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Abstract
At the Met Office, dynamic ensemble forecasts from the Met Office Global and
Regional Ensemble Prediction System (MOGREPS-G), the European Centre for
Medium-Range Weather Forecasts Ensemble (ECMWF ENS) and National Cen-
ters for Environmental Prediction Global Ensemble Forecast System (NCEP
GEFS) global ensemble forecast models are post-processed to identify and track
tropical cyclones. The ensemble members from each model are also combined
into a 108-member multi-model ensemble. Track probability forecasts are pro-
duced for named tropical cyclones showing the probability of a location being
within 120 km of a named tropical cyclone at any point in the next 7 days, and
also broken down into each 24-hour forecast period. This study presents the ver-
ification of these named-storm track probabilities over a two-year period across
all global tropical cyclone basins, and compares the results from basin to basin.
The combined multi-model ensemble is found to increase the skill and value
of the track probability forecasts over the best-performing individual ensemble
(ECMWF ENS), for both overall 7-day track probability forecasts and 24-hour
track probabilities. Basin-based and storm-based verification illustrates that the
best performing individual ensemble can change from basin to basin and from
storm to storm, but that the multi-model ensemble adds skill in every basin,
and is also able to match the best performing individual ensemble in terms of
overall probabilistic forecast skill in several high-profile case-studies. This study
helps to illustrate the potential value and skill to be gained if operational tropical
cyclone forecasting can continue to migrate away from a deterministic-focused
forecasting environment to one where the probabilistic situation-based uncer-
tainty information provided by the dynamic multi-model ensembles can be
incorporated into operational forecasts and warnings.
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1 INTRODUCTION

In dynamic ensemble forecasting, instead of making a
single forecast of the most likely weather conditions, a
forecast model is run multiple times to produce an ensem-
ble of forecasts. These ensemble forecasts take into account
uncertainty in the initial conditions and imperfections in
the model formulation, and aim to give an indication of
the range of possible future states of the atmosphere. For
over 25 years, these dynamical ensemble model forecasts
have been routinely produced by several global numeri-
cal weather prediction modelling centres, including the
European Centre for Medium-Range Weather Forecasts
Ensemble (ECMWF ENS: Palmer, 2019), the National Cen-
ters for Environmental Prediction Global Ensemble Fore-
cast System (NCEP GEFS: Toth and Kalnay, 1997) and
the Met Office Global and Regional Ensemble Prediction
System (MOGREPS-G: Bowler et al., 2008).

These ensemble forecast models have an important
role to play in tropical cyclone forecasting, through their
ability to highlight the situation-dependent uncertainty
and provide probabilistic forecast information to help
inform decision makers. Consequently, many global mod-
elling centres produce tropical cyclone track forecasts from
their ensemble forecast models, develop ensemble tropical
cyclone forecast products, verify these forecasts, and share
the forecast track data via the TIGGE (The International
Grand Global Ensemble) cyclone exchange programme
(Swinbank et al., 2016). Several studies have shown the
benefits of dynamic ensemble forecasting for both exist-
ing tropical cyclones (e.g. Dupont et al., 2011; Yamaguchi
et al., 2012; Du et al., 2016; Leonardo and Colle, 2017;
Zhang and Yu, 2017), and for providing probabilistic infor-
mation about tropical cyclone genesis (e.g. Yamaguchi
et al., 2015; Yamaguchi and Koide, 2017). However, a
recent survey among operational tropical cyclone forecast-
ers (Titley et al., 2019) showed that although ensemble
forecasts are used and valued by almost all forecasters, the
deterministic-focussed forecasting environment has often
limited the extent to which the full probabilistic informa-
tion provided by ensembles has been pulled through into
operational tropical cyclone forecasts and warnings.

Objectively identifying the forecast track of each
ensemble member is essential both for post-event model
evaluation and for the generation of forecast guidance
products in real time. Various tracking techniques are
used by operational centres around the world (Vitart and
Stockdale, 2001; Van der Grijn, 2002; Tallapragada et al.,
2013) and in research (Hodges, 1995). At the Met Office,
a bivariate (850 hPa relative vorticity and mean sea-level
pressure) tropical cyclone tracker known as MOTCTracker
(Heming, 2017) is run in real time on the Met Office
MOGREPS-G ensemble, and the tracks are made available

to Regional Specialised Met Centres (RSMCs) and via the
research TIGGE cyclone CXML archive.

Although ensemble forecasts are a good way of assess-
ing forecast uncertainty, they are limited to the uncertainty
captured by a specific modelling system, and there is a
tendency for single-model ensembles to be under-spread,
with the observations too often falling outside of the range
of solutions. A multi-model ensemble approach, where
dynamic ensemble systems from multiple centres are com-
bined together into a grand multi-centre ensemble (there-
after called multi-model ensemble), can help address this
shortcoming and provide a more complete representation
of the uncertainty in the model structure, also potentially
reducing the errors. The rationale behind multi-model
ensemble forecasting was summarised by Hagedorn et al.
(2005) who stated that “the key to the success of the
multi-model concept lies in combining independent and
skilful models, each with its own strengths and weak-
nesses”. Several studies have demonstrated that probabilis-
tic forecast skill and reliability can be improved through
the use of multi-model ensembles, including Park et al.
(2008), Johnson and Swinbank (2009), Hagedorn et al.
(2012), Hamill (2012) and Matsueda and Nakazawa (2015).

The application of a grand combined multi-model
ensemble approach in tropical cyclone forecasting is a nat-
ural extension of the “consensus” forecasting approach
that has been a valuable cornerstone of tropical cyclone
track and intensity forecasting for many years, where
traditionally three or more deterministic forecasts have
been combined or averaged into a “consensus” forecast
and also used to give a prediction of likely forecast error
(e.g. Goerss, 2000; 2007; Sampson et al., 2008; Goerss
and Sampson, 2014; Yamaguchi et al., 2017). The process
of combining together several ensemble forecast mod-
els into a multi-model ensemble combines the strengths
of the consensus and ensemble approaches, by pulling
through the full probabilistic forecast information from
several dynamic ensembles and model formulations into
multi-model ensemble probability forecasts.

At the Met Office, in order to produce real-time
multi-model ensemble tropical cyclone products, MOTC-
Tracker is also run in real time on the direct input data
from the ECMWF ENS and NCEP GEFS ensembles. The
ensemble forecast tracks from the ensemble members
from these models are combined with the Met Office
MOGREPS-G ensemble tracks, to create a 108-member
multi-model ensemble. The three corresponding deter-
ministic models (the Met Office Unified Model, the
ECMWF IFS, and the NCEP GFS model) are also tracked.
A range of products, including track and intensity fore-
casts for both named and developing tropical cyclones,
are produced and used by forecasters in the Met Office
Global Guidance Unit. An example of the track and track
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F I G U R E 1 Multi-model ensemble forecasts for Typhoon Kong-rey from 0000 UTC 30 September 2018: Tracks coloured according to
model (left), and multi-model ensemble track probability with deterministic (solid) and ensemble mean (dashed) tracks (right)

probability products produced for named tropical cyclones
from the multi-model ensemble is shown in Figure 1 for
Typhoon Kong-rey. The products are also distributed to
several operational tropical cyclone forecasting centres,
including the RSMCs in Miami and La Réunion. The
tracks and track probabilities from each of the ensembles
and the multi-model ensemble are also displayed in the
Met Office Global Hazard Map (Robbins and Titley, 2018),
where they can be viewed alongside the associated wind
and rain hazard information, and overlain on vulnerability
and exposure fields.

To fully assess the skill and value of the multi-model
ensemble tropical cyclone forecasts produced at the Met
Office, a framework to produce objective verification of
named tropical cyclone track probability forecasts has
been developed, the results of which are presented in this
article. Previous studies evaluating named tropical cyclone
track probability forecasts using multi-model ensembles
have focussed on only one or two Northern Hemisphere
basins, e.g. Majumdar and Finocchio, 2010 (North Atlantic
and Northwest Pacific); Yamaguchi et al., 2012 (Northwest
Pacific); and Leonardo and Colle, 2017 (North Atlantic).
In this article the verification results are analysed for
all named tropical cyclones in all tropical cyclone basins
around the globe during 2017 and 2018, and then split into
each basin in order to compare the absolute and relative
performance of the ensembles across basins. Storm-based
verification results have also been calculated for some
high-profile tropical cyclones in order to compare the
results from storm to storm.

The key questions addressed by this article are:

• How do forecast performance and characteristics vary
between the global ensembles, and with lead time?

• Is there benefit in terms of probabilistic forecast skill,
reliability and value, from combining the three global
ensembles into a multi-model ensemble?

• Does using the full probability forecast information via
the multi-model ensemble add skill compared to a “con-
sensus” forecast of the parent deterministic models?

• When comparing basin to basin, does forecast perfor-
mance vary, both overall compared to a reference con-
sensus forecast, and relatively between the different
ensembles?

• When comparing storm to storm, how does forecast per-
formance vary, and what does it tell us about the benefit
of multi-model ensembles?

The verification framework and methodology are
described in Section 2. Section 3 presents the results,
split into three sections: (a) 7-day (“overall”) track prob-
ability forecast results, (b) 24-hour track probability fore-
cast results, and (c) storm-specific verification results for
two high-profile North Atlantic hurricanes. Section 4 pro-
vides a discussion, focussed around the implications of
the results for operational forecasters, decision-makers,
and model developers, while Section 5 states some key
conclusions and ideas for future work.
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2 VERIFICATION
METHODOLOGY

The three ensembles tracked in real time at the Met Office
using MOTCTracker (Heming, 2017), and included in
the multi-model ensemble products, are MOGREPS-G (24
members until 11 July 2017, then 36 members thereafter),
ECMWF ENS (51 members) and NCEP GEFS (21 mem-
bers). The ensemble forecast tracks from the three ensem-
bles are combined to create a 108-member multi-model
ensemble (96 members until 11 July 2017), with each
individual member from each ensemble equally weighted
when creating the track probability forecasts. The track
probability forecasts are calculated for named tropical
cyclones from each of the three global ensembles, and the
combined multi-model ensemble, both for the next 7 days
(with no lead time component, to directly verify the fore-
cast product shown in Figure 1 – henceforth described as
the “overall” track probability), and for 24-hour forecast
periods out to 7 days (in order to evaluate the change in
performance over different lead times). Track probabilities
are defined as the probability of the named tropical cyclone
passing within 120 km of each grid point in the given
time period using the commonly used “strike probability”
definition first defined in Van der Grijn et al. (2004). In
this article the term track probability is preferred, because
a tropical cyclone is a large weather system that can also
“strike” and lead to impacts further away than 120 km
from the centre of the storm track, for example from storm
surges, flooding, and extreme winds including tornadoes.
Thus the term “strike probability” could be misleading to
the public as it could falsely imply that those areas out-
side of 120 km from the centre of the cyclone will not be
impacted. Tropical cyclone genesis (storms that are fore-
cast to form during the forecast) is not included in the ver-
ification in this article. Observed track data are collected
routinely at the Met Office from Global Telecommunica-
tions System (GTS) bulletins from the RSMCs, tropical
cyclone warning centres, and the Joint Typhoon Warn-
ing Center (used if no track is available from the RSMC),
to accumulate observed tropical cyclone positions for all
named storms to verify the forecasts. The mean track or
“consensus” of the three deterministic model tracks is cal-
culated and used as the reference forecast to fully assess
the forecast skill.

Since 2015 the verification has been produced bian-
nually, at the end of the Northern and Southern Hemi-
sphere seasons, for tropical cyclones in all global basins
over the previous 12 months, in order to evaluate the most
recent configurations of each ensemble. This study verifies
a 2-year period (January 2017 to December 2018), in order
to increase the sample of cases, whilst ensuring the model
configurations are still relatively recent.

For each of the named tropical cyclones in the study
period, the following steps are carried out in the overall
track probability verification process:

1. All observed positions for this storm are read in and the
observations are included from the first time period that
it has an observed intensity of greater than 34 knots to
the last time that it exceeds this value. This ensures that
only tropical cyclones that reach tropical storm strength
or greater are verified, and that for the included
storms, all observations in between these two times are
included even if the intensity dips below this threshold
in between.

2. A storm-specific verification grid is created for the area
covered by the storm track at a resolution of 0.5◦.

3. For each of the 0000/1200 UTC forecast run times at
which this tropical cyclone was named, a track proba-
bility gridded data file is calculated for the observations,
the reference consensus forecast, and each forecast
model. For the observation data this is a file contain-
ing 1's (for grid points which fall within 120 km of the
observed track of the storm over the next 7 days), and 0's
(those that do not). To create the reference consensus
forecast, the mean of the three deterministic forecast
tracks is calculated, and a file created containing 1's (for
grid points which fall within 120 km of the consensus
track of the storm over the next 7 days), and 0's (those
that do not). For the ensemble forecast models, each
grid point contains a probability value between 0 and 1,
calculated by counting how many members have fore-
cast tracks for this storm that lie within 120 km of that
point at some point between T+0 and T+168 h, and
dividing by the number of ensemble members.

4. For the forecast model data (consensus and ensemble
forecasts), the forecasts are only included up to the last
time that a matching observation is available. Therefore
this verification is focussed on the ability of the mod-
els to predict the future track position of the tropical
cyclone while it is at tropical storm strength or above,
rather than on the ability of the models to weaken and
dissipate the storm at the same time as shown in the
observations, as in practice the point at which the fore-
cast tracks end is highly dependent on the choice of
thresholds for dissipation in the storm tracker.

5. As many forecast runs do not have a full 7 days of
matching observed tracks to verify against, there are
a considerably smaller overall sample size of tracks
verifying at day 7 than at day 1. To prevent the over-
all track probability verification from being dominated
by the verification of shorter lead-time forecasts, which
are not so relevant for society given that important deci-
sions such as evacuations generally need to be made on
forecasts of two or more days, only those forecast runs
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where there are matching observed tracks for T+48 or
longer are included.

A similar process is then followed to verify for each
24-hour period from T+0–T+24 through to T+144–T+168.
In this case however, the forecasts are verified at the
basin-scale, again to replicate the forecast product, which
is a basin-based animation of the track probability fore-
casts for every 24-hour period.

Gridded verification is then carried out comparing
the track probability forecast data with the correspond-
ing observed data. A range of probabilistic verification
statistics are calculated to assess the skill, reliability
and value of the ensemble forecasts. These include the
Relative Operating Characteristic (ROC), reliability dia-
grams, relative economic value and Brier skill score
(BSS), as described in Jolliffe and Stephenson (2012), and
summarised below:

• The ROC plot assesses the skill of the forecast at dis-
criminating between events and non-events. The points
along the curve are the hit rates and false alarm rates for
each probability bin. Perfect skill would produce a curve
from bottom left to top left to top right, and no skill is
indicated by the diagonal line from (0,0) to (1,1).

• Reliability diagrams display how well the predicted
probabilities correspond to their observed frequen-
cies. Perfect reliability would be a diagonal line
from (0,0) to (1,1), a line above the diagonal indi-
cates under-forecasting and below the diagonal shows
over-forecasting, while a line which falls below the diag-
onal for high probabilities and above it for low probabil-
ities exhibits over-confidence (Wilks, 2011).

• For a given user, their cost-loss ratio is the term given
to the ratio of the cost of a preventative measure to
the loss averted, and can be used to guide the prob-
ability threshold above which to take action. At each
probability threshold there will be a 2x2 contingency
table containing the number of hits, false alarms, misses
and correct rejections. Assuming the user takes action
whenever an event is forecast, then a cost (C) can be
associated with the hits and false alarms and a loss (L)
associated with the misses. The relative economic value
can then be calculated for a range of cost-loss ratios and
visualised using a relative economic value plot which
displays the relative improvement in economic value
between the sample climatology and a perfect forecast
for all cost-loss ratios (Richardson, 2000). The relative
economic value is a useful additional user-focussed
measure for comparing forecasts. In practice the user's
cost-loss ratio may be difficult to determine and may
have to be estimated; however, if one forecast consis-
tently has higher value than another forecast across all

cost-loss ratios then it clearly has greater value for any
user.

• The BSS assesses the relative skill of the probabilistic
forecast over that of a reference forecast in terms of
predicting whether an event occurred. A score of 0 indi-
cates no skill when compared to the reference forecast
and a score of 1 would be a perfect score. In this arti-
cle the reference forecasts are the mean or consensus
track from the three deterministic forecasts. This is a
deliberately challenging reference forecast compared to
climatology-based reference forecasts, and the implica-
tions of this are discussed in Section 4.

Verification statistics are produced for all tropical
cyclones, and then are also split into six global basins to
allow for an inter-region comparison, as shown in Figure 2.

3 RESULTS

3.1 Overall track probability forecasts
for named tropical cyclones

During the verification period of January 2017 to Decem-
ber 2018, 130 named tropical cyclones across the six basins
had at least one forecast run where the verification criteria
were met and all forecast data were available (24 in NAT,
25 in NEP, 41 in NWP, 7 in NI, 15 in SWI and 18 in AUS, as
shown in Figure 2). Overall this two-year period had close
to the average number of named tropical cyclones per year,
with above-average activity in the North Atlantic basin,
and below-average activity in the Southern Hemisphere.

The ROC plot in Figure 3 shows excellent skill for
all models; the multi-model ensemble has the largest
ROC area (0.985), followed by ECMWF ENS (0.967),
MOGREPS-G (0.956) and NCEP GEFS (0.925). All of the
models have very low false alarm rates for the majority
of forecast probabilities, while the corresponding hit rates
vary more significantly across the forecast probabilities.
Figure 4 indicates that all models show good reliability,
particularly ECMWF ENS and the combined multi-model
ensemble. MOGREPS-G and NCEP GEFS are slightly
over-confident, with the line falling above the diagonal
for low probabilities and below it for higher probabilities.
Over-confident reliability diagrams are a common char-
acteristic of ensemble forecasts and are characteristic of
an under-spread in the ensemble. So when a high track
probability is predicted the ensemble member forecast
tracks are sometimes too closely clustered, and the trop-
ical cyclone track probability is less likely than forecast,
but when a low probability is forecast the ensemble mem-
bers are again too closely clustered and so the probability
should sometimes be a bit higher.
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F I G U R E 2 The six tropical cyclone basins verified in this study, and the number of named tropical cyclones included in the
verification in each basin in the study period (2017 and 2018)

F I G U R E 3 ROC plot showing the hit rate and false alarm
rate at each probability threshold, for the overall track probability
forecasts from the three individual ensembles (MOGREPS-G,
ECMWF ENS and NCEP GEFS) and the combined multi-model
ensemble

Figure 5 demonstrates that the combined multi-model
ensemble has the greatest relative economic value for all
cost-loss ratios, with the multi-model ensemble curve fully
encompassing the curves of the three individual models.
All models show the greatest relative economic value for
low cost-loss ratios (0–0.2) where the loss associated with
an event is significantly greater than the cost of acting
to mitigate against it when forecast. This is a promising
result as although the cost-loss ratios vary for different
forecast users, tropical cyclones tend to be associated with
low cost-loss ratios due to the severity of their associated
hazards and potential impacts.

F I G U R E 4 Reliability diagram for the overall track
probability forecasts for the three individual ensembles
(MOGREPS-G, ECMWF ENS and NCEP GEFS) and the combined
multi-model ensemble. The number of forecasts (grid points) in
each bin is also indicated by bars along the x-axis

The BSS, calculated using the consensus of the deter-
ministic models as the reference forecast, is displayed
in Figure 6, both for all named tropical cyclones, and
split into their relevant basins. Although the absolute and
relative performance of the individual ensembles varies
from basin to basin, the combined multi-model ensem-
ble has the largest BSS across all basins, showing that the
multi-model ensemble adds forecast skill in every basin.
The strongest performing individual ensemble is ECMWF
ENS in all basins except the Southwest Indian where NCEP
GEFS has the largest BSS of the individual ensembles. The
relative performance of MOGREPS-G and NCEP GEFS
varies between basins.
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F I G U R E 5 Relative economic value plot displaying the
relative economic value at each cost-loss ratio for the overall track
probability forecasts from the three individual ensembles
(MOGREPS-G, ECMWF ENS and NCEP GEFS) and the combined
multi-model ensemble

3.2 Track probability forecasts
for named tropical cyclones over each
24-hour forecast period

To illustrate the changes in forecast characteristics and
performance against lead time, the reliability diagrams

and relative economic value plots shown in Figures 7
and 8 display the 24-hour track probability centred on six
lead times from T+24 to T+144. The reliability diagrams
(Figure 7) all exhibit some degree of over-confidence in
the forecasts, which varies with model and lead time. The
lowest probability bin is slightly above the diagonal (as
there are some forecasts where the forecasts are confident
there will be no tropical cyclone and in fact the tropi-
cal cyclone does track that way), but this is not visible
by eye due to the very large numbers of correct near-zero
probabilities. The other probability bins are below the
diagonal, where the forecasts are over-forecasting the trop-
ical cyclone track probability. At T+24 (Figure 7a) there is
good reliability for all models, but at the higher probabil-
ity bins (>0.5), the advantage of the multi-model ensemble
is evident compared to the three individual ensembles,
which all show a similar degree of over-confidence. As
lead time increases, reliability begins to decrease in the
NCEP GEFS and MOGREPS-G ensembles, while ECMWF
ENS, and especially the multi-model ensemble, maintain
very good reliability particularly at probabilities greater
than 0.4 at T+72 and T+96 (Figure 7c,d). MOGREPS-G
and NCEP GEFS are showing significant over-confidence
by T+120 (Figure 7e), indicating that these models are
significantly under-dispersive in their five-day track fore-
casts. At T+120, the multi-model ensemble remains the
most reliable at probabilities less than 0.8. This is an
important result, as it shows that MOGREPS-G and NCEP
GEFS, despite being significantly under-dispersive by this
point, are still adding benefit to the ECWMF ENS in the
multi-model ensemble at most forecast probabilities. How-
ever, at this lead time and in particular at T+144 (Figure 7f)

F I G U R E 6 BSS for the overall
track probability forecasts for all named
tropical cyclones (left) and for named
tropical cyclones in each of the
individual six basins, for each individual
ensemble and the multi-model
ensemble. The reference forecast used in
the skill score calculation is the
consensus (mean) track of the three
deterministic forecasts
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there are far fewer cases in the higher probability bins,
leading to more noisy results.

In Figure 8, nearly all cost-loss ratios (0–0.9) have
relative economic value at T+24 (Figure 8a). The peak
value is at low cost-loss ratios, with approximately 0.9 rel-
ative economic value for a cost-loss ratio of 0–0.1. As lead
time increases there is a gradual drop in value, particularly
in the higher cost-loss ratios, but even by T+144 significant
value still remains at 0–0.1 cost-loss ratios (Figure 8f). At
all lead times the multi-model ensemble value curve fully
encompasses those for the individual ensembles. Out to
T+72 (Figure 8c) the value of the multi-model ensemble
is significantly greater than any of the individual ensem-
bles, but by T+120 (Figure 8e) the value for the ECMWF
ENS is noticeably greater than the other two ensem-
bles, and closer to the value shown by the multi-model
ensemble.

The area under the ROC curve (AUC) values are shown
against lead time in Figure 9. The AUC decreases with
lead time for all models. The multi-model ensemble main-
tains an AUC of over 0.93 at all lead times, whereas the
AUC score for the individual ensemble decreases more sig-
nificantly with lead time (in particular for NCEP GEFS).
The Brier skill score (BSS) results in Figure 10 show
that the skill of the 24-hour track probability forecasts
varies with lead time in each basin, with the skill com-
pared to the deterministic consensus forecast rising with
increasing lead time. This is as expected, and shows that
the benefit of probabilistic forecasts over a consensus of
deterministic forecasts becomes greater as the forecast lead
time increases. When all tropical cyclones are included,
irrespective of the basin (the light green line in Figure 10),
the multi-model ensemble probabilistic forecasts show
positive skill over the multi-model consensus from T+60
onwards. However, this hides big differences between the
basins. In the North Atlantic and North East Pacific basins
the BSS is positive throughout and rise to a value of 0.3 by
T+156. In the Northwest Pacific basin the BSS is positive
from T+48 onwards. However, in the North Indian Ocean,
the Southwest Indian Ocean and the Australian basins,
the BSS stays negative throughout, showing that in these
basins the ensembles are not adding skill to the consensus
reference forecast for the 24-hour track probability fore-
casts in this study period. The negative BSS for these basins
in their 24-hour track probability forecasts is in contrast
to the positive BSS in their overall 7-day track probabil-
ity forecasts that was shown in Figure 6, and highlights
that the 7-day verification is more forgiving of along-track
errors. It is also worth noting that these are also the three
basins where the sample size of storms is the smallest.
A case-by-case assessment of the tropical cyclones in the
worst-performing SWI basin reveals that the deterministic
errors were relatively low compared to previous seasons,

making the consensus reference forecast hard to beat for
this sample of storms.

3.3 Verification for two high-profile
tropical cyclones

Figure 11 compares the BSS for the storm-based verifi-
cation of two high-profile tropical cyclones in the North
Atlantic basin: Hurricane Matthew in 2016 and Hurricane
Irma in 2017. For each storm a different individual ensem-
ble displays the highest skill (MOGREPS-G for Matthew
and ECMWF ENS for Irma), illustrating that even within
the same basin, the strongest performing individual
ensemble varies from storm to storm, rather than one
ensemble always being the most skilful in a given basin. In
both cases, the multi-model ensemble shows comparable
forecast skill to the strongest performing model. Figure 12
shows one of the forecasts included in the storm-based ver-
ification in each case, illustrating the strong performance
of MOGREPS-G for Matthew and ECMWF ENS for Irma.
For Hurricane Matthew, the MOGREPS-G ensemble was
the first model to give a strong signal for the storm to track
just off the Florida coast with an eventual landfall in South
Carolina. For Hurricane Irma, the ECMWF ensemble was
the only ensemble to contain the observed track in the
ensemble track spread in the early forecast runs. At the
time of the forecast it is not known which of the individual
ensemble forecast models will have the greatest forecast
skill for that particular storm, and so the key result here is
that in both cases the multi-model ensemble probability
forecasts were able to provide equivalent forecast skill to
the best performing individual ensemble forecasts.

4 DISCUSSION

In Section 1, five key questions were laid out to be
addressed by the probabilistic evaluation of tropical
cyclone track probability forecasts in this study. This dis-
cussion section is organised to answer these questions, and
draw out the key implications from these:

• How do forecast performance and characteristics vary
between the global ensembles, and with lead time?

All ensembles exhibit good reliability and value in
the named tropical cyclone track probability forecasts,
particularly at low cost-ratios. This shows how the proba-
bility forecasts have huge potential to be useful to decision
makers and downstream users of tropical cyclone fore-
casts, who will often have low cost-loss ratios due to high
potential losses to property and personal safety, compared
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F I G U R E 7 Reliability diagrams for 24-hour track probability forecasts for all named storms for each individual ensemble and the
multi-model ensemble, for 24-hour periods centred on (a) T+24, (b) T+48, (c) T+72, (d) T+96, (e) T+120 and (f) T+144

to the cost of mitigative efforts such as putting up shutters
or evacuating. It highlights the importance of initiatives to
increase the pull-through of probabilistic situation-based
uncertainty information into operational warnings, such
as the collaboration through the WMO HIWeather project
that is discussed in Titley et al. (2019).

The best performing of the three individual ensem-
bles included in the study, in terms of the verification
statistics presented for tropical cyclone track probability
forecasts, is the ECMWF ENS, followed by MOGREPS-G
and NCEP GEFS, which are both over-confident in their
track probability forecasts, indicating the known tendency
of these models to be under-dispersive. There are many
differences between the three ensemble forecast systems,
including differences in data assimilation influencing
both the initial conditions of the storm itself and the
wider environmental steering flow, the model formula-
tion, and the ensemble perturbation strategies. The rel-
ative contribution of perturbations from an ensemble of
data assimilations, singular vectors, and stochastic model
perturbations to ECMWF ENS track spread was presented
in Lang et al. (2012). Benefits of the ECMWF ENS per-
turbation strategy includes the ability to target singular
vectors on tropical cyclones, and an enhanced ability to
be able to tune perturbations to give improved spread and

reliability, compared with the perturbation schemes in the
other ensembles.

In the verification of the track probability forecasts
for each 24-hour period, all models were shown to be
over-confident in their track probability forecasts, but
this became much more pronounced at longer lead times
for MOGREPS-G and NCEP GEFS, where the higher
probabilities were forecast far too often compared to the
observed frequency. These results are important to model
developers as they show the importance of increasing the
ensemble spread in the MOGREPS-G and NCEP GEFS
ensembles. In MOGREPS-G, a major upgrade was sched-
uled to go live in autumn 2019 to try to address this issue.
The ensemble perturbation system will be changed from
Ensemble Transform Kalman Filter (ETKF) to an ensem-
ble of data assimilations (En-4D-En-Var: Bowler et al.,
2017). In the new system, data assimilation is performed
for each member, creating increments relative to its own
background trajectory. A partial re-centring around the
deterministic analysis gives an additional increase in skill
and reduces jumpiness. Comparative trials of the new
En-4D-En-Var ensemble have shown faster spread growth
across many variables including 850 hPa wind speed in
the tropics, with a much better match to observed errors.
The ensemble trials have also been processed through
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F I G U R E 8 Relative economic value curves for 24-hour track probability forecasts for all named storms for each individual ensemble
and the multi-model ensemble, for 24-hour periods centred on (a) T+24, (b) T+48, (c) T+72, (d) T+96, (e) T+120 and (f) T+144

F I G U R E 9 The AUC for each
individual ensemble and the
multi-model ensemble, for the 24-hour
track probability forecasts centred on
each forecast range
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F I G U R E 10 BSS for the
multi-model ensemble, for all storms (in
green) and split into the six tropical
cyclone basins, for the 24-hour track
probability forecasts centred around
each forecast range

F I G U R E 11 Example
storm-specific verification for all forecast
runs of (a) Hurricane Matthew (2016) and
(b) Hurricane Irma (2017): Brier skill
score for MOGREPS-G, ECMWF ENS,
NCEP GEFS and multi-model ensemble
forecasts (reference forecast in this
verification is the sample climatology)

the tropical cyclone tracking and post-processing system,
and show a significant improvement in track spread at
all lead times. Meanwhile at NCEP a new version of the
deterministic Global Forecast System (GFS) with a new
Finite-Volume Cubed-Sphere Dynamical Core (FV3) went
operational in June 2019. The potential of this new model
to improve hurricane forecast performance was described
by Chen et al. (2019), who showed the improved perfor-
mance in re-runs of the active 2017 Atlantic hurricane
season. The FV3 dynamical core will be implemented
into the GEFS ensemble in 2020, in an upgrade that will
also see improved stochastic physics and an increase in
ensemble members. The ECMWF ENS also continues to be
upgraded, with IFS Cycle 46r1 implemented in June 2019,
including a data assimilation upgrade which improves the
initial conditions of the ensemble forecasts. Additional
work to improve the tropical cyclone intensity forecasts in
the ECMWF ENS is described in Magnusson et al. (2019).
The track probability verification described in this article

will continue to run every 6 months to verify the three
ensemble models and their combined multi-model ensem-
ble to investigate the impact of these model upgrades on
the skill of tropical cyclone track probability forecasts.

• Is there benefit in terms of probabilistic forecast skill,
reliability and value, from combining the three global
ensembles into a multi-model ensemble?

As established in the introduction, the rationale of
multi-model ensemble forecasting lies in combining inde-
pendent and skilful models, each with its own strengths
and weaknesses. The evaluation in this article clearly
shows that additional forecast skill and value can be gained
from combining the members from the three individ-
ual ensembles included in this study into a multi-model
ensemble. The three ensembles have different data
assimilation strategies, model formulations and ensemble
perturbation schemes, that when combined together are
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F I G U R E 12 Ensemble member tracks from one of the forecast runs included in the verification of each case: (a) 1200 UTC 2 October
2016 forecast for Hurricane Matthew; (b) 0000 UTC 1 September 2017 forecast for Hurricane Irma. Tracks are coloured according to model
(green = MOGREPS-G, blue = ECMWF ENS and pink = NCEP GEFS)

shown to collectively provide more realistic estimates of
tropical cyclone track probabilities. In the overall track
probability verification, the relative economic value curve
of the multi-model ensemble fully encompasses that of
the individual ensembles, and in the verification for each
24-hour period it is particularly noteworthy that the AUC
decreases more significantly with lead time in the indi-
vidual ensembles compared to the multi-model ensemble.
This illustrates that the amount of potential forecast skill
to be gained from using a multi-model ensemble to derive
your track probabilities increases significantly with fore-
cast lead time. This finding is important for operational
tropical cyclone forecasters, forecast centre managers, and
numerical weather prediction centres, showing the impor-
tance of improving access to multiple ensemble forecast
model forecasts in order to allow multi-model ensemble
information to be used in the operational tropical cyclone
forecasting process.

• Does using the full probability forecast information via the
multi-model ensemble add skill compared to a “consen-
sus” forecast of the parent deterministic models?

The choice of reference forecast is crucial in the Brier
Skill Score (BSS) calculation, as the BSS measures the
improvement of the probabilistic forecast relative to a ref-
erence forecast. This forecast reference is often calculated
from the sample climatology, or, in the case of tropical
cyclone forecasts, from a combined climatology and per-
sistence forecast (CLIPER: Knaff et al., 2003). However,

in order to be more relevant for the current common
forecasting practice of establishing a consensus forecast,
and in order to provide a more skilful and challenging ref-
erence for the ensemble probabilities to be compared to,
a consensus forecast based on the mean track of the three
parent deterministic models was created and used as the
reference in the BSS calculation. The BSS for the overall
7-day track probability skill scores shows positive skill for
all of the ensemble forecast models in all basins when com-
pared to the reference consensus track, with the BSS being
highest for the combined multi-model ensemble. This
shows the added benefit to be gained in operational trop-
ical cyclone track forecasting if the full probability infor-
mation provided by the ensembles can be pulled through
into operational warnings, as has begun to happen with
the incorporation of dynamic uncertainty information in
warning products from several centres including RSMC La
Réunion and RSMC Tokyo (Titley et al., 2019). When the
track probability verification is split into 24-hour periods
it is harder to beat the consensus reference, particularly at
short lead times, but the BSS increases with forecast range,
showing the increasing value of ensemble prediction over
consensus forecasting with lead time. Overall there is pos-
itive forecast skill from T+60 onwards. The BSS was also
calculated for the 24hour track probability verification
using the sample climatology (not shown) and showed
the reverse pattern, with the highest BSS (0.6) at shorter
lead times, slowly decreasing with forecast range. This is
to be expected since the sample climatology reference has
no forecast capability, whereas the consensus has a very
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strong forecast capability at short range which reduces
with increasing lead time. This illustrates how important
it is to be clear about the implications and rationale of
selecting a particular reference forecast.

• When comparing basin to basin, does forecast perfor-
mance vary, both overall compared to a reference consen-
sus forecast, and relatively between the different ensem-
bles?

In the overall track probability forecasts BSS results
(Figure 6), the combined multi-model ensemble has the
largest BSS of all the models, and varies between 0.25
and 0.4 with each basin, showing that the multi-model
ensemble is adding skill in every basin. The strongest per-
forming individual ensemble is ECMWF ENS in all basins
except the SWI basin where NCEP GEFS has the high-
est skill. The relative performance of MOGREPS-G and
NCEP GEFS varies between basins, with MOGREPS-G
performing well in the NAT, NWP and AUS basins, and
NCEP GEFS performing well in the SWI and NEP basins.
This result would provide useful guidance to operational
tropical cyclone forecasters in these regions, as it pro-
vides a breakdown of the current levels of performance
of each model in their area of interest, and confirms that
all areas would see additional value in computing track
probability forecasts from multi-model ensemble forecast
data. It is also of interest to model developers, who could
investigate why their model performs better relatively
for tropical cyclones in one basin over another, leading
to potential ideas on how to improve forecast skill. As
discussed earlier, each model has different perturbation
strategies and data assimilation schemes, with differences
in which observations are included (including differ-
ences in quality-control systems and in the assimilation
of RSMC tropical cyclone observations, known as boguss-
ing, which is not currently carried out at ECMWF). These
results show that some aspects of each model system may
be better suited to one region over another, and further
investigations including the implications of a tropical
cyclone being in a data-rich vs. data-poor area may lead to
further insights and improvements in the model forecasts.

The inter-basin comparison of BSS using the 24-hour
track probability forecasts centred on each lead time
(Figure 10) reveals large differences from basin to basin
in the skill compared to the consensus reference forecast,
with positive skill in the NAT, NWP and NEP, but not in
the NI, SWI or AUS basins. This emphasises that the tra-
ditional deterministic consensus is hard to beat in regions
where the tracks of the named storms in the study period
are well forecast by the deterministic models. The lower
BSS for the 24-hour track probability forecasts highlights
the need to focus on improving the ensemble forecasts
for the translation speed of the storm, as the results

when splitting the track probability forecasts in to 24-hour
periods will be impacted by along-track errors in addition
to the cross-track errors, whereas the cross-track errors are
the most influential factor in the overall 7-day track proba-
bility results. Although forecast users predominantly need
to know whether or not they will be impacted by a hur-
ricane rather than when, the timings are also important
in forecast preparedness activities, and future verification
could investigate the relative along- and cross-track errors
in the ensemble vs. the deterministic consensus.

• When comparing storm to storm, how does forecast per-
formance vary, and what does it tell us about the benefit
of multi-model ensembles?

Although when averaged across all tropical cyclones
the ECMWF ENS is clearly currently the most skilful of the
individual ensembles, the case-study analysis in Figure 11
showed that in a particular case this will not always
hold true. Sometimes a different model is more skilful
in a particular storm (as in the case for MOGREPS-G for
Hurricane Matthew). At the time of the live forecasts,
operational forecasters will not know which individual
model is destined to be the most skilful for that storm,
and therefore the result showing that the multi-model
ensemble skill matches that of the strongest performing
individual ensemble is an important result, and clearly
illustrates the benefit of combining the ensemble mem-
bers into a multi-model ensemble when computing track
probability forecasts.

5 CONCLUSIONS AND FUTURE
PLANS

This study has shown that combined multi-model ensem-
ble tropical cyclone track probability forecasts, calculated
from all members of ECMWF ENS, MOGREPS-G and
NCEP GEFS, have increased skill and value over the
best-performing individual ensemble. This result is con-
sistent when verifying all global named tropical cyclones
together, and when the verification is carried out for each
individual basin. The improved skill and value of the
multi-model ensemble is found for both the full (up to
7-day) track probability forecasts, and for track probabil-
ities split into 24-hour forecast periods. The verification
results from the three individual ensembles show that
the track probability forecasts from ECMWF ENS dis-
play the best reliability, skill and value. MOGREPS-G
and NCEP GEFS become increasingly over-confident and
under-dispersive with increasing forecast range, empha-
sising the importance of ongoing work at both centres to
improve the perturbation strategy and increase the spread
in the ensemble forecasts. However, even when there is
an individual ensemble model that on average performs
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better in a particular storm, basin, or overall, there is still
skill, reliability and value to be gained from adding addi-
tional ensemble models into a combined multi-model
ensemble, indicating that they have independent system-
atic strengths and errors and collectively provide more
realistic estimates of tropical cyclone track probabilities
than individually.

Storm-based verification illustrated that the
best-performing individual ensemble can change from
case to case, but that the multi-model ensemble matches
the best-performing individual ensemble, which would
not be known in advance, in terms of overall proba-
bilistic forecast skill. The mean, or consensus, of the
three higher-resolution deterministic forecasts is hard
to beat in some basins, but overall the additional prob-
abilistic skill of the ensembles is shown, particularly at
longer lead times or when computing the full 7-day track
probability forecasts. This study helps to illustrate the
potential value and skill to be gained if operational tropi-
cal cyclone forecasting can continue to migrate away from
a deterministic-focussed forecasting environment to one
where the probabilistic situation-based uncertainty infor-
mation provided by the ensembles can be pulled through
into operational forecasts and warnings.

There are many ideas for where this work could
be further applied and extended in the future. In this
study no weighting is applied to the ensemble members
in the multi-model ensemble, with each member from
each model given an equal weight. It would be interest-
ing to look at different options for combining together
the ensemble members, and also investigate how much
of the additional value is from additional members as
opposed to the inclusion of members from other models.
For example, would the multi-model ensemble still add
value to the ECMWF ENS if it were restricted to the same
number of members? Additional global ensemble forecast
models, including those available in the TIGGE cyclone
CXML archive from the Japan Meteorological Agency,
the Canadian Meteorological Centre and Météo-France,
could be added to the multi-model ensemble, to investigate
the optimal combination of ensembles in track proba-
bility forecasts. At the Met Office the ensemble tropical
cyclone products and verification will continue to be used
to evaluate important model upgrades and trials, such
as the impact of the forthcoming move from ETKF to
Ens-4D-En-Var perturbations. The products and verifica-
tion are also run on high-resolution convective-permitting
ensembles in Southeast Asia. Work is also underway to
extend the ensemble tropical cyclone verification capabil-
ity at the Met Office to incorporate a verification of forming
storms (tropical cyclone genesis) and intensity trends. It
is also important to look beyond the traditional tropical
cyclone track and intensity forecasts and move towards

verifying the associated hazards, for example to assess how
the uncertainty and predictability of the track translates
through to uncertainty and predictability of the precip-
itation, and the downstream flood hazard. Ongoing col-
laborations between global numerical weather prediction
centres, researchers and operational forecasting centres
continue to be essential to ensure that future research and
ensemble model developments are of maximum benefit to
operational tropical cyclone forecasting.
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