Search from over 60,000 research works

Advanced Search

Interannual weather variability and the challenges for Great Britain’s electricity market design

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Coker, P. J., Bloomfield, H. C. orcid id iconORCID: https://orcid.org/0000-0002-5616-1503, Drew, D. R. and Brayshaw, D. J. orcid id iconORCID: https://orcid.org/0000-0002-3927-4362 (2020) Interannual weather variability and the challenges for Great Britain’s electricity market design. Renewable Energy, 150. pp. 509-522. ISSN 0960-1481 doi: 10.1016/j.renene.2019.12.082

Abstract/Summary

Global growth in variable renewable generation has brought significant attention to the challenge of balancing electricity supply and demand. However, inter-annual variability of energy resources has only recently begun to feature in energy system assessments and receives limited recognition in policy discussion, let alone policy design. Meteorological reanalysis datasets that blend modern modelling techniques with historic weather records are seeing increased application in energy system studies. This practice offers insights for market and policy design implications as governments seek to manage the changing energy landscape, as seen with the UK’s introduction of the Electricity Market Reform policy package. Here we apply a concise, Load Duration Curve based approach to consider the market and policy implications of increasing variability in the Great Britain (GB) energy system. Our findings emphasise the growing inter-annual variability in operating opportunity for residual mid-merit and even baseload generation, alongside implications for capacity assurance approaches. The growth in wind generation is seen to bring an accompanying opportunity for increased solar generation, with its lower inter-annual variability and largely uncorrelated annual characteristic. The results underscore the need for an increased recognition of inter-annual variability when addressing market design and incentive mechanisms.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/88163
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Science > School of the Built Environment > Energy and Environmental Engineering group
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar