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Comparison of Bayesian and frequentist
group-sequential clinical trial designs
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Abstract

Background: There is a growing interest in the use of Bayesian adaptive designs in late-phase clinical trials. This
includes the use of stopping rules based on Bayesian analyses in which the frequentist type I error rate is controlled as
in frequentist group-sequential designs.

Methods: This paper presents a practical comparison of Bayesian and frequentist group-sequential tests. Focussing
on the setting in which data can be summarised by normally distributed test statistics, we evaluate and compare
boundary values and operating characteristics.

Results: Although Bayesian and frequentist group-sequential approaches are based on fundamentally different
paradigms, in a single arm trial or two-arm comparative trial with a prior distribution specified for the treatment
difference, Bayesian and frequentist group-sequential tests can have identical stopping rules if particular critical values
with which the posterior probability is compared or particular spending function values are chosen. If the Bayesian
critical values at different looks are restricted to be equal, O’Brien and Fleming’s design corresponds to a Bayesian
design with an exceptionally informative negative prior, Pocock’s design to a Bayesian design with a non-informative
prior and frequentist designs with a linear alpha spending function are very similar to Bayesian designs with slightly
informative priors.
This contrasts with the setting of a comparative trial with independent prior distributions specified for treatment
effects in different groups. In this case Bayesian and frequentist group-sequential tests cannot have the same
stopping rule as the Bayesian stopping rule depends on the observed means in the two groups and not just on their
difference. In this setting the Bayesian test can only be guaranteed to control the type I error for a specified range of
values of the control group treatment effect.

Conclusions: Comparison of frequentist and Bayesian designs can encourage careful thought about design
parameters and help to ensure appropriate design choices are made.

Keywords: Adaptive design, Interim analysis, Type I error rate, Sequential analysis, Sequential design

Background
An increasing desire for efficiency in clinical trials has
led to growing interest in adaptive designs. Frequentist
group-sequential designs enable interim analyses to be
performed during the conduct of a clinical trial with-
out inflation of the overall type I error rate [1]. With
an increased application of Bayesian methods in clinical
trials, a number of researchers have proposed Bayesian
group sequential methods [2, 3].
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1Statistics and Epidemiology, Division of Health Sciences, Warwick Medical
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Not all proponents of Bayesian sequential designs con-
sider exact control of the type I error rate essential [4].
Some, however, have suggested that the stopping rules
for Bayesian group sequential designs should also be cho-
sen in such a way that the frequentist type I error rate
is controlled [2, 5, 6], particularly in the setting of phase
III or late phase II clinical trials, when it is often consid-
ered desirable to control the risk of a false positive result,
that is an erroneous conclusion that a new treatment is
efficacious.
There are a number of published examples of trials using

a Bayesian stopping rule chosen to control the type I error
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rate. Hueber et al. [7] (see also [8] for additional statis-
tical details) describe a Bayesian group-sequential trial
comparing secukinumab with placebo for the treatment
of Crohn’s disease. The outcome is the change in Crohn’s
Disease Activity Index (CDAI), which was taken to be nor-
mally distributed. Prior distributions were specified sep-
arately for the placebo and secukinumab effects, with the
former being informative and the latter non-informative.
Analyses were planned after 30 and 60 patients, when the
trial could be stopped if both (i) the posterior probability
that secukinumab was superior to the placebo exceeded
95%, and (ii) there was at least a 50% posterior proba-
bility that the change in CDAI due to secukinumab was
superior to that for placebo by at least fifty. The type I
error rate for this design was calculated using the R pack-
age gsbDesign[9] and shown to be 1.2% if the change in
CDAI due to placebo was as anticipated.
A Bayesian group-sequential trial with a binary pri-

mary outcome is described by Wilber et al. [10]. This
randomised trial compared antiarrhythmic drug therapy
with catheter ablation for the treatment of paroxysmal
atrial fibrillation. The primary outcome was the observa-
tion of protocol-defined treatment failure. Analyses were
planned after 150, 175, 200 and 230 patients, with a stop-
ping rule based on the posterior probability of superiority
of the experimental treatment over the control exceeding
98%, giving a type I error rate of 0.025.
The increasing use of Bayesian sequential designs that

control the frequentist type I error rate has led to a grow-
ing body of work comparing Bayesian and frequentist
group sequential trial methods [3, 5, 8, 11–14]. This paper
adds to this work. In contrast to some authors who draw
comparisons between underlying Bayesian and frequen-
tist paradigms, our focus is a practical one, in which we
compare Bayesian and frequentist group sequential tests
in terms of their boundary values and operating charac-
teristics. We consider specifically the setting of normally
distributed data or test statistics. This facilitates compar-
ison between Bayesian and frequentist group sequential
methods as the latter have been largely developed in this
setting.
We consider separately Bayesian designs in which a

single treatment effect is considered, either in a single-
arm trial or with a prior specified directly for the dif-
ference between experimental and control treatments,
and in which treatment effects have independent prior
distributions. In the one-parameter setting frequentist
and Bayesian group-sequential designs can be identical
if sufficient flexibility in choice of design parameters is
allowed [12], and we show that frequentist and Bayesian
group-sequential designs may be very similar for common
choices of stopping rules. In the two-parameter setting
we show that the frequentist and Bayesian designs can-
not correspond, and show that in this case the Bayesian

group-sequential designs can only control the type I error
rate for specified values of the control group treatment
effect.

Methods
Notation and problem formulation
Single arm trials with normally distributed data
Suppose we conduct a group-sequential single-arm clin-
ical trial of some experimental treatment with up to K
analyses of a single sample of normally distributed data
with a cumulative total of nk observations at look k, k =
1, . . . ,K .
At each look the data observed up to that point will be

analysed and a decision made whether or not to continue
to the next look. We will only consider stopping the trial
for a positive result, that is for efficacy. Additional stop-
ping for futility is considered in the “Discussion” section.
Denoting by Yi the observed value for patient i, we

will assume this is normally distributed with mean θ and
known variance σ 2. We wish to draw inference on θ and
will assume that parameterisation is such that θ = 0 cor-
responds to the experimental treatment being of equal
efficacy to some specified reference value or standard
treatment effect, with positive values of θ (and hence of Yi)
indicative of superiority of the experimental treatment.
Let Ȳk = ∑nk

i=1 Yi/nk denote the mean value from the
cumulative sample at look k. This is the sufficient statis-
tic for θ at look k. It is helpful to write the distribution in
terms of the inverse of the variance, known as the infor-
mation, and set Ik = nk/σ 2. We then have Ȳ1, . . . , ȲK
multivariate normal with

⎛
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(1)

with a similar multivariate normal distribution for the
standardised test statistics, Ȳ1

√
I1, . . . , ȲK

√
IK .

In a frequentist setting, we will test the null hypothesis,
H0 : θ ≤ 0 against the one-sided alternative, θ > 0, con-
cluding that the experimental treatment is superior to the
standard if this null hypothesis is rejected. The test will be
based on the observed values of Ȳ1, . . . , ȲK , stopping and
rejecting the null hypothesis at look k if Ȳk is sufficiently
large as described in more detail below.
In a Bayesian setting, inference will be based on the pos-

terior distribution for θ given the observed data. Basing
the likelihood on (1), a normal prior for θ is conjugate.
Given prior distribution θ ∼ N

(
θ0, I−1

0

)
the posterior

distribution for θ following observation of Ȳk = ȳk at look
k is given by
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θ | ȳk ∼ N
(

θ0I0 + ȳkIk
I0 + Ik

,
1

I0 + Ik

)

(2)

(see [15] Section 5.2). If this posterior distribution is suf-
ficiently indicative of a positive treatment effect the trial
will be stopped with the conclusion that the experimental
treatment is superior to the standard or reference value.
More details are given below.
The value of I0 gives a measure of the prior information.

In particular, letting I0 approach 0 gives a flat improper
normal prior.

Single arm trials with non-normal data
For non-normal data, tests can be based on the assumed
distributional form parameterised in terms of the treat-
ment effect, which will again be denoted by θ . An analytic
form of the posterior distribution may be available if a
conjugate prior distribution is used.
Alternatively, inmany cases, if n1, . . . , nK are sufficiently

large, we can obtain an estimate θ̂k for the treatment
effect based on the data at look k with θ̂1, . . . , θ̂K approx-
imately following the multivariate normal distribution (1)
for some I1, . . . , IK . It is common to use this approximate
distributional form in a frequentist group-sequential test
[16], enabling use of these estimates in place of the single
sample means and applying methods based on the normal
distribution (1) even without normally distributed data, or
with normal data when the variance cannot be assumed to
be known.
An illustration in the setting of a single sample of bino-

mial data is given below.

Comparative trials
Suppose now we have two groups; group 0, the control
group and group 1, the experimental treatment group.
Let Yji denote the response from patient i in group j,
assumed to be normally distributed with known variance,
with Yji ∼ N

(
μj, σ 2

j

)
, j = 0, 1. We wish to draw infer-

ence on the treatment difference given by θ = μ1 − μ0.
We will again assume larger values of Yji are preferable so
that larger values of θ correspond to the superiority of the
experimental treatment to the control treatment.
At analysis k, suppose that we have a total of njk observa-

tions from group j, and let Ȳjk = ∑njk
i=1 Yji/njk , j = 0, 1, k =

1, . . . ,K . Writing Ijk = njk/σ 2
j , we have Ȳj1, . . . , ȲjK multi-

variate normal with Ȳjk ∼ N
(
μj, I−1

jk

)
and cov(Ȳjk , Ȳjk′) =

I−1
jk′ if k < k′.
A sufficient statistic for θ at look k is Dk = Ȳ1k −

Ȳ0k , with D1, . . . ,DK following the multivariate normal
distribution as in (1) with Ik = (

σ 2
1 /n1k + σ 2

0 /n0k
)−1.

In a frequentist setting, we will test H0 : θ ≤ 0
against θ > 0 based on the observed values of D1, . . . ,DK ,
stopping and rejecting the null hypothesis at look k,

concluding that the experimental treatment is superior to
the control, if Dk is sufficiently large, as described in more
detail below.
In a Bayesian setting, we may specify the prior distri-

bution for the treatment effect in two ways. The first is
to specify a prior distribution for the treatment differ-
ence, θ , directly. Suppose again that θ has a normal prior
distribution with θ ∼ N

(
θ0, I−1

0

)
. At look k the poste-

rior distribution for θ given observed value Dk = dk is
given by

θ | dk ∼ N
(

θ0I0 + dkIk
I0 + Ik

,
1

I0 + Ik

)

. (3)

The alternative is to specify independent prior distri-
butions for μ0 and μ1, update these separately to obtain
posterior distributions for μ0 and μ1 and then use these
to obtain a posterior distribution for θ . This approach
is considered in detail below in the section entitled
“Comparison of frequentist and Bayesian group-sequen-
tial approaches - two parameter case”.
For non-normal data, or when the variance cannot be

assumed known, we often again have estimates of the
treatment effect, θ̂k , approximately normally distributed,
so that the distributional form (1) can be used. As in the
two-sample case with normally distributed data, in the
Bayesian setting we can either specify a prior for θ directly
or specify independent prior distributions for treatment
effects in the two groups.

Bayesian group-sequential approach
In a Bayesian sequential trial, inference at look k will be
based on the posterior distribution for θ given in the single
group case by (2), in the two sample case when a prior
distribution is specified for θ directly by (3) and in the two
sample case when prior distributions are given for μ0 and
μ1 by the expression (10) given below.
A common approach is to stop the trial, concluding that

the experimental treatment is superior to the control if the
posterior probability that θ exceeds 0 given the observed
data is sufficiently large. In detail, critical values, pk , k =
1, . . . ,K , will be specified and the trial will stop as soon as

Pr(θ > 0 | data at look k) ≥ pk . (4)

Considering stopping to conclude the experimental
treatment is superior to the control to be equivalent to
rejection of H0, the frequentist type I error rate of this
Bayesian sequential procedure can be calculated by not-
ing that Pr(θ > 0 | data at look k) is a random variable
since it depends on the observed data. Control of the type
I error rate is thus achieved if

Pr(Pr(θ >0 | data at look k) ≥ pk some k ≤ K ; θ =0) = α.
(5)
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It has been suggested that p1, . . . , pK should be chosen to
satisfy this condition [2].
A number of alternatives to the stopping criterion (4)

above have also been proposed. For example, the trial
might be stopped to declare the experimental treatment
superior at look k if the posterior probability that θ

exceeds some specified positive target value, or the predic-
tive probability that the experimental treatment would be
found superior if the trial continued to the final analysis,
is sufficiently large [8, 17, 18].
Although, in general, different values for p1, . . . , pK

could be specified, often a common value p1 = · · · = pK
is used [2], with this value chosen to satisfy (5). We will
consider both the general and this specific case in the
examples below.
In many settings the probability on the left hand side of

(5) can most easily be calculated via simulation methods
[2]. In the case of single- or two-sample normally dis-
tributed data considered here, since, for a specified prior
distribution, the posterior probability (4) depends on Ȳk ,
it can be calculated analytically from the joint distribution
(1), for example in R using the gsbDesign [9] or code
available from the first author.

Frequentist group-sequential approaches
In a frequentist setting, the null hypothesis, H0 : θ ≤ 0,
will be rejected, and the trial stopped at look k if Ȳk

√
Ik ≥

uk for some uk in the single-sample case or if Dk
√
Ik ≥ uk

in the two sample case. As the forms of the joint distribu-
tions for Ȳ1, . . . , ȲK and D1, . . . ,DK are identical, we will
here consider only the single-sample case.
To control the type I error rate at some specified level

α, it is required to choose u1, . . . ,uK with Pr(Ȳk
√
Ik ≥

uk , somek ≤ K ; θ) ≤ α for all θ ≤ 0. The form (1) means
that this is satisfied if

Pr(Ȳk
√
Ik ≥ uk some k ≤ K ; θ = 0) = α. (6)

As the requirement (6) is insufficient to specify
u1, . . . ,uK , a number of approaches have been proposed
as described in the next two subsections.

Pocock’s test and O’Brien and Fleming’s test
Pocock [19] and O’Brien and Fleming [20] propose meth-
ods with equally-spaced looks, that is, using the nota-
tion introduced above, with Ik = kIK/K , k = 1, . . . ,K .
O’Brien and Fleming suggest stopping if ȲkIk exceeds
some fixed value, that is taking uk = c/

√
Ik . Pocock

suggests stopping if the standardised difference ȲkI
1/2
k

exceeds a fixed value, that is taking uk = c. In each
case, the constant value for c is found so as to sat-
isfy (6). These values are tabulated for certain K and α

[19, 20], or can be obtained from a numerical search,
noting that the probability in (6) can be expressed

in terms of the multivariate normal distribution func-
tion which may be evaluated numerically, for exam-
ple in R using function pmvnorm in the mvtnorm
package [21].

Spending function approaches
Slud andWei [22] suggest introducing greater flexibility to
sequential designs that satisfy (6) by specifying the type I
error rate “spent” at each look. In detail, they specify α1 ≤
· · · ≤ αK = α, then obtain uk , k = 1, . . . ,K , such that
the probability under the null hypothesis of stopping at or
before look k, say at some look k′ with k′ ≤ k, is equal to
αk , that is

Pr(Ȳk′
√
Ik′ ≥ uk′ some k′ ≤ k; θ = 0) = αk . (7)

This approach was extended by Lan and DeMets [23],
who proposed that α1, . . . ,αK be given by a function α∗(t)
of the information time, with t at look k equal to Ik/IK
so that αk = α∗(Ik/IK ), k = 1, . . . ,K . For general choice
of non-decreasing α∗ with α∗(0) = 0 and α∗(1) = α,
the approaches of Slud and Wei and Lan and DeMets are
equivalent provided I1, . . . , IK are specified in advance. By
defining the functional form of α∗, the Lan and DeMets
approach enables calculation of u1, . . . ,uK to satisfy (6)
when I1, . . . , IK are not given in advance, providing they
are independent of Ȳ1, . . . , ȲK .
Lan and DeMets give forms for the spending function

α∗(t) corresponding approximately to the Pocock test,
with α∗(t) = α log(1+(e−1)t), and the O’Brien and Flem-
ing test, with α∗(t) = 2(1 − �(zα/

√
t)), where � denotes

the distribution function for a standard normal and zα
denotes�−1(1−α), the upper 100α percentile of the stan-
dard normal distribution. Exact spending functions for
these tests for a given number of looks can be obtained
numerically from the joint distribution (1) [24]. Alterna-
tive spending function forms have been suggested [1, 25],
including as a special case the linear spending function
α∗(t) = αt.
The stopping boundary values u1, . . . ,uK may be com-

puted recursively[1]; at look k, supposing u1, . . . ,uk−1 and
I1, . . . , Ik are known, we can use the joint distribution of
Ȳ1, . . . , Ȳk for θ = 0 from (1) along with a numerical
search to find uk to satisfy (7). These calculations can be
performed in R using the gsBound in the gsDesign
package [26] or code available from the first author.

Examples
To compare the Bayesian and frequentist group-
sequential methods, we illustrate the two approaches
using three simplified examples. These are described
below.
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Example 1: Single-arm trial with normally distributed data
Consider a single-arm trial with the outcome for patient i
equal to Yi with Yi ∼ N(θ , σ 2) for some known σ . Suppose
that θ = 0 corresponds to a null value and θ = 1 to a
worthwhile treatment effect. We will assume that the trial
is conducted in up to five stages, that is K = 5, with these
of equal size so that the number of patients included in
the first k stages is nk = nk/K . We will further assume
that nK = 10σ 2. With this sample size a fixed sample size
trial with a hypothesis test conducted at a two-sided 5%
level would have power of approximately 90%. This gives
I1, . . . , I5 = 2, . . . , 10.
We will consider a range of prior distributions for θ . We

will take I0 equal to 0 (non-informative), 0.5 and 1 (that is
with weight equivalent to one twentieth and one tenth of
the total information available from the trial) as well as a
very informative prior distribution with I0 = 20, and will
take θ0 equal to −0.25, 0, 0.25 and 0.5, recalling that 0 and
1 correspond to null and worthwhile treatment effects.
Density functions for the range of prior distributions con-
sidered are shown in Fig. 1. The prior mean, θ0, increases
across the columns moving from left to right and the prior
information, I0, decreases as we move down the rows. The
vertical lines correspond to the null and worthwhile treat-
ment effects of 0 and 1. Only one plot is given in the lowest
row as when I0 = 0 the prior distribution does not depend
on θ0.

Example 2: Single-arm trial with binary data
Consider, as a second example, a single-arm trial with a
binary outcome corresponding to success or failure for
each patient. Suppose that the trial has up to four looks
with 25, 50, 75 and 100 patients and assume that we wish
to determine whether the true success rate, which will be
denoted by π , exceeds a control rate, π0, assumed to be
0.5, using a non-informative prior distribution for π .

Example 3: Two-arm trial with normally distributed data
The third example is a two-arm trial with up to five
equally-sized stages with the outcome for patient i in
group j (j = 0, 1) equal to Yij with Yij ∼ N

(
μj, σ 2

j

)
for

some known σj, where we assume σ1 = σ0.
Denoting the treatment difference μ1 −μ0 by θ , we will,

as in Example 1 above, assume that θ = 1 represents a
worthwhile treatment effect. Assuming at stage k we have
included a total of nk patients in each of the two trial arms,
we will set Ik = nk/2σ 2 and, again as in Example 1, take
I1, . . . , I5 = 2, . . . , 10.
Suppose that μ1 and μ0 have independent normal prior

distributions with μj ∼ N
(
μj0, I−1

j0

)
, with a moderately

informative prior distribution for μ0 with μ00 = 0 and
I00 = 0.5, and a noninformative prior distribution for μ1
with I10 = 0. The treatment difference θ thus has a non-
informative prior distribution with I0 = 0.

Results
Comparison of frequentist and Bayesian group-sequential
approaches - single parameter case
In this section we consider the setting in which we either
have a single sample or are comparing two groups but
specify a prior distribution for the treatment effect, θ ,
directly rather than giving separate prior distributions for
μ1 and μ0. As noted above, in this case the two-sample
setting is essentially identical to the single-sample set-
tings, so that we will consider only the latter specifically.
Suppose that the maximum number of looks, K, the

information at these looks, I1, . . . , IK and, for the Bayesian
design, the prior distribution parameters, θ0 and I0 are
specified.
The posterior distribution for θ at look k in this case is

given by (2) so that the posterior probability that θ exceeds
0 is given by

Pr(θ > 0 | ȳk , Ik) = 1 − �

(−ȳkIk − θ0I0√
I0 + Ik

)

. (8)

Given some choice of p1, . . . , pK , for the Bayesian design
using stopping criterion (4) expression (8) means that the
trial will be stopped at look k if Ȳk

√
Ik ≥ uBk where

uBk = −θ0I0 − √
I0 + Ik�−1(1 − pk)√

Ik
(9)

so that the Bayesian trial, like the frequentist one, will stop
whenever Ȳk , or equivalently the standardised Ȳk

√
Ik , is

sufficiently large.

Sequential tests with general α1, . . . ,αK or p1, . . . , pK
With uBk as given by (9), let αB

k = Pr(Ȳk′
√
Ik ≥

uBk′ somek′ ≤ k; θ = 0). This may be calculated from
the multivariate normal distribution of Ȳ1

√
I1, . . . , Ȳk

√
Ik

following from (1). Setting k = K enables analytic calcu-
lation of the frequentist type I error rate for the Bayesian
test.
Setting αk = αB

k and constructing a frequentist design
using these α1, . . . ,αK values will give a frequentist group-
sequential boundary identical to the Bayesian one.
Similarly, given frequentist group sequential spend-

ing function values α1, . . . ,αK , we can obtain u1, . . . ,uK
to satisfy (7). A Bayesian design with pk = 1 −
�

(
(−uk

√
Ik − θ0I0)/

√
I0 + Ik

)
, k = 1, . . . ,K , will then be

identical to this frequentist one.
Thus, as noted by Emerson et al. [12], if we allow full

flexibility over the choice of p1, . . . , pK for the Bayesian
group-sequential design and α1, . . . ,αK for the frequen-
tist design, subject respectively to the constraint on overall
type I error rate (5) or (6), the classes of frequentist group
sequential and Bayesian designs are identical.
Similarly, if Bayesian sequential boundaries are con-

structed using the posterior probability that θ exceeds a
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Fig. 1 Densities for range of prior distributions for Bayesian sequential designs for Example 1

positive target value or the posterior predictive probabil-
ity of a final positive result, the fact that both of these are
monotonically increasing in Ȳk means that the stopping
boundaries are again of the form Ȳk

√
Ik ≥ uBk for some

uB1 , . . . ,u
B
K , so that these still correspond to a frequentist

boundary for appropriate choice of α1, . . . ,αK and vice
versa [12]. The same result holds for sequential tests based
on Bayes factors provided these are constructed so as to
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bemonotonically increasing in Ȳk , as is the case, for exam-
ple, when a point null at θ = 0 is compared to a ‘one-sided’
prior with support for positive θ only.

Specific group-sequential tests: Single-arm trial with
normally distributed data
Although in principle, p1, . . . , pK and α1, . . . ,αK may be
chosen arbitrarily, in practice, constraints may be put on
the values used. In this case frequentist and Bayesian
group sequential tests may not correspond. In this section
we construct frequentist group-sequential designs with
a linear alpha spending function and with alpha spend-
ing functions corresponding to the Pocock design and
the O’Brien and Fleming design, comparing these with
Bayesian tests with stopping criteria given by (4) with
p1 = · · · = pK .
Consider Example 1 above with the range of prior distri-

butions illustrated in Fig. 1. In each case we used stopping
criterion (4) and took p1 = · · · = pK , finding the common
value to give overall type I error rate of α = 0.025.
Figure 2 shows critical values, uB1 , . . . ,u

B
5 , (plotted as

circles) for the Bayesian tests with different prior distri-
butions. Each plot corresponds to a different prior distri-
bution, the layout of plots in the figure matching those in
Fig. 1. Note that a different scale is used for the plots in
the uppermost row. Using a similar format, Fig. 3 shows
the cumulative type I error spent by each look for the tests
shown in Fig. 2. Critical values and cumulative type I error
spent are also given in Table 1.
It can be seen that more informative or more nega-

tive priors lead to a smaller chance of stopping at earlier
interim analyses; this makes sense as more information
is required to overcome the prior and obtain a posterior
probability pr(θ > 0 | ȳk) ≥ pk . Other than for the most
informative priors considered, it appears that the choice of
θ0 has relatively little impact; in these cases the value of I0
is small relative to IK so that the prior distribution makes
relatively little contribution to the posterior distribution
and hence to the stopping decision.
Figures 2 and 3 and Table 1 also show stopping bound-

aries and type I error spending functions for O’Brien and
Fleming’s test, Pocock’s test and the frequentist test with a
linear spending function, that is with α∗(t) = αt, for five
equally-spaced analyses. Boundary values and type I error
spent at each look for the different tests (omitting those
with I0 = 20 and θ0 > −0.025) are also given in Table 1,
together with the value of p1 = · · · = pK required to give
overall type I error rate of 0.025 for the Bayesian designs.
It can be seen that stopping boundaries and type I error

spent for the O’Brien and Fleming test are nearly identi-
cal to those for the Bayesian test with prior distribution
with θ0 = −0.25 and I0 = 20. In this case the form of the
stopping boundary, with stopping very unlikely at interim
analyses but relatively likely at the final analysis, is only

achieved if very strong negative prior opinion is held. This
prior distribution was included specifically because of this
similarity; it is hard to imagine anyone conducting a trial
if they had such a strongly negative prior opinion of the
effect of the treatment under investigation.
The similarity between Pocock’s test and the Bayesian

test with a non-informative prior distribution for θ can
also be noted. For a non-informative prior, that is with
I0 = 0, (9) gives uBk = −�−1(1 − pk) so that taking
p1 = · · · = pK corresponds to taking uB1 = · · · = uBK .
Thus in this case the Bayesian test with pk chosen to con-
trol the overall error rate is identical to Pocock’s test when
looks are equally spaced in terms of information.
For moderately informative prior distributions, that is

for I0 equal to 0.5 or 1, the Bayesian test appears to be
similar to the frequentist test with α∗(t) = αt for the
reasonably wide range of θ0 values considered.

Specific group-sequential tests: Single-arm trial with binary
data
Consider next Example 2 above. In this case a Bayesian
sequential test can be based on the exact binomial distri-
bution of the data. In detail, denoting by Xk the number
of successes observed from the nk patients observed up
to look k, k = 1, . . . , 4, we can take Xk ∼ Bin(nk ,π). A
beta prior distribution is conjugate and a non-informative
prior is π ∼ Beta(1, 1), or equivalently π ∼ U[ 0, 1]. The
posterior distribution at look k after observing Xk = xk is
then π | xk , nk ∼ Beta(xk + 1, nk − xk + 1).
To be consistent with the notation above, where θ

denotes the treatment effect with θ = 0 corresponding to
the null hypothesis, we can take θ = π − π0. The trial will
stop to claim that θ > 0, or equivalently, π > π0, if the
posterior probability Pr(π > π0 | xk , nk) ≥ pk for some
pk .
Taking p1 = · · · = pk , for a given value of p1, criti-

cal values in terms of the required number of successes at
each look can be found by calculating this posterior prob-
ability for a range of possible xk values. These in turn can
be used to calculate the resulting frequentist type I error
rate under the null hypothesis H0 : θ = 0 or equiva-
lently in this case, π = π0 = 0.5, either by simulation
or calculation and summation of the appropriate binomial
probabilities. A numerical search can then be used to find
the value of p1 at which the type I error rate is controlled
at a specified level.
For a four-look test with a non-informative Beta(1, 1)

prior distribution for π , the type I error rate is controlled
at level 0.05 for p1 = · · · = p4 = 0.977. The critical val-
ues for the test in terms of the total number of successes
observed at looks 1 to 4 are then respectively 18, 33, 47
and 61.
A frequentist group-sequential analysis can be based

on the normal approximation (1) for θ̂ = Xk/nk −
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Fig. 2 Stopping boundaries for Bayesian sequential tests with 5 looks using prior distributions from Figure 1 (◦). Solid lines give boundaries for
O’Brien and Fleming test (steep sloping lines), Pocock test (horizontal lines) and for frequentist test with α∗(t) = αt (shallow sloping lines)
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Fig. 3 Cumulative type I error spent for Bayesian sequential tests shown in Fig. 2 (◦). Solid lines give boundaries for O’Brien and Fleming test (lower
line), Pocock test (upper line) and for frequentist test with α∗(t) = αt (middle line)
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Table 1 Boundary values and type I error rate spent for Bayesian and frequentist five-look group sequential tests

Bayesian tests
I0 θ0 p1 = · · · = p5 uB1, . . . , u

B
5 αB

1 , . . . ,α
B
5

20.0 -0.25 0.6063 4.43, 3.16, 2.60, 2.27, 2.05 0.0000, 0.0008, 0.0049, 0.0133, 0.0250

1.0 -0.25 0.9818 2.74, 2.46, 2.36, 2.31, 2.27 0.0031, 0.0089, 0.0148, 0.0202, 0.0250

1.0 0.00 0.9856 2.68, 2.45, 2.36, 2.32, 2.29 0.0037, 0.0097, 0.0155, 0.0205, 0.0250

1.0 0.25 0.9889 2.62, 2.43, 2.37, 2.34, 2.32 0.0044, 0.0105, 0.0161, 0.0209, 0.0250

1.0 0.50 0.9914 2.57, 2.42, 2.37, 2.35, 2.34 0.0051, 0.0114, 0.0168, 0.0213, 0.0251

0.5 -0.25 0.9872 2.58, 2.43, 2.37, 2.35, 2.33 0.0049, 0.0110, 0.0163, 0.0210, 0.0250

0.5 0.00 0.9888 2.55, 2.42, 2.38, 2.36, 2.34 0.0053, 0.0114, 0.0167, 0.0212, 0.0250

0.5 0.25 0.9903 2.53, 2.42, 2.38, 2.37, 2.36 0.0058, 0.0119, 0.0171, 0.0213, 0.0250

0.5 0.50 0.9916 2.50, 2.41, 2.39, 2.38, 2.37 0.0063, 0.0124, 0.0174, 0.0215, 0.0250

0.0 0.00 0.9921 2.41, 2.41, 2.41, 2.41, 2.41 0.0079, 0.0138, 0.0183, 0.0220, 0.0250

Frequentist tests

u1, . . . , u5 α1, . . . ,α5

O’Brien & Fleming 4.56, 3.23, 2.63, 2.28, 2.04 0.0000, 0.0006, 0.0045, 0.0128, 0.0250

Pocock 2.41, 2.41, 2.41, 2.41, 2.41 0.0079, 0.0138, 0.0183, 0.0219, 0.0250

α∗(t) = αt 2.58, 2.49, 2.41, 2.34, 2.28 0.0050, 0.0100, 0.0150, 0.0200, 0.0250

π0 and I−1
k = π0(1 − π0)/nk . A four-look frequen-

tist group-sequential Pocock test constructed based on
this approximation would stop for θ̂k

√
Ik ≥ uk with

uk = 2.067, that is for Xk ≥ 0.5nk + 2.067√nk/2, giv-
ing stopping boundaries in terms of Xk for nk = 25, 50, 75
and 100 of 17.7, 32.3, 46.5 and 60.3. Rounding these up
to integers gives stopping boundary values identical to
those for the Bayesian test with a non-informative prior
distribution.

Specific group-sequential tests: Two-arm trial with normally
distributed data
We next consider Example 3 above, using only the prior
information given by the prior distribution for the treat-
ment difference θ , that is the non-informative prior distri-
bution with I0 = 0.
The distribution of the observed difference between the

treatmentmeans at looks 1 toK,D1, . . . ,DK follows amul-
tivariate normal distribution of the same form as that of
the mean values Ȳ1, . . . , ȲK in the single-group case, with
Ik now taken to be nk/2σ 2. Setting p1 = · · · = pK and tak-
ing this value so as to control the overall type I error rate
to be 0.025, thus gives critical values, uk , now for Dk

√
Ik ,

equal to 2.41 at all looks, exactly as in single-arm case with
a non-informative prior distribution for θ .

Comparison of frequentist and Bayesian group-sequential
approaches - two parameter case

Consider now the setting in which we are compar-
ing two groups of normally distributed data and, in the
Bayesian setting, specify separate independent normal
prior distributions for μ1 and μ0.

Suppose that the prior distributions are given by μj ∼
N

(
μj0, I−1

j0

)
, j = 0, 1. Given observation of Ȳjk = ȳjk , the

posterior distribution for μj is given by

μj | ȳjk ∼ N
(

μj0Ij0 + ȳjkIjk
Ij0 + Ijk

,
1

Ij0 + Ijk

)

.

As μ0 and μ1 have independent prior distributions,
their posterior distributions are also independent, so that
the posterior distribution for θ is given by

θ | ȳ1k , ȳ0k ∼ N
(

μ10I10 + ȳ1kI1k
I10 + I1k

−μ00I00 + ȳ0kI0k
I00 + I0k

,
1

I10 + I1k
+ 1

I00 + I0k

)

.
(10)

Note that although in this case the prior distribution for
θ is again normal, with θ ∼ N(θ0, I0) with θ0 = μ10 −
μ00 and I−1

0 = I−1
10 + I−1

00 , the posterior distribution given
by (10) is not generally the same as (3) that was obtained
when the prior distribution for θ was considered directly.
It is shown in Appendix A that the posterior variance of

θ when separate prior distributions are given for μ1 and
μ0 given by (10) is always smaller than that given by (3)
when only the prior distribution for θ is used. With inde-
pendent prior distributions for μ1 and μ0, the posterior
distribution depends on ȳ1k and ȳ0k , and not just on the
difference dk = ȳ1k − ȳ0k . Assuming μ1 and μ0 are inde-
pendent means that θ is not independent ofμ1+μ0. Thus
althoughDk is sufficient for θ , we can also learn about θ by
learning about μ1 + μ0, for which Dk is not sufficient. We
therefore gain information by knowing ȳ1k + ȳ0k as well as
ȳ1k − ȳ0k , that is by having information on both ȳ1k and
ȳ0k , leading to a smaller posterior variance.
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Suppose that, as in the single parameter case, we stop
the trial as soon as we have Pr(θ > 0 | data at look k) ≥
pk , and that we wish to choose p1, . . . , pK so as to control
the type I error rate to be at most α, that is to satisfy (5).
It is shown in Appendix B that, irrespective of the

values of p1, . . . , pk , the stopping regions for frequentist
and Bayesian group-sequential tests cannot coincide other
than in the special case with I1k/(I10 + I1k) = I0k/(I00 +
I0k), k = 1, . . . ,K , when the posterior distribution for
θ is exactly the same as that obtained directly from a
single prior distribution for θ without considering prior
distributions for the means of the two groups separately,
With independent prior distributions for μ1 and μ0 the

posterior distribution of θ depends on ȳ1k and ȳ0k . The
probability in (5) thus depends on μ0 and μ1 and the
requirement that this is controlled at level α when θ = 0
requires that it is controlled whenμ1 = μ0 for all values of
μ0. Appendix B shows that beacuse the mean of the poste-
rior distribution for θ when μ1 = μ0 depends on μ0, this
is impossible.
For the two-arm Bayesian group-sequential trial with

five looks in Example 3 above, controlling the one-sided
type I error rate to be 0.025 when μ1 = μ0 = 0 requires
p1 = · · · = p5 = 0.9884.
Figure 4 shows the one-sided type I error rate for this

design for a range of μ0 values with, in each case, μ1 = μ0
so that θ = 0. It can be seen that in this case although

the type I error rate is controlled for μ0 = 0, the type I
error rate increases above the desired level forμ0 > 0. The
figure also shows the prior distribution for μ0, showing
that error rate inflation would occur for plausible values
of μ0.

Discussion
Our comparison has been restricted on the whole to
group-sequential tests based on normally distributed
test statistics. Although some exact or non-normal
frequentist group-sequential test methods have been
proposed [27–29] the assumption of normality is
common in this setting. In Bayesian group-sequential
tests it is more common to use non-normal dis-
tributions, with simulation methods being used
if necessary to calculate operating characteristics.
The decision to focus on normally distributed test
statistics was made so as to put Bayesian and frequen-
tist designs in a similar setting, facilitate comparison
and identify relationships, such as that between
the Pocock test and the Bayesian test with a non-
informative prior distribution, which might otherwise
not be apparent. As can be seen from the binary
data example above, where the Pocock test and the
exact Bayesian test give identical stopping rules, in
practice asymptotic normality can be a reasonable
assumption.

Fig. 4 Type I error rate for Bayesian test with K = 5 and p1 = · · · = p5 = 0.9884 for range of true μ0 values along with density (not to scale) for the
prior distribution for μ0
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We have considered stopping for a positive result only.
In practice, with both frequentist and Bayesian group-
sequential designs, it is often desirable to allow stopping
when a lack of efficacy is clear, that is for futility. Futility
stopping rules can be divided into those that are binding,
when the rule is specified in advance and must be adhered
to in order to maintain the required properties of the
design, and those that are non-binding, where amore flex-
ible approach can be taken. As stopping for futility cannot
lead to a positive claim of efficacy, it can only decrease the
type I error rate. Thus with a non-binding futility stopping
rule, it is desirable to control the type I error rate even if no
futility stopping occurs, that is in the case when the trial
is only stopped for a positive result as considered above.
The use of a binding futility stopping rule will change the
operating characteristics of the group-sequential tests.
We have focussed on comparison of Bayesian and

frequentist group-sequential designs for single-arm and
comparative studies. These are just one type of adaptive
design, which can include many other features includ-
ing adaptive exploration of a dose-response relationship,
adaptive randomisation, dropping of arms in multi-arm
trials, incorporation ofmultiple endpoints and sample size
reestimation. Frequentist methods that guarantee control
of error rates are available for some of these problems such
as sample size re-estimation [30] but in some other cases
construction of decision rules for frequentist methods can
be challenging. Bayesian methods can be accompanied
by simulations to verify operating characteristics under
a likely range of scenarios for a wide variety of adapta-
tions for which rigorous proof of error rate control is not
available.

Conclusions
Although Bayesian and frequentist group-sequential
approaches are based on fundamentally different
paradigms, in practice, when used for the analysis of a
clinical trial, both provide an indication of the efficacy
of an experimental treatment. This means that a com-
parison of Bayesian and frequentist test can be helpful
to understand the frequentist operating characteristics
for Bayesian tests and the Bayesian model and prior
distributional assumptions that could lead to a particular
frequentist test. This has been our aim in this paper.
Focussing on a setting in which test statistics can be

assumed to be normally distributed, we have shown that
in comparative trials with independent prior distributions
specified for treatment effects in different groups, stop-
ping rules from Bayesian and frequentist group-sequential
designs cannot generally correspond. In this case the
Bayesian group-sequential design can then only control
the type I error rate for specified values of the control
group treatment effect. Conversely, in single-arm trials,
or when a prior distribution is specified for the treatment

difference, stopping rules for Bayesian and frequentist
group-sequential tests can be identical if full flexibility for
both classes of designs is allowed, or can closely corre-
spond for common choices of design parameters.
O’Brien and Fleming’s design was found to correspond

closely to a Bayesian design with an exceptionally infor-
mative negative prior, this prior leading to the very small
probability of early stopping for this design. The fact that
such a prior is unlikely to represent prior belief sug-
gests that the use of this design might not be appropriate
without very careful thought.
In a similar way, noting that the Bayesian design with a

non-informative prior and p1 = · · · = pK corresponds to
a Pocock design suggests that this might also not be gen-
erally appropriate given the criticism that this design gives
too high a probability of early stopping [31]. This illus-
trates the importance of appropriate choice of a prior dis-
tribution, rather than the general use of a non-informative
prior. Evaluation of the frequentist properties can be use-
ful in understanding the influence of the prior distribution
in a Bayesian group-sequential design in which the overall
type I error rate is controlled.
Bayesian adaptive methods are oftenmore bespoke than

frequentist approaches, with simulations used to evalu-
ate their performance not only for a range of treatment
effect scenarios but also allowing for anticipated data
patterns arising from, for example, delayed responses,
multiple endpoints including early outcomes, or differ-
ent recruitment and drop-out rates. This can require
more design work than the use of a more standard
frequentist method but can be advantageous in that
design choices and their consequences are considered
carefully. It is recommended that if frequentist meth-
ods are used, equal care should be taken over design
choices and their properties explored, using simulations if
necessary.

Appendix A: Comparison of posterior variances for
comparative trials with single or independent prior
distributions
Suppose we are in the two-group setting and have inde-
pendent prior distributions with μj ∼ N

(
μj0, I−1

j0

)
, j =

0, 1 and that we have observation of Ȳjk with Ȳjk ∼
N(θ , I−1

k ), j = 0, 1, k = 1, . . . ,K , so that the posterior
distribution for θ is given by (10).
Considering only the single parameter θ , the posterior

distribution is given by (10) with θ0 = μ10 − μ00, I−1
0 =

I−1
00 + I−1

10 and Ik =
(
I−1
0k + I−1

1k

)−1
.

Let I[1]k and I[2]k denote the inverses of the posterior
variance for θ in the one-parameter and two-parameter
cases respectively. We will show that I[1]k ≤ I[2]k .
We will denote by r0 the ratio I10/I00, so that I10 = r0I00,

by rk the ratio I1k/I0k , and by �k the ratio rk/r0 so that
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rk = �kr0 and I1k = �kr0I0k . Without loss of generality,
we will take I0k = 1 so that I1k = �kr0. We then have
I[1]k = I00/

(
1 + r−1

0

)
+ 1/

(
1 + (�kr0)−1) and I[2]k =

1/
(
(I00 + 1)−1 + (r0I00 + r0�k)

−1).
Letting Rk denote the ratio I[1]k/I[2]k and differentiating

this with respect to �k yields

dRk
d�k

= r0I00(a�2
k + b�k + c)

(I00 + 1)(1 + r0)(I00 + �k)2(�kr0 + 1)2
.

with a = −(r0I00+2r0+1), b = 2(r0−I00) and c = I00(r0+
2)+ 1. Note that the derivative is defined for all �k ≥ 0 as
I00 and r0 are both positive. Setting the numerator to zero
and solving the quadratic, we find that Rk has stationary
points at �k = 1 and −(r0I00 +2I00 +1)/(r0I00 +2r0 +1).
The second of these is negative as I00 and r0 are positive,
so that the only stationary point with �k ≥ 0 is at �k = 1
when Rk = 1
The second derivative of Rk with respect to �k at �k =

1 is equal to −2r0I00(I00 + 1)−2(r0 + 1)−2, and so is neg-
ative, confirming that the turning point is a maximum so
that Rk ≤ 1, and hence I[1]k ≤ I[2]k , as stated.

Appendix B: Type I error rate for Bayesian
comparative trial with independent prior
distributions
The requirement (5) that the error rate is controlled at
level α in the two-paramter case can be stated as

Pr(Pr(θ > 0 | Ȳ1k , Ȳ0k) ≥ pk some k ≤ K ;μ1 = μ0) ≤ α for all μ0.

(11)

We can rewrite the posterior distribuion (10) as θ |
ȳ1k , ȳ0k ∼ N

(
Mk , I−1

[2]k

)
with I−1

[2]k = (I10 + I1k)−1 + (I00 +
I0k)−1 and

Mk = μ10I10 + ȳ1kI1k
I10 + I1k

− μ00I00 + ȳ0kI0k
I00 + I0k

. (12)

The posterior probability pr(θ > 0 | ȳ1k , ȳ0k) is thus
equal to 1 − �

(
−MkI

1/2
[2]k

)
. This exceeds pk whenever

Mk ≥ −�−1(1 − pk)I
−1/2
[2]k .

Hence in this case the stopping decision for the Bayesian
sequential test depends on Ȳ1k and Ȳ0k via Mk and
the frequentist operating characteristics for the Bayesian
sequential test can be obtained from the joint distribution
ofM1, . . . ,MK .
It follows from (12) and (1) that M1, . . . ,MK are multi-

variate normal with

E(Mk) = μ10I10 + μ1I1k
I10 + I1k

− μ00I00 + μ0I0k
I00 + I0k

.

When μ1 = μ0, we have

E(Mk) = μ10I10
I10 + I1k

− μ00I00
I00 + I0k

+ μ0

(
I1k

I10 + I1k
− I0k

I00 + I0k

)

.

If I1k
I10+I1k − I0k

I00+I0k > 0, we have E(Mk) → ∞ as μ0 →
∞, and if I1k

I10+I1k − I0k
I00+I0k < 0, we have E(Mk) → ∞ as

μ0 → −∞. In neither of these cases, then, is it possible to
satisfy (11) for all values of μ0 other than in the trival case
with p1 = 1, when stopping is impossible.
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