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ABSTRACT

Clathrin trafficking is crucial for cellular function in all eukaryotes and plays a

specialized role in synaptic transmission in higher organisms. Clathrin-coated

vesicles (CCVs) mediate selective transport of cargo from the plasma membrane

and trans-Golgi network (TGN) to intracellular destinations. Auxilin is the

major neuronal CCV uncoating protein required for successful delivery of cargo

to its destination compartments. Whereas its role in the uncoating of CCVs at

the synapse has been well-documented, the role of Auxilin in the uncoating of

TGN-derived CCVs is less established.

Parkinsons disease (PD) is a common neurodegenerative disorder, characterized

in part by neuropathological lesions in the nigrostriatal pathway. Multiple loss

of function mutations in the gene encoding Auxilin have been found to cause

an aggressive form of young onset PD. However, the mechanism of action of the

pathogenic Auxilin mutations remains to be elucidated.

In this thesis, the impact of pathogenic Auxilin mutations was investigated in

vivo and in cellular and molecular settings. A novel mouse model carrying the

pathogenic R857G Auxilin mutation was found to display neurological phenotypes

that phenocopy clinical features seen in patients, including seizures and motor

impairments. Mapping the interactome of Auxilin led to the identification of novel

bona fide TGN-resident interactors. Impaired clathrin trafficking in R857G Auxilin

mice, both at the synapse and the TGN, was found to result in neuropathological

lesions in the nigrostriatal pathway. Taken together, the work presented in this

thesis provides novel insights in the physiological role of Auxilin as well as PD

pathogenesis in Auxilin mutation carriers. In addition, these data underscore an

important role for clathrin trafficking in PD.
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1 INTRODUCTION

1 INTRODUCTION

1.1 PARKINSON’S DISEASE

1.1.1 History and overview

“Involuntary tremulous motion, with lessened muscular power, in parts not

in action and even when supported; with a propensity to bend the trunk

forward, and to pass from a walking to a running pace: the senses and

intellects being uninjured.”

James Parkinson — Essay on the Shaking Palsy

1817

It has been more than 200 years since the British clinician James Parkinson

nosologically described ‘paralyis agitans’ as a novel neurological syndrome,

recognizing gait disturbance and tremor to be the pathognomic characteristics

(Parkinson, 1817). The term ‘Parkinson’s disease’ was coined by William

Rutherford Sanders in 1865 (Sanders, 1865). However, the eponymous term

only went into general usage in 1872 through the influence of Jean Martin Charcot,

who provided a refined clinical description of the disease (Charcot, 1872). A

pathological understanding began to be unearthed in the 1912 when Friedrich

Lewy described the description of proteinaceous intracellular inclusions in the brain

of patients, now known as Lewy bodies (LBs) (Lewy, 1912). The degeneration of

neurons in the substantia nigra (SN), another major pathological hallmark, was

described 7 years later (Tretiakoff, 1919). Lesions in the SN and the presence of

LB were subsequently considered the definitive criteria for post mortem diagnosis

(Greenfield and Bosanquet, 1953). The first understandings of the underlying
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biochemistry of the neuropathology and symptomatology was fuelled by the

identification of the neurotransmitter dopamine in the late 1950s, as it was found

to be highly concentrated in the nigral pathways and its decreasing levels positively

correlated with nigral cell loss in patients (Bertler and Rosengren, 1959; Carlsson

et al., 1958; Ehringer and Hornykiewicz, 1960; Sano et al., 1959).

Parkinson’s disease (PD) is now recognized as a major neurodegenerative movement

disorder. Age is an important risk factor for PD, as the worldwide prevalence

steeply increases from 107 per 100 000 people between the ages of 50-59 to 1087

per 100 000 people at the ages of 70-79 (Pringsheim et al., 2014). The global

burden of PD has more than doubled over the past generation, with over 6 million

people currently suffering from PD worldwide (GBD 2016 Parkinson’s Disease

Collaborators et al., 2018). The number of individuals with PD is projected

to double again by 2030, due to improved living conditions and increased life

expectancy (Dorsey et al., 2007; GBD 2016 Parkinson’s Disease Collaborators

et al., 2018). Neurological disorders are currently considered the leading cause of

disabilities in the world, of which PD is the fastest growing disorder (Feigin et al.,

2017). PD is present across all ethnicities and males have a 1.4 times higher chance

for developing the disease compared to females (GBD 2016 Parkinson’s Disease

Collaborators et al., 2018). Despite great advances in symptomatic treatments,

there is no definite cure for PD, likely because of its largely unknown disease

aetiology. Understanding underlying disease mechanisms and the development

of therapeutics that prevent, halt or slow down disease progression is therefore

imperative.
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1.1.2 Symptomatology

PD is characterized by neurological symptoms that include both motor and

non-motor symptoms. The onset of PD motor symptoms is typically asymmetric

and progressive, with a mean age at onset (AAO) of 55.3 years old (Hoehn

and Yahr, 1967). Disease course varies between patients, but the average life

expectancy at diagnosis is 15 years. However, PD is not fatal and although the

cause of death is difficult to identify in most cases, pneumonia is the most common

certificated secondary cause of death (Hoehn and Yahr, 1967; Lees et al., 2009).

PD has an insidious onset and the first symptoms of PD may include fatigue,

loss of smell, decreased amplitude of speech or slower handwriting. These are

relatively unspecific symptoms and may therefore go unnoticed or misinterpreted

(Lees et al., 2009).

Parkinsonism is the main clinical feature of PD and is characterized by four

cardinal motor symptoms: tremor at rest, bradykinesia, muscle rigidity and

postural imbalance. Additional motor impairments can include gait problems

and the freezing phenomenon (Lees et al., 2009). Non-motor symptoms of PD

may occur during disease progression or precede the motor symptoms. These

can include mood disorders, cognitive impairments, sleep disturbances, olfactory

impairments and autonomic insufficiencies such as constipation (Fahn, 2003; Lees

et al., 2009).

PD is clinically diagnosed by the presence of at least two cardinal motor symptoms

including bradykinesia. A careful neurological examination is needed, looking for

supportive criteria such as secondary motor or non-motor symptoms as well as

the absence of indications for other parkinsonisms than PD. Responsiveness to

L-DOPA (L-3,4-dihydroxyphenylalanine), a dopamine precursor, is often included
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in the examination to support a correct diagnosis (Gibb and Lees, 1988; Lees

et al., 2009).

Although parkinsonism is the main clinical feature of PD, they can also be found in

other neurological diseases that are grouped as secondary parkinsonian syndromes

(i.e. the presence of parkinsonism symptoms but through a different mechanism

than neurodegeneration), or atypical parkinsonian syndromes, which present

additional clinical features ‘atypical’ of PD, such as ataxia and seizures (Scholz et

al., 2015). Atypical parkinsonian syndromes include Lewy body dementia, multiple

system atrophy and progressive supranuclear palsy. Given the heterogeneity of

clinical features of PD and other parkinsonian syndromes, an accurate diagnosis

can be challenging (Hughes et al., 1992, 2001).

1.1.3 Neuropathology

A definite diagnosis of PD can only be made by post mortem findings of

dopaminergic (DA) cell loss in the SN, more specifically the ventral pars compacta,

and the presence of Lewy pathology in surviving neurons (Figure 1.1) (Lees et al.,

2009).

Progressive deterioration of DA neurons in the SN is the first neuropathological

hallmark of PD. DA neurons in the SN release the neurotransmitter dopamine in

the putamen, the dorsolateral part of the striatum. At the onset of PD symptoms,

approximately 50% of nigrostriatal neurons are lost and striatal neurotransmitter

dopamine has been depleted up to 80% (Fearnley and Lees, 1991). DA neurons

contain neuromelanin, which accounts for the normal dark pigmentation of the

SN (literally translated ‘black substance’). The macroscopic observation of loss of
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A B

Figure 1.1: Neuropathology in PD A Healthy (left) midbrain showing normal dark
pigmentation of the SN, midbrain of PD patient (right) showing loss of pigmentation due
to degeneration of neurons in the SN. B Light microscopy image of LBs (positive for α-synuclein)
in a surviving neuron in the SN. Images are reproduced from (Lees et al., 2009; Mazzio et al.,
2011).

pigmentation therefore marks the progressive degeneration of DA neurons in the

SN (Figure 1.1). DA neurons in the ventral tegmental area (VTA), a nucleus lateral

to the SN, project to the ventromedial part of the striatum (caudate nucleus).

Interestingly, neurons of the VTA are less susceptible to neurodegeneration in PD

(Dauer and Przedborski, 2003).

Loss of DA neurons and the resulting depletion of DA in the striatum are thought

to underlie at least some of the motor symptoms in PD through abnormalities in

the basal ganglia signalling (Obeso et al., 2000). The striatum is the main input

nucleus of the basal ganglia and balances stimulatory and inhibitory signals on

the output nuclei. In PD, the depletion of dopamine in the striatum results in

net stimulatory effect on the output nuclei of the basal ganglia and the resulting

hyperactivity of the motor thalamus confers the typical motor deficiencies of PD

(Obeso et al., 2000).

Next to neuronal loss, the presence of protein aggregates known as LBs in the

surviving neurons is the second major neuropathological feature of PD. LBs are

cytoplasmic spherical inclusions with a diameter between 8 and 30 µm. LBs
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primarily constitute misfolded, aggregated α-synuclein, as well as lipids and other

insoluble aggregated proteins including tau, tubulin and ubiquitin (Jellinger, 2012).

It is important to note that LBs are not specific to PD, as they also occur in

normal ageing and other diseases collectively called synucleinopathies, such as

Lewy body dementia (Kotzbauer et al., 2001).

The accumulation of LBs is not restricted to DA neurons in the SN during PD

pathogenesis. Braak and colleagues have described a staging scheme where LB

pathology appears to follow a stereotyped distribution throughout the brain

during disease progression, starting from the brainstem, to the midbrain and

eventually to the neocortex (Braak et al., 2003, 2004). In line with Braak’s

proposed staging scheme, disturbances in non-dopaminergic systems have been

suggested to underlie non-motor symptoms in PD (Goldman and Postuma, 2014).

α-Synuclein pathology has been found to be present in the vagal nerve and enteric

nervous system prior to accumulation in the central nervous system (Braak et al.,

2006). This apparent spreading of LB pathology in combination with the finding

LB are present in neuronal grafts in the brains of PD patients (Kordower et al.,

2008; Li et al., 2008), has given rise to the idea that α-synuclein aggregates may

spread from one cell to another (Figure 1.2).

1.1.4 Aetiology

Historically, PD has been considered a purely sporadic disorder, until William

Langston recognized in 1983 that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP), a toxic byproduct of heroin, caused advanced PD in 6 drug addicts

through selective neurodegeneration in the SN (Langston et al., 1983a). Ever since,

a broad range of epidemiological studies assessing environmental risk factors as a
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trigger for PD have been performed. Tobacco and caffeine have been associated

with a protective effect for PD, whereas traumatic brain injury and certain

pesticides and herbicides are thought to increase risk for PD (Lau and Breteler,

2006). However, it has been challenging to conclusively link environmental factors

to disease pathogenesis, as acute exposures can be distant in time in place from

the onset of symptoms and chronic low-dose exposures are hard to detect.

Over the past two decades, genetic studies have shown that PD has a substantial

heritable compound and that polygenic factors underlie a heterogenic range of

phenotypes (Singleton and Hardy, 2016). A total of 19 chromosomal loci have been

associated with clinical PD or parkinsonism. Mutations in eleven genes within

these PARK loci have a robust association with monogenic familial PD (Table

1.1). Whereas monogenic mutations with Mendelian inheritance only account for

5% of all PD cases, risk factors have been nominated by genome-wide association

studies (GWAS) to increase the lifetime risk for developing sporadic PD (Nalls

et al., 2014, 2018). These risk factors only impart modest contributions to the

lifetime risk of disease development and are oligogenic in nature. Sporadic cases

of PD are thought to be the result of an interplay between genetic predisposition

and both environmental and stochastic factors on the background of an aging

brain.

The first gene to be linked to PD in 1996 was SNCA, encoding the protein

α-synuclein (Polymeropoulos et al., 1996; Polymeropoulos et al., 1997).

α-Synuclein is the major constituent of LBs and therefore links familial forms

of PD with sporadic forms, as Lewy pathology is a hallmark of all PD cases

(Spillantini et al., 1997). Dominant mutations as well as locus triplication and

duplication were found to cause hereditary PD (Chartier-Harlin et al., 2004;

Dick et al., 2013; Ibáñez et al., 2004; Kiely et al., 2013; Krüger et al., 1998;
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Polymeropoulos et al., 1997; Singleton et al., 2003; Zarranz et al., 2004). GWAS

have also nominated single nucleotide polymorphisms (SNPs) in the SNCA locus

as risk factors contributing to sporadic PD, again emphasizing the overlap both

forms of disease (Nalls et al., 2014, 2018).

1.1.5 Pathobiology

Even though familial PD constitutes only a small fraction of all PD cases, a

genetic understanding of PD contributes greatly to defining pathways underlying

PD pathogenesis. It is thought that there are functional relationships between

PD genes, that converge on a handful of biological pathways (Hardy et al., 2009;

Kumaran and Cookson, 2015; Singleton and Hardy, 2016) (Figure 1.2).

First, since insoluble protein aggregates are found to be packed in LB, it is

thought that protein aggregation may play a role in PD pathology (Jellinger, 2012;

Taschenberger et al., 2012; Winner et al., 2011). The main constituent of LBs

is α-synuclein and Mendelian mutations as well as GWAS-nominated SNPs in

its gene SNCA have been associated with PD. Familial mutations in α-synuclein

were shown to increase its propensity to aggregate and locus duplication and

triplication increase expression of the protein, thereby promoting aggregation by

mass action (Conway et al., 1998; Giasson et al., 1999; Greenbaum et al., 2005;

Ibáñez et al., 2004; Singleton et al., 2003). The locus harbouring SNCA has

been suggested to be an expression quantitative trait locus (eQTL), with SNPs

nominated by GWAS resulting in slight increases of SNCA expression that could

contribute to the lifetime risk of developing PD (Pihlstrøm et al., 2018; Soldner

et al., 2016).
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Mitochondrial maintenance is a second convergence point of PD genes that have

mostly been associated with autosomal recessive, early-onset/juvenile PD (PINK1,

PRKN, FBXO7, PLA2G6, DJ-1 ) (Table 1.1) (Hauser et al., 2017; Narendra et al.,

2010). Mitochondrial damage and the resulting oxidative stress have therefore been

suggested to underlie DA neurodegeneration. Notably, MPTP, an agent causing

PD, also induces neurodegeneration through mitochondrial damage (Langston

et al., 1983b).

Third, risk factors (LRRK2, HLA) have pointed to a role for the immune system

in PD pathogenesis (Nalls et al., 2014, 2018). Genes in the HLA region encode the

major histocompatibility complex, supporting a role for the complement system in

PD (Kumaran and Cookson, 2015). LRRK2 is highly expressed in microglia and

mutations in LRRK2 have been found to sensitize microglia to a pro-inflammatory

state (Russo et al., 2014). Similarly, activated microglia and neuroinflammation

have been found to accompany LB pathology in the brain of PD patients (Wilms

et al., 2003). However, it remains to be elucidated whether neuroinflammation is

a cause or consequence of DA neurodegeneration (Tansey and Goldberg, 2011).

Finally, multiple familial PD genes and risk factors can be mapped to vesicular

trafficking pathways. These pathways include endosomal protein sorting (VPS35,

LRRK2, RAB29, VPS13C, DNAJC6, GAK ) (Beilina et al., 2014; Follett et al.,

2014; McGough et al., 2014; Zavodszky et al., 2014), synaptic function (SNCA,

SYNJ1, DNAJC6, GAK ) (Burré et al., 2010; Cao et al., 2017; Olgiati et al., 2016)

and the lysosomal-autophagy pathway (GBA, ATP13A2, LRRK2 ) (Fernandes

et al., 2016; Manzoni et al., 2013, 2016; Schultheis et al., 2013; Usenovic et al.,

2012). Although the exact mechanisms on the involvement of endomembrane

trafficking in PD is unclear, it is a plausible hypothesis that deficient retrieval

and clearance of lipids and proteins may be detrimental for neuronal survival
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(Kumaran and Cookson, 2015). Remarkably, multiple genes with key functions

in clathrin trafficking have been associated with PD (DNAJC6, GAK, SYNJ1 ).

These will be discussed in more detail in a separate paragraph (Paragraph 1.5),

given the relevance for the thesis subject.

It is important to note that the above-mentioned pathological pathways are not

mutually exclusive hypothesis. There is a strong association between oxidative

stress resulting from mitochondrial damage and the inflammatory pathway, and

vesicular trafficking and mitochondrial maintenance are interconnected through

mitophagy, a specialized form of autophagy. In addition, these pathways can

function through both cell autonomous and non-autonomous mechanisms, as

neuroinflammation involves both neurons and microglia, whereas mitochondrial

maintenance and endomembrane trafficking are likely involved with more

neuronal-restricted damage pathways (Figure 1.2) (Kumaran and Cookson, 2015).

How these pathways contribute to the observed neuropathology, i.e. accumulation

of α-synuclein in LB and neurodegeneration in the SN, remains incompletely

understood. Misfolding of α-synuclein is correlated with oxidative stress and

the accumulation of intracellular and extracellular α-synuclein may well trigger

neuroinflammatory pathways and the adaptive immune system, respectively. In

addition, both the immune system and vesicular trafficking pathways are thought

to be involved in the clearance of misfolded and aggregated α-synuclein (Figure

1.2) (Hardy et al., 2009; Kumaran and Cookson, 2015; Tansey and Goldberg,

2011).

Collectively, genetic studies have accelerated our understanding of underlying

mechanisms in PD pathogenesis. Given the the clinical, pathological and genetic

overlap between familial and sporadic PD, defining disease pathways in genetic
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cases may help understand sporadic disease as well. Further mechanistic dissection

will be key for the development of therapies that intervene with disease progression.
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Figure 1.2: Molecular processes involved in PD pathogenesis Molecular processes
underlying PD pathogenesis can be extrapolated from Mendelian genes and risk factors nominated
through GWAS that are associated with PD. Pathobiological processes are circled in grey with
indication of PD-associated genes. Asterisks (*) indicate risk factor candidates nominated by
GWAS. Double asterisks (**) indicate genes that contain causative Mendelian mutations and
are nominated to be a risk factor. Adapted from (Kumaran and Cookson, 2015).
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1.2 CLATHRIN AND THE GENESIS OF COATED VESICLES

Vesicular transport is required to shuttle proteins and lipids between organelles

whilst maintaining heterogeneity of compartments. Vesicles provide a mechanism

to transport cargo, without having to cross membranes. The characterization of

the coated vesicle has been a landmark discovery in the cell biology of vesicular

trafficking. Vesicular coats not only serve a mechanical function but also allow

for selective cargo loading into the vesicle. Coat protein complex I and II (COPI,

COPII) and clathrin coats have been identified as the major classes of coated

vesicles, depending on the molecular scaffolds that form the coat. COPI and COPII

facilitate vesicular Golgi-to-endoplasmatic reticulum (ER) and ER-to-Golgi traffic,

respectively. Clathrin facilitates vesicular transport from the plasma membrane

(i.e. clathrin mediated endocytosis (CME)), as well as from the trans-Golgi

network (TGN) along the axis of the secretory pathway (Figure 1.3).

COPII

COPI

Clathrin

Extracellular endoso

Intracellular lysosom

Cargo receptor

Figure 1.3: Model of intracellular trafficking mediated by coated vesicles

.
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Clathrin mediated trafficking is defined by discrete steps, mediated by transient

protein-protein interactions (Figure 1.4). The following paragraphs will give an

overview of clathrin and the life of clathrin coated vesicles (CCVs). Special

attention will be given to the role of clathrin adaptor proteins defining distinct

cellular pathways and the uncoating of CCVs in separate paragraphs (Paragraph

1.3 and Paragraph 1.4 respectively), as these are important molecular events

relevant for the subject of the thesis.

Figure 1.4: Life of a clathrin coated vesicle 1 Initiation. Clathrin adaptor proteins select
and concentrate cargo and clathrin is recruited to form a clathrin coated pit. 2 Maturation.
The clathrin coated pit commits to the formation of a CCV through membrane bending and the
assembly of a clathrin coat. 3 Budding. The CCV is released from the membrane by fission.
4 Uncoating. The CCV is uncoated to allow the ‘naked’ vesicle to fuse with its destination
compartment.

.

1.2.1 Overview and milestone discoveries

‘Bristle coated pits and vesicles’ were first observed by Thomas Roth and Keith

Porter in 1964 by morphological electron microscopy studies on the uptake of

yolk proteins by mosquito oocytes (Roth and Porter, 1964). They advanced a

hypothesis where coated pits selectively ‘adsorb’ proteins and then become ‘coated
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vesicles’ by pinching off from the cell membrane. The vesicles would then shed

their coat for the ‘naked vesicle’ to fuse with intracellular compartments.

Five years later, Toku Kanaseki and Ken Kadota observed that these ‘coated

vesicles’ were in fact ‘vesicles in a basket’, composed of pentagons and hexagons

(Kanaseki and Kadota, 1969). Coated vesicles were shown to be involved with

synaptic vesicle membrane recycling in another classic paper by John Heuser and

Tom Reese (Heuser and Reese, 1973). Barbara Pearse was the first to biochemically

characterize coated vesicles isolated from pig brain and identified a 180 kDa protein

to be the main constituent of the coat. She proposed this protein to be named

‘clathrin’, derived from the Latin word ‘clathratus’ meaning ‘like a lattice’ (Pearse,

1975). Meanwhile, nobel laureates Mike Brown and Joe Goldstein were able to

demonstrate that coated vesicles were able to selectively take up extracellular

cargo via receptors and coined the term ‘receptor mediated endocytosis’ (Anderson

et al., 1977b; Brown and Goldstein, 1976). Thus, by the end of the 1970s, both

roles for clathrin that were presciently proposed by Roth and Porter in 1964, were

shown to be correct (Robinson, 2015). Although the precise mechanism is still

under debate the present day, these studies implied a mechanical function for

clathrin (Heuser and Reese, 1973; Kanaseki and Kadota, 1969). In addition, the

finding that vesicles were able to pick and choose their cargo at sites of ‘receptor

mediated endocytosis’ indicated a cargo selection function for clathrin (Anderson

et al., 1977b; Brown and Goldstein, 1976).

However, the mechanism through which the coat recognizes these receptor-rich

regions wasn’t discovered until years later. When purifying clathrin from coated

vesicles, Barbara Pearse also noticed additional protein bands, which she proposed

to be coat-associated proteins. James Keen later purified these proteins and

named them ‘assembly peptides’ (AP) for their ability to promote the assembly of
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the clathrin coat (Keen et al., 1979). Margaret Robinson together with Barbara

Pearse found that two distinct protein complexes were present in the clathrin

assembly promoting fraction (Pearse and Robinson, 1984). James Keene purified

the same complexes and proposed to call them AP1 and AP2 (Keen, 1987;

Pearse and Robinson, 1984). Remarkably, AP1 and AP2 were shown to have

distinct cellular colocalization at the Golgi membranes and the plasma membrane,

respectively (Figure 1.8) (Ahle et al., 1988; Robinson, 1987; Robinson and Pearse,

1986). Between 1996 and 2000, the laboratories of Margaret Robinson and Juan

Bonifacino identified a multitude of additional clathrin adaptor proteins each

with distinct intracellular distribution and involved with the selective uptake of

different cargoes (Dell’Angelica et al., 1997a,b, 1999, 2000; Hirst et al., 1999,

2000; Simpson et al., 1996, 1997), providing a mechanism by which CCVs could

enrich certain cargo proteins at different places in the cell. Conveniently, the ‘AP’

acronym also stands for adaptor protein, which is the term used at the present

day.

Much of the mechanisms of clathrin-mediated trafficking and the molecular

machineries involved have now been studied in astonishing detail, as outlined in the

paragraphs below. However, the dynamics and characterization of the molecular

machinery required for clathrin trafficking has most extensively been studied in

the context of CME. One of the major questions in the clathrin trafficking field

therefore is to what extent the pathways in clathrin-mediated endocytosis can be

extrapolated to clathrin trafficking from the TGN.

38



1.2 Clathrin and the genesis of coated vesicles 1 INTRODUCTION

1.2.2 The clathrin coat

Genes and subunits of the clathrin coat

Clathrin exists as a triskelion, made up of a trimer of clathrin heavy chains (CHC),

as well as three clathrin light chain (CLC) that are each associated with a CHC

but not with each other (Figure 1.5) (Kirchhausen and Harrison, 1981; Ungewickell

and Branton, 1981).

Two different isoforms of CHC, CHC17 and CHC22, have been described, encoded

by CLTC and CLTCL1 on chromosome 17 and 22 respectively (Kirchhausen

et al., 1987a; Long et al., 1996). CHC17, hereafter simply referred to as CHC,

is a ubiquitous 1675 amino acid protein and is the isoform that is involved with

the formation of CCVs. CHC22 constitutes a 1640 residue protein restricted to

muscular tissues. Despite 85% sequence identity, CHC22 is unable to associate

with CLCs (Wakeham et al., 2005) and has been suggested to play a role in

specialized membrane organization rather than canonical CCV trafficking (Towler

et al., 2004). However, CHC22 was detected by proteomic analysis of purified

CCVs, but not in CHC-depleted cells, suggesting that CHC22 is in fact a CCV

component (Borner et al., 2006).

There are also two human isoforms of CLC (named CLCa and CLCb), encoded

by CLTA and CLTB on chromosome 9 and 5, respectively. CLCa and CLCb

are much more divergent than CHC (60% amino acid identity) and in addition

have multiple splicing variants, including neuronal specific variants (Jackson et al.,

1987). The association of CLCa and CLCb with CHCs is not fully understood,

but has been suggested to occur in random fashion, depending on the relative

expression levels in different cell types (Kirchhausen et al., 1983; Winkler and

Stanley, 1983). Without taking into account the splicing variants of LCa and
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LCb, this gives rise to 4 possible clathrin triskelia depending on the incorporated

CLCs: aaa, aab, bba or bbb.

Structure of clathrin triskelia

CHC exists as a kinked leg, with the carboxy terminals of three CHCs are joined

in a tripod to form a triskelion (Figure 1.5 A). The leg of the CHC is ∼45 nm

long and extends from the tripod to the N-terminal globular termnial domain

(Kirchhausen et al., 2014).

proximal leg

distal leg

terminal domain

tripod

clathrin light chain

ankle

knee

A B C

Figure 1.5: Structure of clathrin triskelia and coat A Molecular structure of a clathrin
triskelion. B Assembly of clathrin triskelia to form hexagonal structures in the clathrin lattice,
showing heavy chains only. C Structure of a hexagonal clathrin barrel of assembled clathrin
triskelia. Single triskelion is represented in black.

The carboxy-terminus of clathrin contains an α-helix required for the CHC

trimerization (Fotin et al., 2004a). In addition, a small unstructured region

extends from the tripod and contains a short hydrophobic motif (‘QLMLT’) that

is required for the Auxilin/Hsc70-dependent uncoating (Böcking et al., 2011;

Rapoport et al., 2008).

The leg makes up the largest part of the CHC chain and is characterized by a

superhelix formation consisting of 42 α-helical zigzags of ∼30 amino acids each,

creating a gently curved structure (Fotin et al., 2004a). The leg consists of a

proximal segment and a distal segment, separated by a flexible bend or the ‘knee’

(Kirchhausen et al., 2014).

40



1.2 Clathrin and the genesis of coated vesicles 1 INTRODUCTION

Finally, the amino-terminal domain consists of a β-propeller domain with 7 WD40

repeats (Fotin et al., 2004a). The ‘blades’ of the propeller contain various binding

sites for clathrin-interacting proteins, including Auxilin and clathrin APs (Haar

et al., 2000; Haar et al., 1998; Smith et al., 2004). The terminal domain is

connected to the distal leg through α-helices, that appear to be more flexible than

the leg itself, and forms the ‘ankle’ of the CHC leg (Fotin et al., 2004a).

The CLCs have a disordered C- and N-terminus, but contain a long central α-helix,

through which they interact with the three-fold proximal segment of the CHC leg

(Chen et al., 2002; Fotin et al., 2004a; Kirchhausen and Toyoda, 1993; Kirchhausen

et al., 1987b).

Structure of the clathrin lattice and CCVs

The clathrin lattice is made up of clathrin triskelia forming hexagons, pentagons

and occasionally heptagons (Figure 1.5 B, C). For example, a closed clathrin coat

can be formed by exactly 12 pentagons and a variable number of hexagons

(Crowther et al., 1976). For every heptagonal opening, there must be a

corresponding increase of pentagons to form a closed clathrin coat (Kirchhausen

et al., 2014). CCVs are heterogeneous in shape and size, depending on the number

of pentagons, hexagons and heptagons that make up the coat, with observed

diameters ranging between 66 and 134 nm (Cheng et al., 2007; Heymann et al.,

2013).

The ability of clathrin to assemble under defined conditions in vitro has allowed

for single-particle structural analysis by cryoelectron microscopy (cryoEM), with

detailed reconstruction of a 3D coat up to ∼8 Å (Fotin et al., 2004a; Musacchio

et al., 1999; Smith et al., 1998; Vigers et al., 1986). Each lattice point of the

clathrin basket is made up of the centre of the tripod of a clathrin triskelion and
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are connected by the interdigitating legs of the triskelia (Figure 1.5 B). A single

leg of a triskelion is of such length, ∼45 nm, that it spans about three edges of

the clathrin lattice. The proximal segment of the leg of a triskelion runs along one

edge and forms contacts with the distal leg of the second neighbouring triskelion,

with the knee in between the proximal and distal segment allowing for curvature

on the first neighbouring lattice point. The ankle segment allows for curvature on

the second neighbouring lattice point, in turn allowing for the terminal domain

to be projected inward from the clathrin lattice in close proximity to the third

neighbouring lattice point (Fotin et al., 2004a; Kirchhausen et al., 2014). The

net result in an assembled lattice structure is the presence of 3 terminal domains

underneath each lattice point or clathrin tripod, that allow for contacts with other

membrane binding factors, including clathrin APs and Auxilin (Drake et al., 2000;

Fotin et al., 2004b; Haar et al., 1998; Miele et al., 2004; Shih et al., 1995).

1.2.3 Membrane bending

The formation of CCVs requires drastic remodelling of the membrane. The

temporal and spatial regulation of this membrane plasticity remains much debated

in the clathrin literature and multiple, often conflicting, models have aimed to

answer the questions outlined below.

First, at what point is membrane curvature acquired during clathrin assembly?

The observation of flat clathrin lattices in the proximity of curved structures and

newly formed CCVs, has led to the hypothesis that flat structures rearrange to

mature into curved structures (constant area model) (Avinoam et al., 2015; Heuser,

1980, 1989; Heuser and Kirchhausen, 1985; Kanaseki and Kadota, 1969; Larkin

et al., 1986). However, this model would appear to be energetically unfavourable,
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as flat lattices consisting of mostly hexagons would have to be disassembled and

reassembled to include pentagons for curvature acquisition (Ehrlich et al., 2004;

Kirchhausen, 1993). In contrast, in the constant curvature model, the area of the

clathrin lattice grows as the vesicle matures, with clathrin triskelia assembling

into curved structures from the beginning of the process of membrane invagination

(Cocucci et al., 2012; Saffarian et al., 2009). However, a number of recent studies

using state-of-the-art microscopy techniques support the constant area model,

showing a delay between the growth of clathrin lattices and the onset of curvature

acquisition, with an average accumulation of about 70% of the final clathrin

content at the onset of curvature acquisition (Figure 1.6 A-C) (Bucher et al., 2018;

Scott et al., 2018; Yoshida et al., 2018).

A B C D E

Figure 1.6: Membrane bending and fission of CCVs Reproduced from (Haucke and Kozlov,
2018).

.

Second, does clathrin bend membranes? Even though one of the first postulated

functions of clathrin was membrane bending (Kirchhausen and Harrison, 1981;

Pearse, 1975), clathrin assembly itself might not be strong enough to overcome

membrane rigidity to drive curvature (Jin and Nossal, 2000; Otter and Briels,

2011; Saleem et al., 2015). An apparent lack of strict temporal coupling of

curvature acquisition and clathrin lattice area growth suggests that membrane

reshaping is not a direct consequence of clathrin coat assembly (Haucke and Kozlov,

2018). Instead, curvature may be driven by membrane-protein interactions of CCV
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machinery, through protein crowding or recruitment of curvature-inducing proteins

(Haucke and Kozlov, 2018; Kirchhausen, 2012; Robinson, 2015). Protein crowding

would create steric pressure, resulting in local membrane curvature (Busch et al.,

2015; Stachowiak et al., 2012). Many proteins of the CME machinery contain

intrinsic membrane shaping properties that may contribute to vesicle sculpting.

BAR proteins, such as clathrin adaptors FCHo1/2 (Fer/CIP4 homology domain

only protein 1/2) or dynamin, a GTPase involved in CCV fission, contain a

crescent-shaped BAR (Bin-Amphiphysin-Rvs)-module that acts as a scaffold

inducing curvature upon membrane binding (Faelber et al., 2011; Ford et al.,

2011; Henne et al., 2010; Sochacki et al., 2017). Other clathrin adaptors such

as AP180 (assembly protein 180), CALM (clathrin assembly lymphoid myeloid

leukemia) and Epsin1/2 contribute to membrane bending through the insertion

of an amphipatic helix into the membrane, resulting in local relaxation and thus

bending of the membrane (Busch et al., 2015; Ford et al., 2002; Messa et al., 2014;

Miller et al., 2011). Additional proteins involved with CCV constriction, including

endophilin A and Amphiphysin, contain both a crescent-shaped BAR-domain for

scaffolding and an amphipatic helix for wedge insertion (Gallop et al., 2006; Peter

et al., 2004). Finally, actin remodelling may further counteract membrane tension

to allow CCV curvature (Kaksonen and Roux, 2018).

It should be noted that even though the process of membrane bending has almost

exclusively been studied in CME, it is thought that these models of membrane

bending can be extrapolated to CCV formation at the TGN (Haucke and Kozlov,

2018).
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1.2.4 Fission of clathrin coated vesicles

The final step in the genesis of a CCV is the separation of the initially continuous

membrane of the CCV and the donor compartment (TGN or plasma membrane)

into two distinct entities by constriction and fission (Figure 1.6 D-E). The budding

step is regulated by the timely recruitment of BAR proteins that promote increasing

membrane curvature for the constriction and scission of the CCV. Whereas the

molecular machinery for fission in CME has been well-studied, it remains to be

elucidated whether the same or equivalent machinery is involved with fission of

CCVs at the TGN.

The fission pathway starts with the recruitment of BAR proteins with shallow

BAR-domains (60-80 nm) SNX9, SNX15 and FBP17 to the neck of clathrin

coated structure with low curvature (Frost et al., 2008; Posor et al., 2013; Shimada

et al., 2007). The BAR proteins Endophilin and Amphiphysin are subsequently

recruited to the CCP and promote higher curvature through hydrophobic insertion

of their highly curved BAR domains (∼10 nm) (Gallop et al., 2006; Peter et al.,

2004). Endophilin and Amphiphysin finally recruit Dynamin to mediate the fission

reaction (Meinecke et al., 2013; Ringstad et al., 1999; Shupliakov et al., 1997).

Dynamin assembles as oligomers forming a helical collar (∼10 nm) around the

neck of the clathrin structure (Figure 1.4) (Hinshaw and Schmid, 1995; Takei

et al., 1999). Hydrolysis of GTP by the large dynamin GTPase leads the oligomers

to further constrict resulting in a spontaneous transition from hemi-fission to

fission state (Chappie et al., 2010; Chappie et al., 2011; Faelber et al., 2011; Ford

et al., 2011).
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1.3 CLATHRIN ADAPTOR PROTEINS AND TRAFFICKING ROUTES

Even though clathrin plays a mechanical and cargo selection role, it does not

bind the membrane nor cargo directly. In fact, there appears to be a relatively

large space between the coat and the spheric vesicle, as clathrin coats of ∼70 nm

in diameter have been observed to coat concentric vesicles that are ∼40 nm in

diameter (Cheng et al., 2007). This space allows for the presence of the rather

bulky clathrin APs, bridging the gap between the vesicular membrane and its coat.

Generally, transmembrane cargo and/or luminal cargo bound to transmembrane

receptors bind to APs (Figure 1.7). The clathrin APs subsequently recruit clathrin

to form the clathrin coat. Multiple clathrin APs have been identified displaying

distinct binding preferences for transmembrane cargo receptors as well as distinct

subcellular localizations. APs are therefore indeed responsible for much of the

selective cargo loading in CCVs.

hrin 
ptor proteins

membrane

luminal/transmembrane cargo

Figure 1.7: Cargo selection by clathrin adaptor proteins

.
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1.3.1 Types of adaptor proteins

The APs are a family of heterotetrameric protein complexes (named AP1 to AP5)

and function as coat proteins that are transiently recruited on to the membrane of

vesicles for the selection of cargo (Dell’Angelica et al., 1997a,b, 1999, 2000; Hirst

et al., 1999, 2000, 2011; Simpson et al., 1996, 1997).

Since their discovery in 1984, AP1 and AP2 were long thought to be the only

clathrin adaptor proteins (Keen, 1987; Pearse and Robinson, 1984). Both AP1

and AP2 play a role in the sorting of cargo in CCVs, however they localize to

different intracellular compartments. Whereas AP1 can be found on the TGN

and endosomes, AP2 is present at the plasma membrane (Figure 1.8) (Ahle et al.,

1988; Robinson, 1987; Seaman et al., 1993).

Three additional adaptor proteins (AP3, AP4, AP5) were identified decades later

by in silico analysis based on sequence homology search with AP1 and AP2

(Dell’Angelica et al., 1997a,b, 1999; Hirst et al., 1999, 2011; Simpson et al., 1996,

1997). Like AP1, these APs localize to the endosomes and TGN, with AP3 being

more abundantly present at endosomes, AP4 more at the TGN and AP5 at later

endosomal compartments (Figure 1.8) (Hirst et al., 2013). AP3, AP4 and AP5

are not enriched in purified clathrin coated vesicles and AP4 and AP5 were found

to function independently of clathrin (Hirst et al., 1999, 2011). The potential

role for AP3 in clathrin trafficking is still under debate, since its interaction with

clathrin has not been found consistently in mammalian cells and at least some of

its functions appear to be clathrin independent (Bonifacino, 2004; Dell’Angelica

et al., 1998; Kirchhausen et al., 2014; Peden et al., 2002; Robinson, 2015). AP3

plays a role in trafficking to the lysosomes and AP4 is thought to mediate transport
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Figure 1.8: Clathrin adaptor proteins and trafficking routes

.

to the plasma membrane (Hirst et al., 2013). The role of AP5 is currently still

unclear (Hirst et al., 2011, 2013).

A second family of adaptor proteins consists of monomeric proteins named the

GGAs (Golgi-localized, γ-ear containing, Arf-binding proteins). GGAs were again

identified by sequence homology searches of AP subunits and are localized to the

TGN (Figure 1.8) (Boman et al., 2000; Dell’Angelica et al., 2000; Hirst et al.,

2000; Poussu et al., 2000).

The remainder of the paragraph will be focused on the clathrin adaptor proteins,

i.e. the adaptor proteins with an established role in clathrin trafficking (AP1, AP2,

GGA1, GGA2 and GGA3), as those are relevant for the subject of the thesis.
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1.3.2 Structure of clathrin adaptor proteins

AP1 and AP2 are heterotetrameric protein complexes, formed by subunits that

are homologous across the APs: a small subunit (σ1/2, ∼20 kDa), a medium

subunit (µ1/2, ∼50 kDa), a large subunit (β1/2, ∼100 kDa) and an additional

large subunit (γ, α) (figure 1.9) (Kirchhausen et al., 2014; Owen et al., 2004;

Robinson, 2004). Several of those subunits exist in multiple isoforms, however the

relative importance and potential functional diversity of the resulting assembly

complexity is not understood (Hirst et al., 2013).

μ1
σ1

β1
γ

VHS

GAT

GAE

AP1 AP2 GGA1/2/3

ear

hinge

trunk

Figure 1.9: Organisation of AP complexes and GGA proteins

.

The large AP subunits are made up of an N-terminal trunk domain, connected

through an unstructured hinge region to a C-terminal appendage or ‘ear’ domain.

The core domain of the tetrameric complex is made up of the σ and µ subunits

together with the trunk domains of β and either γ or α (Figure 1.9) (Collins et al.,

2002; Heuser and Keen, 1988). The core of the AP complex contains subdomains

for phosphatidylinositol and/or ARF (ADP ribosylation factor) binding, required

for recruitment of the AP to the membrane, as well as binding sites for the

recognition of receptor sorting signals (Page and Robinson, 1995). The ear-domain

of the β, α and γ domains interact with a wide range of clathrin adaptors and

proteins that regulate the formation and disassembly of CCVs (Kent et al., 2002;
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Nogi et al., 2002; Owen et al., 1999; Owen et al., 2000). Finally, the hinge

domains of the large β-subunits contain clathrin binding motifs responsible for

the interaction of the AP with the terminal domain of clathrin (Haar et al., 2000;

Shih et al., 1995).

The GGA proteins (GGA1, GGA2 and GGA3) are monomeric proteins, and as

their name implies (‘Golgi-localized, γ-ear containing, ARF-binding proteins’),

share strong homology with the γ-subunit of AP1 (Boman et al., 2000;

Dell’Angelica et al., 2000; Hirst et al., 2000; Poussu et al., 2000). The GGAs share

a conserved domain organization, comprising an N-terminal VHS (Vps27, Hrs,

Stam) domain, followed by GAT (GGA and TOM (target of myb)) domain and

a C-terminal GAE (γ-adaptin ear) domain, each separated by linker sequences

(Figure 1.9) (Bonifacino, 2004).

The GGA proteins can be viewed as a condensed version of the AP tetrameric

complex (Figure 1.9) (Bonifacino, 2004). Similarly to the trunk of the APs, the

VHS domain interacts with receptor sorting signals (Misra et al., 2002; Shiba

et al., 2002; Zhu et al., 2003a) and the GAT domain interacts with ARF1-GTP

(Collins et al., 2003b; Shiba et al., 2003; Suer et al., 2003; Zhu et al., 2003b),

responsible for recruitment of GGA to the membrane. The hinge region between

the GAT and GAE domain contains clathrin binding boxes (Costaguta et al.,

2001; Mullins and Bonifacino, 2001; Puertollano et al., 2001b; Zhu et al., 2001).

Finally, the GAE domain, similarly to the γ-ear domain, binds with accessory

clathrin proteins (Collins et al., 2003a; Miller et al., 2003).
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1.3.3 Membrane recruitment of clathrin adaptor proteins

It was long thought that cargo proteins might be directly responsible for the

recruitment of adaptor proteins for their incorporation into CCVs. However, cargo

protein binding is not sufficient to explain specific recruitment of adaptor proteins,

since cargo is present on both the donor and acceptor compartments as well as

intermediary trafficking structures. Instead, in order to do their job efficiently, APs

and GGAs require specific recruitment to intracellular donor compartments, which

they acquire through additional interactions with ARF proteins and effectors,

and/or with phosphatidylinositols (PIs).

Phosphatidylinositol composition is one of the major markers for intracellular

membrane identity. Whereas phosphatidylinositol (4,5) biphosphate (PI(4,5)P2)

is almost exclusively present at the plasma membrane, phosphatidylinositol 4

phosphate (PI4P) is the predominant Golgi membrane marker (D’Souza-Schorey

and Chavrier, 2006). ARF proteins are small GTP-binding proteins that play

a prominent role in membrane trafficking by modulating phosphatidylinositol

composition of membranes (D’Souza-Schorey and Chavrier, 2006). The activity of

ARFs is controlled by guanine nucleotide exchange factors (GEFs) that turn ARFs

to their GTP-bound (active) state, and GTPase activating proteins (GAPs) that

turn ARFs to their GDP-bound (inactive) state (Donaldson and Jackson, 2000).

ARF proteins and effectors have a unique cellular localization, allowing for the

recruitment of coat and adaptor proteins to distinct intracellular compartments

through direct binding with the ARFs and effectors. In addition, ARFs activate

lipid modifying enzymes, allowing for a local, compartment-specific concentration

of phosphatidylinositols, which in turn play a role in the recruitment of coat and

adaptor proteins (Bonifacino, 2004; Robinson, 2004).
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ARF1 is localized to the Golgi apparatus and ARF1-GTP promotes the recruitment

of AP1 and the GGAs from the cytosol to the TGN (Austin et al., 2000;

Dell’Angelica et al., 2000; Stamnes and Rothman, 1993; Traub et al., 1993).

AP1 can directly bind ARF1-GTP through the β1- and γ1-trunk domains (Ren

et al., 2013), whereas the GGAs bind ARF1-GTP through their GAT domain

(Puertollano et al., 2001b; Shiba et al., 2003). In addition, AP1 and the GGAs

have also been found to bind PI4P directly (Ghosh and Kornfeld, 2003; Wang

et al., 2003). Some of the ARF1 GEFs have been suggested to further stabilize

these interactions. BIG2 (Brefeldin A-inhibited GEF 2) is involved with the

recruitment of AP1 and the GGAs to the TGN (Shin et al., 2004; Shinotsuka

et al., 2002), whereas GBF1 (Golgi-specific brefeldin A-resistant GEF 1) has been

suggested to specifically recruit GGAs but not AP1 to the TGN (Lefrançois and

McCormick, 2007).

Interaction of AP2 with the plasma membrane marker PI(4,5)P2 through its µ2

and the trunk of its α subdomains, has been shown to be required and sufficient

for for its recruitment to the plasma membrane (Gaidarov and Keen, 1999; Padrón

et al., 2003; Page and Robinson, 1995). ARF6, the only known plasma-membrane

resident ARF protein, recruits PI4P 5 kinase type Iγ (PIPKIγ). Activated

ARF6-GTP directly stimulates the activity of PIPKIγ, thereby stimulating local

PI(4,5)P2 generation to facilitate further AP2 recruitment (Jackson et al., 2010;

Krauss et al., 2003). Finally, direct interaction with ARF6-GTP has been suggested

to contribute to the recruitment of AP2 to the plasma membrane as well (Paleotti

et al., 2005).

Taken together, these observations suggest that phosphatidylinositols and

ARF-GTPs are essential components of a coincidence detection network, where
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multiple low-affinity interactions are combined to recruit APs and GGAs to their

respective membranes (He et al., 2017; Robinson, 2015).

1.3.4 Cargo selection

Cargo is selectively concentrated to be included in CCVs. Soluble cargo relies on

binding to transmembrane receptors for sorting. Upon synthesis in the ER, soluble

proteins are translocated to the Golgi apparatus and acquire post-translational

modifications upon migrating from the cis to trans Golgi network. Modified

proteins are then bound by transmembrane receptors. In turn, transmembrane

receptors as well as transmembrane cargo rely on the presence of sorting motifs in

their cytoplasmic tails to be included into CCVs. Different sorting motifs have

been defined and are recognized by distinct clathrin APs (Table 1.2).

Motif Adaptor protein Targeting Examples of cargo

NPXY AP2 Internalization LDLR, APP, EGFR

YXXφ AP1, AP2 Internalization, targeting to
intracellular compartments

TFR, CIMPR, CDMPR,
LAMP1, LAMP2

[DE]XXXL[LI] AP1, AP2 Internalization, targeting to
intracellular compartments

CIMPR, CDMPR, VAMP4

DXXLL GGA1, GGA2, GGA3 Targeting from TGN to
endosomes

CIMPR, CDMPR, Sortilin,
SorLA

Ubiquitin GGA1, GGA3 Targeting to intracellular
compartments

Ubiquitinated proteins

Table 1.2: Sorting motifs for clathrin adaptor proteins

The first cargo receptor sorting motif was discovered by nobel laureates Goldstein

and Brown. Fibroblasts derived from familial hypercholesterolemia patients failed

to internalize low density lipid protein bound to its receptor (LDLR), caused by a

substitution of a cystein for a tyrosin in the cytoplasmic tail of LDLR (Anderson

et al., 1977a; Brown and Goldstein, 1976; Davis et al., 1986; Goldstein et al., 1977,

1979). This tyrosin residue was found to be part of a tetrameric motif, NPXY,

known as a tyrosine-based motif (Chen et al., 1990). In addition to LDLR, NPXY
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motifs are also found in other cell surface proteins, including α-amyloid precursor

protein (APP) and epidermal growth factor receptor (EGFR) (Bonifacino and

Traub, 2003). The NPXY motif is recognized by the plasma-membrane localized

AP2 adaptor, resulting in rapid internalization of the cargo (Boll et al., 2002;

Pearse, 1988).

An additional tyrosine-based sorting motif was discovered by studying recycling

of the transferrin receptor (TFR). Recycling of the human TFR was studied by

exogenous expression in cell lines derived from hamster and chicken, in which

endogenous TFR fails to bind with human transferrin (Alvarez et al., 1990b; Jing

et al., 1990; McGraw et al., 1987). Deletional analysis narrowed down the sorting

motif in the cytoplasmic tail to YXXφ (Alvarez et al., 1990a; Collawn et al., 1990;

Jing et al., 1990). In addition to endocytic receptors such as TFR, the YXXφ

can also be found in lysosomal membrane proteins (e.g. lysosomal-associated

membrane proteins (LAMP1, LAMP2)) and intracellular sorting receptors

(e.g. cation-dependent and cation-independent mannose-6-phosphate receptors

(CIMPR, CDMPR)) (Bonifacino and Traub, 2003; Harter and Mellman, 1992;

Marks et al., 1995; Williams and Fukuda, 1990). Even though these proteins

have distinct cellular localizations, they all traffic to some extent via the plasma

membrane (Bonifacino and Traub, 2003). Indeed, the YXXφ motif, through AP2

binding, is key for rapid internalization at the plasma membrane (Boll et al.,

1996). The YXXφ is also recognized by AP1 at intracellular compartments for

correct sorting to endosomal/lysosomal structures (Höning et al., 1996; Ohno

et al., 1995).

[DE]XXXL[LI] is a dileucine sorting motif, mostly found in proteins in the

endosomal-lysosomal compartments, including CIMPR, CDMPR and VAMP4

(vesicle-associated membrane protein 4) (Bonifacino and Traub, 2003). Similar
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to YXXφ, the [DE]XXXL[LI] is critical for rapid internalization at the plasma

membrane via AP2 binding. In addition, it is also recognized at intracellular

compartments by AP1 for targeting to the endosomal-lysosomal structures (Fujita

et al., 1999; Heilker et al., 1996; Hofmann et al., 1999).

A second type of dileucine motif, the acidic cluster dileucine motif (DXXLL)

is recognized by the GGA adaptor proteins. DXXLL motifs are present in the

cytosolic tails of transmembrane proteins that travel between the TGN and

endosomes/lysosomes, such as Sortilin, SorLA (Sortilin-related receptor), CIMPR

and CDMPR (Bonifacino and Traub, 2003; Puertollano et al., 2001a; Zhu et al.,

2001). Strikingly, GGA1 and GGA3, but not GGA2, also contain an internal

DXXLL motif in their hinge region that interacts with their own VHS domain,

which is thought to serve as an autoinhibitory role crucial for modulating their

function (Doray et al., 2002a).

Finally, GGA1 and GGA3, but not GGA2, have been found to function in

ubiquitin-mediated sorting at the TGN and endosomes through direct interaction

with ubiquitin (Prag et al., 2005; Puertollano and Bonifacino, 2004; Scott et al.,

2004; Shiba et al., 2004).

1.3.5 Cellular clathrin trafficking pathways

Clathrin trafficking has been most extensively studied in the context of CME,

as CME is amenable to total internal reflection (TIRF) microscopy and can be

visualized by applying extracellular probes (Robinson, 2015). Dissecting clathrin

trafficking pathways at the TGN is further complicated by the presence of multiple

adaptors with a more heterogeneous subcellular localization and the existence of

multiple donor and acceptor compartments (Figure 1.8).
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For CME, internalization of extracellular cargo and transmembrane receptors is

mediated by the plasma membrane-localized AP2 complex. A classical example

is the CME-mediated uptake of iron by Transferrin and TFR (Figure 1.3).

Extracellular iron-bound Transferrin binds to the TFR, which in turn is recognized

by AP2 through its YXXφ motif to be internalized into a CCV (Jing et al., 1990).

Once the CCV delivers its contents to endosomes, the acidic pH causes Transferrin

to release its iron ions. Transferrin and TFR are subsequently recycled back to

the plasma membrane for another round of iron uptake (McMahon and Boucrot,

2011).

Sorting of lysosomal proteins by the CIMPR and CDMPR (M6P receptors (MPRs)

in short) is the archetypical example of clathrin-mediated trafficking between the

TGN and endosomes (Figure 1.3). MPRs bind to lysosomal hydrolases in the

lumen of the TGN that have acquired M6P residues through post-translational

modifications and are internalized into a CCV (Chen et al., 1997; Johnson and

Kornfeld, 1992; Kornfeld, 1992). The CCV delivers its content to endosomes after

uncoating. Whereas the lysosomal hydrolases are retained in endosomes that

mature to lysosomes, the MPRs are recycled back to the TGN via the retromer

for additional rounds of sorting (Arighi et al., 2004; Seaman, 2004, 2005; Seaman

et al., 1998).

CCV budding from the TGN can be mediated by multiple clathrin adaptor

proteins, including AP1 and the GGAs (Figure 1.8). About ∼40% colocalization

has been observed between AP1 and the GGAs (Daboussi et al., 2012a; Hirst

et al., 2001; Mardones et al., 2007; Puertollano et al., 2003; Zhu et al., 2001). In

addition, some cargo, including the MPRs, contain cargo motifs for both AP1 and

the GGAs (Table 1.2) (Bonifacino and Traub, 2003), raising the question to what

extent the Golgi-localized clathrin adaptors are functionally redundant.
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Whereas the functional relationship between AP1 and the GGAs remains

incompletely understood, studies aiming to dissect their roles have given rise

to three different, non-mutually exclusive models.

A first model suggests that AP1 and the GGAs function on parallel pathways in

the same direction, to sort cargo from the TGN to endosomes. Indeed, studies

in cells deficient of either AP1 or GGAs have been shown to be deficient in the

sorting of the MPRs and lysosomal hydrolases (Hida et al., 2007; Hirst et al.,

2009, 2012; Puertollano et al., 2001a).

Second, AP1 and the GGAs may function in opposite pathways, with GGAs

mediating anterograde transport and AP1 mediating retrograde transport between

the TGN and endosomes. The DXXLL motif, recognized by GGAs but not AP1,

appears to be the main determinant for anterograde MPR sorting from the TGN

to endosomes (Lobel et al., 1989; Puertollano et al., 2001a; Takatsu et al., 2001;

Zhu et al., 2001). Although AP1 knockout (KO) mice show embryonic lethality,

cells derived from early embryos have shown an accumulation of the MPRs in

endosomes (Meyer et al., 2000).

A third model has been proposed by which the GGAs and AP1 function together

on the same pathway, where cargo is bound to GGAs first and is then ‘handed

over’ to AP1 (Doray et al., 2002b). AP1 was also found to physically interact

with the GGAs (Bai et al., 2004; Doray et al., 2002b). This model is further

strengthened by the finding that AP1, but not GGAs, are detected in CCVs

isolated from mammalian tissue (Hirst et al., 2000).

The three GGA proteins have been shown to largely co-localize with each other

(Dell’Angelica et al., 2000; Ghosh et al., 2003; Hirst et al., 2000; Mardones et al.,

2007). Even though they share the same structural organization, they also differ
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in a number of ways. GGA1 and GGA3, but not GGA2, contain an internal

DXXLL motif important for auto-inhibitory regulation (Doray et al., 2002a). In

addition, GGA1 and GGA3 are able to bind ubiquitinated cargo (Prag et al.,

2005; Puertollano and Bonifacino, 2004; Scott et al., 2004; Shiba et al., 2004).

GGA2 was found to be more strongly associated with membranes and has a longer

half-life than GGA1 and GGA3 (Hirst et al., 2007). At the organismal level, single

knockout (KO) of GGA2, but not GGA1 or GGA3, is embryonically lethal, as

well as double KO of GGA1 and GGA3 (Govero et al., 2012). Taken together,

these findings point to a non-redundant role of the GGAs, and in particular of

GGA2 compared to GGA1 and GGA3. Further research is required to dissect the

differences between the three GGAs and their functional relationship to each other

to gain understanding how molecular differences reflect the observed physiological

differences.
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1.4 DNAJC PROTEINS AND CLATHRIN DYNAMICS

1.4.1 DNAJ proteins as co-chaperones of HSC70

HSC70 (heat shock cognate 71 kDa protein) is a member of the heat shock protein

70 (HSP70) family and is involved with a spectrum of cellular processes, including

the ER stress response, synaptic transmission and vesicular trafficking. HSC70 is

one of the most ubiquitously expressed chaperones and requires a DNAJ protein

as co-chaperone for its precise recruitment to compartment-specific machineries,

through interaction of HSC70 with the J-domain of the DNAJ protein. DNAJ

proteins are often expressed in specific cell types or subcellular compartments and

are responsible for much of the functional specificity of HSC70 (Kampinga and

Craig, 2010; Stetler et al., 2010).

J-protein

J-domain

client protein

HSC70

conformational change 

       client protein

PPi

NEF

Figure 1.10: Model of DNAJ-assisted conformational protein changes by HSC70
DNAJ is recruited to and transiently interacts with client proteins (unfolded protein to be folded
or folded protein to undergo conformational change). HSC70 recruitment to the client protein
is mediated by interaction of HSC70-ATP with the J-domain of DNAJ. DNAJ stimulates the
ATPase activity of HSC70-ATP to induce the conformational change of the client protein and
DNAJ is released from the complex. NEF protein is recruited to HSC70-ADP for nucleotide
exchange of ADP to ATP and HSC70-ATP is released to undergo a new round of protein folding.
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HSC70 contains an ATPase domain linked to a ‘molecular clamp’ domain (Figure

1.10). HSC70 and its client protein are brought together by a DNAJ protein,

that interacts with both the substrate and HSC70 through its J-domain (Jiang

et al., 2003, 2005). ATP-bound HSC70 engages in an initial weak interaction

with its client protein. Upon stimulation of the ATPase activity of HSC70 by

the DNAJ protein, ATP hydrolysis tightens the molecular HSC70 clamp and

results in a conformational change of the client protein (Hartl and Hayer-Hartl,

2002; Kampinga and Craig, 2010; Kelley, 1998). Replacement of ATP for ADP

by nucleotide exchange factors (NEFs) opens the clamp and releases the client

protein, enabling the recycling of HSC70 molecules (Figure 1.10) (Kampinga and

Craig, 2010).

Figure 1.11: Regulation of clathrin dynamics by Auxilin, GAK and RME-8

DNAJ proteins can be further subdivided into DNAJA, DNAJB and DNAJC

subclasses based on the presence and location of protein domains (Stetler et al.,
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2010). Multiple members of the DNAJC subclass (Auxilin, GAK, RME-8) play

important roles in the regulation of clathrin dynamics as co-chaperones of HSC70

(Figure 1.11) and are reviewed in the paragraph below. In addition, these DNAJC

proteins have attracted recent attention for their involvement in PD, further

outlined in Paragraph 1.5.

1.4.2 Auxilin and the uncoating of CCVs

Auxilin (short for Putative Tyrosine-Protein Phosphatase Auxilin) plays a

prominent role in the uncoating of CCVs in neurons. The gene encoding

Auxilin, DNAJC6, is located on the short arm of chromosome 1 (1p31.3) and has

multiple different isoforms produced by alternative splicing (Figure 1.12). Two

protein-coding isoforms (ENST00000371069, ENST00000395325) account for the

majority of DNAJC6 expression. Each is made up of 19 exons, with an alternative

exon 1, and result in an Auxilin protein of 970 and 913 amino acids, respectively

(Figure 1.12) (Lonsdale et al., 2013). It is unclear whether these two isoforms exert

physiological differences in function, but the known functional domains of Auxilin

are unaffected by the alternative splicing of the first exon. DNAJC6 expression is

restricted to brain (Lonsdale et al., 2013) and is most abundantly expressed in

neurons (Zhang et al., 2016a) (Figure 1.12).

At the molecular level, Auxilin contains an N-terminal Phosphatase and Tensin

Homologue-like (PTEN-like) domain for lipid binding, followed by an unstructured

hinge region, a clathrin binding domain and a C-terminal J-domain for HSC70

binding (Figure 1.14).
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Figure 1.12: Tissue expression profile of DNAJC6 isoforms A Tissue expression profile
of DNAJC6 isoforms. Dotted box indicates expression in brain. B Alternative splicing and
exons making up the different DNAJC6 isoforms. Adapted from GTEx Analysis release V7
(Lonsdale et al., 2013).

Uncoating of CCVs very rapidly succeeds the pinching off of CCVs from the plasma

membrane (Lee et al., 2006; Massol et al., 2006; Taylor et al., 2011). Biochemical

assays established that this uncoating reaction is dependent on the presence of

both ATP and the ATPase HSC70 (Braell et al., 1984; Schlossman et al., 1984;

Ungewickell, 1985). Auxilin was found to be required as a co-chaperone for the

HSC70-mediated clathrin uncoating of CCVs in the brain (Ahle and Ungewickell,

1990). The onset of the uncoating reaction is marked by a burst of Auxilin to

the CCVs after pinching off the membrane (Lee et al., 2006; Massol et al., 2006).

The timing of these events is important, as early recruitment could lead to the

disassembly of an unfinished clathrin coat.

The PTEN domain of Auxilin mediates binding to phosphatidylinositols, and

is required for the timely recruitment of Auxilin to CCVs (Figure 1.14) (Guan

et al., 2010; Lee et al., 2006; Massol et al., 2006). The plasma membrane is

chiefly composed of PI(4,5)P2, and smaller amounts of PI4P. A recent study by
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the Kirchhausen lab has demonstrated that the budding of a CCV during CME

results in a rapid burst of PI4P, PI3P (phosphatidylinositol 3 phosphate) and

PI(3,4)P2 (phosphatidylinositol 3,4 biphosphate) on the CCV (He et al., 2017).

The fission of a CCV results in membrane discontinuity that inhibits free exchange

and lateral diffusion of phosphatidylinositols along the membrane. The activity of

multiple kinases and phosphatases present on CCVs, including Synaptojanin 1,

can thus result in a rapid conversion of phosphatidylinositols on the membrane

of CCVs (He et al., 2017). Indeed, a burst of Synaptojanin 1 has been shown to

precede the burst of Auxilin recruitment and the onset of CCV uncoating (Lee

et al., 2006). Remarkably, Auxilin has been shown to have a binding preference for

PI4P, PI3P and PI(3,4)P2 over other phosphatidylinositol species (Massol et al.,

2006). Thus, the PTEN domain of Auxilin essentially serves as a coincidence

detector of phosphatidylinositols, that senses the release of CCVs from the plasma

membrane by its lipid content.

In addition to the PTEN domain, Auxilin also requires binding to clathrin for its

correct localization to CCVs (Figure 1.14) (Fotin et al., 2004b), as neither domain

by itself is sufficient for timely recruitment to newly budded CCVs (He et al., 2017;

Lee et al., 2006; Massol et al., 2006). Auxilin contains multiple clathrin binding

motifs that allow interaction with the terminal domain and distal leg of clathrin

triskelia (Scheele et al., 2001; Scheele et al., 2003). The assembly of the clathrin

coat is of such nature that three β-propeller domains are placed underneath the

tripod of a clathrin triskelion (Figure 1.5), and each propeller domain interacts

with a single Auxilin molecule (Fotin et al., 2004b; Smith et al., 2004; Xing et al.,

2010).

The precise placement of Auxilin molecules results in the recruitment of

HSC70-ATP, through interaction with the J-domain of Auxilin, to the proximity
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of the triskelion tripod (Fotin et al., 2004b). The binding of Auxilin induces in

a slight distortion of the clathrin coat, which allows HSC0-ATP to bind with

hydrophobic motifs on the carboxy-termini of the clathrin heavy chains that

protrude inward from the tripod (Rapoport et al., 2008). The ATPase activity

of HSC70 is stimulated by this peptide binding and Auxilin binding (Holstein

et al., 1996; Ungewickell et al., 1997), and the resulting conversion of HSC70-ATP

to HSC70-ADP tightens the HSC70 clamp with the hydrophobic clathrin motif,

locking the local distortion of the clathrin coat into place (Böcking et al., 2011;

Fotin et al., 2004b; Xing et al., 2010). It is thought that a local distortion of a

critical number of clathrin triskelia results in sufficient strain to destabilize the

entire clathrin lattice for the subsequent uncoating of the CCV (Böcking et al.,

2011; Xing et al., 2010).

Auxilin has also been found to interact with AP2 through a low affinity interaction

of ‘DPF’ motifs within the clathrin binding domain (Kametaka et al., 2007; Owen

et al., 1999; Scheele et al., 2001; Scheele et al., 2003). This interaction is not

required for its recruitment to AP2 positive CCVs, but it is plausible that it

helps stabilizing its interaction in a CCV and contributes to distinguish free and

polymerized clathrin triskelia (Scheele et al., 2003).

Altogether, the role for Auxilin in the uncoating of CCVs has been well established.

However, the Auxilin-dependent dynamics of uncoating in vivo have nearly

exclusively been studied in the context of CME. An important open question is

therefore to what extent its function can be extrapolated to clathrin-mediated

trafficking at the Golgi apparatus. CCVs derived from the TGN differ from those

derived from the plasma membrane, as they contain different adaptor proteins

and are derived from membranes with different lipid compositions. Remarkably,

Auxilin has been found to interact with plasma membrane-resident adaptor protein
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AP2, but not with Golgi-resident AP1 or the GGAs (Kametaka et al., 2007). In

addition, it is unclear whether the PTEN domain of Auxilin similarly senses the

release of CCVs from the TGN by their lipid content as has been described for

CME. Whereas the plasma membrane is chiefly composed of PI(4,5)P2, PI4P

appears to be the principal phosphatidylinositol on the TGN (Daboussi et al.,

2012b). It remains to be determined whether CCV budding from the TGN is

similarly accompanied by a rapid conversion of phosphatidylinositol contents as is

the case for CME.

1.4.3 GAK, the ubiquitous homologue of Auxilin

GAK (cyclin G-dependent kinase A), encoded by DNAJC26 (DNAJ HSP member

C26), is the ubiquitously expressed paralogue of Auxilin (Figure 1.13) (Greener

et al., 2000). GAK and Auxilin serve a similar function as co-chaperones of HSC70

required for the uncoating of CCVs but there are a few important differences

between both proteins.

At the molecular level, GAK has 44% sequence identity and 59% homology with

Auxilin. GAK shares a similar domain structure to Auxilin, but has an additional

N-terminal kinase domain. In contrast with Auxilin, GAK has been found to

interact with both AP1 and AP2 (Greener et al., 2000; Kametaka et al., 2007)

and the kinase domain of GAK was found to phosphorylate the µ-domains of AP1

and AP2 in vitro (Korolchuk and Banting, 2002; Umeda et al., 2000). Whereas

the exact physiological relevance of this phosphorylation in vivo remains to be

elucidated, it has been suggested to modulate association of adaptor proteins with

membranes and internalization signals of cargo (Fingerhut et al., 2001; Olusanya

et al., 2001).
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Figure 1.13: Tissue expression DNAJC6 (Auxilin) and DNAJC26 (GAK) genes
Dotted box indicates expression in brain. Adapted from GTEx Analysis release V7. Gencode ID
is ENSG00000116675.11 and ENSG00000178950.12 for DNAJC6 and DNAJC26, respectively
(Lonsdale et al., 2013).

At the organismal level, GAK KO animals show embryonic mortality (Lee et al.,

2008), whereas Auxilin KO animals showed increased postnatal mortality, with

surviving animals displaying decreased birth weight and delayed sexual maturity

(Yim et al., 2010). In addition, GAK was found to be upregulated in the brain

of Auxilin KO animals, suggesting that GAK may partially compensate for the

loss of Auxilin. However, conditional GAK KO animals with selective disruption
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of GAK in the brain were lethal, indicating that Auxilin and GAK are not fully

redundant in function (Lee et al., 2008).

1.4.4 RME-8 and endosomal clathrin dynamics

The retromer is a pivotal complex for the selective sorting of proteins from

endosomal tubules to the Golgi apparatus or plasma membrane (Seaman et al.,

1997; Seaman et al., 1998). Cargoes that are delivered by CCVs to endosomes,

including CIMPR, Sortilin and SorLA, are dependent on retromer for their retrieval

and recycling to the TGN for another round of clathrin-mediated sorting (Arighi

et al., 2004; Fjorback et al., 2012; Nielsen et al., 2007; Seaman, 2004). The sorting

nexin (SNX) dimer component of retromer enables the formation of tubules from

the endosomes, whilst the vacuolar protein sorting (VPS) trimer component

mediates protein selection and upconcentration on those tubules (Seaman and

Williams, 2002; Seaman et al., 1998). The WASH (Wiskott-Aldrich syndrome

protein and Scar homologue) complex is a key accessory complex of retromer,

facilitating the formation of an endosome-localized branched actin network required

for cargo sorting (Derivery et al., 2009; Gomez and Billadeau, 2009; Harbour

et al., 2010).

RME-8 (receptor mediated endocytosis 8) is encoded by DNAJC13 (DNAJ HSP

member C13) and is, like Auxilin and GAK, a J-protein that requires interaction

with HSC70 for its function (Fujibayashi et al., 2008; Girard et al., 2005; Yoshida

et al., 2018; Zhang et al., 2001). RME-8 plays a role in the regulation of endosomal

tubule formation, through interaction with SNX1 and FAM21, components of the

retromer SNX dimer and the WASH complex, respectively (Freeman et al., 2014).

Whereas RME-8 has not been found to interact with clathrin directly, loss of
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RME-8 or HSC70 results in an accumulation of clathrin at early endosomes as well

as the missorting of endosomal cargo (Fujibayashi et al., 2008; Girard et al., 2005;

Norris et al., 2017; Popoff et al., 2009; Shi et al., 2009). In addition to RME-8,

the ESCRT (endosomal sorting complex required for transport) complex has also

been found to interact with SNX1 (Popoff et al., 2009). ESCRT-0 sorts endosomal

cargo on clathrin-containing microdomains on the endosomes for degradation in

the lysosomes (Chin et al., 2001; Kurten et al., 1996; Raiborg et al., 2001).

Altogether, these findings have led to the hypothesis that SNX1 is placed at the

interface of an endosomal degradative route and a retromer-dependent sorting

route for retrieval and recycling of cargo. Interaction of SNX1 with the the

ESCRT-complex on clathrin subdomains would lead to degradation of endosomal

cargo. Alternatively, RME-8, through interaction with SNX1, has been proposed

to regulate dynamics of endosomal clathrin domains to allow for the formation

of functional retromer tubules. However, further research is required for the

validation of this model (McGough and Cullen, 2011).
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1.5 CLATHRIN TRAFFICKING AND PARKINSON’S DISEASE

Clathrin trafficking has attracted recent attention in the context of PD, as multiple

genes with prominent roles in clathrin trafficking and dynamics harbour mutations

associated with disease. Recessive loss of function mutations in proteins with

key roles in the uncoating of CCVs, Auxilin and Synaptojanin 1, are causative

for atypical, juvenile/early onset PD, with additional neurological phenotypes

including seizures (Edvardson et al., 2012; Elsayed et al., 2016; Köroglu et

al., 2013; Krebs et al., 2013; Olgiati et al., 2014, 2016; Quadri et al., 2013).

GAK, the homologue of Auxilin, has been nominated by GWAS to be a risk

factor candidate for PD (Nalls et al., 2014, 2018). Dominant mutations in

RME-8, a retromer-associated protein with a proposed role in the dynamics of

flat clathrin microdomains on endosomes, are thought to cause typical, late onset

PD (Gustavsson et al., 2015; Vilariño-Güell et al., 2011).

This paragraph will give an overview of genetics and functional involvement of

clathrin genes in PD, with particular emphasis on Auxilin - the subject of the

thesis.

1.5.1 Auxilin and Parkinson’s disease

Multiple autosomal recessive mutations have been described in DNAJC6 to cause

juvenile and early-onset PD, with AAO ranging between 7-45 years old. For

simplicity, amino acid positions of the mutations are based on the canonical

DNAJC6 transcript ENST00000371069 (Figure 1.12).
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Figure 1.14: Auxilin domain structure with indication of PD mutations

Since 2012, 5 recessive homozygous recessive mutations have been described in

DNAJC6 and have been proposed to cause PD (Figure 1.14).

The intronic DNAJC6 mutation c.801-2A>G was first discovered to cause juvenile

onset PD in a consanguineous family of Palestinian origin (Edvardson et al., 2012).

The mutation lies within the intron-exon boundary at the start of exon 7 and has

been suggested to result in mis-spliced mRNA and overall decreased mRNA levels

(Edvardson et al., 2012).

Similarly, the exonic synonymous DNAJC6 mutation c.2223A>T is located 5

bases before the end of exon 15 in a splice-acceptor site. It is also predicted to

result in mis-splicing and has been shown to result in decreased mRNA levels.

The resulting recessive T741= Auxilin mutation was shown to cause early onset

PD in a Brazilian family (Olgiati et al., 2016).

In addition, two C-terminally truncating mutations that completely lack the

J-domain as well as part of the domain containing clathrin-binding boxes,

Q846X and Q791X, were described in consanguineous families from Turkish

and Sudanese/Yeminis origin with juvenile PD, respectively (Elsayed et al., 2016;

Köroglu et al., 2013).

Finally, R927G, a homozygous missense mutation in the highly conserved J-domain

of DNAJC6, originates from a Dutch proband and was found to cause early onset

PD (Olgiati et al., 2016).
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Interestingly, all of the homozygous recessive mutations described in DNAJC6

show clear genotype-phenotype correlations (Table 1.3). Patients with missense

mutations present with typical parkinsonism. Whereas the point mutation R927G

results in early onset of disease, patients with splicing mutations (c.801-2A>G,

T741=) present with both juvenile and early onset PD (Edvardson et al., 2012;

Olgiati et al., 2016). In contrast, nonsense mutations (Q791X, Q846X) result

in a very severe and rapidly progressing disease course with juvenile onset

(Elsayed et al., 2016; Köroglu et al., 2013). These patients also presented

additional atypical features including cognitive impairment, pyramidal signs and

sometimes hallucinations and seizures. Remarkably, a homozygous 80kb deleterion

encompassing the C-terminus of DNAJC6 as well as the N-terminus of LEPR has

previously been associated with epilepsies and developmental delay (Vauthier et al.,

2012). Although there was no report of parkinsonism, the very young presentation

of phenotypes in this case at age 7 years, may mean that additional phenotypes

may not have yet developed. Response to L-DOPA in patients with DNAJC6

mutations is either absent or limited due to L-DOPA induced hallucinations and

dyskinesias.

Apparently sporadic patients with early onset PD were found to carry compound

heterozygous mutations (c.203813A>G and a c.1468183del) or heterozygous

variants (p.L09P, p.R619C, p.M133L, p.F839LfsX22) in DNAJC6, of unknown

pathogenicity (Olgiati et al., 2016).

Whereas the role of Auxilin in the uncoating of CCVs is well recognized, the

mechanism of action in disease pathogenesis remains to be studied. Genetics

of DNAJC6 point to a loss of function mechanism of Auxilin, which could lead

to impairment of uncoating of CCVs at the Golgi or the synapse. Complete

loss of Auxilin at the organismal level has previously been found to result in
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neurodegeneration and locomotor deficits in drosophila and synaptic defects in

mice (Song et al., 2017; Yim et al., 2010). Depletion of Auxilin in cells results

in an accumulation of clathrin structures and impaired delivery of cargo (Gall

et al., 2000; Greener et al., 2001; Hagedorn et al., 2006; Hirst et al., 2008; Morgan

et al., 2001; Pishvaee et al., 2000). In addition, mass spectometry analysis has

shown that double knockdown of Auxilin and its homologue GAK in cells results

in depletion of cargo but accumulation of clathrin-binding proteins in purified

CCVs (Borner et al., 2006; Borner et al., 2012).
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Mutation p.Q791X p.Q846X p.R927G p.T741= c.801-2a¿g

Age at onset 10-11 10 21/29 31/42 13/18

Assymmetric onset + + +/- + +

Bradykinesia + + + + +

Rest tremor + - +/- + +

Rigidity + + + + +

Postural instability + + + + +

L-DOPA response + + + + -

L-DOPA-induced dyskinesias + + - + n/a

L-DOPA-induced hallucinations + - + +/- n/a

Pyramidal signs + + - - -

Cerebellar signs + - - - -

Autonomic signs - - - - -

Cognitive decline + + - +/- -

Seizures +/- + - - -

Table 1.3: Clinical features of Auxilin mutation carriers
+ = present, - = not reported, +/-: present in some but not all patients.

1.5.2 GAK as a risk factor candidate for PD

The locus containing GAK has been identified to be a risk factor candidate for

PD (risk SNP rs17781378) (Nalls et al., 2014, 2018). However, this region contains

several other genes of interest including TMEM175 (transmembrane protein 175)

and it is currently unclear which is the causative gene on this locus. The locus is

further complicated by the presence of two independent risk signals and because

both genes share the same putative promoter (Nalls et al., 2018).

From a functional perspective, both GAK and TMEM175 are plausible candidates

as risk factors. GAK makes an interesting candidate because of its functional

overlap with the Mendelian PD protein Auxilin. TMEM175 constitutes a lysosomal

potassium channel and would also make a plausible candidate since multiple

proteins that function in the endolysosomal pathway have been associated with

PD (see Section 1.1.5). In addition, both GAK and TMEM175 have been found
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to interact with other PD-associated proteins. TMEM175 has been shown to

interact with α-synuclein, whereas GAK was found to form a co-complex with

PD-associated proteins LRRK2 and Rab29 (Beilina et al., 2014; Jinn et al., 2017;

Nagle et al., 2016). Thus, more research is required to elucidate how this locus

contributes to PD pathogenesis and whether either or both genes are risk factors

for PD.

1.5.3 RME-8 and Parkinson’s disease

An autosomal dominant mutation in the retromer-associated protein RME-8

(N855S) was originally described in a large, multi-incident pedigree of

Dutch-German-Russian Mennonite ancestry to cause late-onset PD (Vilariño-Güell

et al., 2014). Five additional PD cases were described with this mutation, all

carrying the same haplotype, indicating high evolutionary conservation and a

common ancestor with the original Mennonite pedigree (Gustavsson et al., 2015;

Vilariño-Güell et al., 2011). However, additional screening of Caucasian and

Chinese cohorts did not identify additional mutation carriers, indicating it is

not a common cause for disease (Foo et al., 2014; Lorenzo-Betancor et al., 2015;

Ross et al., 2016; Vilariño-Güell et al., 2011; Yuan et al., 2016). The onset of

symptoms is assymetric, with average AAO of 67 years and slow course of disease

progression. They present with typical parkinsonism phenotypes (tremor, rigidity

and bradykinesia) and are responsive to L-DOPA therapies (Vilariño-Güell et

al., 2014). Additional variants in RME-8 of unknown pathogenecity have been

discribed that might contribute to susceptibility of PD development (Gustavsson

et al., 2015; Ross et al., 2016). Remarkably, dominant mutations in VPS35, a

protein of the VPS retromer trimer, have also been shown to cause PD, with a
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similar phenotypic presentation as RME-8 mutation carriers (Vilariño-Güell et al.,

2011; Zimprich et al., 2011).

These genetic findings underscore the importance of retromer-mediated endosomal

protein sorting in the pathogenesis of PD. N855S RME-8 has been shown to impair

endosomal cargo sorting (Yoshida et al., 2018). However, the exact mechanism of

how of the N855S RME-8 mutation contributes to disease pathogenesis remains

to be elucidated.

Finally, it should be noted that there have been conflicting reports on the

association of the N855S RME-8 with PD. An independent re-analysis of the

original Mennonite family in which N855S RME-8 was described has pointed to a

mutation in TMEM230 to be causative for the disease in this family (Deng et al.,

2016). Both proposed variants display imperfect disease segregation, thus further

research is required to determine which gene is causative for PD.

1.5.4 Synaptojanin 1 and Parkinson’s disease

Synaptojanin 1, encoded by SYNJ1, is a presynaptic phosphatase mediating

phosphoinositide conversion critical for the shedding of clathrin adaptor proteins

from CCVs during uncoating (Figure 1.4) (Cremona et al., 1999; Di Paolo and

De Camilli, 2006; McPherson et al., 1996).

A recessive loss of function mutation in SYNJ1 (R258G) has been described to

co-segregate with early onset PD in 4 independent consanguineous families, with

AAO ranging between 20 and 30 years old (Krebs et al., 2013; Olgiati et al., 2014;

Quadri et al., 2013). In addition to the typical parkinsonian symptoms, patients

also presented with atypical neurological features including cognitive decline and
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epilepsies. Response to L-DOPA treatment was either poor or limited due to

L-DOPA-induced dyskinesias (Krebs et al., 2013; Quadri et al., 2013; Taghavi

et al., 2018).

The R258G mutation was shown to drastically impair the phosphatase activity of

Synaptojanin 1 (Krebs et al., 2013) and in vivo studies of a mouse model with

the endogenous mutation showed endocytic deficits impairment of uncoating of

CCVs in synapses (Cao et al., 2017). Moreover, these mice exhibited neurological

manifestations reminiscent to those of human patients, including early onset motor

deficits and seizures (Cao et al., 2017). Impairment of CME in synapses would

thus be a plausible mechanism for PD pathogenesis in these patients.
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2 OVERVIEW AND AIMS OF THE THESIS

CCVs are ubiquitous across all eukaryotes and cell types and selectively transport

cargo from the plasma membrane and the TGN to intracellular destinations.

Auxilin is the major neuronal CCV uncoating protein and is required for the

successful delivery of cargo to its destination compartments. Whereas its role in

the uncoating of CCVs at the synapse has been studied in great detail, the role of

Auxilin in the uncoating of TGN-derived CCVs is less established.

Over the past years, homozygous recessive mutations in Auxilin have been found to

cause an aggressive form of rare, young onset PD (Edvardson et al., 2012; Elsayed

et al., 2016; Köroglu et al., 2013; Olgiati et al., 2016). Two splice-site mutations

(T741= and c.801-2A>G) resulting in overall decreased mRNA levels and two

C-terminally truncating mutations (Q791X and Q846X) point to a (partial) loss

of function mechanism in disease pathogenesis. However, the mechanism of action

of the pathogenic point mutation (R927G) is less clear. In addition, the impact of

the mutations at the cellular or physiological level has not been studied yet.

One way to address these open questions is to develop a mouse model with

endogenous homozygous variant R857G, equivalent to the human pathogenic

R927G Auxilin mutation to gain insights into the underlying neuropathology. In

addition, cellular models of Auxilin mutations can be utilized to assess the impact

of the mutations on biological pathways.

The overarching goal of this PhD thesis is to characterize PD-associated

Auxilin mutations in order to gain insight into the mechanisms leading to

neurodegeneration. This can be broken down into the following aims:
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Aim 1 Test the impact of the pathogenic point mutation R927G in Auxilin in an

animal model. This will be achieved by carrying out detailed behavioural analyses

to assess neurological phenotypes of a CRISPR/Cas9-based mouse model with

homozygous R857G Auxilin variant, equivalent to the human pathogenic R927G

Auxilin mutation.

Aim 2 Investigate the neuropathological consequences of the R857G variant

in the mouse brain. This will involve assessment of the presence of PD-like

neuropathology, such as dopaminergic neurodegeneration and accumulation of

intracellular proteinaceous inclusions. Immunohistochemistry and subsequent

confocal light microscopy analysis will be performed to gain insight into

neuropathology. In addition, electron microscopy will be performed to investigate

ultra-structural alterations in the brain of R857G Auxilin mice.

Aim 3 Identification of cellular pathways affected by the pathogenic Auxilin point

mutation, via RNAseq-based analysis of transcriptomic alterations in murine

primary neurons derived from R857G Auxilin mice. This will test whether there

are specific cellular signatures associated with point mutations in Auxilin.

Aim 4 Mapping of the interactome of Auxilin to gain mechanistic insight into the

molecular machinery involved with the uncoating of CCVs, both at the synapse

and the Golgi apparatus. Proteome-wide analyses will be used to identify the full

interactome of Auxilin in an unbiased fashion.

Aim 5 Dissect the pathogenic mechanisms underlying PD in Auxilin mutation

carriers, by evaluating the impact of PD mutations on the interactome of Auxilin.

This will test whether mutations in Auxilin result in a consistent disease-specific

alteration in protein complex biology leading to dysfunction.
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Taken together, assessment of the impact of Auxilin mutations at the organismal

level, on neuronal pathways and at the cellular and molecular level should provide

significant insights in the underlying pathobiology of Auxilin mutation carriers.

These findings in turn will contribute to our understanding on the involvement

of clathrin trafficking in PD, with the potential to open up novel therapeutic

pathways in the future.
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3 DEVELOPMENT OF A NOVEL AUXILIN MUTATION MOUSE MODEL

3 DEVELOPMENT OF A NOVEL AUXILIN MUTATION

MOUSE MODEL

3.1 INTRODUCTION

Auxilin is the major neuronal co-chaperone of HSC70, required for the shedding

of the clathrin coat of CCVs. Multiple homozygous recessive mutations in Auxilin

have been found to cause a rare, aggressive form of young onset PD, but how

Auxilin mutations contribute to PD pathogenesis remains to be elucidated. Some

of the described Auxilin mutations are likely to function via a loss of function

mechanism, since two nonsense mutations in Auxilin result in C-terminally

truncated proteins (Q791X, Q846X) and two additional mutations are splice-site

variants (c.801-2A>G, T741=) that are thought to result in decreased mRNA

levels (Edvardson et al., 2012; Elsayed et al., 2016; Köroglu et al., 2013; Olgiati et

al., 2016). Finally, the homozygous recessive R927G Auxilin mutation lies within

the conserved J-domain, required for interaction with HSC70. The mechanism of

action in PD of the R927G mutation is less clear (Olgiati et al., 2016).

At the organismal level, complete loss of Auxilin in mice results increased postnatal

mortality, with subsequent deviation from the expected 1:2:1 Mendelian inheritance

from heterozygous mating in mice (Yim et al., 2010). Surviving Auxilin KO mice

showed a decreased body weight, but otherwise normal lifespan (Yim et al., 2010).

In addition, GAK, the ubiquitously expressed homologue of Auxilin, was found to

be upregulated in the brain, indicating that GAK may compensate for the lack of

Auxilin (Yim et al., 2010).

In contrast, GAK KO mice are embryonically lethal (Lee et al., 2008). Selective

KO of GAK in the brain of developing mice also results in embryonic and early
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postnatal mortality, with all mice dying before the 4th day after birth (Lee et al.,

2008). These findings indicate that Auxilin and GAK may not fully compensate

for each other in the mouse brain. Either their physiological roles are not fully

redundant, or GAK and Auxilin exhibit different cellular expression patterns

across cell types in the central nervous system and expression levels are not

sufficient to compensate for complete loss of either protein. Whereas Auxilin has

been reported to be highly expressed in the brain and more specifically in neurons

(Figure 1.12) (Lonsdale et al., 2013; Zhang et al., 2014; Zhang et al., 2016b), GAK

has a ubiquitous expression with relatively low expression levels across different

brain areas (Figure 1.13) (Lonsdale et al., 2013). Previous RNAseq experiments

have indicated very low GAK mRNA levels in acutely isolated cortical neurons

from mouse and human brain, respectively (Zhang et al., 2014; Zhang et al.,

2016b).

To understand how the R927G Auxilin mutation causes PD, a novel mouse

model was developed in collaboration with the Transgenic Core of the National

Heart, Lung and Blood Institute (National Institutes of Health), carrying the

equivalent murine homozygous R857G Auxilin variant. Remarkably, the R857G

Auxilin was found to result in decreased Auxilin levels in the brain. I therefore

hypothesized that mice with the homozygous hypomorphic R857G Auxilin allele

may recapitulate manifestations seen in mice with complete loss of Auxilin. To

understand whether GAK could compensate for the partial loss of Auxilin, RNA

and protein levels of GAK and Auxilin in the brain were analysed at different

time points. In addition, the expression of GAK and Auxilin in individual cells in

the mouse brain were visualized using RNAscope experiments, executed by Dr.

Sara Saez-Atienzar. The impact of the R857G Auxilin at the organismal level and
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on nigrostriatal pathways will be further discussed in Chapter 4 and Appendix 1,

respectively.
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3.2 RESULTS

3.2.1 Design of a CRISPR/Cas9-based R857G Auxilin mouse model

The R927 residue of Auxilin lies within a stretch of amino acids in the J-domain

that is very well conserved across different J-proteins as well as different species

(Figure 3.1 A). I therefore decided to generate a mouse model with the equivalent

endogenous homozygous murine R857G variant in collaboration with the transgenic

core (National Heart Lung and Blood Institute, National Institutes of Health)

using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in

a C57BL/6J background. CRISPR-based mutagenesis for R to G substitution was

designed for optimal murine glycine codon utilization (AGG>GGC). The AGG

codon for the R958 residue served as the protospacer adjacent motif (PAM), critical

for target binding and cleavage by CRISPR. Silent mutations were introduced in the

PAM sequence to prevent further targeting of Cas9 after CRISPR successful editing

(Figure 3.1 B). Correct CRISPR-editing was confirmed by Sanger sequencing of

genomic DNA derived from mouse tails (Figure 3.1 C).
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Figure 3.1: Design of CRISPR-mediated R857G Auxilin mouse A The human
R927 Auxilin residue is conserved across species and is equivalent to the murine R857
residue. Amino acid position is based on the canonical Mus musculus DNAJC6 transcript
ENSMUST00000094953. Silent mutations are indicated in yellow, missense mutations are
indicated in green. B Design of the R857G Auxilin mutation mouse at the level of amino acids
and basepairs. Silent mutations are indicated in yellow, missense mutations are indicated in
green. C Sanger sequencing to confirm correct knockin of R857G Auxilin mutation.

3.2.2 Decreased Auxilin protein levels in neurons of R857G Auxilin

animals

Even though Auxilin expression is largely restricted to the brain, and more

specifically to neurons, previous work has indicated a dramatic decrease of

Auxilin protein levels in primary fibroblasts derived from R927G mutation carriers

compared to controls (Olgiati et al., 2016). To understand the effect of the

mutation in neurons on Auxilin protein levels, primary neurons were derived from

the combined brains from a litter of WT and R857G Auxilin mice each. Western

blot (WB) analysis revealed a ∼75% decrease in Auxilin in neurons derived from

R857G Auxilin mice compared to WT controls.

84



3 DEVELOPMENT OF A NOVEL AUXILIN MUTATION MOUSE MODEL

W
T

A
u
x
il
in

0.00

0.05

0.10

0.15

0.20

0.25

****

Figure 3.2: Decreased Auxilin protein levels in R857G Auxilin primary neurons A
WB of Auxilin in primary neurons derived from the combined brains of a full litter of WT and
R857G Auxilin mice each. B Quantification of normalized Auxilin levels. n = 4 independent
cultures from pooled litters. Welch’s t-tests were performed, **** indicates p-value <0.0001.
Error bars represent standard deviation (SD).

3.2.3 Age-dependent upregulation of Auxilin in R857G Auxilin mice

To extend these results to the in vivo setting, I compared Auxilin levels in mouse

brains from litters of WT and R857G Auxilin mice at different time points from

birth.

Similarly to primary neurons that are derived from postnatal day 0 (P0) animals,

brain lysates of P0 R857G mutant mice showed decreased levels of Auxilin. In

four out of five R857G Auxilin animals there was a substantial (∼60%) decrease

in Auxilin levels, although in one animal Auxilin protein was more substantially

decreased (Figure 3.3).

Analysis of Auxilin in half brain lysates of 2 day old mice (P2) similarly showed

that Auxilin was nearly completely absent in the brain of one pup of the R857G

Auxilin litter, whereas all other brains displayed a ∼50% decrease in Auxilin levels

compared to WT brain lysates (Figure 3.3).
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No differences in Auxilin protein levels were observed in half brain lysates of 3

week old animals (Figure 3.3).

Figure 3.3: Auxilin and GAK protein levels in the brain of R857G Auxilin mice A,
D, G WB of Auxilin and GAK in brain lysates of P0, P2 and 3 week old WT and R857G Auxilin
mice, respectively. n=4-6 mice per genotype. B, C, E, F, H, I Quantification of normalized
Auxilin and GAK levels brain lysates of P0, P2 and 3 week old WT and R857G Auxilin mice.
Welch’s t-tests were performed and p-values indicated when significant, * p-value <0.05, ****
p-value <0.0001.
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3.2.4 Transient upregulation of GAK in the brain of R857G Auxilin mice

Since GAK was found to be upregulated in the brain of Auxilin KO animals, I

analysed protein levels of GAK in the brain in the brain of R857G Auxilin mice

at different time points. Whereas no differences in GAK were observed in the

brains of P0 or 3 week old mice, GAK protein levels were increased in the brains

of P2 R857G Auxilin mice compared to WT mice (Figure 3.3). Interestingly, P0

and P2 R857G Auxilin mice with nearly completely absent Auxilin protein levels,

showed high GAK expression levels compared to their littermates (Figure 3.3 B,

C, E, F). Thus, GAK appears to be transiently upregulated two days after birth

in R857G Auxilin mice, possibly to compensate for the decreased levels of Auxilin

protein in early development. This idea is further strengthened by the observation

that R857G Auxilin pups with the lowest Auxilin protein levels display the higher

GAK levels in the brain.

3.2.5 mRNA expression levels of Auxilin and GAK in the brain of R857G

Auxilin mice

To understand whether the observed alterations in Auxilin and GAK protein levels

in the brain of R857G Auxilin mice were driven by alterations in mRNA levels,

quantitative polymerase chain reactions (qPCR) were performed at different ages

(P0, P2 and 3 weeks).

RNA was extracted from full brains from WT and R857G Auxilin litters of P0

mice, or from the remaining hemisphere of the brains that were used for WB

analysis of P2 and 3 week old mice.
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Even though decreases in Auxilin protein were observed in P0 and P2 R857G

Auxilin mice, no differences in Auxilin mRNA levels were observed at any of the

time points.

GAK mRNA levels were increased at all time points, in contrast with GAK

protein levels that were only found to be significantly increased in P2 R857G

Auxilin mice. The P2 R857G Auxilin mouse that showed nearly completely absent

Auxilin protein levels (Figure 3.2 D, E), displayed the highest Auxilin mRNA

levels compared to its littermates (Figure 3.4 C). GAK protein and mRNA levels

were also found to be higher in this animal compared to littermates (Figure 3.3 F,

Figure 3.4 D).

Taken together, these data indicate that the decreased levels of Auxilin during

early development can not simply be explained by decreased expression in R857G

Auxilin mice, as no differences in Auxilin mRNA were observed between genotypes.

In contrast, GAK expression was found to be upregulated at all tested time points

indicating transcriptional activation in R857G Auxilin mice. However, GAK

protein was only found to be transiently increased 2 days after birth in the brain

of R857G, indicating that GAK may compensate for decreased Auxilin function

in P2 R857G mice.
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Figure 3.4: Auxilin and GAK mRNA levels in the brain of R857G Auxilin mice A,
C, E qPCR analysis of Auxilin mRNA normalized against PPID mRNA levels in the brain of
P0, P2 and 3 week old WT and R857G Auxilin mice, respectively. n=4-6 mice per genotype. B,
D, F qPCR analysis of GAK mRNA normalized against PPID mRNA levels in the brain of P0,
P2 and 3 week old WT and R857G Auxilin mice, respectively. Welch’s t-tests were performed
and p-values indicated when significant, * p-value <0.05.
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Auxilin protein levels were found to be decreased in primary R857G Auxilin

neurons (Figure 3.2). To address whether GAK expression was increased in

neurons derived from R857G Auxilin mice specifically, qPCR was performed of

primary cultured prepared from individual brains.

In line with the findings on Auxilin and GAK mRNA levels of total brain RNA,

no differences in Auxilin mRNA levels were observed in R857G Auxilin primary

neurons, whereas GAK mRNA levels were found to be upregulated (Figure 3.5).
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Figure 3.5: Auxilin and GAK mRNA levels in primary neurons qPCR analysis of
Auxilin mRNA normalized against β-actin mRNA in primary neurons derived from WT and
R857G Auxilin mice. Primary neurons were derived from n=4-5 mice per genotype. Welch’s
t-tests were performed and p-values indicated when significant, * p-value <0.05.

3.2.6 Cellular RNA expression of GAK and Auxilin in the mouse brain

Auxilin expression has previously been reported to be largely restricted to neurons

in the mouse brain (Zhang et al., 2014; Zhang et al., 2016b).

90



3 DEVELOPMENT OF A NOVEL AUXILIN MUTATION MOUSE MODEL

Since GAK protein levels were found to be upregulated in the brain of P2 R857G

Auxilin mice, it was hypothesized that this could compensate for the decreased

Auxilin levels. However, GAK would only be able to partially compensate for loss

of Auxilin function when expressed in the same cells, i.e. neurons.

To assess whether Auxilin and GAK are expressed in the same cells in the brain,

and in particular in dopaminergic neurons in the SN, the brain area affected in

PD, RNAscope was performed to visualize RNA expression in midbrain slices of 2

month old WT mice. Auxilin was found to be highy expressed in dopaminergic

neurons in the SN and VTA (Figure 3.6).
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Figure 3.6: RNAscope of Auxilin in the nigrostriatal pathway RNAscope experiment
was executed by Dr. Sara Saez-Atienzar. Auxilin mRNA (green), the dopaminergic neuronal
marker TH mRNA (pink) was visualized in midbrain slices of 2 month old WT mice. Scale bar
indicates 800 µm.
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RNAscope at higher magnifications of midbrain slices allowed to visualize Auxilin

and GAK expression within individual cells. GAK and Auxilin were found to

be expressed within the same cells, including in the SN pars compacta and pars

reticulata (Figure 3.7).
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Figure 3.7: RNAscope GAK and Auxilin in the SN RNAscope experiment was executed
by Dr. Sara Saez-Atienzar. Nucluear marker (DAPI, blue), Auxilin mRNA (red) and GAK
mRNA (green) were visualized in the SN in midbrain slices of a 2 month old WT mouse. Scale
bars indicate 800 µm, 100 µm and 30 µm in left, middle and right panel respectively.
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3.2.7 Deviation from Mendelian inheritance

To evaluate viability of R857G Auxilin mice compared to WT, the offspring

of heterozygous R857G Auxilin mice mating were genotyped at 3 weeks old.

A significant deviation from the expected 1:2:1 Mendelian inheritance ratio

(homozygous R857G:heterozygous R857G Auxilin:WT) was observed, indicating

decreased viability of R857G Auxilin mice (Figure 3.8).
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Figure 3.8: Survival bias of heterozygous R857G Auxilin mating Survival bias of the
offspring of heterozygous R857G Auxilin mating at 3 weeks old. Chi-square test was performed
with n = 10 litters and p-value < 0.01.

3.2.8 Decreased birth weight in R857G Auxilin mice

Since a decreased weight at birth was observed in Auxilin KO mice (Yim et al.,

2010), the body weight of R857G Auxilin was compared with WT mice at different

ages. P0 R857G Auxilin mice displayed a decreased body weight compared to

WT mice. Given the large variation in weight between male and female animals

at later ages, gender was considered a confounding factor and included as an

additional independent variable. A decreased body weight was observed for 6

month old female mice. No differences were observed for 12 month old animals.
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Figure 3.9: Body weight of R857G Auxilin mice A Body weight of newborn mice. Welch’s
t-test was performed, n=5 and 6 litters for WT and R857G Auxilin mice, respectively, * indicates
p-value < 0.05. B and C Body weight of 6 and 12 month old mice. Two-way ANOVA was
performed with Sidak’s post hoc analysis, p-value is indicated when significant, * represents p <
0.05.
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3.3 DISCUSSION

To gain insight into the mechanism of action of the pathogenic R927G Auxilin

mutation in PD, a novel CRISPR/Cas9-based mouse model with the equivalent

homozygous R857G murine Auxilin mutation was developed.

Decreased Auxilin protein levels were observed in newborn R857G Auxilin mice.

Analysis of Auxilin protein levels in P0 R857G Auxilin brains revealed a ∼ 60%

decrease compared to WT mice, whereas a ∼50% decrease was observed in P2

R857G Auxilin brains. Remarkably, Auxilin appeared to be nearly completely

absent in one R857G Auxilin pup per P0 and P2 litter. This points to

developmental differences between R857G Auxilin litter mates and a possible

explanation is that mutant mice lacking Auxilin are the runts of the litter. No

differences in Auxilin protein levels were observed in 3 week old R857G Auxilin

mice compared to WT. Taken together, these data show that R857G Auxilin is

a hypomorphic allele, but Auxilin levels gradually increase with age in R927G

brains and are equivalent to those in WT mice at 3 weeks old (Figure 3.3).

No differences in Auxilin mRNA levels were observed in the brains of P0, P2 or 3

week old R857G Auxilin mice (Figure 3.4). This apparent discrepancy between

relative levels of Auxilin mRNA and protein between WT and R857G auxilin mice

could be explained in several different ways. First, the R857G Auxilin mutation

may decrease the half-life of the Auxilin protein. If this were the case, then the

finding that Auxilin protein levels of R857G Auxilin mice gradually increase with

age and are equivalent to WT mice in 3 week old animals, would require that

R857G Auxilin protein is increasingly stabilized with age. Future experiments

should address the impact of the mutation on protein turnover. Second, there

might be a delayed onset between translation to protein from Auxilin mRNA in
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R857G Auxilin mice. Auxilin expression is largely restricted to neurons in the

mouse brain (Zhang et al., 2014; Zhang et al., 2016b) and the transcription of

neuron-specific gene products have previously been found to be upregulated around

day 10 of embryonic development (Hartl et al., 2008). No differences in Auxilin

mRNA levels were observed in newborn pups, however the decrease in Auxilin

protein in newborn R857G Auxilin mice might reflect a delay or impairment of

translation. Finally, even though no differences in Auxilin mRNA levels were

observed, it is possible that mRNA dynamics are altered. Nonsense-mediated

decay of mRNA might be counteracted by increased transcription of Auxilin in

R857G Auxilin mice. This would result in equal total mRNA levels, but decreased

half-life of mRNA levels, which may in turn impact the translation of Auxilin. This

idea is further strengthened by the finding that the P2 Auxilin mouse with nearly

completely absent Auxilin levels even showed the highest Auxilin mRNA levels as

compared to its littermates. In this scenario, increased Auxilin protein levels with

age in R857G Auxilin mice might be acquired through increased translational

rates.

Analysis of the survivorship of the 3 week old offspring of heterozygous breeding

indicates increased mortality of R857G Auxilin mice. Future work will be required

to determine whether R857G Auxilin mutation causes embryonic or postnatal

mortality. An interesting hypothesis would be that pups that nearly completely

lack Auxilin have decreased chances of survival, consistent with the observation

that Auxilin KO animals have increased early postnatal mortality (Yim et al.,

2010). This hypothesis is further strengthened by the finding that mice completely

lacking Auxilin were not observed at the 3 week time-point. However, it can not

be ruled out that mice that nearly completely lack Auxilin at P0 or P2 go on to

display increased Auxilin levels at later time points.
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GAK, the ubiquitous homologue of Auxilin, was found to be increased in the

brains of R857G Auxilin mice. Even though GAK mRNA levels were found to be

upregulated in newborn mice (P0, P2) as well as 3 week old mice, increased GAK

protein levels were only observed in P2 R857G Auxilin mice. Taken together, these

data indicate that both GAK and Auxilin protein levels are differentially regulated

to compensate for the decrease in Auxilin in newborn R857G mice. Alongside

a progressive increase of Auxilin with age, GAK protein levels are transiently

increased 2 days after birth. As Auxilin has reached protein levels equivalent to

WT mice in 3 week old mice, GAK protein levels have dropped back to equivalent

levels as WT controls. A more detailed analysis of the developmental expression

of both Auxilin and GAK is required to provide greater insight into the temporal

relationship between both genes in the context of the R857G Auxilin mutation. In

addition, future work will have to elucidate whether those compensatory changes

in GAK and Auxilin levels are mediated through altered dynamics in the synthesis

and/or turnover of mRNA and/or protein.

GAK and Auxilin expression in the brain was visualized using RNAscope

experiments and were found to be expressed within the same cells, thus indicating

that they could compensate for each other. Consistent with this observation,

GAK expression was found to be upregulated in primary neurons derived from

R857G Auxilin mice. However, endogenous GAK is not sufficient to compensate

for a dramatic decrease in Auxilin, as both GAK and Auxilin were found to be

upregulated in R857G Auxilin mouse brains. This could be explained by relative

expression levels, since GAK expression in the brain is relatively low and may not

be sufficient to fully compensate for dramatic decreases in Auxilin. Additionally,

it could also indicate that the roles of GAK and Auxilin in the uncoating of CCVs

are not fully redundant. As GAK is expressed ubiquitously and Auxilin expression
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is largely restricted to neurons, this may indicate a specialized role for Auxilin

that is required in neuronal cells only.
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3.4 MATERIAL AND METHODS

3.4.1 Animals

All experiments using mice on a C57BL/6J background were conducted in strict

accordance with the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The specific experiments

performed in this chapter were approved by the Institutional Animal Care and

Use Committees of the US National Institute on Aging (Animal study protocol

number NIH/NIA 463-LNG-2021). The mice were given access to food and water

ad libidum and housed in a facility with 12 hour light/dark cycles.

3.4.2 Generation of a CRISPR-based knockin mouse model

CRISPR gRNA and donor DNA for CRISPR editing of R857G to G857 were

designed using the web-based Benchling software (https://benchling.com). gRNAs

were selected based on their proximity to the PAM sequence and based on maximal

on-target and minimal off-target effects (score system as described in (Doench

et al., 2016)) (Figure 3.10).
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Figure 3.10: Overview of CRISPR design

Mouse mating pairs were set up on the day before micro-injection. Females

showing vaginal plugs were euthanized and fertilized eggs were harvested.

Fertilized eggs were microinjected with Cas9 mRNA (20ng/µl), sgRNA
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(10ng/µl, 5’-AAGTGAAGAAGGTGTACAGG-3’) and donor DNA (100ng/µl,

5’-GGAGACCAAATGGAAACCCGTGGGCATGGCGGATCTGGTGACGCC

GGAGCAAGTGAAGAAGGTGTACGGCCGCGCTGTGCTAGTG

GTGCACCCTGACAAGGTGGGTAGCACCTGCCCTGTCGTAGACT

TGCCCGGTCCCTGTTTCAGTGTTC-3’, with base pairs to be mutated

indicated in bold). Zygotes were cultured overnight in M16 medium at 37◦C. The

next day, 2-cell stage embryos were implanted into oviducts of pseudo-pregnant

surrogate mothers. Two male mice born to the foster mothers with successful

homozygous gene editing were bred with C57BL/6J mice to establish the R857G

Auxilin knockin mouse line. Mice were crossbred for at least 2 generations.

3.4.3 Genotyping

Genomic DNA was isolated from tails, amplified by PCR and followed by Sanger

sequencing.

Genomic DNA from was extracted by overnight incubation of 0.5 cm tail in

DirectPCR Lysis Reagent (Tail, Viagen Biotech) with 1 mg/ml Proteinase K,

resulting in crude tail lysates.

The region of interest was amplified using Terra PCR Direct Polymerase kit

(Takara Biotech). 5 µl of crude lysate was combined with 12.5 µl 2X Terra PCR

Direct Buffer, 0.3 µM forward primer (5’-TGTTTGCAGATCCTGGAGTG-3’),

0.3 µM reverse primer (5’-GACAACCTCATGCCTTGTGA-3’), 1.25 U Terra

PCR Direct Polymerase Mix and PCR-grade water was added to make up a total

reaction volume of 25 µl. 3-step PCR was performed under the cycling conditions

outlined in table 3.1.
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Cycles Temperature
(◦C)

Time

1x 95 3’

38x 95 30”

57 30”

72 45”

1 72 5’

Table 3.1: PCR conditions for genotyping

The PCR-amplified product was subsequently purified using paramagnetic

bead-based PCR cleanup reagents (Agencourt AMPure XP, Beckman Coulter). 45

µl of AMPure paramagnetic beads were mixed with the PCR sample and incubated

at room temperature for 5’ to bind the PCR fragments. Beads were separated

from the solution using a magnet and samples were subsequently washed three

times for 30” with 70% Ethanol to remove contaminants such as dNTPs, salts,

polymerases and primers. Beads were air-dried to allow for complete evaporation

of ethanol. DNA was subsequently diluted in water.

Purified PCR product was subjected to Sanger sequencing using the BigDye

Terminator v3.1 Cycle Sequencing Kit (ThermoFisher Scientific). 3 µl of

PCR product was mixed with 2 µl 5X Sequencing Buffer, 0.3 µl BigDye

Terminator Ready Reaction Mix, 0.3 µM primer (same as forward primer for PCR,

5’-TGTTTGCAGATCCTGGAGTG-3’) and water was added to make up for a

total reaction volume of 10 µl. Cycle sequencing was performed under reaction

conditions outlined in table 6.4.4.

Cycles Temperature
(◦C)

Time

25x 96 30”

50 15”

60 4’

Table 3.2: Cycle sequencing conditions for Sanger sequencing
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Sequencing samples were cleaned using the Sanger Dye Terminator Removal

Agencourt CleanSEQ (Beckman Coulter). Sequencing samples were mixed with

10 µl CleanSEQ paramagnetic beads and 42 µl of 85% Ethanol. Beads were

separated from solution using a magnet and were washed 3 times for 30” with

85% Ethanol. Samples were air-dried to remove residual ethanol and DNA was

eluted in 40 µl water.

Capillary electrophoresis of sequencing samples was performed using the Hitachi

Genetic Analyzer (Applied Biosystems) and data were analysed using the

Sequencher software.

3.4.4 Analysis of inheritance

Mating pairs of heterozygous R857G Auxilin mice were set up and tails were

collected from 3 week old litters. Genotyping was performed as described above

(Section 3.4.3).

3.4.5 Brain retrieval

Newborn and 2 day old mice were euthanized by decapitation, 3 week old mice

were euthanized by exposure to CO2 followed by cervical dislocation. The brain

was isolated and dissected into two hemispheres and flash frozen on dry ice. Brain

hemispheres were stored at -80◦C until experimental use.

3.4.6 Protein sample preparation and gel electrophoresis

Brain hemispheres were homogenized in lysis buffer (20 mM Tris pH7.5, 10%

glycerol, 1 mM EDTA, 150 mM NaCl, 1x protease inhibitor cocktail (Halt), 1x
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phosphatase inhibitor cocktail (Halt)) with 1% Triton using glass homogenizers

and samples were lysed on ice for 20’.

Protein lysates were subsequently cleared (10’ centrifugation at 4◦C at 21 kg) and

protein concentrations were determined using a 660 nm protein assay (Pierce).

Protein lysates were diluted to obtain final sample concentration of 30 µg per

sample. Samples were boiled in 1x Laemli Sample buffer (Bio-Rad) in a final

volume of 20 µl.

Protein samples were loaded on pre-cast 4-20% TGX polyacrylamide gels

(Criterion, Bio-Rad) along with a protein standard (Precision Plus Protein Dual

Color Standards, Bio-Rad). Electrophoresis was performed in 1x pre-mixed

electrophoresis buffer (10 mM Tris, 10 mM Tricine, 0.01% SDS, pH 8.3, diluted with

water) and were run at 200 V for 45’ using the Criterion Vertical Electrophoresis

Cell (Bio-Rad).

3.4.7 Western blot

Following gel electrophoresis, Western blots were performed as described by

LI-COR for Near-Infrared Western Blot Detection protocol.

Samples were transferred to 0.45 µm pore-size nitrocellulose membranes (Bio-Rad)

using the Trans-Blot Turbo Transfer System (Bio-Rad). Blocking of membranes

was performed in a 1:1 solution of phosphate buffered saline (PBS) and Odyssey

Blocking Buffer (Li-Cor).

After blocking, membranes were incubated with primary antibodies diluted in

antibody buffer (1:1 of Tris buffered saline (TBS) with 0.1% Tween and Odyssey

104



3 DEVELOPMENT OF A NOVEL AUXILIN MUTATION MOUSE MODEL

Blocking Buffer (Li-Cor)) overnight with gentle agitation at 4◦C. Primary

antibodies and dilutions are shown in table 6.8.

Target Host Dilution Vendor Catalog number

Auxilin Rabbit 1/3000 Novus Biologicals NBP1-81507

GAK Rabbit 1/500 Gift from Dr. Lois Greene n/a

Table 3.3: Primary antibodies used for WB in Chapter 3

Following primary antibody incubation, membranes were washed 3 times for 5

minutes in TBS-0.1% Tween. Membranes were then incubated with fluorescent

secondary antibodies (IRDye, Li-Cor) diluted 1:15000 in antibody buffer for 1 hour

at room temperature (RT) under gentle agitation. Secondary antibody incubation

was followed by 3 washes of 5’ each in TBS-0.1% Tween.

Western blots were imaged using the Odyssey CLx system (Li-Cor) and quantified

using Image Studio software.

3.4.8 RNA extraction

RNA extractions were performed as per protocol set forth by Invitrogen Trizol

reagent.

Frozen mouse brain hemispheres were homogenized in 1 ml/100 mg tissue ice-cold

Trizol reagent (Invitrogen) using glass homogenizers and incubated for 5’. 0.2 ml

of chloroform per 1 ml of Trizol was added and incubated for 3’, followed by 15’

centrifugation at 12 kg at 4◦C for phase separation. The resulting upper aqueous

phase, containing the RNA, was transferred to a new tube. 0.5 ml of isopropanol

per 1 ml of trizol used for lysis was added to the RNA and incubated at RT for

10’. Samples were subsequently centrifuged at 12 kg for 10’ at 4◦C, resulting in an

RNA pellet. The supernatant was removed and the RNA pellet was washed with
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75% Ethanol , followed by 5’ centrifugation at 7.5 kg at 4◦C. The supernatant

was discarded and the RNA pellet was air dried for 10’ and resuspended in 50

µl water. The concentration of RNA samples was measured using NanoDrop

spectrophotometers (ThermoFisher Scientific) and were diluted with water to a

final concentration of 1 µg/µl. Resuspended RNA was incubated for 15’ at 55◦C,

before storage at -80◦C before proceeding to downstream applications.

3.4.9 cDNA synthesis

1 µg of RNA was used to generate cDNA using the SuperScript III First-Strand

Synthesis SuperMix Kit (Invitrogen). For reverse transcription, RNA was mixed

with 1 µl of 50 µM oligo(dT)20, 1 µl annealing buffer, and water was added to

make up a total volume of 8 µl. Reaction was incubated on a thermal cycler for 5’

at 65◦C and immediately placed on ice for 1’. 10 µl of 2X First-Strand Reaction

Mix and 2 µl of SuperScript III/RNaseOUT Enzyme Mix were added to make up

a total reaction volume of 20 µl. Reactions were incubated at 50◦C for 50’ and

terminated by 5’ incubation at 85◦C. cDNA was stored at -20◦C until used for

downstream applications.

3.4.10 qPCR

Primers were designed using the web-based Primer3Plus software

(https://primer3plus.com/). Primers used for qPCR experiments are outlined in

table 3.4.

qPCR was performed using the Power SYBR Green RT-PCR Master Mix

(ThermoFisher Scientific). 12.5 ng of RNA was mixed with 5 µl Power SYBR

Green PCR Master Mix (2X), 3 µM forward primer, 3 µM reverse primer, with
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Target Primers Exon

CREB3 Fwd 5’-ACGTGCACAGACTTTGAACG-3’ 7

Rvs 5’-TTGACCGCAAGTGGTACATG-3’ 8

GBF1 Fwd 5’-ATGCGGAAACAGGAACTTGC-3’ 26

Rvs 5’-ACAGCAGTGCACGAATGTTC-3’ 27

β-actin Fwd 5’-ACGTGCACAGACTTTGAACG-3’ 4

Rvs 5’-TTGACCGCAAGTGGTACATG-3’ 5

Table 3.4: qPCR primers

water added to make up a total reaction volume of 10 µl. qPCR was analysed using

QuantStudio 6 Flex Real-Time PCR System and included Software (ThermoFisher

Scientific).

3.4.11 RNAscope

RNAscope is a multiplex RNA in situ hybridization method for the visualization

of RNA, as described in (Wang et al., 2012) and visualized in figure 3.11. Probes

were designed for DNAJC6, GAK and the DA neuronal marker TH and are shown

in table 3.5.
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Target

Double Z probe

Pre-amplifier (Amplicon 1)

Amplifier (Amplicon 2)

Amplifier (Amplicon 3),
Fluorescent probes (Amplicon 4

Figure 3.11: Overview of RNAscope A total of 20 double Z target probes are designed to
hybridize with the target RNA. Each individual Z-probe contains a 18-25-base sequence for
hybridization with the RNA, a linker and a 14-base tail. Each double Z probe pair thus forms a
28 base binding site for the pre-amplifier. The pre-amplifier (amplicon 1) subsequently binds
to multiple amplifiers (amplicon 2-3) and the amplifiers bind to fluorescent labelled probes
(amplicon 4).

Gene Target region

DNAJC6 235-1177 of NM 001164583.1

GAK 395-1305 of NM 153569.2

TH 483-1603 of NM 009377.1

Table 3.5: Probes used for RNAscope

RNAscope experiments were performed on coronal sections of 2 month old WT

C57BL/6J mice. Sections were mounted on glass slides and fixed for 15’ in 4%

PFA. Sections were dried by sequential incubation in 50%, 70%, 100% and 100%

Ethanol for 5’ each. Protease mix was added for 30’ and incubated at RT. Sections

were washed with PBS and incubated for 2h at 40◦C with primary probes that

were pre-equalibrated at 40◦C for 10’. Following incubation, slides were washed

twice for 5’ in 1x wash buffer (ACD Bio). Probes were fluorescently labeled by

multiplex amplification, as illustrated in Figure 3.11. Amplicon 1 was incubated

for 30’ at 40◦C, amplicon 2 for 15’ at 40◦C, amplicon 3 for 30’ at 40◦C and

amplicon for 15’ at 40◦C. each amplicon incubation step was followed by two
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washes of 5’ with PBS. Finally, sections were incubated with Hoechst for 30’ at

RT. Slides were mounted using mounting media and dried at 4◦C overnight before

visualization using confocal microscopy.

3.4.12 Statistics

Data were plotted and statistical tests were performed using Prism 8 (Graphpad).

Error bars represent standard deviation (SD) and points indicate distribution

of individual values. The statistical test results are displayed in table 3.6. n

represents the number of animals that samples were derived from or independent

cultures from pooled litters and is explicitly indicated in the figure legend.

Figure Variable Statistical test Test result P-value

3.2 B Genotype Unpaired t-test t = 12.56 <0.0001

3.3 B Genotype Welch’s t-test t = 8.614 <0.0001

3.3 C Genotype Welch’s t-test t = 0.03929 0.9695

3.3 E Genotype Welch’s t-test t = 2.888 0.0236

3.3 F Genotype Welch’s t-test t = 3.162 0.0203

3.3 H Genotype Welch’s t-test t = 1.697 0.1203

3.3 I Genotype Welch’s t-test t = 1.188 0.2604

3.4 A Genotype Welch’s t-test t = 0.1708 0.1708

3.4 B Genotype Welch’s t-test t = 4.407 0.0142

3.4 C Genotype Welch’s t-test t = 0.3033 0.7716

3.4 D Genotype Welch’s t-test t = 3.503 0.0109

3.4 E Genotype Welch’s t-test t = 0.9599 0.3598

3.4 F Genotype Welch’s t-test t = 2.826 0.0178

3.5 A Genotype Welch’s t-test t = 0.1993 0.8528

3.5 B Genotype Welch’s t-test t = 2.858 0.0428

3.8 Genotype χ2-test χ2 = 9.653 0.0080

3.9 A Genotype Welch’s t-test t = 2.370 0.0204

3.9 B Genotype, gender 2-way ANOVA F = 5.356, F = 30.85 0.0392, 0.0001

Genotype Sidak post hoc test t = 2.757, t = 0.5161 0.0345, 0.8519

3.9 C Genotype, gender 2-way ANOVA F = 1.545, F = 14.14 0.2377, 0.0027

Genotype Sidak post hoc test t = 0.6277, t = 1.130 0.7902, 0.4824

Table 3.6: Results of statistical tests
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4 NEUROLOGICAL PHENOTYPES IN R857G AUXILIN MICE

4.1 INTRODUCTION

Although the majority of PD cases are sporadic, insights in familial genetic

cases have accelerated our understanding of PD pathogenesis (Hardy et al.,

2009; Houlden and Singleton, 2012). In particular, genetic animal models of

PD-associated mutations have greatly contributed to dissecting the impact of

mutations on nigrostriatal pathways and the pathogenic mechanisms of PD

(Chesselet and Richter, 2011; Dawson et al., 2010).

As discussed in Paragraph 1.1, currently only symptomatic treatments for PD

are available. A suitable mouse model would be invaluable for the development

novel therapeutics that intervene with disease progression, as a platform to screen

and validate potential drugs. Ideally, a mouse model should have high construct

validity (i.e. based on an established cause of disease, such as genetic mutations)

and face validity (i.e. phenocopy of neurological manifestations and pathology

as seen in human patients) (Chesselet and Richter, 2011). Remarkably however,

the vast majority of animal models with transgenic expression of PD-associated

mutant proteins do not fully recapitulate the predominant motor phenotypes of

PD, despite many using high levels of transgenic overexpression of mutant genes

(Chesselet and Richter, 2011; Dawson et al., 2010).

Two proteins with major roles in the uncoating of CCVs, Auxilin and Synaptojanin

1, have been found to cause young onset atypical PD (Edvardson et al., 2012;

Elsayed et al., 2016; Köroglu et al., 2013; Krebs et al., 2013; Olgiati et al.,

2014, 2016; Quadri et al., 2013). Whereas Auxilin is a neuronal co-chaperone

for HSC70 that catalyzes the ATP-dependent disassembly of the clathrin coat,
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Synaptojanin 1 is a presynaptic phosphatase that mediates lipid conversion critical

for the shedding of clathrin adaptor proteins. In addition to the parkinsonism

phenotypes (bradykinesia, tremor at rest, gait disturbances and rigidity), Auxilin

and Synaptojanin 1 mutation carriers also display atypical neurological features,

including epilepsies and cognitive decline (Table 1.3) (Edvardson et al., 2012;

Elsayed et al., 2016; Köroglu et al., 2013; Krebs et al., 2013; Olgiati et al., 2014,

2016; Quadri et al., 2013).

Recently, Cao and colleagues developed a CRISPR-based mouse model carrying

the homozygous recessive Synaptojanin 1 PD mutation (R258Q) (Cao et al., 2017).

Strikingly, this model is the first animal model with an endogenous PD mutation

to develop neurological phenotypes at young age (before 12 months) resembling

manifestations seen in patients. In addition to motor dysfunction, Synaptojanin 1

mutant mice also exhibit seizures (Cao et al., 2017).

To date, no behavioural studies have been reported for Auxilin KO mice (Yim et

al., 2010). To understand whether mice with the homozygous R857G Auxilin allele

develop neurological phenotypes, a spectrum of behavioural tests were performed

to assess motor behaviour, anxiety, startle response and memory (Table 4.1).
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Test Assessment

Beam walk Balance, motor coordination

Rotarod Motor learning, balance and coordination

Pole test Motor coordination and performance

Grip strength Forelimb strength

Tail suspension test Hind limb clasping

Open field Locomotor, exploratory behaviour, anxiety

Startle chamber Startle response, amplitude of movement

Elevated plus maze Anxiety

Forced alternation Spatial memory

Spontaneous alternation Working memory

Table 4.1: Behavioural test battery

R857G Auxilin mice were found to develop neurological phenotypes as early as 6

months old that are reminiscent of clinical features seen in human patients,

including motor impairment, seizures, impaired memory and anxiety. No

phenotypes were observed in 2 month old animals and so the majority of this

chapter will be focused on findings in 6 and 12 month old mice.
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4.2 RESULTS

4.2.1 Longitudinal cohort for behavioural testing

Since patients with R927G Auxilin mutations develop early-onset PD, behavioural

studies were performed in 2, 6 and 12 month old mice in a longitudinal cohort

of age-matched WT and R857G Auxilin mice. All tests at the 12 month time

point, with the exception of the beam walk, tail suspension and startle test,

were performed by Dr. Melissa Conti. Two WT mice died between the 2 and 6

month time point and one additional WT mice died between the 6 and 12 month

time point. All mice were replaced with age, gender and genotype-matched mice.

Cohorts at all time points consisted of 8 animals per genotype, with 4 female and

4 male mice each.

4.2.2 Balance and motor impairments in R857G Auxilin mice

The beam walk test was performed to detect deficits in fine motor skills and

balance. Animals were trained to cross an elevated beam of 1 m length and 12

mm width three times for three consecutive days. On the 4th day, mice were

tested for their ability to traverse the 12 mm beam and time was recorded and

averaged for two trials. This process was repeated on the testing day for a 6 mm

beam. Age (p < 0.01) but not genotype (p > 0.05) was found to have a significant

impact on the time to traverse the 12 mm beam (Figure 4.1 A, B, Table 4.2).

In addition, both age and genotype had a significant impact on the tendency to

fall from the 6 mm beam (p < 0.0001, p < 0.0001). R857G Auxilin mice had an

increased tendency to fall at least once when attempting to traverse the 6 mm

beam (Figure 4.1 C, D, p < 0.0001). In addition, 12 month old mice were more
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likely to fall during both trials the 6 mm beam than 6 month old mice (Figure

4.1. Since half of the 6 month old and all of the 12 month old R857G Auxlin mice

fell off the beam during both trials on the 6 mm beam, time to traverse the beam

could not be assessed. These data indicate progressively decreasing balance and

gait disturbances in R857G Auxilin mice, a cardinal motor feature of PD (Lees

et al., 2009).
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Figure 4.1: Beam walk A and B Average time to traverse a 12 mm beam during 2 trials.
Two-way ANOVA with Sidak’s multiple comparison tests were performed, no significant
differences were observed (p > 0.05). C and D Number of falls when traversing a 6 mm
beam during 2 trials. Multinomial logistic regression was performed, **** indicates p < 0.0001
genotype effect.

The pole test was performed to assess agility in R857G Auxilin mice. Mice were

placed on a vertical wooden pole and time to turn downward and time to descend

the pole were recorded. Whereas no differences were detected in 6 month old
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animals (Figure 4.2 A, C), an increased time to turn and to descend was observed

in R857G Auxilin mice compared to WT at 12 months (Figure 4.2 B, D), indicating

decreased agility and bradykinesia, another cardinal PD motor phenotype (Lees

et al., 2009).
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Figure 4.2: Pole test A, B Time to turn downwards and C, D time to descend pole. Two-way
ANOVA with Sidak’s multiple comparison tests were performed and p-values indicated when
significant. * indicates p < 0.05.

The rotarod test was performed to assess motor learning and motor coordination.

Mice were placed on a rod rotating at accelerating speed and latency time to

fall was recorded for three trials per day on three consecutive days. Mice showed

115



4 NEUROLOGICAL PHENOTYPES IN R857G AUXILIN MICE

increased motor learning (p < 0.01), as assessed by three-way ANOVA (Table

4.2). In addition, both age (p < 0.05) and genotype (p < 0.05) had a significant

impact on rotarod performance (Table 4.2, Figure 4.3). Surprisingly, the R857G

Auxilin animals showed an increased latency to fall compared to WT animals.

This appears to be in contrast with the impaired balance and decreased motor

function observed in the beam walk and pole test, respectively. However, it could

also point to an inability to stop movement, as is often seen in PD patients (Obeso

et al., 2009).
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Figure 4.3: Rotarod test Average latency to fall off the rotarod during three trials each on
three consecutive days. Three-way ANOVA was performed, p-values indicate genotype effect
with * p < 0.05. Rotarod test at 12 month time point was performed by Dr. Melissa Conti.

4.2.3 Unaltered forelimb strength and hind limb clasping

The grip strength test was performed to assess neuromuscular forelimb function.

The animals were subjected to 5 consecutive trials and the average force of grid

grasping was measured. Forelimb strength significantly increased with age (Table

4.2), but no differences were detected between WT and R857G Auxilin animals at

6 or 12 months of age (Figure 4.4).
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The tail suspension test was performed in 12 month old animals and the hind

limb clasping reflex was scored. No clasping phenotypes were observed in WT or

R857G Auxilin animals and therefore not quantified.

W
T

A
u
x
il
in

0

20

40

60

60

100

W
T

A
u
x
il
in

0

20

40

60

80

100

Figure 4.4: Grip strength Average forelimb strength of 5 trials. Two-way ANOVA with
Sidak’s multiple comparison tests were performed, no significant changes were observed (p >
0.05). Grip strength test at 12 month time point was performed by Dr. Melissa Conti.

4.2.4 Seizures and startle response in R857G Auxilin mice

R857G Auxilin mice were occasionally observed to suffer spontaneous seizures

during weekly cage changes (Supplementary Video 1). The observed seizing mice

displayed muscle twitching at a frequency of ∼1.5 Hz, followed by a freezing

phenotype and drooling (Figure 4.5).
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Figure 4.5: Seizure Seizure observed in 6 month old female R857G Auxilin mouse. Screen shot
captured from Supplementary Video 1, while freezing and drooling.

I hypothesized that seizures might be triggered by exposure to new environments.

To gain further insight into the epilepsies, mice were subjected to sound and light

stimuli to assess startle responses. Mice were placed in an enclosed cylinder on a

piezoelectric accelerometer within a dark startle chamber. The amplitude, which

is directly proportional to the amount of displacement of the mouse, was measured

per millisecond. Baseline data were recorded for 15 minutes. The mice were then

subjected to an acoustic startle of 100 seconds and a light stimulus of 100 seconds,

each followed by interval without stimuli of 4 minutes (Figure 4.6).

Figure 4.6: Overview of startle test

The mean amplitude during the pre-stimulus baseline recordings was compared

to the mean amplitude during the light and sound stimuli. Three-way ANOVA

revealed a significant impact of the sound and light stimulus on the startle response
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(p < 0.0001) (Figure 4.7, Table 4.2), indicating that the stimuli were successful in

evoking a startle response. In addition, three-way ANOVA indicated an interaction

between age and genotype (p < 0.05), indicating that the startle response R857G

Auxilin mice is altered compared to WT controls in an age-dependent matter.

However, post-hoc analysis did not reveal significant alterations between genotypes

at different time points (p > 0.05) (Figure 4.7).
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Figure 4.7: Startle response Three-way ANOVA with Sidak’s multiple comparison tests were
performed. No significant alterations between genotypes or stimuli were observed at different
time points (p > 0.05).

4.2.5 Bi-phasic alterations in the amplitude of movement of R857G

Auxilin mice

Because three-way anova of the startle test revealed an interaction between age

and genotype, the recorded data of were Fourier transformed to extract frequency

information in order to gain further insight in the amplitude of movement of the

different genotypes at different ages. To analyse whether there is an intrinsic

difference in the amplitude of movement between WT and R857G Auxilin mice,

the amplitude over a wide frequency range (0-20 Hz) was analysed during the 15

minutes of pre-startle baseline recordings.
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Three-way ANOVA indicated an interaction effect of age, genotype and frequency.

Indeed, at 6 months old, an increase in the mean amplitude of movement was

observed for R857G Auxilin mice between 0-1 Hz (Figure 4.8 A, B, C). In contrast,

a decrease in mean amplitude of movement was observed in 12 month old R857G

Auxilin mice at 0-1 Hz (Figure 4.8 D, E, F). The observation of a decreased

amplitude of movement at 12 months is in line with the finding that bradykinesia

was only apparent during the pole test in 12 month old animals (Figure 4.2).
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Figure 4.8: Amplitude of movement A, B, D, E Representative spectrograms of female WT
and R857G Auxilin mice at 6 and 12 month old, displaying amplitude of movement during 15
minutes in the pre-stimulus interval, over a frequency range of 0-20 Hz. C, F Mean amplitude
in 1 Hz frequency intervals from 0-20 Hz. Three-way ANOVA was performed, p values indicate
results of Sidak’s post hoc analysis, with **** p < 0.0001. Fourier analysis was performed by
Dr. Johann du Hoffmann.
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4.2.6 Exploratory behaviour, locomotor activity and thigmotaxis in open

field test is unaltered in R857G Auxilin mice

The open field test was performed to examine general locomotor activity, anxiety

and exploratory behaviour. Mice were placed in an open field for 30 minutes and

overall activity, activity in open center and path length were analysed.

No alterations were observed in total activity counts for WT and R857G Auxilin

mice (Figure 4.9 A, B). Total activity counts were further dissected into ambulatory

movement, fine movement and rearing counts. No changes were observed in any

of the movement counts (Figure 4.9 C-F).
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Figure 4.9: Open field movement counts A, B Total activity counts. C, D, Ambulatory
activity counts. E, F Fine movement counts. G, H Rearing counts. Two-way ANOVA with
Sidak’s multiple comparison tests were performed, no significant changes were observed (p >
0.05). Beam break analysis at all time points was performed by Dr. Jinhui Ding. Open field
test at 12 month time point was performed by Dr. Melissa Conti.122
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No differences in total path length of WT and R857G Auxilin animals were

observed (Figure 4.10). This indicates that the observed increase and decrease in

amplitude of movement of R857G Auxilin mice at 6 and 12 months, respectively,

does not translate into alterations in locomotor activity.
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Figure 4.10: Path length in open field Two-way ANOVA with Sidak’s multiple comparison
tests were performed, no significant changes were observed (p > 0.05). Open field test at 12
month time point was performed by Dr. Melissa Conti.

The activity and time spent in the center of the open field was analysed to assess

thigmotaxis, the tendency of the mice to remain close to the walls, as a measure for

exploratory behaviour and anxiety. No differences were observed in the fraction of

activity counts in the center and the fraction of time spent in the center between

WT and R857G Auxilin mice (Figure 4.11).
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Figure 4.11: Activity and time spent in center of open field A, B Fraction of activity
in center. C, D Fraction of time spent in center. Two-way ANOVA with Sidak’s multiple
comparison tests were performed, no significant changes were observed (p > 0.05). Beam break
analysis at all time points was performed by Dr. Jinhui Ding. Open field test at 12 month time
point was performed by Dr. Melissa Conti.

4.2.7 Anxiety phenotypes in R857G Auxilin mice

To further analyse anxiety, mice were placed in an elevated plus maze, with two

open and two enclosed arms. The elevated plus maze allows, like the open field, to

measure thigmotaxis. However, the elevation component introduces an additional

fear-aspect to the test. The fraction of arm entries, distance and time in open
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arms was recorded. No alterations in entries, time and distance in open arms were

observed (Figure 4.12 A-D).
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Figure 4.12: Elevated plus maze A, B Fraction of open arm entries. C, D Fraction of distance
in open arms. E, F Fraction of time spent in open arms. Two-way ANOVA with Sidak’s multiple
comparison tests were performed. No significant alterations were observed (p > 0.05) Elevated
plus maze test at 12 month time point was performed by Dr. Melissa Conti.
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4.2.8 Memory deficits in R857G Auxilin mice

Finally, Y-maze spontaneous and forced alternation tasks were performed to assess

memory deficits in R857G Auxilin mice.

To analyse working memory and exploratory behaviour, spontaneous alternation

of arm entries was analysed by placing the mice in a Y-maze with three arms of

equal distance and at equal angle for 7 minutes. The ratio of total number of

spontaneous alternations (different arm entries in each of three consecutive arm

entries) over total number of possible spontaneous alternations (total arm entries

- 2) was scored. No alterations in spontaneous alternations were observed (Figure

4.13 A, B).

Spatial memory and exploratory behaviour was assessed using the forced

alternation task. One arm of the Y-maze was blocked while the mice were exploring

the maze during 8 minutes. After a 45 minute break, mice were reintroduced to

the Y-maze with all arms open for 5 minutes. First arm entry and fraction of

entries into the initially blocked arm over total arm entries were recorded. For 12

month old mice, three animals (one WT and two R857G Auxilin) did not leave

the center of the maze and were not included for analysis. 6 month old, but not

12 month old, displayed a deceased fraction of new arm entries (Figure 4.13 C,

D). In addition, genotype but not age had a significant impact on the first arm

entry, as R857G Auxilin mice had a decreased tendency to enter the new arm

first, indicating impaired working memory (Figure 4.13 E, F).
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Figure 4.13: Y-maze spontaneous and forced alternation A, B Fraction of spontaneous
alternation. C, D Fraction of new arm entries. Two-way ANOVA with Sidak’s multiple
comparison tests, no significant alterations were observed (p-value > 0.05). E, F First arm
entries. Binary logistic regression analysis was performed, *** indicates p < 0.001 for genotype
effect. Y-maze spontaneous and forced alternation tests at 12 month time point were performed
by Dr. Melissa Conti.
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4.3 DISCUSSION

Loss of function mutations in Auxilin (c.801-2A> G, T741=, Q791X, Q846X,

R927G) have been shown to cause juvenile or early onset, atypical PD

(Edvardson et al., 2012; Elsayed et al., 2016; Köroglu et al., 2013; Olgiati et

al., 2016). In addition to the cardinal motor features of parkinsonism (tremor

at rest, bradykinesia, gait disturbances, muscle rigidity), many patients also

develop atypical neurological phenotypes including seizures, cognitive decline and

pyramidal and cerebellar signs (Table 1.3).

In order to address whether mice with the homozygous endogenous R857G

mutation (equivalent to the human R927G PD mutation) recapitulate these

neurological manifestations, a battery of behavioural tests was performed (Table

4.1). Tests were performed in a longitudinal cohort of 8 animals per genotype at

2, 6 and 12 months of age. Whereas no phenotypes were observed in 2 month old

animals, R857G Auxilin mice developed neurological manifestations resembling

clinical features observed in patients in 6 and 12 month old mice.

R857G Auxilin mice showed a progressively increasing tendency to fall with age

when traversing an elevated beam, pointing to balance and gait disturbances. The

pole test revealed bradykinesia, i.e. slowness of movement, in 12 month old R857G

Auxilin mice. Surprisingly, R857G Auxilin mice had an increased latency to fall

from the rotarod which seems to be in contrast with the observed balance issues

and bradykinesia. However, lesions in the dopaminergic system cause difficulties

to initiate and stop movements (Obeso et al., 2000). Increased performance on

the rotarod, a test based on forced motor activity, might reflect an inability to

stop movement in R857G Auxilin mice. An alternative explanation could be that

striatal and other motor circuits compensate for a midbrain defect. No alterations
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in grip strength or tail suspension test were observed, indicating that forelimb

muscular strength and hind limb clasping reflex were not affected.

Analysis of the amplitude of movement of R857G Auxilin mice using a piezoelectric

accelerometer revealed an initial increase at 6 months followed by a decrease in

the overall amplitude of movement compared to WT controls at a frequency

between 0-1 Hz. An apparent increased agitation and jitter was also observed

while handling the R857G Auxilin mice during the behavioural tests at 6 months

but not at 12 months. The alterations in amplitude of movement at did not

translate into alterations in locomotor activity as assessed with the open field

test. The observed decreased amplitude of movement at 12 months points to

bradykinesia and is in line with the results of the pole test showing a slowness of

movement at 12 months but not 6 months. Hyperkinesia has been observed in

other PD animal models based on transgenic overexpression of mutant α-synuclein

and LRRK2 and is thought to be caused by impaired dopamine transmission

(Longo et al., 2017; Unger et al., 2006; Yue et al., 2015). The initial hyperkinesia

followed by bradykinesia in R857G Auxilin mice might reflect bi-phasic alterations

in the dopaminergic pathways during disease progression.

Seizures were observed in R857G Auxilin mice when cages were cleaned and

changed. Seizing mice were observed to display muscle twitches at a frequency of

∼1.5 Hz, followed by a freezing phenotype while drooling. This seizure phenotype

resembles the generalized and absence seizures reported in Auxilin mutation

carriers. However, no alterations in startle response to sound or light stimuli were

observed between genotypes at different time points, indicating that this startle

response measurement is not an effective test to measure epileptic activity in

R857G Auxilin mice.
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Impaired spatial memory was observed in the Y-maze in R857G Auxilin mice,

which could indicate cognitive decline, as has been observed in patients. However,

R857G Auxilin mice did not display anxiety phenotypes, as measured by the

elevated plus maze and open field tests. It is important to note however that

behavioural tests assessing anxiety- and exploration-related phenotypes, such as

open field, elevated plus maze and Y-maze, rely on introducing the mice to a

novel environment. Since all tests were performed in a longitudinal cohort, an

important caveat is that repeated testing might attenuate anxiety and exploratory

phenotypes due to habituation (Tucker and McCabe, 2017).

In summary, R857G Auxilin mice display multiple neurological phenotypes as

early as 6 months old that are reminiscent of clinical features of early onset

PD seen in patients. Whereas lesions in the nigrostriatal dopamine pathway

may underlie motor impairments, lesions in other brain areas could explain

anxiety, seizures and memory impairments. Taken together, animal models with

endogenous PD-associated mutations in CCV uncoating proteins Auxilin and

Synaptojanin 1 provide a strong link between impairments clathrin trafficking

and the development of early onset PD. In addition, they serve as suitable models

to investigate the impact of PD mutations on molecular mechanisms underlying

PD and as a platform to screen for therapeutics.

131



4 NEUROLOGICAL PHENOTYPES IN R857G AUXILIN MICE

4.4 MATERIAL AND METHODS

4.4.1 Animals

All experiments using mice on a C57BL6/J background were conducted in strict

accordance with the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The specific experiments

performed in this chapter were approved by the Institutional Animal Care and

Use Committees of the US National Institute on Aging (Animal study protocol

number NIH/NIA 463-LNG-2021). The mice were given access to food and water

ad libidum and housed in a facility with 12 hour light/dark cycles.

All behavioural experiments were performed during the light cycle of the mice.

Behavioural tests were performed in the rodent behavioural core (National Institute

of Mental Health, National Institutes of Health). All animals were handled for

two minutes, three days prior to testing. The longitudinal cohort consisted of 8

WT and 8 R857G Auxilin mice that were age-matched, with 4 male and 4 female

mice per genotype. Animals were subjected to behavioural tests at 2, 6 and 12

months of age. All behavioural tests at the 12 month old time point, with the

exception of the beam walk, startle test and tail suspension test, were performed

by Dr. Melissa Conti.

4.4.2 Beam walk

The beam walk test was performed to measure the motor coordination and balance

of the mice (Carter et al., 2001).
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The beam walk test platform consists of an elevated square beam of 100 cm in

length and 6 or 12 mm in width. An enclosed, dark platform is placed at the end

of the beam as the destination box. The mice were placed on one end of the beam

to traverse the beam to the destination platform. The middle 80 cm of the beam

were marked and the latency to traverse the 80 cm was measured.

The test consisted of 3 training days and 1 testing day. On the training days, the

mice were placed on the wide (12 mm) training beam to traverse the beam for

3 consecutive trials. When animals stalled or turned during the training, they

were encouraged to traverse the full length of the beam. Platform is cleaned with

70% EtOH between trials. Training was repeated for 3 consecutive days, until

mice were able to spontaneously traverse the beam to establish a stable baseline

response. On the testing day, the mice traversed the wide (12 mm) beam twice

and time to traverse was measured. Mice were then placed on the narrow (6 mm)

testing beam for two consecutive trials and the latency to traverse the 80 cm was

measured as well.

4.4.3 Rotarod

The rotarod test was performed to assess motor coordination, learning and balance

of the mice (Carter et al., 2001).

The rotarod test consisted of 1 training day and 3 testing days and animals were

allowed to habituate in the testing room for 60 minutes prior to testing. On

training day, the mice were placed on a rotating rod for 5 minutes at a constant

speed of 4 rpm (San Diego Instruments). When mice fell, they were placed back on

the rotarod. During testing days, mice were placed on the rotarod with constant

accelerating speed from 4-40 rpm over 5 minutes for 3 trials, with at least 15
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minutes inter-trial intervals. The rotarod was cleaned in between trials with 70%

ethanol. Latency time to fall from the rotarod was measured for 3 trials on 3

consecutive days.

4.4.4 Pole test

The pole test was performed to assess motor coordination and performance (Hauser

et al., 2015; Matsuura et al., 1997).

Mice were placed head-upward on the top of a vertical pole (1 cm diameter, 0.5

m height). The wooden rough-surfaced pole was mounted into a wooden base

and placed into an empty mouse cage covered with bedding. One pre-trial was

performed followed by two test trials. Time to descend to the floor of the cage as

well as time to turn head-downward was measured and averaged for the two test

trials. The pole was cleaned with 70% ethanol in between tests.

4.4.5 Tail suspension test

The tail suspension test was performed to test the hind limb clasping reflex (Cao

et al., 2017).

Mice were held by their tail for 30 seconds at 30 cm above a surface and observed

for hind limb clasping. Mice were scored per 10 second intervals and allocated a

score of 0 in the absence of hindlimb clasped and a score of 1 for abnormal hind

limb movement. The score of 3 intervals of 10 seconds was summed, allowing a

maximum score of 3.
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4.4.6 Grip strength

The grip strength test was performed to measure differences in skeletal muscular

forelimb strength (Takeshita et al., 2017).

The grip strength was measured using a digital grip strength gauge (BioSeb). The

apparatus was connected to a wire grid of 8 by 8 cm. The mice were lifted by

the tail to allow them to grasp the grid with their forelimbs. Mice were pulled

backward gently by the tail until the grid was released. The peak full force in

grams exerted by the mouse before losing grip was recorded. The mean of 5

consecutive trials was recorded for each mouse.

4.4.7 Open field

Locomotor, exploratory behaviour and anxiety were assessed using the open field

test (Dranka et al., 2014).

Mice were allowed to habituate 60 minutes prior to testing in a dark room. Mice

were placed in a Flex field photobeam activity system (San Diego Instruments)

during 30 minutes with 25.4 x 47 cm dimensions consisting of 4 x 8 photobeams.

Open field chambers were cleaned with 70% ethanol between tests.

Activity was tracked when animals broke the photobeams in real time. Total

activity count was measured as the arithmetic count of total number of beam

breaks, fine movement count as the number of single beam breaks and subtraction

of the fine movement counts from total movement counts resulted in the ambulatory

event count. Rearing counts indicated the arithmetic count of all beam breaks

registered by a second level of photobeams. Dr. Jinhui Ding further analysed the

beambreak data to measure path length and activity in center. Path length was
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calculated based on the coordinates of the beam breaks. Activity in the center

was calculated by breaks of photobeams 2-3 (out of 4 total horizontal beams) and

photobeams 3-6 (out of 8 total vertical beams).

4.4.8 Startle test

Sensorimotor gating was measured in the startle test (DeLorey et al., 2011;

Kirshenbaum et al., 2013; Veeraragavan et al., 2012).

Startle test was performed using a SR-Lab startle response system (San Diego

Instruments). Mice were placed in a non-restrictive plexiglass cylinder (3.2 cm

diameter) resting on the sensor platform. A piezo-electric accelerometer was

attached to the base of the sensor platform, thus converting mouse displacement

and acceleration into a voltage measurement, which was digitized by the SR-Lab

software. The cylinder and sensor are isolated in a larger, sound- and light-proof

box.

The startle test set-up is visualized in Figure 4.6. Movement of mice without

exposure to stimuli was recorded during 15 minutes. Afterwards, the mice were

presented with an auditory stimulus burst of 85 dB for 100 ms every 500 ms for

a total of 100 s, followed by 4 minutes without stimuli. The mouse was next

presented with a light stimulus of 400 lumens for 200 ms every 500 ms for 100 s,

followed by another 4 minutes without stimuli. Voltages were measured every ms

throughout the entire test. Plexiglass cylinders were cleaned between tests with

70% ethanol.

For analysis, voltage measurements in function of time were Fourier transformed to

extract frequency information. Fourier transformations were performed using the
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‘seewave’ and ‘rgl’ package for R by Dr. Johann du Hoffmann (Rodent Behavioral

Core, National Institute of Mental Health, National Institutes of Health).

4.4.9 Elevated plus maze

The elevated plus maze was used to measure anxiety (Walf and Frye, 2007).

The elevated plus maze was set up in a dimly lit room and animals were allowed

to habituate in the testing room for 60 minutes prior to testing. Each arm of the

maze is 38 cm in length and 10 cm wide. Two arms of the maze opposite to each

other were enclosed with 15 cm high walls. The mice were place in the center of

the maze facing a closed arm and were allowed to explore the maze for 10 minutes.

The number of arm entries, time spent in each arm and percentage of entries into

open arms was scored. The maze was cleaned with 70% ethanol in between trials

to eliminate odour cues.

4.4.10 Y-maze spontaneous alternation

Working memory was tested using the spontaneous alternation test conducted in

a Y-maze (Wolf et al., 2016).

Mice were allowed to habituate in the testing room 60 minutes prior to testing. A

symmetrical Y-maze consisted of 3 arms, each 40 cm long, 8 cm wide and enclosed

by plexiglass walls that were 12 cm high. Mice were placed in the center of the

maze and were allowed to explore all 3 arms of the maze freely during 8 minutes.

Spontaneous alternation was defined as conecutive entries in 3 different arms

divided by the number of possible alternations (total alternations - 2). Re-entries
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into the same arm were scored as separate entries. The maze was cleaned with

70% ethanol in between trials.

4.4.11 Y-maze forced alternation

The forced alternation task was conducted in the same Y-maze as described above

to assess spatial memory (Wolf et al., 2016).

Mice were allowed to habituate in the testing room with dimmed lighting 60

minutes prior to testing. The forced alternation task consisted of a 5 minute

sample trial and a 5 minute retrieval trial, with a 90 minute inter-trial interval.

During the sample trial, the mice were placed in the start arm and were allowed to

explore 2 arms of the Y-maze, while the 3rd arm was blocked. During the retrieval,

this block was removed and the mouse was placed in the start arm and allowed to

freely explore all 3 arms of the Y-maze. Forced alternation was described as the

percentage of mice in the retrieval trial entering the arm that was blocked during

the sample trial first. In addition, time spent in the novel arm was measured as

well. the Y-maze was cleaned with 70% ethanol in between trials.

Since the forced alternation test relies on the novelty aspect exploring the Y-maze,

the spontaneous alternation task and forced alternation task were performed at

least one week apart.

4.4.12 Statistics

Data were plotted and statistical tests were performed using Prism 8 (Graphpad),

or SPSS Statistics (IBM) for binary and multinomial logistic regression analysis.

Error bars are displayed as means and standard error of the mean (SEM). The
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statistical test results are displayed in table 4.2. n represents the number of

animals included in each test.
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Figure Variable Statistical test Test result P-value

4.1 A, B Genotype Two-way ANOVA F = 0.007736 0.9312

Age Two-way ANOVA F = 9.727 0.0075

Genotype x Age Two-way ANOVA F = 0.04029 0.8438

Genotype at 6 months Sidak’s post hoc 0.9992

Genotype at 12 months Sidak’s post hoc 0.9792

4.1 C, D Genotype, Age Multinomial logistic
regression

χ2 = 18.117,
χ2 = 18.053

< 0.0001, <
0.0001

4.1 C, D Genotype (2 compared to 0 falls) Wald =
209.210

< 0.0001

4.1 C, D Genotype (1 compared to 0 falls) Wald =
324.938

< 0.0001

4.1 C, D Age (2 compared to 0 falls) Wald =
224.278

< 0.0001

4.2 A, B Genotype Two-way ANOVA F = 4.825 0.0454

Age Two-way ANOVA F = 2.353 0.1474

Genotype x Age Two-way ANOVA F = 1.859 0.1943

Genotype at 6 months Sidak’s post hoc 0.8429

Genotype at 12 months Sidak’s post hoc 0.0366

4.2 C, D Genotype Two-way ANOVA F = 4.116 0.0521

Age Two-way ANOVA F = 3.224 0.0834

Genotype x Age Two-way ANOVA F = 2.158 0.1530

Genotype at 6 months Sidak’s post hoc 0.9072

Genotype at 12 months Sidak’s post hoc 0.0390

4.3 A, B Genotype Three-way ANOVA F = 4.746 0.0469

Age Three-way ANOVA F = 9.845 0.0130

Trial day Three-way ANOVA F = 7.587 0.0023

Genotype x Age Three-way ANOVA F = 3.175 0.0965

Genotype x Trial day Three-way ANOVA F = 2.035 0.1496

Genotype x Age x Trial day Three-way ANOVA F = 1.030 0.3703

4.4 A, B Genotype Two-way ANOVA F = 0.4274 0.5168

Age Two-way ANOVA F = 25.17 < 0.0001

Genotype x Age Two-way ANOVA F = 0.4274 0.5168

Genotype at 6 months Sidak’s post hoc 0.9180

Genotype at 12 months Sidak’s post hoc 0.9142

4.7 A, B Genotype Three-way ANOVA F = 1.927 0.1868

Age Three-way ANOVA F = 0.1938 0.6665

Stimulus Three-way ANOVA F = 13.92 0.0001

Genotype x Age Three-way ANOVA F = 7.890 0.139

Genotype x Stimulus Three-way ANOVA F = 1.276 0.2949

Age x Stimulus Three-way ANOVA F = 1.256 0.3004

Genotype x Age x Stimulus Three-way ANOVA F = 1.565 0.2268

4.8 C, F Genotype Three-way ANOVA F = 0.2658 0.6142

Age Three-way ANOVA F = 1.226 0.2868

Frequency Three-way ANOVA F = 509.8 < 0.0001

Genotype x Age Three-way ANOVA F = 3.824 0.0708

Genotype x Frequency Three-way ANOVA F = 0.8081 0.6970

Age x Frequency Three-way ANOVA F = 1.054 0.3998

Genotype x Age x Frequency Three-way ANOVA F = 8.592 < 0.0001
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Figure Variable Statistical test Test result P-value

Genotype at 6 months at 0-1 Hz Sidak’s post hoc < 0.0001

Genotype at 12 months at 0-1 Hz Sidak’s post hoc < 0.0001

4.9 A, B Genotype Two-way ANOVA F = 0.09484 0.7596

Age Two-way ANOVA F = 1.907 0.1611

Genotype x Age Two-way ANOVA F = 0.2874 0.7517

4.9 C, D Genotype Two-way ANOVA F = 0.1059 0.7465

Age Two-way ANOVA F = 3.567 0.0371

Genotype x Age Two-way ANOVA F = 0.2824 0.7554

4.9 E, F Genotype Two-way ANOVA F = 1.080 0.3046

Age Two-way ANOVA F = 1.180 0.3174

Genotype x Age Two-way ANOVA F = 0.2905 0.7494

4.9 G, H Genotype Two-way ANOVA F = 0.6090 0.4396

Age Two-way ANOVA F = 0.9379 0.3995

Genotype x Age Two-way ANOVA F = 0.8245 0.4454

4.10 A, B Genotype Two-way ANOVA F = 0.5403 0.4664

Age Two-way ANOVA F = 1.881 0.1650

Genotype x Age Two-way ANOVA F = 0.1812 0.8349

4.11 A, B Genotype Two-way ANOVA F = 1.927 0.1724

Age Two-way ANOVA F = 2.162 0.1277

Genotype x Age Two-way ANOVA F = 0.9594 0.3913

4.11 C, D Genotype Two-way ANOVA F = 0.01634 0.8989

Age Two-way ANOVA F = 0.2746 0.7612

Genotype x Age Two-way ANOVA F = 1.317 0.2788

4.12 A, B Genotype Two-way ANOVA F = 1.419 0.2534

Age Two-way ANOVA F = 0.5638 0.5733

Genotype x Age Two-way ANOVA F = 1.419 0.2534

4.12 C, D Genotype Two-way ANOVA F = 5.3999 0.0251

Age Two-way ANOVA F = 0.9823 0.3825

Genotype x Age Two-way ANOVA F = 1.171 0.3200

4.12 E, F Genotype Two-way ANOVA F = 0.1635 0.6880

Age Two-way ANOVA F = 2.446 0.0989

Genotype x Age Two-way ANOVA F = 2.493 0.0948

4.13 A, B Genotype Two-way ANOVA F = 0.1424 0.7078

Age Two-way ANOVA F = 0.7778 0.4659

Genotype x Age Two-way ANOVA F = 3.150 0.7078

4.13 C, D Genotype Two-way ANOVA F = 0.3292 0.5694

Age Two-way ANOVA F = 2.067 0.1403

Genotype x Age Two-way ANOVA F = 2.589 0.0879

4.13 E, F Genotype, Age Binary logistic
regression

χ2 = 10.010,
χ2 = 1.161

0.002, 0.281

4.13 E, F Genotype (new compared to old) Wald = 6.457 0.011

Table 4.2: Statistical test results

141



5 TRANSCRIPTOME ANALYSIS OF MUTANT AUXILIN NEURONS

5 TRANSCRIPTOME ANALYSIS OF MUTANT AUXILIN

NEURONS

5.1 INTRODUCTION

Auxilin is a neuronal protein required for the uncoating of CCVs. A novel PD

mouse model harbouring the pathogenic PD Auxilin mutation R857G was shown to

display neurological symptoms reminiscent of clinical features seen in patients (see

Chapter 4). In addition, the R857G Auxilin allele was found to be hypomorphic,

indicating a loss of function mechanism in PD pathogenesis (see Chapter 3).

However, the exact impact of the R857G Auxilin mutation on cellular pathways

remains to be elucidated.

One useful approach to assess pathways affected by the R857G Auxilin mutation

in neurons is RNA sequencing (RNAseq). Given the high resolution and broad

dynamic range, deep-sequencing methods provide a quantitative way to detect the

full transcriptome of samples. Comparison of the full set of transcripts between

biological samples thus allows to to detect global alterations in gene expression.

To gain insight into the pathways affected by the pathogenic R857G Auxilin

mutation in neurons, RNAseq was performed on primary neuronal cultures derived

from R857G Auxilin mice.

RNA samples were converted to a cDNA library by Alice Kaganovich and myself.

Subsequent high-throughput sequencing was performed by Alice Kaganovich and

sequencing reads were aligned to the reference genome by Dr. Jinhui Ding. Read

normalization and differential gene expression analysis was performed by Dr. Mark

Cookson.

142



5 TRANSCRIPTOME ANALYSIS OF MUTANT AUXILIN NEURONS

Following the identification of differentially expressed genes by RNAseq, I also

validated top candidates at the RNA-level using quantitative PCR (qPCR). In

addition, gene ontology was performed to gain global insight into affected biological

pathways, followed by functional experiments to further dissect the underlying

mechanisms through which biological pathways are affected.
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5.2 RESULTS

5.2.1 RNAseq design

The transcriptome of R857G Auxilin neurons was compared to WT neurons

through RNA sequencing (RNAseq) (Figure 5.1).

Figure 5.1: Design of RNAseq experiment for differential gene expression analysis
of R857G Auxilin neurons
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Total RNA was extracted from primary cortical neurons derived from n=5 WT

and n=6 R857G Auxilin mice. RNA quality was assessed by measurement of the

RNA integrity number (RIN). A RIN value of 7 was considered as the cut-off for

inclusion in the RNAseq experiment, thus no samples were excluded from analysis

(Table 5.1).

Sample RIN

WT 1 7.3

WT 2 9.4

WT 3 8.6

WT 4 9.0

WT 5 8.8

R857G Auxilin 1 8.3

R857G Auxilin 2 8.7

R857G Auxilin 3 8.5

R857G Auxilin 4 8.7

R857G Auxilin 5 8.6

R857G Auxilin 6 8.9

Table 5.1: RIN measurements for RNA quality control

Ribosomal RNA was depleted from all samples followed by RNA fragmentation.

Double stranded complementary DNA (cDNA) was synthesized and RNA was

depleted from the samples. Indexing adaptors were ligated to both ends of

the cDNA to allow for hybridization onto a sequencing flow cell. cDNA with

successful adaptor ligation was enriched using primers annealing to the adaptors.

cDNA libraries were validated using droplet digital PCR to ensure optimum

cluster densities across different lanes of the flow cell. Clonally amplified cDNA

fragments hybridized to a flow cell were subsequently subjected to high-throughput

sequencing.
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5.2.2 Normalization of count data

A count matrix was generated indicating the number of sequencing reads that

were unambiguously mapped to a single gene per sample. Counts were analysed

using the DESeq2 R package, which assumes a negative binomial distribution of

the read counts (Love et al., 2014).

When dealing with count data, an important consideration is that count ratios are

inherently noisier when the counts are low. This heteroskedasticity (or variance

dependency on mean count) would thus result in stronger differences between

groups for weakly expressed genes as compared to strongly expressed genes and

would result in potential false positives. Count data were therefore transformed

using a regularized logarithm (RLog), which behaves like a Log2 transformation

for genes with high counts and shrinks together values for different samples

with for genes with low counts (Love et al., 2014). The RLog transformation

therefore avoids the spreading apart of data for genes with low counts, as seen

with standard transformation such as the Log2 transformation (Figure 5.2 A). The

RLog transformation successfully rendered the data homoskedastic, i.e. having

stabilized variances (Figure 5.2).
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Figure 5.2: Variance stabilization of RNAseq count data Mean/Standard deviation plot
of A Log2 tranformed and B RLog transformed RNAseq count data.

5.2.3 Relationship between samples and filtering

The homoskedastic data display a similar dynamic range of the variances, allowing

for multivariate ordination to assess the relationship between samples and

subsequent filtering. First, the Euclidean distance between samples was plotted as

a heatmap and subjected to unsupervised hierarchical clustering to observe global

differences between samples (Figure 5.3). Strikingly, one WT sample (replicate

1) and two R857G Auxilin samples (replicates 5, 6) clustered separately and

displayed large Euclidean distance compared to all other samples. WT samples

(replicate 2-5) and R857G Auxilin samples (replicate 1-4) clustered according to

genotype.
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Figure 5.3: Heat map of the Euclidean distance between samples Colours indicate
Euclidean distance between samples and dendrograms are are scaled to the Euclidean distance
between samples.

Principal component analysis (PCA) was performed to analyse the source of

variation between samples (Figure 5.4). The first principal component, driving

79% of variation between samples, separated out replicates 5 and 6 from replicates

1-4 R857G Auxilin samples. The second principal component, driving 10% of

variation, separated WT sample replicate 1 from replicates 2-5, and R857G Auxilin

replicates 5 and 6 from replicates 1-4.

Based on Euclidean distance analysis and PCA, WT replicate 1 and R857G

Auxilin replicates 5 and 6 were considered outliers and were excluded from further

analysis.
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Figure 5.4: PCA of unfiltered samples

Euclidean distance analysis and PCA were re-analysed for filtered samples.

Unsupervised hierarchical clustering revealed separation by genotype based on

Euclidean distance between samples (Figure 5.5). In addition, PCA analysis

revealed group separation between genotypes by the first principal component,

driving 56% of variation (Figure 5.6).
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Figure 5.5: Heat map of the Euclidean distance between filtered samples Colours
indicate Euclidean distance between samples and dendrograms are are scaled to the Euclidean
distance between samples.
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5.2.4 Differential gene expression analysis

Normalized counts from filtered samples were subsequently subjected to

significance testing using a Wald test, with Benjamini and Hochberg multiple

testing adjustment. Out of 27155 detected transcripts, 4666 genes were found to

be differentially expressed (adjusted p-value < 0.05), with 2203 genes displaying

increased expression in the R857G Auxilin samples (Figure 5.7). The full list of

identified transcripts can be found in Supplementary Table 1.
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Figure 5.7: Volcano plot of the impact of R857G Auxilin on transcriptome of primary
neurons Volcano plot of 27155 detected mRNA transcripts quantified using RNAseq isolated
from primary neurons (n=4 WT, n=4 R857G Auxilin). The 4666 genes were differentially
expressed in R857G Auxilin neurons (Wald test with Benjamini & Hochberg correction, p-value
< 0.05) are indicated in blue. Differentially expressed genes with a p-value < 10-50 are labeled
by gene name.

The z-score of the 50 most significantly differentially expressed genes were plotted

on a heat map and subjected to unsupervised hierarchical clustering, revealing

large global alterations with opposite relationships to the mean value between

WT and R857G Auxilin samples (Figure 5.8).
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Figure 5.8: Heat map of the z-score of top 50 differentially expressed genes Colours
indicate the z-score per gene per sample and dendrograms are are scaled to the Euclidean
distance between samples based on the top 50 differentially expressed genes.
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5.2.5 Gene ontology

To gain further insight into the pathways affected in the R857G Auxilin neurons,

the top 50 genes were subjected to gene ontology (GO) analysis (Table 5.2, Figure

5.9) (Reimand et al., 2016). Enrichment analysis for GO term biological process

was performed using the Fisher exact test, with Benjamini and Hochberg post hoc

analysis.
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Figure 5.9: Gene ontology of top 50 differentially upregulated genes in mutant
Auxilin neurons Gene ontology enrichment analysis of the top candidates of Auxilin interactors
for biological process and biological pathways. Node size corresponds to number of genes within
each gene-set and edge size to number of overlapping genes between connected nodes (larger is
more genes). Node colour corresponds to the p-value of the Fisher exact test with Benjamini &
Hochberg correction for multiple testing (darker is lower p-value).
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Biological process

GO identifier Description p-value Genes

GO:0006986 response to unfolded protein 2.11 x 10-4 PPP1R15A, ARFGAP1, CREB3, SEC31A,
EIF2AK3, DDIT3

GO:0034976 response to endoplasmic
reticulum stress

4.17 x 10-5 PPP1R15A, ARFGAP1, TRIB3, CREB3,
SEC31A, EIF2AK3, DDIT3, JUN

GO:1905897 regulation of response to
endoplasmic reticulum stress

1.81 10-3 PPP1R15A, CREB3, EIF2AK3, DDIT3

GO:0006984 ER-nucleus signaling pathway 8 x 10-3 PPP1R15A, EIF2AK3, DDIT3

GO:0097193 intrinsic apoptotic signaling
pathway

1.1 x 10-2 PPP1R15A, TRIB3, CREB3, EIF2AK3, DDIT3

GO:0030968 endoplasmic reticulum unfolded
protein response

7.63 x 10-5 PPP1R15A, ARFGAP1, CREB3, SEC31A,
EIF2AK3, DDIT3

GO:0036499 PERK-mediated unfolded
protein response

1.46 x 10-3 PPP1R15A, EIF2AK3, DDIT3

GO:1902235 regulation of endoplasmic
reticulum stress-induced intrinsic
apoptotic signaling pathway

1.54 x 10-3 CREB3, EIF2AK3, DDIT3

GO:0048193 Golgi vesicle transport 8 x 10-3 ARFGAP1, GBF1, KDELR2, SEC31A, COPB2,
SEC22B

GO:0006890 retrograde vesicle-mediated
transport, Golgi to ER

2.41 x 10-4 ARFGAP1, GBF1, KDELR2, COPB2, SEC22B

GO:0006888 ER to Golgi vesicle-mediated
transport

5.4 x 10-3 ARFGAP1, GBF1, SEC31A, COPB2, SEC22B

GO:0048194 Golgi vesicle budding 3.02 x 10-2 GBF1, SEC31A, SEC22B

GO:1903008 organelle disassembly 3.37 x 10-2 USP36, GBF1, WDR45

GO:0007050 cell cycle arrest 4.44 x 10-2 PPP1R15A, DUSP1, BTG2, DDIT3

GO:1901216 positive regulation of neuron
death

8.78 x 10-3 EGR1, FOS, DDIT3

Biological pathways reactome

Reactome
identifier

Description p-value Genes

REAC:R-HSA-6811442Intra-Golgi and retrograde
Golgi-to-ER traffic

1.26 x 10-4 ARFGAP1, GBF1, KDELR2,GOLIM4, COPB2,
SEC22B

REAC:R-HSA-8856688Golgi-to-ER retrograde transport 1.79 x 10-4 ARFGAP1, GBF1, KDELR2, COPB2, SEC22B

REAC:R-HSA-446203Asparagine N-linked
glycosylation

1.26 x 10-4 ARFGAP1, GBF1, STT3A, KDELR2, SEC31A,
COPB2, SEC22B

REAC:R-HSA-199977ER to Golgi Anterograde
Transport

1.11 x 10-4 ARFGAP1, GBF1, KDELR2, SEC31A, COPB2,
SEC22B

REAC:R-HSA-6807878cCOPI-mediated anterograde
transport

9.53 x 10-4 ARFGAP1, GBF1, KDELR2, COPB2

Table 5.2: GO analysis of differentially expressed genes in R857G Auxilin neurons
50 most significantly differentially expressed genes were subjected to GO analysis. Fischer exact
test with Benjamini & Hochberg correction for multiple testing was performed for the enrichment
analysis of GO terms for biological process and reactome terms for biological pathways (Reimand
et al., 2016).
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Two major themes from enriched GO terms appeared: transport and stress

response in the early secretory pathway. Indeed, multiple proteins residing in

the ER or Golgi network were identified, as well as multiple transcription factors

with important roles in regulating the ER and Golgi dynamics (Table 5.2). Table

5.3 and Table 5.4 provide a functional description of the genes involved with two

of the larger, overarching GO terms ‘response to ER stress’ and ‘Golgi vesicle

transport’, respectively.

Gene Protein Function

PPP1R15A Protein phosphatase 1 regulatory
subunit 15A

Recruitment of protein phoshpatase 1 for the
dephosphorylation of translation initation factor EIF2A
to reverse the shut-off stress-induced protein synthesis

ARFGAP1 ADP-ribosylation factor
GTPase-activating protein 1

GAP for ARF1, required for the dissociation of coat proteins
from Golgi-derived membranes

TRIB3 Tribbles homolog 3 Inhibition of transcriptional activity of DDIT3, involved in cell
death regulation during ER stress

CREB3 Cyclic AMP-responsive
element-binding protein 3

ER-bound transcription factor promoting cell survival as
opposed to ER stress-induced apoptosis

SEC31A Protein transport protein Sec31A Component of COPII, promoting the formation of ER-derived
vesicles

EIF2AK3 Eukaryotic translation initiation
factor 2-alpha kinase 3

Kinase that phosphorylates of translation initiation factor
EIF2A in response to stress to decrease overall protein
synthesis

DDIT3 DNA damage-inducible transcript 3
protein

Multifunctional transcription factor in ER stress response

JUN Transcription factor AP-1 Transcription factor regulating gene expression in response to
a variety of stimuli, including stress

Table 5.3: Functional description of the gene-set annotated to GO term ‘response to
ER stress’ The UniProt database was queried for protein functions (The UniProt Consortium,
2019).
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Gene Protein Function

ARFGAP1 ADP-ribosylation factor
GTPase-activating protein 1

GAP for ARF1, required for the dissociation of coat proteins
from Golgi-derived membranes

GBF1 Golgi-specific brefeldin A-resistance
guanine nucleotide exchange factor
1

GEF for ARF proteins involved in trafficking in the early
secretory pathway

KDELR2 ER lumen protein-retaining
receptor 2

Required for the retention of luminal ER proteins and for
normal vesicular traffic through the Golgi

SEC31A Protein transport protein Sec31A Component of COPII, promoting the formation of ER-derived
vesicles

COPB2 Coatomer subunit beta’ Coat protein required for anterograde protein transport from
the ER to the TGN via the Golgi stacks, and required for
retrograde Golgi-to-ER transport

SEC22B Vesicle-trafficking protein SEC22b SNARE involved in targeting and fusion of ER-derived vesicles
with the Golgi and Golgi-derived vesicles with the ER

Table 5.4: Functional description of the gene-set annotated to GO term ‘Golgi vesicle
transport’ The UniProt database was queried for protein functions (The UniProt Consortium,
2019).

Auxilin plays a specific role in clathrin trafficking from the TGN and the plasma

membrane and the R857G Auxilin mutation contributes to PD pathogenesis

via a loss of function mechanism. Thus, alterations in ER-cis Golgi trafficking

might reflect compensatory mechanisms to restore normal trafficking in cells with

diminished Auxilin function. It is conceivable that genes involved in early steps

of the secretory pathway are differentially expressed in an attempt to counteract

impairments in later steps of the secretory pathway due to impaired clathrin

trafficking. In addition, chronic increase of ER-Golgi trafficking may well result in

ER stress, with subsequent activation of stress response mechanisms.

5.2.6 Activation of the Golgi stress response

Whereas the ER stress response has been well documented, the signalling cascade

during the Golgi stress response is less explored. However, two genes that have

been implied as important mediators of the Golgi stress response (GBF1, CREB3 ),

were found to be among the most significantly differentially expressed genes in

R857G Auxilin neurons (Figure 5.7, Figure 5.8) (Reiling et al., 2013).
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Validation by quantitative PCR (qPCR) of primary neurons confirmed the

upregulation of GBF1 and CREB3 as observed in the RNAseq dataset (Figure

5.10).
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Figure 5.10: qPCR analysis of GBF1 and CREB3 expression levels qPCR analysis
of n=5 and n=4 RNA samples from WT and R857G Auxilin primary neurons, respectively.
Unpaired t-test was performed, with **** indicating a p-value < 0.0001.

CREB3 is an ER-resident transcription factor that is translocated to the cis-Golgi

network for cleavage and subsequent activation in response to multiple stressors,

including ER and Golgi stress. Activated CREB3 is translocated to the nucleus,

for the initiation of gene transcription as part of the stress response. Remarkably,

increased expression of ARF4 through activation of CREB3 was found to sensitize

cells to apoptosis in response to Golgi stress (Reiling et al., 2013).

The ARFGEF GBF1 is required for GDP to GTP exchange of multiple ARF

members, and is the rate-limiting factor to control their activation. GBF1

expression has also been shown to be upregulated in response to Golgi stress. In

contrast with CREB3, increased expression of GBF1 was found to protect against

Golgi disintegration and apoptosis through activation of ARF1 (Reiling et al.,

2013). ARF1 itself is also upregulated in response to Golgi stress and increased

expression levels were found to protect against Golgi stress (Reiling et al., 2013).
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Thus, ARF1 and ARF4 appear to be upregulated and counteract each other

in response to Golgi stress. To address whether ARF1 and ARF4 proteins

were upregulated in R857G Auxilin primary neurons too, I looked at differential

expression of the genes encoding ARF proteins in the RNAseq dataset (Figure

5.11). Indeed, in contrast with other ARF proteins, ARF1 and ARF4 were found

to be upregulated in R857G Auxilin neurons, indicating the activation of the

Golgi stress response.

Remarkably, ARF2 and ARF3, which share 96% homology with ARF1, were found

to be downregulated in R857G Auxilin neurons (Figure 5.11) (D’Souza-Schorey and

Chavrier, 2006). Whereas ARF2 and ARF3 have not been implied in Golgi stress

response mechanisms, it is plausible that their downregulation would counteract

the upregulation of ARF1, as ARF proteins are thought to provide overlapping

functions (D’Souza-Schorey and Chavrier, 2006; Reiling et al., 2013).

5.2.7 Morphological alterations of the Golgi apparatus

Since expression levels of CREB3, GBF1, ARF1 and ARF4 were previously found

to correlate with Golgi integrity, the Golgi morphology of R857G Auxilin neurons

was analysed by electron microscopy (EM) imaging of striatal brain slices of

R857G Auxilin mice (Figure 5.12 A, B) (Reiling et al., 2013). Strikingly, the

Golgi apparatus in the striatum of R857G Auxilin mice appeared more swollen as

compared to the striatum of WT mice (Figure 5.12 E).

To further address swelling of the Golgi apparatus and to be able to distinguish

between cis, medial and trans Golgi stacks, I used confocal microscopy with

Airyscan detection to analyse primary neurons stained for endogenous Golgi

markers (Figure 5.12 C, D, F, G). Swelling was measured indirectly using
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Figure 5.11: Differential expression of ARF proteins in R857G Auxilin neurons
Differential expression of ARF1-6 in R857G Auxilin neurons as detected by RNAseq. Wald test
with Benjamini & Hochberg post hoc correction was performed and p-values indicated when
significant, with * p-value < 0.05, ** p-value < 0.01, # p-value < 10-17.

co-localization analysis: swollen Golgi morphology would result in an increased

surface area, with subsequent decrease of co-localization between neighbouring

Golgi stacks.

Indeed, a decreased co-localization between cis and medial Golgi stacks (GM130

and GLG1, respectively) and medial Golgi stacks (GLG1 and TGN38, respectively)

was observed in primary neurons derived from R857G Auxilin mice compared

to WT, indicating swollen Golgi morphology. No alterations in co-localization

between cis and trans Golgi stacks were observed (data not shown), which can be

expected given the physical distance between both compartments.
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Figure 5.12: Dystrophic alterations in Golgi morphology in R857G Auxilin neurons
A, B Representative EM images of brain slices of the striatum of WT and R857G Auxilin mice.
Scale bar = 600 nm. E Quantification of observed Golgi morphologies of n=10 WT and n=22
R857G Auxilin striatal cells. Binomial test was performed, **** indicates p-value < 0.0001. C,
D Representative confocal images with Airy scan detection of WT and R857G Auxilin primary
neurons, stained for endogenous GM130 (red), GLG1 (green) and TGN38 (blue) scale bars = 2
µm. F, G Quantification of co-localization of GLG1+GM130 and GLG1+TGN38, respectively,
of n=16 WT and n=17 WT R857G Auxilin primary neurons. Unpaired t-tests were performed,
* indicates p-value < 0.05, **** indicates p-value < 0.0001.
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5.3 DISCUSSION

A novel PD mouse model harbouring the pathogenic R857G Auxilin mutation

was developed and RNAseq of primary cultural neurons was performed to assess

differential gene expression between WT and R857G Auxilin mice. A total

of 4666 genes were found to be differentially expressed, of which 2203 were

enriched in the R857G Auxilin neurons (Figure 5.7). GO analysis of the 50 most

significantly differentially expressed genes revealed alterations in genes involved in

early secretory pathway trafficking, as well as the activation of an early secretory

pathway stress response (Figure 5.8).

The early secretory pathway consists of the ER and the Golgi apparatus. Proteins

and lipids are synthesized in the ER and are subsequently transported to the

Golgi network for processing and sorting and subsequent transport from the TGN

to a variety of intracellular compartments. Anterograde and retrograde trafficking

between the ER and the Golgi is mediated by COPII and COPI coated vesicles,

respectively, whereas clathrin coated vesicles play an important role in vesicular

trafficking protein and lipids from the TGN to destination compartments.

Auxilin is required for the uncoating of CCVs in neurons and the R857G Auxilin

allele was found to be a hypomorph (see Chapter 3). It is thus conceivable that the

R857G Auxilin mutation would result in impaired clathrin trafficking through a

partial loss of function mechanism, with subsequent impairments in CCV-mediated

trafficking from the TGN and delivery of its cargo to destination compartments.

The observed upregulation of genes involved with trafficking between the ER and

the Golgi apparatus might reflect secondary alterations to increase early secretory

trafficking in an attempt to compensate for the decreased trafficking from the

TGN (Table 5.4). In addition, chronic increase of ER-Golgi trafficking may well
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result in the ER and Golgi stress and could explain the observed activation of the

early secretory pathway stress response (Figure 5.3).

Whereas the exact mechanisms of the Golgi stress response are not fully understood,

two genes that were among the 10 most significantly differentially expressed genes,

CREB3 and GBF1, have previously been reported to play an important role in

mediating the Golgi stress response (Reiling et al., 2013). Validation by qPCR

confirmed the upregulation of those genes in R857G Auxilin neurons (Figure

5.10). Furthermore, electron microscopy and confocal imaging with Airyscan

detection revealed dystrophic morphological changes in the Golgi apparatus of

R857G Auxilin neurons (Figure 5.12). It is important to note however that the

lack of reliable antibodies have prevented me from assessing whether there are

alterations of CREB3 and GB1 at the protein level.

The transcription factor CREB3 is activated as a response to Golgi stress and

initiates an increase of ARF4 expression, enabling Golgi stress-mediated cell

death (Reiling et al., 2013). In contrast, increased expression of GBF1 and its

downstream effector ARF1 have been described to protect against Golgi stress

(Reiling et al., 2013). GBF1 and ARF1 are also involved in the recruitment of

clathrin adaptor proteins to the TGN (see section 1.3.3). Increased expression

of GBF1 may therefore indicate a compensatory mechanism to stimulate the

recruitment of clathrin adaptor proteins and the formation of CCVs from the

TGN, to counteract the decreased efficiency of impaired clathrin trafficking from

the Golgi apparatus. However, it should be noted that in addition to ARF1, other

ARF proteins including ARF4 are also activated by GBF1. It should be noted

that the gene encoding a GAP protein for ARF1 (ARFGAP1 ) was also found to

have significantly increased expression levels in R857G Auxilin primary neurons,
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potentially counteracting the activation of ARF1 by GBF1 (see Supplementary

Table 1).

Taken together, the observed upregulation of CREB3 and GBF1, via activation

of ARF4 and ARF1, respectively, may balance each other in the regulation of

the Golgi stress response, balancing stress-dependent apoptosis and activation of

coping mechanisms in primary R857G Auxilin neurons. Remarkably, in contrast

with other ARF proteins, ARF1 and ARF4 were also found to be significantly

upregulated in R857G Auxilin neurons. Whereas a modest increase of ARF1

expression was observed, ARF4 was 2-fold higher expressed in R857G Auxilin

neurons (figure 5.11). This finding may indicate that the balancing act of ARF1

and ARF4 in the Golgi-stress response is favoured in the direction of apoptosis in

R857G Auxilin primary neurons. Future work will have to elucidate the long-term

impact of Golgi stress with ageing.
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5.4 MATERIAL AND METHODS

5.4.1 Primary neuronal culture

Primary neuronal cultures were derived from the cortex of P0 pups from WT or

R857G Auxilin mice. P0 mice were sprayed with 70% ethanol and decapitated. The

brains were isolated, cortex was dissected and meninges were removed. Cortices

were transferred to a 15 ml falcon with HBSS and washed twice with HBSS to

minimize blood contamination, by letting them sink to the bottom and replacing

HBSS. HBSS was removed and cortices were incubated with papain solution

(BME media (Sigma) with pH 8 with 8 units/ml of papain (Worthington)). 4

cortices were incubated with 2 ml papain solution for 30 minutes at 37◦C, with

gentle agitation every 10 minutes. After 30 minutes, papain was neutralized

by adding plating medium (Basic medium Eagle (BME, Gibco) with 1x B27

supplement (Gibco), 1x N2 supplement (Gibco), 0.45% glucose (Sigma) and 1x

glutaMAX-I (Invitrogen)). Cortices were washed twice with plating medium, with

centrifugation at 1000 rpm for 1 minute in between washes. Finally, cortices

were triturated in plating medium using a 1000 µl pipet. Cells were spun down

for 6 minutes at 1000 rpm in a total volume of 10 ml of plating media twice.

Supernatant was removed and cell pellet was resuspended in 1 ml of plating media

per brain supplemented with 5% FBS (fetal bovine serum, Gemini). 3 million cells

were seeded per well of a 12-well plate precoated with poly-D-lysin and laminin

(Corning). The following day, media was replaced to plating media without FBS,

supplemented with 2.5 µM of glial inhibitor cytosine arabinoside. Media was

replaced every 2-3 days.
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5.4.2 RNA extraction

RNA was extracted from primary neurons cultured for 7 days in vitro. Cells were

pelleted (∼ 3 million cells) and RNA was extracted using 500 µl of TRIzol reagent,

as described in Section 3.4.8.

The concentration of RNA samples was measured using a NanoDrop

spectrophotometer (ThermoFisher Scientific) and were diluted with RNAse-free

water to a final concentration of 500 ng/µl.

The quality of the RNA was analysed by the RNA integrity number (RIN). RNA

measurements were prepared using the RNA 6000 Nano Kit Guide (Agilent) and

measured using the 2100 Bioanalyzer System (Agilent). RNA 6000 nano gel was

added to the nano gel matrix, loaded on an RNA nano chip and primed using the

priming station. Samples as well as an RNA nano marker as a control were loaded

and the nano chip was loaded on the Agilent 2100 bioanalyzer to measure RNA

integrity. The bioanalyzer measures the RIN number based on the degradation of

18S and 26S ribosomal RNA.

5.4.3 cDNA library preparation

cDNA libraries were generated from 500 ng RNA using the TruSeq Stranded Total

RNA Sample Prep LS (Illumina), according to manufacturers instructions.

Ribosomal RNA binding buffer and removal buffer were added to the RNA

samples and ribosomal RNA was depleted from the samples using paramagnetic

RiboZero Deplete RNAClean XP Beads. RNA was subsequently fragmented

using Fragment High mix. First strand cDNA was synthesized using superscript

II reverse transcriptase. Second strand cDNA was synthesized and RNA was
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depleted. Double-stranded cDNA was purified using AMPure XP paramagnetic

beads and 3’ ends were poly-adenylated. Indexing adaptors for 6-fold multiplexing

(AR002, AR004, AR005, AR006, AR007, AR012) were ligated at both sides of the

cDNA. Fragments with ligated adaptors were enriched by PCR amplification using

primers targeting the adaptors. PCR products were purified using AMPure XP

paramagnetic beads. The cDNA libary was subsequently validated using digital

PCR as described below. Normalized cDNA libraries were multiplexed in 10 nM

Tris-HCl with 0.1% Tween20 (6 samples per pool).

5.4.4 Droplet digital PCR

The cDNA library was subjected to serial dilution, with final dilutions of 10-6,

10-7 and 10-8. Droplet digital PCR was performed by Alice Kaganovich using

the reagents of the droplet digital PCR Library Quantification Kit for Illumina

TruSeq (Bio-Rad). Droplets were generated with a QX200 Droplet Generator

(Bio-Rad), followed by thermal cycling under the conditions outlined in Table 5.5,

allowing for individual PCR reactions per droplet. PCR reads were analysed the

QX200 Droplet Reader (Bio-Rad) and number of reads were quantified using the

QuantaSoft Software (Bio-Rad), followed by normalization for pooling.

Cycles Temperature
(C)

Time

1x 95 10’

40 94 30”

60 1’

1x 98 10’

Table 5.5: Cycle sequencing conditions for droplet digital PCR
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5.4.5 Deep-sequencing

Deep-sequencing was performed by Alice Kaganovich. 7 pM of each pool was

hybridized to a flow cell followed by cluster generation using the HiSeq Paired-End

Cluster Kit v4 (Illumina) on the cBot cluster amplification system (Illumina),

by grafting cDNA with annealed adaptors on the surface of the flow cell. The

templates were copied from the adaptor hybridization primers and amplified

using high fidelity DNA polymerase to create clonal clusters of ∼1000 copies

each. Clusters were subsequently subjected to deep-sequencing using the HiSeq

Sequencing by Synthesis Kit V4 (Illumina) reagents and the Illumina HiSeq2500

sequencer.

5.4.6 Read mapping

Sequencing counts were mapped and quantified by Dr. Jinhui Ding. The standard

Illumina pipeline was used to generate fastq files, Ensembl GRCm38 annotated

transcript abundance were quantified using Salmon in a non-alignment-based

mode, and gene level counts were estimated using tximport package (Patro et al.,

2017; Soneson et al., 2016).

5.4.7 Differential expression analysis

Differential expression analysis of the cDNA reads resulting from the RNAseq

experiment was performed by Dr. Mark Cookson. The DESeq2 R package was

used, which assumes a negative binomial distribution of read counts (Love et al.,

2014).
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Read counts were normalized using an RLog transformation for the stabilization

of variances. Differential expression of normalized counts was assessed using a

Wald test, with Benjamini and Hochberg multiple testing adjustment.

5.4.8 Functional enrichment analysis

Functional enrichment analysis was performed for the 50 most significantly

differentially expressed genes using g:Profiler (Reimand et al., 2016) for gene

Ontology terms for ‘biological process’. Fischer exact test was performed for

functional enrichment analysis with Benjamini and Hochberg post hoc correction.

Redundant categories (i.e. categories with identical annotated gene sets) and

categories with less than 3 annotated genes were removed from analysis. An

enrichment map was generated using the ‘EnrichmentMap’ Cytoscape plug-in.

5.4.9 qPCR

qPCR experiments were performed as described in Section 3.4.10. An overview of

the primers used for qPCR experiments in this chapter can be found in Table 5.6.

Target Primers Exon

CREB3 Fwd 5’-GTTCTTGGTCTCCAGCAAC-3’ 9

Rvs 5’-TCTGAAAGGTTTGCCTGCAG-3’ 9

GBF1 Fwd 5’-ACGTGCACAGACTTTGAACG-3’ 11/12

Rvs 5’-TTGACCGCAAGTGGTACATG-3’ 12

β-actin Fwd 5’-ACGTGCACAGACTTTGAACG-3’ 4

Rvs 5’-TTGACCGCAAGTGGTACATG-3’ 5

PPID Fwd 5’-CTCATCTGGACGGGAAACAT-3’ 4

Rvs 5’-CCAGTCATCCCCTTCTTTCA-3’ 5

Table 5.6: qPCR primers
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5.4.10 Immunocytochemistry

Primary cortical neurons were seeded in 24-well plates containing glass coverslips

coated with poly-D lysine (Corning). Cells were fixed for 20 minutes in PBS-CM

buffer (PBS with 2 mM CaCl and 20 mM MgCl) containing 4% paraformaldehyde

and 120 mM sucrose, followed by permeabilization for 15 minutes in PBS-CM

buffer with 0.2% Triton. Cells were blocked for 30 minutes with PBS-CM

buffer containing 3% FBS. Next, cells were incubated at RT for 1 hour with

primary antibodies diluted in PBS-CM buffer containing 1% FBS Table 5.7).

Cells were washed 3 times with PBS. Cells were subsequently incubated with

Alexa Fluor secondary antibodies (ThermoFisher Scientific) diluted in PBS-CM

buffer containing 1% FBS for 30 minutes, followed by 3 washes with PBS-CM

buffer. All secondary antibodies were donkey host and used at 1:500 dilution.

Coverslips were mounted on microscope slides using ProLong gold Antifade

Mountant (ThermoFisher Scientific) and dried overnight at RT in the dark.

Target Host Dilution Vendor Catalog number

GM130 Mouse 1/250 Abcam ab169276

GLG1 Rabbit 1/250 ThermoFisher Scientific PA5-26838

TGN38 Sheep 1/500 Bio-Rad ab10552

Table 5.7: Primary antibodies used for ICC

5.4.11 Confocal laser-scanning microscopy and Airyscan processing

Super-resolution imaging was acquired using a Zeiss 880 microscope outfitted with

an Airyscan detection module. Data were collected using immersion oil optimized

for 23◦C (Zeiss) and a 63x objective. Fluoresence was detected by sequential laser

excitation at wavelengths of 405, 488, 568 and 647 nm to minimize cross talk.
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Airyscan processing was performed using the Airyscan module in the included

Zen software package (Zeiss).

5.4.12 Electron microscopy

Brain slices for electron microscopy analysis were prepared by Dr. Natalie Landeck

(Pallotto et al., 2015). 10 month old mice were anesthetized using ketamine (one

WT and one R857G Auxilin mouse). Mice were transcardially perfused with

saline for 2 minutes, followed by perfusion with fixation buffer for 5 minutes (2%

paraformaldehyde, 2% glutaraldehyde in 150 mM sodium-cacodylate, buffered

at pH 7.4). Brains were isolated and postfixed for 8 hours in fixation buffer.

Next, brains were rinsed overnight in 150 mM sodium-cacodylate buffer without

fixatives. The following day, 200 µm thick coronal brain sections were sliced

using a vibratome. Striatal sections around the anterior commissure level were

submitted for conventional transmission EM (TEM) imaging.

TEM imaging was performed by the Electron Microscopy Core (National Heart,

Lung and Blood Institute, National Institutes of Health) led by Dr. Christopher

Bleck. Specimens were rinsed in cacodylate buffer, postfixed with 1% OsO4

in the same buffer on ice, en bloc stained with 1% uranyl acetate, dehydrated

in an ethanol series and embedded in EMbed 812 resin (Electron Microscopy

Sciences). Thin sections were cut, stained with uranyl acetate and lead citrate, and

viewed with a JEM-1200EX (JEOL) transmission electron microscope (accelerating

voltage 80 keV) equipped with an AMT 6 megapixel digital camera (Advanced

Microscopy Techniques).
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5.4.13 Statistics

Data were plotted and statistical tests were performed using Prism 8 (Graphpad)

or R version 3.4.3. The statistical test results are displayed in table 5.8. n

represents the number of animals samples were derived from or technical replicates

and is explicitly indicated in the figure legend. Error bars represent SD.

Figure Variable Statistical test Test result P-value

5.7 Genotype Wald test with Benjamini & Hochberg correction NA see
Supplementary
Table 1

5.9 Genes Fisher exact test with Benjamini & Hochberg correction NA see Table 5.2

3.4.10 A Genotype Welch’s t-test t = 12.63 0.00007

3.4.10 B Genotype Welch’s t-test t = 9.322 0.0014

5.11 A Genotype Wald test with Benjamini & Hochberg correction NA 0.002649183

5.11 B Genotype Wald test with Benjamini & Hochberg correction NA 0.01845598

5.11 C Genotype Wald test with Benjamini & Hochberg correction NA 0.002542252

5.11 D Genotype Wald test with Benjamini & Hochberg correction NA 8.45 x 10-18

5.11 E Genotype Wald test with Benjamini & Hochberg correction NA 0.1674364

5.11 F Genotype Wald test with Benjamini & Hochberg correction NA 0.9946054

5.12 A Genotype Binomial test NA <0.0001

5.12 B Genotype Welch’s t-test t = 0.0104 0.0104

5.12 C Genotype Welch’s t-test t = 5.502 <0.0001

Table 5.8: Statistical test results
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6 IMPACT OF MUTATIONS ON THE INTERACTOME OF

AUXILIN

6.1 INTRODUCTION

The formation, maturation and uncoating of CCVs relies on a strict sequence

of transient biomolecular interactions. Auxilin-mediated uncoating of synaptic

CCVs has been well documented. It is understood that Auxilin is recruited to

the newly formed CCVs derived from the plasma membrane through interaction

with PI4P, which is abundant on the vesicular membrane after fission, and the

clathrin coat (Ahle and Ungewickell, 1990; He et al., 2017; Lee et al., 2006; Scheele

et al., 2001). Auxilin in turn binds with the chaperone HSC70 and stimulates its

ATPase activity, required for the uncoating reaction (Ahle and Ungewickell, 1990;

Braell et al., 1984; Ungewickell, 1985). In addition, Auxilin has been found to

interact with the plasma membrane-resident adaptor protein AP2 (Scheele et al.,

2001). However, the exact physiological relevance of this interaction is unclear.

The ubiquitous homologue of Auxilin, GAK, was also found to interact with AP2,

as well as with AP1, a TGN-resident clathrin adaptor (Kametaka et al., 2007).

It remains unclear whether the role of Auxilin at the plasma membrane can simply

be extrapolated to the Golgi apparatus. First, it is unknown which PIP species

are most abundant on TGN-derived CCVs. Given that the lipid-binding domain

of Auxilin is crucial for its CCV recruitment (He et al., 2017; Massol et al., 2006),

the according affinity of Auxilin for PIPs on Golgi-derived CCVs would thus play

a great role in its recruitment. In addition, as opposed to the finding that GAK

interacts with AP1, previous work has not identified any interactions of Auxilin

with Golgi clathrin adaptors (Kametaka et al., 2007).
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Multiple pathogenic PD mutations in Auxilin have been described young onset,

atypical PD (Edvardson et al., 2012; Elsayed et al., 2016; Köroglu et al., 2013;

Olgiati et al., 2016). In addition to two splice-site variants (T741=, c.801-2A>G)

that are predicted to result in overall decreased levels of Auxilin, two nonsense

mutations (Q791X, Q846X) and a point mutation (R927G) reside within the

C-terminus of Auxilin. The C-terminus of Auxilin contains the J-domain and

clathrin binding domain and is thus involved with multiple protein-protein

interactions that are essential for Auxilin function (Figure 6.15). However,

the impact of pathogenic Auxilin mutations on the interaction with bona fide

interactors has not been reported to date.

Results from the RNAseq data have indicated the activation of the Golgi stress

response mutant Auxilin neurons (Chapter 5). I therefore hypothesized that

Auxilin may indeed play a role in CCV trafficking at the Golgi apparatus. To gain

further insight into the molecular machinery involved with the uncoating of CCVs

and to examine whether there are any protein-protein interactions indicating a

role for Auxilin at the Golgi too, the full interactome of Auxilin was mapped

in an unbiased fashion by coupling affinity purification with mass spectometry

(AP-MS).

The identification of bona fide interactors by AP-MS can be challenging because of

the high false positive rates due to background contaminants, including proteins

that interact non-specifically with the beads used for co-immunoprecipitation

(co-IP) or epitope tags (Mellacheruvu et al., 2013; Trinkle-Mulcahy et al.,

2008). Combination of stable isotope labelling with amino acids in cell culture

(SILAC) with AP-MS is a semi-quantitative approach provides great accuracy

in identifying specific interactors and distinguishing these from false positives,

through differential metabolic labelling of cells expressing Auxilin and cells
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expressing a negative control. In addition, the contaminant repository for

affinity purification (CRAPome) is an online platform of aggregated negative

controls from 411 AP-MS studies, providing a more complete and accurate AP-MS

background protein set (Mellacheruvu et al., 2013). Comparison of the interactome

of Auxilin with the CRAPome database thus further helps to eliminate non-specific

interactors.

Newly identified putative Auxilin interactors were further validated to confirm

specificity and physiological relevance. Throughout the validation process, the

affinities of newly identified interactors were compared for Auxilin and GAK, to

gain further insight into the the physiological overlap between both uncoating

co-chaperones.

To further understand the impact of pathogenic Auxilin mutations at the molecular

level, the effects on the interaction with bona fide Auxilin interactors were analysed

by co-IPs. In addition, the impact on the co-localization of Auxilin with interacting

proteins and CCVs was analysed using confocal microscopy and Airyscan detection.

Dr. Nate Smith also modelled the three-dimensional Auxilin structure bound

to bona fide interactors, to further understand the impact of PD mutations on

tertiary protein structure and interactions.
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6.2 RESULTS

6.2.1 SILAC-based proteomics to identify interactome of Auxilin

To map the interactome of Auxilin in unbiased fashion, GFP-nanotrap co-IP was

combined with mass spectometry-based SILAC proteomics (Figure 6.4.7).

GFP-Auxilin or GFP as a negative control were exogenously expressed through

transient transfection in HEK293FT cells labelled with either ‘heavy’ (R10K8) or

‘light’ (R0K0) amino acid isotopes, respectively. GFP was used as the tag of choice

as it shows minimal non-specific binding with mammalian proteins and because

of the availability of GFP-specific nanobody-beads that show high specificity

and affinity. In addition, the use of nanobodies eliminates contamination of IgG

in the mass spectometry samples. GFP-nanotrap co-IP was performed and the

precipitates were mixed at 1:1 ratio. After in-gel trypsin digestion, samples were

subjected to liquid chromatography with tandem mass spectometry (LC-MS/MS)

(Figure 6.4.7). Trypsin digestion, LC-MS/MS and subsequent protein identification

via peptide sequence databases was performed by the Proteomics Core led by

Dr. Yan Li (National Institute of Neurological Disorders and Stroke, National

Institutes of Health).

Experiments were performed in triplicate and exclusion of proteins that were

not identified across all replicates resulted in a list of 412 proteins that were

considered for statistical analysis (Figure 6.2 A). However, LC-MS/MS typically

identifies a large number of non-specific interactors that are co-purified with the

bait (Mellacheruvu et al., 2013). Further bioinformatic filtering was performed

to prioritize candidate bona fide Auxilin interactors and eliminate background
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GFP
Lys-0/Arg-0
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GFP-Auxilin
Lys-8/Arg-10
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GFP-nanotrap
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In-gel trypsin digestion
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Figure 6.1: Design of SILAC-based AP-MS approach to identify the interactome
of Auxilin HEK293FT cells were labelled with ‘light’ or ‘heavy’ amino acid epitopes and
transfected with GFP or GFP-Auxilin, respectively. GFP nanotrap co-IP was performed and
precipitates were mixed 1:1. In-gel trypsin digestion, LC-MS/MS and subsequent protein
identification via peptide sequence databases was performed by the Proteomics Core led by Dr.
Yan Li (National Institute of Neurological Disorders and Stroke, National Institutes of Health).

contaminants (Figure 6.2). A full list of unfiltered candidates can be found in

Supplementary Table 2.
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143
76

412
41 44

106

110

412 interactors

318 interactors

269 interactors

31 interactors

Protein score > 50

CRAPome fraction < 0.5

FDR P-value < 0.05

L/H SILAC ratio < 0.25

384 interactors

153 interactors

Defined L/H SILAC ratio 
A B

Figure 6.2: Bio-informatic filtering approach of Auxilin interactome A Venn diagram
indicates number of proteins identified across 3 technical replicates of the SILAC experiment.
B Bioinformatic filtering approach to prioritize Auxilin interactors and eliminate background
contaminants. L/H SILAC ratio indicates relative abundance ratio in light/heavy labelled
SILAC sample. Protein score indicates Mascot protein score. One sample t-test was performed
with Benjamini & Hochberg FDR correction for multiple testing.

First, proteins that were solely identified in the GFP negative control were

eliminated. Relative abundance of proteins were reported as a light/heavy SILAC

ratio. Thus, proteins present in GFP-Auxilin sample only (i.e. abundance in ‘light’

sample equals zero) would result in a SILAC ratio of 0. In contrast, proteins that

were present in the negative control only (i.e. abundance in ‘heavy’ sample equals

zero), were eliminated. Next, proteins were filtered to have a Mascot protein score

higher than 50, which represents the -log10 of a probability measurement of random

peptide matches to the queried database. In addition, the CRAPome database was

used to filter out common contaminants of affinity purification-mass spectometry

experiments (Mellacheruvu et al., 2013). 31 proteins with a false discovery rate

(FDR)-corrected p-value lower than 0.05 and at least 4-fold enrichment in the

GFP-Auxilin samples were considered top candidates for Auxilin interactors

(Figure 6.3, Table 6.1).

Among the identified interactors were Auxilin (DNAJC6 ) itself and previously

reported interactors clathrin heavy chain (CLTC ) and AP2 subunit α2 (AP2A2 ),

indicating that the experiment had been successful in recovering authentic Auxilin
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Figure 6.3: Scatter plot of top candidates Auxilin interactors Scatterplot indicating the
genes of identified proteins. The bait protein Auxilin (DNAJC6 ) and previously identified bona
fide interactors (CLTC, AP2A2 ) are indicated in blue. Novel interactor (GGA2 ) that was
followed up on is indicated in pink. P-value indicates one sample t-test statistics with Benjamini
& Hochberg FDR correction.

interactors (Scheele et al., 2001) (indicated in blue in Figure 6.3). In addition to

CLTC, other subunits of clathrin were identified as well (CLTA, CLTB, CLTCL).

These are possibly indirect interactors of Auxilin that were co-purified as part

of the clathrin complex. HSC70 (HSPA8 ), the chaperone of Auxilin required

for its role in uncoating CCVs, showed a low FDR-corrected p-value (0.005067)

and high mean enrichment (8.1567) in the GFP-Auxilin sample. Nonetheless,

HSC70 was excluded through bioinformatic filtering from the final list of top

candidates because of its high abundance in the CRAPome database (fraction of

0.9635) (Supplementary Table 2). However, the HSC70 nucleotide exchange factor

BAG2 and HSC70 adaptor protein STIP1, required for HSC70 ADP release and

coordination of HSC70 function in protein folding (King et al., 2001; Xu et al.,
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2008), respectively, were identified in the final list of top candidates, which may

indicate an indirect interaction through HSC70 with Auxilin.

In addition to HSC70, Auxilin also requires ATP for the uncoating of CCVs.

Multiple protein involved with ADP/ATP exchange were identified. In addition to

the aforementioned BAG2, mitochondrial ADP/ATP translocases that mediate the

exchange of cytoplasmic ADP for mitochondrial ATP, SLC25A4 and SLC25A6,

were also detected. Whereas BAG2 has previously been reported to directly

interact with HSC70 (Xu et al., 2008), it is plausible that SLC25A4 and SLC25A6

could be part of a molecular machinery to ensure efficient ADP/ATP exchange of

HSC70.

Finally, multiple heat shock proteins were identified (HSPA4, HAPA1A, HSPA4L).

One possible explanation is that HSPs, including the bona fide Auxilin interactor

HSC70, require common molecular machineries for their function and that multiple

chaperones were co-purified via common protein interactors. Alternatively, the

identified chaperones might interact with the overexpressed Auxilin to enhance

correct folding and protein stability.
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6 IMPACT OF MUTATIONS ON THE INTERACTOME OF AUXILIN

6.2.2 Gene ontology analysis of top candidates Auxilin interactors

The 31 top candidates were subjected to gene ontology (GO) analysis for biological

process and cellular component terms (The Gene Ontology Consortium, 2019;

The Gene Ontology Consortium et al., 2000). Fisher exact test was performed for

enrichment analysis with Bonferroni correction for multiple testing. Redundant

categories were removed based on hierarchal clustering (subclusters were removed

from analysis) (Table 6.2).

Unsurprisingly, clathrin coat assembly, clathrin-dependent endocytosis and

membrane organization were the most significantly upregulated GO:Biological

process terms (Figure 6.4 A, Table 6.2). Processes involving LDLR, a receptor

subject to clathrin-mediated endocytosis, were also found to be enriched. In

addition, there was a significant enrichment of the GO term protein folding,

largely driven by the presence of heat shock proteins (Table 6.2).

Analysis of the GO cellular component term revealed a significant enrichment of

genes localised at the clathrin complex, pre- and postsynaptic zone, endocytic

CCVs as well as the TGN and the clathrin coat from TGN-derived vesicles. These

findings underscore an important role for Auxilin both at the plasma membrane

and the TGN and indicate that Auxilin may interact with Golgi-resident proteins.
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6 IMPACT OF MUTATIONS ON THE INTERACTOME OF AUXILIN

Biological process

GO identifier Description p-value Genes

GO:0072583 clathrin-dependent endocytosis 1.18 x 10-5 AP2A2,CLTA,DNAJC6,CLTB,CLTC

GO:0048268 clathrin coat assembly 3.35 x 10-4 CLTA, CLTB, CLTCL1, CLTC

GO:0061024 membrane organization 3.09 x 10-3 AP2A2, S100A10, CLTA, DNAJC6, HSPA1A,
CLTB, MAIP1, HSPA4, CLTCL1, CLTC

GO:0032802 low-density lipoprotein particle
receptor catabolic process

7.93 x 10-3 AP2, CLTA, CLTC

GO:0006457 protein folding 1.05 x 10-2 HSPH1, BAG2, HSPA1A1, HSPA4L, P3H1,
CSNK2A2

GO:0006886 intracellular protein transport 1.13 x 10-2 AP2A2, CLTA, PAF1, CLTB, SLC25A6, MAIP1,
HSPA4, CLTCL1, GGA2, CLTC

Cellular component

GO identifier Description p-value Genes

GO:0030130 clathrin coat of trans-Golgi
network vesicle

9.59 x 10-8 CLTA, CLTB, CLTC, CLTCL1, AP2A2

GO:0030132 clathrin coat of coated pit 6.60 x 10-7 CLTA, CLTB, CLTC, CLTCL1, AP2A2

GO:0045334 clathrin-coated endocytic vesicle 8.78 x 10-5 CLTA, CLTB, CLTC, CLTCL1, AP2A2

GO:0098835 presynaptic endocytic zone
membrane

7.45 x 10-4 CLTA, CLTB, CLTC

GO:0016593 Cdc73/Paf1 complex 7.45 x 10-4 PAF1, CDC73

GO:0071439 clathrin complex 9.93 x 10-4 CLTA, CLTCL1, CLTC

GO:0036020 endolysosome membrane 3.05 x 10-3 CLTA, CLTC, AP2A2

GO:0005802 trans-Golgi network 4.39 x 10-2 CLTA, CLTB, CLTCL1, GGA2, CLTC

GO:0099631 postsynaptic endocytic zone
cytoplasmic component

1.91 x 10-2 CLTA, CLTB

Table 6.2: GO analysis of bona fide Auxilin interactors
Fischer exact test with Bonferroni correction for multiple testing was performed for the enrichment
analysis of GO terms for biological process and cellular component (The Gene Ontology
Consortium, 2019; The Gene Ontology Consortium et al., 2000)
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Figure 6.4: GO enrichment analysis of the interactome of Auxilin GO enrichment
analysis of the top candidates of Auxilin interactors for biological process (A) an cellular
component (B). Node size corresponds to number of genes within each geneset and edge size
to number of overlapping genes between connected nodes (larger is more genes). Node colour
corresponds to the p-value of the Fisher exact test with Bonferroni correction for multiple testing
(darker is lower p-value).

183
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6.2.3 Interaction of Auxilin and GAK with clathrin adaptor proteins

Analysis of the GO terms TGN and clathrin coat of TGN vesicle revealed that

the Golgi resident clathrin-adaptor protein GGA2 was nominated as an Auxilin

interactor top candidate. Interestingly, the Golgi-resident clathrin adaptors (AP1

and GGA1-3) have previously been hypothesized to interact with Auxilin as well as

its ubiquitously expressed homologue GAK. Whereas GAK was found to interact

with AP1, no Golgi adaptor proteins were found to interact with Auxilin in a

prior study (Kametaka et al., 2007).

To validate the interaction of Auxilin with GGA2 and to compare the interaction of

Auxilin and GAK with multiple clathrin adaptor proteins, co-IPs were performed

from HEK293FT cells transiently expressing GFP-Auxilin or GFP-GAK and WBs

were probed for all endogenous adaptor proteins with a reported role in clathrin

trafficking (AP1-3 and GGA1-3) (Figure 6.5).

As was previously reported, both Auxilin and GAK were found to interact with

the α-subunit of the plasma membrane-resident AP2, whereas only GAK was

found to interact with the γ-subunit of AP1 (Greener et al., 2000; Kametaka et al.,

2007; Scheele et al., 2001) (Figure 6.5 A, B, C). No interaction was observed of

between Auxilin or GAK with the δ-subunit of AP3 (Figure 6.5 A). In addition,

co-IP confirmed the interaction of Auxilin with GGA2 and also observed a faint

interaction with GGA3, but not GGA1 (Figure 6.5 D, E, F). No interaction

between GAK and the GGA proteins was observed (Figure 6.5 D). These data

indicate that Auxilin and GAK both interact with the plasma membrane-resident

AP2, but display differential binding with Golgi-resident clathrin adaptor proteins.
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Figure 6.5: Differential interaction of GAK and Auxilin with clathrin adaptor
proteins A and D GFP, GFP-GAK or GFP-Auxilin were transiently expressed in HEK293FT
cells and WB analysis was performed of GFP-nanotrap experiments for interaction with AP and
GGA proteins. Images are representative of n = 3 technical replicates. B, C, E, F Quantification
AP1, AP2, GGA2, GGA3 interaction with GAK/Auxilin compared to GFP negative control
and normalized to bait. One-way ANOVA was performed of n = 3 technical replicates, error
bars are standard deviation, p-values represent result from Tukeys multiple comparisons test
with *** p < 0.001, ** p < 0.01.
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6.2.4 Defining the Auxilin interaction motif for GGA2

The GGA proteins and the AP1 complex contain γ-ear domains that are

structurally similar to each other and bind to multiple accessory proteins (see

section 1.3.2). A consensus motif within those accessory proteins that is responsible

for interaction with the γ-ear domains has been defined as ψG(P/D/E)(ψ/L/M),

with ψ being an aromatic amino acid (Mattera et al., 2004). Indeed, GAK was

found to interact with AP1 through two sequences fitting this motif, FGPL and

FGEF (Figure 6.6 A) (Kametaka et al., 2007). Blast analysis of GAK and Auxilin

showed that this motif was not conserved in Auxilin (Figure 6.6 A) (Altschul

et al., 1990). However, since Auxilin but not GAK interacts with GGA proteins, I

hypothesized that there might be slight differences in the sequence of the consensus

motif or the location of the consensus motif within the protein sequence.

AAADPFGPLLPSSGNNSQPCSNPDLFGEFLNSD

ATFDPFGAPSKPSGQ - - - - - - - -DLLGSFLNTSS  

GAK 956

Auxilin 639

DGKIFIPLNITVQGDVVVSMYHLRSTIGSRLQAKVTNTQIFQLQFHTGFIPLDTTV

DGKAVIPLGVTVQGDVLIVIYHARSTLGGRLQAKMASMKMFQIQFHTGFVPRNATT

338

625GAK 

Auxilin

DGKIAIPANITVQGDVVVSMYHLRSTIGSRLQAKVTNTQIFQLQFHTGAIPLDTTV338AAAA Auxilin

A

B

C

D

Figure 6.6: Binding motifs in GAK and Auxilin for interaction with γ-ear
domain-containing proteins A Binding motifs in GAK for AP1 binding are indicated in bold
and are not conserved in Auxilin (Altschul et al., 1990; Kametaka et al., 2007). B Putative
binding motifs in Auxilin for GGA2 are indicated in bold and are not conserved in GAK
(Altschul et al., 1990). C Mutation of putative GGA2 binding motifs in Auxilin, with mutated
residues indicated in red. D Modelling of bovine Auxilin (green) with GGA2 (cyan). Putative
interacting motifs are indicated in red (F and L from FIPL motifs in Auxilin, AR, K, RR from
conserved surface motifs in GGA2 (Nogi et al., 2002). Protein structures were modelled by Dr.
Nate Smith.
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Analysis of the Auxilin amino acid sequence revealed the presence of two FIPL

motifs, similar to the ψG(P/D/E)(ψ/L/M) consensus motif, with the conservative

substitution of the glycine residue with isoleucine (Figure 6.6 B). Those motifs

are not conserved in GAK, where the aromatic amino acid phenylalanine is

replaced with the aliphatic amino acid valine (Figure 6.6 B) (Altschul et al., 1990).

Structural modelling of Auxilin and GGA2 showed that the FIPL motifs are present

on the surface of the tertiary protein structure (Figure 6.6 D). In addition, the

FIPL motifs can be modelled to fit in close proximity with conserved basic residues

at the surface of GGA2, previously shown to be required for the recruitment

of accessory proteins (Figure 6.6 D) (Nogi et al., 2002). To address whether
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Figure 6.7: Auxilin interacts with GGA2 is mediated by FIPL motifs A Recombinant
3xFlag-GFP, 3xFlag-WT Auxilin or 3xFlag-AAAA Auxilin were incubated with recombinant
GST-GGA2. 3xFlag co-IP was performed followed by WB analysis to assess interaction with
GST-GGA2. Image is representative of n = 3 technical replicates. B Quantification of GGA2
co-purified with 3xFlag-AAAA Auxilin compared with 3xFlag-WT Auxilin normalized to bait.
Unpaired t-test was performed of n = 3 technical replicates, error bars are standard deviation, *
indicates p-value < 0.05.

the FIPL motifs in Auxilin could be responsible for its interaction with GGA2,

both FIPL motifs were mutated to AIPA (referred to as AAAA Auxilin) (Figure

6.6 C). Recombinant GST-GGA2 was incubated with recombinant 3xFlag-GFP
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as a negative control, 3x-Flag WT Auxilin or 3xFlag-AAAA Auxilin (Figure

6.7). Co-IP of 3xFlag revealed a direct interaction of GGA2 with Auxilin. This

interaction was strongly diminished by mutating the FIPL motifs to AIPL, thus

indicating that the FIPL motifs mediate GGA2-Auxilin interaction.
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6.2.5 Localization of GGA2-binding deficient Auxilin with the TGN

To address whether Auxilin interaction with the TGN-resident clathrin adaptor

GGA2 is required for its recruitment to the TGN, the localization of Auxilin

was analysed using confocal microscopy with Airyscan. GFP-WT Auxilin and

GFP-AAAA Auxilin (i.e. GGA2 binding deficient Auxilin) were transiently

expressed in primary murine neurons and co-stained for the endogenous TGN

marker TGN38 (Figure 6.8). Co-localization of both WT and AAAA Auxilin with

TGN38 was observed, indicating that interaction with GGA2 is not required for

recruitment of Auxilin to the TGN.

W
T

 A
u
x
il
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A
A

A
A
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u
x
il
in

GFP-Auxilin TGN38

Figure 6.8: Localization of GGA2-binding deficient Auxilin with the TGN in neurons
Representative images are shown of primary murine neurons transiently transfected with
GFP-WT Auxilin (upper panel) or GFP-AAAA (lower panel) Auxilin (green) and co-stained
for the endogenous TGN marker TGN38 (red). Scale bar indicates 10 µ m.

6.2.6 Impact of Auxilin mutations on clathrin interaction

Auxilin interacts with the CHC through multiple interaction motifs within its

clathrin binding domain (Scheele et al., 2001; Scheele et al., 2003). To address
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the effect of pathogenic Auxilin mutations on the interaction with clathrin,

GFP-Auxilin was transiently expressed in HEK293FT cells followed by WB

analysis of endogenous CHC. Experiments were focused on the Q791X, Q846X

and R927G mutations, since the splice-site mutations c.801-2>G and T741 can

not be analysed using plasmid constructs of the open reading frame of Auxilin.

Co-IP of GFP-Auxilin revealed a lower strength of interaction of Q791X, Q846X

and R927G Auxilin with CHC compared to WT Auxilin (Figure 6.9). The finding

that Q791X and Q846X mutations impair clathrin interaction is not surprising

given that both nonsense mutations result in a partial truncation of the clathrin

binding domain. However, the R927G Auxilin mutation lies outside of the clathrin

binding domain and how this mutation results in decreased CHC binding is less

clear.
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Figure 6.9: Impact of PD mutations on Auxilin interaction with clathrin A GFP or
WT, Q791X, Q846X, or R927G GFP-Auxilin were transiently expressed in HEK293FT cells
and WB analysis was performed of GFP-nanotrap experiments for interaction with endogenous
CHC. Images are representative of n = 3 technical replicates. B Quantification CHC interaction
with mutant GFP-Auxilin compared to WT GFP-Auxilin and normalized to the bait. One-way
ANOVA was performed of n = 3 technical replicates, error bars are standard deviation, p-values
represent result from Tukeys multiple comparisons test with *** p < 0.001, ** p < 0.01.
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To analyse the impact of R927G Auxilin mutation on CHC binding, the J-domain

of Auxilin, containing the R927G mutation, bound to the assembled clathrin coat

was modelled (Figure 6.10).

A

B

Figure 6.10: Structural modelling analysis of the impact of R927G mutation on
interaction of Auxilin with the clathrin coat J domain of bovine Auxilin (purple) bound
to the assembled clathrin coat (dark blue) (PDB file derived from (Fotin et al., 2004b)). Auxilin
residues residing at the interface with the clathrin coat (G825, P908, L909 and Y910, equivalent
to human G885, P968, L969 and Y970) are indicated in red. R residue mutated in PD (bovine
R867, equivalent of R927G) is indicated in cyan.

The J-domain is composed of highly conserved α-helical structures and R927G

resides within one of those α-helices (Figure 6.10) (Gruschus et al., 2004; Jiang

et al., 2003). Given that α-helix formation relies on the formation of hydrogen

bonds between negatively charged and positively charged amino acids, it is

thus conceivable that the substitution of the positively charged R residue to an
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uncharged G residue would disrupt the tightly packed α-helical structure of the

J-domain.

Further analysis of the J-domain bound to clathrin showed that multiple residues

reside at the interface with the N-terminal domain of the CHC and could therefore

be important for interaction with clathrin (Figure 6.10). Even though the Auxilin

clathrin binding domain appears to be the main determinant for clathrin interaction

(Scheele et al., 2001; Scheele et al., 2003), additional low affinity interactions with

the Auxilin J-domain may contribute to the binding of Auxilin with clathrin.

Disruption of the α-helical structure of the J-domain could therefore explain the

observed decreased interaction of R927G Auxilin with clathrin.

6.2.7 Co-localization of mutant Auxilin with CCVs

Since all tested pathogenic Auxilin mutations were shown to impair interaction

with clathrin, I hypothesized this could impair the co-localization of Auxilin

with CCVs. To adress the impact of mutation on Auxilin localization, murine

primary neurons were transiently transfected with WT and mutant GFP-Auxilin

and co-stained for endogenous clathrin heavy chain (Figure 6.11). WT Auxilin

as well as all Auxilin mutants were found to co-localize with CCVs in neurons.

This indicates that impaired interaction of mutant Auxilin with clathrin does not

abolish its recruitment to CCVs.
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Figure 6.11: Co-localization of Auxilin with clathrin WT, Q791X, Q846X or R927G
GFP-Auxilin (green) were transiently expressed in murine primary neurons and co-stained
for endogenous clathrin heavy chain (red). Scale bar = 20 µm. The right panel shows the
fluorescence intensity profiles in function of the distance indicated in the magnified merged
image. Scale bar = 2 µm.

6.2.8 Interaction of mutant Auxilin with clathrin adaptor proteins

Auxilin has been found to interact with clathrin adaptor proteins AP2 and GGA2

(Figure 6.5) (Scheele et al., 2001). In addition, a weak interaction with GGA3

was observed (Figure 6.5). WB analysis of co-IP WT and mutant GFP-Auxilin

did not reveal an alteration in the interaction with any of the clathrin adaptor

proteins (Figure 6.12).

193



6 IMPACT OF MUTATIONS ON THE INTERACTOME OF AUXILIN

G
FP

-W
T
 A

ux
ili
n

G
FP

-Q
79

1X
 A

ux
ili
n

G
FP

-Q
84

6X
 A

ux
ili
n

G
FP

-R
92

7G
 A

ux
ili
n

G
FPM

oc
k

G
FP

-W
T
 A

ux
ili
n

G
FP

-Q
79

1X
 A

ux
ili
n

G
FP

-Q
84

6X
 A

ux
ili
n

G
FP

-R
92

7G
 A

ux
ili
n

G
FPM

oc
k

Inputs IP: GFP

GFP

GFP

100

75

25

kDa

G
F
P
-W

T
 A

ux
ili
n

G
F
P
-Q

79
1X

 A
ux

ili
n

G
F
P
-Q

84
6X

 A
ux

ili
n

G
F
P
-R

92
7G

 A
ux

ili
n

IP
'e

d
 A

P
2
α
/
G

F
P

A

B

AP2α

GGA3

GGA2

75
150

IP
'e

d
 G

G
A

2
/
G

F
P

IP
'e

d
 G

G
A

3
/
G

F
P

150 250 400
AP2α GGA2 GGA3

100

50

0

200

150

100

50

0

300

200

100

0

G
F
P
-W

T
 A

ux
ili
n

G
F
P
-Q

79
1X

 A
ux

ili
n

G
F
P
-Q

84
6X

 A
ux

ili
n

G
F
P
-R

92
7G

 A
ux

ili
n

G
F
P
-W

T
 A

ux
ili
n

G
F
P
-Q

79
1X

 A
ux

ili
n

G
F
P
-Q

84
6X

 A
ux

ili
n

G
F
P
-R

92
7G

 A
ux

ili
n

C D

Figure 6.12: Impact of PD mutations on Auxilin interaction with clathrin adaptor
proteins A GFP or WT, Q791X, Q846X, or R927G GFP-Auxilin were transiently expressed in
HEK293FT cells and WB analysis was performed of GFP-nanotrap experiments for interaction
with endogenous AP2α, GGA2 or GGA3. Image is representative of n = 3 technical replciates.
B, C, D Quantification AP2α, GGA2 or GGA3 interaction with mutant GFP-Auxilin compared
to WT GFP-Auxilin and normalized to bait. One-way ANOVA was performed of n = 3 technical
replicates, error bars are standard deviation, no significant alterations were observed.

6.2.9 Interaction of mutant Auxilin with HSC70

The J-domain of Auxilin is crucial for the interaction with HSC70 to enable

uncoating of CCVs (Figure 6.13) (Jiang et al., 2003, 2007).

The R927G PD point mutation is predicted to disrupt the conserved α-helical

structure of the J domain (Figure 6.10) and the PD nonsense mutations Q791X
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Figure 6.13: Model of full-length Auxilin interaction with HSC70 Model of full-length
human Auxilin (purple) interaction with HSC70 (Green).

and Q846X result in a truncations of Auxilin that completely lack the J-domain.

It was therefore hypothesized that those pathogenic Auxilin mutations would

disrupt the interaction with HSC70. Surprisingly however, co-IP did not reveal

such impairments in HSC70 interaction (Figure 6.14).
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Figure 6.14: Impact of PD mutations on Auxilin interaction with HSC70 A GFP or
WT, Q791X, Q846X, or R927G GFP-Auxilin were transiently expressed in HEK293FT cells
and WB analysis was performed of GFP-nanotrap experiments for interaction with endogenous
HSC70. Image is representative of n = 3 technical replciates. B Quantification HSC70 interaction
with mutant GFP-Auxilin compared to WT GFP-Auxilin and normalized to bait. One-way
ANOVA was performed of n = 3 technical replicates, error bars are standard deviation, no
significant alterations were observed.

In addition to its role in the assembly and disassembly of macromolecular complexes

such as the clathrin coat (see Section 1.4.1), HSC70 also assists in the correct

folding of disordered or non-native proteins (Mayer and Bukau, 2005). Pathogenic

mutations are likely to have a disruptive impact on the protein structure of Auxilin.

Mutant Auxilin may therefore interact with HSC70 as a substrate client protein

rather than a co-chaperone.
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6.3 DISCUSSION

6.3.1 Mapping the interactome of Auxilin reveals GGA2 as a novel

interactor

GFP-nanotrap co-IP was coupled with SILAC-based LC-MS/MS to map the

interactome of Auxilin in an unbiased fashion. Co-IPs were performed in mild

experimental conditions with low concentrations of detergent to capture weak

but potentially physiological relevant Auxilin interactors, at the risk of increasing

the number of false positive interactors. A total of 412 proteins were identified

across 3 replicates and bioinformatic filtering was applied to remove background

contaminants, resulting in a total of 31 top candidates for Auxilin interactors

(Table 6.1, Figure 6.3).

One consideration when evaluating these lists is that stringent filtering may

result in false negatives, i.e. true interactions that are discarded. The stringent

bioinformatic filtering approach has resulted in the exclusion of at least one

authentic Auxilin interactor, namely HSC70. It can not be ruled out that more

physiological relevant Auxilin interactors were excluded from analysis. In addition,

Auxilin was exogenously expressed in HEK293FT cells that do not normally

express Auxilin, since its endogenous expression is restricted to neurons. It is

therefore possible that neuronal interactors of Auxilin were not identified because

of their absence in HEK293FT cells. For example, Auxilin has been reported

to interact with the neuronal isoform of dynamin (dynamin 1) (Newmyer et al.,

2003). This interaction was not recovered in the SILAC experiment as dynamin

1 is not expressed in HEK293FT. Interaction with the ubiquitously expressed

isoform dynamin 2 was also not observed, indicating that the Auxilin interaction

motif of dynamin 1 is not conserved across isoforms.
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The role of Auxilin has been well-documented for the uncoating of CCVs at the

plasma membrane. Even though depletion of Auxilin has previously been suggested

to impair TGN-mediated clathrin transport (Zhou et al., 2011), a direct role for

Auxilin at the TGN has not been demonstrated to date. GO analysis of the Auxilin

interactors revealed an enrichment of proteins at endocytic and TGN-derived

CCVs. Indeed, Auxilin was found to interact with both the previously reported

clathrin adaptor protein AP2 as well as the newly identified Golgi-resident GGA2

(Figure 6.5) (Scheele et al., 2001). Further validation confirmed that GGA2

directly interacts with Auxilin and is thus a novel bona fide interactor of Auxilin

(Figure 6.7). These findings highlight a direct role for Auxilin in the uncoating of

TGN-derived CCVs.

The finding that PIP binding through the PTEN-domain and clathrin binding via

the clathrin-binding domain are the main determinants for Auxilin recruitment to

CCVs (He et al., 2017; Massol et al., 2006), raises the question how interactions

with clathrin adaptor proteins contribute to the function of Auxilin. In addition,

the GGA2 binding sites and lipid binding sites of Auxilin are in close proximity

of each other and AP2 shares some of its binding sites with clathrin (Figure 6.15)

(Scheele et al., 2003), indicating that interaction of Auxilin with clathrin adaptors

could compete with PIP and clathrin interaction. A plausible explanation could

be that multiple low-affinity interactions with lipids, clathrin and clathrin adaptor

proteins contribute to the recruitment of Auxilin to CCVs. It is possible that

these interactions help to distinguish free and coat-associated clathrin triskelia.

However, future work will have to elucidate the exact dynamics and the sequential

and hierarchical nature of Auxilin interaction with lipids, clathrin and clathrin

adaptor proteins.
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Figure 6.15: Domain organization of Auxilin with indication of interaction partners
and PD mutations Auxilin domain organization with indication of motifs and residues
involved with interaction for lipid, clathrin, HSC70, GGA2 and AP2 binding. Thickness of lines
is representative for number of residues involved with interaction. Pathogenic mutations are
shown in red, with solid line indicating coding variants and dotted line indicating exonic variant.

6.3.2 Differential interaction of Auxilin and GAK with TGN-resident

clathrin adaptor proteins

Comparison of the interaction of Auxilin and its ubiquitously expressed homologue

GAK confirmed the interaction of both proteins with plasma membrane-resident

clathrin adaptor protein AP2 (Greener et al., 2000; Scheele et al., 2001), but

revealed differential interaction with TGN-resident clathrin adaptor proteins.

Whereas Auxilin interacts with GGA2, GAK interacts with AP1 as previously

reported (Kametaka et al., 2007). AP1 and the GGAs are γ-ear domain containing

proteins that recognize a consensus motif, ψG(P/D/E)(ψ/L/M), for binding with

accessory proteins. AP1 was found to interact with GAK via two sequences

fitting the consensus motif, FGPL and FGEF. BLAST analysis revealed that

those sequences are not conserved in Auxilin. However, Auxilin contains two

FIPL sequences that closely resemble the consensus motif that were found to

mediate interaction with GGA2 (Figure 6.7, Figure 6.15). A weak interaction of

Auxilin with GGA3 was observed as well (Figure 6.5), however this interaction

may be indirect and further in vitro binding experiments will have to confirm

a direct interaction between Auxilin and GGA3 and whether this interaction
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is mediated by the FIPL binding motifs too. In addition, all interactions were

identified by overexpression of Auxilin and GAK. Future experiments should

confirm the interaction between Auxilin and GAK and clathrin adaptor proteins

at the endogenous level.

It remains to be determined how this differential binding of Auxilin and GAK

with TGN-resident clathrin adaptor proteins is acquired. One explanation is that

slight differences in binding motifs may result in different affinities for interaction

with different γ-ear domain containing proteins. For example, Rabadaptin 5 has

previously been described to interact via a single FGPL motif with with AP1,

GGA1 and GGA3, but only weakly with GGA2, whereas GAK interacts with AP1

but none of the GGAs via a FGPL and a FGEF motif (Kametaka et al., 2007).

On the other hand, Auxilin interacts with GGA2 and only weakly with GGA3,

but not with AP1 or GGA1, via two FIPL motifs (Figure 6.5). In addition, the

location of the interaction motifs within the protein sequence could be important

for binding with γ-ear domain containing proteins. Whereas the binding motifs

of GAK for AP1 lies within the unstructured hinge region between the PTEN

domain and clathrin-binding domain, the binding motifs of Auxilin for GGA2

are located in within the PTEN domain (Figure 6.15). Interaction of Auxilin

with the γ-ear domain of GGA2 would thus take place in close proximity with

the vesicular membrane of the CCV, whereas interaction of GAK with the AP1

complex would be closer to the clathrin coat. This may reflect differences in

localization of the γ-ear domain of the AP1 complex and GGA proteins relative

to the clathrin coat of CCVs. Finally, it can not be ruled out that additional

interactions of Auxilin and GAK besides the described motifs contribute to the

interaction and differential affinity for GGA2 and AP1, respectively.
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Future work will have to elucidate the physiological relevance of the differential

interaction of Auxilin and GAK with GGA2 and AP1, respectively. Mutagenesis

of the AP1 interaction motif of GAK has been reported to result in a mild

reduction of GAK recruitment to the TGN (Kametaka et al., 2007). The GGA2

binding motif lies within the PTEN domain of Auxilin, which is also responsible

for PIP binding (Figure 6.15). Auxilin constructs lacking the PTEN domain

results in failure of recruitment to CCVs (He et al., 2017). However, Auxilin

with mutations in the FIPL motifs that abolish GGA2 interaction can still be

recruited to the TGN (Figure 6.8). This likely indicates that interaction of the

PTEN domain with lipids is the main determinant of Auxilin recruitment, as

has previously been suggested (He et al., 2017). The differential interaction of

GAK and Auxilin for different TGN-resident clathrin adaptors raises the question

whether this reflects a difference in efficiency for the uncoating of CCVs coated

with AP1 or GGA proteins, respectively. About ∼40% colocalization has been

observed between AP1 and the GGAs (Daboussi et al., 2012a; Hirst et al., 2001;

Mardones et al., 2007; Puertollano et al., 2003; Zhu et al., 2001), however the

exact relationship between AP1 and the GGA proteins remains to be elucidated

(see Section 1.3.5). Since AP1 and the GGA proteins are ubiquitously expressed

across all cell types, it is unlikely that Auxilin or GAK are solely responsible for

the uncoating of GGA2 or AP1 coated TGN-derived CCVs, respectively. However,

the differential interactions may reflect increased preference in the uncoating

of a subset of TGN-derived vesicles and may therefore underscore a particular

importance of efficient uncoating of GGA2-coated CCVs by Auxilin in neurons.
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6.3.3 Impact of mutations on Auxilin binding with bona fide interactors

Multiple homozygous recessive mutations have been identified to cause PD. Two

splice site variants (c.801-2A>G, T741=) are thought to result in overall decreased

protein levels (Edvardson et al., 2012; Olgiati et al., 2016). Two nonsense

mutations (Q791X and Q846X) completely lack the J-domain and part of the

clathrin-binding domain (Elsayed et al., 2016; Köroglu et al., 2013). The R927G

Auxilin point mutation resides within the J-domain and results in decreased

protein levels (Chapter 3) (Olgiati et al., 2016). In addition, the R927G mutation

is likely to disrupt the tightly packed α-helical structure of the J-domain (Figure

6.10). Thus, all known coding pathogenic Auxilin mutations cluster around the

clathrin-binding domain and the J-domain of Auxilin (Figure 6.15). To address the

impact of these mutations on the interactome of Auxilin, co-IPs were performed

of WT and mutant Auxilin with bona fide Auxilin interactors.

All tested mutations (Q791X, Q846X, R927G) display impaired interaction with

clathrin. Modelling of the J-domain within the assembled clathrin coat structure

indicates that multiple residues of Auxilin reside at the interface with the clathrin

coat and could thus contribute to the interaction of Auxilin with clathrin. The

disruption of the tertiary structure of the J-domain by the R927G mutation would

result in displacement of the putative clathrin interacting residues in the J-domain

(Figure 6.10), with subsequent decreased binding of Auxilin to clathrin. The

Q791X Auxilin mutation results in a C-terminal truncation lacking some of the

clathrin interaction sites, thus explaining the impaired interaction. The R927G

mutation resides in the J-domain, C-terminally of the clathrin binding domain

(Figure 6.15). The Q846X mutation also resides in the clathrin binding domain,

but does not result in a truncation of any of the reported clathrin binding sites

(Figure 6.15). However, the lack of the J-domain and part of the clathrin-binding
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domain may result in misfolding of the clathrin binding domain. In addition,

similarly to R927G, lack of the putative additional clathrin interaction sites in the

J-domain of Auxilin as modelled in Figure 6.10, would also result in decreased

clathrin binding.

The clathrin binding domain and PTEN-domain have previously been shown

to be crucial for recruitment of Auxilin to CCVs. However, despite decreased

interaction of mutant Auxilin with clathrin, Auxilin was still able to be recruited

to CCVs. This indicates that residual interaction with clathrin as well as with

lipids and clathrin adaptor proteins might be sufficient for CCV recruitment.

Indeed, interactions with clathrin adaptor proteins AP2, GGA2 and GGA3 were

unaffected by Auxilin mutations. In addition, the PTEN domain that is required

for Auxilin recruitment to CCVs via lipid interactions, is not affected by mutations

at the sequence level. Since the PTEN-like domain is connected to the clathrin

binding domain and J-domain via an unstructured hinge area (Figure 6.13), it is

plausible that tertiary structure of the PTEN domain is unaffected, thus preserving

interaction with lipids of the vesicular membrane.

Interaction of Auxilin with the HSC70 chaperone via its J-domain is not only

crucial for HSC70 recruitment to CCVs, but also to stimulate HSC70 ATPase

activity for the uncoating of CCVs. Interaction of Auxilin with the clathrin

coat is also required to guide HSC70 to a correct position within the clathrin

coat. Auxilin interacts with the clathrin coat via multiple contacts (Figure 6.15),

ultimately resulting in the placement of its J-domain underneath the tripod of a

clathrin triskelion, thereby placing HSC70 in close proximity of a set of critical

clathrin interactions (Fotin et al., 2004b). It is thus conceivable that impaired

interaction with clathrin would result in a failure of correct positioning of HSC70.

In addition, two pathogenic Auxilin mutations (Q791X, Q846X) are nonsense
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mutations that completely lack the J domain and the R927G Auxilin mutation is

thought to result in dramatic conformational alterations of the highly conserved

α-helical structure J-domain (Figure 6.10). These pathogenic Auxilin mutations

could therefore result in an impaired recruitment of HSC70 to CCVs.

However, no decrease of interaction of mutant Auxilin with HSC70 was observed

(Figure 6.14). One explanation could be that HSC70 interacts with Auxilin as a

substrate rather than a client protein, to assist in correct folding of the mutant

protein. In addition, increased interaction of Auxilin with HSC70 could also

be an overexpression artefact, where HSC70-assisted folding is part of a cellular

response to sudden increased Auxilin protein levels, to enhance solubility and

correct assembly of the Auxilin.

In summary, these data indicate that even though pathogenic Auxilin mutants

with a truncation or disruption of the J-domain (Q791X, Q846X, R927G) can

still be recruited to CCVs, they are likely to be unable to fulfill their function as

co-chaperones of HSC70, resulting in an impairment of the uncoating of CCVs

derived from both the Golgi apparatus and the plasma membrane. In addition,

there is evidence that c.801-2A>G, T741= and R927G are hypomorphic alleles,

resulting in an overall decreased efficiency of CCV uncoating (see Chapter 3)

(Edvardson et al., 2012; Olgiati et al., 2016). Inefficient uncoating of CCVs would

impede delivery of its cargo to destination compartments, ultimately resulting in

decreased cellular function.
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6.4 MATERIAL AND METHODS

6.4.1 pCR8 cloning of Auxilin

The open reading frame of full-length Auxilin (NP 001243793.1) was

amplified using PCR from a pCR-BluntII-TOPO vector (plasmid identification

HsCD00346779, Harvard Medical School plasmid repository). The PCR

reaction contained 30 ng of plasmid, PCR buffer, dNTPs, forward primer

(5’-atgaaagattctgaaaataaaggtgc-3’), reverse primer (5’-ttaatataagggcttttggcctt-3’)

Pfu Ultra II polymerase and Pfu Ultra PCR buffer (Agilent).

The PCR-amplified product was subsequently purified using paramagnetic

bead-based PCR cleanup reagents (Agencourt AMPure XP, Beckman Caoulter).

AMPure paramagnetic beads were mixed with the PCR sample and incubated

at room temperature for 5’ to bind the PCR fragments. Beads were separated

from the solution using a magnet and samples were subsequently washed three

times for 30” with 70% Ethanol to remove contaminants such as dNTPs, salts,

polymerases and primers. Beads were air-dried to allow for complete evaporation

of ethanol. DNA was subsequently diluted in water.

The purified Auxilin fragment was subjected to poly-A-tailing. The poly-A-tailing

reaction mixture contained dATP, Taq polymerase and Taq polymerase buffer

(Invitrogen). The reaction was incubated at 72◦C for 40 minutes.

Next, the Auxilin fragment was cloned into a pCR8 backbone (Invitrogen)

containing a spectinomycin resistance cassette, by incubation of the Auxilin

fragment with the vector and a salt solution at RT for 1 hour.
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6.4.2 Transformation of competent bacteria

NEB5α competent Escherichia coli bacteria (High efficiency, New England

BioLabs) were thawed on ice and 2 µl of the pCR8-Auxilin reaction was mixed

with 50 µl of the bacteria and incubated on ice for 15 minutes. The bacteria

were then subjected to a heat shock by 30 second incubation at 42◦C, followed

by another incubation on ice for 5 minutes. 100 µl of SuperBroth (KD Medical)

was mixed with the bacteria, poured and spread on Agar plates (KD Medical)

containing 50 µg/ml spectinomycin and incubated overnight at 37◦C.

6.4.3 Plasmid purification

For small scale pCR8 plasmid purification, a colony from an agar plate incubated

overnight was used to inoculate 5 ml of SuperBroth media containing 50 µg/ml

spectinomycin overnight at 37◦C. The following day, 1 ml of the inoculated

SuperBroth was used to make glycerol stocks (800 µl of inoculated broth with

200 µl of 80% glycerol diluted in SuperBroth). The QIAprep Spin Miniprep Kit

(Qiagen) was used for plasmid preparation, resulting in ∼20 µg of plasmid.

For large scale pCR8 plasmid purification, 50 ml of SuperBroth containing 50

µg/ml spectinomycin was inoculated overnight at 37◦C with transformed bacteria

scraped from the glycerol stock. Plasmid Plus Kits (Qiagen) was used for plasmid

preparation, resulting in ∼500 µg of plasmid.

6.4.4 Sanger sequencing

Purified PCR product was subjected to Sanger sequencing using the BigDye

Terminator v3.1 Cycle Sequencing Kit (ThermoFisher Scientific). 500 ng of
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purified plasmid was mixed with 2 µl 5X Sequencing Buffer, 0.3 µl BigDye

Terminator Ready Reaction Mix, 0.3 µM primer and water was added to make

up for a total reaction volume of 10 µl. Cycle sequencing was performed under

reaction conditions outlined in table 3.2.

As Sanger sequencing resulted in ∼600 base pair reads, primers were designed to

be spaced ∼400 base pairs apart, to cover the full sequence (total of 2910 base

pairs). In addition, primers were designed to cover the junction of the Auxilin

fragment and the plasmid backbone, to confirm correct insertion of the Auxilin

fragment. Table 6.3 gives an overview of the primers used for sequencing Auxilin.

Start Direction Exon

34 Fwd 5’-ggagctaccggaaaaagacc-3’

419 Fwd 5’-tgtcctttcctctggacaatg-3’

927 Fwd 5’-caaacagaggaatggatgtcg-3’

1400 Fwd 5’-cttaggaggacaggctccaa-3’

1895 Fwd 5’-tgcgtctccaaccctaagag-3’

2417 Fwd 5’-cactcctctccccagaacc-3’

2899 Fwd 5’-ctcaatgatgcctggtctga-3’

34 Rvs 5’-ggtctttttccggtagctcc-3’

147 Rvs 5’-gcgttcactctctgcttgc-3’

245 Rvs 5’-atagctgggctccatgtctg-3’

763 Rvs 5’-gctgggccaggagtagagta-3’

1273 Rvs 5’-tgtcacctgaaatagctgagga-3’

1757 Rvs 5’-ttcagaattggtgggaggag-3’

2269 Rvs 5’-ttgctggcaaaggaagaact-3’

2751 Rvs 5’-ctggtttccacttggtctcc-3’

2899 Rvs 5’-tcagaccaggcatcattgag-3’

Table 6.3: Sequencing primers used for Auxilin plasmids

Sequencing samples were cleaned using the Sanger Dye Terminator Removal

Agencourt CleanSEQ (Beckman Coulter). Sequencing samples were mixed with

10 µl CleanSEQ paramagnetic beads and 42 µl of 85% Ethanol. Beads were

separated from solution using a magnet and were washed 3 times for 30” with
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85% Ethanol. Samples were air-dried to remove residual ethanol and DNA was

eluted in 40 µl water.

Capillary electrophoresis of sequencing samples was performed using the Hitachi

Genetic Analyzer (Applied Biosystems) and data were analysed using the

Sequencher software to confirm correct sequence of the Auxilin fragment and

correct insertion into the backbone.

6.4.5 Site-directed mutagenesis

For mutagenesis of a single point mutation (e.g. pathogenic Auxilin mutations),

the QuickChange IIXL Site-Directed Mutagenesis Kit (Agilent). 10 ng of the

pCR8 Auxilin plasmid was mixed with 1X reaction buffer, 2.5 units of PfuUltra

High Fidelity DNA polymerase, 6% QuikSolution, 1 µl of dNTP and 125 ng each

of forward and reverse mutagenesis primers (Table 6.4), in a total reaction volume

of 50 µl. Mutagenesis primers were designed using the web-based Agilent software

(www.agilent.com/genomics/gcpd). Mutagenesis PCR was performed using the

cycling parameters outlined in Table 6.5.

Mutation Direction Exon

Q791X Fwd 5’-gaggcttaggctatggctgctgccagttgta-3’

Rvs 5’-tacaactggcagcagccatagcctaagcctc-3’

Q8846X Fwd 5’-tgtgagcattgaaaccttaaccagagagtaggtcttc-3’

Rvs 5’-gaagacctactctctggttaaggtttcaatgctcaca-3’

R927G Fwd 5’-ccaggacagccttcccgtacaccttcttcac-3’

Rvs 5’-gtgaagaaggtgtacgggaaggctgtcctgg-3’

Table 6.4: Mutagenesis primers used for pathogenic variants Auxilin

For mutagenesis of multiple base pairs (e.g. GGA2 binding-deficient Auxilin

required mutagenesis of a total of 6 basepairs, resulting in 4 amino acid changes),

the QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent) was
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Cycles Temperature
(C)

Time

1x 95 2’

30x 95 20”

55 30”

65 10’

1x 65 5’

Table 6.5: Cycle sequencing conditions for single-site mutagenesis

used. Two primer pairs were designed to change 3 base pairs each (Table 6.6) and

all primers were combined in during a single mutagenesis reaction for simultaneous

mutagenesis of all 6 basepairs. Multi site-directed mutagenesis was performed

using 50 ng of plasmid, mixed with 1X reaction buffer, 1 µl QuikChange Lightning

Multi enzyme blend, 50 ng of each primer and 1 µl dNTP mix, in a total reaction

volume of 50 µl. Mutagenesis PCR was performed using the cycling parameters

outlined in Table 6.7.

Mutations Direction Exon

F342A, L345A Fwd 5’-tctccttgcacagtgatgttcgcgggaatggcgatttttccatcttggacacg-3’

Rvs 5’-cgtgtccaagatggaaaaatcgccattcccgcgaacatcactgtgcaaggaga-3’

F386A, L389A Fwd 5’-gaactttaaaactgttgtgtccgctggtatggctccagtgtgaaactgaagctggaa-3’

Rvs 5’-ttccagcttcagtttcacactggagccataccagcggacacaacagttttaaagttc-3’

Table 6.6: Primers used for multi-site mutagenesis for GGA2 binding-deficient
Auxilin

Cycles Temperature
(◦C)

Time

1x 95 2’

30x 95 1’

55 1’

65 6’

1x 65 5’

Table 6.7: Cycle sequencing conditions for multi-site mutagenesis

Following mutagenesis, the parental plasmid DNA was degraded using DpnI. The

parental plasmid was purified from Eschericia coli and is methylated and therefore
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susceptible to DpnI digestion, whereas the newly synthesized mutagenized plasmid

is not. Mutagenesis reaction mixtures were incubated with 10 units of DpnI for 1

hour at 37◦C.

Next, competent bacteria were transformed with 2 µl of the mutagenesis reaction

mixture (see Section 6.4.2), followed by plasmid purification (see Section 6.4.3) and

correct mutagenesis was confirmed using Sanger sequencing (see Section 6.4.4).

6.4.6 Gateway recombination

Gateway LR Clonase II Enzyme Mix (Invitrogen) was used for Gateway

recombination of the Gateway donor vector (pCR8-Auxilin) with a Gateway

compatible destination vector. The Gateway destination vectors pCMV-AcGFP

and pCMV-3xFlag (previously constructed in the lab) contained a CMV promotor

and a kanamycin or ampicilin resistance cassette, respectively, and were used for

N-terminal AcGFP or 3x-Flag tagging of Auxilin.

150 ng of donor vector (pCR8-Auxilin) was mixed with 150 ng of destination

vector (pCMV-AcGFP or pCMV-3xFlag), 2 µl of Gateway LR Clonase II Enzyme

Mix, and TE buffer was added to make up a total reaction volume of 10 µl. The

Gateway reaction mixture was incubated for 1 hour at RT.

Bacteria were transformed with 2 µl of mutagenesis reaction mixture as described

in Section 6.4.2, using 50 µg/ml kanamycin or 100 µg/ml ampicilin for the selection

of pCMV-AcGFP-Auxilin or pCMV-3xFlag-Auxilin, respectively. Gateway

destination vectors contain a Gateway cassette with the ccdB gene, toxic for

Escherichia coli. When recombination of the donor vector with the recombination
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vector is successful, the ccdB gene is replaced with the gene of interest (i.e. Auxilin),

thereby positively selecting for successfully recombined plasmid constructs.

Plasmids were purified as described in Section 6.4.3 and correct mutagenesis was

confirmed using Sanger sequencing as described in Section 6.4.4.

6.4.7 SILAC labelling of HEK293FT

HEK293FT cells were cultured in DMEM (Gibco) supplemented with 10% FBS

(Gemini). For the metabolic incorporation of ‘light’ and ‘heavy’ stable isotopes in

HEK293FT, the SILAC Protein Quantitation Kit (LysC), DMEM (ThermoFisher

Scientific) was used. DMEM was supplemented with 10% dialysed FBS. For

labelling with ‘light’ SILAC isotopes, the media was supplemented with 12C6

L-Lysine-2HCl (Lys-0) and 12C6 L-Arginine-HCl (Arg-0), for ‘heavy’ SILAC

isotopes, the media was supplemented with 13C6 L-Lysine-2HCl (Lys-8) and 13C6

L-Arginine-Hcl (Arg-10) (resulting in a 8 and 10 Dalton mass-shift compared to

‘light’ L-Lysine-2HCl and L-Arginine-HCl, respectively).

HEK293FT cells were grown in light or heavy SILAC media for at least 10

doublings, allowing for 98% efficient incorporation of the light or heavy stable

isotopes.

6.4.8 Co-immunoprecipitations

HEK293FT cells were grown in a 10-cm dish at a density of ∼10 million cells per

plate and transfected with 8 µg GFP-Auxilin plasmid using lipofectamin 2000, as

per manufacturer instructions. Co-IPs were performed 24 hours after transfection.
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Cells were resuspended gentle lysis buffer (20 mM Tris pH7.5, 10% glycerol, 1

mM EDTA, 150 mM NaCl, 0.3% Triton) supplemented with 1x protease inhibitor

cocktail (Halt) and 1x phosphatase inhibitor cocktail (Halt) and rotated at 4◦C

for 30 minutes.

Protein lysates were cleared (10’ centrifugation at 4◦C at 21kg) and protein

concentrations were determined using a 660 nm protein assay (Pierce). Input

samples were prepared by diluting 10 µg of protein in a total volume of 20 µl

containing 1x Laemli sample buffer and were boiled for 5 minutes at 95◦C.

For co-IPs, equal amounts of protein lysates were mixed with GFP-Trap agarose

beads (Chromotek) and rotated at 4◦C for one hour. Beads were subsequently

washed 5 times with gentle lysis buffer and boiled for 5 minutes at 95◦C in 2X

Laemli sample buffer.

Input samples and co-IP samples were subjected to gel electrophoresis and western

blot analysis as described below on the same day (Sections 6.4.11 and 6.4.12).

6.4.9 Recombinant protein synthesis

HEK293FT cells were transfected with 3xFlag-Auxilin constructs or 3xFlag-GFP

as described above, followed by co-IP.

Cells were resuspended lysis buffer (20 mM Tris pH7.5, 10% glycerol, 1 mM EDTA,

150 mM NaCl, 1% Triton) supplemented with 1x protease inhibitor cocktail (Halt)

and 1x phosphatase inhibitor cocktail (Halt) and rotated at 4◦C for 30 minutes.

Protein lysates were cleared (10’ centrifugation at 4◦C at 21 kg) and protein

concentrations were determined using a 660 nm protein assay (Pierce). Input
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samples were prepared by diluting 10 µg of protein in a total volume of 20 µl

containing 1x Laemli sample buffer and were boiled for 5 minutes at 95◦C.

For co-IPs, equal amounts of protein lysates were mixed with Flag-M2 magnetic

beads (Sigma) and rotated at 4◦C for one hour. Beads were subsequently washed

5 times with lysis buffer. Protein was eluted from the beads by incubation of the

beads with Flag peptide (Sigma). Recombinant protein eluates were stored at

-80◦C until experimental use.

6.4.10 In vitro protein-protein binding experiments

Recombinant 3x-Flag-Auxilin protein was generated as described above and

GST-GGA2 was purchased from Novus Biologicals. 20 ng of recombinant

3xFlag-Auxilin or 3xFlag-GFP was mixed with 100 ng recombinant GST-GGA2

and lysis buffer (20 mM Tris pH7.5, 10% glycerol, 1 mM EDTA, 150 mM NaCl, 1%

Triton) supplemented with 1x protease inhibitor cocktail (Halt) and 1x phosphatase

inhibitor cocktail (Halt). 1% of the reaction was used for input samples, and the

remainder was incubated with 20 µl Flag-M2 beads and rotated at 4◦C for 1 hour.

Flag-M2 beads were washed 5 times with lysis buffer and boiled in 2X Laemli

sample buffer. Input samples and co-IPs were subjected to gel electrophoresis and

western blot analysis as described below on the same day (Sections 6.4.11 and

6.4.12).

6.4.11 Gel electrophoresis

Protein samples were loaded on pre-cast 4-20% TGX polyacrylamide gels

(Criterion, Bio-Rad) along with a protein standard (Precision Plus Protein

213



6 IMPACT OF MUTATIONS ON THE INTERACTOME OF AUXILIN

Dual Color Standards, Bio-Rad). Electrophoresis was performed in 1x premixed

electrophoresis buffer (10 mM Tris, 10 mM Tricine, 0.01% SDS, pH 8.3, diluted

with water) and were run at 200 V for 45 minutes using the Criterion Vertical

Electrophoresis Cell (Bio-Rad).

6.4.12 Western blot

Western blots were performed as described in section 3.4.7. Primary antibodies

used in this chapter for WB are shown in Table 6.8.

Target Host Dilution Vendor Catalog number

CHC Mouse 1/3000 Abcam ab21679

HSC70 Rat 1/3000 Abcam ab19136

AP1γ Mouse 1/1000 B & D Biosciences 610385

AP2α Mouse 1/1000 Abcam ab2730

AP3β Mouse 1/1000 Aviva Systems biology ARP33647

GGA1 Mouse 1/1000 Abcam ab10551

GGA2 Rabbit 1/1000 Abcam ab10552

GGA3 Mouse 1/1000 B & D Biosciences 612311

GFP Rabbit 1/5000 Sigma ab290

GST Goat 1/5000 Sigma 27-4577-01

Flag Mouse 1/5000 Sigma F1804

Table 6.8: Primary antibodies used for WB

6.4.13 SILAC proteomics

HEK293FT cells were labelled with ‘light’ or ‘heavy’ SILAC isotopes (Section 6.4.7)

and were transfected with GFP or GFP-Auxilin, respectively, using lipofectamin

2000 according to manufacturer’s instructions. GFP nano-trap co-IPs were

performed as described in Section 6.4.8 and co-IPs were mixed at 1:1 ratio.

Experiments were performed in triplicate, and the resulting 3 samples were loaded
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on a polyacrylamide gel for electrophoresis (as described in section 6.4.11) were

allowed to migrate for 5 minutes.

Samples were subsequently cut out from the gel and subjected to in-gel trypsin

digestion, followed by liquid chromatography tandem mass spectometry analysis

(LC-MS/MS). The LC-MS/MS data were searched against the NCBI Human

database and Mascot Distiller software was used to calculated the protein

Light/Heavy ratios (O’Leary et al., 2016; Perkins et al., 1999).

In gel trypsin digestion, LC-MS/MS and subsequent protein identification via

peptide sequence databases was performed by the Proteomics Core led by Dr. Yan

Li (National Institute of Neurological Disorders and Stroke, National Institutes of

Health).

6.4.14 Functional enrichment analysis

Functional enrichment analysis was performed for the 50 most significantly

differentially expressed genes using Gene Ontology (The Gene Ontology

Consortium, 2019; The Gene Ontology Consortium et al., 2000) for gene Ontology

terms ‘biological process’ and ‘cellular component’. Fischer exact test was

performed for functional enrichment analysis with Bonferroni post hoc correction.

An enrichment map was generated using the ‘EnrichmentMap’ Cytoscape plug-in.

6.4.15 Immunocytochemistry

Primary neurons were cultured as described in Section 5.4.1 and transfected using

lipofectamin 2000 (Invitrogen), according to manufacturer’s instructions. 2 µg

plasmid was transfected for a 12 mm coverslip in a single well of a 24-well plate
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of primary neurons cultured 7 DIV. Culturing media was replaced 4 hours after

transfection and immunocytochemistry was performed 40 hours after transfection

as described in Section 5.4.10. Primary antibody rabbit-CHC (Abcam, ab21679)

was used for immunocytochemistry in this chapter.

6.4.16 Confocal laser-scanning microscopy with Airyscan detection

Super-resolution microscopy using the Zeiss 880 Confocoal microscope outfitted

with Airyscan module was performed as described in Section 5.4.11.

6.4.17 Structural protein modelling

Protein structures were modelled by Dr. Nate Smith. All models were generated

using PyMOL (Version 2.0, Schrödinger, LLC).

Modeling of the interaction between the Clathrin triskelion (Blue) and the

J-domain (Pink) of Auxilin was performed utilizing the structure from Bos Taurus

(PDB:1XI5) emphasizing the pathogenic mutation (Cyan) and interaction domain

(Yellow) (Figure 1.5) (Fotin et al., 2004b).

Representational modeling of potential interaction between GGA2 and Auxilin

was performed using the previously solved structures (PDB: 3N0A-Auxilin and

the S. Cerevisiae GGA2 PDB: 3MNM) and based on predicted interaction sites

(Figure 6.7) (Fang et al., 2010; Guan et al., 2010; Kametaka et al., 2007; Nogi

et al., 2002).

I-TASSER was utilized to predict the structure of human Auxilin and the strongest

match was selected. The generated model was based on the Auxilin structure
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from Bos taurus (PDB: 3N0A) (Guan et al., 2010; Roy et al., 2010; Yang et al.,

2015; Zhang, 2008).

Heterodimeric complex (Hsc70 and Auxilin) was modelled in PyMol overlaying

the J-domain of the generated model with the Hsc70-J-domain structure available

in the Protein Data Bank (PDB: 2QWO) (Figure 6.13) (Jiang et al., 2007).

6.4.18 Statistics

Data were plotted and statistical tests were performed using Prism 8 (Graphpad)

or R version 3.4.3. The statistical test results are displayed in table 6.9. n

represents the number of technical replicates.
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Figure Variable Statistical test Test result P-value

6.3 Genotype One-sample t-test
with Benjamini &
Hochberg correction

NA See
Supplementary
Table 2

6.4 Genotype Fisher exact test with
Bonferroni correction

NA See Table 6.2

6.5 B Genotype 1-way ANOVA F = 36.42 0.0004

Genotype Sidak post hoc test t = 7.391, t
= 0.000

0.0009, >0.9999

6.5 C Genotype 1-way ANOVA F = 41.37 0.0003

Genotype Sidak post hoc test t = 8.251, t
= 7.440

0.0005, 0.0009

6.5 E Genotype 1-way ANOVA F = 15.23 0.0045

Genotype Sidak post hoc test t = 0.000, t
= 4.780

>0.9999, 0.00992

6.5 F Genotype 1-way ANOVA F = 3.914 0.0817

Genotype Sidak post hoc test t = 0.000, t
= 6.430

>0.9999, 0.0020

6.7 Genotype Unpaired t-test t = 4.094 0.0149

6.9 A Genotype 1-way ANOVA F = 22.02 0.0003

Genotype Sidak post hoc test t = 6.752, t
= 7.095, t =
5.785

0.0007, 0.0005,
0.0018

6.12 A Genotype 1-way ANOVA F = 0.3947 0.7604

Genotype Sidak post hoc test t = 0.3851, t
= 0.6394, t
= 0.1896

0.9994, 0.99906,
>0.9999

6.12 B Genotype 1-way ANOVA F = 4.088 0.0494

Genotype Sidak post hoc test t = 2.814, t
= 0.8265, t
= 2.825

0.1287, 0.9666,
0.1267

6.12 C Genotype 1-way ANOVA F = 0.8754 0.4931

Genotype Sidak post hoc test t = 0.9770, t
= 0.5198, t
= 0.3041

0.9292, 0.9969,
0.9998

6.14 F Genotype 1-way ANOVA F = 0.5876 0.6400

Genotype Sidak post hoc test t = 1.186, t
= 0.4307, t
= 0.07584

0.8483, 0.9989,
>0.9999

Table 6.9: Statistical test results
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7 GENERAL DISCUSSION

A detailed analysis and discussion of the results has been presented individually

in each chapter. In this section, I will highlight the key findings of this thesis and

discuss interrelated data from the different chapters. Based on the results of this

thesis, I will present a model for PD pathogenesis in Auxilin mutation carriers.

In addition, I will highlight questions that arise from the data presented in this

thesis. Finally, I will present an outlook on how future work might address the

remaining open questions.

7.1 KEY FINDINGS

7.1.1 PD-associated R927G Auxilin variant is a loss of function mutation

Auxilin is the major neuronal clathrin uncoating protein and requires interaction

with HSC70 via its J-domain for its function. Over the past seven years, 5 recessive

Auxilin mutations have been described to cause an aggressive form of young onset

PD. Two of those mutations are splice-site mutations (T741=, c.801-2A>G)

that have been predicted to result in an overall decrease in mRNA and are thus

hypomorphic Auxilin alleles (Edvardson et al., 2012; Olgiati et al., 2016). In

addition, two C-terminally truncating mutations (Q791X, Q846X) completely lack

the J-domain of Auxilin required for HSC70 binding, pointing to a loss of function

mechanism (Elsayed et al., 2016; Köroglu et al., 2013). Finally, a point mutation

within the J-domain (R927G) was described to cause PD, however the mechanism

of action of this mutation is less clear (Olgiati et al., 2016).

A novel CRISPR-based mouse model was generated carrying the homozygous

R857G Auxilin variant, equivalent to the human pathogenic R927G Auxilin
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mutation (Figure 3.1). Auxilin levels were found to be decreased in the brain

of newborn R857G Auxilin mice, indicating that R857G Auxilin might be a

hypomorphic allele in early development (Figure 3.3). Even though Auxilin

protein levels were upregulated with age to equivalent levels as WT mice in 3

week old animals, it is possible that the stability and/or half life of Auxilin protein

may be affected in R857G Auxilin mice.

Structural modelling of Auxilin revealed that the R927G mutation resides in one

of the α-helices that make up the tightly packed J-domain of Auxilin (Figure 6.13).

α-helices are formed through hydrogen bonds between positively and negatively

charged residues, it is conceivable that substitution of the positively charged R927

to an uncharged G927 would break up the α-helical formation of the J-domain.

Disruption of the highly conserved J-domain of Auxilin in turn would weaken

interaction of Auxilin with HSC70, thereby impairing its function in the uncoating

of CCVs.

7.1.2 Auxilin interacts with synaptic and Golgi-resident clathrin

adaptor proteins

Whereas the role of Auxilin in CME is well-established, less is known about its

function in the uncoating of TGN-derived CCVs. To gain further insight into

the physiological role of Auxilin, the interactome of Auxilin was mapped using

unbiased proteomics (Figure 6.3). As has previously been reported, Auxilin was

found to interact with the plasma membrane-resident clathrin adaptor protein

AP2 (Figure 6.5). In addition, the TGN-resident clathrin adaptor protein GGA2

was found to be a novel interactor of Auxilin (Figure 6.7). These data thus indicate

for the first time a direct role for Auxilin in the uncoating of Golgi-derived CCVs.
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7.1.3 GAK does not fully compensate for loss of Auxilin function

Whereas Auxilin levels were decreased in newborn R857G Auxilin mice, GAK

protein levels were found to be transiently upregulated 2 days after birth (Figure

3.3). At 3 weeks of age, Auxilin protein in R857G Auxilin mice was upregulated to

equivalent levels as age-matched WT mice and GAK protein levels dropped

back to normal as well. These findings indicate that GAK protein levels

are transiently upregulated to compensate for decreased Auxilin protein levels.

However, upregulation of GAK does not appear to be sufficient to fully compensate

for decreased Auxilin protein, as R857G Auxilin mice exhibit increased mortality

(Figure 3.8).

One possible explanation is that GAK protein levels might not be high enough to

compensate for a partial loss of Auxilin. Indeed, even whilst taking into account

the increase in GAK in p2 R857G mice, GAK expression levels are still ∼5 times

lower than Auxilin expression levels (Figure 3.4). In addition, GAK has previously

been shown to be less efficient in the uncoating of CCVs compared to Auxilin

(Yim et al., 2010).

In contrast, it is also possible that Auxilin and GAK are not fully redundant in

function. Both GAK and Auxilin were found to interact with the plasma-membrane

resident clathrin adaptor protein AP2, however they interact with a different subset

of TGN-resident clathrin adaptor proteins. GAK was found to interact with AP1,

whereas Auxilin was found to interact with GGA2 (Figure 6.5). An intriguing

possibility is therefore that GAK might efficiently compensate for Auxilin in the

uncoating of plasma membrane-derived, AP2-coated CCVs, but might not fully

compensate for the uncoating of TGN-derived, GGA2-coated CCVs in neurons.
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7.1.4 Activation of the Golgi stress response in Auxilin neurons

Similarly to newborn R857G mice, primary R857G Auxilin neurons were found to

have decreased Auxilin protein levels, thus likely resulting in an overall decreased

efficiency of CCV uncoating (Figure 3.2). Dystrophic morphological alterations

were observed in the Golgi apparatus of R857G Auxilin mice (Figure 5.12) and

transcriptome analysis of revealed significant upregulation of genes involved with

the Golgi stress response (GBF1, CREB3 ) (Figure 5.7, Figure 5.10). Whereas

GBF1 protects against Golgi stress, CREB3 is involved with the initiation of

Golgi stress-dependent apoptosis (Reiling et al., 2013). In addition to its role

in protecting against Golgi-stress, GBF1 is also required for the recruitment of

GGA proteins, but not AP1 to the TGN (Lefrançois and McCormick, 2007).

Since Auxilin specifically interacts with GGA2 (Figure 3.3), upregulation of GBF1

might mediate increased recruitment of GGA proteins to compensate for inefficient

uncoating of GGA-coated CCVs.

Golgi stress in R857G Auxilin neurons could be a direct consequence of impaired

clathrin trafficking at the TGN. Inefficient uncoating of TGN-derived CCVS

may result in the inefficient recycling of TGN-resident clathrin-adaptor proteins

such as GGA2. In contrast, Golgi stress could also be an indirect consequence

of impaired clathrin trafficking, both at the TGN and the plasma membrane.

Both endolysosomal and synaptically targeted proteins are sorted and transported

through the Golgi apparatus. Impaired uncoating of CCVs would result in

inefficient delivery of its cargo to intracellular destination compartments, such

as the endolysosomal system and the synapse. As a compensatory mechanism,

R857G Auxilin neurons may upregulate trafficking in the early secretory pathway,

to compensate for decreased efficiency in Golgi and post-Golgi trafficking. Indeed,

multiple genes involved with ER-Golgi transport were found to be upregulated
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in R857G Auxilin neurons (Figure 5.7). It is conceivable that chronic increased

activation of ER-Golgi trafficking would result in Golgi stress.

7.1.5 Pathogenic Auxilin mutations impair its interaction with clathrin

Stimulation of the ATPase activity of HSC70 by Auxilin is required for the

uncoating of CCVs in neurons. Auxilin interacts with clathrin to allow for the

correct positioning of the J-domain that mediates interaction of HSC70 (Figure

6.13, Figure 6.10). HSC70 in turn is placed in close proximity to a set of critical

clathrin interactions. Subsequent stimulation of the ATPase activity of HSC70 by

Auxilin mediates a distortion in the clathrin coat to allow for the uncoating of

CCVs.

Remarkably, all tested pathogenic Auxilin mutations (Q791X, Q846X, R927G)

were found to impair interaction with clathrin (Figure 6.9). It is plausible that

decreased interaction with clathrin would impair the correct positioning of the

J-domain and HSC70, thereby decreasing the efficiency of CCV uncoating.

7.1.6 Neuropathological lesions underlie PD-like phenotypes in R857G

Auxilin mice

Behavioural analysis revealed the development of neurological phenotypes in

R857G Auxilin mice, as early as 6 months of age (see chapter 4). R857G Auxilin

mice displayed motor impairments reminiscent of the typical motor features

seen in PD patients, including bradykinesia, gait disturbances, and an inability

to terminate movements. R857G Auxilin mice also exhibited phenotypes that

phenocopy atypical neurological features seen in Auxilin mutation carriers, such

as seizures and memory deficits. Remarkably, a mouse model harbouring an
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endogenous PD-associated mutation in Synaptojanin 1, another neuronal protein

required for the uncoating of CCVs, was also found to display motor impairment

and seizure phenotypes (Cao et al., 2017).

Lesions in the nigrostriatal pathway are thought to underlie the cardinal motor

features of PD (see Section 1.1.3). The first major neuropathological hallmark

of PD is the neurodegeneration of DA neurons in the nigrostriatal pathway. No

neurodegeneration was observed in one year old R857G Auxilin mice (Figure A.1,

Figure A.2). However, a decreased number of synaptic vesicles was observed in the

presynapse of DA neurons in the striatum of R857G Auxilin mice (Figure A.4).

Given that clathrin trafficking plays an important role in the recycling of synaptic

vesicles, the decreased number of synaptic vesicles might be a consequence of

impaired clathrin trafficking at the synapse in R857G Auxilin mice.

The second major neuropathological hallmark is the presence of intracellular

aggregates composed of proteins and lipids in DA neurons in the nigrostriatal

pathway. Large protein/lipid accumulations were observed in the striatum of

R857G Auxilin mice, and lipids were also found to be increased in DA neurons

in the SN of R857G Auxilin mice (Figure A.3). Impaired clathrin uncoating

of TGN-derived CCVs might result in impaired delivery of its cargo, including

proteins and lipids, to their intracellular destination compartments. TGN-derived

CCVs are particularly important for the delivery of hydrolases to the lysosomes

(Braulke and Bonifacino, 2009). Impaired delivery of those hydrolases may decrease

the neuronal degradative capacity and aggravate the accumulation of intracellular

cargo.

Taken together, impairments in clathrin trafficking in DA neurons in the SN and

striatum due to partial loss of Auxilin function may underlie motor phenotypes
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observed in R857G Auxilin mice. However, Auxilin is expressed in all neurons

and lesions in other neuronal subtypes may well underlie some of the atypical

phenotypes. The observed memory impairments might be caused by lesions in

brain regions such as the neocortex, amygdala, cerebellum and basal ganglia.

Spontaneous absence seizures as observed in R857G Auxilin mice might involve

brain areas including the cortex and thalamus.
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7.2 MODEL

Based on the key findings presented in the thesis, I would propose the following

model for PD pathogenesis in Auxilin mutation carriers (Figure 7.1).

Lysosome

Endosome

Synaptic vesicle pool

Synaptic cleft

Postsynaptic 
transporter

Endosome

Synaptic vesicle pool

Synaptic cleft

Postsynaptic 
transporter

Normal Parkinson's diseaseA B

Figure 7.1: Model for PD pathogenesis in Auxilin mutation carriers Clathrin trafficking
in neurons of normal population (A) and PD patients (B). Impaired clathrin trafficking due
to PD-associated Auxilin mutations would result in inefficient synaptic vesicle recycling, with
subsequent decrease in number of vesicles in the pre-synaptic intracellular synaptic vesicle pool.
In addition, inefficient clathrin trafficking from the TGN would result in impaired delivery of
lysosomal hydrolases and therefore impair lysosomal maturation, resulting in an accumulation
of intracellular cargo.
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Based on the genetic findings, PD-associated Auxilin mutations can be categorized

into two groups. Whereas the truncating mutations (Q791X, Q846X) would result

in a complete loss of function due to the complete absence of the J-domain, the

splice-site mutations (c.801-2A>G, T741=) and point mutation (R927G) may

function through a partial loss of function, via decreased protein levels or decreased

functionality of the J-domain, respectively. Indeed, there appears to be a strong

genotype-phenotype correlation in Auxilin mutation carriers. Splice-site mutation

carriers (T741=, c.801A>G) develop PD with AAO ranging between 13 and 29

years, and R927G mutation carriers develop PD in their 20s (Edvardson et al.,

2012; Olgiati et al., 2016). On the other hand, Q791X and Q846X mutation

carriers result in juvenile onset PD (AAO 10-11 years) (Elsayed et al., 2016;

Köroglu et al., 2013). In addition to the typical PD motor symptoms, Q791X and

Q846X mutation carriers also develop additional neurological phenotypes, such as

pyramidal and cerebellar signs, suffer from spontaneous seizures and present with

cognitive decline (Elsayed et al., 2016; Köroglu et al., 2013).

Taken together, all described pathogenic Auxilin mutations are likely to function

through a loss of function mechanism, resulting in inefficient uncoating of CCVs.

Inefficient uncoating of CCVs would result in impairments in the delivery of

CCV cargo to its intracellular destination compartments, which in turn would be

detrimental for cellular function. Indeed, depletion of Auxilin and its homologue

GAK have previously been found to result in an accumulation of clathrin structures

that are depleted of cargo and packed with clathrin-binding proteins (Borner et al.,

2006; Borner et al., 2012; Hirst et al., 2008).

Inefficient uncoating of CCVs derived from CME at the synapse might result in

impairments of synaptic vesicle recycling. Indeed, a decrease of synaptic vesicles

was observed in the pre-synapse of R857G Auxilin mice (Figure A.4). Subsequent
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impairments in synaptic transmission in the SN may underlie some of the cardinal

motor phenotypes seen in patients, such as bradykinesia, tremor and balance

impairments. In addition, impaired synaptic transmission in other brain regions

may well underlie additional atypical neurological phenotypes observed in Auxilin

mutations carriers, such as seizures and cognitive decline.

Impaired uncoating of Golgi-derived CCVs would result in inefficient delivery

of a wide range of clathrin cargo, both lipids and proteins, to their intracellular

destination compartments. In addition, Golgi stress was observed in neurons

from R857G Auxilin mice (Figure 5.12), which may result in overall impaired

Golgi function and subsequent impaired sorting of non-clathrin cargo as well.

Indeed, cytosolic accumulations of lipids and proteins were observed in the

nigrostriatal pathway of R857G Auxilin mice, which might be a direct consequence

of impaired post-Golgi trafficking (Figure A.3). In addition, TGN-derived CCVs

have previously been found to be important for the sorting of lysosome-targeted

hydrolases (Braulke and Bonifacino, 2009), and thus impaired delivery to the

lysosomes might further contribute to an overall decreased degradative capacity of

neurons. Transcriptome analysis revealed the upregulation of genes involved in the

early secretory pathway for ER-Golgi trafficking (Figure 5.7). This might indicate

that mutant Auxilin neurons increase ER to cis-Golgi trafficking to compensate

for decreased efficiency of post-Golgi trafficking.

Impaired lysosomal clearance and impaired post-Golgi trafficking have been shown

to be important for both familial and idiopathic PD pathogenesis, suggesting a

mechanistic overlap with disease pathogenesis in Auxilin mutation carriers (see

Section 1.1.5). Indeed, Mendelian PD genes, including LRRK2 and VPS35, have

been found to play a prominent role in trafficking between Golgi apparatus and

endosomes (Beilina et al., 2014; Zavodszky et al., 2014). In addition, multiple
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PD risk factors, including GBA and CTSB, are lysosomal hydrolases and rely

on clathrin trafficking for correct sorting to the lysosomes (Nalls et al., 2018).

It is thus plausible that impaired post-Golgi clathrin trafficking in the SN may

underlie Parkinsonian phenotypes seen in Auxilin mutation carriers. In contrast,

impaired clathrin trafficking in other brain regions may well underlie the atypical

neurological phenotypes seen in patients, such as seizures and cognitive decline.

Deficient retrieval of lipids and proteins may well be detrimental for neuronal

survival. In addition, chronic Golgi-stress could result in Golgi stress-mediated

apoptosis, ultimately leading to neurodegeneration.
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7.3 OPEN QUESTIONS

The data presented in this thesis raise a number of important research questions

that fall into two categories, namely research questions related to the role of

Auxilin in the aetiology of PD, and research questions related to the physiological

function of Auxilin and the functional overlap with its ubiquitous homologue

GAK.

Within this thesis the murine R857G Auxilin allele was found to result in decreased

Auxilin protein levels in the brain of newborn but not 3 week old mice. It should

therefore be addressed whether the equivalent R927G Auxilin allele in human

patients may act as a hypomorph as well. In addition, it remains to be elucidated

how Auxilin levels are upregulated with age in R857G Auxilin mice. Pathogenic

Auxilin splice-site mutations T741= and c.801-2A>G are predicted to result in

overall decreased Auxilin expression, but have not formally been shown to result

in decreased Auxilin protein levels to prove hypomorphism.

The truncating mutations Q791X and Q846X Auxilin lack the J-domain and

it was shown that the R927G mutation likely disrupts the J-domain structure,

responsible for interaction with HSC70. However, co-IPs did not reveal impaired

interaction with HSC70. It is possible that mutant Auxilin still interacts with

HSC70 as a substrate rather than a co-chaperone to aid in solubility and folding

of the mutant protein. The exact nature of those interactions should be further

explored.

Human neuropathology in Auxilin mutation carriers is unknown to date. However,

the R857G animal model presented in this thesis has provided insights into

possible underlying neuropathology, including lipid accumulation and synaptic

dysfunction. Future experiments will have to elucidate whether the observed
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neurological phenotypes can be explained by merely an impaired function of

neurons or whether neurodegeneration contributes to disease pathology in R857G

Auxilin mice. As Auxilin mutation carriers display an atypical form of PD,

different brain regions underlying the variety of phenotypes remain to be studied.

In addition, future work is required to determine whether the observed neurological

phenotypes are the result of impaired Golgi trafficking, synaptic trafficking or a

combination of both.

Golgi stress was observed in neurons derived from R857G Auxilin mice. Two

mediators of the Golgi stress response were found to be upregulated, namely GBF1

and CREB3. Whereas GBF1 is involved with protection against Golgi stress,

CREB3 initiates Golgi stress-mediated cell death. Thus, coping mechanisms

appear to counteract cell death mechanisms in response to Golgi stress. The

response to chronic Golgi stress with age should therefore be further analysed.

Pathogenic Auxilin mutations are thought to act through a loss of function

mechanism resulting in impaired uncoating of CCV, resulting in inefficient

delivery of its cargo to intracellular destination compartments. However, further

experiments are required to assess the direct impact on clathrin trafficking

pathways and cargo delivery.

Even though this thesis has provided new insights into the physiological role of

Auxilin, there are some remaining open questions regarding the exact role of

Auxilin and its ubiquitous homologue GAK, in particular at the Golgi apparatus.

Whereas Auxilin interacts with Golgi-resident clathrin adaptor proteins GGA2 and

GGA3, GAK interacts with AP1. The exact functional diversity of the different

Golgi-resident clathrin adaptor proteins, as well as the physiological relevance

of Auxilin and GAK interaction with clathrin adaptor proteins, remains to be
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fully understood (see Section 1.3.5). Regardless, the finding that Auxilin and

GAK interact with a different subset of Golgi-resident clathrin adaptor proteins

raises questions as to the relative uncoating efficiency of Auxilin and GAK of

Golgi-derived CCVs with different clathrin adaptor coats. Since all clathrin

adaptor proteins are expressed across all cell types, it seems unlikely that Auxilin

and GAK would exclusively be involved in the uncoating of GGA-coated or

AP1-coated CCVs, respectively. Recently, WDR11 and TBC1D23 were found to

regulate the tethering of AP1-coated CCVs (Navarro Negredo et al., 2018; Shin

et al., 2017). Whereas WDR11 was detected in the proteomics screen of Auxilin

interactors (Supplementary Table 2), TBC1D23 was found to be upregulated in

neurons of R857G Auxilin mice (Supplementary Table 1). These findings indicate

that Auxilin may indeed play an important role in the uncoating of AP1-coated

CCVs. However, the finding that the neuron-specific Auxilin specifically interacts

with GGA2/3 might point to a relative importance of efficient uncoating of

GGA2/3-coated vesicles in neurons.

Related to the question of how great a degree of functional redundancy there is

between GAK and Auxilin, it is not clear to what extent GAK can compensate

for loss of Auxilin function in mutation carriers. Auxilin levels were found to

be drastically decreased in the brain of newborn R857G Auxilin mice, and GAK

protein levels were transiently upregulated in p2 R857G Auxilin mice. In addition,

GAK mRNA levels were found to be upregulated both in newborn and 3 week

old R857G Auxilin mice, suggesting the activation of transcriptional mechanisms

for the upregulation of GAK in response to loss of Auxilin function. Future work

will be required to determine the regulation of Auxilin and GAK levels with age

in R857G mice. In addition, it would be interesting to measure GAK and Auxilin

levels in the brain of human patients.
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Finally, GAK is a risk factor candidate for PD. However, the GAK locus contains

multiple other genes, including TMEM175, and it remains to be determined

which of those genes is associated with PD. In the light of the findings presented

in this thesis, I would argue that the current evidence is slightly against GAK

being the risk gene. Under the assumption that variants in the GAK locus

were to result in a partial loss of function of GAK and contribute to disease

pathogenesis via similar mechanisms as Auxilin loss of function variants, it would

be highly likely that mutation carriers would present with multiple systemic

manifestations given the ubiquitous expression of GAK. Moreover, since Auxilin

is neuron-specific, Auxilin might be able to partially compensate for lack of GAK

function in neurons, partially alleviating neurological phenotypes as a consequence

of GAK loss of function. However, it can not be ruled out that GAK contributes

to PD pathogenesis as a risk factor via different mechanisms than presented for

the Auxilin loss-of-function mechanism. More research is thus required to shed

light on this complex genetic situation.
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7.4 OUTLOOK

The work of this thesis can be continued using different experimental approaches

to address the remaining open questions.

In the long term, it would be interesting to address the impact of other pathogenic

Auxilin mutations (Q791X, Q846X, T741=. c.801-2A>G) at the cellular level

and organismal level. Models with endogenous mutations would be particular

suitable for this purpose, since the synonymous T741= mutation and the intronic

c.801-2A>G mutation can not be studied using overexpression models that only

express the open reading frame of Auxilin. In addition, the impact of pathogenic

Auxilin mutations should also be addressed in alternative models with a human

background. CRISPR-editing of induced pluripotent stem cells, or stem cells

derived from patients and controls, can be differentiated to neurons or brain

organoids and would provide a great alternative models to study PD-associated

Auxilin mutations.

To gain further insight into the neuropathology of Auxilin mutation carriers,

the presented R857G Auxilin mouse model could be analysed for neurological

lesions. For example, neuronal firing and neurodegeneration can be analysed using

electrophysiology and stereological neuron counts, respectively. In addition, post

mortem analysis of the brain of human patients would greatly contribute to a

neuropathological understanding of PD in Auxilin mutation carriers.

Further research is required to address the temporal regulation of Auxilin and

GAK protein levels in R857G Auxilin mice. As Auxilin and GAK levels were only

assessed in mice up to 3 weeks of age, more time points should be analysed to

elucidate protein dynamics in older mice. In addition, it remains to be elucidated

through which mechanisms Auxilin protein is decreased in newborn R857G
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mice and primary cultures. Treatment of primary neurons with lysosomal or

proteasomal inhibitors would address whether Auxilin is degraded via either

of those major protein degradation pathways. In contrast, treatment with

translational inhibitors could assess whether Auxilin protein is decreased via

impaired or delayed translation of Auxilin mRNA.

The interaction of mutant Auxilin with HSC70 should also be further explored.

Even though multiple pathogenic Auxilin mutation result in a complete lack or

disruption of the J-domain that is required for Auxilin interaction as a co-chaperone

with HSC70, no impairment of interaction was observed using co-IPs. It is possible

however that mutant Auxilin becomes a substrate of HSC70, to prevent misfolding

of the mutant protein. Generation of HSC70 constructs with mutagenesis of

residues that are critical for interaction with Auxilin either as a co-chaperone or

as a substrate could be generated to further explore the nature of the interaction

of HSC70 with Auxilin.

The impact of mutations on clathrin trafficking pathways and the delivery of

clathrin-dependent cargo should also be explored in more detail. For example,

impaired Golgi trafficking might result in impaired delivery of multiple cargoes,

including (but not limited to) synaptically targeted proteins (e.g. VMAT2)

and lysosomal hydrolases (e.g. CTSD). Experiments analysing the transport

of individual proteins using the RUSH (retention using selective hooks) system

combined with live cell imaging might provide further insight into the impact

of Auxilin mutations on cargo delivery (Boncompain et al., 2012). In addition,

synaptic vesicular recycling could be assessed using extracellular fluorescent probes,

e.g. FM dyes, in combination with TIRF microscopy (Gaffield and Betz, 2006).
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One of the main problems in the interpretation on functional relevance of

the interaction of Auxilin and GAK with GGA2/3 and AP1, respectively, is

the incomplete understanding of the functional differences between different

Golgi-resident clathrin adaptor proteins. Endogenous labelling of Auxilin/GAK

and clathrin adaptor proteins in combination with (live) super-resolution

microscopy could be leveraged to gain further insight into the temporal and

spatial organization in the uncoating of CCVs.

Taken together, the findings in this thesis underscore an important role for clathrin

trafficking in PD pathogenesis and open up new avenues for therapeutic strategies.

Response to L-DOPA, the first-line treatment in PD, is either absent or limited

due to severe side-effects in Auxilin mutation carriers. Further dissection of

clathrin-dependent pathways in neurons is therefore of particular interest to find

novel potential therapeutic targets. Moreover, the presented R857G Auxilin mouse

model could be a valuable platform to screen for potential drugs, given its high

construct and face validity.
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Höning, S., Griffith, J., Geuze, H. J., and Hunziker, W. (1996). “The tyrosine-based

lysosomal targeting signal in lamp-1 mediates sorting into Golgi-derived

clathrin-coated vesicles”. In: The EMBO Journal 15.19, pp. 5230–5239

Houlden, H. and Singleton, A. B. (2012). “The genetics and neuropathology of

Parkinson’s disease”. In: Acta Neuropathologica 124.3, pp. 325–338

Hughes, A. J., Daniel, S. E., Kilford, L, and Lees, A. J. (1992). “Accuracy of

clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study

of 100 cases”. In: Journal of Neurology, Neurosurgery, and Psychiatry 55.3,

pp. 181–184

254



Hughes, A. J., Ben-Shlomo, Y, Daniel, S. E., and Lees, A. J. (2001). “Improved

accuracy of clinical diagnosis of Lewy body Parkinson’s disease”. In: Neurology

57.8, pp. 1497–1499
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J. F., Pérez-Tur, J., Wood, N. W., and Singleton, A. B. (2004). “Cloning of

the gene containing mutations that cause PARK8-linked Parkinson’s disease”.

In: Neuron 44.4, pp. 595–600

267



Paleotti, O., Macia, E., Luton, F., Klein, S., Partisani, M., Chardin, P.,

Kirchhausen, T., and Franco, M. (2005). “The small G-protein Arf6GTP

recruits the AP-2 adaptor complex to membranes”. In: The Journal of

Biological Chemistry 280.22, pp. 21661–21666

Pallotto, M., Watkins, P. V., Fubara, B., Singer, J. H., and Briggman, K. L.

(2015). “Extracellular space preservation aids the connectomic analysis of

neural circuits”. In: eLife 4

Parkinson, J. (1817). An essay on the shaking palsy. Sherwood, Neely, and Jones

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017).

“Salmon provides fast and bias-aware quantification of transcript expression”.

In: Nature Methods 14.4, pp. 417–419

Pearse, B. M. (1975). “Coated vesicles from pig brain: purification and biochemical

characterization”. In: Journal of Molecular Biology 97.1, pp. 93–98

Pearse, B. M. (1988). “Receptors compete for adaptors found in plasma membrane

coated pits”. In: The EMBO Journal 7.11, pp. 3331–3336

Pearse, B. and Robinson, M. (1984). “Purification and properties of 100-kd proteins

from coated vesicles and their reconstitution with clathrin”. In: The EMBO

Journal 3.9, pp. 1951–1957

Peden, A. A., Rudge, R. E., Lui, W. W. Y., and Robinson, M. S. (2002). “Assembly

and function of AP-3 complexes in cells expressing mutant subunits”. In: The

Journal of Cell Biology 156.2, pp. 327–336

Perkins, D. N., Pappin, D. J. C., Creasy, D. M., and Cottrell, J. S. (1999).

“Probability-based protein identification by searching sequence databases using

mass spectrometry data”. In: Electrophoresis 20.18, pp. 3551–3567

Peter, B. J., Kent, H. M., Mills, I. G., Vallis, Y., Butler, P. J. G., Evans, P. R., and

McMahon, H. T. (2004). “BAR domains as sensors of membrane curvature:

the amphiphysin BAR structure”. In: Science 303.5657, pp. 495–499

Pihlstrøm, L., Blauwendraat, C., Cappelletti, C., Berge-Seidl, V., Langmyhr, M.,

Henriksen, S. P., Berg, W. D. J. van de, Gibbs, J. R., Cookson, M. R.,

Singleton, A. B., Nalls, M. A., Toft, M., Nalls, M. A., and Toft, M. (2018). “A

comprehensive analysis of SNCA-related genetic risk in sporadic Parkinson’s

disease”. In: Annals of Neurology 84.1, pp. 117–129

268



Pishvaee, B., Costaguta, G., Yeung, B. G., Ryazantsev, S., Greener, T., Greene,

L. E., Eisenberg, E., McCaffery, J. M., and Payne, G. S. (2000). “A yeast DNA

J protein required for uncoating of clathrin-coated vesicles in vivo”. In: Nature

Cell Biology 2.12, pp. 958–963

Polymeropoulos, M. H., Higgins, J. J., Golbe, L. I., Johnson, W. G., Ide, S. E.,

Di Iorio, G., Sanges, G., Stenroos, E. S., Pho, L. T., Schaffer, A. A., Lazzarini,

A. M., Nussbaum, R. L., and Duvoisin, R. C. (1996). “Mapping of a gene for

Parkinson’s disease to chromosome 4q21-q23”. In: Science 274, pp. 1197–1199

Polymeropoulos, M. H., Lavedant, C., Leroyt, E., Ide, S. E., Dehejia, A.,

Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S.,

Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson,

W. G., Lazzarini, A. M., Duvoisin, R. C., Di, G., Golbe, L. I., and Nussbaum,

R. L. (1997). “Mutation in the α-synuclein gene identified in families with

Parkinson’s disease”. In: Science 276.June, pp. 2045–2048

Popoff, V., Mardones, G. A., Bai, S.-K., Chambon, V, Tenza, D, Burgos, P. V.,

Shi, A., Benaroch, P., Urbe, S., Lamaze, C., Grant, B. D., Raposo, G., and

Johannes, L. (2009). “Analysis of Articulation Between Clathrin and Retromer

in Retrograde Sorting on Early Endosomes”. In: Traffic 10.12, pp. 1868–1880

Posor, Y., Eichhorn-Gruenig, M., Puchkov, D., Schöneberg, J., Ullrich, A., Lampe,
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G., Quattrone, A., Chien, H. F., Barbosa, E. R., Oostra, B. A., Barone, P.,

Wang, J., and Bonifati, V. (2013). “Mutation in the SYNJ1 gene associated

with autosomal recessive, early-onset parkinsonism”. In: Human Mutation 34.9,

pp. 1208–1215

Raiborg, C., Bache, K. G., Mehlum, A, Stang, E, and Stenmark, H (2001).

“Hrs recruits clathrin to early endosomes”. In: The EMBO Journal 20.17,

pp. 5008–5021

Ramirez, A., Heimbach, A., Gründemann, J., Stiller, B., Hampshire, D., Cid, L. P.,

Goebel, I., Mubaidin, A. F., Wriekat, A.-L., Roeper, J., Al-Din, A., Hillmer,

A. M., Karsak, M., Liss, B., Woods, C. G., Behrens, M. I., and Kubisch, C.

(2006). “Hereditary parkinsonism with dementia is caused by mutations in

ATP13A2, encoding a lysosomal type 5 P-type ATPase”. In: Genetics 38.10,

pp. 1184–1191

270
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A APPENDIX 1: NEUROPATHOLOGY IN R857G AUXILIN

MICE

A.1 INTRODUCTION

R857G Auxilin mice were found to develop neurological phenotypes reminiscent

of young onset PD, including the typical Parkinsonian phenotypes bradykinesia,

balance impairments and a decreased ability to terminate movements (see Chapter

4).

Even though the neuropathology underlying PD in Auxilin mutation carriers

is unknown to date, typical PD is characterized by neurodegeneration of DA

neurons in the SN and Lewy pathology (i.e. intracellular aggregates consisting

of proteins and lipids) in surviving neurons. DA neurons in the SN project to

the striatum, where they release the neurotransmitter dopamine. The resulting

depletion of DA in the striatum is thought to underlie motor symptoms in PD,

through abnormalities in basal ganglia signaling (see section 1.1.3) (Obeso et al.,

2009).

To gain further insight into the neuropathology in one year old R857G Auxilin mice,

light microscopy and electron microscopy were used to analyse neuropathology

and ultra-structural morphology, respectively, in brain slices of the nigrostriatal

pathway in one year old R857G Auxilin mice. All immunohistochemistry

experiments were performed by Dr. Natalie Landeck. Electron microscopy was

performed in collaboration with the Electron Microscopy Core (National Heart,

Lung and Blood Institute), led by Dr. Cristopher Bleck.

285



A.2 RESULTS

A.2.1 No signs of neurodegeneration in one year old R857G Auxilin mice

To address neurodegeneration in the SN, brain slices of one year old mice were

stained with tyrosine hydroxylase (TH). TH is the rate-limiting enzyme in

catecholamine biosynthesis, including the conversion of tyrosine to DA, and

is therefore a DA neuronal marker. Comparison of midbrain slices of R857G

Auxilin mice with age-matched WT controls did not reveal obvious alterations in

DA neuron density in the SN (Figure A.1).
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Figure A.1: Staining for TH in the SN A, B Staining for TH in the SN of WT and R857G
Auxilin mice were performed by Dr. Natalie Landeck. Representative images are shown of 3
sections of n = 3 and n = 4 WT and R857G Auxilin mice, respectively. Scale bar indicates 200
µm. C Fluoresence intensity was quantified and Welch’s t-test were performed. No significant
alterations were observed.

Since DA neurons in the SN project to the striatum, projections of TH-positive

neurons were analysed in the striatum. However, fiber density analysis did not

reveal significant differences between WT and R857G Auxilin mice (Figure A.2

A-C).
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In addition to TH, striatal brain sections were also stained for two dopaminergic

presynaptic proteins, namely DAT (dopamine transporter) and VMAT2 (vesicular

monoamine transporter 2). DAT transports extracellular dopamine in the synaptic

cleft back into the cytosol. VMAT2 transports monoamine neurotransmitters,

including dopamine, from the cytosol into synaptic vesicles. However, VMAT2

is not only a marker for DA neurons, but also for norepinephrinic, serotonergic

and histaminergic neurons. Fiber density analysis of DAT and VMAT2 positive

neurons in striatal sections also did not reveal differences between WT and R857G

Auxilin mice (Figure A.2 C-I).
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Figure A.2: Staining for dopaminergic markers in the striatum Staining for TH (A, B),
DAT (D, E) and VMAT2 (G,H) in the striatum of WT and R857G Auxilin mice were performed
by Dr. Natalie Landeck. Representative images are shown of n = 3 and n = 4 WT and R857G
Auxilin mice, respectively. Scale bar indicates 500 µm. Fluorescence intensity (C, F, I) was
quantified and Welch’s t-test was performed. No significant alterations were observed.
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A.2.2 Accumulation of lipid/proteinaceous aggregates in the striatum

of R857G Auxilin mice

To analyse neuropathology in one year old R857G Auxilin mice at the

ultra-structural level, striatal sections were analysed using EM. Large intracellular

accumulations of lipid and protein, surrounded by limiting membrane, were

apparent in R857G Auxilin mice, but not in WT mice (Figure A.3 A). Further

analysis of lipid accumulation in DA neurons in the SN was performed using the

boron-dipyrromethen (BODIPY) staining (i.e. a neutral lipid staining). Confocal

microscopy analysis of BODIPY staining revealed a decrease in the number of

lipid droplets in the striatum of R857G Auxilin mice, but the size of each droplet

is significantly increased, resulting in an overall increase of total lipid content per

cell in DA neurons in the SN in R857G Auxilin mice (Figure A.3 B-F).
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Figure A.3: Accumulation of lipids in dopaminergic neurons A EM analysis of striatal
sections of a R857G Auxilin mouse. PM indicates plasma membrane, L/P lipid protein aggregate,
N nucleus. Scale bar indicates 300 nm. EM analysis was performed in collaboration with the
Electron Microscopy Core (National Heart, Lung and Blood Institute). B, C BODIPY staining
and confocal imaging with Airyscan detection of DA neurons in sections of the SN of WT and
R857G Auxilin mice was performed by Dr. Natalie Landeck. Scale bar indicates 5 µm. D, E,
F Quantification of number of particles, particle size and lipid content per DA cell in the SN,
respectively. 27 and 36 cells of n = 3 and n = 4 WT and R857G Auxilin mice, respectively,
were analysed. Welch’s t-test was performed, * indicates p-value <0.05, **** indicates p-value
<0.0001.

A.2.3 Decreased number of synaptic vesicles in the striatum of R857G

Auxilin mice

Ultra-structural analysis of synapses in the striatum revealed a decreased number

of synaptic vesicles in the pre-synaptic area (Figure A.4). Given that the SN is

the main input nucleus of the striatum, this indicates that DA neurons of the SN

have a decreased number of SV in the pre-synaptic area.
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Figure A.4: Decreased number of synaptic vesicles A, B EM analysis of synaptic terminals
of DA neurons in the striatum of WT and R857G Auxilin mice, respectively. EM analysis
was performed by the Electron Microscopy Core (National Heart, Lung and Blood Institute).
Presynapse is circled by red dotted line. Scale bar indicates 300 nm. C Quantification of
pre-synaptic area. D Quantification of number of synaptic vesicles per pre-synaptic area. 64 and
57 synapses were analysed of n = 1 WT and R857G Auxilin mouse, respectively. Welch’s t-test
was performed, **** indicates p-value <0.0001. EM analysis was performed by the Electron
Microscopy Core (National Heart, Lung and Blood Institute).

291



A.3 DISCUSSION

One-year old R857G Auxilin mice develop neurological phenotypes resembling

young onset PD (see Chapter 4). The first neuropathological hallmark underlying

motor phenotypes in human PD patients is the neurodegeneration of DA neurons

in the SN that project to the striatum, with subsequent loss of DA fibers and

depletion of DA in the striatum, but no such deterioration of DA neurons and

projections were observed in the SN or striatum of R857G Auxilin mice. However,

it is possible that synaptic defects underlie neurological phenotypes in R857G

Auxilin mice. Indeed, a decreased number of synaptic vesicles was observed in

R857G Auxilin mice. Given that CME is crucial for maintenance of the SV pool,

it is thus conceivable that impaired CME may cause alterations in the number

of CCVs. It is important to note that the EM experiments were performed in

one animal per genotype. More experiments are required in additional mice

to confirm the observed phenotype, for example by immunohistochemistry for

synaptic vesicle markers. In addition, higher-resolution EM microscopy would

greatly contribute to distinguish between clathrin coated and uncoated synaptic

vesicles in the synapse, to analyse the impact of the R857G Auxilin mutation on

the abundance of CCVs. Electrophysiology experiments would provide further

insight into the synaptic activity of R857G Auxilin mice.

The second pathological hallmark of PD in patients is the accumulation of

intracellular protein/lipid aggregates known as Lewy bodies. Remarkably, large

intracellular lipid/protein aggregates were observed in the striatum of R857G

Auxilin mice, and lipid staining revealed the accumulation of neutral lipids in the

SN of R857G Auxilin mice. These aggregates might be the result of impaired

clathrin trafficking at the TGN. The ER and Golgi apparatus are required for

the synthesis and modifications of proteins and lipids, which are subsequently be
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transported to intracellular destinations via the TGN. Impaired uncoating of CCVs

derived from the TGN by R857G Auxilin mice might result of inefficient delivery

of CCV cargo, including proteins and lipids, to the destination compartments,

with an accumulation of cargo in the cytoplasm as a result. In addition, CCVs

are crucial for the delivery of hydrolases to the lysosomes, thus impaired delivery

of those hydrolyases could result in decreased cellular degradation capacity, which

would further contribute to the formation of aggregates in cells.

Further work is required to characterize the nature of the observed protein/lipid

aggregates, for example by staining for specific lipids and proteins. Lewy bodies

are chiefly composed of α-synuclein, as well as other proteins such as tau and

ubiquitin. Immunohistochemisry of these proteins in sections of the SN and

striatum would greatly contribute to understand the nature of those aggregates.

In addition, characterization of the lipid contents of the aggregates could be

further characterized by staining for specific lipid species, such as ceramide.

In addition to the typical Parkinsonian motor phenotypes, Auxilin mutation

carriers also develop atypical neurological phenotypes, such as seizures and

cognitive decline. These phenotypes were found to be recapitulated by R857G

Auxilin mice (see Chapter 4). Given that Auxilin is expressed in neurons across

all brain areas, it is conceivable that lesions in other brain areas may underlie

these neurological phenotypes. More experiments are therefore required to address

neuropathology in different brain areas in addition to the nigrostriatal pathway.
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A.4 MATERIAL AND METHODS

A.4.1 Immunohistochemistry

Animals were sacrificed at 1 year of age. Mice were deeply anesthetized with an

intraperitoneal injection of 50 µl of 10% ketamine and the thoracic cavity was

opened to expose the heart. Blood was flushed out using 10 ml of 0.9% NaCl for

2 minutes. Brains were removed, the left hemisphere was fresh frozen and the

right hemisphere was fixed in 4% PFA for 48 hours. After 2 days, brains were

transferred to 30% sucrose solution for cryoprotection and sectioning was started

once brains had sunk to the bottom. The brains were cut into 30 m coronal

sections and stored in antifreeze solution (0.5 M phosphate buffer, 30% glycerol,

30% ethylene glycol) at -20◦C until further processing.

Immunohistochemical staining was performed under constant shaking on

free-floating sections in a 24-well plate. Brain sections were transferred to 24-well

plate and washed from antifreeze solution with PBS twice for 10 min.

Sections that were stained against DAT were subjected to antigen retrieval prior

to immunostaining. Section were placed into Citric buffer (10mM sodium citrate,

0.05% Tween, pH 6) for 30 min at 80◦C and were rinsed again afterwards with

PBS buffer.

All sections were then incubated in PBS containing 10% NDS, 1% BSA and

0.3% Triton for 30 minutes. Following blocking, sections were incubated primary

antibodies indicated in Table A.1 in antibody solution (1% NDS, 1% BSA and

0.3% Triton in PBS) overnight at 4◦C.
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Target Host Dilution Vendor Catalog number

TH Mouse 1/500 Pel-freeze Biologicals P40101-150

DAT Rabbit 1/500 Abcam ab111468

VMAT2 Rabbit 1/500 ImmunoStar 20042

Table A.1: Primary antibodies used for IHC

The next day, sections were rinsed three times with PBS for 10 min and incubated

with the AlexaFluor labeled secondary antibody (1:500, Invitrogen, Donkey host)

in antibody solution for 1 hour. Sections stained for TH were also incubated in 20

µg/ml BODIPY493/503 (Invitrogen) to stain neutral lipids. Afterwards, sections

were washed three times with PBS for 10 min, mounted on glass slides and

coverslipped using Prolong Gold Antifade mounting media (Invitrogen).

A.4.2 Confocal laser-scanning microscopy and Airyscan processing

Confocal laser-scanning microscopy and Airyscan processing was performed as

described in Section 5.4.11.

A.4.3 Electron microscopy

Electron microscopy was performed as described in Section 5.4.12.

A.4.4 Statistics

Data were plotted and statistical tests were performed using Prism 8 (Graphpad).

The statistical test results are displayed in table A.2. n represents the number of

animals, number of sections or number of cells included in each experiment and is

explicitely mentioned in the caption of the figures.
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Figure Variable Statistical test Test result P-value

A.1 Genotype Welch’s t-test t = 0.4804 0.6364

A.2 C Genotype Welch’s t-test t = 0.8784 0.4205

A.2 F Genotype Welch’s t-test t = 0.9952 0.3808

A.2 I Genotype Welch’s t-test t = 0.4975 0.6479

A.3 D Genotype Welch’s t-test t = 2.391 0.0203

A.3 E Genotype Welch’s t-test t = 4.308 <0.0001

A.3 F Genotype Welch’s t-test t = 4.355 <0.0001

A.4 C Genotype Welch’s t-test t = 0.03784 0.9699

A.4 D Genotype Welch’s t-test t = 5.266 <0.0001

Table A.2: Statistical test results
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mTOR independent regulation of 
macroautophagy by Leucine Rich 
Repeat Kinase 2 via Beclin-1
Claudia Manzoni1,2, Adamantios Mamais3, Dorien A. Roosen2,3, Sybille Dihanich2,  
Marc P. M. Soutar2, Helene Plun-Favreau2, Rina Bandopadhyay4, John Hardy2, 
Sharon A. Tooze5, Mark R. Cookson3 & Patrick A. Lewis1,2

Leucine rich repeat kinase 2 is a complex enzyme with both kinase and GTPase activities, closely 
linked to the pathogenesis of several human disorders including Parkinson’s disease, Crohn’s 
disease, leprosy and cancer. LRRK2 has been implicated in numerous cellular processes; however its 
physiological function remains unclear. Recent reports suggest that LRRK2 can act to regulate the 
cellular catabolic process of macroautophagy, although the precise mechanism whereby this occurs 
has not been identified. To investigate the signalling events through which LRRK2 acts to influence 
macroautophagy, the mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) and 
Beclin-1/phosphatidylinositol 3-kinase (PI3K) pathways were evaluated in astrocytic cell models in the 
presence and absence of LRRK2 kinase inhibitors. Chemical inhibition of LRRK2 kinase activity resulted 
in the stimulation of macroautophagy in a non-canonical fashion, independent of mTOR and ULK1, but 
dependent upon the activation of Beclin 1-containing class III PI3-kinase.

Leucine rich repeat kinase 2 is one of the key genetic factors contributing to the risk of developing Parkinson’s 
disease (PD), an irreversible, progressive neurodegenerative movement disorder primarily associated with neu-
ronal cell loss in the Substantia nigra pars compacta. Coding mutations in the LRRK2 gene are the most frequent 
genetic cause of familial PD, with polymorphisms in LRRK2 associated with an increased risk of idiopathic PD1–4. 
In addition to this, genome wide association (GWA) studies recently identified the LRRK2 locus as being involved 
in the risk for PD5, Crohn’s disease6 and multibacillary leprosy7,8. Mutations in LRRK2 have also been linked to 
cancer9, and the LRRK2 region was identified as being subject to frequent carcinogenic alterations10. The LRRK2 
gene is therefore related to the etiopathogenesis of at least four human diseases, making it the focus of increasing 
attention as a putative drug target.

The physiological function of LRRK2 is as yet unclear. It is a complex enzyme, with active kinase and GTPase 
domains that are thought to reciprocally regulate one another’s activity11,12. As detailed in the following section, 
several studies have indicated a putative role for LRRK2 in the control of macroautophagy, a process used by the 
cell to maintain a healthy microenvironment by removing misfolded proteins and damaged organelles13. The 
molecular mechanism underlying this association remains to be fully understood. While LRRK2 over-expression 
was associated with a macroautophagy-dependent induction of toxicity coupled with neurite atrophy14, LRRK2 
knock down was shown to both reduce and potentiate the autophagic flux15,16. Moreover, the overexpression of 
full-length LRRK2, or its kinase domain, as well as inhibition of LRRK2 kinase activity induced alterations of the 
macroautophagy-lysosomal pathway17–19. Macroautophagy was shown to be altered in human fibroblasts car-
rying LRRK2 pathogenic mutations associated with PD20,21, in neurons derived from those human fibroblasts22 
and in transgenic or LRRK2 knock-out mouse models23. Finally, pathogenic mutations in LRRK2 have been 
linked to deregulation of chaperone mediated autophagy (CMA)24. More generally, LRRK2 was associated with 
vesicle trafficking and synaptic functionality25,26, and with endocytosis and trans-Golgi network homeostasis27,28. 
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A hypothetical function for LRRK2 in the regulation of macroautophagy, and in general in vesicle homeostasis, 
is compelling considering that the macroautophagy/lysosomal system has an increasingly appreciated link to the 
etiology of PD29, while it has long been considered a central player in the pathogenesis of Crohn’s, leprosy and 
cancer.

The data presented herein demonstrate that the kinase activity of LRRK2 acts as a negative regulator of macro-
autophagy in astrocyte cell models. Our results suggest that LRRK2 may act to control a non-canonical pathway 
alternative and parallel to that regulated by the mammalian target of rapamycin (mTOR) and Unc-51 Like Kinase 
1 (ULK1), but dependent on the presence of an active Beclin-1 complex. These data have important implications 
for the study of the physiological and pathological functions of LRRK2, in particular for any pharmacological 
intervention based upon LRRK2 inhibition.

Results
Inhibition of LRRK2 kinase activity increases LC3-II levels. LRRK2 is expressed at high levels in 
astrocytes within the brain30,31. Human H4 neuroglioma cells, originally derived from an astrocytoma, were pre-
viously used as a model to study LRRK2 function in macroautophagy18,30. Based on a previous work by our 
group18, we here replicate and expand our previous analysis confirming that treatment of H4 cells for 150 minutes  
(acute treatment) or 18 hours (chronic treatment) with LRRK2 kinase inhibitors, either LRRK2in132 or 
GSK2578215A33 result in a concentration dependent increase of LC3-II (Fig. 1a,b); no concomitant toxicity was 
recorded for the LRRK2in1 while a decrease in cell survival was detected for GSK2578215A starting at 30 μ M  
(Supplementary Fig. S1a,b)34. A major confounding factor when using chemical inhibitors of enzymes is the 
possibility of off target effects. Although the inhibitors used are structurally distinct, it is critical to demonstrate 
that the cellular phenotypes measured are specific to the protein of interest. To achieve this, and as already pre-
viously proposed by our group, endogenous LRRK2 protein levels in H4 cells were decreased (~50%) by stable 
expression of LRRK2 shRNA (Fig.1c,d). 150 minutes (Fig. 1e,f) or 18 hours (Supplementary Fig. S1c) inhibition 
of LRRK2 kinase activity by LRRK2in1 increased LC3-II in scrambled controls cells but not in LRRK2 knocked-
down cells, strongly suggesting that this is a LRRK2 dependent phenomenon. Interestingly, in this model system 
we consistently see no increase in basal LC3-II when knockin-down LRRK2. Further investigations are needed, 
however we suggest this may happen either because the knock-down is never complete, or alternative splicing 
isoforms may originate. Moreover, it is worth noticing that, with the knock-down strategy, we remove the kinase 
as well as the GTPase activities and the protein-protein interaction domains of LRRK2. Therefore the chemical 
kinase inhibition and the protein knock-down approaches may not represent a perfect phenocopy of each other. 
Primary astrocytes from LRRK2 knock-out mice were prepared and assessed for response to LRRK2 inhibition. 
An elevated, basal level of LC3-II was detected in the knock-out cells that was not significantly increased follow-
ing treatment with LRRK2in1 (Fig. 1g,h, see Supplementary Fig. S1e for astrocytes evaluation by GFAP staining).

LRRK2 dependent increase of LC3-II is not due to decreased autophagosome-lysosome 
fusion. We have previously suggested that the increased levels of LC3-II after LRRK2 kinase inhibition were 
consequence of an increase in autophagosome production rather than a decrease in degradation. We here cor-
roborate this data by improving the experimental setting including Torin-1 control, evaluating two distinct 
time-points of treatment, assessing the drug Chloroquine alongside with Bafilomycin (BafA1) and perform-
ing co-localization analysis of LAMP1 and p62. As first, H4 cells were co-treated with LRRK2 kinase inhibitor 
and BafA1 or Chloroquine. Results showed an additive effect of LRRK2in1 over BafA1 (or Chloroquine) treat-
ment alone (Fig. 2a,b, Supplementary Fig. S2a) that appeared at 150 minutes and became significant at 18 hours 
(Fig. 2c–e), similarly to that observed with Torin-1, an mTOR inhibitor. This confirmed, as previously reported18, 
that the LC3-II increase following inhibition of LRRK2 kinase activity, is different from the effect of BafA1, thus 
suggesting an increase in macroautophagy flux34. Since BafA1, which inhibits autophagosome-lysosome fusion, 
has an additional, distinct action in preventing lysosomal acidification35, the pH of cellular vesicles was assessed 
in H4 cells treated for 150 minutes or 18 hours with LRRK2in1 or Torin-1, in the presence or absence of BafA1. 
Using neutral red accumulation no disruption of vesicle acidification was detected either with LRRK2in1 or 
Torin-1 (Supplementary Fig. S2b), further confirming that the inhibition of LRRK2 kinase activity does not 
affect lysosomal function. p62 is a cargo protein used to target substrates for degradation through autophagy. 
We evaluated the co-localization between p62 and LAMP1 (a lysosomal marker) to assess the fusion between 
lysosomes and autophagosomes34,36 (Supplementary Fig. S3) showing that, whereas BafA1 was able to reduce the 
co-localization between p62 and LAMP1 as consequence of inhibition of autophagosome-lysosome fusion, cells 
treated with Torin-1 or LRRK2in1 were characterized by a higher proportion of co-localized vesicles suggesting 
that no impairment in autophagy degradation was occurring under such treatments.

Inhibition of LRRK2 kinase activity induces macroautophagy independently of mTOR/
ULK1. In our previous work18 we did not record any alteration of P70S6K and S6 phosphorylation when macro-
autophagy was induced by LRRK2 kinase inhibition. This suggested that, in this specific case, induction of macro-
autophagy may not follow the canonical mTOR pathway. With a new set of tailored experiments we here properly 
assess that previous suggestion and corroborate the idea that inhibition of LRRK2 kinase activity induces macro-
autophagy independently of mTOR/ULK1. In canonical macroautophagy, ULK1 is the key downstream effector  
of mTOR and AMP-activated protein kinase (AMPK) for phagophore generation37. Inactivation of mTOR  
(i.e. following Torin-1 treatment) results in de-phosphorylation of ULK1, and subsequent macroautophagy 
induction. Canonical macroautophagy induced by Torin-1 treatment and involving mTOR inhibition (as 
indicated by reduction in the phosphorylation level of p70S6 kinase at Thr389) was strongly associated with 
decreased mTOR-dependent phosphorylation of ULK1 at Ser758 (Fig. 3a). 150 minutes of LRRK2-in1 treat-
ment was sufficient to increase the levels of the macroautophagy marker LC3-II, however no reduction of ULK1 
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phosphorylation on Ser758, nor alteration of mTOR activity was observed, as indicated by phosphorylation levels 
of p70S6K at Thr389 (Fig. 3a).

In order to assess whether ULK1 is required for LRRK2-induced macroautophagy, ULK1 protein levels were 
stably reduced by 70% in H4 cells transfected with ULK1 shRNA. 150 minute treatment of LRRK2in1 led to a 

Figure 1. Inhibition of LRRK2 kinase leads to a dose response and time dependent increase in LC3-II. 
150 minutes (a) or 18 hours (b) LRRK2in1 and GSK2578215A dose-response. The gels shown are representative 
of 3 independent experiments, LC3-II was quantified against β -actin, quantification was done for each 
single experiment; after normalization against the control in DMSO, data were pooled together in the dose-
response curve (mean and SEM). (c) H4 cells with stable LRRK2 knock-down (~50% LRRK2 knock-down for 
KD#644167.03b transfection) as quantified in (d); LRRK2 was quantified (sum of the upper and lower bands) 
against β -actin, statistical analysis was performed by unpaired student t-test (mean and SD, p value =  0.0236). 
(e) 150 minutes LRRK2in1 treatment in scramble controls and in LRRK2 knock-down cells; the image shown 
(reporting 3 samples for each condition) is representative of 3 independent experiments and is quantified in  
(f); LC3-II was quantified against β -actin; statistical analysis was performed by 1way Anova followed by 
Tukey post-hoc test (mean and SD, **p <  0.01; *p <  0.05). (g) primary astrocytes from wild-type and LRRK2 
knock-out mice treated with LRRK2in1 for 18 hours, the image shown is representative of 3 independent 
cell preparations, each replicated with 3 samples. (h) LC3-II was quantified against β -actin for each single 
experiment; after normalization against the internal control in DMSO, data were pulled together and statistical 
analysis was performed by 1way Anova followed by Tukey post-hoc test. (mean and SD, *p <  0.05).
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comparable increase of LC3-II production in stable ULK1 knock-down as compared to scrambled control cells. These 
data indicate that ULK1 is dispensable for macroautophagy induced by LRRK2 kinase activity inhibition (Fig. 3b,c).

Co-treatment with LRRK2in1 and Torin-1 resulted in a stronger increase of LC3-II levels, as compared to sin-
gle treatments with either LRRK2in1 or Torin-1 (Fig. 3d,e). This data supports an additive effect of the combined 
inhibition of LRRK2 and mTOR over the macroautophagy flux, further suggesting that these kinases act in paral-
lel pathways to control macroautophagy induction and that the regulation of autophagy by LRRK2 is independent 
of mTOR/ULK1. Similar results were obtained when m-TOR was alternatively inhibited by aminoacid starvation 
(Supplementary Fig. S4a,b) or following Rapamycin treatment (Supplementary Fig. S4c), further demonstrating 
that LRRK2 control over autophagy is independent of mTOR.

Activation of macroautophagy after inhibition of LRRK2 kinase requires PI3P/Beclin-1. In 
addition to the ULK-kinase complex, canonical macroautophagy induction requires the class III PI3-kinase com-
plex containing Beclin-138. WIPI-2 is directly recruited to the nascent autophagosome by the presence of PI3P 
in the autophagosome membrane, following the activity of the Beclin-1 complex. We have previously shown that 
LRRK2in1 increases the number of WIPI2 positive punctae in cells18. To confirm that this effect can be repro-
duced, we repeated the prior experiment using a different quantification algorithm (Supplementary Fig. S5). This 
result suggests that, in contrast to mTOR inhibition and ULK1 activation, PI3P and WIPI-2 may be required for 
macroautophagy induced by LRRK2 inhibition. To further test this hypothesis, we performed a new and tailored 

Figure 2. Increase in LC3-II after inhibition of LRRK2 kinase is due to an induction of the macroautophagy 
flux. (a) 18 hours treatment with LRRK2in1 in the presence and absence of BafA1 to block the autophagy 
flux. The gel shown is representative of 3 independent experiments, each performed in triplicate and it is 
quantified in (b). (b) LC3-II is quantified against β -actin; statistical analysis was performed by 1way Anova 
followed by Tukey post-hoc test (mean and SD, **p <  0.01). 150 minutes (c) and 18 hours (d) treatment with 
LRRK2in1 or Torin-1 (to induce macroautophagy) in the presence and absence of BafA1. The gels shown are 
representative of at least 4 independent experiments summarized in (e). (e) LC3-II is quantified against β -actin 
for 5 replicates (150 minutes) and 4 replicates (18 hours); quantification was done for each single experiment; 
after normalization against the internal control in DMSO, data were pulled together and statistical analysis was 
performed by 1way Anova followed by Tukey post-hoc test (mean and SD, ***p <  0.001, *p <  0.05).
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set of experiments. LC3-II levels after LRRK2in1 treatment were assessed in H4 cells treated with wortmannin 
(or VPS34in1) to inhibit PI3K (or specifically VPS34) and consequently the production of PI3P. Co-treatment 
with wortmannin (Fig. 4a,b) or VPS34in1 (Fig. 4c,d) and either LRRK2in1 or Torin-1 blocked LRRK2-induced 
macroautophagy and mTOR-induced macroautophagy respectively further confirming that PI3P is required for 
autophagosome production under LRRK2 inhibition.

Finally, in order to assess whether Beclin-1 is required for LRRK2-induced macroautophagy, Beclin-1 protein 
levels were stably reduced in H4 cells transfected with Beclin-1 shRNA(s). Knock-down of Beclin-1 increased the 
basal level of LC3-II and this was not further increased after 150 minutes treatment with LRRK2-in 1, in contrast 
to scrambled shRNA controls which showed an enhancement of LC3-II compared to basal levels (Fig. 4e,f). This 
data further suggested that the macroautophagy pathway controlled by Beclin-1, but not ULK1, is required for 
the negative regulation by LRRK2 kinase.

Discussion
Despite its key role in the etiology of a number of human diseases, there is as yet no consensus regarding the 
physiological function of LRRK2; leading to the suggestion that LRRK2 may have contrasting roles depending on 
the cell type and condition under investigation39. A number of reports have implicated LRRK2 in the regulation 
of macroautophagy, in endocytosis and metabolism, however the precise molecular function of LRRK2 in these 
processes is still not defined. The data reported here demonstrate that, at least one of the functions supported 

Figure 3. Increased macroautophagy following inhibition of LRRK2 kinase is mTOR independent. 
(a) 150 minutes treatment with LRRK2in1 or Torin-1 (to induce macroautophagy through mTOR). 
Phosphorylation of P70S6K and ULK1 were used as readout for mTOR inhibition. (b) 150 minutes treatment 
with LRRK2in1 or Torin-1 in scramble controls and in H4 cells with stable ULK1 knock-down (~70% ULK1 
knock-down). The gel shown is representative of 4 independent experiments that are quantified in (c). 
(c) Quantification was done for each single experiment and LC3-II was normalized against β -actin. After 
normalization against the control in DMSO, data were pulled together and statistical analysis was performed by 
1way Anova followed by Tukey post-hoc test (mean and SD, *p <  0.05). (d) 18 hours treatment with LRRK2in1 
in the presence and absence of Torin-1. Phosphorylation on P70S6K was used as control for mTOR inhibition. 
The gel shown is representative of 3 independent experiments each performed in triplicate and quantified in (e). 
(e) LC3-II was quantified against β -actin; statistical analysis was performed by 1way Anova followed by Tukey 
post-hoc test (mean and SD, **p <  0.01, ***p <  0.001).
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by the endogenous LRRK2 kinase activity in a H4 glioma cell line and in primary astrocytes is involved in the 
non-canonical control of macroautophagy, working parallel to the mTOR/ULK1 pathway and dependent on PI3P 
and Beclin-1 activity.

The complex events regulating macroautophagy are yet to be fully characterised40. Two of the key regulatory 
systems have, however, been identified: the mTOR/ULK1 and the Beclin-1 pathways. While ULK1 is phospho-
rylated under basal conditions to repress macroautophagy, ULK1 phosphorylation is lost when macroautophagy 
flux is induced, via the orchestrated inhibition of mTOR in concert with as yet unidentified phosphatases41,42. 
Beclin-1 works in two distinct complexes, both necessary for the production of PI3P that is required first for 
the formation and later for the maturation of the nascent autophagosome. Non-canonical pathways have been 
described which do not require proteins crucial for canonical autophagy such as ULK1, Beclin-1 and LC343–45. 
As an example, the phenotype of the double knock-out for both ULK1 and ULK2 is embryonic lethal, but mice 
embryonic fibroblasts on this background are able to activate a residual autophagy pathway that is, by definition, 
independent of ULK1/2 proteins46. Moreover, the knock-down of both ULK1 and ULK2 in a B-cell line (DT40) 
did not alter autophagy47, thus confirming that an ULK1/2 alternative route does exist and suggesting different 
cell types have different ways to control and sustain macroautophagy. Finally, small molecules enhancers of rapa-
mycin (SMERs) have been isolated to induce mTOR-independent autophagy48.

In the current study, pharmacological inhibition of LRRK2 kinase activity resulted in an increase of LC3 pro-
cessing consistent with induction of macroautophagy. Inhibition of mTOR using Torin-1 causes a complete loss 
of ULK1 phosphorylation on Ser758 and this loss of phosphorylation on ULK1 is required for translocation of the 

Figure 4. Increase in macroautophagy after inhibition of LRRK2 kinase and Beclin-1. (a) 150 minutes 
treatment with LRRK2in1 or Torin-1 (to induce macroautophagy) in the presence and absence of wortmannin. 
The gel shown is representative of 3 independent experiments as quantified in (b). (b) LC3-II was quantified 
against β -actin; quantification was done for each single experiment; after normalization against the control 
in DMSO, data were pulled together and statistical analysis was performed by 1way Anova followed by Tukey 
post-hoc test (mean and SD, ***p <  0.001, **p <  0.01). (c) 150 minutes treatment with LRRK2in1 or Torin-1 
(to induce macroautophagy) in the presence and absence of VPS34in1. The gel shown is representative of 
4 independent experiments as quantified in (d). (d) LC3-II was quantified against β -actin; quantification 
was done for each single experiment; after normalization against the control in DMSO, data were pulled 
together and statistical analysis was performed by 1way Anova followed by Tukey post-hoc test (mean and SD, 
***p <  0.001, **p <  0.01). (e) 150 minutes treatment with LRRK2in1 in H4 cells stably expressing scrambled 
shRNA controls or shRNA for Beclin-1. The gel shown is representative of 3 independent experiments, each 
performed in triplicate and it is quantified in (f). (f) LC3-II was normalized against β -actin and statistical 
analysis was performed by Anova followed by Tukey post-hoc test (mean and SD, *p <  0.05).
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ULK1/2 complex to the pre-autophagosomal structure37. In contrast, the lack of alteration in ULK1 phosphoryla-
tion following LRRK2 kinase inhibition, suggests the possible activation of a non-canonical pathway independent 
of ULK1. Autophagosomes produced due to loss of LRRK2 kinase activity were positive for WIPI-2 thus suggest-
ing the activity of Beclin-1 and the generation of PI3P was conserved. Indeed, the inhibition of PI3P production 
by wortmannin or VPS34in1 was able to inhibit the induction of LRRK2-regulated macroautophagy. Finally, 
Beclin-1 knock-down cells were not responsive to LRRK2in1 treatment, thus confirming that Beclin-1/PI3P are 
involved either upstream or downstream of the induction of macroautophagy via LRRK2 inhibition. A possible 
link between Beclin-1 and LRRK2 is intriguing given the existing literature. The G2019S-LRRK2 mutant (which 
shows increased kinase activity), is able to bind to and phosphorylate Bcl-2 resulting in dysregulation of mito-
phagy49. Beclin-1 contains Bcl-2 binding sites that are important for its macroautophagy regulatory activities50. 
Beclin-1 has been found to be phosphorylated and regulated by the stress responsive kinases MAPKAPK2 and 351;  
LRRK2 has been suggested to bind and phosphorylate MAP2K3 (MKK3) upstream of MAPKAPK2/3 in the 
p38-MAPK pathway52. It is also of note that the Beclin complex has a complex role in the regulation of macro-
autophagy, dependent upon the binding partners Beclin-1 is associated with53–55. In the presence of ATG14L or 
UVRAG, Beclin-1 acts as a positive regulator of macroautophagy – consistent with the data presented herein 
from H4 cells. In contrast, when bound to RUBICON Beclin-1 acts as a repressor of autophagy. Clarifying 
how LRRK2 relates to these distinct Beclin complexes will provide further insight into the precise mechanisms 
whereby LRRK2 can impact on autophagy, and may provide an explanation for the divergence in experimental 
data across the research literature. Strikingly, regulation of macroautophagy by LRRK2 is echoed by studies on 
Death Associated Protein kinase 1 (DAPK1), another member of the ROCO protein family to which LRRK2 
belongs, and that has been proposed to be involved in the control of macroautophagy by both direct and indirect 
phosphorylation of Beclin-156,57. Members of the ROCO family share a high homology in their GTPase and COR 
domains, while the kinase domains of LRRK2 and DAPK1 belong to different families. There is accumulating 
evidence, however, that the kinase and the GTPase activities present in LRRK2 are able to regulate one another58. 
These observations suggest that an understanding of both the kinase and GTPase activities of LRRK2 may be 
required to fully illuminate LRRK2’s role in the regulation of macroautophagy. Within the current study we make 
use of chemical inhibition of LRRK2 kinase activity to infer how the endogenous protein regulates macroauto-
phagy by physiological signaling in cells. However, we cannot currently determine if the effects here are solely 
due to kinase activity or are partially mediated through, for example, the GTPase function of LRRK2. Further 
experiments addressing the GTPase activity of LRRK2, either through genetic manipulations or small molecules 
that target this region of the protein, are therefore important in the future.The close genetic ties between LRRK2 
and PD have resulted in extensive efforts to understand LRRK2 in the context of this disorder. The recent discov-
ery of significant links between LRRK2 and a range of other, apparently unrelated, human disorders has further 
emphasised the importance of this protein to human health. A major challenge for LRRK2 research is, therefore, 
to reconcile the involvement of LRRK2 in the pathological pathways underlying these disparate disorders. Several 
complementary strands of evidence suggest that one key physiological function of LRRK2 is with regard to the 
control of macroautophagy and vesicle dynamics, raising the possibility that this may be the common theme 
behind the different disorders in the pathogenesis of which LRRK2 has been implicated. Another major problem 
in the study of LRRK2 patho-physiology is represented by the fact that it has been associated with a multiple array 
of cellular functions59, and has many protein interactors60, suggesting that LRRK2 acts as a hub protein able to 
work with a wide range of partners. This has led to the suggestion that LRRK2 may have different roles in different 
cell types and its function may be different depending on the situation/stimuli. The data presented in this study 
provides new insight into the dissection of the mechanism of LRRK2 function, information that will be critical 
for understanding the connection between LRRK2 and disease pathogenesis, to provide the basis for therapeutic 
intervention directed at LRRK2s activities and to consider the side effects and safety issues of chronic LRRK2 
kinase inhibition in a human context.

Materials and Methods
Reagents. The LRRK2in1 compound and the VPS34in1 were purchased from the Division of Signal 
Transduction Therapy, School of Life Sciences, and University of Dundee, UK. The GSK2578215A compound was 
purchased from Tocris. Bafilomycin A1 (B1793-2UG), Chloroquine (C6628) and Wortmannin (W3144-250UL) 
were purchased from Sigma-Aldrich. Torin-1 (CAY10997) was purchased from Cayman Chemicals.

Antibodies used were as follows: LC3 antibody (NB100-2220, Novus Biologicals); LRRK2 antibodies (MJFF#2, 
3514-1/ab133474, Epitomics); total S6 antibody (2317, Cell Signalling); phospho Ser235/236 S6 antibody (2211S, 
Cell Signalling); total P70S6K antibody (sc-8418, Santa Cruz); phospho Thr389 P70S6K (sc-11759, Santa Cruz); 
total ULK1 antibody (8054 and 4773, Cell Signalling); phospho Ser757 ULK1 antibody (6888, Cell Signalling); 
Beclin-1 antibody (3738, Cell Signalling); β -actin antibody (A1978, Sigma Aldrich); β -tubulin (T6199, Sigma 
Aldrich).

H4 cell culture and treatment. H4 cells (ATCC number HTB-148) were grown in DMEM containing 10% 
FCS. After 24 hours from plating, when at 80% confluence, H4 cells were treated with LRRK2 inhibitors LRRK2in1  
or GSK2578215A, with BafA1 or Torin-1 or wortmannin at the concentrations and for the time reported in 
each experiment. For each experiment, DMSO vehicle controls were added. After washing in Dulbecco’s phos-
phate buffered saline (DPBS) cells were collected in a lysis buffer containing: 0.5% Triton X-100, 2 mM ethylen 
di-ammonium tetra acetic acid (EDTA), 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sul-
phate (SDS), protease inhibitors (cOmplete, protease inhibitor cocktail, Roche) and phosphatase inhibitors (Halt 
phosphatase inhibitor cocktail, Pierce) in 50 mM TRIS-HCl pH 7.5.
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Primary astrocytes culture. Primary astrocyte cultures were prepared from P3-4 mouse forebrain fol-
lowing a protocol adapted from Schildge et al.61. Briefly, brains were isolated in cold HBSS (Sigma-Aldrich). 
The forebrains were dissected and meninges removed. Forebrains were dissociated before incubation in papain 
(Worthington) at 37 °C for 30 min. The samples were triturated by pipetting and subsequently plated in DMEM 
supplemented with 10% FCS and 1% penicillin/streptomycin. At 14 divisions, microglia were dissociated by agi-
tation for 1 hr at room temperature and astrocytes were re-plated following brief trypsinization to expand the 
culture. Astrocytes were aged to 45/47 divisions, plated in 6 well plates (1 ×  106 cells/well), and at 80% confluency 
the cells were treated with LRRK2in1 or DMSO (control) as reported in figures. Following treatment, the cells 
were washed in DPBS, collected by scraping and cell pellets were frozen until Western blot analysis.

Western blotting. Cell lysates were frozen immediately upon collection or kept at 4 °C for 30 minutes; 
following thawing, they were clarified by centrifugation at 13000 rpm for 5 minutes at 4 °C, protein concentra-
tion was assessed by BCA assay (BCA Protein Assay Kit, Pierce) and 10–15 μ g aliquots were added of NuPAGE 
sample buffer containing 2-mercaptoethanol (Invitrogen), denatured for 10 minutes at 70 °C and analysed using 
NuPAGE, Novex precasted Bis-Tris 4–12% (Invitrogen), in MES running buffer (Invitrogen). After electropho-
resis, gels were blotted onto 0.45 μ m cut-off, PVDF through conventional blotting. Membranes were blocked and 
processed with peroxidase-conjugated antibodies for enhanced chemiluminescence (ECL) detection. Films were 
acquired as images in jpg format using an EPSON Perfection 4870 photo scanner and processed by the ImageJ 
software (http://rsbweb.nih.gov/ij/).

Statistics. All the results have been repeated in at least 3 independent experiments (details are given in each 
figure legend). In the case of Western blot analysis for phospho-proteins, samples were divided in half and run 
in two parallel gels; one was processed for the phospho-antibody and one for the total-antibody (to avoid mem-
brane stripping and re-probing). The total and the phospho bands were normalized against the respective β -actin 
loading control; then, the ratio of (normalized)phospho over (normalized)total protein was calculated. Statistical 
analyses were performed by the use of the Prism software (GraphPad) as described in each figure legend.

Generation of stable knock-down. H4 cells were transfected with 2 to 10 μ g LRRK2 shRNA, ULK1 
shRNA, Beclin-1 shRNA or scramble Open Biosystems GIPZ shRNAmir (V3LHS-644167, V2LHS-33057, 
V3LHS-349512 and -349514, Thermo Fisher Scientific) using PEI (Sigma-Aldrich) transfection reagent accord-
ing to the manufacturer’s instructions. ShRNA vectors contain a puromycin resistance gene. Cells were treated 
with 2 μ g/ml puromycin supplemented DMEM 48 hrs after transfection and kept under selection for expansion. 
Puromycin selection was removed 24 hours before the experiment to avoid interference of the antibiotic with the 
treatment.
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LRRK2 at the interface of autophagosomes,
endosomes and lysosomes
Dorien A. Roosen1,2 and Mark R. Cookson1*

Abstract

Over the past 20 years, substantial progress has been made in identifying the underlying genetics of Parkinson’s
disease (PD). Of the known genes, LRRK2 is a major genetic contributor to PD. However, the exact function of
LRRK2 remains to be elucidated. In this review, we discuss how familial forms of PD have led us to hypothesize that
alterations in endomembrane trafficking play a role in the pathobiology of PD. We will discuss the major observations
that have been made to elucidate the role of LRRK2 in particular, including LRRK2 animal models and high-throughput
proteomics approaches. Taken together, these studies strongly support a role of LRRK2 in vesicular dynamics. We also
propose that targeting these pathways may not only be beneficial for developing therapeutics for LRRK2-driven PD,
but also for other familial and sporadic cases.

Keywords: GTPases, Membrane proteins, Parkinson’s disease, Protein kinases, Vesicular trafficking

Background
Understanding the etiology of a disease is often an im-
portant step for developing treatments. With many of
the common neurodegenerative diseases, it is clear
that single gene mutations account for some propor-
tion of all cases while the rest are ‘sporadic’ in nature.
This leads to the concept that genetic variants, acting
within the context of the aging central nervous system
and stochastic factors, leads to overall risk of disease.
Thus, the etiology of neurodegeneration is at least
partially tractable.
Parkinson’s disease (PD) falls within this rubric, in that

about 10% of cases have a clear family history while the
remainder are scattered throughout the population. The
nature of inheritance is variable, with both dominant
and recessive genes being found that have age-dependent
penetrance. Furthermore, within the sporadic PD popu-
lation, genome-wide association studies (GWAS) have
nominated multiple genomic regions as harboring vari-
ants that contribute to overall risk of disease throughout
lifetime. PD genetics is therefore rarely pure and never
simple but contributes to pathogenesis and, by exten-
sion, might be leveraged for therapeutic benefit.

Here, we will focus on one specific gene for PD that is
relevant for both inherited and sporadic disease that has
been the subject of recent attention as a potential drug
target. We will focus specifically on the underlying biol-
ogy that has been uncovered in recent years to discuss
the concept of pathway risk in parkinsonism.

LRRK2 is in a pleomorphic risk locus for PD
In 2002, inherited PD in a large Japanese kindred was
linked to the PARK8 locus on chromosome 12 [1]. The
same locus was found in independently ascertained
families from different countries [2–4] and the under-
lying genetic cause, a mutation in the LRRK2 gene, was
discovered 2 years later [3, 5] an a series of LRRK2
mutations nominated in additional families [6–10]. To
date, five mutations in LRRK2 have been shown unam-
biguously to segregate with familial PD and two additional
variants have been nominated as risk factors (reviewed
in [11, 12]). All of these LRRK2 mutations show age-
dependent incomplete penetrance, meaning that some
LRRK2 mutation carriers do not show clinical pheno-
types during their lifetime [13].
Independently of mutations, GWAS approaches have

also identified LRRK2 to be a risk factor for sporadic PD
[14]. The precise mechanism by which variations around
the LRRK2 gene region contribute to disease risk are not
fully resolved, but given that the polymorphisms
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associated with sporadic PD are in the promoter region
of LRRK2, a reasonable hypothesis is that these variants
do not change protein structure or function but instead
alter expression levels of the gene, although this remains
to be formally demonstrated for LRRK2. The chromo-
somal region containing LRRK2 is therefore an example
of a pleomorphic risk locus, i.e. a genomic region that
harbors variants that increase disease risk but by differ-
ent mechanisms [15]. Additionally, LRRK2-driven PD is
clinically indistinguishable from idiopathic PD [16]. Col-
lectively, these observations suggest that LRRK2 plays a
general role in the etiological mechanisms of both inher-
ited and sporadic PD.

LRRK2 structure and enzymatic domains
LRRK2 encodes a large (2527 amino acid) multi-domain
protein termed leucine rich repeat kinase 2 (LRRK2).
The central portion of LRRK2 contains a Ras of Com-
plex (Roc) GTPase and a C-terminus of Roc (COR) do-
main, followed immediately by a kinase domain. The
ROC-COR bidomain and kinase region together consti-
tute the catalytic core of LRRK2, which therefore en-
compasses two enzymatic activities. Several protein
interaction domains surround this catalytic core, includ-
ing N-terminal armadillo (Arm), ankyrin (Ank) and leu-
cine rich repeat (LRR) domains and a C-terminal WD40
domain (Fig. 1). Interestingly, all the segregating muta-
tions associated with PD are located within the enzym-
atic core of LRRK2 (Fig. 1) and mutated proteins have
altered biochemical activity in vitro [17]. There are sub-
tle differences between mutations, as the kinase domain
mutations including G2019S and I2020T directly

increase kinase activity [13] whereas those in the ROC-
COR domains, the best studied of which are R1441C/G
and Y1699C, decrease GTPase activity [18–21]. How-
ever, it is thought that the physical proximity of two
enzyme activities encoded in the same protein structure
implies that they regulate each other and lead to a co-
ordinated output in cellular signaling [22, 23]. Therefore,
even if mutations have differing effects on the proximal
biochemical activity of LRRK2, they are likely to have a
consistent effect on signaling in the cell. By extension, it
is likely that evolution has selected for the multiple en-
zymatic and protein interaction domains of LRRK2 to be
on a single polypeptide because they work together to
generate one or more cellular outputs.
Despite being a large protein, several early studies

showed that LRRK2 can form homodimers that localize
to membrane compartments of the cell [24–26]. It is
likely that dimer formation is part of the complex auto-
regulatory function of LRRK2, relevant for the kinase
and GTPase activities discussed above. Recently, a 3D
structural model of full length LRRK2 has been described,
showing that the LRRK2 homodimer adopts a compact
architecture, highly suggestive of intramolecular regula-
tion of the enzymatic activities [27]. In this model, the
protein-protein interaction domains either serve to
stabilize the dimer internally or are surface available for
interactions with external binding partners (Fig. 1).
These biochemical and structural observations suggest,

first, that LRRK2 is a co-ordinated signaling molecule
that has linked enzyme activities and potentially multiple
protein interaction partners and, second, that mutations
associated with PD can modify these activities.

Fig. 1 Overview of LRRK2 domain organization. a Linear model of the LRRK2 domains and pathogenic mutations. b Schematic model of
homodimeric, folded LRRK2 and the approximate positioning of domains within the 3D LRRK2 structure
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Genetic clues for altered vesicular dynamics in PD
The next important question, is what effects LRRK2 has
within cells and, therefore, within the organism. If we
make the assumption that LRRK2 has some higher-level
relationship with other genetic forms of PD, we might
ascertain some candidates for LRRK2’s cellular role.
The first gene cloned for inherited PD was SNCA,

which encodes a small vesicular protein abundantly
expressed in the brain, α − synuclein. As for LRRK2, the
genetic region surrounding SNCA is a pleomorphic risk
locus, containing point mutations, gene multiplications
and risk variants for sporadic PD. Furthermore, aggrega-
tion of insoluble α-synuclein is one of the main patho-
logical hallmarks of PD, in the form of Lewy bodies and
Lewy neurites in multiple brain regions. Because of this
accumulation of protein, impaired degradation pathways
have been hypothesized to be one of the underlying
disease mechanisms of PD [28]. Because neurons re-
quire substantial maintenance and recycling of vesicles
and their associated proteins at synapses, a particularly
attractive idea is that PD might result from a failure of
degradative pathways for vesicular proteins. The majority
of α-synuclein is degraded through the lysosome, per-
haps by a specialized process called chaperone-mediated
autophagy (CMA) [29]. It is known that CMA activity
diminishes with age [30] and that the protein stability of
α-synuclein increases with age as well as mutations [31].
With the assumption that multiplication mutations in
SNCA increase protein levels, a possible explanation for
the age-dependent penetrance of these mutations is that
the protein levels are a critical driver of toxic events in
the brain.
Since the initial cloning of SNCA, there have been

multiple PD-related genes identified that additionally

converge on the related autophagy-lysosome system and
vesicle trafficking pathways (summarized in Table 1,
extensively reviewed in [28, 32]). We will therefore
summarize some of the key characteristics and players
in these intracellular events before turning to the
evidence that addresses the role(s) of LRRK2 in vesicle
uptake and recycling.

The endosomal and autophagosomal pathways
Two major pathways for cellular homeostasis are endo-
cytosis and autophagy (2). During endocytosis, extracel-
lular components are engulfed at the plasma membrane
and transported and sorted via early and late endosomes
[33]. The eventual destinations of endocytosed materials
are varied, including rapid recycling at the post-synaptic
region of neurons [34]. However, a subset of endosomes
matures for subsequent fusion events with other intra-
cellular membranous vesicles. This is a highly regulated
process influenced by several cellular signaling pathways,
with key involvement of the members of the Rab family
of membrane-associated small GTPases [35]. Early endo-
somes are enriched in the signaling lipid PI(3)P, gener-
ated by the VPS34 complex. Conversion of PI(3)P to
PI(3,5)P2 by the kinase PIKFyve is important for endo-
some maturation [36], where Rab5-positive early endo-
somes mature to Rab7-positive late endosomes through
a transient Rab5/Rab7-postive structure [37]. Rab9 and
Rab7L1 are involved in the recycling of endosomal
vesicles to the trans Golgi network (TGN) via several
protein complexes called the retromer [38]. Outside of
endosomes, other Rabs are critical for different mem-
brane trafficking and fusion events. Rab8 and Rab10
mediate the transport of vesicles from the TGN to the
plasma membrane, whereas Rab32 and Rab38 are

Table 1 PD-associated genes with a role in endomembrane trafficking. AD autosomal dominant, AR autosomal recessive

Gene Inheritance Role in endomembrane trafficking References

Parkin AR Ubiquitination of damaged mitochondria for degradation by mitophagy [86, 87]

PINK1 AR Phosphorylation of mitochondria for parkin activation and mitophagy [87–89]

DJ-1 AR Mitophagy, mitochondrial dynamics [87, 90, 91]

Fbxo7 AR Mitophagy, interacts with parkin [92]

α-synuclein AD/risk factor Substrate of CMA, pathogenic α-synuclein inhibits CMA and induces macroautophagy [14, 28, 29, 93]

LRRK2 AD/risk factor Autophagy, endomembrane trafficking [14, 28]

Vps35 AD Component of the retromer complex [94, 95]

ATP13A2 AR Lysosomal P5-type ATPase [96]

DNAJC6 AR Co-chaperone in clathrin-mediated trafficking [97, 98]

SYNJ1 AR Lipid phosphatase in clathrin mediated trafficking [99]

GAK Risk factor Co-chaperone in clathrin-mediated trafficking, LRRK2 interactor [14, 73]

Rab7L1 Risk factor Small GTPase regulating endomembrane trafficking, LRRK2 interactor [14, 73]

GBA Risk factor Lysosomal protease [14, 100]

TMEM230 AD Transmembrane protein of recycling/secretory vesicles [101]
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involved in the transport of specialized endomembrane
compartments called melanosomes to the plasma
membrane [39] (Fig. 2). Thus, the endosomal pathway
consists of a series of discrete membrane organelles
that rely on Rabs and other signaling molecules for effi-
cient regulation.
Autophagy is derived from Greek root words for ‘self-

eating’. This highly regulated process maintains cellular
homeostasis through lysosomal degradation of cellular
components. There are three major types of autophagy:
chaperone-mediated autophagy (CMA), microautophagy
and macroautophagy. During CMA, substrates are
selectively but directly delivered to the lysosomes by
Hsc-70 and a specific lysosomal membrane receptor,
LAMP2A [30]. In microautophagy, cellular targets are
directly translocated to the lysosomes but in a relatively
nonselective manner that involves invagination and
scission of the lysosomal membrane [40].
Macroautophagy, often referred to as simply ‘autophagy’

due to it being relatively better studied than the other
two processes, involves sequestration of substrates into
a specialized organelle, the autophagosome [41]. The
underlying process can be broken down into 3 steps:
phagophore formation, elongation of the phagophore to
encircle the cargo and finally fusion of the autophago-
some with lysosomes, membrane bound organelles that
are enriched for proteolytic enzymes to enable degrad-
ation of their cargo (Fig. 2).

Like the endosomal system, autophagy is highly regulated
by several cellular signaling pathways. In the canonical
pathway, activation of the Ulk1 complex through mTOR
signaling is necessary for autophagy autophagy induction.
Next, the vacuolar sorting protein 34 (VPS34) complex is
relocated to the phagophore for the generation of phos-
phatidylinositol 3 phosphate (PI(3)P). The local enrichment
of PI(3)P recruits proteins associated with the initiation of
autophagy, including WIPI2 [42]. Non-canonical, PI3K-
independent induction of autophagy has recently been re-
ported as well [43]. WIPI2 next functions to recruit and
conjugate Atg (autophagic genes) proteins to mediate the
elongation of the phagophore. In this step, the cytosolic
LC3-I is cleaved and lipidated to form LC3-II on the autop-
hagosomal membrane. This conversion of LC3-I to LC3-II
is necessary for phagophore elongation to form an enclosed
vesicle and is widely used as a marker for the presence of
active autophagy in cells and tissues. Finally, the autopha-
gosome fuses with lysosomes forming autolysosomes [42].
There are also specialized forms of autophagy for

degradation of selective cargoes. Several organelles can
be degraded after fusion with autophagosomes, for
example depolarized mitochondria are cleared by mito-
phagy [44, 45]. In most of these cases, there are adaptor
proteins that bridge the cargo to the developing au-
tophagic membrane [46], including the general adaptor
p62/sequestosome that is also often used to identify the
presence of autophagy in tissues [47].

Fig. 2 Cartoon of endosomal trafficking and macroautophagy. WIPI2 is involved in the initiation of autophagy at the phagophore. LC3-II is involved
for the elongation of the autophagosomal membrane. Phagosomes are formed upon the phagocytosis of extracellular pathogens. Rab proteins,
including Rab5, Rab7, Rab9, Rab7L1, Rab8, Rab10, Rab12, Rab32 and Rab38 are key regulators of endomembrane trafficking. Autophagosomes and
endosomes can fuse to form amphisomes. Amphisomes on their turn fuse with lysosomes for degradation of the autophagic/endocytic cargo. Grey
shade indicates the involvement of LRRK2 in endomembrane trafficking through physical interactors and/or kinase substrates. Pink shade highlights
parts of endomembrane trafficking where LRRK2 is implied having a regulatory role
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Although the above discussion outlines endosomal
and autophagy as discrete pathways, in practice there is
extensive cross talk between these vesicular events. For
example, a subset of endosomes will fuse either directly
with lysosomes in a Rab12-dependent manner or indir-
ectly after first fusing with autophagosomes, to generate
multivesicular bodies (MVBs) or amphisomes. Even
more impressively, while lysosomes might be described
as a waste disposal, in fact they are an important signal-
ing platform, for example by controlling transcriptional
responses to cellular metabolic state [48]. Therefore,
there are likely to be signaling events that co-ordinate
the overall balance between degradation and recycling
of membranes and proteins in the cell.

A physiological role for LRRK2 at vesicular
membranes
The first indications for a role of LRRK2 in vesicular
dynamics came from subcellular localization studies,
showing localization of LRRK2 with endosomes, lyso-
somes and MVBs in rodent brain [49] and with punc-
tate, vesicular structures in human brain [49, 50].
Studies in cells overexpressing low levels of tagged
LRRK2 showed specific localization of LRRK2 to MVBs
and autophagic vacuoles [51]. Collectively, these obser-
vations suggest that LRRK2 may have a regulatory role
in the autophagic and endosomal pathways.

LRRK2 KO models: clues for a physiological role of LRRK2
in autophagy and lysosomal function
Important evidence for a physiological role of LRRK2
in regulating autophagy came from knockout animals.
Specifically, there is an accumulation of lipofuscin
granules, aggregated α-synuclein and increased levels of
the autophagosomal marker LC3-II in LRRK2 knockout
kidneys [52]. These effects are age-dependent, in that
there are bi-phasic alterations in autophagy, with an
initial increase of p62 and LC3-II at 7 months and a
decrease at 20 months. No changes in LC3-II were
observed in an independent study of kidneys of
14 month-old LRRK2 KO mice [53].
However, no apparent signs of neurodegeneration have

been observed in LRRK2 KO rodents. The 6-fold higher
expression levels of LRRK2 in kidney compared to brain
and the absence of its homologue LRRK1 may explain
this severe kidney phenotype [52, 54]. Knockout of
dLrrk, the single Drosophila homologue of LRRK1/2,
has been shown to cause alterations in lysosomal posi-
tioning [55]. Along the same lines, knockout of the
single C elegans homologue, Lrk-1 m causes defects in
synaptic vesicle protein positioning in neurons [56].
Several studies in cells have indicated a role for LRRK2

in the regulation of autophagy. Under conditions that
stimulate autophagy but prevent fusion to lysosomes,

knockdown of LRRK2 led to a decreased accumulation of
autophagosomes [57]. LRRK2 kinase inhibition has also
been shown to increase levels of the lipdated autophago-
some marker LC3-II and the adaptor protein p62 [58, 59].
Recent findings have shown that this kinase-dependent
regulation of LC3 lipidation is mediated through Beclin-1
signaling but independent of mTOR/ULK1 signaling, sug-
gesting non-canonincal regulation of autophagy [60].
There is a potential discrepancy between LC3-II levels,

which generally increase with LRRK2 knockout or kinase
inhibition [58, 59], and accumulation of autophago-
somes, which decrease under similar conditions [57]. Iit
is important to note that at steady state these two mea-
sures can be difficult to interpret in terms of overall flux
through the autophagy pathway. For example, both in-
duction of autophagy and inhibition of autophagosome
clearance results in the accumulation of lipidated LC3-
II. In H-4 cells, a combined treatment with a LRRK2
kinase inhibitor and bafilomycin, to block lysosomal
acidification, results in an additive increase in LC3-II
[58]. This suggests that LRRK2 inhibition does not block
flux through the overall autophagy pathway but rather
increases formation of autophagosomes. By extension,
these considerations suggest that LRRK2 normally func-
tions to block autophagosome formation.
However, even these data are complicated by the ob-

servation that, in microglial cells, knockdown of LRRK2
can decrease LC3-II formation after lysosomal inhibition
[57], in contrast to increases in mice [52] and H4 cells
[58, 59]. It is possible therefore that there are cell-
type specific signaling events that can modulate the
direction of effect of LRRK2 on autophagy markers,
indicating that autophagy regulation may be a down-
stream consequence of LRRK2 deficiency rather than
a primary event.
In addition, higher levels of lysosomal markers and the

lysosomal protease cathepsin D are seen in LRRK2
knockout mouse kidneys compared to their wild type
counterparts irrespective of age [54]. Similar phenotypic
changes, including lipofuscin accumulation and increase
in lysosomal markers have been observed in LRRK2 KO
rats [61, 62]. Therefore, while influencing autophago-
some formation, LRRK2 may also play a role in lyso-
somal maturation and/or trafficking. How these two
events are related is not immediately clear and, given
then age-dependence of some changes [52, 54], it
remains possible that alterations in one part of the
autophagy-lysosome system are compensated for by
alterations in other degradative processes.

Pathogenic mutations in LRRK2 KO affect vesicular events
in vitro and in vivo
The above data show that the normal function of LRRK2
appears to be related to vesicular trafficking. Several
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observations in different systems further suggest that
LRRK2 mutations across multiple domains of the pro-
tein also alter vesicular dynamics.
Fibroblasts derived from PD patients carrying muta-

tions across several enzymatic domains of LRRK2
(G2019S, Y1669C, R1441C) show a diminished autoph-
agic response to starvation, measured by LC-3 conver-
sion, compared to control fibroblasts [63]. Cells
overexpressing R1441C LRRK2 show an increase in
MVBs and autophagic vacuoles [51]. Overexpression of
G2019S in cells also results in an increase in autophagic
vacuoles and decreased neuronal process length.
Knockdown of the conserved autophagy genes LC3 and
Atg7 as well as inhibition of ERK signaling reversed this
effect [64]. Overexpression of wild type LRRK2 in cells
has also been reported to result in an increase of autop-
hagosomes [65].
iPSC derived dopaminergic neurons from G2019S

mutation carriers show an increase of autophagic vacu-
oles and an accumulation of aggregated α-synuclein
[66, 67]. In these cells, there were no changes in SNCA
transcription, suggesting an impaired degradation of α-
synuclein [67]. G2019S LRRK2 iPSC showed a decrease
in neurite length compared to control iPSC and induc-
tion of autophagy further exacerbated this phenotype
[66]. An independent study of G2019S iPSC derived
dopaminergic neurons and isogenic controls also
showed neurite shortening in an ERK-dependent way
[67]. Notably, G2019S LRRK2-mediated effects on au-
tophagy in cells have also been reported to be mediated
through ERK signaling [68]. Finally, in vivo, mice carry-
ing the G2019S mutation show an accumulation of au-
tophagic vacuoles in the cerebral cortex, as do R1441C
LRRK2 transgenic mice [69].
The collective data available therefore suggests that

mutant forms of LRRK2 decrease LC3 lipidation and
result in the accumulation of autophagic vacuoules.
The observations with LC3 are consistent with the data
from knockout and inhibition models that LRRK2
normal function is to block autophagosome formation
and that dominant mutations enhance this activity.
However, the subsequent accumulation of autophagic
vesicles suggests that there are additional effects of
mutations in LRRK2 on the overall function of the
autophagy-lysosomal pathway. One possible explan-
ation for this apparent discrepancy comes from the
observec concurrent increase in autophagic vacuoles
and accumulation of α-synuclein in cells with G2019S
LRRK2 [66, 67]. Because α-synuclein is degraded by the
lysosome [70], the available data could suggest that
G2019S mutant of LRRK2 simultaneously block autop-
hagosome formation and lysosomal function, which
contrasts perhaps with the accumulation of lysosomal
enzymes in LRRK2 knockout animals [52, 54].

Candidate mechanisms for LRRK2 effects on vesicular
trafficking
There are several potential mechanisms by which
LRRK2 may affect vesicular trafficking. Indirect mech-
anism, such as those where LRRK2 has direct effects on
metabolic or cellular signaling pathways that then indir-
ectly affect autophagy, may explain some of the ob-
served correlated changes noted above. However, here
we will focus on regulation of vesicular trafficking
events that are potentially mediated by direct protein-
protein interactions. The rationale for this limitation on
discussion of mechanisms is that as LRRK2 has mul-
tiple protein interaction domains, these are likely im-
portant effectors of its function in cells.
Unbiased proteomics approaches have provided im-

portant insights into the functional roles of LRRK2.
Rab5 was first found to interact with LRRK2 using a
yeast-two-hybrid screening approach [71]. Conversely,
LRRK2 was identified as an interaction partner in a
yeast-two-hybrid screen for Rab32 [72]. High-
throughput protein-protein interaction arrays have
shown that LRRK2 physically interacts with Rab7L1
(also known as Rab29) [73]. In the latter case, we
have found that Rab7L1/Rab29 is important for
recruiting LRRK2 to the TGN, along with the
clathrin-uncoating protein cyclin-G associated kinase
(GAK) and the co-chaperone BAG5. This protein
complex may be conserved as similar proteins are
important for the recruitment of Lrk-1 to the golgi
apparatus in C elegans [74], Importantly, Rab7L1 and
GAK are nominated to be risk factors for sporadic
PD [14]. Clearance of Golgi-derived vesicles by the
LRRK2 complex including Rab7L1 is enhanced by
mutations across all enzymatic domains of LRRK2
whereas hypothesis testing LRRK2 mutations, includ-
ing those that are kinase dead or cannot bind GDP/
GTP, were ineffective in TGN vesicle clearance [73].
This suggests that enzymatic activities of LRRK2 are
required to promote TGN clustering and clearance
and that pathogenic mutations result in a gain-of-
function that enhance this phenotype [73].
In addition, LRRK2 was shown to interact with a

number of other Rab GTPases, including Rab32 and
Rab38 [72]. Recently, phosphoproteomic screens were
performed in an effort to identify bona fide LRRK2 kin-
ase substrates [75]. Two screens were performed using
cells from mice engineered to have either the kinase
hyperactive G2019S or kinase inhibitor resistant
A2016T LRRK2, in combination with treatment of dis-
tinct LRRK2 kinase inhibitors. Overlap of these screens
resulted in the identification of a single LRRK2 kinase
substrate, Rab10. Further analysis in HEK293FT cells
indicated that Rab10 as well as Rab8 and Rab12 are dir-
ect physiological LRRK2 substrates [75].
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Although publication of independent confirmation of
these findings is still awaited, they suggest that one of
the key functions of LRRK2, kinase activity, is important
in control of Rabs and, hence vesicular trafficking
events. Furthermore, in cells (but not in vitro), muta-
tions in several different regions of LRRK2 consistently
result in increased Rab phosphorylation, supporting the
contention that different LRRK2 domains work together
to produce functional output [75]. Along the same lines,
all pathogenic mutations in LRRK2 increase Rab7L1-
dependent retention at the TGN [73]. However, the pre-
cise mechanism(s) by which LRRK2 domains interact in
cells remain to be determined.
Collectively, these data place LRRK2 at the scene of

the crime for vesicle sorting. A recent computational
analysis of the LRRK2 interactome further supports a
potential role for LRRK2 in vesicular dynamics such as
endocytosis and autophagy [76]. However, the range of
Rabs identified suggests multiple roles for LRRK2 at
different intracellular membranes. It is also of interest
that LRRK2 has a different set of Rabs that appear to
be direct substrates from those that were nominated as
stronger binding partners, perhaps suggesting that de-
pending on the Rab, LRRK2 may have different modes
of action. Further confirmation of the binding and
phosphorylation events are needed before we can be
certain of the precise role that LRRK2 plays in Rab biol-
ogy and vice-versa. Nonetheless, because Rab proteins
are important in vesicular dynamics, these results sug-
gest that the mechanism by which LRRK2 affects intra-
cellular membranes is mediated via Rab interactions.
There are several pieces of evidence to suggest that, in

different tissues and systems, the physiological inter-
action with Rabs is important for mediating the effects
of mutations in LRRK2 on membrane trafficking. As
well as causing changes in autophagy, pathogenic LRRK2
mutations have also been shown to lead to alterations in
synaptic vesicle trafficking in neurons. Rab5 has a par-
ticularly strong role in synaptic vesicle endocytosis.
Overexpression of WT LRRK2 impaired synaptic vesicle
endocytosis and this effect was further enhanced by
overexpression of G2019S LRRK2, whereas-expression
of Rab5 rescued this phenotype [77].
Further supporting the idea that LRRK2 and Rabs co-

operate to modulate vesicular trafficking, Rab7L1 KO
mice have the same lysosomal pathology in the kidneys
as LRRK2 KO mice and the combined deficiency of both
proteins also results in a similar phenotype suggesting a
genetic interaction with consistent direction between
these two proteins [78]. Whether this is true for other
Rabs that are direct substrates of LRRK2 is not known,
and future studies are required to further substantiate
the relationship between LRRK2, Rabs and regulation of
the autophagy-lysosome system.

Studies in C. elegans neurons suggest that suggests
that the LRRK2 nematode ortholog acts downstream of
Rab7L1 ortholog in endo-lysosomal trafficking. Further-
more, cellular work showed that LRRK2 interacts with
AP-3 as a downstream effector, essential for trafficking
of lysosomal membrane proteins from the Golgi to the
lysosomes [78]. The Drosophila homolog of LRRK2
(dLrrk) colocalizes with endosomes and lysosomes and
interacts late endosomal protein Rab7. dLrrk loss-of-
function mutants have abnormalities in the endosome
and dLrrk can negatively regulate Rab7-dependent peri-
nuclear localization of lysosome [55]. In contrast, a
mutation in dLrrk corresponding to the G2019S muta-
tion in LRRK2 promotes Rab7-dependent perinuclear
positioning of lysosomes [55]. Accumulation of autop-
hagosomes and presence of enlarged lysosomes and
endosomes were also observed in dLrrk loss-of-
function mutants [79]. This phenotype was rescued by
overexpression of Rab9, which promotes recycling of
endosomes to the TGN via the retromer, again possibly
due to a direct interaction [79]. As noted above, dLrrk
is paralog of LRRK1/LRRK2 [80] and therefore may
interact with a slightly different or broader set of Rabs
than LRRK2. Nonetheless, these collective data strongly
suggest that the effects of LRRK2 across several species
depend on Rab GTPases in different tissues and cells,
not just in neurons.
Fibroblasts of PD patients carrying the G2019S muta-

tion showed decreased Rab7 activity. Overexpression of
G2019S as well as R1441C LRRK2 cause a decrease of
Rab7 activity in cells [81]. Moreover, expression of mu-
tant LRRK2 caused a delay in early to late endosomal
trafficking, as evidenced by a decreased Rab5 to Rab7
transitioning [81]. A dramatic delay of trafficking out of
late endosomes was observed in cells overexpressing
G2019S and R1441C LRRK2. These late endosomes
showed a marked increase in Rab7-positive tubules [81].
However, in addition to Rab proteins, LRRK2 may also

mechanistically alter membrane dynamics via other im-
portant interacting proteins. LRRK2 has been shown to
interact and colocalize with Sec16, a key protein in-
volved in ER-Golgi transport [82]. The R1441C LRRK2
mutation impaired this interaction and mouse primary
fibroblasts from R1441C transgenic mice showed im-
paired ER to Golgi trafficking [82].
LRRK2 and its Drosophila homologue dLRRK were

shown to phosphorylate the synaptic vesicle endocytosis
protein endophilin-A in vitro [83, 84]. In Drosophila, in-
creased endophilinA phosphorylation by G2019S dLrrk
resulted impaired synaptic endocytosis [83]. Moreover,
dLRRK-dependent phosphorylation of endophilinA was
recently shown to stimulate autophagy in at Drosophila
synapses, highlighting cross-talk between endosomal and
autophagosomal signaling networks [85].
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Collectively, these data show that LRRK2 can interact
with multiple vesicle-associated proteins. One of the
most important remaining questions for LRRK2 biology
is how binding to Rabs or other proteins influences the
observed alterations in autophagy and lysosomal markers
seen in cells and animal models, or whether other mech-
anisms are at play. A particular complexity of vesicular
trafficking is that events are often inter-related as, for
example, multiple Rabs co-operate to influence overall
protein and vesicle sorting [35]. Thus, overall flux through
a pathway may depend on interactions between multiple
partners some of which may anatogonize each other. Fur-
ther complicating interpretation, presumably most tissues
and cells have compensatory mechanisms that will at least
partially recover function in vesicle sorting. It will there-
fore be important to examine multiple steps of vesicular
sorting to see which are consistently and directly affected
by LRRK2 deficiency and mutations to determine which
events are direct and which are consequential.

Conclusions
A substantial amount of evidence shows that LRRK2
plays an important role in vesicular trafficking. LRRK2
KO models and studies using LRRK2 kinase inhibitors
have highlighted a regulatory role for LRRK2 in au-
tophagy. Proteomics approaches have greatly helped to
identify physical interactors as well as bona fide kinase
substrates of LRRK2. Importantly, given the high inter-
connectivity of endosomal, lysosomal and autophago-
somal pathways, dysfunctions in one system may well
trigger alterations in another.
However, how altered vesicular trafficking can ultimately

lead to neurodegeneration is not well understood in the
context of LRRK2 mutations. Understanding such patho-
biological roles of LRRK2 is critical for the development
of therapeutic strategies. If LRRK2 mutations result in a
gain of biochemical function, targeting the kinase and/or
GTPase activity of LRRK2 could be helpful to modulate
disease progression. More broadly, if it is true that mul-
tiple PD-related genes converge on vesicular trafficking
pathways, regulatory and partially redundant mechanisms
for autophagy might be targetable for therapeutics.
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