill in

southern Europe in summer than in winter, but across northern and western parts of

Europe the skill tends to be better in winter.

For precipitation (Figure 2.3) there is almost no skill anywhere in Europe for any
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Figure 2.2: Anomaly correlation coefficient (ACC) between the predicted ensemble mean
of each individual coupled seasonal forecast model and the observed seasonal winter (DJF;
top row) and summer (JJA; bottom row) surface temperature obtained from ERA-Interim
over the European region (20°W–70°E and 25°N–75°N) for the period 1992–2012. The
individual seasonal forecast models are GloSea5, ECMWF, National Centers for Envi-
ronmental Prediction (NCEP) and MeteoFrance (MF) (from left to right). Forecasts are
initialised in November for DJF and in May for JJA. Areas covered in red are indicative of
positive correlation, while areas covered in blue indicate negative correlation. Dots in each
grid point indicate significant positive correlation at 5% significance level using one-sided
Student t-test and controlling for false discovery rate. From Mishra et al. (2019).

model, summer or winter, with the exception of the Iberian Peninsular for GloSea5 and

ECMWF in summer, and parts of far-eastern Europe, mostly in winter. However, Dun-

stone et al. (2018) found that skillful precipitation predictions are possible using a seasonal

forecast model. Using the Met Office Decadal Prediction System (DePreSys3, Dunstone

et al., 2016), which is initialised with 40 ensemble members on 1st November and 1st

May, they found that significant skill is achieved for summer (JJA) rainfall for a northern

European domain over a 58 year hindcast period, with a correlation of 0.47. However,

due to the weak amplitude of the forced model signal, to achieve this skill a very large

ensemble is required, in this case 80 members. The primary source of skill in this case

is from convective rainfall, which in turn comes from skillful predictions of low-frequency

variations in North Atlantic SSTs, which determine moisture availability.

A new version of the ECMWF seasonal forecast model, SEAS5, was recently made
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Figure 2.3: Same as Figure 2.2 but for precipitation, with reference data from GPCP.
From Mishra et al. (2019).

operational, replacing System 4. While this version of the model does improve the simu-

lation of many aspects of the climate system, such as ENSO, other aspects show poorer

skill compared to System 4. In particular, the northern hemisphere jet stream biases are

larger than those in System 4, which may inhibit the skill of representing teleconnections

in the model. There are also increased biases in 500 hPa geopotential height, particularly

over Europe, which affects the circulation skill in this region and may also be related to

the increased jet stream biases (Johnson et al., 2019).

One teleconnection between the ISM and southern Europe is the monsoon-desert

mechanism (Rodwell and Hoskins, 1996), whereby monsoon heating can enhance descent

over the Mediterranean through a Rossby wave response (explained in further detail in

Section 2.4.1.1). Cherchi et al. (2014) examined the representation of this mechanism

in the Coupled Model Intercomparison Project 5 (CMIP5, Taylor et al., 2012) models

and found that the descent region over the eastern Mediterranean is well located and of

realistic intensity. They also showed that diabatic heating over the Bay of Bengal and

Arabian Sea results in the largest descent, and that the models tend to underestimate the

heating at upper levels while overestimating it at lower levels, which results in a weaker

response overall with weaker descent over the eastern Mediterranean. Seasonal forecast
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models have been shown to exhibit biases in precipitation (heating) in parts of the Bay

of Bengal and Arabian Sea (see Section 2.3.3), which will therefore affect their ability to

accurately represent the monsoon-desert mechanism.

2.3 Indian monsoon variability

The heating associated with the ISM is able to affect the circulation patterns in many

regions of the northern hemisphere, possibly including Europe. Therefore, the ISM offers

a potential source of predictability for extratropical summer weather on subseasonal to

seasonal timescales.

At a basic level, the ISM is driven by the temperature contrast that develops between

the land in South Asia and oceanic regions further south in late spring, which induces

cross-equatorial surface flow. The elevated heating of the Himalayas and Tibetan Plateau

also results in a strong vertical temperature gradient, which acts to enhance the monsoon

circulation over India (Chou, 2003). When the upper tropospheric temperature gradient

reverses so that air in the subtropics is warmer than air near the equator, upper air easterly

winds develop and a strong off-equatorial meridional circulation develops, with upper air

easterlies and surface westerlies which transport moisture from the Indian Ocean across

the Indian subcontinent.

The ISM exhibits a large amount of variability on both interannual and intraseasonal

timescales, and if this variability is predictable then this may provide an indirect source

of predictability for European summer weather. In this section, the main drivers of ISM

interannual and intraseasonal variability are described.

2.3.1 Interannual variability

Interannual variability of the ISM is strongly correlated with El Niño Southern Os-

cillation (ENSO, e.g. Shukla and Paolino, 1983; Ropelewski and Halpert, 1987). An El

Niño event warms the sea surface temperatures (SSTs) in the equatorial eastern Pacific

Ocean, causing convection associated with the Walker cell to shift eastwards, and the

location of the warmest SST anomalies determines which regions are more likely to expe-

rience suppressed or enhanced precipitation. Generally, an El Niño event tends to lead to
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suppressed monsoon precipitation, whereas a La Niña event has the opposite effect (Ju

and Slingo, 1995). Kumar et al. (2006), among others, showed that central Pacific warm

events are more likely to strongly suppress ISM precipitation than eastern warm events,

and that the most severe droughts have all occurred during El Niño years.

Another driver of ISM interannual variability is the Indian Ocean Dipole (IOD). The

IOD is an atmosphere-ocean coupled mode of SST variability in the Indian Ocean, similar

in many ways to ENSO. A positive IOD is associated with cooler than average SSTs

in the eastern equatorial Indian Ocean, caused by anomalous easterlies which increase

upwelling, and warmer than average SSTs in the western Indian Ocean. This change in the

SST gradient between the eastern and western Indian Ocean reinforces the easterly wind

anomalies. Ashok et al. (2001) showed that a positive IOD event causes anomalous low-

level convergence in the western equatorial Indian Ocean, and divergence in the eastern

equatorial Indian Ocean, resulting in an overall strengthening of the monsoon circulation

and an increase in monsoon rainfall over India.

The IOD and ENSO have differing regional impacts on ISM rainfall. Rainfall anoma-

lies associated with the IOD tend to be confined to the monsoon trough region over India,

whereas ENSO affects rainfall anomalies over much of the Indian subcontinent (Figure

2.4, from Ashok and Saji, 2007). This is due to the different mechanisms by which they

affect ISM rainfall: a positive IOD event causes an overall strengthening of the monsoon

circulation, whereas an El Niño event results in anomalous subsidence over India, which

acts to suppress convection over a wider region. However, both indices are significantly

correlated with All-India Rainfall (AIR).

The relationship between the IOD and ENSO, particularly concerning the dependence

or independence of the IOD and ENSO, is not fully understood (Annamalai et al., 2003;

Xie et al., 2009). Ashok et al. (2003) suggest that the IOD is able to operate independently

of ENSO, with strong positive IOD events such as those in 1961, 1967 and 1994 occurring

when there was no El Niño event. They also found that the variance of the IOD Index

which is explained by variations of the Niño3 Index is small, although the two indices

are correlated. However, Allan et al. (2001) dispute this, claiming that if the varying lag

correlations between the IOD and ENSO indices are taken into account, the independence

of the IOD from ENSO disappears. It has also been suggested that different types of El

Niño event have different levels of coupling with the IOD, with eastern Pacific El Niño

events having a stronger correlation with the IOD than central Pacific El Niño events, due
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Figure 2.4: JJAS partial correlations between anomalies of rainfall and (a) NINO3 SST
anomaly and (b) IOD mode index. From Ashok and Saji (2007).

to the lack of accompanying anomalous easterlies over the eastern Indian Ocean during

the latter type of event (Zhang et al., 2015).

The IOD can also alter the effect of ENSO on ISM rainfall. Ashok et al. (2004)

showed that a positive IOD event significantly reduces the impact of an El Niño event

on ISM rainfall, whereas a negative IOD event lessens the impact of a La Niña. They

suggest that this is due to the formation of an anomalous Walker cell over the IOD region

in years when IOD and ENSO events occur together, which results in an intensification

of the cross-equatorial Hadley circulation and an increase in ISM rainfall.

2.3.2 Intraseasonal variability

The boreal summer intraseasonal oscillation (BSISO) is one of the main sources

of intraseasonal variability of the ISM. It is the summer manifestation of the Madden-

Julian Oscillation (MJO, Madden and Julian, 1971) and operates on a roughly monthly

timescale. It exhibits complex propagation characteristics which include eastward equa-

torial propagation, northward propagation over the northern Indian Ocean and western

Pacific (Hsu et al., 2004) and southward propagation into the southern hemisphere. Dur-

ing active phases of the monthly (30–60 days) mode, convection is enhanced over India, the

Bay of Bengal, Maritime Continent and equatorial West Pacific. This mode is strongest
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during the onset phase of the ISM and can also excite Rossby waves which propagate into

the extratropics and affect the extratropical circulation (Annamalai and Slingo, 2001).

There is also a second mode of intraseasonal variability, which consists of west-

ward propagation into the Indian monsoon region from the western Pacific on a shorter

timescale of approximately two weeks (10–20 days) associated with westward propagating

Rossby waves. This mode is more active during the established phase of the ISM (July–

August). Compared to the 30–60 day mode, the 10–20 day mode is more regional, with

its influence mostly related to the local Hadley circulation in the monsoon domain. The

westward and northward events modulate monsoon precipitation and are a major driver

of monsoon active/break periods, with 2/3 of the subseasonal variability explained by the

30–60 day mode and 1/4 explained by the 10–20 day mode (Annamalai and Slingo, 2001).

2.3.3 Indian monsoon seasonal forecast skill

Accurate forecasting of both the seasonal total rainfall and intraseasonal variability

of the monsoon represents a considerable challenge. Although the ISM has a number of

potential sources of predictability, such as ENSO, the IOD and snow cover over Asia,

the skill for monsoon rainfall is modest in seasonal prediction systems. The ENSEM-

BLES multi-model seasonal prediction system (Weisheimer et al., 2009), which consists

of six global coupled atmosphere-ocean climate models, including models from the UK

Met Office and ECMWF, has a multi-model ensemble correlation coefficient of 0.45 for

precipitation over India compared to observations (Rajeevan et al., 2012). While this

represents an improvement compared to the equivalent value from the earlier DEMETER

multi-model ensemble (0.28), systematic precipitation biases are still present. These are

partly due to excessive forcing of the atmosphere over the equatorial Indian Ocean through

an overestimation of the air-sea coupling in the Indian Ocean.

Kim et al. (2012) examined the representation of the Asian summer monsoon in

the ECMWF System 4 and NCEP CFS version 2 seasonal prediction systems. They

found that for the seasonal (JJA) ensemble mean precipitation, neither model has signifi-

cant positive correlation skill over India, although the interannual variability of the overall

Asian monsoon circulation pattern is well captured by these models. They also accurately

represent the ENSO–ISM teleconnection, albeit with a stronger than observed relation-

ship. Johnson et al. (2016) evaluated the performance of the Met Office GloSea5-GC2
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coupled ensemble forecast system at representing ISM rainfall and found that, similar to

ECMWF System 4 and NCEP CFS, the skill for the seasonally averaged precipitation

was modest (correlation of 0.41) whereas the skill for predicting the large-scale circulation

was much higher. They also showed that the link between ENSO and ISM rainfall is well

represented in the model, but the link between ISM rainfall and the IOD is too weak.

Figure 2.5: Climatological summer mean (JJA) bias (model-observation) of precipitation
(mm day−1) for (a) ECMWF System 4 and (b) CFSv2. From Kim et al. (2012).

As well as displaying limited skill, seasonal forecast models also exhibit biases in

their simulation of the ISM. GloSea5-GC2 has a systematic dry bias over India, with an

AIR deficit of 0.72 mm day−1, which is largely due to a late onset of the monsoon in the

model (Johnson et al., 2016). These biases are similar to those in found in climate models,

such as the CMIP5 models, which also have a weaker than observed relationship between

ENSO and the ISM (Sperber et al., 2013). The ECMWF System 4 has a smaller overall

ISM rainfall bias, but still has excess precipitation over the Western Ghats, whereas the

NCEP CFSv2 has a dry bias across much of the Indian subcontinent and a wet bias over

the equatorial Indian Ocean (Figure 2.5, from Kim et al., 2012).

2.4 Teleconnections associated with the Indian monsoon

As described earlier, the convective heat source over the Bay of Bengal and the ISM

region and its associated upper tropospheric divergence can serve as a Rossby wave source,

and there are a range of different teleconnection mechanisms that are associated with the

monsoon diabatic heating. A number of studies have identified a significant positive

correlation between Indian monsoon precipitation and precipitation in northern China on

an interannual timescale (e.g. Kripalani and Kulkarni, 1997, 2001; Zhang et al., 1999). Wei

et al. (2014) linked this mechanism to the position of the South Asian High (SAH), with
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increased Indian monsoon precipitation resulting in a westward shift of the position of the

SAH. This in turn affects precipitation over China, with less precipitation over eastern-

central China and more over north and south China. Kripalani and Kulkarni (2001) also

found that rainfall over southern Japan is anticorrelated with ISM precipitation.

A number of studies have found that strong ISM precipitation is associated with two

areas of anticyclonic anomalies over the Eurasian continent: one over west-central Asia

and one over east Asia, near Japan (e.g. Wang et al., 2001; Wu and Wang, 2002). They

suggested that the east Asian anticyclonic anomaly accounts for the increased rainfall over

northern China and decreased rainfall over Japan seen in earlier studies (e.g. Kripalani

and Kulkarni, 1997, 2001; Zhang et al., 1999). Wu and Wang (2002) hypothesised that

the west-central Asia anomalous anticyclone is modulated by ISM rainfall as a result of a

Rossby-type response to off-equatorial heating (Gill, 1980). This anomalous anticyclone

then perturbs the upper level flow and the subsequent downstream propagation results in

the formation of the anomalous anticyclone over east Asia. These anticyclones are also

part of a wave train linking Asia and North America (Wang et al., 2001). Using empirical

orthogonal function (EOF) analysis, Lau and Weng (2002) found that interannual varia-

tions of precipitation in North America are linked to a wave train that originates in Asia.

Lau et al. (2004) named this teleconnection the “Tokyo–Chicago Express”.

Joseph and Srinivasan (1999) also found that during the early monsoon season (May)

the west-central Asia and east Asia anticyclones are related to the heat source over the

Bay of Bengal, which can generate large amplitude stationary Rossby waves. The phase

of these Rossby waves was shown to differ by around 20° longitude between above- and

below-normal ISM years. Lu et al. (2002) also identified a teleconnection pattern that

connects Europe with east Asia and found links with the ISM. This mechanism was also

examined by Enomoto et al. (2003). They hypothesised that the propagation of stationary

Rossby waves in the upper atmosphere along the Asian jet leads to the formation of the

equivalent-barotropic ridge, and that the regions of descent over the Mediterranean and

Aral Seas act as two major wave sources. They called this teleconnection the “Silk Road

Pattern” (SRP).

Wang et al. (2017) examined the interdecadal variations of the SRP, which explain

around 50% of its total variance, and found that the interdecadal SRP has two compo-

nents: one which resembles the interannual SRP which consists of a wave train along the

Asian jet, and another weaker component over northern Eurasia, resulting in a greater
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overall meridional extent. Stephan et al. (2019) also looked at the decadal variability of

the SRP and identified a positive feedback loop between the SRP and vertical motion

over India and the Mediterranean, whereby more coherent monsoon precipitation leads

to increased descent over the Mediterranean region, via the Rodwell and Hoskins (1996)

monsoon-desert mechanism (described in Section 2.4.1.1). This subsequently induces

anomalous ascent over India following wave propagation along the subtropical westerly

jet in a positive feedback loop. They also found that decadal variability of the SRP is

linked to variability of precipitation over northwest India, southwest India and an area

over the Bay of Bengal, which alters the background state and affects intraseasonal vari-

ability of the SRP.

All of the studies described above focussed largely on teleconnection patterns which

occur over the Eurasian continent or between Asia, the North Pacific and North America.

Branstator (2002) had previously shown that a circumglobal teleconnection is present in

the northern hemisphere winter which is trapped in the westerly jet stream. The study

by Ding and Wang (2005) (described in more detail in Section 2.4.1.2), however, was the

first to show that a circumglobal teleconnection (CGT) also exists across the whole of

the northern hemisphere in the summer months, and that the ISM–East Asian summer

monsoon teleconnection, the Tokyo–Chicago Express and the Silk Road Pattern can be

viewed as local manifestations of the CGT (Chen and Huang, 2012; Kosaka et al., 2012;

Hong and Lu, 2016).

2.4.1 Indian summer monsoon–Europe teleconnections

The ISM is able to perturb the northern hemisphere jet location, and so can affect

the circulation well away from India. This means that the ISM may also affect the

circulation and weather patterns over Europe. Here, the two main mechanisms that have

been proposed as linking the ISM to European summer weather are outlined.

2.4.1.1 Monsoon-desert mechanism

It was shown in the idealised heating simulations of Gill (1980) that a region of

weak descent is seen to the west of areas of imposed equatorial and off-equatorial heat-

ing. Following on from this work, using an idealised model, Rodwell and Hoskins (1996)
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imposed an off-equatorial heating in the ISM region, mimicking the monsoon onset, and

showed that upper tropospheric divergence associated with diabatic heating in the ISM

region does indeed induce a Rossby wave pattern to its west. This can be seen in Fig-

ure 2.6, taken from Rodwell and Hoskins (1996), which shows the perturbation surface

pressure at days 3, 7 and 11 after the off-equatorial heating is applied. The signature

of the westward-propagating Rossby wave can be clearly seen by day 11, by which point

the surface pressure anomalies have extended across the Mediterranean and North Africa.

Embedded with this Rossby wave pattern is a warm thermal structure that, when interact-

ing with air on the southern edge of the midlatitude westerly jet stream, leads to increased

descent over the Mediterranean and eastern Sahara desert. Rodwell and Hoskins (1996)

also suggested that this forced descent may lead to clear air, which in turn can result

in a local diabatic enhancement of the descent as a result of increased radiative cooling

under clear skies. This descent acts to reduce the precipitation in the regions over which

it occurs, and may explain why precipitation in the Mediterranean and eastern Sahara is

at its lowest during the summer, despite zonal-mean subtropical descent associated with

the Hadley circulation being virtually zero at this time. Through this mechanism, remote

changes in monsoon strength, both on an interannual and interdecadal timescale, can

alter the climate of the Mediterranean and eastern Sahara. Rodwell and Hoskins (2001)

Figure 2.6: (a) Column-mean diabatic heating centred at 90°E, 25°N. The contour inter-
val is 50 W m−2 with no zero contour shown. (b), (c) and (d) show the corresponding
perturbation surface pressure and 887 hPa horizontal winds for an integration linearised
about a resting basic-state at (b) day 3, (c) day 7 and (d) day 11. The contour interval
is 1 hPa. From Rodwell and Hoskins (1996).

Page 24



Chapter 2: Scientific background

showed that similar mechanisms exist for other monsoon systems around the world, such

as those in North and South America, which induce the Mediterranean-type climates of

California and Chile.

Figure 2.7: Trajectories for two clusters of seven particles released at day 9 advected in
three-dimensional space until day 25. Initially, one cluster (termed ‘W’) is centred on the
southern flank of the midlatitude westerlies around at 30°W, 30°N, and the other (termed
‘E’) is centred in the tropical easterly flow around 90°E, 10°N. In each cluster, six particles
are initially displaced by ±5° of longitude, ±5° of latitude. (a) Horizontal projections of
the trajectories - small circles indicate the positions of the particles at days 9 and 17; (b)
pressure at each position of each particle; (c) potential temperature at each position of
each particle. From Rodwell and Hoskins (1996).

Rodwell and Hoskins (1996) also showed that this mechanism is not a simple over-

turning circulation or Walker cell. Figure 2.7a shows the horizontal projection of some

trajectories initiated at around 400 hPa at day 9. The descending air, seen in Figure 2.7b,

can be seen to be mainly of midlatitude origin, travelling from the North Atlantic from

around the southern flank of the midlatitude westerlies, across the Mediterranean and

North Africa.

Tyrlis et al. (2013) found evidence for this proposed mechanism in observations,

where they observed sharp slopes in the isentropes associated with the warm thermal

structure linked to the Rossby wave activity. The slopes in the isentropes further amplify
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subsidence as the northern and western edges of the warm structure are exposed to the

midlatitude westerlies. They also argued that successive ‘pulses’ of Rossby wave activity

are released from the monsoon onset until the peak monsoon activity is reached in July,

which explains why regions of subsidence advance with the progression of the monsoon

season.

2.4.1.2 Circumglobal teleconnection

The term “circumglobal teleconnection” (CGT) was first coined by Branstator (2002)

who, focussing on the northern hemisphere winter (DJF), identified a circumglobal

wavenumber-5 teleconnection that exists trapped in the waveguide (the westerly jet).

However, the summertime CGT was first documented by Ding and Wang (2005). Based

on the pattern of standard deviation of JJAS 200 hPa geopotential height shown in Figure

2.8a (from Ding and Wang, 2005), they defined a geopotential height index centred in

west-central Asia (35°–40°N, 60°–70°E, hereafter the D&W Index). This region was cho-

sen as it is the location of the upstream anomalous anticyclone which forms part of the

ISM–East Asian summer monsoon teleconnection described in Section 2.4 (Wang et al.,

2001; Wu and Wang, 2002). Given the importance of the ISM in driving the north-

ern hemisphere summer circulation, they constructed a one-point correlation of northern

hemisphere JJAS geopotential height with reference to this index (Figure 2.8b). From

this, they identified a wavenumber-5 structure (Figure 2.8c) where the pressure varia-

tions over the northeast Atlantic, east Asia, North Pacific and North America are all

nearly in phase with the variations over west-central Asia. Using empirical orthogonal

function (EOF) analysis, they showed that the leading mode of low frequency (interan-

nual) variability of the northern hemisphere summer features a zonally oriented band of

above-normal height around 50°N which extends from east Asia across the North Pacific.

They also showed that the CGT represents the second EOF and that this EOF mode is

significantly correlated with precipitation over northwest India.

Ding and Wang (2005) also examined the effect of the CGT on precipitation and

temperature anomalies in individual summer months. Figure 2.9 (also from Ding and

Wang, 2005) is the panel for August, when the most significant anomalies are seen over

Europe. In this month a positive phase of the CGT corresponds to positive geopoten-

tial height anomalies over northwest Europe, east Asia, the North Pacific and North
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Figure 2.8: (a) Standard deviation of summer (JJAS) 200 hPa geopotential height (con-
tour) and climatological 200 hPa jet stream (zonal wind) with magnitude greater than
15 m s−1 (shading) for the period of 1948–2003, for the NCEP–NCAR reanalysis dataset
(Kalnay et al., 1996). (b) One-point correlation map between the base-point (box) and
JJAS 200 hPa geopotential height for 1948–2003. (c) Schematic illustrating six main
centres of action of the CGT. From Ding and Wang (2005).

America. There are significant negative precipitation anomalies over much of northwest

Europe, while there are positive anomalies over eastern parts of Europe. Also of note

is that the positive geopotential height anomalies over west-central Asia are concurrent

with increased precipitation over northern and western parts of India, in agreement with

previous studies suggesting that the anticyclone in this region forms as a result of a Gill-

type response to off-equatorial heating (Gill, 1980; Rodwell and Hoskins, 1996; Wu and

Wang, 2002; Enomoto et al., 2003).

The CGT is also associated with significant temperature anomalies over Europe.
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These are most obvious in August, with positive anomalies over much of northwest Europe

in largely the same region as the negative precipitation anomalies. There are also positive

temperature anomalies associated with the positive geopotential height anomalies over

west-central Asia, east Asia and North America.

Figure 2.9: Composite difference of global precipitation (Delaware precipitation dataset
(Willmott and Matsuura, 2001), background map) and station precipitation (small maps,
inset) between positive and negative CGT years for August. Differences (mm month−1)
above 90% statistical significance level are shown by shading on the global map. The
corresponding CGT geopotential height anomalies are shown as contours. For India and
China station data, red shading denotes regions of difference at 90%, 95%, and 99%
confidence levels with a positive value, and blue shading denotes regions of difference
at 90%, 95%, and 99% confidence levels with a negative value. Contour intervals are
30 mm month−1 (... , −60, −30, 30, 60, ...). From Ding and Wang (2005).

Ding and Wang (2005) also explored the relationship between the CGT and ENSO.

They removed 12 El Niño and 12 La Niña years from the dataset and recalculated the

global CGT correlations, shown in Figure 2.10a. They found that during non-ENSO years

the structure of the correlations of geopotential height and precipitation still appear CGT-

like. They also did the same for monsoon precipitation by removing the 12 highest and

lowest AIR years and the correlation pattern nearly completely vanishes (Figure 2.10b).

EOF-2 calculated for non-ENSO years (Figure 2.10c) is also very similar to the equivalent
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Figure 2.10: One-point correlation map between the JJAS CGT Index and 200 hPa geopo-
tential height (from the NCEP–NCAR reanalysis dataset, contour) and global precipita-
tion (Delaware precipitation dataset, shading) for (a) non-ENSO years (32 years) and
(b) non-ISM years (32 years). The contours and shading denote significant correlations
above 95% confidence level (±0.35). (c) EOF-2 of JJAS geopotential height anomalies at
200 hPa for non-ENSO years. EOF-2 associated with the CGT explains 12% of the to-
tal variance. The significant (above 95% confidence level) correlation coefficient between
time series of EOF-2 and precipitation data is shown as shading. From Ding and Wang
(2005).

calculated for all years (not shown) and this gives strong evidence that the CGT operates

independently of ENSO. However, the CGT is significantly correlated with the Niño-3

Index, so they hypothesised that the ISM can act as a “conductor” that connects ENSO

and the extratropical northern hemisphere circulation.

Two potential mechanisms for the generation and maintenance of the CGT were

proposed by Ding and Wang (2005). In the first scenario, enhanced ISM precipitation

generates an anomalous anticyclone in west-central Asia, which then excites successive
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downstream cells which propagate along the westerly jet which acts as a waveguide. In the

second scenario, the North Atlantic jet exit region excites Rossby waves which propagate

across Europe to west-central Asia. This generates the anomalous west-central Asian high

which enhances the convection over northwest India and which subsequently reinforces

the downstream propagation of the wave train.

In a subsequent study, they suggested that the second scenario is the more likely, and

that convection over northwest India is initially triggered by the west-central Asian high,

associated with the Rossby waves which propagate from Europe to Asia (Ding and Wang,

2007). This convection and associated diabatic heating in turn excites a Rossby wave re-

sponse, which reinforces the west-central Asian high, and this then enhances downstream

circulation anomalies through the propagation of these waves along the waveguide (Liu

and Wang, 2013). They also showed that the midlatitude wave train from Europe–Asia

influences the occurrence of active and break conditions over northern India. Chen and

Huang (2012) explored the excitation mechanisms of the SRP (which can be viewed as

the Eurasian part of the CGT), as well as the relationship between the SRP and the

CGT, and found that the CGT can be considered as the interannual component of the

SRP. They also showed that heating anomalies over the northern Indian Ocean are largely

responsible for forcing the CGT pattern. However, Yasui and Watanabe (2010) suggested

that the heating anomalies most responsible for forcing the CGT are situated over the

eastern Mediterranean, in a similar location to the region of descent identified by Enomoto

et al. (2003) as being a major wave source and driver of the SRP.

It has also been shown that the CGT varies on an interdecadal timescale. Wang et al.

(2012) found that since 1979 the major centres of action of the CGT have weakened, with

a large change over the North Atlantic and Europe. They attributed this to a weakening

of the coupling between ISM precipitation and the midlatitude circulation as a result of

reduced ISM precipitation variability, which in turn is due to a change of ENSO properties.

They also attribute the changes over the North Atlantic and Europe to a southward shift

of the jet stream.

The CGT has been shown to be a source of climate variability and predictability in

the northern hemisphere summer on intraseasonal (Ding and Wang, 2007), seasonal (Ding

and Wang, 2005; Lee et al., 2011) and interannual timescales. Ding et al. (2011) linked

interannual changes in the CGT pattern to ENSO variability by showing that the leading

maximum covariance analysis mode, which resembles the CGT pattern, is associated

Page 30



Chapter 2: Scientific background

with the developing phase of ENSO and appears preferentially in summers before an El

Niño event. They suggested that this link is primarily through the modulation of ISM

precipitation by ENSO.

The CGT has also been linked to individual seasonal extreme events. Blackburn et al.

(2008) found that in the summer of 2007, when the UK experienced large-scale flooding,

the streamfunction anomalies from June to July were similar to the July CGT pattern.

Ha et al. (2012) also linked cool conditions which were experienced across northern central

Asia, east Asia and central North America during the summer of 2009 to a strong negative

CGT pattern, which itself was associated with low ISM precipitation and a developing El

Niño event.

Extreme precipitation events over northwest India and Pakistan have also been linked

to large-scale northern hemisphere wave activity. Lau and Kim (2012) linked the 2010

Pakistan floods, which caused the worst flooding in 100 years, to a large-scale atmospheric

Rossby wave train stretching from western Russia to northwest China. This was also

accompanied by anomalously strong southeasterly flow, which transported moisture from

the Bay of Bengal (Houze Jr et al., 2011). The wave train was also associated with a

record heatwave and prolonged drought over western Russia, which led to severe wildfires

affecting over 5000 km2.

The teleconnections from the ISM to Europe described in Section 2.4.1 provide a

potential source of predictability for European summer weather. Therefore, accurate

representation of these mechanisms in state-of-the-art seasonal forecast models is likely

to be crucial for the improvement of European summer seasonal predictions. In this

thesis, the representation of the CGT in a seasonal forecast model is examined, and the

link between errors in its representation and European summer seasonal forecast skill is

investigated. The role of the ISM in influencing the northern hemisphere circulation more

generally is also investigated.
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The questions outlined in Chapter 1 require the analysis of data from observations,

reanalysis and models. In this chapter, the datasets and techniques used to address these

questions are outlined. The reanalysis dataset used is described in Section 3.1, and the

observational dataset in Section 3.2. Details about the two models used in the thesis - the

ECMWF seasonal forecast model and a barotropic vorticity model - are given in Section

3.3. Also in this section are a description of the relaxation technique used (Section 3.3.2)

and the method used for applying a thermal forcing in the ECMWF model (Section 3.3.3).

Finally, an overview of the multiple sampling technique used is given, before information

about the filtering of data.

3.1 ECMWF Reanalysis - Interim

Reanalysis datasets provide a best estimate of the historical state of the atmosphere

based on the assimilation of meteorological observations. A single data assimilation sys-

tem is used throughout the length of the time period analysed, which allows for the

creation of a homogeneous dataset with a range of meteorological variables on a global

grid (Trenberth et al., 2008). As new technologies become available or as observing net-

works begin or cease the collection of data, the range of observations assimilated into the

reanalysis dataset can change. Changes to the location and quantity of observations over

time is a common cause of inhomogeneity in reanalysis products, although these issues

are more common in longer datasets which span either side of the introduction of satellite
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data in around 1980 (Sterl, 2004).

In this thesis, the ECMWF Reanalysis Interim (ERA-Interim, Dee et al., 2011)

dataset is used for observational analysis, to evaluate model performance, and also for

initialisation of the seasonal forecast model. ERA-Interim is produced at T255 resolution

(∼80 km, 0.7° in latitude and longitude) with 60 vertical levels, from the surface up to

0.1 hPa. Data is available from 1979 to the present, but for the purpose of this thesis data

from 1981–2014 is used. We look at winds, pressure and geopotential height as they are

well constrained by observations so are a good representation of the state of the atmo-

sphere, particularly for large-scale features. For variables such as these, observations are

assimilated using a 4D-VAR data assimilation scheme with cycles every 12 hours at 0000

UTC and 1200 UTC. For each cycle, observations are combined with information from a

forecast model in order to estimate the evolution of the global atmosphere. ERA-Interim

precipitation is a forecast model product, with no observational information going into

producing it other than the way that the precipitation is constrained by the circulation.

As a result, ERA-Interim precipitation has known biases when compared to observational

datasets, particularly in tropical regions where it tends to underestimate extreme precip-

itation events (Sun et al., 2018), so precipitation data is taken from the GPCP dataset

described below.

3.2 Observational datasets

3.2.1 Global Precipitation Climatology Project

The Global Precipitation Climatology Project dataset (GPCP, Adler et al., 2003)

is a merged analysis that incorporates surface rain gauge observations and satellite data

from both low-Earth orbit (microwave) and geostationary (infrared) satellites. The low-

Earth orbiting satellite data has higher accuracy, so is used to calibrate the more frequent

geostationary infrared data. This combined satellite-based data is then adjusted based

on the rain gauge data.

The GPCP data used in this thesis is monthly analysis at 2.5° by 2.5° resolution,

from 1981–2014. GPCP data is used in preference to ERA-Interim precipitation data due

to the known biases in ERA-Interim data, in tropical regions in particular. The heavy
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weighting towards gauge-based data, where available, means that GPCP data typically

has a good level of accuracy, particularly when compared to ERA-Interim (Sun et al.,

2018; Kim et al., 2019).

3.3 Models

3.3.1 ECMWF Integrated Forecasting System and seasonal forecasting

The work in this thesis uses seasonal hindcasts (or reforecasts). A hindcast set is

essentially a number of forecasts initialised using initial conditions from past dates, all

run using the same model version. As hindcasts can be run for a large number of different

start dates, this means that model performance can be evaluated without needing to wait

for verifying observations, as in the case of a forecast.

The numerical model used for the hindcasts is the European Centre for Medium-

Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS), coupled to

the Nucleus for European Modelling of the Ocean model (NEMO). The IFS is being

continually developed and updated, so for the purpose of this thesis a single model cycle

is used, Cycle 41r1 (Cy41r1). This atmospheric model version is a more recent one than in

the former operational model, System 4 (Molteni et al., 2011), which uses Cycle 36r4, but

older than the current seasonal forecasting system, SEAS5. Cycle 41r1 was introduced

around four and a half years after Cycle 36r4 and includes updates to the cloud scheme,

which improve the modelling of cloud cover and precipitation, particularly for heavy

rainfall events, as well as changes to the data assimilation system. Improvements were

also made to the convection scheme, including modification of convective entrainment

and detrainment, and better representation of frozen precipitation (Bauer and Andersson,

2011; ECMWF, 2015; Haiden et al., 2015; Richardson and Bauer, 2015).

Cy41r1 became operational on 12th May 2015. The horizontal spectral resolution of

the atmospheric model (T255) is the same as System 4 and corresponds to a grid length of

approximately 80 km, while the ocean model has a resolution of approximately 1 degree

with 42 vertical levels (Weisheimer et al., 2017). In this thesis, two different vertical

resolutions of the atmosphere are used. In Chapter 4, the model is run with 91 vertical

levels, whereas in Chapters 5 and 6 60 levels are used. The hindcasts were performed
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using the ECMWF ERA-Interim and Ocean Reanalyses (ORAS4, Balmaseda et al., 2013)

for initialisation of the atmosphere and ocean, respectively. Seasonal hindcasts over four

months (123 days) were initialised on 1st May for the period 1981–2014, therefore covering

the boreal summer season of June–August (JJA) and much of the ISM season, and the

majority of the analysis presented here uses monthly mean values for May–August from

these hindcast runs. In Chapters 4 and 5 the model was run with 25 ensemble members,

whereas the experiments in Chapter 6 used five members.

3.3.2 Integrated Forecasting System relaxation technique

In Chapter 5, relaxation experiments in the ECMWF model are performed in order

to further understand the CGT mechanism and errors associated with its representation

in the model. Relaxation of the atmosphere in a model is a well-established technique for

analysing model performance and deficiencies. The technique (also known as nudging)

involves relaxing model fields towards a reference state (usually reanalysis) throughout the

length of a forecast in a pre-defined region. By relaxing the tropics, Ferranti et al. (1990)

used this technique to show the level of extratropical dependence on poorly represented

tropical variability, and Klinker (1990) showed that global mean errors are dependent

on those in certain parts of the tropics in particular. Relaxation experiments have also

been used to diagnose the role of tropical forecast errors on extended-range extratropical

northern hemisphere skill (Jung et al., 2010a) as well as to investigate the origin of

atmospheric circulation anomalies in the northern hemisphere in specific extreme seasons

(Jung et al., 2010b; Douville et al., 2011; Watson et al., 2016).

The relaxation of variable X is carried out through the addition of an extra term,

Xrelax, to the ECMWF model:

∂X

∂t
= S +Xrelax, (3.1)

where S represents the source terms used to produce the forecast, which include advection

and sources and sinks due to physical parametrisations in the model, and where Xrelax is

of the form:
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Xrelax = −Xold −Xref

τ
, (3.2)

where Xold is the model variable being relaxed, Xref is the reference state towards which

the model is drawn (in this case ERA-Interim) and τ is the relaxation timescale. So we

have:

Xrelax = Xnew −Xold = −
(
Xold −Xref

τ

)
∆t, (3.3)

where ∆t is the model time step. Letting λ = ∆t/τ , Equation 3.3 can be written as:

Xnew = Xold −Xoldλ+Xrefλ, (3.4)

= (1− λ)

(
Xold +Xref

λ

(1− λ)

)
. (3.5)

This can be written as:

Xnew =
Xold + αXref

(1 + α)
, (3.6)

where

α =
λ

(1− λ)
, (3.7)

=
∆t

(τ −∆t)
. (3.8)

The relaxation timescale τ = 2.75 hours and ∆t = 0.75 hours, so α = 0.375 = 0.5∆t. The

relaxation is applied every time step, with Xref updated by linear interpolation between

the 6-hourly data from ERA-Interim.

In order to avoid adverse effects at the boundaries of the relaxation region, Xrelax is

multiplied by a weighting function γ (φ, λ), which governs the transition from relaxed to

non-relaxed regions. Here φ is the latitude and λ the longitude of the relaxation region

boundaries. For the experiments in Chapter 5,
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γ (φ, λ) = f (φ, φ1, φ2) f (λ, λ1, λ2) , (3.9)

where

f (β, β1, β2) =

(
1

1 + eδ(β−β1)

)(
1− 1

1 + eδ(β−β2)

)
, (3.10)

with δ equal to −0.5 rad−1. φ1 & φ2, and λ1 & λ2 are parameters which determine the

northern and southern, and western and eastern edges of the relaxation region, respec-

tively. The size of the relaxation region determines the overall width of the relaxation

tapering band, although γ is always 0.5 at the midpoints of the relaxation boundaries

and 0.01 about 10° outside of the boundaries. An example one component of the tapering

function (either latitudinal or longitudinal) is shown in Figure 3.1. β1 and β2 are the

defined boundaries of the relaxation region, and the value of βmax depends on the size of

the relaxation region. The example shown in Figure 3.1 is for a difference of 20° between

β1 and β2, and this gives a value of γmax of 0.99.

3.3.3 Thermal forcing technique

In Chapter 6, we perform thermal forcing experiments in the ECMWF model in

which we impose a heating through the addition of an extra temperature term, H, at

each model time step, so that:

∂T

∂t
= S +H, (3.11)

where S is the original model forecast. H is defined as:

H = f (φ, φ1, φ2) f (λ, λ1, λ2) f (z, z1, z2) , (3.12)

where f (φ, φ1, φ2) and f (λ, λ1, λ2) have the same definition as in Section 3.3.2. Here,

f (z, z1, z2) defines the vertical profile of the heating, and has the following form:
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Figure 3.1: An example of one component of the weighting function, γ, used to taper
the transition from relaxed to non-relaxed regions. β1 and β2 are the relaxation region
boundaries and the value of γmax depends on the size of the relaxation region used.

f (z, z1, z2) =

(
1

1 + e−(Z−Zmin)

)(
1

1 + e−0.5(Zmax−Z)

)
(3.13)

where Z is the level number and Zmin and Zmax are the lower and upper bounds, at which

the heating rate is half of the peak value. An example of the vertical profile used for the

thermal forcing experiments can be seen in Chapter 6 (Figure 6.3).

3.3.4 Linear barotropic model

In Chapters 5 and 6, an idealised model is employed to explore ECMWF model

errors. The barotropic model used integrates the barotropic vorticity equation on a sphere,

following Hoskins and Ambrizzi (1993):

(
∂

∂t
+ uψ · ∇

)
ζ = F − λξ − µ∇4ξ, (3.14)
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where uψ is the rotational velocity field, ζ is the absolute vorticity, ξ is the relative

vorticity, F = F + F ′ is a constant forcing, λ is a linear damping with a timescale of

10 days and µ = 2.4× 1016 m4 s−1 is a diffusion coefficient. Here, F is chosen to keep

the model stationary in the absence of any forcing so that it exactly maintains the basic

state:

F = uψ · ∇ζ + λξ + µ∇4ξ. (3.15)

The equation is solved using spectral harmonics with triangular truncation at

wavenumber 42 (T42). The model is initialised from the basic state and integrated for-

ward for 50 days.

Two different types of anomalous forcing, F ′, are used. In Chapter 5, this is chosen

to be the regression of the Rossby wave source (RWS, described in Chapter 2.1.2) against

the geopotential height in a region which is an important component of the CGT wave

train, applied only in this region. In Chapter 6, barotropic model experiments using a

RWS forcing applied over India are performed. In both cases, the anomalous forcings are

scaled to be small so that the response can be interpreted as linear. Further details about

each set of experiments can be found in the relevant chapters.

3.3.5 Multiple sampling

The ECMWF forecast system provides us with multiple realisations in the form of

25 ensemble members. When analysing model output, a common technique is to use the

ensemble mean. However, using the ensemble mean reduces the noise and the contribu-

tion of the forced variability is increased relative to the total variability. Therefore, to

ensure that we do not mistake noise in the observations for forced variability, we need to

compare individual ensemble members from the hindcast dataset to the observations. To

do this, we follow the method of Johnson et al. (2016) and construct many time series of

monthly averaged variables by randomly selecting an ensemble member from each year

and repeating this until we have 2000 sets of time series, of 34 years each. We are then

able to compare the single realisation of the observed system to multiple realisations of

the simulated system.
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3.4 Fourier filtering

Throughout this thesis, following Ding and Wang (2005), to focus on year-to-year

variability and to account for differences in trends in the model and observations, monthly

mean data has been filtered to remove the long term trend and decadal variations with

a period of longer than 8.5 years using Fourier harmonic analysis. This was achieved

by performing a discrete real Fourier Transform of the input data, setting the second,

third and fourth Fourier cosine coefficients to zero, then computing the inverse of the real

Fourier transform.
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The representation of the

circumglobal teleconnection in the

ECMWF seasonal forecast model

This chapter is adapted from work published in Climate Dynamics:

Beverley, J. D., S. J. Woolnough, L. H. Baker, S. J. Johnson, and A.

Weisheimer, 2019: The northern hemisphere circumglobal teleconnection in

a seasonal forecast model and its relationship to European summer forecast

skill. Clim. Dyn., 52, 3759–3771.

4.1 Introduction

The CGT represents one of the leading modes of summertime climate variability in

the northern hemisphere extratropics. As described in Chapter 2, variations associated

with the CGT pattern can influence temperature and precipitation anomalies across the

northern hemisphere. Therefore, accurate representation of the CGT in seasonal fore-

casting systems may be an important source of skill for summer forecasts. In order to

analyse the relative importance of the CGT as a source of predictability for the European

summer, it must first be determined how well the ECMWF model (described in Chapter

3.3.1) represents the mechanism. Therefore, in this chapter, the ability of the model to
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represent the CGT pattern is examined. This work was carried out to address research

question 1 in Chapter 1, in order to understand how the model performs at representing

the CGT mechanism and what the relationship is between its representation and seasonal

forecast skill for Europe.

First, the overall skill of the model and its performance at representing the CGT is

analysed in Section 4.2. In Section 4.3, possible causes of errors in the model’s represen-

tation of the CGT are examined. The conclusions and summary of this chapter are in

Section 4.4.

4.2 Diagnosing model performance

4.2.1 Forecast skill

As a first order measure of model forecast skill we examine the 25 member ensemble

mean skill compared to ERA-Interim for 200 hPa geopotential height in the northern

hemisphere (Figure 4.1). For the first month of the forecast the model has good skill

across the northern hemisphere, with positive correlations everywhere. However, in June,

July and August the skill is much reduced, with large areas of negative correlation (no

skill) developing over many regions, including much of Europe. When comparing the

observed August CGT pattern in Chapter 1 to the August skill map in Figure 4.1, it can

be seen that the areas of reduced extratropical skill are closely aligned with the location

of the centres of action of the CGT. Therefore, in order to analyse whether the reduced

200 hPa geopotential height skill, in particular over Europe, arises as a result of a poor

representation of the CGT, the overall representation of the CGT in the model is now

examined in detail.

Table 4.1: CGT 200 hPa geopotential height indices

Index Abbreviation Domain

Ding and Wang D&W 60°–70°E, 35°–40°N
Northwest Europe NWEUR 15°W–10°E, 50°–70°N

East Asia EASIA 110°–140°E, 30°–50°N
North Pacific NPAC 180°–150°W, 40°–60°N

North America NAM 120°–90°W, 40°–60°N
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Figure 4.1: Model skill for 200 hPa geopotential height as defined as the correlation be-
tween ERA-Interim and the 25 member ensemble mean for (a) May, (b) June, (c) July
and (d) August.

Figure 4.2 shows the observed CGT pattern as defined in Ding and Wang (2005) as

the correlation between the D&W Index and 200 hPa geopotential height elsewhere, using

ERA-Interim data (1981–2014 to align with the model forecast period) for May–August.

Of the four months, May has the weakest CGT pattern, with little evidence of a wave

train outside of Asia and so we will not focus on May from hereon. However, there is more

evidence of a circumglobal wave train in June–August. In June, the correlation pattern is

dominated by a region of positive correlation to the west of the D&W region, extending

across the Sahara and parts of the Mediterranean. This is related to the monsoon-desert

mechanism proposed by Rodwell and Hoskins (1996) (described in Chapter 2.4.1.1), where

there is a westward retreat of the west-central Asian high following the onset of the

monsoon at the beginning of June. There are also areas of significant positive correlation
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Figure 4.2: One-point correlation between 200 hPa geopotential at the base point (D&W
region, 35°–40°N, 60°–70°E) and 200 hPa geopotential elsewhere in the ERA-Interim
(1981–2014) reanalysis dataset, for (a) May, (b) June, (c) July and (d) August. Cor-
relation values of ± 0.34 are significant at the 5% level. The boxes indicate the regions
defined as the “centres of action” of the CGT.

located in east Asia and the North Pacific, although there is little signal over North

America and western Europe. In July a wave train is visible at around 45°N which has

a wavenumber-6 structure. In August the CGT pattern becomes stronger due to the

enhanced Asian jet (Enomoto et al., 2003), and the locations of the correlation centres

shifts slightly compared to July, associated with a change to a wavenumber-5 structure.

As August has the strongest CGT pattern, we define several geopotential height indices

based on the correlation pattern in this month. These are overlayed as boxes on Figure

4.2, and are also listed in Table 4.1, and we refer to them as “centres of action” of the

CGT.

In August there are particularly strong correlations between the northwest Europe

(NWEUR), Ding and Wang (D&W), East Asia (EASIA) and North Pacific (NPAC)

regions. There are weaker correlations between the NPAC and North America (NAM)

and NAM and NWEUR regions, which perhaps suggests that the NAM region is less

instrumental in the CGT, and an observed correlation of 0.46 in August (when the CGT

is strongest) between the NPAC and NWEUR regions supports this.

The observed CGT pattern has a slightly different phase in July, and to a lesser

extent in June, compared to August. This means that the boxes used for the indices,

which are defined based on the August pattern, are not all aligned with the centres of

positive correlation in June and July. This may partly account for some of the differences
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in observed and model correlations between different regions seen later in this chapter.

4.2.2 Model representation of the circumglobal teleconnection

We now examine the representation of the CGT in the model. One-point correlations

with the D&W Index are shown in Figure 4.3. In order to get an idea of the mean model

response, but without using the ensemble mean (which will over-emphasise the forced

response), these correlations were calculated for each of the 25 ensemble members, and

the average of these 25 correlations maps was taken. In June, the model accurately

captures the effect of the Rodwell and Hoskins mechanism, visible in the westward lobe

of positive correlations extending from the D&W region, albeit with slightly less of a

westward extension and slightly weaker magnitude than is observed, and the northern

hemisphere pattern correlation is high at 0.81. The centre of action over east Asia is

also very accurately simulated, in both location and magnitude, and this seems to be

one area in which the model does well in all months. By July the model has developed a

weak positive correlation across much of the northern hemisphere and the tropics and this

contributes towards a reduced pattern correlation (0.60). Although the pattern correlation

increases slightly in August (0.70), the correlations at the centres of action are still much

too weak. The negative correlations, particularly in August, are virtually non-existent,

probably in part as a result of the developing hemisphere-wide positive correlation.

Figure 4.3: Same as Figure 4.2, but for the average of 25 ensemble member correlations
for the model hindcasts, for (a) May, (b) June, (c) July and (d) August

To get an idea of the spread in the model of the representation of the CGT, the

pattern correlations of the CGT correlation maps for August compared to ERA-Interim
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(Figure 4.2d) were calculated. To enable a more robust statistical analysis, these were

calculated for 2000 time series created using the method described in Chapter 3.3.5.

Figure 4.4 is a histogram of the distribution of the CGT pattern correlations for August,

calculated for all longitudes between 30°–70°N. The pattern correlation values range from

around 0.2–0.8 with a median of 0.60, indicating that the model does have some skill at

representing the CGT. However, much of this skill comes from the ability of the model

to represent the NWEUR–D&W–EASIA portion of the wave train. When analysing the

pattern correlation for the eastern and western hemispheres separately, there is a clear

difference in the median values. For the western hemisphere (180°W to the Greenwich

Meridian) the median pattern correlation is 0.41, but for the eastern hemisphere (the

Greenwich Meridian to 180°E, which encompasses much of the NWEUR–D&W–EASIA

part of the wave train) it is much higher, at 0.70.

Figure 4.4: Histogram of the pattern correlations between model control experiment and
ERA-Interim CGT correlations for August, calculated using 2000 time series created from
the 25 ensemble members. The pattern correlations were calculated for all longitudes
between 30°–70°N and the median value is 0.60.

We now look in more detail at the relationships between the CGT centres of action

in the model, and how they differ from observations. The correlation analysis that follows
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also uses the multiple time series as described in Chapter 3.3.5. This analysis allows us

to determine whether the model correlation is consistent with observations. If it is not,

then either the model is good and the observed pattern has a very low probability of

occurrence, or the model is unable to capture the observed teleconnection pattern.

Figure 4.5: Distribution of correlation coefficients for the D&W Index correlated against
the other centres of action of the CGT, calculated using the multiple samples. The box
plots represent the upper and lower quartiles, and the whiskers extend to the 5th and 95th

percentiles. The black horizontal line represents the median value and the red diamond
the observed correlation coefficient from ERA-Interim. 5% significance levels (±0.34) are
indicated by the green dashed lines.

Figure 4.5 shows the distributions of the correlation values between the D&W Index

and the other centres of action of the CGT, which are listed in Table 4.1 and shown as

boxes on Figures 4.2 and 4.3, for both the model and ERA-Interim for June, July and

August. As may be expected given the correlations in Figure 4.3, the correlation with

the D&W Index decreases further downstream from this region. The representation by

the model of the relationship between the D&W Index and the EASIA region is generally

very good, with the observed correlation falling between the 20th and 80th percentiles in

all three months, and the model captures the observed significant correlations in June,

July and August. Wu et al. (2016) suggested a link between East Asian Summer Mon-
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soon precipitation and the CGT, via the Pacific–Japan (PJ) pattern (Nitta, 1987). Our

analysis suggests that while the PJ pattern has a weak but significant positive correlation

with the EASIA region in July (0.40), the correlation with the D&W region is negative

(−0.33), suggesting that the relationship between the PJ pattern and the EASIA region

is independent of the CGT.

The model is not as good at capturing the relationship between the D&W Index and

the other centres of action. The performance in August is the worst, with the observed

correlation between the D&W Index and the NPAC, NAM and NWEUR regions all

falling in the 90th percentile or above, meaning that the model underestimates the link

between these regions in August. This corroborates what is shown in Figure 4.3, that

the modelled CGT correlations are much too weak in August. In general, the model

tends to overestimate the strength of the correlations in July, and underestimates them

in August. This is potentially related to the difference in the observed CGT wave train

in July compared to August. In July, the CGT has a wavenumber-6 structure, with the

NPAC and NAM centres of action displaced westwards relative to August, when there is

a wavenumber-5 structure. This means that in July there are both positive and negative

contributions from the correlations in these centres of action, and so the observed July

correlations are reduced compared to August. As the correlations in the model in July

and August are of similar magnitude, this suggests that the model does not capture

the difference in the CGT wavenumber between these months and has a wavenumber-5

structure in both. The observed CGT is strongest in August and is related to significant

temperature and precipitation anomalies in Europe in this month, so the inability of the

model to capture the strength of the relationship between the D&W Index and these

centres of action may impact on forecast skill for these variables.

Figure 4.6 shows the distribution of model correlations between each CGT centre

of action and its neighbouring centres of action. It was shown in Figure 4.5 that the

model representation of the relationship between the D&W region and EASIA region is

good. However, the model is less able to capture the relationships between subsequent

downstream centres of action. The relationship between the EASIA and NPAC regions

is good in June, but in July the model overestimates the magnitude of the correlation

between these regions. As previously mentioned, this is in part due to the slightly different

spatial structure of the observed CGT correlations in July, with the NPAC centre of action

shifted westwards towards the date line, and an area of negative correlations in its place.
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Figure 4.6: Same as Figure 4.5, but for each centre of action of the CGT against the
neighbouring centre of action.

In August there is an observed correlation of 0.71 between these regions, but this falls in

the 98th percentile of the distribution with an ensemble median correlation of around 0.50.

As the model underestimates the strength of the relationship between these regions in

August, this limits the ability of the model to represent the August CGT accurately and

will also affect the subsequent downstream representation of the CGT from the NPAC

region eastwards.

The observed correlations between the NPAC and NAM regions are not significant

in all months. The model captures this with a reasonable degree of success, with the

observations lying between the 10th and 90th percentiles in all months, although the model

does overestimate the magnitude of the correlation in July. The observed correlations

between the NAM and NWEUR regions are significant in June and August (0.34 and

0.43 respectively). For both months the observations lie within the spread of the model

distribution, although the median of the model correlations is lower than observed in both

cases.

Page 49



Chapter 4: The representation of the CGT in the ECMWF seasonal forecast model

There is an observed correlation of 0.46 between the NPAC and NWEUR regions in

August. The model underestimates the strength of this correlation by a large margin, and

this is consistent with correlations between other regions, where the correlations tend to

be underestimated by the model in August associated with a weaker than observed CGT.

4.3 Understanding errors in the model teleconnection

Several possible causes of the errors in the model representation of the CGT are now

examined, and the possible role that each has in causing errors in the teleconnection is

determined. These include errors in the forcing of the wave train, and also errors in the

basic state which could affect the wave propagation in the model, as the propagation of

Rossby waves is an important part of the CGT mechanism.

4.3.1 Errors in the D&W region

We first look at the variance of the D&W Index in the model compared to observa-

tions, noting that if the model variability in that region is small, the variance associated

with that in other centres of action may be reduced. If the variance is weak, it is an

indication that the region is not being forced as it should be. If the variance is strong,

this suggests that it is the model teleconnection mechanism that is wrong.

Figure 4.7 shows the distribution of the variance of the D&W Index in the model

and observations. The variance of the D&W Index is greatest in June, and the model

reflects this, with the observations lying well within the interquartile range of the model

distribution. However, in July and August the model underestimates the variance in this

region, most notably in July when the observed variance falls well outside of the model

distribution. In August the observed variance does lie within the model distribution but

falls in the 92nd percentile. The underestimation of the variance in this region by the

model suggests that even if the teleconnection pathway is correctly represented in the

model, it will still underestimate the strength of the teleconnection.

To identify a possible cause of the low variance in the model D&W Index in July and

August we examine the relationship between geopotential height in this region and pre-

cipitation in the North Indian Summer Monsoon region (NISM), a region first defined in
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Ding and Wang (2007). We know from observations that there is a significant correlation

between precipitation in this region and the D&W Index (correlations of 0.51, 0.61, 0.56

for June, July and August respectively), partly as a result of the effect of the west-central

Asian high in triggering precipitation across northern parts of India (Ding and Wang,

2007), and partly as a result of the subsequent reinforcement of the west-central Asian

high as a result of a Gill-type response to the diabatic heating associated with this precip-

itation (Gill, 1980; Ding and Wang, 2005). Therefore if the model does not represent the

relationship between these regions well, this may affect its ability to correctly simulate

the CGT.

Figure 4.8a shows the observed and model correlations between the D&W Index and

NISM precipitation. During July and August, when the variance in the D&W Index is

reduced, the model underestimates the correlation between NISM precipitation and the

D&W Index (Figure 4.8a) and also underestimates the variance in NISM precipitation

during these months (Figure 4.8b). This suggests that the poor variance of the D&W

Index in July and August and the poor representation of NISM precipitation in the model

may be linked.

It was shown in Ding et al. (2011) that the CGT pattern is favoured in summers

preceding the peak phases of ENSO. Correlating the difference in the Niño3.4 Index in

the preceding winter (DJF) and the subsequent winter against individual centres of action

results in negative but not significant correlations. The equivalent model correlations are

also not significant but are generally less negative than the observations (not shown).

Therefore while the CGT itself may be correlated with ENSO, there is no obvious link

between ENSO and the individual centres of action. This may be because there are a

number of other drivers for each of the centres of action individually which may mask the

influence of ENSO.

4.3.2 Rossby wave source

The CGT mechanism relies on the generation and propagation of Rossby waves. The

Rossby wave source (RWS) describes the forcing of Rossby waves by the divergent flow;

further details about the RWS term can be found in Chapter 2.1.2. Here, the RWS

is calculated using the u and v components of the wind at 200 hPa. Given the likely

interaction between Rossby waves generated by the ISM and the CGT, we compare the
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RWS in the model to ERA-Interim to help understand the role of any errors in RWS in

the representation of the CGT in the model. We first focus on the D&W region, given

its key role as a centre of action of the CGT, and the fact that there is a significant

correlation between the D&W Index and RWS located near the D&W region in July and

August (−0.50 and −0.42 respectively).

Figure 4.7: Distribution of variances of the D&W Index, calculated using the multiple
samples. The box plots represent the upper and lower quartiles, and the whiskers extend
to the 5th and 95th percentiles. The black horizontal line represents the median value and
the red diamond the observed variance from ERA-Interim.

Figure 4.9a shows the RWS averaged over the D&W region in the model and ob-

servations. It is clear that the model RWS in this region is too low in all months, with

the observations lying well outside the model distribution. The variance of the RWS in

this region is also too low (Figure 4.9b) in the model in both July and August, and to

a slightly lesser extent in June. If the strength and variance of the forcing in this region

are not accurately represented then Rossby waves that are excited may be weaker than

observed and this will affect their propagation characteristics and as such will result in

errors in the modelled CGT.

To gain an understanding of the reasons for the differences seen in Figure 4.9 we

examine the mean RWS across a wider region. All of the panels in Figure 4.10 are
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Figure 4.8: Same as Figure 4.7, but for (a) the correlation coefficient between the D&W
Index and NISM precipitation and (b) the variance of NISM precipitation. The green
dashed line on (a) represents the 5% significance level.

Figure 4.9: (a) Rossby wave source (RWS) in the model (box plots) and observations (red
diamond) and (b) variance in the RWS in the model and observations. In both panels
the box plots represent the upper and lower quartiles, and the whiskers extend to the 5th

and 95th percentiles. The black horizontal line represents the median value and the red
diamond the observed value from ERA-Interim.

for August only, as this month has the strongest CGT wave train and the patterns are

representative of those seen in June and July (not shown). Figures 4.10a and 4.10b show

the mean August RWS term, calculated using Equation 2.4, in ERA-Interim and the

model ensemble mean respectively in the coloured contours, and the 200 hPa zonal wind

in the black contours. The first thing we note is that the centre of positive RWS located

at approximately 40°N, 60°E, which, along with the source over the Mediterranean, is a

major wave source (Enomoto et al., 2003), is broader and is located further to the north

in the model than in ERA-Interim. This appears to be associated with a northward

displacement of the model jet stream by several degrees when compared to ERA-Interim,

and also explains the lower than observed RWS in the D&W region in the model shown

in Figure 4.9a. This displacement in both RWS and jet location is also present in both
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June and July (not shown).

Figure 4.10: (a) ERA-Interim and (b) model ensemble mean RWS term (filled contours)
and 200 hPa zonal wind (black contours). (c) ERA-Interim and (d) model variance of
the RWS term. The model variance is for all members concatenated together. (e) ERA-
Interim and (f) model ensemble mean divergence. (g) GPCP and (h) model ensemble
mean precipitation. All panels are for August, and the D&W region is marked as a box.

Figure 4.9b shows that the variance of the RWS in the D&W region is lower in the

model than in observations, however we see from Figures 4.10c and 4.10d that this is

generally not the case over a wider region. Indeed, in most parts of the region of interest
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the variance of the RWS in ERA-Interim (Figure 4.10c) is lower than in the model (Fig-

ure 4.10d). This is because the amplitude of the RWS in the model is generally larger,

therefore horizontal gradients in the RWS are larger. This means that horizontal dis-

placements in the centres of maxima and minima from year-to-year give greater variance.

The northward position of the jet stream in the model may also account for the generally

larger variance in RWS between 50°N and 60°N, due to the increased vorticity gradient

here.

The mean divergence field is shown in Figures 4.10e (ERA-Interim) and 4.10f (model).

The centre of negative divergence (convergence) located at approximately 40°N, 60°E (in

the same location as the centre of large RWS in Figure 4.10a) is both larger in magnitude

and located further to the north in the model than in ERA-Interim. This centre of con-

vergence was shown to be localised in this region by the presence of the Zagros mountain

chain (Rodwell and Hoskins, 1996). Where the jet is located may determine where the

divergence and convergence is, but we know, by comparing to the RWS computed from

the rotational flow of ERA-Interim with the model divergent flow, that errors in the RWS

primarily come from errors in the divergent flow (not shown). The errors in divergence

are largest over both the Arabian Sea and the Bay of Bengal. Here, the divergence is

much greater in the model than in ERA-Interim, associated with too much precipitation

in the model in these regions (Figures 4.10g and 4.10h). Conversely, precipitation over

the Indian subcontinent is lower in the model than in observations, and the variance of

NISM precipitation is also too low (Figure 4.8). These differences in the distribution and

variance of monsoon precipitation may affect the link between the monsoon and the ex-

tratropical circulation, and thus the forcing of the CGT, in the model. The RWS term is

also dominated by the divergence component, and therefore the convergence in the model

(which is both too strong and located in the wrong place) is likely to be an important

factor in the errors in RWS in the model. These errors in the RWS may impact on Euro-

pean summer forecast skill through errors in the CGT, so more accurate representation

of the link between monsoon heating and the extratropical circulation may be important

for improving European summer forecasts. This will be investigated further in Chapters

5 and 6.

We also note that the jet biases over the Mediterranean are much smaller than over

west-central Asia, and the location of the centre of convergence in the model in this region

closer resembles ERA-Interim. Where there are larger wind biases over west-central Asia
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there is a greater displacement of the centre of convergence, and this strengthens the

argument that the jet location is an important factor in these errors.

The propagation of Rossby waves generated in this region relies on the jet stream,

which acts as a waveguide. As seen in Figures 4.10a and 4.10b, the model jet stream

is located too far to the north over Asia. It can be seen from Figure 4.11 that there is

a clear northward bias in the position of the jet over much of the northern hemisphere,

particularly in June, July and August. This is shown by the positive biases to the north

and negative biases to the south of the observed jet stream. The wind biases are smallest

early on in the simulation, when the maximum biases are around 4 m s−1. However, these

biases quickly become larger, reaching a maximum of around 8 m s−1 in June. The mag-

nitude of the maximum biases then remains approximately constant for the remainder of

the hindcast period. The largest wind biases are seen in the RWS region over Asia which

means that Rossby waves forced in this region will have different wave propagation char-

acteristics to reality - they may propagate at the incorrect speed, in the wrong direction

or may not propagate at all. The combination of the errors in RWS along with the model

jet biases may be crucial in the poor representation of the CGT in the model, and this

provides a motivation for the experiments which are shown in Chapter 5.

Figure 4.11: Model 200 hPa zonal wind bias (filled contours, m s−1), defined as the model
ensemble mean minus ERA-Interim zonal wind, and ERA-I 200 hPa zonal wind (black
contours) for (a) May, (b) June, (c) July and (d) August. To show the position of the
observed jet, only the 0, 10, 20 and 30 m s−1 isotachs have been plotted. For orientation,
the location of the centres of action of the CGT are marked with white crosses.
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4.4 Summary and conclusions

In this chapter analysis of the ability of the ECMWF seasonal forecast model, as

described in Section 3.3.1, to represent the CGT has been presented. The model repre-

sentation of the CGT was found to be too weak, particularly in July and August, when

the observed correlations associated with the CGT wave train are at their strongest and

the link between the CGT and European weather and climate is large. It was also found

that the model underestimates the strength of the correlation between many of the centres

of action of the CGT. The model performance in August was found to be particularly

poor, with the observed correlation between the D&W Index and the NPAC, NAM and

NWEUR regions lying in the upper end of the distribution of model correlations (Figure

4.5). The model is able to capture the relationship between the D&W and EASIA regions

in all months, but further downstream from this region correlations are much weaker than

observed (Figure 4.6). In general, the model tends to underestimate the strength of the

correlations in August. We have looked at the relationship between the Rossby wave

source and the monsoon heating but we have not looked at the relationship between the

CGT pattern and tropical precipitation in other regions, such as the tropical Atlantic

(Lu et al., 2002), Central America or West Africa (Hall et al., 2013), and this may merit

further investigation as a cause of the lack of skill for the CGT.

We identified several errors in aspects of the model’s simulation which may be im-

portant for the generation and maintenance of the CGT, including:

1. Weak variability in the D&W region: We found that the model accurately

captures the strength of interannual variability in this region in June, but performs

much worse in July and August. This means that, assuming the other drivers of

variability in remote regions remain the same, the D&W Index will explain less of

the variance.

2. Poor representation of the link between the D&W Index and NISM

precipitation: Weak variability in the D&W Index may be related to a weak

correlation with NISM precipitation and weak variability of NISM precipitation

during July and August. The similarity between the location of the observations in

the box plots in Figures 4.7 and 4.8 suggests that poor representation by the model

of the relationship between these regions in July and August is an important factor
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in explaining the low model variance in the D&W Index in these months. Ding and

Wang (2007) hypothesised that NISM precipitation is modulated by the propagation

of the wave train between Europe and west-central Asia, before reinforcing the west-

central Asian high and the subsequent downstream propagation of the wave train.

Therefore, the weak link between these two regions may be important in the weak

representation of the CGT.

3. Errors in the RWS: There are errors in the RWS in and around the D&W region.

In particular, the main centre of RWS is stronger and is displaced northwards and

eastwards in June, July and August. This error is largely related to errors in the

divergence, and is likely to be associated with greater than observed precipitation

over the Bay of Bengal and Arabian Sea.

4. Errors in the jet location: There is a northward displacement of the jet around

the D&W region in June, July and August, which may be partially responsible for

the displacement of the centres of convergence and RWS. There is also a displace-

ment of the jet in much of the northern hemisphere, and this error, along with errors

in the forcing of Rossby waves, may be a key factor in the poor representation of

the CGT in the model, and as such may be an important contributor to the poor

forecast skill over Europe. This hypothesis will be tested in the next two chapters.

It seems likely that the pattern of reduced skill in Figure 4.1, with negative corre-

lations located at the centres of action of the CGT, including over Europe, is related to

the poor representation of the CGT wave train in the model, either as a result of a poor

representation of the monsoon heating and its associated Rossby wave response, or biases

in the jet location. This also raises the question that if the model’s representation of the

CGT was improved, would that lead to an improvement in forecast skill for the European

summer? This motivates sensitivity experiments in which the circulation is relaxed to

observations in several regions that are potentially important parts of the CGT in order

to explore the impact on forecast skill for European summer weather and on the represen-

tation of the CGT in the model. These experiments will also allow us to learn more about

the CGT mechanism, in particular relating to the possible forcing mechanisms. Analysis

of these experiments can be found in the next chapter.
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Investigating the circumglobal

teleconnection mechanism using

relaxation experiments

5.1 Introduction

In the previous chapter, several errors in the model representation of the CGT were

identified. These include weak variability in the D&W region, a weak link between the

D&W Index and ISM precipitation, errors in the RWS associated with ISM precipitation

and a northward shift of the jet across much of the northern hemisphere. In order to

understand the evolution and potential causes of these errors, as well as to further improve

knowledge of the CGT mechanism, a set of experiments was performed in which the

circulation in regions thought to be important for the CGT was relaxed towards ERA-

Interim. In this chapter, details of these experiments are presented. Firstly, an overview

of the design of the experiments, including the motivation for the relaxation regions used,

is given in Section 5.2. The analysis of these experiments is presented in Section 5.3,

and this motivated experiments using the barotropic model described in Chapter 3.3.4.

The motivation and design of these barotropic model experiments is given in Section

5.4, followed by analysis of these experiments. A discussion of the results and the main

conclusions is given in Section 5.5.
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5.2 Experimental design

In this chapter, analysis of three relaxation experiments is presented. These were

designed to explore different aspects of the CGT mechanism and how the model repre-

sents these. In the relaxation experiments, the temperature, winds and humidity-based

variables, such as specific humidity, specific cloud liquid water content and cloud cover,

are relaxed towards ERA-Interim in a specific region, as described in Chapter 3.3.2. As

the model is being relaxed in specific areas, through analysing where the skill is improved

away from the relaxation region, the regions which are connected in the model can be

determined.

One of the main motivations for the relaxation regions used was the pattern of reduced

geopotential height skill shown in Chapter 4 (Figure 4.1). There are two main features to

note from this figure. The first is that an area of reduced skill develops over west-central

Asia by July, in the approximate location of the D&W region. This region is used as the

base point for the CGT correlations, so weak forcing from this region may be one reason

why the model representation of the CGT is too weak. The second is that an area of

reduced skill (negative correlations) develops over northwest Europe in June and persists

through July and August. This area of reduced skill develops before the reduction in skill

is observed over west-central Asia and east Asia.

Another motivation from Chapter 4 is the weak model variability in the D&W region

and the weak link between the D&W Index and monsoon precipitation. If the CGT is

forced or maintained by the ISM via the D&W region, then this weak forcing may be

important in explaining the weak representation of the CGT in the model. These results

raised the following questions:

1. What is the role of the D&W region in forcing the CGT pattern, and what is its

relationship with errors in the extratropical northern hemisphere?

Table 5.1: Relaxation regions

Experiment name Region Domain

DW RELAX Ding and Wang 35°–45°N, 55°–75°E
NWEUR RELAX Northwest Europe 45°–65°N, 25°W–5°E

ISM RELAX Indian monsoon 0°–30°N, 60°–100°E
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2. How important is the northwest Europe/northeast Atlantic region in the develop-

ment of errors over Asia, and in the forcing of the CGT?

3. How do errors in the monsoon circulation affect the representation of the CGT and

model skill in the extratropics?

In order to answer these questions, three relaxation experiments were carried out.

In the first, the circulation was relaxed towards ERA-Interim near the D&W region to

determine whether errors in the CGT pattern arise from model errors over west-central

Asia. The region chosen is centred slightly to the north of the D&W region, in order to

minimise the impact of the relaxation on the ISM circulation. In the second experiment,

a slightly larger region over northwest Europe was relaxed, to investigate whether the

model errors over west-central Asia and subsequently east Asia arise as a result of the

propagation of errors from northwest Europe. The third experiment relaxed most of

the ISM region, to investigate the impact of correcting the monsoon circulation on the

representation of the CGT and on skill in the midlatitudes.

The boundaries of the relaxation regions used in these experiments are shown in

Table 5.1. To avoid adverse effects close to the relaxation boundaries, the transition

from relaxed to non-relaxed regions is smoothed through using a relaxation coefficient, γ.

Following e.g. Jung et al. (2008), the tapering is carried out over bands of latitude and

longitude. The size of the relaxation region determines the width of these tapering bands,

and the boundaries given in Table 5.1 refer to the centre of the band, where γ=0.5. For

all experiments, γ is 0.01 about 10° outside of the boundaries. Therefore, the area that

is being fully relaxed i.e. where γ = 1 is smaller than the defined region. The horizontal

tapering functions (masks, γ) are shown in Figures 5.1, 5.2 and 5.3. As the region used

in the first experiment is relatively small, the maximum value of γ is 0.84. In the second

and third experiments, the relaxation regions are larger, so the maximum value of γ is

0.99. The relaxation technique is explained in more detail in Chapter 3.3.2.
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Figure 5.1: Horizontal relaxation coefficient (γ) used in the first relaxation experiment
(DW RELAX). For orientation, the D&W region is shown as a box.

5.3 Experimental analysis

5.3.1 New control experiment

Relaxation in the IFS requires there to be the same number of levels in the reference

dataset as in the model run, in order to enable the relaxation to take place on all levels.

The control experiment presented in Chapter 4 was run with 91 levels, whereas ERA-

Interim has 60 levels. Therefore, to allow a fair comparison to be made between the control

run and the relaxation experiments, a new control experiment was run with 60 vertical

levels, and it is this control run that is used for the comparisons within this chapter. To

demonstrate that changing the vertical resolution of the model has not altered the model

skill or representation of the CGT very much, and also for comparison with results from

the relaxation experiments, three figures from the new control experiment are shown. The
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Figure 5.2: Horizontal relaxation coefficient (γ) used in the second relaxation experiment
(NWEUR RELAX).

first is the skill of 200 hPa geopotential height (Figure 5.4) and the pattern of reduced

skill in all months is very similar to that for the control run used in Chapter 4 (Figure

4.1).

The second figure is of the zonal wind biases. As seen in Chapter 4, the model has

a jet stream that is shifted northwards, a bias which develops soon after the forecast is

initialised and persists throughout the four month forecast. From Figure 5.5 it can be

seen that the jet biases in the new control experiment are also similar to those seen in

Chapter 4.

The CGT pattern is strongest in August, so our analysis of the CGT focusses on

August. Examples of members from the 25 original members which have a good and bad

representation of the CGT are shown in Figure 5.6 to give an indication of what a CGT

pattern with a high and low pattern correlation looks like. The member with a pattern

correlation of 0.75 (Figure 5.6b) has a very accurate representation of the centres of action

over northwest Europe and east Asia, and the centres over the North Pacific and North

America are well located, albeit with correlations that are weaker than observed. The

member with a pattern correlation of 0.41 (Figure 5.6c) has a much poorer representation.

In this member, there is much less evidence of a circumglobal wave train, although the
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Figure 5.3: Horizontal relaxation coefficient (γ) used in the third relaxation experiment
(ISM RELAX).

correlations over northwest Europe and east Asia have the correct sign. There is also a

much stronger tropics-wide positive response, which is more similar to observations than

the higher pattern correlation member, although it is stronger than in observations. These

two examples represent the two tails of the distribution in Figure 5.7, so the majority of

members will have a CGT pattern that lies somewhere between these two extremes.

Figure 5.7 is a histogram of ensemble member pattern correlations of the CGT cor-

relation maps calculated between 30°–70°N compared to ERA-Interim, in the new control

experiment. As with the histogram in Chapter 4, these were calculated for 2000 time

series created using the method described in Section 3.3.5. Again, there is very little

difference compared to the distribution for the higher vertical resolution control, with the

median values almost exactly the same. The pattern correlation values range from around

0.2–0.8 with a median of 0.59, indicating that the model does have some skill at repre-

senting the CGT. By comparing the distribution of the pattern correlation values from

the control and relaxation experiments, the effect of the relaxations on the representation

of the CGT can be analysed.
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Figure 5.4: Skill for 200 hPa geopotential height in the new control experiment, as defined
as the correlation between ERA-Interim and the 25 member ensemble mean for (a) May,
(b) June, (c) July and (d) August.

5.3.2 West-central Asia relaxation

From Figure 5.4 it can be seen that errors in 200 hPa geopotential height develop in

the control run in much of the northern hemisphere, including over west-central Asia, in

the D&W region. To investigate whether model errors in the CGT pattern arise as a result

of the development of errors in this region, in “DW RELAX”, the temperature, winds and

humidity-based variables were relaxed in a region centred approximately over the D&W

region (Figure 5.1), using the method described in Chapter 3.3.2. It was hypothesised by

Ding and Wang (2005), and subsequently Ding and Wang (2007), that the D&W region

is important for either forcing or maintaining the CGT, so analysis of this experiment will

determine whether correcting the circulation in this area results in an improved model
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Figure 5.5: Control experiment 200 hPa zonal wind bias (filled contours, m s−1), defined
as the model ensemble mean minus ERA-Interim zonal wind, and ERA-Interim 200 hPa
zonal wind (black contours) for (a) May, (b) June, (c) July and (d) August. To show the
position of the observed jet, only the 0, 10, 20 and 30 m s−1 isotachs have been plotted.

representation of the CGT.

Figure 5.8 shows the difference in ensemble mean 200 hPa geopotential height skill

(defined as the correlation between the model ensemble mean and ERA-Interim) between

the new control experiment and DW RELAX. This is defined such that a positive value

indicates that the skill in the relaxation experiment is higher than in the control, and vice

versa. As expected, there are large improvements in skill in and around the relaxation

region. Away from this region, improvements are largely confined to central and east

Asia, downstream of the relaxation region. There is very little change in skill over the

centres of action in the North Pacific, North America or Europe. Indeed, in June and

July in particular, there is actually a large reduction in skill in some parts of Europe.

This implies that the poor forecast skill over Europe is not directly related to errors in

the D&W region. The upstream reduction in skill may be a result of waves propagating

into this region being out of phase compared to observations, and when forced towards

ERA-Interim by the relaxation get partially reflected.

As a result of the relaxation, the ensemble spread in the relaxation region is reduced

to close to zero as each ensemble member is being relaxed to the same ERA-Interim

reference dataset. The influence of this change on other regions of the hemisphere can be

used to help determine what teleconnections may be present in the model; if there is a

strong link between the relaxation region and a remote region then the ensemble spread

in the remote region may also be expected to reduce, even if the model skill in that area

Page 66



Chapter 5: Investigating the CGT mechanism using relaxation experiments

Figure 5.6: (a) August CGT pattern from ERA-Interim. (b) and (c) Members from the
control experiment with a 30°–70°N CGT pattern correlation of (b) 0.75 and (c) 0.41.
The base point for the correlations (the D&W region, 35°–40°N, 60°–70°E) is shown as a
box. Correlation values of ±0.34 are significant at the 5% level.

is not improved in the relaxation experiment.

Figure 5.9 shows the ratio of the monthly standard deviation of the 25 ensemble

members in DW RELAX compared to the control. This has been calculated for 200 hPa

geopotential height for each year, then averaged over all years. Areas with a value of
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Figure 5.7: Histogram of the pattern correlations between the model control experiment
and ERA-Interim CGT correlations for August, calculated using 2000 time series created
from the 25 ensemble members. The pattern correlations were calculated for all longitudes
between 30°–70°N and the median value is 0.59.

less than one (blue) are where the ensemble spread has been reduced with respect to

the control experiment, and vice versa. There has been a reduction in the ensemble

spread in some regions away from the relaxation region, but these are mainly confined

to central and east Asia and some parts of the North Pacific. In general, the areas of

reduced ensemble spread coincide with areas where the 200 hPa geopotential height skill

was improved. The general lack of reduction in ensemble spread away from the relaxation

region (particularly in August, when the CGT is strongest) implies that either west-

central Asia is not a forcing region for other parts of the northern hemisphere, or that the

model is unable to reproduce any observed teleconnections from this region, for example

as a result of jet stream biases.

Figure 5.10 shows the range of the pattern correlations between the CGT pattern in

ERA-Interim and DW RELAX, plotted as the blue bars, calculated in the same way as

for the control experiment. When compared to the equivalent histogram for the control
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Figure 5.8: DW RELAX 200 hPa geopotential height correlation skill minus control
200 hPa geopotential height skill for (a) May (b) June (c) July and (d) August. A positive
value indicates that the skill is increased in the relaxation experiment compared to the
control. The box indicates the relaxation region used.

experiment (green bars), it can be seen that relaxing in west-central Asia has actually

resulted in a worsening of the representation of the CGT in the model. The range of

pattern correlations in DW RELAX is around −0.1–0.7, with a much lower median value

of 0.35. Given that in this experiment the D&W Index has been corrected to ERA-

Interim, this may suggest that this region is not actually forcing the CGT pattern. This

is consistent with the findings of Ding and Wang (2007), who hypothesised that variations

in Indian summer monsoon (ISM) precipitation reinforce the west-central Asian high and

re-energise the further propagation of the wave train but do not force it directly. However,

while the D&W region may not be a sufficient driver of the CGT on its own, it is still

a necessary component of it and errors in this region do have a negative impact on skill
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Figure 5.9: Ratio of standard deviation of 200 hPa geopotential height in the 25 ensemble
members in DW RELAX compared to the control for (a) May (b) June (c) July and (d)
August. A value of less than 1 indicates that the ensemble spread in the experiment is
reduced compared to the control, and vice versa. The box indicates the relaxation region
used.

downstream.

Another explanation may relate to the lower than observed variance in the model

D&W region seen in Chapter 4, Figure 4.7. One impact of relaxing in west-central Asia

will have been to increase the variance in the D&W region so that it more closely matches

observations. If the model teleconnection pathway is wrong then this may mean that in

this experiment a stronger version of the incorrect pattern is being forced, which could

explain the reduction in pattern correlation. If the errors in the CGT pattern arise because

of errors in the Rossby wave propagation rather than in the wave generation, then relaxing
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Figure 5.10: Histograms of the pattern correlations for the control (green) and
DW RELAX (blue) against the ERA-Interim CGT correlations for August, calculated
using 2000 time series created from the 25 ensemble members. The pattern correlations
were calculated for all longitudes between 30°–70°N. The median value for the control is
0.59 and for DW RELAX is 0.35.

in west-central Asia may not be expected to improve the model CGT pattern if the wave

propagation away from this region is still incorrect.

One possible reason for errors in the wave propagation can be seen in Figure 5.11,

which shows the zonal wind bias in DW RELAX. While the relaxation has reduced the jet

bias in the immediate area around the relaxation region, elsewhere in the hemisphere the

biases remain very similar to in the control experiment. This means that there are still

likely to be errors in Rossby wave propagation, which may explain the lack of improvement

in model skill away from the relaxation region and the poor representation of the CGT

in this experiment.
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Figure 5.11: DW RELAX 200 hPa zonal wind bias (filled contours, m s−1), defined as the
model ensemble mean minus ERA-Interim zonal wind, and ERA-Interim 200 hPa zonal
wind (black contours) for (a) May, (b) June, (c) July and (d) August. To show the
position of the observed jet, only the 0, 10, 20 and 30 m s−1 isotachs have been plotted.
The box indicates the relaxation region used.

5.3.3 Northwest Europe relaxation

Ding and Wang (2005, 2007) hypothesised that the midlatitude wave train originates

in the jet exit region over northwest Europe and subsequently propagates across Europe to

west-central Asia. In addition, it can be seen in Figure 5.4 that areas of poor skill (negative

correlation) appear over northwest Europe in June, before they appear over west-central

Asia. Therefore, to determine whether the errors seen over the D&W region arise as

a result of errors propagating from northwest Europe, a second experiment (hereafter

“NWEUR RELAX”) was carried out where a region in northwest Europe (Figure 5.2)

was relaxed.

Figure 5.12 shows the difference in ensemble mean 200 hPa geopotential height skill

between the new control experiment and NWEUR RELAX. As before, this is defined

such that a positive value indicates that the skill in the model experiment is higher than

in the control, and vice versa. When compared to Figure 5.8, it can be seen that relaxing

over northwest Europe results in a more widespread hemispheric improvement in skill

than in DW RELAX. In NWEUR RELAX, improvements in skill are made across much

of Eurasia. In particular, the skill in west-central Asia (in the D&W region) is improved,

implying that errors from northwest Europe propagate to this region. However, similar

to DW RELAX, this relaxation has caused a reduction in skill upstream of the relaxation

region. In general, the relaxation in NWEUR RELAX appears to have resulted in a larger
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Figure 5.12: NWEUR RELAX 200 hPa geopotential height correlation skill minus control
200 hPa geopotential height skill for (a) May (b) June (c) July and (d) August. A positive
value indicates that the skill is increased in the relaxation experiment compared to the
control. The box indicates the relaxation region used.

improvement in skill across the northern hemisphere than in DW RELAX, implying that

northwest Europe is a more important region for the generation of errors in the ECMWF

model than west-central Asia.

The range of the pattern correlations between the CGT pattern in ERA-Interim and

NWEUR RELAX is shown in Figure 5.13 as blue bars. Contrary to DW RELAX, relax-

ing over northwest Europe results in an improvement of the representation of the CGT

in the model compared to the control, with a median pattern correlation of 0.67. The

distribution is also much narrower than in the control (green bars) and DW RELAX,

indicating that more members have a good pattern correlation, and the range of pattern
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Figure 5.13: Histograms of the pattern correlations for the control (green) and
NWEUR RELAX (blue) against the ERA-Interim CGT correlations for August, cal-
culated using 2000 time series created from the 25 ensemble members. The pattern
correlations were calculated for all longitudes between 30°–70°N. The median value for
the control is 0.59 and for NWEUR RELAX is 0.67.

correlations is around 0.35–0.85. The improvements seen in this experiment are largely

due to an improvement of the representation of the wave train between northwest Eu-

rope and east Asia. Most members in NWEUR RELAX have a wave train that closely

resembles that seen in ERA-Interim. Histograms of the pattern correlation for both the

eastern and western hemispheres separately have also been produced (not shown), and

the median value for the eastern hemisphere (0.77) is much greater than that for the west-

ern hemisphere (0.46), indicating that the improvement in the CGT in this experiment

arises largely from improvements in the eastern hemisphere. This suggests that northwest

Europe is more likely to be forcing west-central Asia, rather than the other way round.

This wave train was also identified in the composite analysis in Ding and Wang (2007),

where a Rossby wave is seen propagating from northwest Europe from eight days before

a maximum in the west-central Asian high.

Figure 5.14 is equivalent to Figure 5.9 but for NWEUR RELAX. Here, the relax-
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Figure 5.14: Ratio of standard deviation of 200 hPa geopotential height in the 25 ensemble
members in NWEUR RELAX compared to the control for (a) May (b) June (c) July and
(d) August. A value of less than 1 indicates that the ensemble spread in the experiment is
reduced compared to the control, and vice versa. The box indicates the relaxation region
used.

ation has resulted in a reduction of the ensemble spread in more parts of the northern

hemisphere than in DW RELAX. This may in part be due to the relaxation region being

slightly larger in NWEUR RELAX than in DW RELAX, but there are also reductions

in spread further downstream from the relaxation region than in Figure 5.9. Focussing

on August, these include in several centres of action of the CGT: the spread is reduced

in the D&W region and also to a certain extent in the EASIA, NPAC and NAM regions.

This further suggests that northwest Europe is more of a driver of northern hemisphere

variability than west-central Asia.

Page 75



Chapter 5: Investigating the CGT mechanism using relaxation experiments

Figure 5.15: NWEUR RELAX 200 hPa zonal wind bias (filled contours, m s−1), defined
as the model ensemble mean minus ERA-Interim zonal wind, and ERA-Interim 200 hPa
zonal wind (black contours) for (a) May, (b) June, (c) July and (d) August. To show the
position of the observed jet, only the 0, 10, 20 and 30 m s−1 isotachs have been plotted.
The box indicates the relaxation region used.

Figure 5.15 shows the zonal wind bias in NWEUR RELAX compared to ERA-

Interim. As in DW RELAX, jet biases remain throughout much of the northern hemi-

sphere. In August, the Asian jet bias is similar to that in DW RELAX, but the biases

over the North Pacific and North America (and the North Atlantic, near the relaxation

region) have reduced. This may partially explain the greater improvement in model skill

seen in these regions compared to DW RELAX. Overall, relaxing over northwest Europe

has resulted in a reduction in the jet biases compared to the control experiment, partic-

ularly in August when the only significant bias is over central and east Asia. This ties

in with the improved representation of the CGT that is seen in Figure 5.13, where there

is a median pattern correlation of 0.67 of the CGT in NWEUR RELAX compared to

ERA-Interim.

5.3.4 Indian monsoon relaxation

To investigate the impact of errors in the model representation of the ISM on

the simulation of the CGT and on extratropical skill, the third relaxation experiment

(“ISM RELAX”) relaxed in the ISM region to correct the monsoon circulation (Figure

5.3). It was shown in the previous chapter that the link between ISM precipitation and

the D&W region is too weak in the model. Therefore, this experiment was designed to try

and correct this link in the model. Relaxing in this region also avoids the issues relating to
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errors introduced upstream of the relaxation region seen in the previous two experiments

as it lies to the south of the midlatitude jet.

Figure 5.16: ISM RELAX 200 hPa geopotential height correlation skill minus control
200 hPa geopotential height skill for (a) May (b) June (c) July and (d) August. A positive
value indicates that the skill is increased in the relaxation experiment compared to the
control. The box indicates the relaxation region used.

As for the previous two experiments, Figure 5.16 shows the difference in ensemble

mean 200 hPa geopotential height correlation skill between the control experiment and

ISM RELAX. The changes in the relaxation region in this experiment are smaller com-

pared to the previous relaxation experiments. This is because the overall skill for 200 hPa

geopotential height in the tropics tends to be much better than for the extratropics (Fig-

ure 5.4), although there are errors in the monsoon circulation in this region in the control

(Figure 5.5). Compared to DW RELAX and NWEUR RELAX, the extratropical im-

provements in skill are generally more modest. There are some large increases in skill to
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the north of the relaxation region, including in the D&W region where there was poor skill

in the control experiment. Away from the relaxation region, the patterns of skill change

vary from month-to-month. In June, there are some increases in skill over parts of the

North Pacific and North America, although these are generally fairly small. The skill over

Europe is largely unchanged, apart from some slight reductions in skill, and this is also

the case in July, when the reductions in European skill are slightly larger. However, in

August, when the observed CGT wave train is strongest, the changes in skill over Europe

are almost completely positive, which may suggest that the ISM is a potential source of

skill in this month.

Figure 5.17: Histograms of the pattern correlations for the control (green) and
ISM RELAX (blue) against the ERA-Interim CGT correlations for August, calculated
using 2000 time series created from the 25 ensemble members. The pattern correlations
were calculated for all longitudes between 30°–70°N. The median value for the control is
0.59 and for ISM RELAX is 0.55.

However, from Figure 5.17, which shows the range of pattern correlations in

ISM RELAX (blue bars), it can be seen that the representation of the CGT in this

experiment is very similar to the control (green bars). The two distributions are very

alike, with similar median values (0.55 for ISM RELAX and 0.59 for the control), sug-
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gesting that the simulation of the CGT has not been improved by correcting the monsoon

circulation. This suggests that either the ISM is not a driver of the CGT, or that the

pathway that connects the ISM to the CGT has not been improved by the relaxation.

Figure 5.18: ISM RELAX 200 hPa zonal wind bias (filled contours, m s−1), defined as the
model ensemble mean minus ERA-Interim zonal wind, and ERA-Interim 200 hPa zonal
wind (black contours) for (a) May, (b) June, (c) July and (d) August. To show the
position of the observed jet, only the 0, 10, 20 and 30 m s−1 isotachs have been plotted.
The box indicates the relaxation region used.

From Figure 5.18 it can also be seen that the northward shift of the jet stream

in the model that was also present in the other experiments is also still prevalent in

ISM RELAX. The zonal wind biases away from the relaxation region are still largely

unchanged compared to the control, which is likely to restrict any improvements in the

representation of the CGT in this experiment due to the different Rossby wave propagation

characteristics in the model compared to observations.

5.3.5 Comparison of relaxation experiments

Having examined each relaxation experiment individually, we now compare them.

Figure 5.19 shows the range of the ensemble correlations of the D&W Index against the

other centres of action of the CGT, for each relaxation experiment and for the control

for August. These correlations were calculated using the 2000 time series created from

the 25 ensemble members. The relationship between the D&W and EASIA regions is

actually well captured in the control experiment, with the distribution centred almost

exactly at the observed correlation value. NWEUR RELAX has a similar distribution to

the control, but with a slightly smaller ensemble spread. However, relaxing in the ISM
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region has had a large negative impact, with a large reduction in the model correlations

in this experiment and almost all of the ensemble members with a correlation that is not

significant. DW RELAX also has a poorer representation than the control, with almost

all ensemble members with a correlation that is weaker than is observed.

The relationship between the D&W Index and the NPAC region is poorly represented

in the control and all of the relaxation experiments. Almost all members of all experiments

have a weaker correlation than in ERA-Interim, and the majority have a correlation that is

not significant. The model struggles to represent the NPAC region of the CGT generally,

with few members of either the control or the relaxation experiments locating a centre of

action in this region. This may be because the jet biases between the EASIA and NPAC

regions are among the largest in the northern hemisphere, thus wave propagation between

these regions is likely to differ to observations.

The correlation between the D&W Index and NAM region is represented slightly

better with respect to observations in the control and NWEUR RELAX. Similar to the

D&W vs. NPAC correlations, DW RELAX and ISM RELAX have a poorer representa-

tion. As with the NPAC region, the model tends to have more variability in the location

and strength of the correlation in the NAM region, and this may be partly due to the

NAM region being furthest away from the D&W region. There is therefore more scope

for variability in wave propagation from the D&W region, leading to greater spatial dif-

ferences in the location of the NAM region and a reduced strength of correlation overall.

The correlations for which there is the largest difference between the different relax-

ation experiments is between the D&W and NWEUR regions. In ERA-Interim there is

a strong correlation between these regions (0.63) and this is reasonably well captured in

the control experiment, with almost all members with a significant positive correlation,

albeit weaker than in ERA-Interim. Relaxing over northwest Europe (NWEUR RELAX)

results in a very good relationship between these regions, with a small spread and a

median ensemble correlation that is almost exactly as in ERA-Interim. This improved

relationship is due to a good representation of the wave train between northwest Europe

and west-central Asia, with most members capturing this wave train with a high level

of accuracy. DW RELAX, however, has a very poor representation of these correlations,

with the distribution centred around zero. This may be because, when relaxing in west-

central Asia, this introduces upstream errors as waves that propagate into this region

are forced towards ERA-Interim by the relaxation on a relatively small spatial scale.
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Figure 5.19: A comparison of the correlations between the D&W Index and the other
centres of action of the CGT for the control and the three relaxation experiments for
August, calculated using the 2000 samples. The box plots represent the upper and lower
quartiles, and the whiskers extend to the 5th and 95th percentiles. The black horizontal
line represents the median value and the red horizontal lines the observed correlation
coefficient from ERA-Interim. 5% significance levels (±0.34) are indicated by the green
dashed lines.

ISM RELAX also has a poor representation of this relationship, with all members with a

correlation weaker than is observed, although the correlations are slightly better than for

DW RELAX.

A common theme between the relaxation experiments for the correlations between

the D&W Index and all other centres of action is that DW RELAX is poorer than

NWEUR RELAX and the control. This is perhaps unexpected, given that in DW RELAX

the D&W Index is the same (or nearly the same) as in ERA-Interim. What this may

imply is that the D&W region, while being an important centre of action of the CGT,

is not the driver of it, and the improvements to the representation of the CGT seen in
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NWEUR RELAX suggest that northwest Europe is much more influential. ISM RELAX

is also poorer than NWEUR RELAX and the control for all regions, and given that in

this experiment the monsoon circulation has been corrected, this suggests that the either

ISM is not a driver of the CGT or that biases in the jet location mean that the RWS is

not correctly represented. A further possibility is that a different driver of the CGT, one

that is separated from the ISM, is not accurately represented.

Figure 5.20: Correlation between ERA-Interim (a) D&W Index and (b) EASIA Index
and GPCP precipitation elsewhere for August. The base points for the correlations are
indicated by boxes. Correlation values of ±0.34 are significant at the 5% level.

It is perhaps surprising that the correlation between the D&W Index and

EASIA region in DW RELAX is further from ERA-Interim than in the control and

NWEUR RELAX, given that the skill of 200 hPa geopotential height in EASIA in

DW RELAX is increased. A possible explanation for this is that there is an external

driver that is forcing both the D&W Index and EASIA independently. By performing

the relaxation, the link between the D&W Index and the independent driver is broken, so

the correlation in individual members is reduced. However, the mean response in EASIA
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to the external driver is still present, hence the improved skill in EASIA but reduced

correlation with the D&W Index, as less of the variance of the EASIA region is being

explained by the D&W Index.

To identify regions of precipitation which are correlated with both the D&W and

EASIA indices, Figure 5.20 shows the correlation between these two indices and GPCP

precipitation for August. The main region that stands out as being positively correlated

with both indices is across northern parts of India. Therefore, it is possible that the re-

duction in the correlation between the D&W Index and EASIA in DW RELAX compared

to the control is due to a weakening of the link between the D&W Index and monsoon

precipitation.

To explore this idea further, Figure 5.21 shows the correlation between an Indian

summer monsoon heating index (ISMH), defined as the precipitation averaged between

20°–27.5°N, 70°–85°E, and the D&W and EASIA regions. This region was chosen as

precipitation here is closely associated with variations of the D&W Index and there is a

significant correlation (0.52) between the D&W Index and ISMH in observations, and it is

also approximately in the location of positive correlations in Figure 5.20. As hypothesised,

the correlations between ISMH and the D&W Index in DW RELAX are weaker than in

both the control and NWEUR RELAX, suggesting that the link between these two regions

has been partially broken by relaxing in the D&W region. However, the link between

ISMH and the EASIA Index, also shown on Figure 5.21, is improved in DW RELAX

compared to the control and NWEUR RELAX. This means that ISMH is still driving

the variations in the EASIA Index in DW RELAX, and the relationship is actually closer

to the observed relationship, which results in an improvement in geopotential height skill

in EASIA in this experiment. However, as the D&W Index explains less of the variance

in EASIA, the correlation between the two regions is reduced in DW RELAX.

Another thing to note from Figure 5.21 is that the model has a poor representa-

tion of the link between the D&W Index and ISMH, with the majority of control mem-

bers with correlations that are not significant. As explained above, DW RELAX has a

poorer representation of this correlation, with the upper 95th percentile not significant.

NWEUR RELAX has correlations which are closer to the observed value than the con-

trol, but they are still weaker than observations and the majority are still not significant.

Another thing to note is that the correction of the monsoon circulation in ISM RELAX

has not resulted in an improvement in the relationship between ISM precipitation and

Page 83



Chapter 5: Investigating the CGT mechanism using relaxation experiments

Figure 5.21: A comparison of the correlations between the Indian summer monsoon heat-
ing (ISMH) and D&W and EASIA regions for the control and the three relaxation ex-
periments for August, calculated using the 2000 samples. The box plots represent the
upper and lower quartiles, and the whiskers extend to the 5th and 95th percentiles. The
black horizontal line represents the median value and the red horizontal lines the observed
correlation coefficient from ERA-Interim. 5% significance levels (±0.34) are indicated by
the green dashed lines.

the D&W Index, and although NWEUR RELAX has the best representation of the link

between monsoon precipitation and the D&W Index, it is still much weaker than observed

and this is potentially limiting the skill of the model in simulating the CGT. This provides

a motivation for further model experiments, results from which can be found in Chapter
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6.

5.4 Barotropic model experiments

Analysis of the relaxation experiments in the previous section demonstrated that

northwest Europe plays a greater role in influencing model errors in the northern hemi-

sphere. Relaxing in this region also resulted in an improvement in the simulation of the

CGT compared to the control, possibly due to a reduction in the jet biases in this ex-

periment. The relaxation experiments also raised the question: Why does forcing in the

D&W region not lead to a signal over northwest Europe? It is possible that the CGT could

simply be a result of sampling noise in the observations; if the model cannot reproduce it,

this could be because the model is wrong, or because the teleconnection to Europe does

not really exist. In order to investigate these questions, a number of experiments using

a barotropic model were carried out to explore the role of differences in the background

state and strength of forcing in the D&W region, results from which are presented in this

section.

5.4.1 Motivation

It has been hypothesised that heating associated with ISM precipitation plays an

important role in the maintenance of the CGT through its influence on the D&W re-

gion. It is hypothesised that this interaction occurs as a result of a Rossby-type response

to off-equatorial heating associated with the ISM, which modulates the strength of the

west-central Asian high (Wu and Wang, 2002). However, as shown in Figure 5.21 in the

previous section, the link between monsoon precipitation and the west-central Asia anti-

cyclone is not well represented in either the control or the relaxation experiments, with

the strength of the correlation between these two regions underestimated in almost all

members. Therefore, in order to explore whether the weak representation of the CGT

in the ECMWF model is due to a lack of reinforcement of the wave train over Asia, a

number of experiments using a barotropic model were carried out.
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Figure 5.22: 200 hPa relative vorticity used as the background state for the barotropic
model experiments for (a) ERA-Interim (b) the ECMWF model ensemble mean and (c)
the difference between them (ECMWF model minus ERA-Interim).

5.4.2 Experimental design

In these experiments, the barotropic model (described in Chapter 3.3.4) was run

with two different basic states: one from ERA-Interim and one from the ECMWF model
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Figure 5.23: Forcings used in BT DW BEFE, BT DW BMFE, BT DW BEFM and
BT DW BMFM. This is the regression of the RWS against the D&W Index, per standard
deviation of the D&W Index, for (a) ERA-Interim (BT DW BEFE and BT DW BMFE)
(b) the ECMWF model (BT DW BEFM and BT DW BMFM) and (c) the difference
between them (ECMWF model minus ERA-Interim).

control experiment used in the previous section. The basic state was taken to be the

climatological summer (JJA) relative vorticity field at 200 hPa. The ERA-Interim and

ECMWF model background states, and the difference between them, can be seen in Figure

5.22. The upper troposphere was chosen because this is where divergent outflow from

tropical heating is strongest and the jet streams along which Rossby waves propagate are

not present lower in the atmosphere. The barotropic model is initialised from the basic

state and integrated forwards for 50 days. The phase of the response becomes quasi-

stationary after around 14 days, but the magnitude of anomalies continues to increase

until around Day 35, so the response shown is the average of days 40–50.

The forcing used in these barotropic model experiments is the RWS regressed against

the JJA D&W Index, per standard deviation of the D&W Index, for both ERA-Interim

and the ECMWF model control experiment. For the ECMWF model basic state and

regression, the ensemble mean was used, but experiments run using a single ensemble

member also showed very similar results. A Gaussian weighting function is applied to the

regression fields so that the barotropic model is only forced in an area near the D&W

region. This Gaussian function has latitudinal width of σ = 10° and longitudinal width

of σ = 20°, centred at 40°N, 60°E. The two different forcings used, and the difference

between them, can be seen in Figure 5.23. The use of two different basic states and

two different forcings allows four different experiments to be performed - these are ERA-

Interim basic state and forcing (“BT DW BEFE”), ECMWF model basic state and ERA-
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Interim forcing (“BT DW BMFE”), ERA-Interim basic state and ECMWF model forcing

(“BT DW BEFM”) and ECMWF model basic state and forcing (“BT DW BMFM”).

These four experiments can be compared to examine the effect of changing the basic

state but keeping the same forcing, and changing the forcing but keeping the same basic

state.

Table 5.2: Combination of forcing and basic state used in the barotropic model experi-
ments

5.4.3 Experimental analysis

The upper two panels in Figure 5.24 show the effect of running the barotropic model

with the same forcing (the regression of the D&W Index against the RWS from ERA-

Interim) but with different basic states and are the 200 hPa streamfunction anomalies

averaged over Days 40–50. It can be seen that forcing in the D&W region does result in

a response that bears a close resemblance to the CGT pattern, with centres of positive

streamfunction anomaly over west-central Asia, east Asia, North America and northwest

Europe, although the North Pacific centre is shifted slightly compared to the observed

CGT pattern. It can also be seen that, while there are some amplitude differences between

these two experiments, the location of the positive and negative anomalies are very similar.

This suggests that when using different basic states, the wave propagation is similar, which

implies that errors in the basic state alone are not responsible for the differences between

the observed and ECMWF model CGT pattern. However, errors in the basic state could

also lead to errors in the RWS, which could mask the influence of errors in the basic state

on wave propagation.

Results from two further experiments are shown in the lower two panels in Figure

5.24. In these experiments, the regression forcing is from the ECMWF model ensemble

mean. As in BT DW BEFE and BT DW BMFE, there is only a slight difference in the
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Figure 5.24: 200 hPa streamfunction anomaly averaged over days 40–50 in the four
barotropic model experiments listed in Table 5.2: (a) BT DW BEFE (ERA-Interim ba-
sic state and forcing) (b) BT DW BMFE (ECMWF model basic state and ERA-Interim
forcing) (c) BT DW BEFM (ERA-Interim basic state and ECMWF model forcing) (d)
BT DW BMFM (ECMWF model basic state and forcing).

magnitude of the streamfunction anomalies between the two experiments, with no no-

ticeable phase or wavenumber difference. However, when comparing BT DW BEFE &

BT DW BEFM (Figures 5.24a and 5.24c) and BT DW BMFE & BT DW BMFM (Fig-

ures 5.24b and 5.24d), which have the same basic state but different forcings, a noticeable

difference in the magnitude of the anomalies can be seen, although there is still no ap-

preciable difference in either wavenumber or phase of the response. The forcing from

ERA-Interim has greater magnitude than the ECMWF model forcing (Figure 5.23), so

this suggests that a stronger response occurs when there is a stronger forcing. These

results suggest that differences between the ECMWF model and observed CGT patterns

can’t be explained by errors in the basic state, but might be explained by differences in

the strength of the forcing.

To demonstrate how the anomalies in these experiments develop over time, Figure

5.25 shows the evolution of the streamfunction anomalies in BT DW BEFE every day

from Days 1–10, then every other day up to Day 18. There are both eastward- and

westward-propagating components, with the positive anomalies over east Asia and the

North Pacific associated with the eastward-propagating waves, while the response over

Europe develops via the westward-propagating signal. Where these waves meet over North

America there is another area of positive anomalies, although it is unclear whether these

anomalies occur as a result of the eastward- or westward-propagating waves.
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Figure 5.25: Evolution of the 200 hPa streamfunction anomalies in BT DW BEFE (ERA-
Interim basic state and forcing) for Days 1–10, then Days 12, 14, 16 and 18.
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The results from these experiments motivate the work in the next chapter, which

explores whether the weaker than observed representation of the CGT in the ECMWF

model is as a result of a weak forcing, through carrying out further experiments in the

IFS in which an idealised thermal forcing is applied.

5.5 Summary and conclusions

In this chapter, analysis of three relaxation experiments was presented. These experi-

ments were designed to explore different aspects of the CGT and the relationship between

hemispheric errors in 200 hPa geopotential height and a weak representation of the CGT

in the ECMWF model. It was shown in Chapter 4 (Figure 4.1), and in Figure 5.4, that

errors in 200 hPa geopotential height develop in several of the centres of action of the

CGT, including in the D&W region, which is used as the base point for the calculation of

the CGT correlations. With this in mind, the first relaxation experiment (DW RELAX)

relaxed in a region centred near the D&W region (Figure 5.1) to explore whether correct-

ing the circulation in this region resulted in an improved representation of the CGT and

what the impact was on errors elsewhere in the northern hemisphere, particularly over

Europe.

In DW RELAX, improvements in skill away from the relaxation region were limited

largely to central and east Asia. Some improvements were also seen over the North

Pacific and North America, but these were smaller in magnitude. Of particular note in

this experiment was that the changes seen over Europe were either neutral or negative,

particularly in June and July when some regions saw a change in the correlation of −0.5 or

greater. This is likely to be in part due to the imbalance between forced waves leaving the

relaxation region eastwards and unforced waves entering it from the west. However, this

also suggests that the errors over Europe are not dependent on errors over west-central

Asia.

The representation of the CGT in DW RELAX is poorer than in the control experi-

ment. The median pattern correlation of the CGT in August compared to ERA-Interim

between 30°–70°N is 0.35, compared to a value of 0.59 in the control. Therefore, cor-

recting the circulation in the D&W region does not improve the representation of the

CGT in the model which may suggest that the CGT is not forced from the D&W region.
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However, northward jet biases that are seen in the control experiment are still present in

DW RELAX, which may affect the propagation of Rossby waves in this experiment and

thus the ability of the model to accurately represent the CGT.

It was shown in Figure 5.4 that errors in 200 hPa geopotential height skill develop

over northwest Europe before west-central Asia, so NWEUR RELAX involved relaxing

the circulation over northwest Europe (Figure 5.2) towards ERA-Interim to determine

the role of these errors in the subsequent development of errors elsewhere in the northern

hemisphere.

Compared to DW RELAX, relaxing over northwest Europe resulted in a larger area of

improved skill, with most of Eurasia seeing an increase. The reduction of skill upstream of

the relaxation region, as seen in DW RELAX, is also present in this experiment, although

only in August. The distribution of CGT pattern correlations in NWEUR RELAX is

narrower than both DW RELAX and the control, and the median value increased to

0.67. This is largely due to an improved representation of the Europe–Asia portion of

the wave train, with most members accurately simulating this. This is illustrated in the

comparison of the correlation between the D&W Index and the other centres of action of

the CGT in Figure 5.19. This shows a large difference between the ensemble correlations

in DW RELAX and NWEUR RELAX for the D&W Index vs. NWEUR region, with

DW RELAX performing much more poorly than both the control and NWEUR RELAX.

Also illustrated in Figure 5.19 is that the correlations in DW RELAX are further away

from the ERA-Interim value than both the control and NWEUR RELAX for all regions.

In the case of the EASIA region, it is hypothesised that the relaxation in the D&W region

resulted in a weakening of the link between the D&W Index and monsoon precipitation,

but an improvement in the relationship between monsoon precipitation and EASIA. This

means that less of the variance of the EASIA region is explained by the D&W Index, and

so the correlation between the two regions is reduced, whereas the geopotential height

skill in EASIA is improved.

To investigate the impact of errors in the representation of the ISM on the CGT and

on extratropical forecast skill, the third relaxation experiment relaxed the monsoon cir-

culation towards observations. Generally, improvements in skill away from the relaxation

region are small, and only in August are there any positive skill changes over Europe.

The representation of the CGT in this experiment is very similar to the control, which

suggests that either the ISM is not a driver of the CGT or that the link between ISM
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precipitation and the CGT is not well captured. Indeed, it was found that the link be-

tween ISM precipitation and the D&W Index is poorly captured in the control and all

relaxation experiments. Very few members in any of the relaxation experiments capture

the significant correlation between these regions, and this may mean that the CGT wave

train is not being correctly reinforced by monsoon precipitation, as hypothesised by Ding

and Wang (2007), which may impact on its subsequent downstream propagation.

Results from barotropic model experiments when forcing in the D&W region show a

response that is similar in appearance to the CGT, with centres of positive streamfunction

anomalies located near the CGT centres of action. These experiments also suggest that

differences in the basic state have less of an influence on the representation of the CGT in

the ECMWF model than the strength of the forcing. Differences in the basic state have

little impact on the phase and wavenumber of the response, whereas when the barotropic

model is forced with a stronger forcing, the response is also stronger. The development of

the response is also different to what may be expected for the CGT, with the anomalies

over Europe seeming to develop through a westward mechanism. These results provide a

motivation for further experiments in the IFS which are the subject of the next chapter.

Page 93



Chapter 6:

Using thermal forcing

experiments to explore the role of

the Indian monsoon in driving the

extratropical circulation

6.1 Introduction

In Chapter 5, the ECMWF model was relaxed to observations in several regions to see

whether correcting the model in certain key regions improves the model representation of

the CGT. This was generally not the case, and results from barotropic model experiments

also shown in Chapter 5, which were run using combinations of the background state and

forcing from ERA-Interim and the ECMWF model, suggested that differences in the CGT

pattern are more likely to arise as a result of differences in the strength of the forcing

rather than the basic state. It was also found in Chapter 4 that the ECMWF model has a

weak connection between ISM rainfall and the D&W region, and this was not improved in

the relaxation experiments in Chapter 5, suggesting that the D&W region is more forced

by Rossby waves propagating from northwest Europe. Based on these results, a set of

further experiments in the ECMWF model were carried out in which a thermal forcing

was applied in the ISM region to explore the northern hemispheric response to heating

associated with the ISM. These were designed to further address questions 2 and 3 posed

Page 94



Chapter 6: Exploring the role of the ISM in driving the extratropical circulation

in Chapter 1, as well as:

• What impact does heating associated with the ISM have on the extratropical cir-

culation?

In this chapter, results from these thermal forcing experiments are shown. The design

of these experiments, including how the heating region was selected, is given in Section

6.2.1, and results of these experiments are given in Section 6.2.2. Based on these results,

further experiments in the barotropic model were carried out, which are presented in

Section 6.3. Finally, a discussion of the overall results and main conclusions from this

chapter is given in Section 6.4.

6.2 Thermal forcing experiments

6.2.1 Experimental design

In order to test the response of the model to heating in the monsoon region, a set

of thermal forcing experiments was carried out. We already know that the relationship

between ISM heating and the D&W region in the model is too weak compared to ob-

servations, so it is worth noting that we may not expect the model CGT to respond to

the applied heating in the same way as it would in the real world. Nevertheless, these

experiments can still be used to provide insight into the relationship between monsoon

heating and the extratropical circulation in the model.

In these experiments, a heating in the form of an extra temperature tendency is

applied at each model time step. As with the experiments carried out in Chapter 5, the

model is run from the beginning of May, but the heating is only applied from the 1st July

onwards, until the end of the model run at the end of August. Each experiment has five

ensemble members.

In order to find the most suitable region to apply the heating to, the regression of

August global precipitation against the D&W Index was calculated to determine which

regions of tropical precipitation (particularly in the vicinity of the ISM) are most closely

associated with variations of the D&W Index. This is shown in Figure 6.1, which shows
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Figure 6.1: Regression of global precipitation (mm day−1) against the D&W Index
(200 hPa geopotential height, box) for August for ERA-Interim/GPCP precipitation, per
standard deviation of the D&W Index (32.9 m).

that the strongest regression is located over northwest India, indicating that precipitation

in this region has a close relationship with variations of geopotential height in the D&W

region. This is in agreement with other studies which have shown that ISM precipitation

is associated with an anticyclonic anomaly over west-central Asia (e.g. Wang et al., 2001;

Wu and Wang, 2002).

To further explore the relationship between heating in this region and the circulation

Figure 6.2: Correlation between GPCP precipitation in northern India (20°–27.5°N, 70°–
85°E, box) and ERA-Interim 200 hPa geopotential height elsewhere for August. Correla-
tion values of ±0.34 are significant at the 5% level.
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elsewhere in the northern hemisphere, the correlation between precipitation in a box cen-

tred over the area of strong regression seen in Figure 6.1 (20°–27.5°N, 70°–85°E, the same

region (ISMH) as used in Figure 5.21) and 200 hPa geopotential height was calculated

and is shown in Figure 6.2. The pattern of the correlations (and also the equivalent re-

gression, not shown) looks very similar to the August CGT pattern (Figure 4.2d), which

suggests that precipitation (and therefore heating) in this region is strongly related to the

strength of the CGT. Therefore, this region was chosen as the location in which to apply

the thermal forcing in the ECMWF model.

Figure 6.3: Vertical heating profile used in the thermal forcing experiments - for a surface
pressure of 1012 hPa (blue line) and 930 hPa (green line).

In the thermal forcing experiments, the horizontal structure of the heating which is

applied is given by a Gaussian function which is set to zero outside a certain region. The

imposed heating has a vertical structure similar to a “typical” tropical convective heating

profile, such as those shown in Figure 3 of Schumacher et al. (2004) or Figure 6 of Li

et al. (2009). It increases fairly steadily to a peak at around 400 hPa, before dropping

away sharply near the tropopause (Figure 6.3). The blue line on Figure 6.3 is the profile

for a surface pressure of 1012 hPa, however, the surface orography means that in most of

the heating region the surface pressure is less than 1012 hPa (Figure 6.4). The green line
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Figure 6.4: Surface pressure (orography) - the solid white contours indicate the location
of the imposed heating, with contours every 15 W m−2 from 15 W m−2 at the edge of the
heating region to 105 W m−2 at the centre.

on Figure 6.3 is the vertical profile calculated for a surface pressure of 930 hPa. In this

case, the heating is concentrated slightly higher in the atmosphere due to the adjustment

of the model levels to account for the surface orography. In most of the heating region

the surface pressure is 950 hPa or greater (Figure 6.4) and it is only at the edges of the

heating region where the surface pressure drops significantly below 950 hPa, so the impact

of the orography on the heating profile is assumed to be small. Further details about the

thermal forcing technique can be found in Chapter 3.3.3.

In these experiments we look at the impact of applying both a positive and a nega-

tive heating over the ISM region. The amount of heat added in the heating region was

specified to have a peak value which is equivalent to approximately 4 mm day−1 of extra

precipitation in the positive heating experiment, and vice versa in the negative heating
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experiment. This corresponds approximately to a two standard deviation change in the

D&W Index (Figure 6.1), and equates to a peak thermal forcing of ±2.02 K day−1.

Figure 6.5 shows the column integrated heating associated with the thermal forcing

(Q). This was calculated using:

Q =
cp
g

∑
H(p) ∆p, (6.1)

where cp is the specific heat capacity of dry air at constant pressure (1004 J kg−1 K−1), g

is the acceleration due to gravity, ∆p is the pressure difference between model levels and

H(p) = Hr η. (6.2)

Here, Hr is the heating rate (0.08 K h−1) and η is a function of the horizontal and vertical

components of the heating profile. It can be seen that the column integrated heating

which is applied in the positive thermal forcing experiment is equivalent to a peak of

around 120 W m−2 of latent heating (Figure 6.5). However, in addition to this heating,

we also have to consider increases or decreases in precipitation which arise in response

to the imposed heating. The latent heating associated with precipitation (“precipitation

flux equivalent”, PFE) was calculated using:

PFE = ρwater L P, (6.3)

where ρwater is the density of water (1000 kg m−3), L is the latent heat of evaporation for

water (2.501× 106 J kg−1) and P is the precipitation rate in m s−1. The total heating in

the thermal forcing experiments is therefore calculated as the sum of Q and PFE, and

in the control is equal to PFE.

6.2.2 Experimental analysis

The effect of the thermal forcing on monsoon precipitation with respect to the control

experiment is shown in Figure 6.6. In the positive heating experiment (Figures 6.6a and
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Figure 6.5: Column integrated heating applied in the positive heating experiment. The
heating for the negative heating experiment is the same, but with the opposite sign.

6.6b) the heating has resulted in an increase in precipitation over northwest India, while

there is a reduction in precipitation further south, especially over the Western Ghats. The

largest reduction in precipitation in the negative heating experiment is situated slightly

further east, over central northern India (Figures 6.6c and 6.6d). Also shown in Figure

6.6 are the 850 hPa winds in each of the thermal forcing experiments, and the increase

in precipitation in the positive heating experiment can be seen to be associated with an

extension of the monsoon circulation further north, with stronger winds in this region

bringing increased moisture.

The combined effect of the imposed thermal forcing in Figure 6.5 and the precipi-

tation changes in Figure 6.6 on the overall differences in heating in the thermal forcing

experiments are shown in Figure 6.7. These were calculated using Equations 6.1 and 6.3

and are with respect to the control experiment.
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Figure 6.6: Ensemble mean precipitation difference (mm day−1) for the positive heating
experiment minus the control for (a) July and (b) August, and for the negative heating
experiment minus the control for (c) July and (d) August, averaged over all years. The
wind barbs show the absolute 850 hPa wind for (a) and (b) the positive heating experiment
and (c) and (d) the negative heating experiment.

From Figures 6.7a and 6.7b it can be seen that the maximum increase in heating in

the positive heating experiment is centred slightly to the west of the region in which the

heating was imposed. This is in the region of the largest increases in precipitation seen

in Figure 6.6. This precipitation increase is in a similar location to the region of observed

positive regression of precipitation against the D&W Index in Figure 6.1. The increase is

also accompanied by a slight decrease in heating further south, over central parts of India

and the Western Ghats, associated with the reduction in precipitation in these areas.

The heating differences seen in the negative heating experiment (Figures 6.7c and

6.7d) are slightly stronger in magnitude than for the positive heating experiment. They
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Figure 6.7: Ensemble mean latent heating difference (W m−2) for the positive heating
experiment minus the control for (a) July and (b) August, and for the negative heating
experiment minus the control for (c) July and (d) August, averaged over all years. The
black contours indicate the location of the imposed heating - contours every 15 W m−2

from 15 W m−2 to 120 W m−2 (dashed contours for negative values).

are also positioned more towards the centre of the forcing region, associated with the

reduction in precipitation over central and northern parts of India, as well as the imposed

negative heating which has a peak of −120 W m−2. There is also a slight increase in

heating over the Arabian Sea, to the west of India.

Figure 6.8 shows the hemisphere-wide difference in ensemble mean precipitation be-

tween the positive and negative heating experiments, and compared to the local response

shown in Figure 6.6, the response across the rest of the hemisphere is small. The only

noticeable changes outside the tropics are found over east Asia, consistent with a CGT

response. A link between the ISM and precipitation over northern China has been found

in a number of previous studies (e.g. Kripalani and Kulkarni, 1997, 2001; Yunyun and
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Figure 6.8: Ensemble mean precipitation difference (mm day−1) for the positive minus
negative heating experiment for August, averaged over all years.

Yihui, 2008) and the precipitation changes over northern China seen in Figure 6.8 suggest

that this link is present in the ECMWF model.

The monthly mean response of the ECMWF model to the thermal forcing can be

seen in Figure 6.9. This shows the difference in ensemble mean 200 hPa geopotential

height for the positive minus negative heating experiments for July and August. It can

be seen that amplifying and damping the heating associated with the ISM has resulted

in a hemisphere-wide response. In particular, the geopotential height in several of the

centres of action of the CGT has been affected by the heating. The geopotential height

in the east Asia and North Pacific regions, and also to a lesser extent the North America

region, is up to 50 m higher in the positive than in the negative heating experiment, and

the location of the centres of increased geopotential height bears a strong resemblance

to the CGT in these regions. The differences over east Asia and the North Pacific are

approximately equivalent to those associated with a two standard deviation change in

the D&W Index, and the North America anomalies are equivalent to a one standard

deviation change (not shown). This suggests that heating associated with the ISM is

a driver of the variability in these parts of the northern hemisphere through driving a

wave-like response. The response in east Asia, and to a certain extent the North Pacific,

is also consistent with the regions of positive correlation of 200 hPa geopotential height

against ISM precipitation shown in Figure 6.2, although there are no negative anomalies

visible between these regions as in Figure 6.2 and the response in the other CGT centres

of action is different.
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Figure 6.9: Ensemble mean 200 hPa geopotential height difference (m) for the positive
minus negative heating experiment for (a) July and (b) August, averaged over all years.
c) August 200 hPa geopotential height difference relative to ERA-Interim August standard
deviation (difference divided by standard deviation).

However, the response over the North Atlantic and the NWEUR region is different

to the CGT. Over central and northern Europe and the far North Atlantic, there are

broadly cyclonic anomalies, which are the opposite of what would be expected in the
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NWEUR region due to the CGT. There is a strong response visible over North Africa

and the Mediterranean, as a result of the Rodwell and Hoskins (1996) monsoon-desert

mechanism whereby heating associated with the monsoon triggers westward-propagating

Rossby waves. These propagate much further west than the observed Rossby waves

associated with the monsoon-desert mechanism, which do not travel much further west

than 10°W. The response over North Africa and the Mediterranean is also very different

to that seen in Figure 6.2. This may suggest that the precipitation in the heating region

is a response to forcing from the CGT, rather than a driver of it. This is further backed

up by the different response in the D&W region when compared to the CGT, with no

positive anomalies located in this region.

The August difference in 200 hPa geopotential height relative to the standard de-

viation of ERA-Interim is shown in Figure 6.9c. The differences seen associated with

the monsoon-desert mechanism are equivalent to up to 3 times the observed standard

deviation, indicating that these are significant differences. The difference over east Asia

is between 1 and 1.5 observed standard deviations, although the changes over the North

Pacific, North America and Europe are equivalent to less than 1 standard deviation.

To examine how the response to the thermal forcing develops over time, Figure 6.10

shows the difference in 200 hPa geopotential height between the two experiments averaged

over five day periods after the heating is applied. In this figure, Day 0 is the first day

after the heating is turned on (1st July). In the first five days, the only anomalies that

are visible occur as part of the monsoon-desert mechanism, with anticyclonic anomalies

appearing in and to the west of the heating region, and a weak cyclonic anomaly to

the north of this, which grows in magnitude by Days 6–10. By this point, anticyclonic

anomalies have also appeared over east Asia and have begun to grow over the North Pacific

as an eastward propagating Rossby wave response develops. The westward-propagating

anomalies have also extended across North Africa to the North Atlantic, and by Days

16–20 these anomalies have reached their peak magnitude, from which point they remain

almost constant. The east Asia anomalies also reach their peak magnitude by Days 16–

20, while the North Pacific and North America nodes continue to grow until Days 21–25.

From then on, the response is largely stationary over the Mediterranean, east Asia and

the North Pacific, but the node over North America is a little more transient, shifting in

location between west and east North America, and the response is stationary by around

Day 40.
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Figure 6.10: Difference in 200 hPa geopotential height between the positive and negative
heating experiments (m), averaged over five day periods after the heating is switched on
at the start of July (day 0 = 1st July). The region in which the thermal forcing is applied
is shown by the box (20°–27.5°N, 70°–85°E).

The European response is set up within 10–15 days of the heating being applied, and it

is clear that the main differences seen over Europe occur not as a result of the propagation

of Rossby waves eastwards from the heating region, as in the case of a CGT-like response,

but as a direct consequence of the westward-propagating Rossby waves associated with the

monsoon-desert mechanism. Throughout the period shown in Figure 6.10 the differences

in the NWEUR CGT centre of action are cyclonic, unlike the anticyclonic differences

seen elsewhere in the hemisphere, and they appear to be the opposite of what would be

expected for a CGT-like response.

Figure 6.11 is a Hovmöller diagram of the difference in meridional wind between

the positive and negative heating experiments, averaged between 30°–60°N for a 30 day

period after the heating is switched on. The propagation of Rossby waves from longitudes

near the heating region (around 60°E) in an eastward direction can clearly be seen in
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Figure 6.11: Hovmöller diagram of the ensemble mean 200 hPa meridional wind differ-
ence (m s−1) for the positive minus negative heating experiment, averaged over all years
between 30°–60°N, for 30 days after the heating is switched on (Day 0).

the oscillation of positive to negative anomalies from around Day 5 onwards. These

anomalies are more well defined closer to the heating region, before the wave begins to

weaken close to the date line. The wave propagates at an approximately constant speed,

until around 70°W, at which point the anomalies become indistinguishable from noise,

with little evidence that the wave influences the anomalies over Europe. This agrees with

Figure 6.10, and suggests that European circulation changes as a result of the thermal

forcing do not occur due to the eastward propagation of Rossby waves from the ISM

region. The response appears to be largely stationary, and the propagation of energy

away from the forcing region can be clearly seen.

Although the response seen over Europe is not CGT-like, it is still related to heating

associated with the ISM, so we now examine the impact that the thermal forcing has

had on the circulation over Europe. First, we look at the impact on the frequency of
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atmospheric blocking. We choose the total number of blocked days as this is a cumulative

field of daily data and so eliminates the risk of the signal being masked by using monthly

means. Blocking frequency is examined for all days in July and August (62 days in total)

and as there are five members in these experiments this means that there is a total of 310

days in each experiment each year.

An atmospheric blocking index is defined, following Tibaldi and Molteni (1990) and

Scherrer et al. (2006). This is based on the gradient of 500 hPa geopotential height. The

gradients, GHGS and GHGN, which are the southern and northern boundaries for the

gradient calculation, respectively, are defined as follows:

GHGS =
Z (φ0)− Z (φS)

(φ0 − φS)
, GHGN =

Z (φN )− Z (φ0)

(φN − φ0)
. (6.4)

These are calculated at all grid latitudes between 35°N and 75°N, with each latitude

band between these used as the central latitude φ0. The difference between the central

latitude and the northern φN and southern latitudes φS for which the gradient is calculated

is taken to be 15°. A given grid point is defined as “blocked” if, on a specific day, the

following conditions are satisfied:

GHGS > 0, GHGN < −10 m/degree latitude. (6.5)

Here, the blocking index is evaluated for the grid points in the NWEUR region, and

the region is defined as being “blocked” if one or more grid points in the region satify the

criteria in Equation 6.5.

This index is calculated for all members and all years in the two thermal forcing

experiments, and Figure 6.12 shows the difference in the number of blocked days between

the two experiments each year. This is calculated over all five ensemble members, as

using the ensemble mean smoothes the geopotential height field so that no blocking can

be detected. The values in Figure 6.12 are for the difference between the totals calculated

from all members.

On average, there is a larger number of blocked days in the negative than in the

positive heating experiment. Of the 34 years, seven have a positive difference, three of
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Figure 6.12: Difference in the total number of blocked days in the NWEUR region between
the positive and negative heating experiments. The total is over all members for each
year in July and August (310 days each year in total).

which are only marginally positive. The positive and negative heating experiments have

an average of 102 and 121 blocked days in total, respectively, which means that there is

approximately 20% more blocked days in the negative heating experiment. Therefore, the

circulation over Europe has been significantly altered by the different thermal forcings,

although earlier analysis suggests that this is unlikely to be as a result of a CGT-like

response. This figure also gives an indication of the interannual response to the heating,

with a large amount of year-to-year variability evident. When analysing the control

experiment, the mean difference between the number of blocked days in two different sets

of five members is close to zero, indicating that the differences seen in the thermal forcing

experiments are significant.

From Figure 6.12 it can be seen that there is a large amount of interannual variability

in the difference in number of blocked days between the two experiments. Therefore, to

determine possible reasons for this variability in the response to the heating, we now
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examine the basic state in the five years with the largest negative and largest positive

differences. The years with the largest negative difference are 1990, 1994, 1999, 2000 and

2002, and the five with the largest positive difference are 1986, 2001, 2010, 2012 and 2013.

Figure 6.13a shows the ensemble mean July–August averaged difference in the control

experiment 200 hPa zonal wind for the largest negative minus positive difference years.

This analysis of the control experiment allows us to determine if there are any differences

in the ECMWF model basic state which may contribute to the interannual variability

in blocking frequency in the thermal forcing experiments which are independent of the

heating. The most noticeable anomalies are located over the western North Pacific, near

Japan. Here, there is a dipole structure, with positive anomalies to the north and negative

anomalies to the south. This indicates a more northerly location of the jet stream in the

years when there is a larger negative difference in the frequency of blocking in the thermal

forcing experiments. The positive anomalies are also greater than the negative anomalies,

indicating that the jet speed is also higher, as well as being in a more northerly location.

The difference in the intensity and location of the jet stream over the North Pacific

may mean that the jet stream is in a different location relative to the forcing region

in the two experiments. This will affect the Rossby wave propagation away from the

source region in the two experiments, with different propagation characteristics in these

years, and thus the influence on the downstream circulation is different, resulting in a

greater difference in the occurrence of blocking over Europe. A similar dipole pattern

over the North Pacific is also present when analysing the same years in the two thermal

forcing experiments, in addition to a pattern over Europe which itself is a signature of

the differences in blocking frequency (not shown).

The potential role of differences in sea surface temperatures (SSTs) between the two

sets of five years has also been investigated. Figure 6.13b is equivalent to Figure 6.13a,

but is for SST differences. The SST anomalies over the North Pacific are likely to be

related to the difference in jet position between the two sets of five years seen in Figure

6.13a. There is also an area of negative differences across parts of the North Atlantic.

SSTs in this region have previously been shown to be related to summertime weather

across northern Europe (Ossó et al., 2018) so the negative differences seen here may be

related to this mechanism. There are also negative differences in the equatorial Indian

Ocean, which are similar to those associated with a positive phase of the Indian Ocean

Dipole (IOD). There are no noticeable anomalies in either the tropical Pacific or tropical
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Figure 6.13: Difference in ensemble mean July–August average a) 200 hPa zonal wind b)
sea surface temperature and c) precipitation in the control experiment between the five
years when the difference in the number of blocked days in the NWEUR region is the most
negative (1990, 1994, 1999, 2000 and 2002) and the five years with the largest positive
difference (1986, 2001, 2010, 2012 and 2013).
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Atlantic, suggesting that the differences in European blocking frequency in these years

are not related to either El Niño or the Atlantic Equatorial Mode, sometimes known as

Atlantic Niño (Zebiak, 1993).

Precipitation differences between the two sets of years are shown in Figure 6.13c.

Again, the signal over the equatorial Indian Ocean is consistent with the positive phase

of the IOD, with reduced precipitation over the eastern equatorial Indian Ocean and

increased precipitation over the western equatorial Indian Ocean and over parts of In-

dia. There are also positive differences over parts of the western and equatorial Pacific,

which suggests that variations in tropical precipitation may partly explain the interannual

variability in the response to the heating.

6.3 Barotropic model experiments

To help understand the response to heating in the ISM region, we now force the

barotropic model used in Chapter 5 with the RWS calculated using the anomalous diver-

gence associated with the thermal forcing that was applied in the earlier ECMWF model

experiments. In these experiments, the barotropic model is forced over India with the

Figure 6.14: RWS forcing used in the barotropic model experiments calculated using
the difference in divergence between a) the positive heating experiment and the control
(BT ISMN) and b) the negative heating experiment and the control (BT ISMP).
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RWS calculated from the difference in divergence between the positive heating experiment

and the control (a negative RWS, “BT ISMN”) and the negative heating experiment and

the control (positive RWS, “BT ISMP”). The vorticity is taken from the ECMWF model

control experiment, and so Equation 2.4 becomes:

RWS = −ζcontrolDexp − vχ exp·∇ζcontrol, (6.6)

where the terms with subscript “exp” are calculated from the divergence difference for

the two thermal forcing experiments with respect to the control. The calculated RWS

forcings used in these experiments are shown in Figure 6.14. The basic state used is from

the ECMWF model control experiment, and is the July–August averaged 200 hPa relative

vorticity field.

Figure 6.15 shows the evolution of the streamfunction anomalies in the negative

RWS forcing (positive heating, BT ISMN) experiment each day from Day 1–10, then

every other day from Day 12–18. There is a clear eastward propagation of Rossby waves

from the forcing region across the North Pacific to North America. Associated with

these are centres of action (positive, anticyclonic streamfunction anomalies) in east Asia

and the North Pacific, although these are shifted westwards relative to the location of

the centres of action of the CGT. There is also a westward-propagating signal which

influences the circulation over the Mediterranean and North Africa, which is consistent

with that seen in the thermal forcing experiments. The wave signal becomes less clear over

North America as it interacts with the westward propagating waves, and this interaction

means that there is no clear centre of action over North America. The propagation of the

waves in this experiment is highly consistent with the results from the thermal forcing

experiments shown earlier. The evolution of the signal over Europe in these experiments

is also similar to the thermal forcing experiments, whereby the circulation anomalies in

this region appear to be influenced by a westward- or northwestward-propagating signal

from the forcing region, rather than from the west via a CGT-like response.

The simulations from BT ISMP show very similar, but opposite, results. To demon-

strate this, Figure 6.16 shows the 200 hPa streamfunction anomalies from both BT ISMN

and BT ISMP, averaged over Days 40–50. The location of the centres of positive/negative

streamfunction anomalies are very similar, with the magnitude of the anomalies the only
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Figure 6.15: 200 hPa streamfunction anomaly for each day from Days 1–10, and then
every other day up to Day 18, in the barotropic model experiment which is forced over
India using the RWS calculated from the difference in divergence between the positive
thermal forcing experiment and the control (BT ISMN). The forcing used is shown in
Figure 6.14a.
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noticeable difference between the two experiments. This difference in magnitude is due

to the difference in the strength of the forcing used in each experiment. The forcing in

BT ISMN has a magnitude of around −6× 10−14 s−2 at the peak whereas the forcing in

BT ISMP peaks at around 4× 10−14 s−2 (Figure 6.14).

Figure 6.16: 200 hPa streamfunction anomaly averaged over Days 40–50 in a) BT ISMN
and b) BT ISMP.

To investigate the impact of differences in the basic state on the propagation of Rossby

waves associated with the ISM forcing, a further experiment was run which is equivalent

to the negative RWS forcing experiment, but using ERA-Interim relative vorticity for the

basic state (“BT ISMN ERA”). The evolution of the 200 hPa streamfunction anomalies

every four days in these two comparable experiments is shown in Figure 6.17.

In the barotropic model experiments presented in the previous chapter, which used a

Rossby wave regression forcing applied in the D&W region, changing the basic state did

not have much of an impact on the phase or wavenumber of the response, with anticyclonic

anomalies in all experiments in very similar locations. However, from Figure 6.17 it can
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Figure 6.17: 200 hPa streamfunction anomaly every four days in the two negative RWS
forcing experiments - using the ECMWF model control vorticity as the basic state in
the left-hand column (BT ISMN) and ERA-Interim vorticity as the basic state in the
right-hand column (BT ISMN ERA).
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be seen that changing the basic state when using a RWS forcing applied over India does

affect the wave propagation characteristics. Initially, up until around Day 12, the response

in both experiments is very similar. However, from this point onwards the two solutions

diverge. Differences first appear over the North Pacific, before propagating downstream.

By Day 28, the two solutions are very different across much of the hemisphere, aside from

in the immediate vicinity of the forcing region. These differences may in part be due to

different wave propagation speeds in the two experiments. The waves propagate faster

when using the ERA-Interim basic state, so that the pattern of anomalies at Day 20 when

using the ERA-Interim basic state looks very similar to Day 24 when using the ECMWF

model basic state, and likewise comparing Days 24 and 28. By the time a steady state

is reached (around Day 40–50), the two responses look more similar, although there are

still some differences between them, largely over North America and the North Atlantic

(not shown).

To explore the development of the European response in greater detail, we now follow

the method of Shaman and Tziperman (2007) and O’Reilly et al. (2018) and add sponge

layers at specific longitudes which damp the nearby vorticity anomalies and prevent the

zonal propagation of Rossby waves. These sponge layers, which have a Gaussian longitu-

dinal profile, were implemented through the addition of a term on the right-hand side of

the vorticity equation (Equation 3.14) of the form:

− rD
(
ζ − ζ̄

)
, (6.7)

where

rD = exp

(
−2

(
λ− λDAMP

15

)2
)
. (6.8)

Here, λ is the longitude and λDAMP is the longitude at which the damping is centred.

The first of these sponge layers was added at 60°W, from pole-to-pole, and the comparison

of the evolution of the vorticity anomalies in this experiment (“BT NAM DAMP”) every

four days with the equivalent experiment with no damping (BT ISMN) is shown in Figure

6.18. It can be seen that the midlatitude response in these two experiments develops in a

very similar manner, with an obvious wave train propagating eastwards from the forcing
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Figure 6.18: Left-hand column: Vorticity anomaly every four days in the same barotropic
model experiment as in Figure 6.15 (BT ISMN), with the 40–50 day average in the bot-
tom panel. Right-hand column: Same as the left-hand column, but with a longitudinal
damping applied at 60°W (BT NAM DAMP). The vertical lines indicate the damping
timescale at different longitudes: 15 minutes (black line) 2.5 hours (green lines) and 25
hours (red lines).
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region. The westward propagating signals in these two experiments are also extremely

similar, such that by Day 24 the anomalies over Europe are almost identical in the two

experiments, providing further evidence that the response in this region to forcing from

the ISM occurs via westward-propagating Rossby waves, as opposed to a circumglobal

wave train. These results are similar to those of Shaman (2014), who found that the

response over Europe to ENSO-related forcing in late summer (JAS) is dominated by

a westward-propagating signal, and also the results from the tropical Pacific forcings of

O’Reilly et al. (2018), in which a similar signal was observed.

Stephan et al. (2019) proposed a positive feedback loop between ascent over India and

descent over the Mediterranean, whereby the ISM-induced Mediterranean descent (which

occurs through the monsoon-desert mechanism) can subsequently induce rising motion

over South Asia following the propagation of anomalies along the Asian jet, associated

with the Silk Road Pattern (Lu et al., 2002; Enomoto et al., 2003). To investigate this

mechanism, and its relationship to the development of downstream anomalies over North

America, a further experiment was carried out, this time with the sponge layer centred at

30°E (“BT EUR DAMP”). The vorticity anomalies in this experiment, along with those

from the equivalent experiment with no damping, are shown in Figure 6.19. Comparing

the two experiments, the effect of preventing the westward-propagating waves can be

clearly seen. Early in the simulation, until around Day 8, the eastward-propagating

response is similar in both experiments. However, from this point on, the anomalies in

the damped experiment are generally weaker. This can be seen clearly in the 40–50 day

average, shown in the bottom panel of Figure 6.19, where the response over east Asia,

the North Pacific and North America is weaker. This suggests that a response between

Asia and North America, associated with the “Tokyo–Chicago Express” wave train (Lau

and Weng, 2002; Lau et al., 2004), does occur when the westward-propagating waves are

damped, but it is much weaker. This agrees with the hypothesis of Stephan et al. (2019),

and implies that the westward-moving Rossby wave response is crucial in amplifying the

subsequent eastward propagation of the wave train between Asia and North America.

We now examine the response near the forcing region in BT EUR DAMP in greater

detail to further understand the reasons for the differences in the response seen in this

experiment. Figure 6.20 shows the vorticity and wind anomalies in the same two exper-

iments as in Figure 6.19 (BT ISMN and BT EUR DAMP), focussing this time on the

forcing region in the first few days of the simulation. As in Figure 6.19, the vorticity and
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Figure 6.19: Left-hand column: Vorticity anomaly every four days in the same barotropic
model experiment as in Figure 6.15 (BT ISMN), with the 40–50 day average in the bottom
panel. Right-hand column: Same as the left-hand column, but with a longitudinal damp-
ing applied at 30°E (BT EUR DAMP). The vertical lines indicate the damping timescale
at different longitudes: 15 minutes (black line) 2.5 hours (green lines) and 25 hours (red
lines).
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wind anomalies early in the simulation are very similar in the two experiments, with little

difference between them at hour 42. However, from this point on, the anomalies in the

two experiments begin to differ. In BT ISMN (left-hand column of Figure 6.20) a strong

westward-propagating negative vorticity anomaly is able to develop, and this extends

across the northern Arabian Sea and the Middle East by hour 138. In BT EUR DAMP,

these anomalies are prevented from extending much beyond the eastern parts of the Mid-

dle East. As a consequence of this, there is a much greater southerly component to the

anomalous wind over the Middle East in the damped experiment and these southerly

wind anomalies will advect low vorticity air to higher latitudes. This prevents the de-

velopment of the area of positive vorticity anomalies near the Caspian Sea that can be

seen in the experiment with no damping, which are hypothesised to be important in the

subsequent downstream reinforcement of the wave train through the propagation of these

anomalies along the Asian jet stream. When no damping is applied, the negative vorticity

anomalies associated with the westward-moving response effectively cut off the anomalous

southerlies, allowing the positive vorticity anomalies to develop to the north.

6.4 Summary and conclusions

Results from barotropic model experiments presented in Chapter 5 suggested that

the strength of the forcing associated with the monsoon may be important in explaining

the weak representation of the CGT in the model. These results motivated thermal

forcing experiments in the ECMWF model, to examine the impact of changing the heating

associated with ISM precipitation on the extratropical circulation. Two experiments were

carried out, consisting of both a positive and negative heating which was imposed over

India from the start of July.

The response of the ECMWF model to the thermal forcing shows a similar structure

to the CGT over east Asia, the North Pacific and North America, with the positive heating

resulting in the development of anticyclonic anomalies in these regions, and vice versa for

the negative heating experiment. On a daily timescale, it was found that these anomalies

develop as a result of eastward-propagating Rossby waves, with the response over east

Asia developing in the first 10 days, and over the North Pacific and North America

by around Day 20. A strong Rodwell and Hoskins (1996) monsoon-desert mechanism

response is also set up within the first 15 days, and this extends across North Africa and
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Figure 6.20: Left-hand column: Vorticity (coloured contours) and wind (barbs) anomalies
in BT ISMN at hour 42, 66, 90, 114 and 138. Right-hand column: Same as the left-hand
column, but for BT EUR DAMP.
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the Mediterranean to the central Atlantic.

However, the differences over Europe are the opposite of what would be expected for

the CGT, with cyclonic anomalies over most of northern Europe in the positive heating

experiment. These appear to result from a westward- and northwestward-propagating

signal from the ISM forcing region. These cyclonic anomalies develop before the eastward-

propagating Rossby waves have travelled around the hemisphere, and are almost fully

developed within 15 days of the application of the forcing.

Although the signal over Europe as a result of the forcing in the ISM region does

not appear to arise as a result of a CGT-like response to the heating, the circulation is

still affected as a result of the heating. Examination of the occurrence of blocking in

the two thermal forcing experiments found that the negative heating experiment has on

average around 20% more blocked days over northwest Europe than the positive heating

experiment.

However, there is a reasonable amount of interannual variability in the difference

in the number of blocked days in the two heating experiments, with some years with

very small differences between them. In years when there is a large difference in the

total number of blocked days in the two experiments, the North Pacific jet stream is

located further north. This implies that there may be some influence on Europe via

the eastward-propagating response. If the RWS associated with the ISM heating is in a

different location relative to the jet stream in the two experiments in these years, then

Rossby waves may be more easily able to propagate away from this region and influence

the downstream circulation, resulting in a larger difference in the occurrence of blocking

in the two experiments.

Further experiments in the barotropic model, in which a RWS forcing calculated using

the difference in divergence between the thermal forcing experiments and the control was

applied over India, showed a response consistent with that seen in the thermal forcing

experiments, with similar eastward- and westward-propagating signals. In particular, the

European response develops in a very similar way, through the northwestward propagation

of waves from the forcing region, resulting in anticyclonic streamfunction anomalies over

southern Europe and weaker cyclonic anomalies over northern Europe.
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Contrary to the barotropic model experiments in Chapter 5, changing the basic state

when forcing the barotropic model over India does result in different wave propagation

characteristics. Until Day 12, experiments using ERA-Interim and ECMWF model basic

states have similar solutions. However, after this point they begin to diverge. By Day 28,

the streamfunction anomalies associated with the two experiments significantly differ over

the North Pacific, North America and also over the North Atlantic and northwest Europe.

The anomalies over Europe are larger when using the ERA-Interim basic state, with a

greater westward extent of the anomalies associated with the monsoon-desert mechanism.

Following Shaman and Tziperman (2007) and O’Reilly et al. (2018), further

barotropic model experiments were carried out in which sponge layers were added at

certain longitudes in order to damp vorticity anomalies and prevent the zonal propaga-

tion of Rossby waves through the layer. When a sponge layer was added at 60°W, the

40–50 day average vorticity anomalies throughout the midlatitudes are extremely similar

to the equivalent experiment with no damping. In particular, the response over Europe

is very similar, which further indicates that the anomalies seen over Europe develop as a

result of westward-propagating Rossby waves, rather than an eastward-moving wave train

from the forcing region.

Stephan et al. (2019) hypothesised that the SRP wave train relies on a positive

feedback loop between ascent over India and descent over the Mediterranean. In order to

further investigate this mechanism, and its importance in the propagation of the Rossby

wave train across the Pacific to North America, another experiment was carried out in

which the damping was applied at 30°E. In this experiment, the vorticity anomalies have

a weaker magnitude by Day 40–50 when compared to the equivalent experiment without

damping. When examining the response near the forcing region in closer detail, it was

found that in the damped experiment there is a much greater southerly component to

the anomalous wind over the Middle East. This acts to advect low vorticity air to higher

latitudes and suppresses the positive vorticity anomaly that develops near the Caspian

Sea in the undamped experiment, which is important in the subsequent downstream

reinforcement of the wave train. This agrees with the hypothesis of Stephan et al. (2019)

and suggests that the westward-propagating Rossby wave response to forcing in the ISM

region is crucial in the downstream strengthening of the SRP/Tokyo–Chicago Express

wave train.
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7.1 Overview

Variations in summer climate extremes in Europe can have far-reaching socio-

economic impacts. Recent summer drought and flooding events have highlighted the

vulnerability of society to summer seasonal climate extremes. The potential benefits of

more accurate long-range forecasts for the European summer are clear. Advance warning

of an increased likelihood of flood or drought several weeks or months in advance would

allow governments and businesses to make the necessary preparations to mitigate against

potential impacts.

This thesis has aimed to investigate the relationship between European summer sea-

sonal forecast skill and the representation of the circumglobal teleconnection (CGT) in

a seasonal forecast model. Possible causes of errors in the representation of the CGT in

the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecast

model have been investigated; relaxation experiments were performed to further analyse

these model errors and improve knowledge of the CGT mechanism; and barotropic model

and thermal forcing experiments in the ECMWF model have been performed to explore

the relationship between Indian summer monsoon (ISM) precipitation (heating) and vari-

ability of the summer circulation over Europe. This analysis has been performed with the

intention of answering the following questions, as posed in Chapter 1:

1. How well is the CGT represented in a state-of-the-art seasonal forecast model?
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2. What is the role of the Indian summer monsoon in driving the CGT?

3. How does the Indian summer monsoon influence circulation variability over Europe?

A discussion and the main conclusions of the analysis performed in this thesis is

presented in Section 7.2, to address the questions posed above, with an overall summary

given in Section 7.3. Possible directions for future work are discussed in Section 7.4.

7.2 Discussion and conclusions

7.2.1 How well is the circumglobal teleconnection represented in a

state-of-the-art seasonal forecast model?

In order to diagnose the role of the CGT in influencing European summer seasonal

forecast skill, it first had to be determined how well the model represents this telecon-

nection mechanism. To do this, work in Chapter 4 used seasonal hindcasts using Cycle

41r1 of the ECMWF seasonal forecast model to examine the skill of the model during

the summer, and the model performance at representing the CGT. It was found that the

model generally has a weaker than observed CGT wave train, with a median northern

hemisphere pattern correlation for the wave train of 0.60 when compared to ERA-Interim.

Associated with this, the correlations between the D&W Index (a region proposed by Ding

and Wang (2005, 2007) as linking ISM precipitation and the CGT) and other centres of

action of the CGT are too weak in August, when the observed wave train is strongest,

with the exception of the D&W vs. east Asia (EASIA) region correlations which are well

captured. However, beyond EASIA the model wave train becomes weaker. The relation-

ship between the EASIA and North Pacific (NPAC) region, which also forms part of a

teleconnection known as the “Tokyo–Chicago Express” (Wang et al., 2001; Lau et al.,

2004) and which have an observed correlation of 0.71, have a weaker than observed rela-

tionship in the model, although the majority of members do have a significant correlation

between these two regions.

A number of potential sources for the weak representation of the CGT in the model

were investigated in Chapter 4. Given the hypothesis of Ding and Wang (2007) that the
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D&W region plays an important role in the maintenance of the CGT, the skill of the

model in this region was investigated. It was shown in Chapter 4 that the model has very

little correlation skill for 200 hPa geopotential height in this region in July and August,

and it was also found that the variance of the D&W Index is lower than observed in

these months. A possible reason for this lower model variance is a weak representation

of the link between ISM precipitation and the D&W Index. In observations there is a

significant correlation between these indices in all months, and while this relationship is

well captured in June, the correlations in July and August are much weaker. This in turn

may be related to lower than observed variance of ISM precipitation in the model, and

therefore the poor variance of the D&W Index in July and August may be linked to poor

representation of the variance of ISM precipitation in the model.

Another possible source of errors in the CGT was found to be the Rossby wave source

(RWS), which describes the forcing of Rossby waves by the divergent flow at 200 hPa. It

was found that the centre of positive RWS located near the D&W region in the model is

slightly stronger than in ERA-Interim. However, it is displaced northeastwards relative to

ERA-Interim, meaning that the model RWS in the D&W region is much weaker than in

observations. The displacement of the model RWS was shown to be related to a northward

displacement of the jet stream over this region by several degrees latitude. Analysis of the

divergence and precipitation showed that the difference in RWS magnitude between the

model and ERA-Interim can be attributed to differences in the convergence associated

with the area of positive RWS. This convergence is also greater in magnitude in the model,

and this magnitude difference may be related to greater model divergence over the Bay

of Bengal and the Arabian Sea, which in turn is associated with increased amounts of

model precipitation in these regions when compared to observations.

A northward displacement of the jet stream in the model was also found across much

of the northern hemisphere. In June, July and August the model jet stream is located

several degrees too far north across most of Eurasia and the North Pacific. Rossby

waves propagate along the jet stream, which acts as a waveguide, so these biases, which

are located along the CGT pathway, are likely to have an impact on the propagation

characteristics of Rossby waves associated with the CGT in the model. The combination

of the errors in RWS along with the bias in the jet stream location may be important in

the weak representation of the CGT in the model.
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7.2.2 What is the role of the Indian summer monsoon in driving the

circumglobal teleconnection?

Ding and Wang (2005) hypothesised that the ISM plays an important role in the

forcing or maintenance of the CGT, either by exciting Rossby waves which then prop-

agate downstream and influence the midlatitude circulation, or through the interaction

of a Rossby wave train which propagates from Europe to west-central Asia, before being

reinforced by precipitation associated with the ISM. Subsequently, Ding and Wang (2007)

suggested that the second mechanism is likely to be the more dominant of the two and

that Rossby waves which propagate from Europe can initially trigger precipitation in the

north ISM region, and also that this convection then re-energises the downstream propa-

gation of the wave train. Other studies have also identified the possible role of the ISM

in exciting eastward propagating Rossby waves. Wang et al. (2001) and Wu and Wang

(2002) both found that ISM precipitation modulates the west-central Asia anomalous an-

ticyclone, and that this is also responsible for the formation of an anomalous anticyclone

over east Asia.

To examine the role of the ISM in forcing or maintaining the CGT, and also to

investigate the above hypothesis of Ding and Wang (2007), three relaxation experiments

were carried out, results of which are presented in Chapter 5. In these, the circulation was

relaxed towards ERA-Interim in specific regions of interest. In Chapter 4 it was shown

that there is weak model variability in the D&W region and a weak relationship between

the D&W Index and the ISM. To examine whether the weak representation of the CGT

in the model occurs as a result of weak forcing from the D&W region, the first experiment

relaxed the circulation near this region. Analysis showed that the representation of the

CGT in this experiment is poorer than in the control, and 200 hPa geopotential height skill

is not much improved outside Asia, with the skill over Europe largely unchanged. This

may suggest that the CGT is not being forced from west-central Asia, and also that the

skill over Europe is not reliant on errors in the D&W region. However, the northward jet

biases seen in the control experiment are still present in much of the northern hemisphere,

which means that there are still likely to be errors in Rossby wave propagation. Also, as a

consequence of the relaxation, the variance in the D&W region will have been increased. If

the model teleconnection pathway is incorrect, then this may mean that a stronger version

of the incorrect response is being forced, which could explain the reduced CGT pattern

correlation in this experiment. The link between ISM precipitation and the D&W Index
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is very poorly represented in this experiment, with an overall reduction in the strength of

the correlation compared to the control. This could also be a factor in the reduced CGT

pattern correlation as the wave train may not be being reinforced correctly.

The second experiment relaxed a region over northwest Europe. This experiment

was performed to investigate the Ding and Wang (2007) hypothesis that the midlatitude

wave train originates over northwest Europe and subsequently propagates to west-central

Asia. Also, an area of reduced skill in the control appears over northwest Europe in June,

before the development of areas of reduced skill over Asia in July and August, so this

experiment was also designed to reveal if the errors over west-central Asia arise as a result

of errors propagating from northwest Europe. Results from this experiment show that

a greater area of the northern hemisphere shows improvements in geopotential height

skill compared to the west-central Asia relaxation. The CGT pattern correlations in this

experiment are also improved slightly compared to the control. These results strongly

suggest that northwest Europe has a much more influential role in the forcing of the

CGT than west-central Asia. While the link between ISM precipitation and the D&W

Index is improved with respect to the control and is the closest to observations of all the

relaxation experiments, it is still weaker than observed and the majority of members have

a correlation that is not significant. This suggests that precipitation over northern India

is a response to forcing from northwest Europe via the CGT wave train. This in turn

suggests that the ISM has a limited role in the initial forcing of the CGT, but could still

play an important role in the subsequent downstream propagation of the Rossby wave

train.

The third experiment involved relaxing a larger region which encompassed most of

the ISM region. As the relationship between ISM precipitation and the D&W Index is too

weak in both previous relaxation experiments and in the control, and given the modest

skill for the model representation of the ISM, this experiment was designed investigate the

impact of correcting the monsoon circulation on extratropical skill and on the represen-

tation of the CGT. It was found that the extratropical skill is not particularly dependent

on errors in the ISM circulation. In particular, the skill over Europe in June and July is

largely unaffected, although some improvements were seen in August. The CGT pattern

correlations were also very similar to the control, with a slight reduction in the median

value. This suggests that the ISM is not the main driver of the CGT or that errors in the

ISM are not responsible for the weak representation of the CGT in the ECMWF model.
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However, the jet biases that were also present in previous experiments still remain, which

could limit any improvements in the representation of the CGT. As with the other relax-

ation experiments, the correlation between ISM precipitation and the D&W Index is too

weak, despite the monsoon circulation being corrected. This may limit the skill of the

model at representing the CGT, as the monsoon precipitation will not be reinforcing the

wave train correctly.

Results from barotropic model experiments shown in Chapter 5 suggested that differ-

ences in the strength of the forcing in the D&W region affects the strength of the response,

whereas differences in the basic state do not vastly alter the phase or wavenumber of the

response when forced from this region. Two thermal forcing experiments were carried

out in the ECMWF model to further investigate the role of the ISM in driving the CGT

and in influencing the extratropical circulation. Results from these experiments indicated

that heating in the ISM region does drive an extratropical response. In particular, the

response in east Asia, the North Pacific and North America is broadly consistent with a

CGT-like response, with anticyclonic anomalies in these regions in the positive thermal

forcing experiment. There is also a strong monsoon-desert mechanism response, with

positive anomalies extending across North Africa and the Mediterranean. However, the

response over northern Europe is not similar to the CGT, with cyclonic anomalies across

much of the region associated with a signal that develops to the northwest of the forcing

region. This suggests that, while the ISM does excite a CGT-like response in much of

the northern hemisphere, the circulation over Europe is primarily not forced by the ISM

via the CGT. However, there is some evidence that the circulation over Europe can be

affected via eastward-propagating waves, and this is explained in Section 7.2.3.

Further experiments carried out in the barotropic model in which RWS forcings,

calculated using the difference in divergence between the positive and negative heating

experiments and the control, were applied over India showed a response which is consis-

tent with the thermal forcing experiments. In these experiments, the response between

Asia and North America is similar to the CGT, but the European response is related to

a northwestward-propagating signal from the forcing region rather than an extension of

the CGT wave train from North America. Unlike the previous barotropic model experi-

ments, varying the basic state in the divergence forcing experiments does affect the wave

propagation characteristics. Relating to research question 1 posed in Chapter 1, contrary

to results from Chapter 5, this suggests that errors in the model basic state, such as the

Page 130



Chapter 7: Discussion and conclusions

northward jet bias, may be important in the model representation of the CGT.

Barotropic model experiments in which a sponge layer was applied at specific longi-

tudes provide additional evidence that the response over Europe in the thermal forcing

experiments results largely from westward-propagating Rossby waves from the ISM re-

gion. When a damping was applied at 60°W, the vorticity anomalies compared to the

equivalent experiment without damping were almost identical, both in the European re-

sponse, and in the eastward propagation of the wave train across the North Pacific to

North America. When the damping was moved to 30°E, this wave train (the Silk Road

Pattern (SRP)/Tokyo–Chicago Express) was weakened. Analysis of the wind anomalies

near the forcing region showed that in this damped experiment there was a much larger

southerly component to the wind anomalies to the west of the forcing region, which causes

the advection of low vorticity air northwards. This in turn prevents the development of

the positive vorticity anomalies near the Caspian Sea which occur in the undamped exper-

iment, and which propagate along the Asian jet and reinforce the downstream wave train.

This agrees with the results of Stephan et al. (2019), who showed that there is a positive

feedback between ascent over India and descent over the Mediterranean, which drives the

SRP. The analysis presented here also suggests that the westward-propagating Rossby

wave response associated with ISM heating is crucial in the downstream reinforcement of

the SRP/Tokyo–Chicago Express wave train.

Overall, it seems that the ISM can drive the extratropical northern hemisphere circu-

lation through a CGT-like mechanism, with the exception of Europe, which is influenced

more by northwestward propagating signals associated with the monsoon-desert mecha-

nism. While the relaxation experiments suggested that northwest Europe is a more im-

portant region for the excitation of the CGT, the thermal forcing and barotropic model

experiments suggested that the ISM does influence the circulation over east Asia, the

North Pacific and North America via the CGT mechanism. It also affects the circulation

over Europe but largely through a different mechanism - here, the response is related

more to a monsoon-desert type mechanism than the CGT.
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7.2.3 How does the Indian summer monsoon influence circulation vari-

ability over Europe?

As described earlier, analysis of thermal forcing experiments carried out in the

ECMWF model, along with barotropic model results, suggested that the circulation over

Europe is not affected as part of a CGT wave train that is forced by the ISM. However,

the European circulation is influenced by heating associated with the ISM in other ways.

This appears to be primarily through a northwestward-moving signal from the forcing

region, as part of a Rodwell and Hoskins (1996) monsoon-desert mechanism response.

Both the thermal forcing and barotropic model experiments show that ISM heating is

associated with a strong anticyclonic anomaly which extends across the Mediterranean

and North Africa, which is consistent with the results of Rodwell and Hoskins (1996).

To the north of this, over much of northern Europe, are anomalies of the opposite sign.

Analysis of the heating experiments showed that these anomalies develop soon after the

heating is applied, and that the European response is almost fully developed by Day 10.

These anomalies also appear before the eastward-travelling Rossby waves have propa-

gated around the hemisphere, indicating that they are not associated with this Rossby

wave train. This result is further backed up by results from a damped barotropic model

experiment, in which the European response when the damping is applied at 60°W is very

similar to that of the undamped experiment.

One of the limitations of the thermal forcing experiments is that they were only run

with five ensemble members. Analysis of the 25 member control experiment, in which

correlations between centres of action of the CGT were calculated for five member subsam-

ples, showed some variability in the strength of the model correlations when comparing

different samples. However, results from the barotropic model suggest that the response

seen in the thermal forcing experiments is robust and is not likely to be greatly affected

by increasing the number of ensemble members.

Results from an ISM relaxation experiment are presented in Chapter 5. In this

experiment, the skill over Europe in June and July remains largely unchanged compared

to the control. In August, however, there are some improvements over northwest Europe,

the UK and parts of the Mediterranean, suggesting that there may be a link between

the ISM and Europe. Given that other results suggest limited impact of the ISM via

eastward-propagating Rossby waves, this improvement in skill is more likely to be related
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to the northwestward-moving signal seen in experiments in Chapter 6. Indeed, some of the

largest improvements in skill are seen in the regions associated with the monsoon-desert

mechanism.

One measure of the impact of heating associated with the ISM is through analysis of

the total number of blocked days in both the positive and negative heating experiments.

It is shown in Chapter 6 that there is a larger number of blocked days in northwest Europe

in the negative heating experiment than the positive heating experiment. On average,

across the 34 year period, there is around 20% more blocked days in the negative heating

experiment, suggesting that the response over Europe to additional monsoon heating is

a reduction in the frequency of blocking. This could be related to the northwestward-

propagating signal, which results in the development of cyclonic anomalies over northern

Europe in the positive heating experiment. However, there are also differences in the

basic state in years with the greatest difference in total blocked days between the two

heating experiments, whereby the North Pacific jet is located further north. This will

affect the Rossby wave propagation characteristics for waves propagating away from east

Asia, and suggests that there may be an influence of the eastward-propagating waves on

the circulation over Europe. A combination of these factors may be responsible for the

response seen over Europe to additional monsoon heating.

Overall, while the ISM does not appear to influence the circulation over Europe in

the manner that would be expected as a result of the CGT, it can cause changes to the

circulation in other ways. In particular, cyclonic anomalies over northern Europe develop

associated with the northwestward propagating signal from the ISM region when ISM

heating is increased, and vice versa. Possibly associated with this mechanism, along with

the possible influence of eastward-propagating waves, there is a decrease in the occurrence

of blocking in response to additional heating. Whether this mechanism is also present

in observations, and whether it could be used as a source of skill for European summer

seasonal forecasts, is unclear and requires further investigation.

7.3 Summary

This thesis investigated the relationship between the CGT, the ISM and European

summer seasonal forecast skill. The ECMWF model has a weak representation of the
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CGT, although evidence in Chapter 5 suggests that this is not likely to be related to

errors in the representation of the ISM. However, the relationship between ISM precipita-

tion and the D&W region is not well represented, so it may be that ISM precipitation is

not responding correctly to forcing from Europe as a result of model errors in this region,

and this may subsequently affect the reinforcement of the CGT wave train by ISM pre-

cipitation, as hypothesised by Ding and Wang (2007). This is supported by analysis in

Chapter 5, where relaxing the circulation over Europe resulted in the largest improvement

in the correlation between ISM precipitation and the D&W Index.

Figure 7.1: Schematic to show the possible mechanisms linking the ISM and the extratrop-
ical northern hemisphere circulation (adapted from Stephan et al., 2019). Precipitation
associated with the ISM over northern India (blue cloud) leads to anomalous descent
over the Mediterranean region via the monsoon-desert mechanism. This then induces a
response downstream which subsequently reinforces the monsoon precipitation in a posi-
tive feedback loop (the Silk Road Pattern (SRP), yellow arrows). The ISM precipitation
also excites an eastward-propagating response (red arrow) which leads to an anomalous
anticyclone over east Asia, and this is then subsequently reinforced by the downstream
propagation of waves from west-central Asia associated with the SRP. This reinforcement
of the wave train as a result of the westward component of the response to ISM pre-
cipitation via the Mediterranean is crucial in the subsequent downstream propagation
of the waves across the North Pacific (the Tokyo–Chicago Express, green arrows) along
the Asian jet stream (large grey arrow). The circulation over northwest Europe may be
influenced by a combination of the response to the monsoon-desert mechanism (dashed
yellow arrow) and perturbations to the jet caused by the eastward-propagating Rossby
waves (dashed green arrow) although the relative influence of each of these mechanisms
is unclear.

While it appears that the CGT is not primarily driven by the ISM, evidence in

Chapter 6 suggests that the ISM does play an important role in influencing the circulation

in much of the northern hemisphere. When adding a thermal forcing in the ISM region,

the response over east Asia, the North Pacific and North America appears similar to the

CGT. This suggests that the ISM does play a role in forcing a CGT-like pattern in these

regions via an eastward-propagating Rossby wave response. The response over Europe,
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however, does not appear to be related to this mechanism, and anomalies in this region are

of the opposite sign to those over east Asia, the North Pacific and North America. The

European response seems to be dominated by a westward-propagating signal, possibly

associated with the Rodwell and Hoskins (1996) monsoon-desert mechanism. However,

there is some evidence that the circulation over Europe can be influenced by eastward-

propagating Rossby waves from the ISM. In response to additional monsoon heating,

the frequency of blocking over northwest Europe is reduced. This may be related to

a combination of the westward-moving response to additional heating, where cyclonic

anomalies develop over Europe, and differences in the position of the North Pacific jet,

such that perturbations of the jet associated with monsoon heating have a downstream

effect on the frequency of blocking over Europe. The proposed mechanisms linking ISM

precipitation and the extratropical circulation are summarised in the schematic in Figure

7.1.

Barotropic model results in Chapter 6 show good agreement with the ECMWF ther-

mal forcing experiments, with both the eastward- and westward-propagating responses

appearing similar. It was also found that the westward-propagating response is important

in the subsequent downstream reinforcement of the wave train between Asia and North

America, which is likely to be associated with the positive feedback mechanism proposed

by Stephan et al. (2019). When the westward Rossby wave response was damped, the

wave train between Asia and North America was weakened. The role of the competing

eastward- and westward-propagating mechanisms in determining the circulation variabil-

ity over Europe is not straightforward and requires further investigation.

7.4 Future work

In this section, potential avenues of future work are discussed in terms of three

unanswered research questions relating to the work presented in this thesis.
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7.4.1 What is the source of the weak representation of the circumglobal

teleconnection in the model?

A number of potential causes of the weak representation of the CGT in the model

were investigated throughout this thesis. However, the processes that explain the weak

model CGT remain largely unknown. From the analysis in Chapters 5 and 6 it seems

unlikely that they arise from errors associated with the ISM, as the CGT does not appear

to be primarily forced by the ISM, although the ISM does appear to have an important

role in forcing the circulation in many regions associated with the CGT. It is also possible

that the CGT could be forced from other tropical regions. Several studies have found

evidence of Rossby wave propagation towards Europe from forcing in the central (O’Reilly

et al., 2018) and western (A. Ossó, personal communication; Li et al., 2014) Pacific.

It is therefore possible that errors in the CGT could arise if there are errors in the

forcing from these regions. This could be addressed through further relaxation or thermal

forcing experiments in the ECMWF model, focussing on the western and central Pacific

as possible forcing regions.

In this thesis, the initial hypothesis was that the CGT is an important driver of

European summer weather, and that it is forced by the ISM. Through the course of the

research presented here, it appears more likely that the ISM is not forcing the CGT,

particularly when it comes to the European response. However, it does appear that the

ISM could influence the circulation in Europe in other ways, which is the subject of the

next unanswered research question. It also seems very likely that the ISM can affect

the circulation in much of the northern hemisphere through the excitation of eastward-

propagating Rossby waves. An alternative approach would therefore be to start from

the ISM, rather than the CGT, and conduct a study into the sensitivity of the northern

hemisphere summer circulation to variations in ISM heating. The work in Chapter 6 only

utilised two thermal forcing experiments, so further work could involve conducting more

heating experiments, with varying levels of heating, to further examine the linearity of

the extratropical response to variations in ISM heating, as well as varying the location

of the heating within the ISM region. The analysis here focussed on the mean response,

which is the predictable part of the signal on seasonal timescales. A further avenue for

future research could therefore be to investigate how the ISM influences the likelihood of

different circulation regimes occurring over Europe, in a similar manner to the analysis

of Cassou (2008).
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7.4.2 Is the signal between the Indian summer monsoon and northwest

Europe seen in the model also present in observations, and if

so can it be used as a source of predictability for the European

summer?

From analysis of the thermal forcing and barotropic model experiments presented in

Chapter 6, in which a large forcing was applied over India, it appears that the application

of additional heating in the ISM region does affect the circulation over Europe, although

this does not appear to be the result of what would be expected from the CGT mechanism;

rather, the European anomalies associated with additional ISM heating seem to be related

more to the Rodwell and Hoskins (1996) monsoon-desert mechanism, via a westward- or

northwestward-moving signal. It is not clear whether this mechanism to northwest Europe

is also present in observations, and this will likely require analysis of daily observations

to determine. The monsoon-desert mechanism and its influence on the Mediterranean

climate has been explored in many studies, and it is unclear if the model signal over

northwest Europe is as a direct consequence of this mechanism. If it is observed in the

real world, then it could provide a source of predictive skill for the European summer. The

heating that was applied in the thermal forcing experiments was very large compared to

natural variability of the ISM, therefore the actual observed signal may be much weaker.

7.4.3 How do other seasonal forecast models perform at representing

the circumglobal teleconnection?

This study has been limited to the analysis of one seasonal forecast model: the

ECMWF IFS. This has provided some valuable insights into the performance of this

model at representing the CGT, and also provided further understanding of the CGT

mechanism. However, there would be obvious benefits to examining how other models

perform at representing the CGT, and also what, if any, similarities there are between

the ECMWF model and other models. The work in Chapter 6 suggested that errors in

the basic state, particularly jet stream biases, may cause variations in the propagation

characteristics of Rossby waves associated with tropical diabatic heating. Therefore,

through examining other seasonal forecast models, which have differing levels of biases,

the overall impact of the ECMWF model jet biases on the representation of the CGT

may be made clearer.
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Analysis of several other seasonal forecast models would also help improve knowledge

of several aspects of the CGT, as well as the potential influence of the ISM on the cir-

culation in Europe. As posed earlier, the source of the weak representation of the CGT

in the model is still unknown. By performing an intercomparison of the ability of a few

other seasonal forecast models to represent the CGT, potential sources of the weak repre-

sentation, such as forcing or wave propagation errors, could be ruled out. Another option

would be to investigate the performance of the new ECMWF seasonal forecast system,

SEAS5 (Johnson et al., 2019) at representing the CGT. In SEAS5, the extratropical jet

stream bias is actually slightly more pronounced than in System 4. If, as hypothesised,

jet stream biases are an important factor in the CGT representation, then it may be

expected that the SEAS5 CGT is poorer than in the model version analysed here, taking

into account other differences in background state and forcing between the two model

versions.
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Brönnimann, S., 2007: Impact of El Niño–southern oscillation on European climate. Rev.
Geophys., 45.

Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and
the North Atlantic Oscillation. Nature, 455, 523.

Cassou, C. and L. Terray, 2001: Dual influence of Atlantic and Pacific SST anomalies on
the North Atlantic/Europe winter climate. Geophys. Res. Lett., 28, 3195–3198.

Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European
heat waves. J. Climate, 18, 2805–2811.

Charney, J. and J. Shukla, 1981: Predictability of monsoons. Monsoon dynamics, Sir
James Lighthill and R. P. Pearce, Eds., Cambridge University Press, 99–109.

Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J.
Meteorol., 4, 136–162.

Chen, G. and R. Huang, 2012: Excitation mechanisms of the teleconnection patterns
affecting the July precipitation in Northwest China. J. Climate, 25, 7834–7851.

Cherchi, A., H. Annamalai, S. Masina, and A. Navarra, 2014: South Asian summer
monsoon and the eastern Mediterranean climate: The monsoon–desert mechanism in
CMIP5 simulations. J. Climate, 27, 6877–6903.

Chou, C., 2003: Land–sea heating contrast in an idealized Asian summer monsoon. Clim.
Dyn., 21, 11–25.

Colman, A., 1997: Prediction of summer central England temperature from preceding
North Atlantic winter sea surface temperature. Int. J. Climatol., 17, 1285–1300.

Colman, A. and M. Davey, 1999: Prediction of summer temperature, rainfall and pressure
in Europe from preceding winter North Atlantic Ocean temperature. Int. J. Climatol.,
19, 513–536.

Dee, D. P., S. M. Uppala, a. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae,
M. a. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, a. C. M. Beljaars, L. van de Berg,
J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, a. J. Geer, L. Haimberger,
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Ossó, A., R. Sutton, L. Shaffrey, and B. Dong, 2018: Observational evidence of European
summer weather patterns predictable from spring. Proc. Natl. Acad. Sci. USA, 115,
59–63.

Philander, S. G. H., 1983: El Nino southern oscillation phenomena. Nature, 302, 295.

Page 144

https://www.metoffice.gov.uk/about-us/press-office/news/weather-and-climate/2018/end-of-summer-stats
https://www.metoffice.gov.uk/about-us/press-office/news/weather-and-climate/2018/end-of-summer-stats
https://www.metoffice.gov.uk/about-us/press-office/news/weather-and-climate/2018/end-of-summer-stats


References

Pitt, M., 2008: The Pitt Review: Learning lessons from the 2007 floods. Cabinet Office
Independent Review .

Pozo-Vázquez, D., M. Esteban-Parra, F. Rodrigo, and Y. Castro-Diez, 2001: The associ-
ation between ENSO and winter atmospheric circulation and temperature in the North
Atlantic region. J. Climate, 14, 3408–3420.

Rajeevan, M., C. Unnikrishnan, and B. Preethi, 2012: Evaluation of the ENSEMBLES
multi-model seasonal forecasts of Indian summer monsoon variability. Clim. Dyn., 38,
2257–2274.

Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional
climate. Tellus, 2, 275–301.

Richardson, D. and P. Bauer, 2015: New model cycle launched in May. ECMWF Newslet-
ter 144 , 4–5.

Robine, J.-M., S. L. K. Cheung, S. Le Roy, H. Van Oyen, C. Griffiths, J.-P. Michel, and
F. R. Herrmann, 2008: Death toll exceeded 70,000 in Europe during the summer of
2003. C. R. Biol., 331, 171–178.

Rodwell, M. J. and B. J. Hoskins, 1996: Monsoons and the Dynamics of Deserts. Quart.
J. Roy. Meteor. Soc., 122, 1385–1404, doi:10.1002/qj.49712253408.

— 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 3192–3211.

Ropelewski, C. F. and M. S. Halpert, 1987: Global and Regional Scale Precipitation
Patterns Associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115,
1606–1626.

Rossby, C.-G., 1939: Relation between variations in the intensity of the zonal circulation
of the atmosphere and the displacements of the semi-permanent centers of action. J.
Meteor. Res., 2, 38–55.

Sardeshmukh, P. D. and B. J. Hoskins, 1988: The Generation of Global Rotational Flow
by Steady Idealized Tropical Divergence. J. Atmos. Sci., 45, 1228–1251.

Scaife, A. A., D. Copsey, C. Gordon, C. Harris, T. Hinton, S. Keeley, A. O’Neill,
M. Roberts, and K. Williams, 2011: Improved Atlantic winter blocking in a climate
model. Geophys. Res. Lett., 38.

Schaller, N., J. Sillmann, J. Anstey, E. Fischer, C. Grams, and S. Russo, 2018: Influence
of blocking on Northern European and Western Russian heatwaves in large climate
model ensembles. Environ. Res. Lett., 13, 054015.

Scherrer, S. C., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, 2006: Two-
dimensional indices of atmospheric blocking and their statistical relationship with win-
ter climate patterns in the Euro-Atlantic region. Int. J. Climatol., 26, 233–249.

Schubert, S., H. Wang, and M. Suarez, 2011: Warm season subseasonal variability and
climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J.
Climate, 24, 4773–4792.

Schumacher, C., R. A. Houze Jr, and I. Kraucunas, 2004: The tropical dynamical response
to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci.,
61, 1341–1358.

Page 145



References

Shaman, J., 2014: The seasonal effects of ENSO on atmospheric conditions associated
with European precipitation: Model simulations of seasonal teleconnections. J. Climate,
27, 1010–1028.

Shaman, J. and E. Tziperman, 2007: Summertime ENSO–North African–Asian Jet tele-
connection and implications for the Indian monsoons. Geophys. Res. Lett., 34.

Shimizu, M. H. and I. F. de Albuquerque Cavalcanti, 2011: Variability patterns of Rossby
wave source. Clim. Dyn., 37, 441–454.

Shukla, J. and D. A. Paolino, 1983: The Southern Oscillation and Long-Range Forecasting
of the Summer Monsoon Rainfall over India. Mon. Wea. Rev., 111, 1830–1837.

Simmons, A. J. and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic
waves. J. Atmos. Sci., 35, 414–432.

Sousa, P. M., R. M. Trigo, D. Barriopedro, P. M. Soares, and J. A. Santos, 2018: European
temperature responses to blocking and ridge regional patterns. Clim. Dyn., 50, 457–
477.

Sperber, K., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and
T. Zhou, 2013: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3
simulations of the late 20th century. Clim. Dyn., 41, 2711–2744.

Stephan, C. C., N. P. Klingaman, and A. G. Turner, 2019: A mechanism for the recently
increased interdecadal variability of the Silk Road Pattern. J. Climate, 32, 717–736.

Sterl, A., 2004: On the (In)Homogeneity of Reanalysis Products. J. Climate, 17, 3866–
3873.

Stockdale, T. N., F. Molteni, and L. Ferranti, 2015: Atmospheric initial conditions and
the predictability of the Arctic Oscillation. Geophys. Res. Lett., 42, 1173–1179.

Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review
of global precipitation data sets: data sources, estimation, and intercomparisons. Rev.
Geophys., 56, 79–107.

Sutton, R. T. and D. L. Hodson, 2005: Atlantic Ocean forcing of North American and
European summer climate. Science, 309, 115–118.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the
experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

Tibaldi, S. and F. Molteni, 1990: On the operational predictability of blocking. Tellus A,
42, 343–365.

Trenberth, K. E., 1997: The Definition of El Niño. Bull. Amer. Meteor. Soc., 78, 2771–
2778.

Trenberth, K. E., T. Koike, and K. Onogi, 2008: Progress and prospects for reanalysis
for weather and climate. Eos, Trans. Amer. Geophys. Union, 89, 234–235.

Tyrlis, E. and B. Hoskins, 2008: Aspects of a Northern Hemisphere atmospheric blocking
climatology. J. Atmos. Sci., 65, 1638–1652.

Tyrlis, E., J. Lelieveld, and B. Steil, 2013: The summer circulation over the eastern
Mediterranean and the Middle East: influence of the South Asian monsoon. Clim.
Dyn., 40, 1103–1123.

Page 146



References

van Loon, H. and R. A. Madden, 1981: The Southern Oscillation. Part I: Global as-
sociations with pressure and temperature in northern winter. Mon. Wea. Rev., 109,
1150–1162.

Walker, G. T., 1923: Correlation in seasonal variation of weather VIII: A preliminary
study of world weather. Mem. Indian Meteor. Dep., 24, 75–131.

— 1924a: Correlation in seasonal variation of weather IX: A further study of world
weather. Mem. Indian Meteor. Dep., 24, 225–232.

— 1924b: Correlations in seasonal variations of weather, XI. A further study of world
weather. Mem. Indian Meteor. Dep., 24, 275–332.

Walker, G. T. and E. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 53–84.

Wang, B., R. Wu, and K. Lau, 2001: Interannual variability of the Asian summer mon-
soon: Contrasts between the Indian and the western North Pacific–East Asian mon-
soons. J. Climate, 14, 4073–4090.

Wang, H., B. Wang, F. Huang, Q. Ding, and J.-Y. Lee, 2012: Interdecadal change of the
boreal summer circumglobal teleconnection (1958–2010). Geophys. Res. Lett., 39.

Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road
pattern. J. Climate, 30, 9915–9932.

Watson, P. A., A. Weisheimer, J. R. Knight, and T. Palmer, 2016: The role of the tropical
West Pacific in the extreme Northern Hemisphere winter of 2013/2014. J. Geophys. Res.
Atmos., 121, 1698–1714.

Wei, W., R. Zhang, M. Wen, X. Rong, and T. Li, 2014: Impact of Indian summer monsoon
on the South Asian High and its influence on summer rainfall over China. Clim. Dyn.,
43, 1257–1269.

Weisheimer, A., F. Doblas-Reyes, T. Palmer, A. Alessandri, A. Arribas, M. Déqué,
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