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Abstract 

Battery operated low-power portable computing devices are becoming an inseparable part of human daily life.  

One of the major goals is to achieve the longest battery life in such a device. Additionally, the need for 

performance in processing multimedia content is ever increasing. Processing image and video content consume 

more power than other applications. A widely used approach to improving energy efficiency is to implement 

the computationally intensive functions as digital hardware accelerators. Spatial filtering is one of the most 

commonly used methods of digital image processing. As per the Fourier theory, an image can be considered 

as a two-dimensional signal that is composed of spatially extended two-dimensional sinusoidal patterns called 

gratings. Spatial frequency theory states that sinusoidal gratings can be characterised by its spatial frequency, 

phase, amplitude and orientation. This paper presents results from our investigation into assessing the impact 

of these characteristics of a digital image on the energy efficiency of hardware accelerated spatial filters 

employed to process the same image. Two greyscale images each of size 128x128 pixels comprising of two-

dimensional sinusoidal gratings at maximum spatial frequency of 64 cycles per image orientated at 0 and 90 

degrees respectively, were processed in a hardware implemented Gaussian smoothing filter. The energy 

efficiency of the filter was compared with the baseline energy efficiency of processing a featureless plain black 

image. The results show that energy efficiency of the filter drops to 12.5% when the gratings are orientated at 

0 degrees whilst rises to 72.38% at 90 degrees. 
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Introduction and Motivation 

For the past thirty years, Moore’s law together with Dennard scaling have driven the era of 

modern computing providing exponential increases in performance.  Moore’s law [25] states that 

the number of transistors in an integrated circuit doubles every two years approximately whereas 

Dennard scaling [8] claims that even though transistors get smaller, their power density remains 

constant. Another related law, Koomey’s law [20] states that performance per watt would double 

every 1.57 years.  However, the scale of integrated circuits density achievable has exceeded the 
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levels within which Dennard scaling and Koomey’s law were applicable, and the computational 

capabilities of multi-cores are still rising, but with much less enhancement in energy efficiency.  

The International Technology Roadmap for Semiconductors (ITRS) reported that following 

Moore’s law, the transistor density continues to double every two years however the energy 

efficiency of transistors is increasing only by 1.4x. This short fall in the energy efficiency indicates 

the end of the Dennardian scaling era where progress was measured with improvements in transistor 

count and speed, and the beginning of a new era where advances are measured by improvements in 

transistor energy efficiency [2]. All of this has resulted in another technological constraint known 

as the utilisation wall which limits the portion of the chip that can be used at the full performance 

within the power budget at the same time [11]. This limits the number of transistors that can be 

active at a given time due to the power constraint. Therefore, some parts of the chip i.e. transistors 

have to remain inactive or underperforming to allow the chip to function within the power budget. 

This presents the current major technological issue of dark silicon. 

It is important to mention the three key prevailing technological bottlenecks for high 

performance computational efficiency gains. These are the memory bottleneck, the Instructional 

Level Parallelism (ILP) bottleneck and the power bottleneck. The memory bottleneck relates to the 

recognised technological constraint that memory speed does not increase as fast as computing speed 

and as a result it is difficult to hide memory latency.  ILP quantifies the number of instructions that 

can be executed in a single clock cycle.  However, Amdahl’s law [1] states that the maximum 

speedup of a program is limited by the serial portion of the code. This presents the ILP bottleneck. 

The utilisation wall and dark silicon together present the power bottleneck.  Therefore, it becomes 

necessary to explore all the avenues of reducing power consumption and improving energy 

efficiency of such a digital system. Energy efficiency optimisation has become an essential 

objective in the design of modern embedded systems.  The main motivation of this paper is to 

address the third bottleneck, the power bottleneck. 

Portable mobile devices such as tablets, mobile phones, IoT devices, wearable computing 

devices etc. to list few are becoming part of daily human life [23]. Many such devices with a screen 

or a camera include some form of digital image processing circuit.  These devices mainly run on a 

battery and therefore battery life-time is a critical factor for their continued functioning.  It has now 

been established that multimedia applications that involve processing image and video content, 

dominate the power consumption in any battery-operated computing device. 

Digital images are essentially a collection of pixels.  These pixels are samples of intensity values 

which are represented in the form of binary numbers.  The variation in the content of digital images 

can be considered to be the variation in the values of the constituent pixels and vice versa.  These 

pixel values are typically represented using binary numbers comprising of 1s and 0s.  When the 

image is processed in a hardware accelerated image processing block, which is fundamentally a 

digital logic circuit, these binary numbers directly contribute to the switching of the digital logic 

circuit.  It is now well known that the amount of switching is one of the major contributing factors 

in the dynamic power consumption of digital logic circuit.  Therefore, the binary pixel values must 

have some direct impact on the power consumption and thus the energy efficiency of the circuit. 

Let us examine the structure of an image closely by taking an example of a greyscale image of 

size 128x128 pixels as shown in Figure 1. A greyscale image is comprised of pixels and these pixel 

values range from 0 to 255 if the pixel width is, typically, 8 bits.  Let the shade of the image be just 

plain grey i.e. all the pixel values have one value.  Let us for the sake of this example, take the value 

of the pixel, i.e. shade, to be 170 in decimal value.  If this number is represented in hexadecimal, it 

is 0xAA and in binary it is 101010101. Table 1 shows a generic binary representation of the grey 

image. 
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Fig. 1. Grey Image with all the pixels of value 0xAA 

Table 1. Greyscale image having all pixels with value 0xAA 

Pixel  

Index 

0 1 … 127 

0 10101010 10101010 … 10101010 

1 10101010  10101010 … 10101010 

… … … … … 

127 10101010 10101010 … 10101010 

Please note the pixel values, moving from one pixel to the next and within the pixel one bit to 

the next bit, the bit value transitions from 1 to 0 and 0 to 1 are purely due to the binary value 

representation of the pixel data.  On a screen, this image would appear to feature less and content 

less to human eyes as shown in Figure 1. This means even if the visual content in an image is not 

changing spatially, just because of the way pixel values are represented there exists switching due 

to the binary values of the pixels.  Therefore, if the content changes, the characteristics of the 

switching will change even more.  In a video of a newsreader delivering a news bulletin, one can 

say that the content is nearly static and changing very slowly in comparison with a sports video 

[22]. However, as explained, there is always inherent continuous switching activity due to the way 

pixel values are represented in binary number system and this cannot be avoided.   

This warranted some initial empirical evidence to motivate us to further carry out a detailed 

investigation. Therefore, a two-dimensional Gaussian filter with a 5x5 kernel with an input clock 

frequency of 500 MHz was implemented for Xilinx Virtex-6 [3] Field Programmable Gate Array 

(FPGA) using the Xilinx System Generator [38], [24] Electronic Design Automation (EDA) tool. 

Images of Lena, a chequerboard, a plain white and a plain black of size 640x480 pixels were 

processed in the filter. Dynamic power consumption to process each of the images was estimated 

using the simulation based power estimation design flow in the Xilinx System Generator. The 

results as detailed in Table 2 intrigued us and pointed to a new more focused direction into 

investigating the impact of image content on the energy efficiency of the filter. 
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Table 2. The Initial Result 

Image 

Content 

Power,  

W 

Dynamic 

Power,  

W 

Static  

Power,  

W 

Dynamic  

Energy 

consumed 

per image  

(mJ) 

Black 3.04 0.11 2.93 0.76 

White 3.04 0.11 2.93 0.76 

Chequers 3.06 0.13 2.93 0.86 

Lena 3.07 0.14 2.93 0.98 

The research question that begs an answer is, does the content in an arbitrary image have an 

impact on the energy efficiency of a hardware accelerated image processing function employed to 

filter the same image?  If so, then what is the impact, how can it be quantified? In order answer this 

question objectively, other related questions are required to be answered first. This paper attempts 

to answer the following subordinate research questions using supporting evidence provided in the 

existing literature: 

 How can the content of an image be quantified such that the relationship between the 

content and energy efficiency can be investigated? 

 What operations can be commonly performed to process a digital image? 

 Why is there a need to accelerate digital image processing operations in hardware (digital 

integrated circuits)? 

 How can the power consumption of a digital integrated circuit be calculated?   

 Can the content processed by a digital integrated circuit have an impact on the power 

consumption of the circuit? 

 How are the commonly used image processing functions implemented in hardware? 

Background and Literature Review 

The research in this paper combines research from several fields.  This meant that, against the 

general expectations of this section, most of the available literature was not suitable for critically 

reviewing against/for the innovative research work presented in this paper. Nonetheless, the review 

presented in this chapter is research questions driven and seeks to provide background information 

and support for the main and subordinate research questions, deductions, experimental design, 

results and findings presented in this paper, as follows: 

How can the content of an image be quantified such that the relationship between the content 

and energy efficiency can be investigated? 

Spatial frequency theory [27] defines an image as an accumulation of many primitive spatial 

“atoms” whereby these primitives are spatially extended patterns called sinusoidal gratings. 

Sinusoidal gratings are two-dimensional patterns whose luminance varies according to the sine 

wave over one spatial dimension and is constant over the perpendicular dimension. The primitive 

sinusoidal gratings can be characterised using four parameters: spatial frequency, phase, amplitude 

and orientation. Applying the Fourier analysis method to a two-dimensional image, produces a sum 

of a set of sinusoidal gratings that vary in spatial frequency, phase, amplitude and orientation. The 

summation of all of these gratings at the proper amplitudes and phases would produce the original 

image. Fourier analysis can be used to decompose complex images into primitive components 

[9,21,27,29,37]. 

What operations can be commonly performed to process a digital image?  

Digital image processing operations are typically classified into three categories: Point based 

Operations, Local Neighbourhood Operations and Global Operations. The Local Neighbourhood 

Operations exploit and work on the spatial characteristics around a pixel therefore these types of 
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operations are also called spatial filters. The focus of this research was on the image processing 

operations that work on the spatial characteristics of an image.  In a spatial filter, the input is 

typically convolved with a filter mask or a kernel to generate the output as shown in Figure 2. The 

kernel contains weights or coefficients for producing the desired filter response.  Spatial filters are 

widely used in image processing and pre-processing stages of image processing pipelines. 

(Multiply 

& 

Accumulate)

I I u u

vv

H

 

Fig. 2. Sliding window based spatial filtering of an image using Convolution [42] 

The Convolution of image I by a kernel H is given by: 

𝐼′(𝑢, 𝑣) =  ∑ ∑ 𝐼(𝑢 − 𝑖, 𝑣 − 𝑗) ∙ 𝐻(𝑖, 𝑗)𝑘
𝑣=−𝑘

𝑘
𝑢=−𝑘  (1) 

 This is denoted by:  𝐼′ = 𝐼 ∗ 𝐻 (2) 

Here H is the impulse response function. This is because the kernel function, H, convolved with 

an impulse signal, δ(i, j) (an image that is 0 everywhere except at the origin) reproduces itself, H * 

δ = H. 

Why is there a need to accelerate digital image processing operations in hardware (digital 

integrated circuits)?  

There is a significant rising trend in low power and ultra-low power battery operated portable 

mobile computing devices. Some such devices include mobile phones, tablet computers, Wireless 

Sensor Network (WSN) Nodes, Internet of Things (IoT) sensors, e-health systems, security 

systems, home automation and environmental monitoring systems etc. Mobile devices run on a 

battery and are therefore extremely constrained by battery-imposed energy budget. The density of 

lithium-ion batteries has shown improvement of only 10% a year therefore, battery technology has 

not scaled responsive to Moore’s law due to a fundamental physics limitation [17]. 

Computer vision and image processing applications are becoming popular in mobile battery 

powered devices ranging from every-day smart phones to Unmanned Aerial Vehicles (UAVs) [36].  

These algorithms and applications were originally designed for high-performance desktop 

computers however are now required to be deployed onto much less powerful and energy efficient 

mobile computing platforms. Designers are expected to increase throughput per Watt in order to 

meet the performance and energy efficiency requirements.  For example, a typical digital camera 

capturing VGA resolution (640X480) video at a rate of 30 frames requires processing of 27 million 

pixels per second [18]. This is due to real-time computing requirements and limited data transfer 

capabilities. This imposes an implied requirement to carry out image processing required by these 

applications on the edge i.e. locally in the computing device. 

Performance is becoming a major issue as the traditional single and multi-core scaling 

techniques employed in the design of mobile CPU are failing to keep up with the demands of the 

mobile technology [17]. The single-core thermal design point (TDP) of the mobile CPU’s has 
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saturated at around 1.5W which is similar to the 100W power ceiling common to desktop CPUs. 

Moreover, the energy efficiency improvement of mobile CPU has plateaued as the performance 

improvements do not make up for the additional power consumption. Additionally, dark silicon is 

becoming a major problem due to increasing transistor densities and TDP.  Customised hardware 

accelerators appear to be the way forward in terms of sustaining power, performance and energy 

improvements for future computing. Modern mobile SoCs comprise of a number of custom 

hardware accelerators and this number will continue to rise in future. There is 3.5 times rise in 

fixed-function accelerators across the six most recent Apple SoCs. The ITRS predicts thousands of 

different on-chip accelerators by 2022. In order to increase performance and reduce energy costs, 

application specific processors should be used to exploit the structure of algorithms [5]. 

At the sub-symbolic level, the mathematical operations involved in processing images (i.e. 

convolution operations consisting of Multiplication and Addition, MAC) need to be repeated on the 

image data many times.  Accordingly, it remains difficult to achieve real-time performance in 

software-based implementations of image processing while maintaining constraints on the energy 

consumption of battery operated mobile devices.  It can be seen that these types of processing 

applications could certainly benefit from hardware enabled parallelisation.  In this research, the 

FPGAs have been chosen as a hardware platform to deploy and perform the experiments however 

the approach can be generalised to be applied to other hardware acceleration platforms such as 

ASIC. 

How can the power consumption of a digital integrated circuit be calculated?  

Most modern silicon chips are manufactured using Complementary Metal Oxide Semiconductor 

(CMOS) technology. The main advantage of CMOS is its low power consumption.  The power 

consumption in a CMOS circuit can be given by the following equation: 

𝑃𝑇𝑜𝑡𝑎𝑙 =  𝑃𝐷 + 𝑃𝑆 (3) 

Where PTotal is the total power consumption, PD is the dynamic component and PS is the static 

component of the power consumption. 

Dynamic power consumption PD of a CMOS Integrated Circuit (IC) has two extra components 

namely the switching PSW and the short-circuit power consumption PSC.  A typical example of 

current flowing through a CMOS NOT gate (Inverter) when its output is switching from 0 to 1 and 

from 1 to 0 is shown in Figure 3. The I0->1 is absorbed into the output capacitance CL during the 

output transition from 0->1 and the current I1->0 flows from the output capacitance to the ground 

during the output transition from 1->0 for discharging the output capacitance. Dynamic power 

consumption contributes to the overall power consumption significantly when the circuit is 

switching at high frequency due to charging and discharging of a capacitive output load [34]. 

VDD

VOUTVIN
1->0 0->1

ISC

ISW

VDD

VOUTVIN
0->1 1->0

ISW

ISC

 

Fig. 3. Dynamic currents flowing through a CMOS inverter when output switches from 0 to 1 (left) and 1 to 0 

(right) [34] 

𝑃𝐷 =  𝑃𝑆𝑊 + 𝑃𝑆𝐶 (4) 
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𝑃𝑆𝑊 =  𝛼𝑡𝐶𝐿𝑉𝑑𝑑
2 𝑓𝑐𝑙𝑘 (5) 

𝑃𝑆𝐶 = 𝛼𝑡𝑉𝐷𝐷𝐼𝐶𝐶.𝑚𝑎𝑥𝑡𝑆𝐶𝑓 (6) 

Here, in Equation 4, PD is the total dynamic power which is the total of PSW the power 

consumption due to switching of the transistor and PSC which is due to the momentary short circuit 

between VDD and ground. This occurs when one transistor is turning ON while the other is switching 

OFF, at the time there exist a direct momentary path between VDD and ground [31]. Equation 5 

shows the switching component of the power consumption where CL is the load capacitance, fclk is 

the clock frequency, Vdd is the input voltage and αt is the node switching activity factor. Equation 

6 provides a simplified formula that models the average short circuit power for a CMOS gate [4,31]. 

In equation 6, ICC.max is the peak current which depends on the saturation current of the devices 

therefore on the transistors dimensions, tSC is related to the signal rise time and fall time [31]. 

Dynamic power can be reduced significantly using techniques addressing the voltage and frequency 

parameters of Equation 5 by the way of down-scaling the supply voltage and frequency as and when 

required [26]. However, in many situations scaling clock frequency or voltage while changing 

relative speed of the components of the design in order to support the scaling can cause system 

malfunctions. For example, the conventional architectures based on time-multiplexing in DSP 

circuits and microprocessors do not allow down-scaling of voltage [26]. In such cases alternative 

solutions must be explored. One such method is to reduce the effective capacitance of the digital 

design. The effective capacitance CEff is defined as the product of the average switching activity (αt, 

the average number of transitions per clock cycle) and the total circuit capacitive load. 

Can the content processed by a digital integrated circuit have an impact on the power 

consumption of the circuit?  

Much of the research on estimating and optimizing power consumption of embedded systems 

does not take into account the αt, as shown in equations 5 and 6, the node switching activity factor 

as a potential candidate for power optimization. This can be because αt depends on input data and 

in any embedded signal processing system, generally, input data is not known a-priori. However, 

in the case of digital image processing, the input data is the input image and when the images and 

videos are processed offline the input data is known a priori. Even in the case of a surveillance 

camera, when it is capturing live images of a scene, the image of the background and foreground 

remains static if there is no activity. This enables the image content to be known a-priori. The 

knowledge of the data allows accurate estimation of the resultant switching activity within a 

hardware processing pipeline and as a result enables accurate estimation of power consumption. In 

a Power Analysis Attacks (PAAs) scenario, the secret key (data) of a cryptographic core can be 

retrieved by measuring CMOS power consumption [4].  

If the digitally stored data can be identified reliably by measuring power consumption, the 

converse must also be possible where power consumption can be accurately estimated from the data 

particularly in the case of digital image processing. It was demonstrated that by analysing 

consumers’ household’s electricity usage profile at a higher sample rate [13] it was possible to 

identify which channel the TV set in the household was displaying. If content could be detected 

from power consumption, surely, power consumption could be estimated from the content. This 

motivated us further to carry out detailed investigation in the area of our research.  

Five algorithms (1) motion estimation, (2) Discrete Cosine Transform (DCT) (3) Three-

dimensional graphics rendering (4) Lempel-Ziv lossless compression (5) Viterbi decoding were 

examined to be adapted dynamically based on variations in the input signal statistics with a view to 

reducing power consumption and improve performance [19].  The authors of [6] provided power-

performance trade-offs for a dynamically parameterised MPEG-4 motion estimation algorithm.  

They reported that selecting the correct parameters based on the operating environment reduced the 

average power consumption by 40% for 2% loss in compression. A data driven clock gating 

technique to switch off portions of their low-power and low-complexity VLSI architecture 
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implementation of two-dimensional Discrete Cosine Transform DCT and Inverse Discrete Cosine 

Transform (IDCT) was presented by [12].  The system monitored input data for being zero, Null 

Row Check (NRC) and containing sign extended most significant bits, Sign Extension Check (SEC) 

in order to turn off portions of the implemented circuit.  The authors have stated that for typical 

H.263/MPEG video coding applications their approach provided 36% and 26% power reduction in 

IDCT and DCT modes respectively. All of this research work does not explain the relationship 

between image content characterised by spatial frequencies and power and energy consumption of 

the implemented circuit.  Moreover, they do not take into account the inherent switching present in 

an image or a frame of a video due to the way pixel values are represented in binary values. 

Hadizadeh et al [15] proposed a method for producing energy-efficient images for energy-

adaptive displays such as OLED displays while preserving its perceptual quality to their original 

images. The authors exploited the property of OLED displays whereby the energy consumption of 

pixels is directly proportional to the luminance of the pixels. The authors used a Just-Noticeable-

Difference (JND) threshold to reduce the luminance of the pixels in an image. The authors were 

able to empirically demonstrate that their proposed method reduced energy consumption by about 

14.1% while preserving the perceptual quality of the displayed images. This research clearly 

demonstrates that image content can have an image on the energy efficiency of the hardware used 

to display the image and serves as a supporting evidence to the findings presented in this paper. 

How are the commonly used image processing functions implemented in hardware?  

Spatial Image filtering is carried out by performing convolution between a two-dimensional 

kernel and the image. The algorithms in image processing work in a very similar manner to a two-

dimensional convolution operation of an image. The process calculating the output pixel in a 

convolution involves a rectangular window of the input image pixels and a few constant coefficients 

fetched typically in a row-major order. This window is then slid and traversed on the whole input 

image to produce the pixels values for the output image. Therefore, convolution is also known to 

be working in a sliding window manner. This sliding window is also called a stencil [5]. As shown 

in Figure 4, the hardware implementation of convolution kernel contains a window function, a line 

buffer and a stencil register [5]. The window function accepts the pixel values supplied by the 

stencil register and processes each of the values with the corresponding coefficient values and 

calculates the output pixel. The line buffer stores the rows of pixel values that are required to be re-

used between successive row traversals. The stencil register is provided with a refreshed column of 

pixel values for each overlapping window of input image. 

Input Pixel

Output Pixel

Stencil Register

C4 C5C3

C7 C8C6

C1 C2C0

Coefficients

DRAM Line Buffer

Window 

Function

 

Fig. 4. Stencil kernel architecture for Convolution [35] 

As shown in Figure 5, more complex image processing operations can be implemented by 

cascading the kernels. These kernels work in the same way as a convolution kernel. Therefore, such 
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convolution family applications can be implemented by reusing hardware components from a single 

kernel application and interconnecting them [5]. 

f(x) f(y)

 

Fig. 5. Cascading kernels in image processing applications [35] 

Most image processing applications can be constructed from a set of “stencil” kernels [5].  Many 

applications in the domains of computer vision, image and signal processing and computational 

photography could be mapped onto a virtual machine model of the stencil kernel.  Stencil kernels 

typically involve computing the pixel in an output image from a fixed-size sliding window of pixels 

in its corresponding input image. Stencil kernels are essentially spatial filters which mainly use a 

convolution operator for processing [5]. 

The sliding window technique is one of the most widely used techniques in image processing 

algorithms [10].   Hardware implementation typically comprises of image rows buffered on the chip 

to benefit from the locality of the data and avoid unnecessary off-chip pixel transfers. The Sliding 

Window Operations (SWOs) are typically deployed on FPGA based prototyping boards as 

hardware accelerators for image processing applications [16].  

The authors of [14] proposed a configurable image convolution architecture where the input 

pixel resolution, the image size, the convolution window size, coefficients, and the type of memory 

used can be explored to identify design trade-offs in obtaining energy efficiency. The authors 

carried out design space exploration with these parameters and constructed an energy model to 

estimate the energy consumption. The authors used a number of operations per Joule as their metric 

for energy efficiency.  The authors claimed to have achieved energy efficiency of up to 32.98 

Gops/Joule and sustained peak energy efficiency up to 34.38%. Even though the authors carried out 

the design space exploration with energy efficiency as their main objective, they did not take into 

account the impact of the switching variability in the input data on the energy consumption. 

Experimental Design 

The following sections detail the experimental design. 

Dependent Variables 

Energy efficiency was selected as the main dependent variable however power and energy 

consumption were the other related the dependent variables of interest. 

Independent Variables 

Since the impact of the content of an image was investigated, the parameters that characterise 

the image content at the fundamental level were selected as the independent variables. The aim was 

to capture a statistically significant sample from the population while considering practicalities of 

implementation and simulation time. The selected independent variables are shown in Table 3. 
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Table 3. Independent Variables 

Independent 

Variable 

Value 

Spatial 

Frequency 

Spatial frequency of sinusoidal gratings present in a 

synthetic dataset of images of Sinusoidal Gratings. 

The spatial frequency of gratings ranged from 0 to 

the maximum number of gratings that can be 

accommodated in an image of a given size based on 

the Nyquist-Shannon theorem.  

Orientation Orientation of sinusoidal gratings present in the 

dataset of images of sinusoidal gratings. 

The orientation of gratings ranged from 0 to 180 

degrees. This is because gratings rotates around the 

centre and covers the remaining 180 degrees thus 

covering the entire 360 degrees. 

Phase Images of Sinusoidal Gratings where the phase of 

gratings ranged from 0 to 360 degrees. 

Contrast Images of Sinusoidal Gratings where the contrast of 

images was varied as given by the Michelson 

Contrast. The maximum value was 1. 

Image Size From the literature, it was found that typically, 

square images were used in image processing 

research and their dimensions range from 16x16 

pixels to 1024x1024 pixels. 

Spatial Filter 

Operation 

Image processing operations that are sliding window 

with a two-dimensional kernel based spatial filter 

architecture were selected for the experimentation. 

These operations were implemented using Xilinx 

System Generator. A library of such operations was 

created. 

Prototyping Platform 

The Xilinx ISE and System Generator tool version 14.7 [38] with Matlab-Simulink with the 

image processing tool box version 2012a has been used to implement and prototype the entire 

library of spatial filters for FPGA implementation. The System Generator extends the Matlab-

Simulink environment to enable hardware design, providing high-level abstractions that can be 

automatically compiled into an FPGA. The System Generator also carries out full timing simulation 

based power estimation using the Xilinx Power Estimation Tool XPower Analyser (XPA) [40].  

The particular design flow offered by the System Generator which is known as the Timing and 

Power Analysis flow is used in the experiments.  The output at the end of this flow shows both 

timing and power analysis. This tool takes into account the exact logic and routing resources used 

and the actual activity from design simulation. All of the implemented spatial filters were also 

functionally validated on the Xilinx ML605 [39] by prototyping them in the HW/FPGA. 

 

Library of HW Implemented Spatial Filters 

In order to explore the impact of energy consumption on various spatial filter operations, a 

library of hardware implemented spatial filter operations was developed.  These filters included line 

buffers, Difference of Gaussian (DoG) Operation, SIFT Detector, Gaussian 3x3, Gaussian 5x5, 
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Gaussian 7x7, Gaussian 9x9, Gaussian Separable 5x5, Laplacian 3x3, Mean Filter 5x5, Median 

Filter 3x3, Morphological Filter 5x5 and Sobel Filter 3x3.  These spatial filters were implemented 

based on the most commonly used hardware architecture, the two-dimensional kernel sliding 

window architecture.  The input image and the kernel coefficients were not stored in memories in 

order to isolate the energy efficiency of the implemented FPGA logic. The image was streamed into 

and provided by the Matlab-Simulink environment to the hardware block, whereas the kernel 

coefficients were hardcoded into the logic.  The convolution block required multiplying the input 

sample with a coefficient and then adding the result with a result from the next pixel.  Therefore, 

the implementation required a number of multiply and accumulate blocks consisting of a multiplier 

and an adder blocks. Since a Matlab-Simulink based Xilinx System Generator tool is used for the 

design entry, each of the implemented spatial filters was saved and stored as a Simulink Model file 

with an “mdl” file extension. Gaussian Smoothing spatial filter with a kernel size of 5x5 was 

selected as the template spatial filter on which most experiments were carried out. 

Software 

The following software programs were implemented to generate, extract and process the 

necessary input data for the experimentation. 

 Synthetic Image Data Set Generator Tool: A program that synthesised images with 

Sinusoidal Gratings while varying spatial frequency, orientation and image size upon user 

configuration. 

 Spatial Filter Configuration and model creator Tool: A program that automatically 

configured the existing hardware implemented spatial filter to adapt and support varying 

image sizes and clock frequencies 

 Extraction & Tabulation Tool: A program to automatically extract necessary information 

from the timing and power reports generated by the EDA tools and tabulate it in a CSV 

format. 

 Co-ordinating Tool: A program coordinating the entire experiment automatically. 

Generating Synthetic Images With Sinusoidal Patterns 

A dataset of synthetic images was generated using a Matlab script. A black circular mask was 

applied to every image with sinusoidal grating. This ensured that the length of the gratings remained 

uniform across all the different orientations as shown in Figure 6. The images that were generated 

had the Michelson contrast set to 1 which meant the range of black and white pixels of most of the 

gratings is 256 with equal width of black and white half cycles, i.e. from 0x00 to 0xFF. 

 

Fig. 6. Output from the second attempt Matlab Script 

Results 
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In this section, the results from the experimental exploration experiments are presented. A 

software called JMP [32,33] was used extensively for plotting graphs and data analysis. 

Metrics 

In the experimentation, at first, power consumption given by watt (W) was used for initial 

validation.  However, in the final validation, energy efficiency of the spatial filter was investigated.  

The image processing workload can be characterised by the image size and the kernel size. The 

workload in terms of image and kernel size was kept constant in the experiments where the image 

content was varied. Energy efficiency was considered to be the number of operations per unit 

dynamic energy consumed.  For an image processing operation such as convolution, where an 

image size is NxN and kernel size KxK, the energy efficiency can be given by N2 K2 divided by 

dynamic energy consumed by the spatial filter [14]. The metric Giga Operations per Joule metric 

was used for the energy efficiency analysis. Metric for Spatial Frequency for an image comprising 

only of two-dimensional sinusoidal gratings was number of cycles per image. The maximum 

number of sinusoidal gratings that can be fit in an image is half of the width of image given in 

pixels. The orientation of the sinusoidal gratings in an image was measured in degrees. 

Experimental Assumptions 

It has been established that a spatial filter follows a common anatomical structure in its hardware 

implementation.  Therefore, the default template architecture for all the experiments was the 5x5 

Gaussian Filter implemented in the System Generator.  The default clock frequency of the 

experimentation was set to 100MHz and image size was set to 128x128 pixels however image sizes 

of 256x256 and 512x512 pixels were also used.  The test images were synthesised images of 

sinusoidal gratings of varying phase, orientation, spatial frequencies and contrast.  The orientation 

of the sinusoidal gratings was calculated from vertical to clockwise direction in all the experiments. 

Initial Validation 

First, how the variation in the power consumption is affected by the varying the independent 

variables. The Coefficient of Variation (CV) in the power consumption results was compared 

amongst the various independent variables.  The coefficient of variation or relative standard 

deviation (RSD) is the ratio of the standard deviation to the mean (average).  This statistic shows 

the measure of spread which describes the amount of variability relative to the mean.  Since the 

statistic is a unitless ratio, it can be used to objectively compare the spread of data sets that have 

different units or different means, and that is exactly what was done. If the CV of a set of results 

was found to be statistically significantly less than the others, the variable was omitted from the 

experiments. The threshold for comparison for the CV was set to be statistically significant to 2%. 

Table 4 shows the summary of CVs for all the independent variables.  It is quite clear from the 

table that the variability in the data for independent variables Contrast and Phase is significantly 

lower (0.08% and 1.24% respectively) than all the other variables.  This can only happen if the 

effect of the Contrast and Phase on the dependent variable was negligible.  Therefore, in the 

experiments, the independent variables Contrast and Phase were omitted. 

Table 4. Summary CV for all independent variables 

Independent Variable CV % 

Contrast 0.0778143831 

Phase 1.2377676786 

Orientation 18.498540082 

Spatial Frequency 20.647365605 

Image Size 12.098000093 
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Spatial Filter Operation 82.501542221 

Moreover, the contrast was normalized to make image calculations independent of the contrast.  

Since the contrast is given by the Michelson contrast, the contrast normalisation was performed 

using the contrast stretching method to cover maximum range of an 8-bit pixel value which ranges 

from 0 to 255. This was carried out by stretching the range of intensity values to make full use of 

possible values [30]. 

Experimental Exploration 

The main aim here was to investigate the relationship of the image content in the form of the 

spatial frequencies and the orientations of those spatial frequencies present in an image, with the 

energy consumption of the hardware implemented spatial filter that was applied to process the same 

image. 

Spatial Frequency 

First, the key results showing the impact of spatial frequencies on energy consumption are 

presented. The spatial frequency was varied with orientation while keeping the image size to 

128x128, kernel size to 5x5, clock frequency to 100 MHz and the filtering operation to the template 

Gaussian Filter.  Some of the sample images are shown below. These images were processed in the 

implemented filter using the simulation based power estimation flow in the System Generator tool. 

Fig. 7 and Fig. 8 are example images of sinusoidal gratings used in the experimentation. 

 

Fig. 7. Sinusoidal grating image with spatial frequency one cycle per image and orientation 0 degrees 

 

Fig. 8. Sinusoidal grating image with spatial frequency thirty-two cycles per image and orientation 45 degrees 

Table 5 shows selected results (Spatial frequencies 0, 1, 2, 4, 8, 16, 32 and 64) from the 

experiment. The time taken to process one image of 128x128 pixels was 180499 Nano Seconds. 

The energy efficiency of a plain black image was considered as the base line for the analysis of the 

results.  Here the orientation was fixed to 0 and 90 degrees in order to assess the impact of the 

variation in spatial frequency. It can be seen from the table that the energy efficiency drops to 
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12.05% for the maximum spatial frequency 64 cycles per image for a 128x128 image. However, 

for an orientation of 90 degrees, the energy efficiency is at 72.38% when the spatial frequency of 

the image is at the maximum. 

Table 5. Dynamic energy consumption vs spatial frequency, 0 & 90-degree orientation and image size 128x128 

Spatial Frequency, 

Cycles/Image 

Total 

Power, 

mW 

Dynamic 

Power,  

mW 

Static 

Power, 

mW 

Dynamic 

Energy,  

uJ 

Energy 

Efficiency,  

Giga Ops 

per Joule 

% Energy 

Efficiency 

Black 3145.92 11.95 3133.97 2.16 189.90 100 

White 3145.92 11.95 3133.97 2.16 189.90 100 

1 3184.06 48.95 3135.11 8.84 46.36 24.41 

2 3189.94 54.66 3135.29 9.87 41.52 21.86 

4 3195.93 60.46 3135.47 10.91 37.53 19.76 

8 3205.57 69.81 3135.75 12.60 32.50 17.12 

16 3214.91 78.88 3136.04 14.24 28.77 15.15 

32 3227.25 90.85 3136.41 16.40 24.98 13.15 

64 3235.78 99.12 3136.66 17.89 22.89 12.05 

Orientation set to 90 Degrees 

1 3150.2 16.11 3134.09 2.91 140.86 74.18 

2 3150.59 16.48 3134.11 2.97 137.70 72.51 

4 3150.59 16.48 3134.11 2.97 137.70 72.51 

8 3150.84 16.73 3134.11 3.02 135.64 71.43 

16 3151.02 16.9 3134.12 3.05 134.27 70.71 

32 3151.31 17.18 3134.13 3.10 132.09 69.56 

64 3150.62 16.51 3134.11 2.98 137.45 72.38 

The energy efficiency in terms of Giga operations per joule versus spatial frequency overlaid 

with orientation is plotted in Figure 9. The graph shows that the energy efficiency decreases with 

the increase in spatial frequency. The energy efficiency is at a maximum when orientation is 90 

degrees whilst it is at a minimum when orientation is 0 degrees. 
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Fig. 9. Energy efficiency vs. spatial frequency, overlaid by orientations, image size 128x128 

Image Size 256x256 

Table 6 shows selected results (Spatial frequency 0, 1, 2, 4, 8, 16, 32, 64 and 128) from the 

experiment where the spatial frequency and the orientation were varied while the spatial filter was 

the template Gaussian filter with kernel size 5x5, image size 256x256 and clock frequency 100 

MHz. The time taken to process one image of 256x256 pixels was 721171 Nano Seconds. The 

energy consumption and energy efficiency of the black image was considered as the base line for 

the analysis of the results. Here, the orientation was fixed to 0 and 90 degrees in order to assess the 

impact of the variation in spatial frequency. The energy efficiency was considered in terms of Giga 

operations per joule. It can be seen from the table that the energy efficiency drops to 14.46% for 

the maximum spatial frequency 128 cycles per image for 256x256 image. However, for an 

orientation of 90 degrees, the energy efficiency is at 86.73% when the spatial frequency of the 

image is at the maximum. 

Table 6. Dynamic energy consumption vs spatial frequency, 0 & 90 degrees orientations and image size 

256x256 

Spatial Frequency, 

Cycles/Image 

Total 

Power, 

mW 

Dynamic 

Power, mW 

Static 

Power, 

mW 

Dynamic 

Energy, uJ 

Energy 

Efficiency,  

Giga Ops 

per Joule 

% Energy 

Efficiency 

Black 3150.44 16.34 3134.1 11.78 139.04 100 

1 3183.35 48.26 3135.09 34.80 47.07 33.86 

2 3190.66 55.35 3135.31 39.92 41.04 29.52 

4 3197 61.5 3135.5 44.35 36.94 26.57 

8 3203.15 67.47 3135.68 48.66 33.67 24.22 
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16 3213.89 77.88 3136 56.16 29.17 20.98 

32 3223.7 87.4 3136.3 63.03 25.99 18.70 

64 3236.25 99.57 3136.68 71.81 22.82 16.41 

128 3250.05 112.96 3137.09 81.46 20.11 14.46 

Orientation set to 90 Degrees 

1 3152.84 18.66 3134.17 13.46 121.7503 87.57 

2 3153.06 18.88 3134.18 13.62 120.3316 86.55 

4 3153.03 18.85 3134.18 13.59 120.5231 86.68 

8 3153.12 18.94 3134.18 13.66 119.9504 86.27 

16 3153.17 18.99 3134.18 13.70 119.6346 86.05 

32 3153.22 19.04 3134.19 13.73 119.3204 85.82 

64 3153.4 19.21 3134.19 13.85 118.2645 85.06 

128 3153.02 18.84 3134.18 13.59 120.5871 86.73 

The energy efficiency considered in terms of Giga operations per joule versus spatial frequency 

overlaid with orientation is plotted in Figure 10. The graph shows that the energy efficiency 

decreases with the increase in spatial frequency. The energy efficiency is at maximum when 

orientation is 90 degrees whilst it is at minimum when orientation is 0 degrees. 

 

Fig. 10. Energy efficiency vs. spatial frequency, overlaid by orientations, image size 256x256 

Image Size 512x512 

Table 7 shows selected results (Spatial frequency 0, 1, 2, 4, 8, 16, 32, 64, 128 and 256) from the 

experiment where the spatial frequency and the orientation were varied while the spatial filter was 

the template Gaussian filter with kernel size 5x5, image size 512x512 and clock frequency 100 

MHz. The time taken to process one image of 512x512 pixels was 2883859 Nano Seconds. The 

energy consumption and energy efficiency of a black image was considered as the base line for the 

analysis of the results. Here, the orientation was fixed to 0 and 90 degrees in order to assess the 

impact of the variation in spatial frequency. The energy efficiency was considered in terms of Giga 
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operations per joule. It can be seen from the table that the energy efficiency drops to 15.14% for 

the maximum spatial frequency 256 cycles per image for a 512x512 image. However, for 

orientation 90 degrees, the energy efficiency is at 93.76% when the spatial frequency of the image 

is at the maximum. 

Table 7. Dynamic energy consumption vs spatial frequency, 0 & 90 degrees orientations and image size 

512x512 

Spatial Frequency, 

Cycles/Image 

Total 

Power, 

mW 

Dynamic 

Power, mW 

Static 

Power, 

mW 

Dynamic 

Energy, uJ 

Energy 

Efficiency,  

Giga Ops 

per Joule 

% Energy 

Efficiency 

Black 3154.98 20.74 3134.24 59.81 109.57 100 

1 3183.3 48.21 3135.09 139.03 47.14 43.02 

2 3192.2 56.85 3135.35 163.94 39.97 36.48 

4 3200.57 64.97 3135.6 187.36 34.98 31.92 

8 3208.04 72.21 3135.83 208.24 31.47 28.72 

16 3214.48 78.46 3136.02 226.27 28.96 26.43 

32 3227.62 91.21 3136.42 263.04 24.91 22.74 

64 3236.86 100.17 3136.69 288.88 22.69 20.70 

128 3250.25 113.15 3137.1 326.31 20.08 18.33 

256 3274.76 136.93 3137.83 394.89 16.59 15.14 

Orientation set to 90 Degrees 

1 3156.6 22.32 3134.29 64.37 101.81 92.92 

2 3156.71 22.42 3134.29 64.65 101.36 92.51 

4 3156.41 22.12 3134.28 63.79 102.73 93.76 

8 3156.41 22.13 3134.28 63.82 102.69 93.72 

16 3156.44 22.16 3134.28 63.91 102.55 93.59 

32 3156.46 22.18 3134.28 63.96 102.46 93.51 

64 3156.52 22.24 3134.28 64.14 102.18 93.25 

128 3156.9 22.6 3134.3 65.17 100.55 91.77 

256 3156.4 22.12 3134.28 63.79 102.74 93.76 

The energy efficiency considered in terms of Giga operations per joule versus spatial frequency 

overlaid with orientation is plotted in Figure 11. The graph shows that the energy efficiency 

decreases with an increase in spatial frequency. The energy efficiency is at a maximum when the 

orientation is 90 degrees whilst it is at minimum when the orientation is 0 degrees. 
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Fig. 11. Energy efficiency vs. spatial frequency, overlaid by orientation, image size 512x512 

All Image Sizes 

In order to isolate the impact of image size on the dependent variable, images of varying sizes 

were synthesised.  The spatial frequency of the sinusoidal grating in the image was set to 1 cycle 

per image, the clock frequency to 100MHz, the phase to 90 degrees and the orientation to 0 degrees.  

Images with varying sizes of 16x16, 32x32, 64x64, 128x128, 256x256, 512x512 and 1024x1024 

pixels were synthesised.  Since the width of the line buffers in the spatial filter changes with the 

width of an image, dedicated template spatial filters with line buffers of different sizes to 

accommodate each of these different image sizes were developed and implemented. These images 

were processed in the implemented filters and power consumption was estimated in the System 

Generator tool.  Figure 12 shows the graph plot between dynamic power consumption and image 

size in a linear-log scale. 

 

Fig. 12. Graph of dynamic power consumption (mW) vs. size of the image in pixels 
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It is important to note in the graph that, at lower sizes of images such as 16x16, 32x32 and 64x64, 

more dynamic power has been shown to have been consumed than with some of the larger sizes.  

This is a counter intuitive result because, generally, the increase in the image size increases the 

amount of logic to store and process the image which should result into increased dynamic power 

consumption.  When this was investigated in detail in the power analysis reports, this was found to 

be largely due to the power consumed by the primary inputs and outputs (IO). The IO power is a 

component of the total dynamic power consumption. The dynamic power consumption and IO 

power consumption for each image size is presented in Table 8.  In the case of the image of 16x16 

pixels, the IO power is almost 70% of the dynamic power: 

Table 8. Dynamic power and IO power for varying image sizes 

Image Size Dynamic Power mW IO Power mW IO Power, % of dynamic power 

16x16 65.57 45.21 69.0 

32x32 58.02 38.02 65.5 

64x64 51.0 30.36 59.5 

128x128 48.95 24.18 49.4 

256x256 48.26 17.80 36.9 

512x512 48.21 12.04 25.0 

1024x1024 55.64 6.93 12.5 

These images were processed with varying orientations in the template 5x5 Gaussian filter and 

power consumption was estimated in the System Generator tool.  Figure 13 is a graph of dynamic 

IO power vs image size in a linear-log scale.  As the image size is increased the IO power is 

decreasing.  This can only be possible if the number of IO switching in a unit time is more for the 

smaller image than it is for the larger image. This is explained in detail in the analysis section. 

 

Fig. 13. Dynamic IO power consumption vs size of the image 
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However, when the graph of image size against the energy consumed to process the image was 

plotted, the graph follows the intuition whereby the consumed energy increases with the image size 

as shown in Figure 14. The graph is plotted using a log-log scale on X and Y axes. 

 

Fig. 14. Dynamic energy consumption vs size of the image 

Figure 15 is a graph which plots dynamic energy against varying image sizes (16x16, 32x32, 

64x64, 128x128, 256x256, 512x512 and 1024x1024 pixels) while varying spatial frequencies and 

orientation, using a log-log scale.  Here the range of the spatial frequencies are from 1 to 4 because 

the minimum image size that is explored is 16x16.  The energy consumption increases with the 

increase in image size. 

 

Fig. 15. Dynamic energy consumption vs image size while varying spatial frequency and orientation 
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Figure 16 shows the graph of energy efficiency in Giga operations per Joule versus image size 

overlaid with spatial frequency and orientation set to 0 degrees.  This graph is plotted using a linear 

scale on its Y axis and log scale on its X axis to better represent the data.  As can be seen the energy 

efficiency increases for smaller images however decreases for larger images as the image size and 

spatial frequency increases. 

 

Fig. 16. Energy efficiency vs image size while varying spatial frequency and orientation is set to 0 degrees 

Figure 17 shows the graph of energy efficiency in Giga operations per Joule versus image size 

overlaid with spatial frequency and orientation set to 90 degrees. This graph is plotted using a linear-

log scale. As it can be seen that the energy efficiency increases for smaller images however 

decreases for larger images as the image size and spatial frequency increases. 

 

Fig. 17. Energy efficiency vs image size while varying spatial frequency and orientation is set to 90 degrees 
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Orientation 

Table 9 shows selected results (Orientations 0, 30, 45, 60, 90, 120, 135, 150 out of 0, 11.25, 

22.5, 30, 33.75, 45, 56.25, 60, 67.5, 78.75, 90, 101.25, 112.5, 120, 123.75, 135, 146.25, 150, 157.5 

and 168.75 degrees) from the experiment where the orientation was varied and the spatial frequency 

was set to 1 and 32 for image size of 128x128 and the template Gaussian filter with kernel size 5x5 

and clock frequency 100 MHz. The time taken to process one image of 128x128 pixels was 180499 

Nano Seconds. The energy consumption and energy efficiency of the black image was considered 

as the base line for the analysis of the results. The energy efficiency was considered in terms of 

Giga operations per joule. 

It can be seen from the table that for spatial frequency one cycle per image the energy efficiency 

drops to 24.41% for the 0 degrees orientation however peaks at 74.17% 90 degrees orientation. 

However, for spatial frequency 32 cycles per image, the energy efficiency is at a minimum, at 

13.15% at 0 degrees orientation and peaks at 69.55% at 90 degrees orientation. 

Table 9. Dynamic energy consumption vs orientation, spatial frequency 1 & 32 cycles per image and image 

size 128x128 

Orientation, 

degrees 

Total 

Power, mW 

Dynamic 

Power, mW 

Static 

Power, mW 

Dynamic 

Energy, uJ 

Energy 

Efficiency,  

Giga Ops per 

Joule 

% Energy 

Efficiency 

Spatial Frequency set to 1 cycle per image 

Plain Black 

Image 3145.92 11.95 3133.97 2.16 189.90 100 

0 3184.06 48.95 3135.11 8.84 46.36 24.41 

30 3182.91 47.84 3135.08 8.64 47.43 24.98 

45 3180.19 45.19 3134.99 8.16 50.21 26.44 

60 3177.3 42.39 3134.91 7.65 53.53 28.19061 

90 3150.2 16.11 3134.09 2.91 140.87 74.17754 

120 3177.33 42.43 3134.91 7.66 53.48 28.16404 

135 3180.16 45.16 3134.99 8.15 50.25 26.46147 

150 3182.83 47.76 3135.07 8.62 47.51 25.02094 

Spatial Frequency set to 32 cycles per image 

0 3227.25 90.85 3136.41 16.39833 24.98 13.15 

30 3211.74 75.8 3135.94 13.68182 29.94 15.77 

45 3208.11 72.28 3135.83 13.04647 31.40 16.53 

60 3206.03 70.26 3135.77 12.68186 32.30 17.01 

90 3151.31 17.18 3134.13 3.100973 132.09 69.56 

120 3206.53 70.74 3135.78 12.7685 32.08 16.89 

135 3210.68 74.77 3135.91 13.49591 30.35 15.98 

150 3214.92 78.89 3136.04 14.23957 28.76 15.15 

Figure 18 is the graph between energy efficiency in Giga operations per Joule and various 

orientation values in degrees. Again, it is important to note that the energy efficiency is at a 

maximum when the orientation is 90 degrees while it is at a minimum when the orientation is 0 
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degrees in images with both the spatial frequencies.  Therefore, in the experiments, the orientations 

were limited to 0 and 90 degrees as this covered the entire population. 

 

Fig. 18. Energy efficiency vs Orientations in degrees 

Image Operations 

In this section, the impact of energy consumption on various hardware accelerated spatial filter 

operations is explored. These include line buffers, Difference of Gaussian (DoG), SIFT Detector, 

Gaussian 3x3, Gaussian 5x5, Gaussian 7x7, Gaussian 9x9, Gaussian Separable 5x5, Laplacian 3x3, 

Mean Filter 5x5, Median Filter 3x3, Morphological Filter 5x5 and Sobel Filter 3x3. 

Figure 19 and Figure 20 show the graphs of dynamic energy efficiency given by Giga Ops Per 

Joule against various filter operations while spatial frequencies are varied and orientation is set to 

0 and 90 degrees respectively. The energy efficiency for 0-degree orientation shows a slightly 

decreasing trend as the spatial frequency increases. Here the most complex image processing 

pipeline is the SIFT detector which consumes the largest amount of power and hence it is the least 

energy efficient. Whereas the energy efficiency for 90 degrees orientation is nearly constant for 

spatial frequency 1 onwards. It is important to note that all the lines in the graph follow the general 

curve as explored previously with the template spatial filter of Gaussian 5x5. This means the results 

for the template filter can be generalized for any spatial filter which follows the same architecture. 
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Fig. 19. Energy efficiency vs spatial frequency and filter operations while the orientation is set to 0 degrees 

 

 

Fig. 20. Energy efficiency vs spatial frequency and filter operations while the orientation is set to 90 degrees 

Analysis 

This section presents the analysis of the results and explains the results.  
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Impact of Spatial Frequency 

It is important to note that, as shown in the graph in Figure 9, Figure 10 and Figure 11, the 

maximum power consumption occurs when the spatial frequency of the image is 64 sinusoidal 

gratings.  As defined by the Nyquist-Shannon theorem, the maximum number of sinusoidal grating 

that can be fitted into an image is image width divided by two. Therefore, for an image of size 

128x128, the maximum sinusoidal gratings that can be fitted is 64.  This creates an image of a pixel 

wide black and white stripes at 0 degrees orientation which is an image of two-dimensional square 

wave i.e. vertical bars/stripes of black and white.  Since the value of a white 8-bit pixel is 255 in 

decimal or 0xFF in hexadecimal and the value of a black pixel is 0 in decimal or 0xFF in 

hexadecimal, traversing in a horizontal direction in the image, the pixel values change from 0x00 

to 0xFF and 0xFF to 0x00 which means, every bit of the 8-bit wide pixel changes from 0 to 1 and 

1 to 0.  This results in a maximum number of transitions at the I/O ports of the FPGA when the 

image is scanned in row-major order.  This also contributes to the maximum amount of switching 

in logic. 

Moreover, the power consumption of black and white images is at the lowest and is almost the 

same because pixel values in the black and white images do not change.  In a black image, all the 

pixel values are 0x00 and in a white image all the pixel values are 0xFF without any variation in 

them. 

In the middle, the power consumption generally increases with the spatial frequency of the 

image, this is mainly due to the variation in the content which is due to the variation in the spatial 

frequencies present in the image and this means there is variation in the pixel values which then 

contribute to the amount of switching at the I/O ports and in the logic.  This is defined by the 

switching activity factor αt. 

In order to understand the effect of the spatial frequency as shown in the middle region in the 

graph, where the energy consumption increases with increase in spatial frequency as shown in 

Figure 9, Figure 10 and Figure 11, the two main factors that impact the amount of switching in the 

circuit should be understood.  The transition density and static transition probability of every bit of 

an 8-bit binary number because a pixel is typically represented in as an 8-bit binary number in a 

digital image.  The transition density of a signal, denoted by αt, is given by the average number of 

transitions of the signal per unit time. .  The static transition probability of the signal is the 

probability of the signal being high at any given time [28].  As seen previously in Figure 3, it is in 

the transition from 0 to 1, the current is drawn into the circuit which contributes to the power 

consumption of the circuit. 

An 8-bit binary number ranges from 0 to 0xFF (25510).  The normal binary sequence goes from 

000000002 to 111111112. 

Switching activity, P0->1 has two components a static component that is a function of the logic 

topology and a dynamic component which is a function of the timing behaviour of the logic circuit 

(includes glitching). In this paper, only the static component is considered for two reasons. Firstly, 

the dynamic component, for an example glitching, depends on the exact implementation of the logic 

circuit which cannot be foreknown and secondly, to limit the scope of this research work. 

The static transition probability of a binary single bit can be given by: 
P0->1 = Pout=0 × Pout=1 (7) 

Where P0->1 is the probability of the output bit to transition from 0 to 1, Pout=0 is the probability 

of the output bit to be 0 and Pout=1 is the probability of the output bit to be 1. 

Moreover, in an 8-bit binary number, as moving from the Least Significant bit (LSb) to the Most 

Significant bit (MSb), the significance of the bits in the binary number and as a result the value of 

the 8-bit binary number is given by = 27 × bit7 + 26 × bit6 + 25 × bit5 + 24 × bit4+ 23 × bit3 + 22 × 

bit2+ 21 × bit1 + 20 × bit0. 
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Therefore, as moving from LSb to MSb, each bit switches from 0 to 1 in a decreasing order.  As 

an example, the LSb toggles from 0 to 1 and 1 to 0 alternatively, however the second bit going from 

right to left, toggles every 1/2n times the toggle rate of the LSb, where n is the bit position.  

Therefore, the transition density decreases by half moving from LSb to MSb. 

Therefore, for a binary number represented with more than one-bit width, 8-bit in this case, each 

bit has a different static transition probability.  For an example, the probability of transition PLSB(0-

>1) of the Least Significant bit (LSb) can be given by multiplying the probability of the bit being 

‘0’, P0  and the bit being ‘1’, P1 . 
The static transition probability of the LSb in an 8-bit binary number can be given by: 

PLSB(0->1)  = (128/256) × (128/256) = 1/4 . 

Moving from LSb to MSb, the static transition probability reduces by 4. Therefore, the individual 

static transition probabilities of each bit in an 8-bit binary number is given in Table 10 [7]. 

Table 10 Static transition probabilities of each bit in an 8-bit binary number 

Bit7 

(MSb) 

Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

(LSb) 

1/65536 1/16384 1/4096 1/1024 1/256 1/64 1/16 1/4 

However, in the case of the spatial frequency being the maximum, 64, the pixel transition from 

black to white alternatively which is 00000000 to 11111111 and back to 00000000.  This means 

the static transition probability of each bit is at the maximum of 1/4, which is the same as Bit0, the 

LSb.  Also, the transition density of each of the bits is same as the LSb.  This means as the spatial 

frequency is increased, the number of 8-bit binary values, samples, that represent a cycle of the two-

dimensional sinusoidal grating is reduced.   

Impact of Image Size 

The same thing happens when the image size is reduced but the spatial frequency is kept 

constant.  This means that the transition density and static transition probabilities of the bits going 

from LSb to MSb, right to left, increases and reaches at maximum 1/4 depending on the spatial 

frequency or the size of the image.  Transition density together with the static transition probability, 

increases the switching at the primary IO ports of the spatial filter as the input to the filter is the 

streaming of 8-bit pixel scanned from the image in row-major order. 

This is the reason why the IO power consumption increases when the spatial frequency of the 

sinusoidal gratings is increased, or image size is reduced while keeping the spatial frequency 

constant.  However, since the amount of logic used in implementing the spatial filter in hardware 

to process a smaller say 16x16 image is considerably less than a larger say image of 1024x1024 

size image, the impact of the power consumed by the logic is not as significant as the power 

consumed by the IO.  Therefore, for smaller images, the IO power dominates the total power 

consumption. 

Similarly, for larger image size the proportion of the IO power in the total power consumption 

is reduced as the image size is increased for a given spatial frequency as the static transition 

probabilities of middle bits (between LSb and MSb) reduces. 

Signal Rate and Transition Density 

Let us explore another empirical evidence to study the impact of the signal rate or transition 

density, by way of extracting the switching activity information from the Xilinx Power Analyser 

(XPA) for the input and output ports.  In order to extract this information, the information provided 

under the term “signal rate” in the XPA power consumption report was used.  Xilinx [41] defines 

the signal rate by the number of millions of transitions per second (2xClockRate in MHz) for the 

signal under consideration. 
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Since the clock frequency is kept fixed in most of experiments, only the pixel values at the 8-bit 

primary input (gateway_in) and output (gateway_out) ports of the spatial filter hardware 

implementation are considered.  For an example the gateway_in port from the most significant bit 

gateway_in (7) to the least significant bit gateway_in(0) and similarly for the gateway_out port.  In 

a clock driven synchronous design, the maximum value of transitions can be given the half of the 

input clock frequency.  Therefore, in the case that the clock frequency is 100MHz and the transitions 

for the same are 200 Million Transactions per second (Mtps) while the data only changes once 

every clock cycle the data transmission rate would be 100 Mtps maximum.  If the synchronous 

design has components that change on each of the clock edges, i.e. positive and negative, then for 

the given clock frequency of 100MHz, the data signal rate would be 200Mtps.  Figure 21 shows the 

graph of the mean of each bit in the 8-bit input pixel values given in Mtps versus the image size 

and confirms the theoretical findings as explained.  This graph is plotted using a linear-log scale.  

As it can be seen in the graph, the signal rate of the most significant bits increases as the image size 

decreases thus increasing the power consumed in the IO ports.  Here the spatial frequency is fixed 

to one cycle per image and the orientation is set to 0 degrees. 

 

Fig. 21 Signal rate at the 8-bit image pixel input port gateway_in vs image size 

Figure 22 shows the same impact of varying image size on the output port gateway_out, using a 

linear log scale. The mean signal rate of each of the bits in the 8 bits of gateway_out increases from 

least significant bit to the most significant bit as the image size decreases. 
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Fig. 22. Signal rate at the 8-bit image pixel output port gateway_out vs image size 

For the case where the spatial frequencies are varied by providing varying frequency grating 

images to the spatial filter, Figure 23 shows the graph of signal rate of each of the gateway_in bits 

versus spatial frequency, using a linear-log scale.  Regression lines are fitted through each of the 

data points of gateway_in bits to extract the trend.  It can be observed from the graph that as the 

spatial frequency increases, the trend is that there is an increase in the signal rate from the least 

significant bit (gateway_in(0)) to the most significant bit (gateway_in(7)) in gateway_in input port.  

Here the orientation is fixed to 0 degrees. 

 

Fig. 23. Signal rate at the 8-bit image pixel input port gateway_in vs spatial frequency, orientation 0 degrees 
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The same general trend of increasing of the signal rate continues for the pixel output port 

gateway_out of the spatial filter as shown in Figure 24. This graph is plotted using a linear-log 

scale. 

 

Fig. 24. Signal rate at the 8-bit image pixel output port gateway_out vs spatial frequency, orientation 0 degrees 

In the case where the spatial frequency of an image is varied while keeping the size of the image 

fixed, since a larger image requires more logic in the spatial filter to process the image, the rise in 

spatial frequency increases the power consumption in the logic thus increasing overall power and 

energy consumption.  This can be seen in Figure 25 where the area occupied by the hardware 

implemented spatial filter in terms of FPGA slices versus the size of an image to be processed is 

plotted.  The graph uses a log-log scale. 

 

Fig. 25. FPGA area occupied by the spatial filter implementation vs Image size 
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However, the power efficiency which is power consumed multiplied by the time to process the 

image, is given by energy consumption and is as expected whereby smaller images take less energy 

to process in comparison with larger images as shown in Figure 25, of dynamic energy consumption 

vs the image size. 

Impact of Orientation 

In order to assess the impact of the orientation on the energy efficiency of the spatial filter in 

processing the image we need to refer back to the anatomy of the image and the hardware 

implementation of a spatial filter.   In an image of a sinusoidal grating with 0 degrees orientation, 

discounting the black circular mask in the image, the change in content i.e. the variation in the 

content as given by a change in the pixel values is only in the horizontal direction however, in the 

vertical direction, the variation in the content is zero and the pixel values remain constant.  Now, in 

the template spatial filter, the pixels are scanned in row-major order.  Therefore, when the pixel 

values are presented at the input ports of the hardware implemented spatial filter, the variation in 

the values of pixels as experienced by the spatial filter is maximum.  This increase in switching at 

the IO ports, contributes to the IO power consumption in the FPGA and contributes to the dynamic 

power consumption in the logic due to the increased amount of switching.  However, when the 

sinusoidal grating is aligned horizontally, i.e. orientation at 90 degrees, the change in pixel values 

is non-existent in the horizontal direction and thus when the image is in scanned row-major order, 

the values presented at the IO ports of the spatial filter do not switch in the same amount as any 

other orientation.  This has a direct impact on the power and energy consumption of the spatial filter 

used to process the image.  If the spatial filter scanned the image in a column major order, the effect 

would be reversed. 

Validation on Natural Images 

Given any two images of a Tiger and an Elephant as shown in figures below, one could pose a 

question as to: whether the image of the Tiger would consume a different amount of energy than 

that of the Elephant while filtering them using the same digital circuit? 

Table 11 shows the energy consumption of an image of an Elephant and a Tiger.  These images 

were processed in the Gaussian 5x5 template spatial filter and the energy consumption was 

estimated.  Care was taken to ensure that the Region Of Interest (ROI), in this case, the elephant 

and the tiger, was re-sized to have a very similar area in order for an objective comparison to 

happen.  As seen in the table, there is a clear difference in the power and energy consumption 

between the image of the Elephant and the Tiger.  Here, the image of the Tiger consumes more 

power and energy than the Elephant. 
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Table 11. Power and energy consumption of Elephant versus Tiger 

Image, 256x256 ROI ROI 

area, 

pixels 

Spatial 

Filter 

Operatio

n 

Power 

Consumptio

n mW 

Energy 

Consumptio

n uJ 

 

 

~2.9e+0

4 

Gaussian 

5x5 

40.38 

 

29.12088 

 

  

~2.9e+0

4 

Gaussian 

5x5 

47.56 

 

34.29889 

 

Analysis 

This difference in the energy consumption between the image of Tiger and Elephant could be 

explained by Figure 26 and Figure 27 which shows the graph of the signal rate of 8 bits of 

gateway_in input port and the 8 bits of gateway_out output port versus various images of size 

256x256 pixels of the two animals Elephants (7 arbitrary greyscale images of Elephants) and Tigers 

(4 arbitrary greyscale images of Tigers).  Here, the Region of Interest is not exactly scaled to be 

similar in the area however the size of the images was kept the same.  This is mainly because the 

impact of the images of animals on the signal rate of the IO ports was observed.  Graph of mean of 

each of the bits of input port gateway_in and output port gateway_out were plotted for signal rate.  

It is quite clear that the general trend in the signal rate between the elephant and the tigers in both 

input and output ports is rising.  The only reason this could be explained is that the images of the 

Tigers have higher spatial frequencies present in them due to the stripes of the tigers however since 

the images of the elephants are predominantly shades of grey their spatial frequencies are lower.  

These differences in spatial frequencies contribute to the differences in the IO port signal rate which 

then contribute to the power and energy consumption of the spatial filtering circuit. 
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Fig. 26. Signal rate at the input port gateway_in vs images of Elephants and Tigers 

 

Fig. 27. Signal rate the output port gateway_out vs images of Elephants and Tigers 

Conclusion 

An experimental framework was developed comprising of a library of spatial filters implemented 

in hardware and a reference dataset.  This included the development of software utilities to 

customise the spatial filters automatically in order to create hardware design instances on which to 

perform the empirical exploration.  Accordingly software utilities were developed to create a dataset 

of synthetic images comprising of two-dimensional sinusoidal gratings and utilities to automate the 

experimental process. The developed HW library of spatial filters was deployed in the respective 

series of experiments conducted in this research to enable the empirical demonstration of the results.   

Thus a reference framework has been established for quantification of image content, an image 
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content processing complexity metric, for modelling the computational energy efficiency in digital 

processing of images. The results of experiments have shown that the hardware accelerated spatial 

filter consumed more energy to process an image with a higher complexity metric e.g. the image of 

a Tiger required more energy to process than the image of an Elephant.  This is because of the 

spatial frequencies present in the image of the Tiger due to its stripes.  These spatial frequencies 

contribute to a higher number of switching of signals as required in processing the image; thus 

increasing the overall dynamic power consumption. Some of the notable contributions made in this 

paper by empirical demonstration are: 

 Even a plain grey image consumes dynamic power when processed in a digital circuit.  

This is mainly due to the inherent switching present in the pixels represented in binary 

format. 

 The impact of contrast and phase in a sinusoidal grating image on the dynamic power 

consumption of a spatial filter is not statistically significant. 

 The maximum amount of energy is consumed when the orientation of the sinusoidal 

grating in the image is at 0 degrees and the least energy is consumed when the orientation 

is at 90 degrees.  It was discovered that this effect was due to the row-major order scanning 

of the image and the horizontal symmetry of the hardware blocks to store the image rows. 

 The variation in the spatial frequency of an image has a significant impact on the energy 

efficiency of the spatial filter used for processing it.  It was confirmed that this was due to 

the gradual increase in the transition density and the static transition probabilities of the 

individual bits of the input port from the least significant bit to the most significant bit of 

the spatial filter due to the binary pixel values. 

 The variation in the orientation of the spatial frequencies also has a significant impact on 

the energy efficiency of the spatial filter. 

 Different types of spatial filters consume different amounts of energy; however, they 

follow the same model and the difference in energy consumption is constant based on the 

filter used.   

 At lower sizes of images such as 16x16, 32x32 and 64x64 consume more dynamic power 

than the larger sizes. This was found to be largely due to the power consumed by the 

primary inputs and outputs (IO). As the image size is increased the IO power is decreasing 

due to the number of IO switching in a unit time is more for the smaller image than it is 

for the larger image. Energy efficiency increases for smaller images however decreases 

for larger images as the image size and spatial frequency increases. 

Accordingly the results should serve to motivate insights and further research in pursuit of  the 

optimisation of the computational energy efficiency of hardware-accelerated image processing 

algorithms.  

Discussion and Future work 

Hadizadeh et al [15] proposed a method for producing energy-efficient images for energy-

adaptive OLED displays while preserving the perceptual quality of the original images. Similarly, 

the findings presented in this paper should motivate the consideration of the attributes of images 

that influence the energy-efficiency in their processing and accordingly the attempts to optimize the 

trade-off in design, messaging and rendered perceptual quality objectives of such images so as to 

enhance the energy efficiency of the hardware accelerated spatial filter used to process the images. 

For example, images where the content in the image has large vertically (90 degrees) orientated 

structures, could be rotated to 0 degrees so that the vertical structures are orientated horizontally 

and then processed through a hardware accelerated digital spatial filter that scans the image in a 
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row-major order which could potentially result in fewer switching and energy savings than 

otherwise. Furthermore, spatial frequencies of an image could be reduced, without affecting its 

ultimately rendered perceptual quality, prior to processing in the spatial filter which could 

potentially result into energy savings.  

Further research could progress this interesting area of research, beyond the scope of this paper, 

to evaluate the energy-efficiency in processing additional images including other types of synthetic 

and natural images and/or device/algorithm/configuration/ workflow variations; essentially 

exploring the computational energy-efficiency correlates of image processing, for example:  

 Varying image sizes with different aspect ratios to a square image. 

 Using natural images and varying the content in them. 

 Varying image content and investigating the impact on the other two major dependent 

variables, namely, the area and the performance of the hardware accelerated spatial filters. 

 Exploring other types of spatial filter architectures, different than the commonly used 

architecture presented in this paper. 

 Varying the hardware implementation platforms such as other FPGA devices and ASIC 

implementations. 

 Varying the content present in a colour image on the energy efficiency of a software or 

hardware accelerated image processing algorithm.   

 Varying configurations of algorithms and workflows involving GPUs, an embedded 

microprocessor like ARM and traditional single core and multi-core CPUs. 
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