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Parkinson’s disease (PD) is a common age-related neurodegenerative disorder with
disabling motor symptoms and no available disease modifying treatment. The majority
of the PD cases are of unknown etiology, with both genetics and environment playing
important roles. Over the past 25 years, however, genetic analysis of patients with
familial history of Parkinson’s and, latterly, genome wide association studies (GWAS)
have provided significant advances in our understanding of the causes of the disease.
These genetic insights have uncovered pathways that are affected in both genetic
and sporadic forms of PD. These pathways involve oxidative stress, abnormal protein
homeostasis, mitochondrial dysfunction, and lysosomal defects. In addition, newly
identified PD genes and GWAS nominated genes point toward synaptic changes
involving vesicles. This review will highlight the genes that contribute PD risk relating
to intracellular vesicle trafficking and their functional consequences. There is still much
to investigate on this newly identified and converging pathway of vesicular dynamics
and PD, which will aid in better understanding and suggest novel therapeutic strategies
for PD patients.

Keywords: Parkinson’s disease, genetics, genome wide association studies, vesicular dysfunction, lysosomal
dysfunction, alpha-synuclein, leucine-rich repeat kinase 2, Rab proteins

INTRODUCTION

Parkinson’s Disease (PD) is a progressive and a debilitating neurodegenerative disorder which
usually occurs in people in their sixth decade with an incidence of around 1% (De Lau and Breteler,
2006). The presenting clinical features at diagnosis include bradykinesia as an essential feature,
together with resting tremor and rigidity (Gibb and Lees, 1988). Along with and occasionally
preceding the motor symptoms are non-motor symptoms such as anosmia, constipation and sleep
disturbances can also be observed (Schapira et al., 2017). With the progression of the disease,
patients also develop non-motor features including dementia and neuropsychiatric symptoms
(Politis et al., 2010). The loss of dopaminergic cells in the substantia nigra leading to a deficit
of dopamine in the striatum is the cause of the typical motor features (Fearnley and Lees, 1991).
Neuropathological characteristics include dopaminergic cell loss and the presence of Lewy bodies
(LBs) and dystrophic neurites termed Lewy neurites (LNs) in the substantia nigra and other
brain regions, the main component of which is fibrillar membrane bound forms of α-synuclein

Frontiers in Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 1381

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01381
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01381
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01381&domain=pdf&date_stamp=2020-01-08
https://www.frontiersin.org/articles/10.3389/fnins.2019.01381/full
http://loop.frontiersin.org/people/866857/overview
http://loop.frontiersin.org/people/159353/overview
http://loop.frontiersin.org/people/787663/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01381 December 21, 2019 Time: 15:47 # 2

Ebanks et al. Vesicular Dysfunction and Parkinson’s Disease

(Spillantini et al., 1997, 1998). The varied nature of the
symptomology is reflected in the wide range of affected brain
regions, with pathology spreading from the brainstem to
the cortex (Braak et al., 2003). Notably, the LB pathology
observed in PD is not restricted to this disorder, and
are found in Alzheimer’s disease and also in asymptomatic
individuals (also termed incidental LB cases) (Parkkinen et al.,
2005). Outside of the central nervous system, LBs have also
been described in peripheral nerve populations [reviewed
in Surmeier and Sulzer (2013)].

Despite the initial clinical description of Parkinson’s syndrome
more than two centuries ago, to date no disease modifying
therapy has been approved for use in humans (Noyce and
Bandopadhyay, 2017). Existing therapies are palliative in nature,
with dopamine replacement as the main treatment strategy – an
approach that does not halt or prevent disease progression. With
regard to the underlying etiology, the majority of Parkinson’s
cases are idiopathic with no discernible specific environmental
or genetic cause, however, approximately 5–10% of cases are
linked directly to deleterious inherited genetic variants (Reed
et al., 2019). Over the past two decades mutations in at least
17 disease segregating genes have been identified [reviewed
in Karimi-Moghadam et al. (2018)]. Recent Genome wide
association studies (GWAS) have identified further loci across
the human genome that are linked to increased lifetime risk
for Parkinson’s in idiopathic disease (Kia et al., 2019; Nalls
et al., 2019). Research into the actions and dysfunctions of the
genes and their proteins have highlighted a number of common
pathways in PD; affecting mitochondrial dysfunction, auto-
lysosomal dysfunction, oxidative stress, vesicular dysfunction,
and abnormal proteostasis (Zhou et al., 2008; Ebrahimi-Fakhari
et al., 2012; Cieri et al., 2017). Additionally, PD is also
influenced by non-cell-autonomous mechanisms such as cell-
to cell transmission of protein aggregates (thought to be
driven by a prion-like mechanism) and neuroinflammation (De
Virgilio et al., 2016; Rey et al., 2018). In this review we will
discuss our current understanding of vesicular dysfunction and
abnormal protein handling and their role in the causation of PD,
bringing together data from Mendelian forms of PD and GWAS
nominated genes (Table 1).

VESICULAR MECHANISMS IN PD
PATHOGENESIS

Vesicular mechanisms have been implicated in the pathogenesis
of PD by way of several distinct pathways. Within the vesicular
system there are several systems of interest, particularly as they
apply to potential points of disease propagation and modulation.
These points of interest can be seen in Figure 1: vesicular fusion
(1), endocytosis (2), the trans golgi network (TGN) (3) and
lysosomal functions (4). At each of these stages in the vesicular
process genes have been identified to be familial linked and/or
risk factors associated with PD. This not only provides viable
evidence for the role of vesicular mechanisms in PD but also
genes and proteins which can be investigated at each of these
potential points of modulation along the vesicular network.

TABLE 1 | Table showing PD genes and GWAS hits discussed.

Gene loci/
Gene

Inheritance Protein Functions

Park1/4 SNCA AD Alpha-synuclein Vesicle fusion/autophagy

Park8/LRRK2 AD Leucine-rich repeat
kinase 2

Autophagy/endosomal
functions

Park9/ATP13A2 AR Cation-transporting
ATPAse13A2

Lysosomes

Park17/VPS35 AD Vacoular protein
sorting 35

Endosomal functions

Park19/DNAJC6 AR DNAJ subfamily C
member 13

Endosomal functions

Park20/SYNJ1 AR Synaptojanin1 Endosomal functions

Park21/DNAJC13 AD DNAJ subfamily C
member 6

Endosomal functions

Park23/VPS13C AR Vacoular protein
sorting 13C

Endosomal functions

Unassigned/
Rab39b

Ras like small
GTPase

Related to
alpha-synuclein

unassigned/GBA Glucocerebrosidase Lysosomal functions

GAK∗ Cyclin-G
associated kinase

Cellular adhesion and
trans-golgi network

Rab7L1∗ Rab7L1 Links to LRRK2 to
trans-golgi network and
lysosomal trafficking
system

Syt11∗ Synaptotagmin11 Autophagy, vesicle fusion

∗Denotes GWAS nominated genes. AD, autosomal dominant; AR,
autosomal recessive.

At the point of vesicular fusion across membranes, α-synuclein
has been implicated. Additionally, synaptojanin1 (SYNJ1),
valosin containing proteins and DNAJC proteins have been
shown to impact endocytic function. The trans-golgi network
has also been shown to be impacted by leucine-rich repeat
kinase 2 (LRRK2) and Rab proteins. Finally, glucocerebrosidase
(GBA), ATP13A2 and synaptotagmin11 (SYT11) affect lysosomal
functions. To better understand the possible impact this system
may have on the progression of PD, the proteins acting at each
point must be further investigated to better appreciate not only
their role in the vesicular network, but also how this network can
be modulated by therapeutic intervention or used as biomarkers
for monitoring disease progression or treatment outcomes.

VESICULAR FUSION

Alpha-Synuclein (α-Synuclein)
A missense mutation (the A53T transversion) in the α-synuclein
(SNCA) gene was the first genetic variant to be unambiguously
identified as causing PD (Polymeropoulos et al., 1997).
Subsequently, further missense mutations (Kruger et al., 1998;
Kiely et al., 2013; Zarranz et al., 2014) as well as duplications and
triplications of the SNCA gene have been identified indicating
that gene dosage is important for the pathogenesis of PD
(Singleton et al., 2003; Ibanez et al., 2004). Additionally,
polymorphisms in non-coding regions have been identified
through GWAS as one of the risk factors for idiopathic
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FIGURE 1 | Figure depicting the vesicular process with the points of modulation of PD genes and GWAS nominated genes discussed in this review annotated by (1)
vesicular fusion, (2) endocytosis, (3) trans golgi network and (4) lysosomes.

PD (Simon-Sanchez et al., 2009) and an untranslated 3′
polymorphism increases α-synuclein expression (Soldner et al.,
2016), however, how α-synuclein causes dopaminergic (DAergic)
neuron degeneration remains unresolved.

Alpha-synuclein is a presynaptic protein which is relatively
abundant in the brain (Maroteaux et al., 1988) and endogenous
α-synuclein is necessary for DAergic neuron development
(Garcia-Reitboeck et al., 2013). Electron microscopy has
demonstrated α-synuclein in synaptic vesicles (Tao-Cheng, 2006)
and has been shown to be associated with vesicles in vitro
(Nakamura et al., 2008).

Alpha-synuclein is a natively unfolded protein, but adopts
α-helical conformation in presence of membranes (Davidson
et al., 1998; Bodner et al., 2009). Structural and biophysical
analyses suggest that a membrane bound tetramer version of
α-synuclein may represent the functional form of this protein
(Bartels et al., 2011; Dettmer et al., 2013), although the
physiological relevance of this remains a subject of debate (Fauvet
et al., 2012; Theillet et al., 2016). One of the remarkable properties
of α-synuclein is its ability to oligomerize, adopt a β pleated
sheet conformation and aggregate under non-physiological
conditions (Cho et al., 2009). Oligomerization of α-synuclein
may contribute to its pathological function and can enhance its
aggregation properties, with the majority of pathogenic coding
variants increasing the propensity of α-synuclein to aggregate
(Guan et al., 2016).

Importantly, aggregated α-synuclein is the most abundant
component of Lewy bodies and dystrophic Lewy neurites in PD
brain (Spillantini et al., 1998) and is also present in Dementia
with Lewy bodies (DLB) brain and can sometimes be present
in Alzheimer’s disease (AD) brain alongside AD pathology
(Matej et al., 2019). Abnormal α-synuclein pathology is also

present in oligodendroglial inclusions – termed glial cytoplasmic
inclusions (GCIs) in Multiple system atrophy (Ahmed et al.,
2012). A recent elegant study using super resolution microscopy
has shown that Lewy pathology is interspersed with filaments,
dysmorphic organelles together with membraneous structures
and vesicles (Shahmoradian et al., 2019). This is important
evidence of α-synuclein localization with vesicles and supports
the hypothesis that compromised organelle trafficking is a
putative driver of PD pathogenesis. These trafficking events
could also be playing a part in prodromal PD, thus, making
them important early stage points of α-synuclein modulation
(Hunn et al., 2015).

A mechanistic link between α-synuclein and vesicular systems
was noted as early as 1998 when it was found that, in the
case of a familial (A30P) PD mutation (Kruger et al., 1998),
the binding of α-synuclein to vesicles was inhibited (Jensen
et al., 1998). This implicates the binding of α-synuclein to
vesicular membranes in the clearance process providing a
possible link between these mechanisms and the accumulation of
α-synuclein. Furthermore, studies have shown that α-synuclein
disrupts Golgi trafficking network (Cooper et al., 2006). It was
also shown that this disruption could be rescued by Rab1,
a known modulator of vesicular function (Cooper et al., 2006).
Additionally, the reduction of α-synuclein in PD midbrain
neurons was shown to restore previously inhibited lysosomal
function (Mazzulli et al., 2016). Taken together, these data
indicate a potential feedback relationship between α-synuclein
and vesicular proteins. It may also provide evidence for the
argument that the deposition of α-synuclein occurs further
downstream than the disruption of vesicular and lysosomal
functions implicating these mechanisms as the catalyst for a large
portion of PD pathology.
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Further evidence linking α-synuclein and vesicular dynamics
was demonstrated by Burré et al., 2010), when oligomeric
α-synuclein was shown to promote snare complexes both in vivo
and in vitro, however, it was shown to inhibit membrane fusion.
Moreover, binding of calcium to the c-terminus of α-synuclein
augmented its lipid-binding property (Lautenschlager et al.,
2018) and additionally α-synuclein overexpression facilitated its
interaction with VAMP2 and modulate exocytosis (Sun et al.,
2019) but whether this occurs in normal physiology remains to be
determined. In addition, using cryoelectron tomography, Vargas
et al. demonstrated that deletion of all three forms (α,β,γ) of
synuclein increases synaptic vesicle (SV) tethering at the active
zone but decreases the interlinking of SVs by short connectors
(Vargas et al., 2017). It will be important to study how abnormal
vesicular dynamics contribute to α-synuclein transition from
physiological to abnormal forms which could be relevant for both
normal physiology and PD pathology.

ENDOCYTOSIS

Synaptojanin1 (SYNJ1)
Using homozygosity mapping and exome sequencing,
a homozygous autosomal recessive mutation in SYNJ1 gene
was identified in a consanguineous family in Italy. The patients
manifested Parkinsonism, dystonia motor features together
with cognitive decline (Quadri et al., 2013). SYNJ1 encodes
synaptojanin1, a phosphoinositide protein that plays important
roles in synaptic vesicle endocytosis (Quadri et al., 2013). More
recent studies have reported R258Q and R459P mutations
in SYNJ1 associated with juvenile or early onset PD (Krebs
et al., 2013; Kirola et al., 2016), and these mutations impair its
phosphatase activity at a mechanistic level. By combining SYNJ1
heterozygous mutation and LRRK2 G2019S mice impaired
synaptic vesicle endocytosis was observed in midbrain neurons
but not in cortical neurons, thus showing specific defects in
dopamine containing neurons (Pan et al., 2017). Knockout of
SYNJ1 in mice results in impaired recycling of synaptic vesicles
(Kim et al., 2002), and mice carrying a SYNJ1 (R258Q) knock-in
mutation present with striking endocytic defects associated
with dystrophic axon nerve terminals were seen in the striatum
(Cao et al., 2017). It will be important to test whether SYNJ1
related defects have a role in the pathogenesis of sporadic
PD, and to clarify the details of its relationship with LRRK2
(Islam et al., 2016).

Valosin Containing Proteins (VPS35 and
VPS13C)
Through exome sequencing studies, two groups independently
discovered heterozygous mutations in the VPS35 gene linked
with late-onset familial PD in 2011 (Vilariño-Güell et al., 2011;
Zimprich et al., 2011). Although a number of coding variants have
been reported to be associated with Parkinson’s, the one clear
pathogenic mutation identified is the D620N variant, a relatively
rare cause of autosomal dominant Parkinson’s affecting around
0.4% of all PD cases (Gambardella et al., 2016).

VPS35 is a component of retromer complex, which is involved
in intracellular trafficking of proteins (Seaman et al., 1998) and is
evolutionarily conserved (Zimprich et al., 2011). In rat cortical
neurons, lentivirus-mediated gene transfer of D620N VPS35
mutation led to increased sensitization of neurons to several
stressors; namely MPP+, rotenone and hydrogen peroxide
and also increased cell death but no alteration in vesicular
localization or abnormal retromer function was noted. Lentiviral
overexpression of D620N mutation in dopaminergic neurons
of the rat lead to neurodegeneration of substantia nigra and
axonal damage whereas WT-VPS35 overexpression produced an
intermediate level of neuropathology (Tsika et al., 2014).

A metanalysis of gene expression data from post mortem
samples has shown significant downregulation of VPS35 mRNA
levels in PD compared to controls (MacLeod et al., 2013), which
was also observed in laser-microdissected PD SN dopamine
neurons. Although whether these are reflected at protein levels
remains uncertain (Tsika et al., 2014). Further protein level
studies with large number of PD and control cases should be
a priority. A key caveat to our understanding of how VPS35
mutations link to Parkinson’s is that, to date, no VPS35 mutation
brains have come to post-mortem pathological analysis, and
therefore it is not known if VPS35 PD is a synucleinopathy.
It is of interest to note that VPS35 (D620N) mutation causes tau
pathology in mice (Chen et al., 2019) and its levels are reduced
in two primary tauopathies progressive supranuclear palsy and
Pick’s disease (Vagnozzi et al., 2019).

An recent study by Mir et al. (Mir et al., 2018) demonstrated
that VPS35 has an upstream role regulating LRRK2s kinase
activity in phosphorylating Rab10. Therefore, modulating VPS35
actions as a mechanism to supress LRRK2 activity could be
another approach to a disease modifying strategy in addition
to LRRK2 inhibitors, which are already in Phase1 clinical trial
(Hatcher et al., 2017).

VPS13C is the second member of the VPS family that has been
linked to the pathogenesis of PD. Allelic variations which leads
to premature termination of VPS13C cause autosomal recessive
early onset PD. At post-mortem these cases harbored LBs in
the substantia nigra, as well as in extra-nigral regions (Lesage
et al., 2016). Using yeast models, VPS13 has been shown to
function in the TGN-endosomal cycle in combination with the
calcium binding protein Cdc13 (De et al., 2017). The same study
(De et al., 2017) also linked VPS13C with lipid membranes.
Lesage et al. demonstrated reducing VPS13C in cells using siRNA
resulted in abnormal mitochondrial respiratory rates and also
exacerbated Parkin-dependent mitophagy (Lesage et al., 2016).
More recently Kumar et al. (Kumar et al., 2018) noted VPS13-
linked PD mutations links to lipid transport between organelles
and endoplasmic reticulum and this can lead to defects in
membrane lipid homeostasis. These functions could directly or
indirectly associate with vesicular functions and proteostasis
dysfunctions in the context of PD pathogenesis.

DNAJC6, DNAJC13, and DNAJC26
DNAJC proteins are part of the heat shock family of proteins
which predominantly play a role in stress response (Pauli et al.,
1992; Piano et al., 2004). Given this role as well as their action

Frontiers in Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 1381

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01381 December 21, 2019 Time: 15:47 # 5

Ebanks et al. Vesicular Dysfunction and Parkinson’s Disease

within the vesicular pathway, their possible involvement in
disease has been explored as it relates to the regulation of stress
response. Mutations in these genes have been shown to result
in disease pathogenesis by way of disrupted protein folding
and degradation processes, impaired endosomal transport and
vesicular fusion, and the dysfunction of clathrin-mediated
trafficking (Roosen et al., 2019).

The two DNAJCs with the most direct link to PD are DNAJC6
(also called auxilin1) and DNAJC26 (also known as GAKor
auxilin2, a GWAS nominated gene). Both have been shown
to play a role in clathrin-mediated trafficking and have been
found to be either known sites of deleterious mutations or risk
factors for PD by GWAS (Edvardson et al., 2012; Nalls et al.,
2014). Auxilin, which plays a role in endocytosis, has been found
to be associated with juvenile onset Parkinsonism (Edvardson
et al., 2012; Köroğlu et al., 2013; Elsayed et al., 2016; Nguyen
and Krainc, 2018). One possible mechanism through which
this occurs was found to be disruption of clathrin-mediated
synaptic vesicle endocytosis by LRRK2 phosphorylation of
auxilin in DA neurons (Nguyen and Krainc, 2018). Similarly,
GAK, a serine/threonine kinase which is structurally analogous
to auxilin, has been shown to be involved at the synaptic vesicle
membrane level in experimental systems (Kanaoka et al., 1997;
Nagle et al., 2016). This however, needs to be validated in vivo.
Once again, clathrin-mediated vesicle binding is implicated as
the mechanism of dysfunction (Nagle et al., 2016). Interestingly,
the same study also found a potential link to mitochondrial
function, which, given GAK’s previously described mechanism
of action may indicate a possible role of mitophagy in GAK
mediated PD risk. GAK was identified as a putative risk factor
locus by a large scale meta-analysis (Nalls et al., 2014). Its
expression is ubiquitous, however, lower amounts are expressed
in the brain (Roosen et al., 2019). A substrate of GAK
phosphorylation is ATP1a3 as demonstrated by chemical genetic
identification (Lin et al., 2018) and this is necessary for cargo
trafficking. Additionally, GAK has been shown to phosphorylate
clathrin heavy chain and AP2 which play a role in vesicle
membrane formation and cargo packaging at the cell membrane,
respectively, adding further evidence to the role of GAK in
the vesicular process (Korolchuk and Banting, 2002; Yabuno
et al., 2019). In contrast to DNAJC6/auxilin, GAK is an essential
protein during development and adulthood in mice, with GAK
knockout being lethal (Lee et al., 2008). It is clearly important to
study in more detail the interactions of all the PD risk factors at
the level of vesicular functions.

DNAJC13 has also been linked to endosomal function (Girard
et al., 2005; Fujibayashi et al., 2007). While cases of PD caused
by DNAJC13 mutations are relatively rare, several mutations
of the gene have been linked to disease (Gustavsson et al.,
2015; Lorenzo-Betancor et al., 2015; Rajput et al., 2015; Ross
et al., 2016). After familial cases segregating with DNAJC13
mutations were found, further investigation into the mechanisms
of action yielded results which implicated endosomal dysfunction
in disease pathogenesis (Vilariño-Güell et al., 2013). The
mechanism through which this has been speculated to happen
involves the interaction of DNAJC13 with retromer (Popoff
et al., 2009). Retromer deals with the targeting and directing

of specific endosomes to the trans-Golgi network for recycling
(Bonifacino and Hurley, 2008), and provides a link to VPS35
(see above) and a number of other Parkinson’s related genes.
This implicates DNAJC13 in the regulation of vesicle sorting and
thus dysfunction of this protein linked to disease may result in
improper sorting of endosomal cargo.

DNAJCs have been implicated in a range or complex
neurodegenerative disorders, many of which have a parkinsonian
component. Much like the previously discussed proteins,
DNAJCs could be potential therapeutic targets for PD. Given the
role they play in vesicle docking and fusion they could be an
important point of modulation to increase movement of vesicular
cargo across membranes in the presence of pathology. However,
the protein-protein interactions of many of the DANJCs may
pose challenges for therapeutic targets with GAK being the
possible exception, given its role as a kinase making it a more
tractable candidate.

TRANS GOLGI NETWORK

LRRK2 (Leucine-Rich-Repeat Kinase 2)
Autosomal dominant LRRK2 mutations were identified in 2008
by two groups (Paisán-Ruíz et al., 2004; Zimprich et al., 2004),
with mutations in this gene now recognized as one of the
most common genetic contributors to heightened risk of PD
affecting different ethnic populations variably, and has also been
implicated in sporadic PD (Lesage et al., 2006; Ozelius et al.,
2006; Healy et al., 2008; Nalls et al., 2014). The protein product
of LRRK2 is a 2527 amino acid/286kDa scaffolding protein
with multiple independently acting domains (Gotthardt et al.,
2008). LRRK2 protein has ubiquitous expression and is increased
in microglia following inflammatory stimuli in mice (Moehle
et al., 2012). The large size of the protein and the number of
distinct domain structure of the LRRK2 molecule is, however,
consistent with the number of functions and the various protein
domains is suspected to serve with functions including but not
limited to, vesicular trafficking, autophagy and immune response
(Rideout and Stefanis, 2014; Wallings et al., 2015). Crucially,
LRRK2 associates with membranous structures and vesicles
in mammalian brains and recently, integrated-omics analysis
identified dysregulation of endocytic pathway in iPS derived
DAergic neurons carrying G2019S mutation in the LRRK2 gene
(Connor-Robson et al., 2019).

As a member of the ROCO super family, LRRK2 consists
of a Ras of complex domain (ROC)/GTPase domain and a
kinase domain (KIN) linked by the carboxyl terminal of ROC
(COR) (Li et al., 2014). The two active enzymatic domains
are at the heart of LRRK2 cellular function, with pathogenic
coding variants altering kinase and GTPase function (Alessi
and Sammler, 2018). The two enzymatic domains are flanked
on either side by several protein-protein interacting domains.
Interestingly all of the pathogenic LRRK2 mutations are within
the GTPase and kinase domains and they affect the kinase
activity. This makes LRRK2 a potentially druggable target, and
indeed LRRK2 kinase inhibitors are currently undergoing human
trials (Alessi and Sammler, 2018).
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Research into the LRRK2 interactome has implicated LRRK2
in cellular trafficking and transport via a number of direct
interactors and effector proteins (Manzoni et al., 2015). The
link between LRRK2 and lysosomes has been highlighted by
the identification of a number of Rab GTPases as substrates
for the kinase activity of LRRK2 by proteomic analyses (Steger
et al., 2016; Eguchi et al., 2018). Additionally, in a screen
for LRRK2 interactors revealed specifically cyclin-G associated
kinase (GAK) and Rab7L1/Rab29, a Ras related protein which
deals primarily with membrane trafficking, as direct interactors
of LRRK2 (Beilina et al., 2014). Rab7L1 was found to be
phosphorylated by LRRK2 and is involved in vesicular clearance
through the trans-Golgi network (Liu et al., 2017). It was
shown that LRRK2, phospho-Rab 8/10 together with Rab7L1
help to maintain homeostasis in stressed lysosomes (Eguchi
et al., 2018; Jeong et al., 2018) and phosphomutants of Rab
proteins at conserved LRRK2 phosphorylation sites induces
neurotoxicity and dopaminergic neuron degeneration in mice
(Jeong et al., 2018). In human iPS neurons, in wild-type and
LRRK2 mutated neurons, it was shown that LRRK2 may be
playing a role by phosphorylating auxilin in its clathrin domain
at Ser627 which is abolished upon kinase inhibition (Nguyen
and Krainc, 2018), and transmission electron microscopy showed
decreased synaptic vesicle density in presynaptic nerve terminals
of R1441C dopaminergic neurons indicating defective synaptic
vesicle endocytosis (Nguyen and Krainc, 2018). This is linked
to the accumulation of oxidized dopamine in mutant neurons
leading to decreased GBA activity and accrual of α-synuclein
(Nguyen and Krainc, 2018). However, the phosphorylation of
auxilin by LRRK2 needs to be verified endogenously using site
specific phospho-antibody. LRRK2 has also been shown to be
linked to the lysosomal pathway and autophagy (Manzoni et al.,
2013a) and LRRK2 may phosphorylate EndophilinA to promote
autophagy, however, this has not been shown in an endogenous
context (Manzoni et al., 2013b; Soukup and Verstreken, 2017).
Whilst all these studies provide more compelling evidence
for the role of LRRK2 in PD, a key emerging theme of
interest is the common mechanism of these LRRK2 interactors.
These data tentatively link LRRK2 and vesicular mechanisms
although, given the multitude of interactors LRRK2 has been
linked to Manzoni et al. (2015) it is difficult to exclude other
cellular pathways as being important for disease pathogenesis in
LRRK2 mutation cases.

A number of studies highlight a complex link between
α-synuclein and LRRK2, and how they might interact in the
pathogenesis of PD. It has been shown that LRRK2 alone
cannot induce Parkinsonism in a transgenic mouse model but
when overexpressed in an α-synuclein transgenic model it does
appear to contribute to the acceleration of the disease (Lin
et al., 2009). Furthermore, ablation of LRRK2 in this model
does appear to offer protection from neurodegeneration to
some degree (Lin et al., 2009; Tsika et al., 2014). However,
expression of human R1441CLRRK2 in mice DAergic neurons
failed to cause neurodegeneration nor did the mice accumulate
abnormal protein inclusions (Tsika et al., 2014). A recent
study by Hendersen et al. provides evidence that this may
partly derive from LRRK2 acting to potentiate cell to cell

transmission of α-synuclein aggregates, however, it should be
noted that not all LRRK2 cases present with the aforementioned
aggregates lending to pleiotropic pathology in LRRK2 cases
(Henderson et al., 2019; Lewis, 2019). This suggests that there
is interplay between α-synuclein and LRRK2, however, the
mechanisms through which they interact have remained largely
elusive. Additionally, G2019S knock-in mice showed progressive
dysfunction of dopamine transporter along with serine-129
phosphorylated α-synuclein accumulation at 12 months of age
(Longo et al., 2017). It is possible that the missing functional
link may be through vesicular transport wherein α-synuclein and
LRRK2 have a dependent relationship as a result of their shared
interactions with vesicular proteins.

Rab Proteins
Rab GTPases are members of the Ras superfamily which regulate
vesicular mechanisms. These proteins have been shown to play
a part in various neurodegenerative diseases through their role
in cellular functions including but not limited to endocytosis,
vesicle trafficking, vesicle docking, ciliogenesis and interactions in
the trans-Golgi network (Schimmöller et al., 1998; Rodman and
Wandinger-Ness, 2000; Seabra et al., 2002). While the Rab family
encompasses roughly 50 proteins with variable functions across
the vesicular pathway, 10 have been shown to have a possible
relationship to PD either directly or indirectly (Gonçalves et al.,
2016; Steger et al., 2016; Chung et al., 2017). The myriad
of functions attributed to the Rab proteins and the varied
hypothesized routs to pathogenesis in PD can be summarized as
the following three pathways: endocytic function and lysosomal
stress, ciliogenesis and sonic hedgehog signaling and, lastly the
trans-Golgi network and endoplasmic reticulum (ER) stress.

With regard to direct evidence of a link between Rab
proteins and PD, genetic analysis of three male members of an
Australian family with early onset parkinsonism and learning
disability revealed a 45 Kb deletion in the Rab39B gene located
on the X chromosome, resulting in a complete loss of the
protein. In another unrelated Wisconsin kindred, a loss of
function missense mutation (c.503C > A) was identified (Wilson
et al., 2014). This mutation completely destabilized the protein
mimicking a loss of function. Post-mortem analysis of the brain
demonstrated widespread LB accumulation along with extensive
dopaminergic cell loss in the substantia nigra. Iron accumulation,
tau immunoreactivity and axonal spheroids were also noted
(Wilson et al., 2014). Further to this study, Mata et al. described
another X-linked dominant mutation (p.G192R) in the Rab39B
gene with reduced penetrance seen in females (Mata et al., 2015).
Transient expression of the mutant protein in immortalized
cells resulted in its mislocalization (Mata et al., 2015). It is
important to note that RAB39b is neuron specific and plays a
role in synapse formation and maintenance (Giannandrea et al.,
2010). A ShRNA-based screen identified several Rab proteins
from endocytic recycling pathway acted as genetic modifiers
of α-synuclein secretion, aggregation and toxicity (Gonçalves
et al., 2016). Examination of Rab proteins and vesicle recycling
components in the context of PD are warranted which might
open up novel avenues for therapeutic intervention. While the
role of Rab39B in vesicular trafficking is less clear, it has been
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shown to play a role in α-synuclein clearance and studies
have shown that mutations in this gene can result in PD-like
symptoms, intellectual deficits and even early onset PD (Wilson
et al., 2014). This can be taken together as a possible pathway
to PD through a dysfunction in endosomal processes leading to
lysosomal stress, reduced clearance of α-synuclein and ultimately
increased α-synuclein deposition.

A number of Rab proteins (RAb8b, Rab11a, and Rab13) have
impact on α-synuclein clearance which can have consequences
on α-synuclein aggregation (Gonçalves et al., 2016). Similarly,
Rab8A has also been shown to play a role in membrane trafficking
and clearance as well as protein transport (Chung et al.,
2017). Further evidence for the role of Rab8A in development
and pathogenesis comes as studies have shown that LRRK2
phosphorylation of Rab8A can cause centrosomal defects and
thus cause widespread effects on neurite growth and migration
(Madero-Pérez et al., 2018a).

Additionally, Rab proteins are associated in cilia formation
and ciliogenesis is implicated in PD pathogenesis. In this regard,
LRRK2 R1441C mice show defects in cilia in their brains and
LRRK2 kinase activity can block primary cilia formation in
cultured cells with phosphorylation of Rab10 acting as a negative
regulator in this context (Dhekne et al., 2018). Ciliary signaling
is pertinent in olfactory functions (Dhekne et al., 2018) and
anosmia is one of the first symptoms of PD. Holistically, this
paints a compelling picture of the role of Rabs in neuronal
development and how disruption of these pathways both in
development and adulthood may lead to PD pathogenesis.

Lastly, disruption of the ER and trans-Golgi network have
also been found to lead to PD- like pathology. Rab7L1 (also
called Rab29) is not only another LRRK2 interactor but also
a candidate for the PARK16 locus (Nalls et al., 2014; Steger
et al., 2016). Further exploration of the interaction of LRRK2 and
Rab7L1 in PD implies that their joint function has primarily to
do with sorting through both the Golgi apparatus and lysosomal
systems (MacLeod et al., 2013). One possible mechanism for this
dysfunction is a change in Golgi morphology mediated by LRRK2
phosphorylation of Rab7L1 (Fujimoto et al., 2018). Furthermore,
Rab7L1 promotes recruitment of LRRK2 to the trans-Golgi
network as well as LRRK2 autophosphorylation thus implicating
a malignant feedback relationship between LRRK2 and Rab7L1
in the presence of pathogenic LRRK2 mutations (Liu et al.,
2017). Rab7L1 has also been shown to play a role in lysosomal
homeostasis along with the aforementioned Rab8A and Rab10
(Eguchi et al., 2018). It was proposed that the recruitment of these
Rabs onto enlarged lysosomes ultimately promoted lysosomal
secretion and inhibited further enlargement (Eguchi et al., 2018).
This stabilizing function was mediated by the recruitment of
LRRK2 and Rab7L1 from the Golgi onto the stressed lysosomes
placing Rab7L1 further upstream on this pathway than Rab8A
and Rab10 even as they serve a similar regulatory function
(Eguchi et al., 2018). This is further confirmed by the finding
that the centrosomal deficits caused by Rab8A phosphorylation
by LRRK2 as it was recruited on to the Golgi by Rab7L1 (Madero-
Pérez et al., 2018b). This taken together would indicate that
relocalization of LRRK2 mediated by Rab7L1 may result in many
of the previously discussed deleterious interactions with Rabs

and other yet unknown effectors further downstream. Studies to
unveil the mechanistic details of Rab protein functioning and
its downstream consequences as seen by its interaction with
RIPL1 (Dhekne et al., 2018) could open new therapeutic avenues
for PD treatment.

LYSOSOMAL FUNCTION

GBA (Glucocerebrosidase)
Gaucher’s disease (GD), inherited in autosomal recessive pattern
results from the deficiency of the enzyme GBA and is the
most common lysosomal storage disease (Tsuji et al., 1987;
Hruska et al., 2008). In addition to multisystem lysosomal storage
dysfunction, a proportion of patients with neuropathic GD
presenting with the clinical features of PD, and GD associated
mutations in the heterozygous state act as a strong risk factor
for idiopathic PD (Sidransky et al., 2009), and to date more
than 300 GBA mutations have been reported. In addition,
GWA studies have identified GBA variants as risk factors of
PD (Simon-Sanchez et al., 2009; Blauwendraat et al., 2018). In
normal physiology, GBA cleaves off glucose for use in lysosomal
metabolic processes, thus, the dysfunction of this enzyme can
lead to overall lysosomal dysfunction (Do et al., 2019). Crucially,
GBA-PD and sporadic PD patients show a loss in GBA activity
and GBA levels (Gegg et al., 2012; Murphy et al., 2014).

Sardi et al. (Sardi et al., 2011) provided evidence that a
mouse model of GBA (D409V/D409V) showed characteristics
of synucleinopathies including progressive accumulation of
proteinase K resistant α-synuclein accumulation and cognitive
deficits. Additionally, exogenous administration using adeno
associated virus containing recombinant GBA can overcome
pathological features in mice (Sardi et al., 2011). In another
study, Glucosylceramide (GlcCer), the GBA substrate, control
the formation of α-synuclein assemblies in primary neurons and
in human iPS neurons leading to neurodegeneration (Mazzulli
et al., 2011). They also suggested a bidirectional process between
accumulation of toxic α-synuclein species and GCase levels which
may lead to self-propagation of disease (Mazzulli et al., 2011).
GBA1 KO mouse embryonic fibroblasts and in-patient derived
fibroblasts with GBA1 mutation affects lysosomal recycling
resulting in Rab7 accumulation in lysosomes (Magalhaes et al.,
2016) while GBA KO in drosophila resulted in abnormal
lysosomal pathology, mTOR activity was downregulated and
rapamycin ameliorated the lifespan of flies (Bai et al., 2015;
Kinghorn et al., 2016). It is important to note that all of the
GBA cases that have been examined at post-mortem harbor
α-synuclein pathology (Schneider and Alcalay, 2017).

ATP13A2 and Synaptotagmin 11 (SYT11)
Autosomal recessive mutations in ATP13A2 cause an early onset
parkinsonian syndrome (kufor rakeb syndrome, KRS) and have
also been linked to neuronal ceroid lipofuscinosis (Ramirez
et al., 2006; Crosiers et al., 2011). It belongs to the 5P-type
subfamily of ATPase and is a lysosomal transmembrane protein
(Ramirez et al., 2006). Loss of ATP13A2 leads to instability of
the lysosomal membrane leading to impaired lysosomal function
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and proteolysis which could result from imbalance of divalent
cation levels (Dehay et al., 2012; Tofaris, 2012). Evidence from
one brain studied at autopsy with mutation in ATP13A2, has
shown absence of LBs but presence of lipofuscinosis in cortex,
basal nuclei and cerebellum and retina (Bras et al., 2012).
One possibility is that that the disruption of divalent cation
homeostasis within neurons could be responsible for lysosomal
defects and neurodegeneration, however, the precise mechanisms
underpinning disease are, to date, unclear (Usenovic et al., 2012;
Lubbe et al., 2016).

Synaptotagmin 11 (SYT11), also a GWAS nominated gene,
is a protein which deals largely with vesicular fusion with the
membrane and exocytosis (Südhof, 2012; Nalls et al., 2014). Much
like ATP13A2, SYT11 regulates autophagy by way of modulating
lysosomal function (Bento et al., 2016). It has been found
that not only do decreased levels of SYT11 induce lysosomal
dysfunction but it is required for parkin-linked dysfunction in
PD (Bento et al., 2016; Wang et al., 2018). Furthermore, a
recent study has affirmed the relevance of the originally found
GWA locus for GBA, the GBA-SYT11 locus, implicating a link
between SYT11 and other lysosomal PD genes such as GBA
(Blauwendraat et al., 2018).

PD AS A DYSFUNCTION OF VESICULAR
MECHANISMS

The regulation of intracellular vesicles formation and trafficking
is central to cellular function, with disruption of the pathways
involved in these processes having serious consequences for
health. Evidence from human genetics and model systems
support a key role for vesicular biology in the etiology of
PD, stretching across a range of organelles and cell types.

Given the complex interactions between vesicular proteins and
the role of multiple pathways and networks in maintaining
vesicular homeostasis, it is becoming clear that disruption
at a number of points in vesicle regulation in the human
brain can result in neurodegeneration and the development
of parkinsonism. Importantly this implies that many of the
genes, protein interactions and pathways discussed in this
review may be valid pathological origins for PD and is
summarized in Figure 2. The range of cellular events impacted
by vesicle trafficking, coupled with the array of cell types
and brain regions involved, could account for the wide
variety of possible genetic offenders and the variability of
disease profile within patient cohorts. Studies have begun
to focus on this more dynamic perspective, describing the
pathological presentation in terms of affected pathways rather
than singular genes and proteins as what would amount
to organelles crowded with non-functioning vesicles and
vesicular proteins (Shahmoradian et al., 2018). It is clear
that to use these insights into vesicular trafficking and the
pathogenesis of Parkinson’s in a meaningful way to inform
the development of novel therapeutics, the proteins which
work within these pathways must be better understood and,
furthermore, the mechanisms by which they interact with one
another must be explored.

As seen by the graphical representation of vesicular system
shown in Figure 1, there are many possible points of systemic
deficit but also many points of potential modulation. To tease
out these possible therapeutic targets an expansion of the
interactors of each these proteins as well as their isomeric forms
would be necessary. Given that a large portion of what would
appear to be the targets further upstream of α-synuclein, such
as the previously discussed Rab7L1, GAK, and ATP13A2, are
most functionally active along the golgi- lysosomal axis further

FIGURE 2 | Figure depicting the possible role of the discussed mechanisms as upstream effectors in the generation of α-synuclein aggregation and Lewy body
formation. (1) showing the genes involved in the trans-golgi network; (2) in endocytosis and exocytosis; (3) lysosomal genes and (4) the generation of α-synuclein
oligomers leading to the formation of (5) Lewy bodies. The precise point at which cytotoxicity occurs in the brain is not clear. Image of α-synuclein fibrils (4) is
modified from Li et al. (2018) using a Creative Commons license.
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exploration of their interactors and regulators would clarify the
role of this system in pathogenesis.

CONCLUSION AND FUTURE
PERSPECTIVE

Our understanding of the genetic landscape of PD has expanded
rapidly over the past two decades through increased identification
of Mendelian inheritance genes and the nomination of risk
loci through GWA studies. The challenge for researchers is
to translate the risk genes identified using GWAS, integrate
these with Mendelian genes and move toward unraveling novel
pathways for disease modification treatments. Some groups have
already begun deciphering the points of interaction of some of the
risk factors as being at the synapses (Nguyen and Krainc, 2018;
Wang et al., 2018) which could well be a starting point of disease
pathogenesis and could occur long before clinical symptoms
appear. Based upon these advances, our understanding of the
disease processes that contribute to PD is maturing. Further
studies involving other risk genes are highly warranted at
this time point.

Clues from neuropathology studies suggest that PD is a
multifactorial disorder, with α-synuclein spread occurring in a
systematic way from one brain region to another which are
neuroanatomically connected (Braak et al., 2003). The prion-
like propagation of α-synuclein pathology may be an important
event in disease pathogenesis (Luk et al., 2012; Peng et al.,
2018). A systematic approach is now needed to weave together
the potential risk factors involving the entire vesicular pathway
and ascertain a temporal sequence of events. Importantly, the
key will be in understanding how these factors contribute
to aggregation of α-synuclein, the major pathological player
in sporadic PD and also in several of the Mendelian forms

of the disease (Schneider and Alcalay, 2017). Such studies
should also foster discoveries of early diagnostic biomarker
tools, which remains another critical unmet need. Given that
the bulk of neuronal loss is pre symptomatic, screenable
biomarkers derived from investigations of vesicular proteins
may form a basis for opportunities for early treatment with
existing therapies and the opportunity to stem novel treatments
(Miller and O’Callaghan, 2015).

Another important issue to consider is whether the
interactions occur in glial cells vs. neuronal cell types, which
may be more relevant for LRRK2 as it is highly expressed in
immune cells (Kia et al., 2019). It will be important to identify
key facilitators and aggravators of PD (Johnson et al., 2019)
in order to develop treatment for patients at the prodromal
stage. It will also be critical to tease out the granular details of
vesicular pathway disruption at a cellular level, and to distinguish
between primary events and secondary sequalae. This will, in
turn, provide the foundations for continuing drug development
efforts for Parkinson’s.
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