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ABSTRACT
A fractional-order internal model control technique is applied to a three-dimensional resistive-capacitive network to enforce desired closed-
loop dynamics of first order. In order to handle model mismatch issues resulting from the random allocation of the components within
the network, the control law is augmented with a model-reference adaptive strategy in an external loop. By imposing a control law on
the system to obey first order dynamics, a calibrated transient response is ensured. The methodology enables feedback control of com-
plex systems with emergent responses and is robust in the presence of measurement noise or under conditions of poor model iden-
tification. Furthermore, it is also applicable to systems that exhibit higher order fractional dynamics. Examples of feedback-controlled
transduction include cantilever positioning in atomic force microscopy or the control of complex de-excitation lifetimes encountered in
many types of spectroscopies, e.g., nuclear magnetic, electron-spin, microwave, multiphoton fluorescence, Förster resonance, etc. The pro-
posed solution should also find important applications in more complex electronic, microwave, and photonic lock-in problems. Finally,
there are further applications across the broader measurement science and instrumentation community when designing complex feed-
back systems at the system level, e.g., ensuring the adaptive control of distributed physiological processes through the use of biomedical
implants.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5097743., s

I. INTRODUCTION

Fractional order analysis is an emergent interdisciplinary topic
with several applications when there are nonlocal interactions of
physical phenomena as well as in the control of distributed systems.
A typical example is the modeling of power systems1,2 for energy
transmission and storage3,4 and, in particular, supercapacitor mod-
eling and discharge control.5–11 Distributed system postulations are
also often encountered in the modeling of biological processes.12–22

A review of fractional order circuits that may be used to emulate
biological processes has been discussed in the article by Freeborn22

and the references therein. Other applications include the modeling

and analysis of dielectric responses23–28 including those of mem-
ristive nonlinear circuits.29 For example, fractional order calculus
naturally explains dielectric behavior of complex materials while tak-
ing into consideration long-range interacting dipoles.30–33 Further-
more, fractional order circuits are finding their way in many filtering
applications,34,35 as well as in communications.36,37

As distributed system modeling has evolved, there has also
been a surge in new system identification approaches, using state
variable filters38 or using continuous order distributions,39 and
there are specific dedicated tool boxes,40,41 e.g., FOMCON and
modulation functions available to the user.42 In order to account
for emergent responses as encountered in biomedical applications43

Rev. Sci. Instrum. 90, 103003 (2019); doi: 10.1063/1.5097743 90, 103003-1

Published under license by AIP Publishing

https://scitation.org/journal/rsi
https://doi.org/10.1063/1.5097743
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5097743
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5097743&domain=pdf&date_stamp=2019-October-21
https://doi.org/10.1063/1.5097743
https://orcid.org/0000-0001-9794-8815
https://orcid.org/0000-0003-2380-6114
mailto:s.hadjiloucas@reading.ac.uk
https://doi.org/10.1063/1.5097743


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

and the associated more complex dynamics44 or model cyber-
physical systems,45 which incorporate signals in multiple physi-
cal domains, new system identification approaches are also under
development.

As discussed in Ref. 46, it is possible to emulate systems with
complex dynamics using RC networks. Such circuits can be designed
specifically to have tailored responses with rather complex dynam-
ics.47–53 Furthermore, they enable analog realizations of fractional-
order controllers as discussed in the work by Petráš54 as well as
the works by Podlubny et al.,55 Charef,56 and Luo and Chen.57 Fur-
ther advances on the stability of linear systems with fractional-order
elements were extensively discussed by Petráš58 as well as Radwan
et al.59 A descriptor system approach was proposed by Tavazoei
and Haeri.60 As fractional order controllers are becoming more
widespread, there are also new opportunities to incorporate them
in more elaborate control strategies.

Internal model control (IMC) is a particularly efficient control
strategy, which has been gaining increasing popularity.61–65 Nowa-
days, the basic IMC formulations have been extended to incorporate
a neural network to account for system nonlinearities66,67 including
input saturation,68 as well as feedforward and feedback linearization
strategies.69 The extension to the fractional-order case has also been
addressed in the literature.70–73

The present work is concerned with the use of a fractional-
order IMC formulation for the control of a three-dimensional RC
analog circuit. The motivation for performing studies with such
circuits stems from the large number of their possible applica-
tions across physical sciences. For example, an interesting prop-
erty of the fractal nature of semi-infinite RC ladder networks is
that they can be used to model systems described by fractional
order integro-differential equations.74–78 Currently, there are sev-
eral physical systems whose behavior can be compactly described
using such models and the observed responses can be directly
associated with specific macroscopic or microscopic scale fractal
geometrical structures.79 Examples include long distributed lines,80

electromechanical viscoelastic materials,81,82 or materials employed
in energy storage applications.83,84 Moreover, systems subjected to
processes described using statistical mechanics such as Brownian
motion, 1/f noise, diffusion, or chaotic oscillators85–89 also may dis-
play a fractional order behavior that can be emulated using such
circuits.

In the current work, a simple yet elegant IMC design solu-
tion based on a fractional order system model of these networks
is employed. In order to handle model mismatch issues resulting
from the random component allocation within the RC network, we
propose an augmentation of the control law with a model-reference
adaptive control (MRAC) strategy in an external loop. In Secs. II
and III, we discuss the basic IMC topology and the introduction
of the external adaptive controller to account for the mismatch
between the internal model and the actual system dynamics. A pre-
liminary example is presented to illustrate the main features of the
proposed control law by using a system model with multiple frac-
tional exponents. Changes in the model coefficients and exponents
are introduced to investigate the robustness with respect to model
mismatch arising from poor identification. The 3-D RC network
case study is then presented under nominal conditions, as well as in
the presence of increased model mismatch and measurement noise.
The added benefits of the MRAC approach over simple fractional

order IMC are showcased by demonstrating a faster error conver-
gence rate to zero. The tuning space of the proposed control law is
also discussed. The formulation is generic and may be adopted to
various measurement science applications.

II. INTERNAL MODEL CONTROL TOPOLOGY
Figure 1 depicts the internal model control (IMC) topol-

ogy employed in the current study. In this block diagram, the
Laplace transforms U(s) and Y(s) correspond to the input voltage
to the 3D-RC network and the resulting current signal, respec-
tively. The Laplace transform of the reference signal is denoted
by R(s).

From the topology in Fig. 1, the transfer function
GCL(s) = Y(s)/R(s) for the closed-loop system is given by

GCL(s) =
G(s)Q(s)

1 + Q(s)[G(s) − Ĝ(s)]
. (1)

If there is no model mismatch, i.e., Ĝ(s) = G(s), the expression
(1) becomes simply GCL(s) = G(s)Q(s). Therefore, given a desired
closed-loop transfer function GD(s), the controller can be designed
by choosing

Q(s) =
GD(s)
Ĝ(s)

. (2)

In this work, the internal model will be cast in the form of a
fractional-order transfer function Ĝ(s), as recently proposed in the
IMC literature,72 in order to better match the dynamics of the 3D-
RC network. The desired closed-loop dynamics will be specified in
the form of the following first-order transfer function:

GD(s) =
Y(s)
R(s)

=
bD

s + aD
(3)

with aD = bD so that the output converges to the setpoint with time
constant 1/aD.90

It is worth noting that the transfer function G(s) of the system
to be controlled is not used in the design of the controller. Instead,
the design is based on an estimated transfer function Ĝ(s), which can
be obtained by using fractional-order system identification methods,
as in Ref. 91. The transfer function Q(s) is calculated through (2),
given the desired closed loop transfer function GD(s) with the value
aD = bD chosen by the designer.

Model mismatch between G(s) and Ĝ(s) could be evaluated by
comparing the open-loop responses of the actual system and the

FIG. 1. Control loop topology.
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identified model, as in Ref. 91. However, the present work does not
require a detailed characterization of the model mismatch. Indeed,
an external adaptive control loop is proposed to compensate for such
a mismatch, as will be now described.

III. PROPOSED AUGMENTATION OF THE CONTROL
LAW WITH AN EXTERNAL ADAPTIVE CONTROL LOOP

Figure 2 presents the external model-reference adaptive con-
trol (MRAC) loop,92 which will be employed to account for model
mismatch in the IMC scheme. In the present case, the IMC con-
troller was already designed in order to follow the desired dynam-
ics described by the reference model GD(s) in (6). However, due
to possible mismatches between G(s) and Ĝ(s), it is assumed that
the resulting dynamics of the internal loop (depicted as a gray box
in Fig. 2) do not follow GD(s) exactly but can be approximately
described by a transfer function of the form

GI(s) =
Y(s)
W(s)

=
bI

s + aI
(4)

with GI(s) ≠ GD(s), where the subscript I stands for “internal loop.”
If aI , bI were known, the external control law could be designed as

W(s) = θ1R(s) − θ2Y(s) (5)

with the controller parameters θ1, θ2 given by

θ1
bD
bI

, θ2 =
aD − aI

bI
. (6)

Indeed, from (4)–(6), it follows that Y(s)/R(s) = bD/(s + aD), which is
the desired transfer function (3). However, since aI , bI are not known
beforehand, some adaptive strategy is required to obtain the external

FIG. 2. Control topology including an internal IMC loop and an external MRAC loop.

controller parameters θ1, θ2. Herein, the well-known MIT rule92 was
employed for this purpose, as described in the Appendix. A unit step
reference signal r(t) will be used throughout.

IV. PRELIMINARY EXAMPLE
This example is concerned with a fractional order system with

dynamics described by the following transfer function:

G(s) =
6s1.7 + 1

s2.5 + 4s0.8 + 3
. (7)

The system in (7) displays a damped oscillatory response, which is
typical of many feedback-controlled transduction processes encoun-
tered in cantilever positioning in atomic force microscopy,93 opti-
cal force feedback microphones,94–96 or the control of complex de-
excitation lifetimes encountered in many types of spectroscopies,
e.g., nuclear magnetic,97 electron-spin,98,99 microwave,100–102 and
multiphoton fluorescence, e.g., Förster resonance,103 and in lock-in
applications104 or in other control and identification schemes.105

The desired closed-loop dynamics are specified in the form (6)
with aD = bD = 0.5, which corresponds to a first-order transfer func-
tion with a time constant of 2 s. All the simulations were carried
out by using the Matlab®/Simulink® software and the FOTF code106

for fractional-order systems available within the FOMCON toolbox
(www.fomcon.net).

Figure 3 presents the resulting closed-loop response obtained
by using the IMC scheme, in the absence of model mismatch,
i.e., with Ĝ(s) = G(s). As can be seen, the actual system out-
put follows the desired response exactly. For comparison, the
open-loop response of the simulation model is presented in the
inset.

To investigate the effect of model mismatch, possibly arising
from an identification process, the simulation was repeated after
changing the coefficients and exponents of the simulation model
G(s), while keeping the same internal model Ĝ(s). For this purpose,

FIG. 3. Closed loop response: fractional-order IMC control scheme with no model
mismatch. The open-loop response is presented in the inset.
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FIG. 4. Closed loop response: (a) fractional-order IMC control scheme with model mismatch. [(b)–(d)] Fractional-order IMC control augmented with the MRAC adaptive control
component using adaptation coefficient γ = 1, γ = 10, and γ = 100, respectively. The error between the actual responses and the desired response is presented in the insets.

each of the coefficients and exponents was multiplied by a random
factor of (1 + v), with the value of v extracted from a Gaussian
distribution of zero mean and standard deviation of 0.05. The results
of four different simulations are presented in Fig. 4(a). In order to

FIG. 5. Fractional-order IMC augmented with the MRAC adaptive control compo-
nent, in the presence of model mismatch: Root-Mean-Square Error (RMSE) as a
function of the adaptation coefficient γ.

mitigate the effect of model mismatch, the external MRAC adap-
tive control component was employed. The resulting closed-loop
responses obtained with the adaptation coefficient (as described in
the Appendix) set to γ = 1, γ = 10, and γ = 100 are shown in
Figs. 4(b)–4(d), respectively. As can be seen, as the value of γ is
increased, the error with respect to the desired response displays a
faster convergence to zero compared to Fig. 4(a). However, a trade-
off is involved because setting γ to 100 caused closed-loop instability
in one of the simulated cases. This trade-off is illustrated in Fig. 5,
which presents the root-mean-square error (RMSE) as a function of
the adaptation coefficient γ. For each value of γ, the RMSE value
was obtained by carrying out four simulations with model mismatch
and averaging the square error over time and over the four simu-
lations. The results are presented in Fig. 4. The use of increasingly
larger values of γ leads to better tracking of the reference signal, as
indicated by a reduction in RMSE, up to the point where instability
occurs.

V. APPLICATION TO THE 3D-RC NETWORK
This application example involves a 3D-RC network with the

topology depicted in Fig. 6, comprising 100 resistors and 100 capaci-
tors, in addition to a resistor representing the output resistance of the
external voltage source. The resistance and capacitance values were
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FIG. 6. Three-dimensional RC network connected to a voltage source by the gray
conductive plates.

set to RS = 0.1 Ω, R = 1 Ω, and C = 0.5 F. This network was employed
in Ref. 91 to illustrate an identification method aimed at obtaining
fractional-order models on the basis of the measured response to
a step input excitation. By taking the voltage u(t) and the current
y(t) as input and output signals, respectively, the transfer function
G(s) = Y(s)/U(s) corresponds to the network admittance. A detailed
analysis of the admittance features in the frequency domain can be
found in Ref. 107.

As reported in Ref. 91, a good approximation of the network
admittance (including the source resistance RS) can be achieved by
adopting a fractional-order model of the form

Ĝ(s) =
b0 + b1sα

1 + a1sα
, (8)

where b0, b1, a1 are real-valued coefficients and α > 0 is a real-
valued exponent. The same exponent is employed in the numerator
and denominator of (8) because the frequency-domain admittance
Ĝ( jω) converges to 1/RS at high frequencies, owing to the presence
of capacitor paths between the 3D network terminals.

By using a step-input identification method, the following
transfer function was obtained in Ref. 91:

Ĝ(s) =
0.287 + 1.348s0.682

1 + 0.145s0.682 . (9)

A comparison with the use of an integer-order internal model can
be carried out by using the following transfer function:

Ĝ(s) =
0.358 + 1.449s

1 + 0.229s
, (10)

which is the identification result reported in Ref. 91 with α set to 1 in
the transfer function (8).

Herein, the desired closed-loop dynamics are specified in the
form (6) with aD = bD = 10, which corresponds to a first-order

FIG. 7. Closed-loop response: comparison between fractional and integer-order
IMC. The error between the actual response and the desired response is presented
in the inset.

transfer function with a time constant of 0.1 s. Figure 7 presents the
resulting closed-loop responses. As can be seen, the output of the
closed-loop system (dotted line) closely follows the desired profile
(solid line) if the fractional-order transfer function (9) is employed
in the internal model control scheme. The small gap between the
solid and dotted lines can be ascribed to minor differences between
the fractional-order model (9) and the actual network admittance, as
discussed in Ref. 91. In contrast, if the integer-order transfer func-
tion (10) is employed, the resulting closed-loop response (dashed
line) presents substantially larger deviations from the desired pro-
file. As can be seen in the inset of Fig. 7, the use of a fractional-order
model in the IMC scheme does lead to a faster convergence of the
error to zero.

In order to study the robustness of the fractional-order IMC
controller, the simulation was repeated by using four different 3D-
RC networks with random allocation of the R, C components, while
keeping the same internal model. As discussed in Ref. 108, this
random allocation may result from the natural variability in a pro-
duction process and results in changes of the network response
to electrical excitations. Figure 8(a) presents the resulting closed-
loop responses. As can be seen, the responses (dashed lines) remain
similar to the desired profile (solid line) but with a larger discrep-
ancy compared to the nominal case (dotted line). This discrepancy
is reduced by using the external MRAC loop with increasing val-
ues of the adaptation coefficient γ, as shown in Figs. 8(b) and 8(c)
for γ = 10 and γ = 100, respectively. However, setting γ to 1000
caused closed-loop instability in two of the simulated cases, as seen
in Fig. 8(d). This trade-off is illustrated in Fig. 9, which presents the
root-mean-square error (RMSE) as a function of γ. As in the prelim-
inary example presented in Sec. IV, the use of increasingly larger
values of γ leads to a reduction in RMSE up to the point where
instability occurs.

Additional simulations were carried out to investigate the effect
of measurement noise. For this purpose, at each time step of the
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FIG. 8. Closed-loop response: comparison between the nominal network and four different networks with random allocation of the R, C components. (a) Fractional-order IMC
control scheme. [(b)–(d)] Fractional-order IMC control augmented with the MRAC adaptive control component using adaptation coefficient γ = 10, γ = 100, and γ = 1000. The
error between the actual responses and the desired response is presented in the insets.

FIG. 9. Fractional-order IMC augmented with the MRAC adaptive control compo-
nent: Root-Mean-Square Error (RMSE) as a function of the adaptation coefficient
γ. The vertical axis is clipped for better visualization.

simulation procedure, the feedback data were corrupted with ran-
dom noise from a Gaussian distribution of zero mean and stan-
dard deviation of 0.02. The results are shown in Fig. 10 for the
fractional-order IMC scheme without [Fig. 10(a)] and with the
MRAC adaptive control component [γ = 10 in Fig. 10(b) and
γ = 100 in Fig. 10(c)]. The value γ = 1000 was not employed
because it caused instability in the noise-free case, as shown
in Fig. 8(d).

By comparing Fig. 10(a) with Figs. 10(b) and 10(c), it can be
noted that the use of MRAC still provides a faster reduction in the
error magnitude. However, the presence of measurement noise gives
rise to oscillations of the response around the reference value, which
are more clearly visible for γ = 100 [Fig. 10(c)], compared to γ = 10
[Fig. 10(b)]. Indeed, as shown in Fig. 10(d), owing to the presence
of noise, the root-mean-square value of the error starts to increase
for larger values of the adaptation coefficient γ, even in the nominal
network case. It is worth noting that the RMSE values corresponding
to the solid lines in Figs. 9 and 10(d) were obtained for each value of
γ as the square root of the square error averaged over time and over
the four different networks.
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FIG. 10. Closed-loop results in the presence of measurement noise using the fractional-order IMC scheme: (a) without MRAC and [(b) and (c)] with MRAC. The RMSE values
are shown in (d), with the vertical axis clipped for better visualization.

VI. CONCLUSION

A fractional-order internal model control technique is applied
to systems described by fractional order dynamics to impose a
first order response. Fractional order emergent responses are emu-
lated using three-dimensional RC networks and through an example
of a system model with multiple fractional order exponents. The
control law is augmented with a model-reference adaptive strat-
egy in an external loop. By imposing a control law on the sys-
tem to obey first order dynamics, a calibrated transient response
is ensured. The MRAC scheme provides additional robustness to
model mismatch from the identification process and faster error
convergence to zero. The proposed methodology enables feedback
control of complex systems with emergent responses and is thus
of value to a wide range of transduction processes with emergent
dynamics encountered in feedback instrumentation, e.g., in elec-
tronic, microwave, and photonic lock-in problems. Finally, there are
further applications across the broader measurement science and
instrumentation community designing complex feedback systems at
the system level, e.g., ensuring the adaptive control of distributed
physiological processes through the use of biomedical implants that
would be capable of responding to fractional order dynamics. Future
work may also investigate the possibility of extending this study to

complex systems emulated using a large-scale three-dimensional
RLC network.109
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APPENDIX: MIT RULE
Let yD be the output of the reference model, as indicated in

Fig. 2. Moreover, let e = y − yD be the error between the actual sys-
tem response y and the desired response yD. At each time instant, a
cost function J associated with the controller parameters θ1, θ2 can
be defined as

J(θ1, θ2) =
1
2
e2. (A1)

The MIT rule consists in adjusting the controller parameters in a
gradient-descent manner,92 i.e.,

θ̇1 = −γ′
∂J
∂θ1
= −γ′e

∂e
∂θ1
= −γ′e

∂y
∂θ1

, (A2)

Rev. Sci. Instrum. 90, 103003 (2019); doi: 10.1063/1.5097743 90, 103003-7

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

where γ′ > 0 is a constant adaptation coefficient. In a similar
manner, θ2 is adapted as

θ̇2 = −γ′e
∂y
∂θ2

. (A3)

From (4) and (5), it follows that

y =
bIθ1

p + aI + bIθ2
r, (A4)

where p is the time-differential operator, following the notation
adopted in Ref. 92. Therefore, the partial derivatives of the error e
in (A2) and (A3) can be calculated as

∂y
∂θ1
=

bI
p + aI + bIθ2

r, (A5)

∂y
∂θ2
=

−b2
I θ1

(p + aI + bIθ2)
2 r =

−bI
p + aI + bIθ2

y, (A6)

where the last identity follows from (A4). Now, assuming that
the closed-loop response (A4) will be approximately equal to the
desired response (3), one may write aI + bIθ2 ≈ aD. By using this
approximation in (A5) and (A6), the adaptation laws (A2) and (A3)
become

θ̇1 = −γ′
bI

p + aD
r = −γe

aD
p + aD

r, (A7)

θ̇2 = γe
aD

p + aD
y, (A8)

where γ = γ′bI/aD. By doing so, the unknown coefficient bI is incor-
porated into a new adaptation coefficient γ, which becomes a design
parameter in the resulting MRAC law. In the present work, it is
assumed that (aI , bI) are close to (aD, bD) due to the action of the
internal IMC control loop. Therefore, in view of (6), the external
controller parameters were initialized as θ1 = 1 and θ2 = 0.
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