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16 Abstract

17 Capsule: Distance sampling identified an increase in estimated population size of Common Buzzards 

18 Buteo buteo in central southern England between 2011-16 of more than 50% . The rate of 

19 population growth slowed in later years.

20 Aims: To assess the utility of a targeted distance sampling protocol to derive seasonal and annual 

21 population estimates for Common Buzzards across an area of southern England. 

22 Methods: We used a line transect survey methodology and multiple covariate distance sampling to 

23 assess population density and abundance of Common Buzzards in spring and autumn between 

24 2011and 2016 across a 2600km2 area of central southern England. 

25 Results: Estimated population size increased by more than 50%, from ca. 2900 to 4500 individuals, 

26 across the period in a trend similar to that shown by Breeding Bird Survey (BBS) data.  

27 Discussion: A slowing of the growth in population size of Common Buzzards in central southern 

28 England suggests that the species may be approaching carrying capacity in this area. These results 

29 also suggest that currently employed broad scale survey methodologies adequately reflect the 

30 general population trends for this species. Our data provide the first published estimates of the 

31 Common Buzzard population in central southern England derived from direct empirical assessment.

32

33

34
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35 Introduction

36 Identifying the population size of a species is a key step in developing and implementing an effective 

37 conservation strategy (Soulé 1987, Frankham 1995).  Unfortunately, determining population size can 

38 be difficult and expensive.  Difficulties can arise due to particular behaviours of the study species 

39 (e.g. mobility, shyness, crypsis, nocturnality), scarcity or its occupancy of habitats where access or 

40 movement is difficult etc. (Anderson et al. 2015).  Also, the spatial scale required to produce 

41 meaningful estimates influences survey effort, the level of sampling and cost.  To improve efficiency 

42 in data collection many broad-scale studies use multi-species surveys or monitoring programmes 

43 utilising volunteer fieldworkers (see e.g. Riseley et al 2008, Jiguet 2009).  There are consequences to 

44 these approaches, however, and analyses must consider the effects of surveying for more than one 

45 species at a time (e.g. reduced effort per species, heterogeneity in species detectability (Johnston et 

46 al. 2014) and potential difficulties generating sufficient observations of rarer species (but see 

47 Sanderlin et al.2014)) and the variation in skills and intrinsic differences between volunteer 

48 observers (e.g. in hearing, visual acuity, level of concentration, stamina, image-processing, tiredness; 

49 e.g. Link et al. 1994, Peterjohn et al. 1995, Jiguet 2009, Eglington et al. 2010).

50

51 Species abundance and density estimates are now often generated using a distance sampling 

52 methodology. This technique uses the recorded distances of objects of interest to randomly-placed 

53 survey routes or points to estimate animal density or abundance (Buckland et al. 2001).  A key 

54 assumption of this method is that all objects at zero distance (g(0)) are detected and that probability 

55 of detection decreases with increasing distance from the route or point.  Accurate measurement of 

56 these distances is also assumed, however, it is often necessary to simplify survey methodologies 

57 (e.g. by using a small number of distance bands rather than accurate measurement) to encourage 

58 participation and adherence to protocols (Newson et al. 2008, Quesada et al. 2010).  There is a 

59 trade-off between the quality of the estimate and simplicity of the method (Rabe et al. 2002) and 

60 simplification will result in detection functions that are less robust (Johnston et al. 2014), reduces 
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61 estimated detectability (Stanbury & Gregory 2009) and decreases the precision of derived estimates 

62 (Stanbury & Gregory 2009, Ekblom 2010). 

63

64 Estimates of population size for bird species in the UK tend to focus on breeding populations.  These 

65 estimates are usually derived from indices of relative abundance generated as part of the Breeding 

66 Bird Survey (BBS) (e.g. Newson et al. 2008, Riseley et al. 2008, Musgrove et al. 2013).  Although 

67 useful for many species, the use of the breeding pair as the unit of interest is less appropriate for 

68 certain species and will underestimate population size (Newson et al. 2008). This is particularly true 

69 for many raptor species where individuals do not breed until into their third year (Davis & Davis 

70 1992) and where a significant proportion of the adult population is not breeding in any one year 

71 (Newton 1979, Hunt 1998, Kenward et al. 1999, 2001), as is the case with the Common Buzzard 

72 (Buteo buteo, hereafter ‘Buzzard’).  Accurate estimation of population size is therefore necessary if 

73 the aim of monitoring is to provide an objective assessment of population trends – particularly 

74 where species may be increasing or decreasing.  Using methodologies suitable for certain species 

75 groups to produce population estimates may then provide a means of periodically validating or 

76 calibrating indices that are applied more widely.

77

78 The Buzzard was lost from many parts of its range in Britain due to the combined effects of 

79 widespread persecution in the 19th century, a crash in preferred prey populations (Rabbit, 

80 Oryctolagus cuniculus) in the 1950s and the effects of organochlorine pesticides in the 1960s and 

81 1970s (Sim et al. 2000).  Until the 1980s Buzzards in Britain were confined to Scotland, Wales and 

82 Western England.  Since then, the enactment of improved wildlife conservation legislation (e.g. 

83 banning of organochlorine pesticides and comprehensive legal protection) and increasing public 

84 awareness have led to a significant increase in the species’ population size and range.  Most recent 

85 assessments indicate that the species has now recolonised many of the areas of the UK from which it 

86 had been lost (Clements 2002, Musgrove et al. 2013).  
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87

88 The primary objective of this study was to use a distance sampling methodology to produce local 

89 and regional population estimates of Buzzards in central Southern England.  We also draw 

90 comparisons with population estimates derived using other methodologies and discuss the utility of 

91 our approach for determining population sizes of Buzzards and other conspicuous diurnal raptor 

92 species on a larger scale. 

93

94

95 Methods

96 Study area and fieldwork

97 The study was conducted between September 2011 and June 2016 across two areas (designated 

98 ‘East’ and ‘West’) covering ca. 2600km2 of central southern England in Hampshire, Wiltshire, Surrey 

99 and West Sussex (centred on 1o 18’W and 51o 13’N – see Fig. 1).  Land use within the study area is 

100 primarily mixed farming (arable and grassland) with scattered small woodlands; although the extent 

101 of woodland is higher in the East (26687ha) than West (17634ha).  The study area contains ten urban 

102 areas of which five have human populations exceeding 40000 (Nomis 2016).

103

104 We used a line transect combined with distance sampling methodology (Buckland et al. 2001, 2004) 

105 to determine the population size and density of Buzzards.  Each transect was a circuit based on a 

106 square with each side measuring 3km.  Even coverage of the study area was achieved by dividing the 

107 East and West sections into 24 smaller blocks and using a random number generator to identify a 

108 grid reference and start point for transects within each of these blocks.  An idealised transect route 

109 (ITR) at this location was then identified using a 3km x 3km square overlay.  Negotiating access 

110 across such a large area of private land was impractical and so transects made use of public rights of 

111 way and open access land, the ITR serving as a point of spatial reference to facilitate the 

112 identification of a circuit of appropriate length through the selected area.  Transects followed the ITR 
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113 as closely as possible.  Where deviations were necessary, alternative routes prioritised open access 

114 land and other rights of way types before roads in an effort to reduce bias associated with following 

115 obvious linear landscape features (surfaced roads, field edges, fences and hedgerows; Ortega & 

116 Capen 2002, Marques at al. 2009).  Edge effects were minimised by including all randomised start 

117 locations even when these resulted in the transect breaching the study area boundary.  In these 

118 cases, only the lengths of transect within the study area were included in analyses. 

119

120 Surveys were performed in ten transect periods, two each year, between Sep-Dec (‘autumn’) 2011 

121 and Feb-May (‘spring’) 2016.  Two seasonal transect periods were used to enable assessment of 

122 expected fluctuations in density associated with post-breeding abundance and overwinter mortality.  

123 Transects started between 08.30 and 10.00 from a randomised start point and took 3-7 hours to 

124 complete.  The direction (anti- or clockwise) of travel was also randomised.  Each transect was 

125 performed by one of two fieldworkers (MS or RH).  Transects were walked only on days with no rain, 

126 good visibility and when wind strength was no greater than Beaufort force four.  

127

128 All birds observed during the walked transects were recorded.  When groups of birds were 

129 encountered, the number of individuals was noted.  For each observation, observer location was 

130 recorded using Garmin 60 Csx GPS units and horizontal distance and bearing to each bird (or to the 

131 centre point of groups; Buckland et al. 2001) from the observer using Swarovski Laser Guide 8x30 or 

132 Nikon Forester 550 laser rangefinders and Silva compasses.  Where a bird in flight had obviously 

133 been disturbed from a perch by the fieldworker just prior to detection, measurement of distance 

134 was taken from the fieldworker location to the original perch.  Bird behaviour, situation (i.e. flying, 

135 perched or on the ground), habitat, time of observation and weather conditions were also recorded 

136 for each observation.  To minimise double-counting, fieldworkers noted, where possible, the 

137 plumage morph of all birds (following Glutz von Blotzheim et al. (1971)), specific aspects of plumage 

138 (e.g. bright tail, prominent breast patches etc.) and location of obvious moult (in remiges or 
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139 rectrices).  Where there was still uncertainty regarding the status of an individual, the observer 

140 noted their confidence in the observation being new on a percentage scale where ‘0’ indicated a 

141 certainty that the individual had already been recorded, and ‘100’ where it had not.  Bird movement 

142 and relative timings and location of previous observations were used to inform this assessment.  This 

143 enabled later exclusion of observations from analyses, based on confidence. We adopted a 

144 conservative approach to inclusion of data, retaining only those where confidence exceeded 70%.

145

146 Where the ability of a fieldworker to detect birds was compromised by visibility from the transect 

147 route (e.g. obstruction by surrounding vegetation), the observer moved a short distance away from 

148 the transect to obtain a clearer view before returning and continuing along the route.  Although the 

149 fieldworker followed a map of the transect route it is unlikely that they will have been standing 

150 exactly on the transect line (i.e. at g(0) – zero distance from the line) at the time of making any 

151 observation.  The perpendicular distance of the fieldworker from the transect route at the time of 

152 each observation was determined using the GPS locations viewed in GIS.   These ‘offsets’ were then 

153 used to correct the calculated distances of the observations to the transect line through either 

154 addition or subtraction of the offset (depending on the relative positions of the observer and bird to 

155 the transect route).  All GPS locations obtained using WGS-84 were transformed to British National 

156 Grid using the Ordnance Survey ‘OSTN02’ transformation in ArcGIS (ESRI 2011).

157

158 The restriction of transect routes to public rights of way and open access areas may have resulted in 

159 the violation of the distance sampling assumption that all areas have equal probability of being 

160 sampled.  We determined the extent of entire study area unavailable for surveying using the ‘Buffer’ 

161 function in ArcGIS (ESRI 2011).  In this we produced a survey strip corresponding to the maximum 

162 operational distance of the rangefinder (700m) on each side of all rights of way and open access 

163 areas and deducted the extent of study area not covered by these strips (5.8km2) from the total size 

164 of the study area in all subsequent distance analyses. 
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165

166 To investigate the possible role of roads and roadside areas in attracting birds, we also compared the 

167 distribution of distances of 5000 randomly-generated points with that of our observations.  Points 

168 were generated using the random number generator runif() function in R (R Core Team 2016) to 

169 produce pairs of latitude and longitude.  These points were then plotted and their distances from 

170 the nearest road determined using the Near function in ArcGIS.  The distributions of these ‘distance-

171 to-roads’ measurements were compared using two-sample Kolmogorov-Smirnov tests.

172

173

174 Density estimation

175 Population size and density estimates were derived using both the Conventional Distance Sampling 

176 (CDS) and Multiple Covariates Distance Sampling (MCDS) engines within program Distance 7.0 

177 (Thomas et al. 2010).  Distance analysis here follows the guidelines provided for that software and in 

178 the associated literature by Buckland et al. (2001, 2004). 

179

180 Five covariates (Table 1) were included in the MCDS modelling process on the basis that each was 

181 assumed a priori to influence the ability to detect birds through a biological or methodological effect 

182 (Burnham 1981, Thompson 2002, Diefenbach et al. 2003).  A two-level factor covariate (OBS) was 

183 included to account for the likely variation in ability of fieldworkers to detect birds.  Area of 

184 woodland at the point of observation (WDS) is also likely to impact detection distance due to an 

185 inverse relationship with range of view (i.e. the maximum range of vision).  Values for this covariate 

186 were determined from the CEH Land Cover Map 2007 (Morton et al. 2014) by measuring the area of 

187 woodland within a 250m radius of the point of observation using ArcGIS 10.2 (ESRI 2011).  STRATA 

188 was included as a covariate in order to account for potential differences in topography or habitat 

189 quality between the two sections of the study area, since this may result in differential detection 

190 distances.  Bird activity and behaviour, and thus detectability, will vary throughout the day (e.g. 
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191 Kendall 2014, Öberg et al. 2015).  Here, TIME was defined as the number of minutes after sunrise for 

192 each observation.  Lastly, the situation of the bird, i.e. whether on the ground, perched or in flight, 

193 was included as a factorial covariate, LOC.  The inclusion of flying birds in distance sampling can 

194 present a number of problems, primarily due to violation of the assumption of uniform distances 

195 through responsive movement, and double-counting (see Fewster et al. 2008, Anderson et al. 2015).  

196 Where this occurs, estimates will tend to be overestimated (Buckland et al. 2001).  Although 

197 exclusion of flying birds from analyses is possible, this approach is best used for species in which only 

198 a small proportion of the population will be in flight at any one time (Buckland et al. 2008).  This is 

199 clearly not the case for many soaring raptor species and exclusion of such data was not appropriate.  

200 Instead, we adopted a ‘look-ahead’ approach to improve the likelihood of birds being recorded 

201 before they responded to the presence of the fieldworker (Burnham et al. 1980, Anderson et al. 

202 2015).

203

204 Relationships between covariates and the ability to detect birds were explored prior to modelling, 

205 although failure to detect any effect here did not prevent inclusion in model assessments.  Factor 

206 covariates were tested against perpendicular distance using either Welch’s t-tests or ANOVA.  

207 Exploration of the potential relationship between continuous, non-factor covariates and distance 

208 was performed using Pearson’s r and regression.

209

210 Models with uniform, half-normal and hazard-rate key functions were fitted to the data.  Automatic 

211 addition of adjustment terms was enabled for analyses using CDS. For the MCDS engine, however, 

212 this was restricted to a maximum of two cosine, simple polynomial or hermite polynomial 

213 adjustment terms.  Model fit was assessed with reference to cosine-weighted Cramér-von Mises and 

214 Kolmogorov-Smirnov tests.  Data were truncated at 550m to remove a lengthy tail and all models 

215 incorporating adjustment terms were scaled by the truncation distance.

216
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217 Overloading of the MCDS engine with covariates is more likely to result in failure of the algorithm to 

218 converge (Thomas et al. 2010).  To counter this, we follow the guidelines of Thomas et al. (2010) 

219 who advocate the forward stepwise addition of individual covariates, retaining those which 

220 contribute to reducing Akaike’s Information Criteria (AIC). AIC was used to select between models 

221 (Burnham & Anderson 2002).

222

223 All statistical analyses, other than distance sampling, were performed using R version 3.3.1.

224

225

226 Results

227 4490km of surveys were completed during the 10 transect periods (Table 2).  Coverage was higher in 

228 the eastern section of the study area with 2295km of surveys walked on 151 transects compared 

229 with 2194km on 145 transects in the western section.  The average duration of each transect was 

230 371 minutes (365 in Spring vs 377 in Autumn).

231

232 4274 observations of 5174 individuals were made during the study.  Birds were seen in groups of up 

233 to 32 individuals, however, 85% of observations were of single birds (mean group size = 1.2 ± 0.75). 

234 63% of observations were of birds in flight (cf. 37% perched or on the ground).  Of these, 62% were 

235 birds which were soaring, hovering or interacting with other species, rather than in obvious 

236 directional transit movements.  

237

238 There was no difference between the distributions of number of observations and the number of 

239 transects walked (and therefore, transect length) for each season (autumn Χ2 (4) = 3.08, p = 0.55; 

240 spring (Χ2 (4) = 1.75, p = 0.78) indicating that more observations were made when more transects 

241 were walked.  Significantly more individuals were seen during spring surveys than in autumn (Χ2 (3) = 

242 160.25, p <0.001) despite the total length of surveys undertaken being similar.  
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243

244 Histograms of the distribution of perpendicular distances indicated detection on and close to the 

245 transect line remained at or near 100% in all survey periods.  Median detection distance across all 

246 data was 178m.  Truncation of data above 550m resulted in the loss of 2.8% of observations (99 

247 observations of 143 individuals) but left more than 330 observations per period; comfortably above 

248 the threshold of 60-70 generally recommended for modelling using Distance (Buckland et al. 2001).  

249 Sufficient data were available to enable the modelling of separate detection functions, and the 

250 inclusion of different covariates, for each period. 

251

252 55% of the total length of transects was walked along roads. 28%  of all observations involved 

253 Buzzards within 100m of any road and only 11% were of birds within 100m of the same road as that 

254 from which the observation was made.  There was no indication of a bias in observation of birds 

255 near to roads when comparing the distribution of distances with that of 5000 random locations 

256 (two-sample Kolmogorov-Smirnov, D- <0.001, p = 0.99; Buzzard median – 264m, Random median – 

257 158m). 36% of the random locations were within 100m of a road compared with 21% of Buzzard 

258 locations

259

260

261 Exploratory analyses of covariates

262 The distance at which birds were detected reduced as the extent of woodland at the point of 

263 observation increased.    This effect was negative across the entire dataset (r = -0.166, t4157 = -10.8, p 

264 < 0.001) and in all survey periods (p < 0.002) except spring 2013 (r = -0.079, t363 = -1.51, p = 0.13).  

265

266 None of the remaining covariates showed any consistent relationship with detection distance.  Mean 

267 detection distances were similar between both sections of the study area and varied significantly 

268 only in 2012 (spring, t474.13 = -3.5, p <0.001, mean East – 178.9m, West – 207.7m; autumn, t255.2 = -
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269 2.06, p = 0.04, mean East – 179.2m, West – 214.2m).  The situation of birds (i.e. whether on the 

270 ground, perched or in flight) had no significant influence on detection distance (ANOVA F2,4156 = 2.42, 

271 p =0.09, Tukey test, p > 0.15).  Observer effects on detection distances were identified in one of the 

272 four survey periods where data were collected by more than one fieldworker (spring 2013, t139 = 

273 3.67, p <0.001, mean MS – 208m, RH – 148m).  Although timing of an observation had a bearing on 

274 detection distance in two periods (autumn 2012, F1,402 = 4.91, p = 0.027; and spring 2015, F1,307 = 

275 5.99, p = 0.015), there was no significant effect during the other eight periods.

276

277

278 Model fitting

279 MCDS models having reasonable fit (i.e. with Cramér von Mises and Kolmogorov-Smirnov tests p > 

280 0.3) were developed for all periods (Table 3) except periods 5-7.  Although statistics assessing model 

281 fit for these periods produced p> 0.1, their detection functions and quantile-quantile plots  indicated 

282 that more birds than expected were observed close to the transect route.  As model fit was 

283 reasonable in these periods, we still present the outputs from these but emphasise their being on 

284 the margins of acceptability.  CDS models were preferred in period 7 (p >0.5), however, the model 

285 with lowest AIC (Half-normal + three cosine adjustments) showed signs of over-fitting and issues in 

286 maintaining monotonicity.  A model using CDS with a Uniform key function is preferred for this 

287 period.  Among the MCDS models, TIME, WDS/WDD and STRATA had the greatest effect on AIC, and 

288 appeared in the majority of preferred models for each survey period.

289

290 Population estimates

291 Population size and density estimates increased throughout the course of study and were 0.6 birds 

292 km-2 higher by 2016 than at the start of the study.  Our analyses suggest an increase in estimated 

293 population size of 56%, from 2883 individuals in 2011 to 4485 in 2016 (Table 4). The average annual 
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294 rate of increase across the four-and-a-half years of the study was 12.5% but this slowed in successive 

295 years (from 15% to 1% in autumn and 43% to -1% in spring; Figure 2). 

296

297 More birds were seen in spring surveys (1.31km-1) than preceding autumn periods (1.0 bird km-1) 

298 even though total lengths of transects walked were shorter in spring for all periods except autumn 

299 2012-spring 2013.  Estimated density was also consistently higher for surveys performed during the 

300 spring (Table 4; means: spring – 1.59 autumn – 1.44). 

301

302

303 Discussion

304

305 Population density estimates

306 We used a distance sampling-based methodology to estimate the population density of a 

307 conspicuous diurnal raptor species within an area of central southern England.  These estimates 

308 indicate that the Buzzard population increased by more than 50% over the course of the study 

309 (Figure 2).  In contrast, Buzzard populations in the adjacent SW region have shown a comparatively 

310 modest rate of increase since 1995 (+13% - Harris et al. 2017).  Differences in the rate of population 

311 change between these two regions may be a function of there being a higher number of available 

312 potential territories in regions neighbouring the SW population and the consequent dispersal of 

313 individuals from higher to lower density areas (Walls & Kenward 1998).

314

315 The reduced rate of population growth during the last three survey periods mirrors estimates 

316 derived from BBS data for the SE region (www.bto.org/bbs) which, although showing an overall 

317 increase of 1104% since 1995, indicate a slowing of population growth to a point of a slight decline (-

318 2%) between 2016-17.  The reasons for this are unclear, especially since rates of breeding success for 

319 Buzzards have increased across the UK during these years (Woodward et al. 2018) – although 
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320 regional differences will be masked in these national estimates.  Nevertheless, a number of factors 

321 may be operating to limit population growth, including: the ongoing impacts of viral haemorrhagic 

322 disease (VHD) on UK rabbit populations (Harris et al. 2019), the abundance of which has been shown 

323 to influence breeding productivity and population increase in Buzzards in the UK (Graham et al.1995; 

324 Swann & Etheridge 1995); the continued impacts of secondary poisoning by rodenticides (e.g. 

325 Christensen et al. 2012) and ingestion of lead in spent ammunition (Pain et al. 2009); and a potential 

326 increase in persecution in response to the perceived predation pressures on game bird populations 

327 from increasing Buzzard abundance. 

328

329 Despite the observed declines between 2016-17 in this study and BBS, continued population growth 

330 in areas of the SE region which lie to the north and east of the study area still appears likely since 

331 they will have been recolonised later and will be further from reaching carrying capacity; a situation 

332 highlighted by Harris et al. (2014).  In addition, now that the scale of human-induced population 

333 constraints appears to have substantially reduced, carrying capacities are likely to have increased 

334 and be governed mostly by the availability and suitability of food and breeding habitat.  In southern 

335 England, there is likely to be a proportionally greater extent of suitable breeding habitat in the SE 

336 region compared to the historical strongholds in the SW since the landscape is more heavily wooded 

337 (Forestry Commission 2016).  As a result, continued population growth in this region is likely for the 

338 foreseeable future.  

339

340 Atlas data (Balmer et al. 2013) show the Buzzard to be uniformly distributed across all 10x10km 

341 squares of SE England and from more than 85% of all 2km x 2km tetrads covered by atlas fieldwork 

342 (2007-2012) in the SE region.  Assuming that habitat quality and availability within our study area is 

343 representative of that throughout the remainder of the SE region, then our density estimates 

344 indicate a population size of 27500-32500 individuals in SE England.  Translation of this figure into an 

345 estimate of the breeding population is difficult, since a significant proportion of Buzzards will not 
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346 make a nesting attempt each year, either due to immaturity, lack of status and inability to find a 

347 mate or hold a territory (Davis & Davis 1992, Kenward et al. 2000).  Using the estimate suggested by 

348 Kenward et al. (2000) of only one in four individuals breeding each year, results in an estimate of 

349 between 3440-4125 pairs in SE England.  This represents a breeding density of 18-22 pairs per 

350 100km2, similar to that found by Sim et al. (2001) in one of their West Midlands study areas.  This is 

351 still lower than the 41 pairs 100km-2 recorded by Newton et al. (1982) across a large area in mid-

352 Wales, and substantially lower than the densities (78 pairs 100km-2) recorded in ideal wooded 

353 habitat in central Europe (Melde 1956, Thiollay 1967).  Since the coarse regional population estimate 

354 presented here is an extrapolation from our derived estimates, any variation in the quality of those 

355 landscape characteristics representing suitability for Buzzards (e.g. food and prey density, 

356 disturbance, persecution, habitat structure and mosaic etc.) will influence its validity.

357

358 Alongside the estimates of overall abundance within the study area, our study provides an 

359 interesting comparison of the apparent abundance of Buzzards between autumn and spring periods.   

360 Several studies have determined that juvenile Buzzards tend to remain within their natal territory for 

361 the first few months after fledging (Davis & Davis 1992, Walls et al. 1999) and that most  do not 

362 disperse more than 50km from the natal site in their first year (Walls & Kenward 1998).  This is 

363 particularly the case in landscapes with a significant arable component (Walls et al. 1999) where 

364 Buzzards often exploit the easy foraging for invertebrates provided by ploughed fields (Dare 1957).  

365 As a result, there is unlikely to have been any significant loss of first year birds from the study area in 

366 the autumn, and in fact we expected higher densities for surveys in this period.  The potential 

367 impacts of overwinter and courtship mortality (Tubbs 1974, Simpson 1993) would theoretically 

368 compound this expected difference in seasonal abundance.  That this is not the case may reflect 

369 more on seasonal variation in bird behaviour, and its influence on detectability, than demographics.  

370 Increased time spent soaring and in display behaviours in spring resulted in improved detectability 

371 during spring surveys.  The supplementation of the autumn population by juveniles will also have 
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372 been offset by dispersal (Walls & Kenward 1995) and high rates of mortality for Buzzards in the four 

373 months after fledging (Kenward et al. 2001). 

374

375 Methodological assessment

376 We encountered few obvious methodological issues with the study.  Poor model fit using the MCDS 

377 engine for the autumn 2014 was most likely the result of higher than expected numbers of birds 

378 recorded between 275-325m in this survey period.  This problem was not identified in other periods 

379 suggesting that it is unlikely to represent any significant issue with survey design.  Similarly, the issue 

380 of poor precision was limited to one survey period and stems from reduced coverage; the level of 

381 effort being lowest in this period (Table 2).

382

383 The covariates most frequently included within preferred models (WDS, STRATA and TIME) indicate 

384 that woodland cover was the most important factor affecting Buzzard detectability.  Increasing 

385 density of woodland reduces the view of surrounding habitats leading to birds generally being 

386 detected at shorter distances than in more open habitats.  This effect is also likely to account for the 

387 inclusion of STRATA in many preferred models since a greater proportion of the landscape area was 

388 woodland (and, therefore, a higher proportion of surveys performed through woodlands) in the 

389 eastern section of the study area.  Lastly, the inclusion of TIME is likely to relate to the behaviour of 

390 birds at differing times of the day e.g. birds perched during cooler periods (during morning) and 

391 soaring in warmer periods (from late morning onwards).  The level and type of activity of birds will 

392 have an obvious impact on detection distance.  Daily variation in temperature and weather 

393 conditions will make this a complicated relationship which is unlikely to be detected by these 

394 analyses.  

395

396 Transects running through dense woodland may result in undetected responsive movements of 

397 birds which may, in turn, lead to incorrect distance measurement or incomplete detection at g(0). In 
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398 such habitats Buzzards were almost always heard to call prior to, or immediately after, taking flight 

399 when disturbed by a fieldworker.  Use of such cues to identify original locations for measurement 

400 should have reduced the number of undetected responsive movements along transects performed 

401 in these habitats.

402

403 The use of public rights of way and roads for this study will have resulted in some sections of 

404 transect necessarily following linear landscape features such as hedgerows, fences and runs of 

405 power lines and poles.  These features can influence the distribution of raptors such as Buzzards 

406 through their impact on the abundance of preferred prey items (e.g. Adams & Geiss 1983, Meunier 

407 et al. 2000) or carrion (Lambertucci et al. 2009, Lees et al. 2013), the ways in which they can improve 

408 hunting efficiency (e.g. Beckmann & Shine 2011) or how they permit the adoption of less energy-

409 demanding hunting strategies (Meunier et al. 2000).  Failure to place transects randomly across a 

410 study area (e.g. by following linear landscape features) can lead to biases arising from the 

411 association and preferences for certain habitats or landscape features.  This will effectively remove 

412 the validity of extrapolating sample statistics to the population of interest (Buckland et al. 2001).  

413 Despite this, and the potential effects listed above, we found no evidence for the attraction of 

414 Buzzards to roads in our data.  Whether the inclusion of roadside transect data has a significant 

415 influence on the derived density estimates is open to question. 

416

417 Although we adopted a number of strategies to reduce double counting, the duration of each 

418 transect (mean - 371 minutes) means that there was ample opportunity for birds to move across the 

419 study area.  This is likely to have resulted in the double-counting of a small number of individuals 

420 and possible positive bias to our estimates.  Similarly, the inclusion of flying birds may also have 

421 affected our results.  Buckland et al. (2001) suggest that independent movement of birds can be 

422 accommodated they must, ‘on average’, be moving at less than half the speed of the observer if they 

423 are not to introduce a positive bias to the results.  24% of the observations here were of birds 
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424 engaged in purposeful, directional flight.  Since neither the destination of flying birds nor their 

425 duration of flight was recorded here, it is not possible to determine whether the average speed of 

426 these individuals was less than half that of the observer.  Whether the inclusion of these 

427 observations has resulted in a significant positive bias to estimates is open to question.  

428 Nevertheless, inclusion of some assessment  of the nature and distances of flight behaviour in future 

429 surveys would enable greater discrimination of data and exploration of impacts on derived 

430 estimates.

431

432 The population trends derived here closely follow those obtained for the same period by BBS.  This 

433 suggests that the potential issues often associated with broad-scale, multi-species, volunteer surveys 

434 (e.g. the dilution of effort between target species and differential abilities of volunteers) have little 

435 effect on results.  This may not be the case for density estimates though, since the use of a small 

436 number of distance bands (in BBS), rather than accurate distance measurement, has been shown to 

437 over-estimate density (Quesada et al. 2010). The extent of any difference cannot be assessed here 

438 since there are no published BBS-derived population estimates for this species in this region for the 

439 period covered by our study. 

440

441 The methods employed here provide a reasonably straightforward means of assessing the absolute 

442 population size of an abundant, conspicuous, raptor species across the UK landscape.  However, this 

443 methodology is unlikely to be suitable for more secretive (e.g. Sparrowhawk, Accipiter nisus) or 

444 scarcer species.  The methods used here are applicable across most landscape types and could 

445 provide a useful means of population monitoring stratified by habitat and area.  The broader 

446 application of such methods is perhaps limited by the cost of equipment (laser rangefinder and gps); 

447 however, rapid technological advances and falling costs are likely to remove such obstacles in the 

448 near future.  Individual variation in skill levels, abilities to detect birds in the landscape and the need 
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449 to train individuals in survey methodology may also pose certain problems; however, these are 

450 challenges faced by all survey protocols. 

451

452 The recovery of raptor populations is often accompanied by concerns relating to potential impacts 

453 on conservation (e.g. of prey species or competitors; e.g. Moleón et al. 2011), sociology (e.g. Burke 

454 et al. 2015) or economy (e.g. of game populations; e.g. Parrot 2015).  Indeed, the recovery of 

455 Buzzard populations has been followed by increasing pressure for population control measures to 

456 protect game stocks (Lees et al. 2012).  Although Buzzards are protected under UK law (Wildlife & 

457 Countryside Act 1981), provision exists to issue licences to kill individuals to prevent agricultural 

458 damage (including ‘damage to livestock’).  Licences are issued only after careful consideration of a 

459 number of factors, including local abundance.  Without accurate population data, such assessments 

460 will be affected by subjective perceptions of abundance.  Producing estimates of actual population 

461 size for this species is therefore timely, and will prove useful in assisting decision-makers in assessing 

462 the potential impacts of any licensed action.

463

464

465 Conclusion

466 Our results show how the population size of a previously persecuted species of raptor in central 

467 southern England has increased by more than 50% over a five year period, and how the previously 

468 high rate of population growth appears to be stalling.  The next phase of this study will focus on 

469 producing density estimates using this methodology across a larger area.  This approach will enable 

470 comparison of the predicted population estimates for the SE region produced here with those 

471 utilising fieldwork undertaken across all parts of the region and a direct comparison with BBS 

472 estimates.  Further assessment of the utility of this method and the viability of using volunteers to 

473 derive estimates across a broader geographical scale will also be possible.  

474

Page 19 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

20

475 Acknowledgements

476 This work was funded by the visitors and supporters of the Hawk Conservancy Trust. The John 

477 Spedan Lewis Foundation assisted with funding for the purchase of essential equipment. Two 

478 anonymous reviewers provided helpful comments on earlier drafts of the manuscript. 

479  

Page 20 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

21

480 References

481

482 Adams. L.W. & Geiss, A.D. 1983. Effects of roads on small mammals. J Appl. Ecol. 20: 403-415.

483

484 Anderson, A.S., Marques, T.A., Shoo, L.P. & Williams, S.E. 2015. Detectability in audio-visual surveys 

485 of tropical rainforest birds: the influence of species, weather and habitat characteristics. PLoS ONE 

486 10(6): e0128464. Doi:10.1371/journal.pone.0128464.

487

488 Balmer, D.E., Gillings, S., Caffrey, B.J., Swann, R.L., Downie, I.S. & Fuller, R.J. (eds) 2013. Bird Atlas 

489 2007-11: the breeding and wintering birds of Britain and Ireland. BTO Books, Thetford.

490

491 Beckmann, C., & Shine, R. 2011. Toad’s tongue for breakfast: exploitation of a novel prey type, the 

492 invasive cane toad, by scavenging raptors in tropical Australia. Biol. Invasions 13(6): 1447-1455.

493

494 BTO. (n.d.) Retrieved from https://www.bto.org/volunteer-surveys/bbs/latest-results/population-

495 trends

496

497 Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. & Thomas, L. 2001. 

498 Introduction to distance sampling. Oxford: Oxford University Press.

499

500 Buckland, S.T., Marsden, S.J. & Green, R.E. 2008. Estimating bird abundance: making methods work. 

501 Bird Conserv. Int.18:S91-S108.

502

503 Burke, B.J., Finna, A., Flanagan, D.T., Fogarty, D.M., Foran, M., O’Sullivan, J.D., Smith, S.A., Linnell, 

504 J.D. and McMahon, B.J., 2015. Reintroduction of White-tailed Eagles to the Republic of Ireland: A 

505 case study of media coverage. Irish Geography, 47(1):95-115.

Page 21 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

22

506

507 Burnham, K., Anderson, D., & Laake, J. 1980. Estimation of density from line transect sampling of 

508 biological populations. Wildlife Monogr. 72:7-202.

509

510 Burnham, K.P. 1981. Summarizing remarks: Environmental influences. Studies Avian Biol-Ser. 6:324-

511 325 

512

513 Christensen, T.K., Lassen, P. & Elmeros, M. 2012. High exposure rates of anticoagulant rodenticides 

514 in predatory bird species in intensively managed landscapes in Denmark. Archives of Environmental 

515 Contamination and Toxicology 63:437-444.

516

517 Clements, R. 2002. The Common Buzzard in Britain: a new population estimate. Brit. Birds 95:377-

518 383.

519

520 Dare, P.J. 1957. The post-myxomatosis diet of the buzzard. Devon Birds 10:2-6.

521

522 Davis, P.E. & Davis, J.E. 1992. Dispersal and age of first breeding of buzzards in central Wales. Brit. 

523 Birds 85: 578-597.

524

525 Dean, W.R.J. & Milton, S.J. 2003. The importance of roads and road verges for raptors and crows in 

526 the succulent and Nama-Karoo, South Africa. Ostrich 74(3-4):181-186.

527

528 Diefenbach, D.R., Brauning, D.W. & Mattice, J.A. 2003. Variability in grassland bird counts related to 

529 observer differences and species detection rates. Auk 120(4):1168-1179.

530

Page 22 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

23

531 Eglington, S.M., Davis, S.E., Joys, A.C., Chamberlain, D.E. & Noble, D.G. 2010. The effect of observer 

532 experience on English breeding bird survey population trends. Bird Study 57:129-141

533

534 Ekblom, R. 2010. Evaluation of the analysis of distance sampling data: a simulation study. Ornis 

535 Svecica 20:45-53

536

537 ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.

538

539 Faanes, C.A. & Bystrak, D. 1981. The role of observer bias in the North American breeding bird 

540 survey. Studies Avian Biol-Ser. 6:353-359.

541

542 Fewster, R.J.M, Southwell, C., Borchers, D.L., Buckland, S.T. & Pople, A.R. 2008. The influence of 

543 animal mobility on the assumption of uniform distances in aerial line-transect surveys. Wildlife. Res. 

544 35: 275-288

545

546 Forestry Commission. 2016. National Forest Inventory Woodland England 2015. 

547

548 Forman, R.T.T. & Alexander, L.E. 1998. Roads and their major ecological effects. Annu. Rev. Ecol. 

549 Syst. 29:207-231.

550

551 Frankham, R. 1995. Effective population size/adult population size ratios in wildlife: a review. Genet. 

552 Res. 66(2), 95-107.

553

554 Glutz von Blotzheim, U., Bauer, K. & Bezzel, E. 1971. Handbuch der Vögel Mitteleuropas, Vol. 4. Aula 

555 Verlag, Wiesbaden.

556

Page 23 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

24

557 Harris, S.J., Risely, K., Massimino, D., Newson, S.E., Eaton, M.A., Musgrove, A.J., Noble, D.G., Procter, 

558 D. & Baillie, S.R. 2014. The Breeding Bird Survey 2013. BTO Research Report 658. British Trust for 

559 Ornithology, Thetford.

560

561 Harris, S.J., Massimino, D., Gillings, S., Eaton, M.A., Noble, D.G., Balmer, D.E., Procter, D. & Pearce-

562 Higgins, J.W. 2017. The Breeding Bird Survey 2016. BTO Research Report 700. British Trust for 

563 Ornithology, Thetford.

564

565 Harris, S.J., Massimino, D., Eaton, M.A., Gillings, S., Noble, D.G., Balmer, D.E., Pearce-Higgins, J.W. &

566 Woodcock, P. 2019. The Breeding Bird Survey 2018. BTO Research Report 717. British Trust for 

567 Ornithology, Thetford.

568

569 Hunt, W.G. 1998. Raptor floaters at Moffat’s equilibrium. Oikos 82: 191-197.

570

571 Jiguet, F. 2009. Method learning caused a first-time observer effect in a newly started breeding bird 

572 survey. Bird Study 56: 253-258.

573

574 Johnston, A., Newson, S.E., Risely, K. Musgrove, A.J., Massimino, D., Baillie, S.R. & Pearce-Higgings, 

575 J.W. 2014. Species traits explain variation in detectability of UK birds. Bird Study 61: 340-350.

576

577 Kendall, C.J. 2014. The early bird gets the carcass: Temporal segregation and its effects on foraging 

578 success in avian scavengers. The Auk: Ornithological Advances 131:12-19.

579

580 Kenward, R.E., Marcström, V. & Karlbom, M. 1999. Demographic estimates from radio-tagging: 

581 models of age-specific survival and breeding in the goshawk. J. Anim. Ecol. 68: 1020-1033.

582

Page 24 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

25

583 Kenward, R.E., Walls, S.S., Hodder, K.H., Pakhala, M., Freeman, S.N. & Simpson, V.R. 2000.  The 

584 prevalence of non-breeders in raptor populations: evidence from rings, radio-tags and transect 

585 surveys. Oikos 91:271-279.

586

587 Kenward, R.E., Walls, S.S. & Hodder, K.H. 2001. Life path analysis: scaling indicates priming effects of 

588 social and habitat factors on dispersal distances. J. Anim. Ecol. 70:1-13.

589

590 Knight, R.L. & Kawashima, J.Y. 1993. Responses of Raven and Red-tailed Hawk populations to linear 

591 right-of-ways. J. Wildlife Manage. 57(2):266-271.

592

593 Lambertucci, S.A., Speziale, K.L., Rogers, T.E. & Morales, J.M. 2009. How do roads affect the habitat 

594 use of an assemblage of scavenging raptors? Biodivers. Conserv. 18(8):2063-2074.

595

596 Lees, A.C., Newton, I. & Balmford, A. 2012. Pheasants, buzzards, and trophic cascades. Conserv. Lett. 

597 00: 1-4. https://doi.org/10.1111/j.1755-263X.2012.00301.x

598

599 Link, W.A., Barker, R.J. & Sauer, J.R. 1994. Within-site variability in surveys of wildlife populations. 

600 Ecology 75: 1097-1108.

601

602 Marques, T.A., Buckland, S.T., Borchers, D.L., Tosh, D. & McDonald, R.A. 2010. Point transect 

603 sampling along linear features. Biometrics 66:1247-1255.

604

605 Melde, M. 1956. Die Mausebussard. Neue Brehm Bucherei, Leipzig.

606

607 Meunier, F.D., Verheyden,C., & Jouventin, P. 2000. Use of roadsides by diurnal raptors in agricultural 

608 landscapes. Biol. Conserv. 92:291-298. 

Page 25 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

26

609

610 Moleón, M., Sánchez-Zapata, J.A., Gil-Sánchez, J.M., Barea-Azcón, J.M., Ballesteros-Duperón, E. and 

611 Virgós, E., 2011. Laying the foundations for a human-predator conflict solution: assessing the impact 

612 of Bonelli's eagle on rabbits and partridges. PLoS One, 6(7), p.e22851.

613

614 Morelli, F. Beim, M., Jerzak, L., Jones, D. & Tryjanowski, P. 2014. Can roads, railways and related 

615 structures have positive effects on birds? – A review. Transport. Res. D-Tr. E 30:21-31

616

617 Morton, R.D., Rowland, C.S., Wood, C.M., Meek, L., Marston, C.G. & Smith, G.M. 2014. Land Cover 

618 Map 2007 (vector, GB) v1.2. NERC Environmental Information Data Centre.

619

620 Musgrove, A., Aebischer, N., Eaton, M., Hearn, R., Newson, S., Noble, D., Parsons, M., Risely, K. & 

621 Stroud, D. 2013.  Population estimates of birds in Great Britain and the United Kingdom. Brit. Birds 

622 106, 64-100.

623

624 Newson, S.E., Evans, K.L., Noble, D.G., Greenwood, J.J.D. & Gaston, K.J. Use of distance sampling to 

625 improve estimates of national population sizes for common and widespread breeding birds in the 

626 UK. J. Appl. Ecol. 45:1330-1338.

627

628 Newton, I. Davis, P.E., & Davis, J.E. 1982. Ravens and buzzards in relation to sheep farming and 

629 forestry in Wales.  J. Appl. Ecol. 19: 681-706.

630

631 Nomis – Official Labour Market Statistics. 2016. KS101EW (Usual resident population).  Available 

632 from: http://www.nomisweb.co.uk/census/2011/ks101ew [Accessed August 2018].

633

Page 26 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration

http://www.nomisweb.co.uk


For Peer Review

27

634 Öberg, M., Arlt, D., Pärt, Laugen, A.T., Eggers, S & Low, M. 2015. Rainfall during parental care 

635 reduces reproductive survival components of fitness in a passerine bird. Ecol. Evol. 5:345-356.

636

637 Ortega, Y.K. & Capen, D.E. 2002. Roads as edges: Effects on birds in forested landscapes. Forest Sci. 

638 48:381-390.

639 Pain, D.J., Fisher, I.J. & Thomas, V.G. 2009. A global update of Lead poisoning in terrestrial birds from 

640 ammunition sources, In Watson, R.T., Fuller, M., Pokras, M. & Hunt, W.G. (eds) Ingestion of Lead 

641 from Spent Ammunition: Implications for Wildlife and Humans. The Peregrine Fund, Boise, Idaho, 

642 USA.

643

644 Parrott, D., 2015. Impacts and management of common buzzards Buteo buteo at pheasant 

645 Phasianus colchicus release pens in the UK: a review. European Journal of Wildlife Research, 61:181-

646 197.

647

648 Peterjohn, B.G., Sauer, J.R., & Robbins, C.S. 1995 Population trends from the North American 

649 breeding bird survey. In Martin, T.E. & Finch, D.M. (eds) Ecology and Management of Neotropical 

650 Migratory Birds: 3-39. Oxford University Press, New York.

651

652 Pollock, K.H., Nichols, J.D., Simons, T.R., Farnsworth, G.L., Bailey, L.L, & Sauer, J.R. 2002. Large scale 

653 wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13:105-119.

654

655 Quesada, J. Guallar, S., Pérez-Ruiz, N.J., Estrada, J. & Herrando, S. 2010.  Observer error associated 

656 with band allocation is negligible in large scale bird monitoring schemes, but how precise is the use 

657 of bands at all? Ardeola 57:23-32.

658

Page 27 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

28

659 R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for 

660 Statistical Computing, Vienna, Austria. URL https://www/R-project.org/.

661

662 Rabe, M. J., Devos, S. S. & Rosenstock Jr, J.C. 2002. Review of big-game survey methods used by 

663 wildlife agencies of the western United States. Wildlife Soc. B. 30:46–53.

664

665 Ralph, C.J. & Scott, J.M. Eds. 1981. Estimating numbers of terrestrial birds. Studies  Avian Biol.-Ser 6.

666

667 Ramsey, F.L. & Scott, J.M. 1981. Tests of hearing ability. Studies Avian Biol.-Ser 6:342-345.

668

669 Riseley, K., Noble, D.G., & Baillie, S.R. 2008. The breeding bird survey 2007. BTO Research Report 

670 508, Thetford, UK.

671

672 Robbins, C.S., Bystrak, D. & Geissler, P.H. 1986. The Breeding Bird Survey: Its first fifteen years, 1965-

673 1979. U.S. Fish. Wildl. Serv., Resour. Publ. 157.

674

675 Sanderlin, J.S., Block, W.M. & Ganey, J.L. 2014. Optimizing study design for multi-species avian 

676 monitoring programmes. J.Appl. Ecol 51:860-870.

677

678 Sauer, J.S., Peterjohn, B.G. & Link, W.A. 1994. Observer differences in the North American Breeding 

679 Bird Survey. Auk 111:50-62.

680

681 Sim, I.M.W., Campbell, L., Pain, D.J. & Wilson, J.D. 2000. Correlates of the population increase of 

682 Common Buzzards Buteo buteo in the West Midlands between 1983 and 1996.  Bird Study 47:154-

683 164.

684

Page 28 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

29

685 Sim, I.M.W., Cross, A.V., Lamacraft, D.L. & Pain, D.J. 2001. Correlates of Common Buzzard Buteo 

686 buteo density and breeding success in the West Midlands.  Bird Study 48:317-329.

687

688 Simpson, V.R. 1993. Causes of mortality and pathological conditions observed in Common Buzzards 

689 (Buteo buteo) in Cornwall, England. – In: Dorrestein, G. and van den Bergh (eds), Proc. 1993 Eur. 

690 Conf. Avian Med. Surgery. Association of Avian Veterinarians, Utrecht, pp. 423-440.

691

692 Soulé, M. E. (Ed.). 1987. Viable populations for conservation. Cambridge university press.

693

694 Stanbury, A. & Gregory, R. (2009) Exploring the effects of truncated, pooled and sexed data in 

695 distance sampling estimation of breeding bird abundance. Bird Study 56:298-309

696

697 Stephens, P.A., Pettorelli, N., Barlow, J., Whittingham, M.J, & Cadotte, M.W. 2015. Management by 

698 proxy? The use of indices in applied ecology. J. Appl. Ecol. 52:1-6

699

700 Thiollay, J.M. 1967. Ecologie d’une population de rapaces diurnes en Lorraine. Terre Vie 114: 116-

701 183.

702

703 Thomas, L., Buckland, S.T., Rexstad, E.A., Laake, J.L., Strindberg, S., Hedley, S.L., Bishop, R.B., 

704 Marques, T.A. & Burnham, K.P. 2010. Distance software: design and analysis of distance sampling 

705 surveys for estimating population size. J. Appl. Ecol. 47: 5-14.

706

707 Thompson, W.L. 2002. Towards reliable bird surveys: Accounting for individuals present but not 

708 detected. Auk 119:18-25.

709

710 Tubbs, C.R. 1971. The Buzzard.  David and Charles.

Page 29 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

30

711

712 Walls, S.S. & Kenward, R.E. 1998. Movements of radio-tagged Buzzards Buteo buteo in early life. Ibis 

713 140:561-568.

714

715 Walls, S.S., Mañosa, S., Fuller, R.M., Hodder, K.H. & Kenward, R.E. 1999. Is early dispersal enterprise 

716 or exile? Evidence from radio tagged buzzards. J. Avian Biol. 30:407-415.

717

718 Wildlife & Countryside Act 1981, Ch 69, s.1 & s.16

719

720 Woodward, I.D., Massimino, D., Hammond, M.J., Harris, S.J., Leech, D.I., Noble, D.G., Walker, R.H., 

721 Barimore, C., Dadam, D., Eglington, S.M., Marchant, J.H., Sullivan, M.J.P., Baillie, S.R. & Robinson, 

722 R.A. (2018) BirdTrends 2018: trends in numbers, breeding success and survival for UK breeding birds. 

723 Research Report 708. BTO, Thetford. www.bto.org/birdtrends

Page 30 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration

http://www.bto.org/birdtrends


For Peer Review

31

724 Tables

725 Table 1. Covariates used in modelling distance sampling estimates of Common Buzzards Buteo buteo 

726 in central southern England.

Covariate Description Levels
OBS Fieldworker Factor -  MS or RH
LOC Situation of the bird Factor - Ground, Perched, Flying
STRATA Section of study area Factor - East or West
TIME Minutes after sunrise Continuous
WDS Area (m2) of woodland within 250m 

radius of observer location
Continuous

727

728
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729 Table 2.  Survey effort and numbers of observations made during surveys of Common Buzzards 

730 Buteo buteo in central southern England.

Transect 
Period

Season Year Number of 
transects 

Σ Transect 
lengths 

(km)

Mean 
transect 
duration 

(min)

Observations Observations 
after Truncation 

(550m)

1 Autumn 2011 40 594.7 320 489 475
2 Spring 2012 35 531.2 343 611 599
3 Autumn 2012 26 379.2 345 359 336
4 Spring 2013 25 382.2 339 471 445
5 Autumn 2013 39 570.3 388 590 565
6 Spring 2014 35 523.7 404 830 814
7 Autumn 2014 25 373.4 363 409 396
8 Spring 2015 22 361.6 414 437 431
9 Autumn 2015 25 393.3 411 469 467

10 Spring 2016 24 379.9 384 509 502
TOTAL 299 4489.5 3711 5174 5030

731

732
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733 Table 3. Details of model selection statistics for distance sampling estimates of the Common Buzzard 

734 Buteo buteo population in central southern England.  Preferred models are indicated by bold type. 

735 (Period – survey period number, season and year; Engine – analysis engine; Key – key function, U- 

736 Uniform, HN – Half normal, HZ – Hazard rate; Adjustment Term – series expansion type (number of 

737 terms), Cos – Cosine, HP – Hermite polynomial, SP – Simple polynomial; Covariates – included in the 

738 model; Parameters – total number of parameters in the model; ΔAIC – difference in Akaike 

739 Information Criterion between model with best fit and the current model; CvM(p) - cosine-weighted 

740 Cramér-von Mises Goodness of fit test value and (P value))

Period Engine Key Adjustment 
Term

Covariates Parameters ΔAIC CvM (p)

(1)AUT 2011 CDS HN Cos(1) - 2 11.52 -
HZ HP(3) - 5 11.72 -

MCDS HN 0 STRATA TIME WDS 4 0.00 0.277 (0.1)
HN SP(1) TIME WDS 6 1.74 0.139 (0.3)
HN Cos(1) TIME WDS 4 1.81 0.121 (0.4)
HN Cos(1) WDS 3 3.11 0.123 (0.3)

(2)SPR2012 CDS HN 0 - 1 1538.46 0.011 (1.0)
HZ SP(1) - 3 1541.85 0.012 (1.0)

MCDS HN 0 STRATA TIME WDS 4 0.00 0.038 (0.9)
HN Cos(1) STRATA TIME WDS 5 1.75 0.021 (1.0)
HN 0 TIME WDS 3 8.99 0.036 (0.9)
HN 0 TIME 2 26.07 0.015 (1.0)

(3)AUT2012 CDS HN 0 - 1 13.27 0.117 (0.4)
HZ 0 - 2 17.45 0.124 (0.3)

MCDS HN 0 STRATA TIME WDS 6 0.00 0.109 (0.4)
HN 0 WDS 4 0.77 0.115 (0.4)
HN 0 TIME 2 13.88 0.114 (0.4)
HN 0 LOC 3 15.95 0.114(0.4)

(4)SPR2013 CDS HN Cos(1) - 2 18.38 0.039 (0.9)
HZ Cos(1) - 3 19.24 0.038 (0.9)

MCDS HN Cos(1) OBS TIME 4 0.00 0.032 (0.9)
HN SP(1) OBS TIME 4 0.11 0.070 (0.6)
HN Cos(1) OBS TIME WDS 5 1.82 0.031 (0.9)
HN Cos(1) TIME 3 8.10 0.030 (0.9)

(5)AUT2013 CDS HN 0 - 1 46.97 0.286 (0.1)
U HP(1) - 1 49.05 0.647(0.01)

MCDS HN 0 OBS STRATA TIME 
WDS

5 0.00 0.252(0.1)

HN 0 OBS TIME WDS 4 0.59 0.235(0.15)

Page 33 of 38

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Bird Study/Ringing & Migration



For Peer Review

34

HN 0 TIME WDS 3 1.20 0.233(0.15)

(6)SPR2014 CDS HN 0 - 1 12.45 0.106 (0.4)
HZ Cos(1) - 3 14.42 0.076 (0.6)

MCDS HN SP(1) STRATA WDS 4 0.00 0.300 (0.1)
HN SP(1) STRATA TIME WDS 5 1.87 0.270 (0.1)
HN SP(1) WDS 3 3.42 0.191(0.15)
HN 0 WDS 2 3.94 0.084 (0.5)

(7)AUT2014 CDS HN Cos(3) - 4 0.00 0.094 (0.5)
U Cos(5) - 5 0.94 0.074 (0.6)
HN Cos(2) - 3 11.91 0.199(0.15)

MCDS HN Cos(1) WDS 3 9.02 0.34 (0.05)
HN Cos(1) WDD 5 10.99 0.314 (0.1)

(8)SPR2015 CDS HN Cos(2) - 3 110.17 0.022 (1.0)
HZ SP(2) - 4 111.16 0.020 (1.0)

MCDS HZ 0 LOC TIME WDS 7 0.00 0.069 (0.6)
HN Cos(2) TIME WDS 5 1.21 0.022 (1.0)
HZ SP(1) WDS 6 6.94 0.032 (0.9)
HZ SP(1) TIME 4 9.63 0.054 (0.7)

(9)AUT2015 CDS HN SP(1) - 2 10.71 0.113 (0.4)
HZ HP(1) - 3 12.92 0.101 (0.4)

MCDS HN SP(1) WDS 3 0.00 0.093 (0.4)
HN SP(1) STRATA WDS 4 0.82 0.091 (0.5)
HN SP(1) TIME WDS 4 1.56 0.094 (0.5)
HN 0 WDS 2 1.59 0.093 (0.5)

(10)SPR2016 CDS HN SP(1) - 2 5.02 0.151 (0.3)
HZ SP(1) - 3 5.26 0.063 (0.6)

MCDS HN 0 WDS 4 0.00 0.087 (0.5)
HN 0 TIME WDS 5 1.37 0.079 (0.5)
HN 0 STRAT WDS 5 1.78 0.088 (0.5)
HN 0 LOC TIME WDS 7 3.97 0.077 (0.6)

741

742
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743 Table 4. Estimates of density and population size of Common Buzzards Buteo buteo with Lower (LCL) 

744 and Upper (UCL) 95% confidence intervals.  %CV - coefficient of variation, df - degrees of freedom. 

745

Year Period LCL – Density – UCL
(Individuals km-2)

LCL – No. individuals - UCL % CV df

2011 Autumn 0.936 - 1.111 - 1.319 2428 - 2883 - 3423 8.62 65.4
2012 Spring 0.836 - 1.126 - 1.517 2169 - 2922 - 3936 14.81 39.2

Autumn 0.990 - 1.274 - 1.639 2568 - 3305 - 4254 12.48 35.31
2013 Spring 1.327 - 1.614 - 1.963 3444 - 4187 - 5093 9.66 34.58

Autumn 1.172 - 1.393 - 1.654 3043 - 3613 - 4292 8.58 50.10
2014 Spring 1.458 - 1.734 - 2.064 3782 - 4500 - 5354 8.66 47.94

Autumn 1.333 - 1.695 - 2.156 3458 - 4399 - 5595 11.86 32.84
2015 Spring 1.176 - 1.746 - 2.593 3051 - 4531 - 6729 19.70 36.58

Autumn 1.342 - 1.705 - 2.164 3483 - 4423 - 5616 11.77 32.45
2016 Spring 1.445 - 1.728 - 2.068 3749 - 4485 - 5365 8.82 32.15

746

747
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748 Legends to Figures

749

750 Figure 1.  Study area in central southern England showing randomised locations of the Idealised 

751 Transect Routes (ITRs) for the first survey of Common Buzzards Buteo buteo in autumn 2011. 

752 Shading represents urban areas. 

753

754

755 Figure 2. Estimates of Common Buzzard Buteo buteo population size within the study area in central 

756 south England for each survey period between autumn 2011 and spring 2016 (± 95% confidence 

757 intervals).

758

759

760

761
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Figure 1.  Study area in central southern England showing randomised locations of the Idealised Transect 
Routes (ITRs) for the first survey of Common Buzzards Buteo buteo in autumn 2011. Shading represents 

urban areas. 
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Figure 2. Estimates of Common Buzzard Buteo buteo population size within the study area in central south 
England for each survey period between autumn 2011 and spring 2016 (± 95% confidence intervals). 
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