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ABSTRACT:   

Aberrant activation of signalling pathways has been postulated to promote age 

related changes in skeletal muscle. Cell signalling activation requires not only the 

expression of ligands and receptors but also an appropriate environment that 

facilitates their interaction.  Here we first examined the expression of SULF1/SULF2 

and members of RTK (receptor tyrosine kinase) and the Wnt family in skeletal 

muscle of normal and a mouse model of accelerated ageing.  We show that 

SULF1/SULF2 and these signalling components, a feature of early muscle 

development are barely detectable in early postnatal muscle.  Real time qPCR and 

immunocytochemical analysis showed gradual but progressive up-regulation of 

SULF1/SULF2 and RTK/Wnt proteins not only in the activated satellite cells but also 

on muscle fibres that gradually increased with age. Satellite cells on isolated muscle 

fibres showed spontaneous in vivo satellite cell activation and progressive reduction 

in proliferative potential and responsiveness to HGF (hepatocyte growth factor) and 

dysregulated myogenic differentiation with age. Finally, we show that SULF1/SULF2 

and RTK/Wnt signalling components are expressed in progeric mouse muscles at 

earlier stage but their expression is attenuated by an intervention that promotes 

muscle repair and growth.    

 

INTRODUCTION:  

Often ligands are sequestered in the extracellular matrix (ECM) that need to be 

liberated for them to activate their receptors.  It has previously been shown that de-

sulfation of the ECM mediated by SULF1/SULF2 enzymes regulates Wnt signalling 
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during development and regeneration [1, 2]. Skeletal muscle unlike cardiac muscle 

can successfully repair itself to restore function due to its endowment with resident 

stem cells called satellite cells that can be activated upon injury.  Satellite cells exist 

normally in a quiescent state and are located under the basal lamina. However, 

during periods of muscle growth or following muscle injury they become activated 

and proliferate to repair the damaged muscle.  At this stage the daughter cells either 

follow a differentiation pathway that leads them to eventually fuse with each other or 

with an existing fibre [3].  Alternatively, they revert to a quiescent stem cell state. A 

satellite cell sub-population is maintained for life through regulated and limited self-

renewal but the number of satellite cells decreases with age and those that are 

present display functional deterioration [4, 5]. A similar situation occurs in numerous 

chronic diseases of the muscle including Duchenne Muscular Dystrophy where 

repeated rounds of degeneration and regeneration exhaust the satellite cell 

population leading to fibrosis.  

 

Regenerative ability is also impaired in ageing muscle [6]. Age-related muscle 

deterioration manifested by loss of muscle mass and strength is well recognised but 

the basis of such weakness and possible amelioration is not known. This may result 

from the reduced number of satellite cells or their declining ability to proliferate or 

differentiate fully due to changed microenvironment with time.  Some studies have 

shown the total number of satellite cell number to decline with age [4, 5, 7] that could 

limit the regenerative potential of aged muscle but the nature of other contributory 

factors affecting the loss of muscle mass or reduced muscle regenerative capacity 

with age is less clear.   

 

Reduced number of satellite cells and the finite regenerative potential of resident 

satellite cells could nevertheless be exhausted following repeated cycles of injury 

and regeneration. Dysregulated cell signalling imposed by changes in the satellite 

cell niche could further impair the muscle regenerative capacity.  The regulated 

activity of such cells on the other hand could preserve satellite cell function for 

longer.  Regulated cell signalling ensures well-orchestrated skeletal muscle growth 

during fetal and postnatal growth and timely onset of muscle differentiation but re-

activation of similar processes is not so well maintained in later life.   
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The muscle satellite cells enter quiescence upon muscle growth completion 

accompanied by marked down-regulation of most cell signalling pathways 

responsible for growth.  Growth driving cell signalling, however, is transiently up- 

regulated regionally during muscle injury and repair to activate quiescent satellite 

cells responsible for muscle regeneration [8]. Activation of signalling pathways 

requires the appropriate expression of ligands as well as their receptors and 

appropriately sulfated or de-sulfated co-receptors. However, ligands are often 

sequestered in the extracellular matrix (ECM) which need to be liberated for them to 

activate their receptor. We have previously shown that de-sulfation of the ECM 

mediated by SULF1/SULF2 enzymes regulates signalling pathways during 

development, regeneration and disease [1, 9-11]. 

 

A number of studies have shown that both the Wnt and FGF (fibroblast growth 

factor) signalling pathways become activated in ageing muscle [7, 12, 13] which 

have been postulated to satellite cells losing their self-renewal properties as well as 

inducing cell fate changes that promote them to differentiate into fibroblasts and thus 

increase muscle fibrosis. Here we firstly examined the expression of SULF1/SULF2 

in aged muscle as these enzymes have been shown to inhibit RTK cell signalling but 

facilitate Wnt signalling during development and disease [2, 14-16]. We show that 

expression of SULF1/SULF2 increased in muscle with age. Furthermore, this 

correlates with the onset of spontaneous satellite cell activation. 

We also examined the expression of SULF1/SULF2  as well as signalling molecules 

in a mouse model of accelerated ageing.  Ercc1Δ/- hypomorphic mutant mice 

progressively show signs of ageing in all organs from about 8 weeks of age which is 

much more severe than in geriatric wild-type mice.  Ercc1Δ/- mutant mice die at 4-6 

months of age. This model is valuable in that it not only displays most features of 

normal aging but is amenable to experimentation in a timely manner. Here we show 

that not only does the muscle of Ercc1Δ/- show elevated levels of SULF1/SULF2 as 

well as Wnt molecules but that their expression can be significantly decreased by an 

intervention that promotes muscle survival and growth.   

RESULTS:  
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SULF1 and SULF2 expression in developing, regenerating and ageing muscle:  

SULF1 and SULF2 are barely detectable in normal 2-6 month old mouse muscles 

using immunocytochemical or qPCR procedures (Figure 1) with the exception of 

some rare isolated activated satellite cells. This follows a high level of SULF1 and 

SULF2 expression during early fetal muscle growth with their re-activation in adult 

only during muscle regeneration in response to injury or disease as is observed in 

mdx mouse muscles undergoing muscle regeneration (Figure 1). Restriction of 

SULF1/SULF2 enzymes to myogenic cells in such regenerating areas was confirmed 

by their correlation with staining for skeletal muscle myosin heavy chains (Figure 1.I 

& J). Spontaneous SULF1 and SULF2 re-activation in adult muscle, however, 

gradually increases with age as significant levels of these enzymes are detectable at 

28 months of age not only in isolated activated satellite cells but also more wide 

expression on the cell membrane (Figure 1.G, H, K, L) using both 

immunocytochemical and qPCR procedures.  Quantification by qPCR procedure 

showed relatively higher levels of Sulf1 when compared with Sulf2 (Figure 1.M & N) 

although presence of both these enzymes was easily apparent by fluorescent 

antibody staining for SULF1 and SULF2.    

Re-activation of receptor tyrosine kinase (RTK) and Wnt signalling in ageing 

muscle: The re-activation of SULF1/SULF2 in ageing muscle prompted us to 

investigate the re-activation of signalling pathways known to be modulated by SULF 

enzymes in a positive or a negative manner.  As was the case with SULF1 and 

SULF2, the presence of phospho-cMet and phospho-FGFR1 was considerably 

increased in 28 month old mice when compared with their barely detectable levels 

restricted only to an occasional activated satellite cell in 6-month old mice (Figure 2).  

The levels of these phosphorylated receptors showed intermediate level of increase 

at 18 months of age (Figure 2. B & E).  

In ageing muscle, we also examined the activation of Wnt signalling known to be 

promoted by SULF1/SULF2 enzymes and well recognised to regulate muscle 

development and regeneration [1].  Activation of Wnt signalling in younger and 

ageing muscle was compared using antibodies to Wnt1, Wnt2, Wnt3a, Wnt4, Wnt6 

and wnt7a ligands as they can regulate muscle growth [8, 17] in a positive and 

negative manner.  Comparison of 28 month old Gastrocnemius muscle with 6 month 

old muscle shows marked increase in Wnt signalling during later stage (Figure 3).  
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Aged muscle at 28 month stage showed activation of all these Wnt ligands although 

the level of increase was greatest for Wnt1 and Wnt2 with lower level increases in 

other Wnts, particularly Wnt7a showing the lowest level of expression (Figure 3).  

The level of increase in Wnt3a, Wnt4 and Wnt6 in such ageing muscle was relatively 

moderate (Figure 3).   

Relative level of satellite cell activation, cell proliferation and response to HGF 

in ageing muscle in vitro:  

The level of in vitro spontaneous satellite cell activation was further examined by 

preparing single muscle fibres for immediate analysis following isolation i.e time 0hr.  

Unlike the early developmental stages of 2-3 months showing rare or no activated 

satellite cells at 0hr, single fibres isolated from later stages showed the presence of a 

number of activated satellite cells at time 0 identified by their larger nuclear size and 

SULF1/SULF2 and or MyoD staining.  While the number of activated satellite cells at 

a later stage of 12 months generally showed the activation of some individual 

satellite cells, single fibres from 2 year old muscles also showed some 2 or 4-cell 

clusters at 0hr (Figure 4) although not all cells in such clusters showed SULF or 

MyoD activation. 

The in vitro culture of isolated single fibres for 72 hours showed reduced rate of 

satellite cell proliferation apparent from the reduced size of cell clusters on fibres 

isolated from 2-year old mice in comparison with cell cluster size on fibres from 2.5 

month old mice and intermediate size for 12 month old mice (Figure 4). 

Addition of HGF to single fibre cultures increases satellite cell proliferation but HGF 

response of single fibres from older mice in comparison with younger mice showed a 

much lower level of satellite cell proliferation (Figure 4) and not conforming to the 

timely onset and suppression of MyoD and Sulfs apparent in the satellite cells of 

younger muscles [8]. 

Earlier re-activation of SULF1/SULF2 and cell signalling in younger Ercc1Δ/-

progeric mouse muscles with accelerated ageing but their attenuation in 

sActRIIB treated muscles:   

To determine if cell signalling and spontaneous satellite cell activation was enhanced 

or earlier in progeric mouse muscles with accelerated ageing, we investigated the 
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age-related onset of SULF1/SULF2 and cell signalling in the Gastrocnemius muscle 

of Ercc1Δ/- mice at 16 weeks of age.  Unlike the muscles from 16 week old WT mice 

that show no overt cell signalling or SULF1/SULF2 activation at this stage, their 

activation in age-matched  Ercc1Δ/- mouse muscles was clearly apparent in regions 

showing some muscle damage identified from their H&E (Haemotoxylin & Eosin) and 

immunocytochemical staining for Laminin (Figure 5). This was also apparent from 

Laminin staining surrounding not only large muscle fibres but also encircling some 

very small cells that did not appear to grow in size as intermediate size myogenic 

cells were usually not apparent in such regions (Figure 5G). Such areas also 

demonstrated activation of cell signalling as for example is revealed by phospho-

FGFR1 staining in progeric but not in age-matched WT mouse muscles (Figure 6).  

Further immunocytochemical staining analysis also demonstrated that 

SULF1/SULF2 activation was not restricted to only the areas that appeared 

damaged but also observed on the cell membranes of the apparently uninjured 

muscle fibres (Figure 6).  

Previously we have shown that attenuating Myostatin/Activin signalling significantly 

improved both the quality and quantity of muscle in the Ercc1Δ/- progeric mouse 

[18]. Having shown the aberrant expression of SULF1/SULF2 in the muscle of the 

progeric mice, we next determined the impact of dampening down Myostatin/Activin 

signalling on their expression. Remarkably muscles treated with the soluble Activin 

Receptor Type IIB ligand trap (sActRIIB) for 9 weeks displayed markedly decreased 

levels of SULF1/SULF2 (Figure 6).  Only a few activated satellite cells similar to 

earlier younger muscles showed some SULF1/SULF2 staining (Figure 6.C) but no 

cell membrane staining was observed in such muscles.  

We also investigated if RTK or Wnt signalling was activated in Gastocnemius 

muscles of 16 week old Ercc1Δ/- mouse muscles since activation of several Wnts 

was observed in ageing WT muscles that was particularly pronounced during later 

stages of ageing (Figure 7). Similar to older WT mouse muscles, activation of Wnt 

signalling in younger Ercc1Δ/- mouse Gastrocnemius was observed at an earlier 

stage of 16 weeks.  As was the case for SULF1/SULf2, cMet and FGF signalling, 

attenuation of activin signalling by treatment of Ercc1Δ/- progeric mice with activin 

ligand trap over 9 weeks, also considerably reduced Wnt, cMet and FGF signalling in 

such treated mice (Figure 7).     
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DISCUSSION: Cell signalling is required for muscle development and growth as well 

as during regeneration in response to injury.  These same signalling pathways, 

however, are thought to be responsible when aberrantly activated during chronic 

injury and during the ageing process. Here we show that the expression of Sulf 

molecules is very high during muscle development and in regenerating muscle. 

However, the expression of these molecules as well as signalling ligands and 

receptors then decreases dramatically in adult mouse muscle. The low level 

expression of these molecules then increases gradually with age until they are 

expressed at high levels again in 28-month old mouse muscle which corresponds to 

geriatric age in humans [19]. We additionally show that the Ercc progeric mouse also 

displays high levels of Sulf as well as RTK & Wnt molecules at 16-weeks of age, a 

time point when this mouse displays numerous signs of ageing including sarcopenia.  

We have previously shown that Sulfs support myogenesis by promoting Wnt 

signalling; by liberating bound ligands through their enzymatic ability to desulfate the 

HSPGs (heparan sulfate proteoglycans) in the ECM [8, 14]. Assuming that the 

relationship between the Sulf/Wnt and muscle cells is conserved during post-natal 

life then we can develop a scientific rationale for the results presented in this study. 

We show sporadic expression of Sulfs and Wnts in mononuclear muscle cells. We 

suggest that here the cells expressing these molecules are in the process of fusing 

with the muscle fibre as part of the homeostatic pathway to maintain a healthy tissue. 

Indeed our understanding of the role played by satellite cells during post-natal life 

has undergone a tremendous revision underpinned by the development of novel 

microscopic techniques and the generation of novel mouse genetic models. The 

work of White et al has shown that the myonuclear content of mouse muscle fibres 

increases up to 3 weeks in mice [20]. However others have shown that myonuclei 

continue to be added at least into adulthood and support not only the muscle fibre 

size but also their muscle phenotype (specific Myosin Heavy chain expression) [21, 

22]. These studies show that satellite cells are activated in un-injured muscle during 

phases of myonuclei accretion (up to postnatal day 21) and thereafter to replace 

nuclei that undergo apoptosis. We suggest that the expression of the Sulfs and the 

signalling components including Wnt ligands that we detected in adult muscle are in 

those cells that are in the process of differentiating into fusion competent myoblasts 
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and are responsible for maintaining fibre size and muscle phenotype. Therefore at 

this stage the expression of Sulfs and Wnts is part of a homeostatic process. 

In contrast we suggest that in aged muscle the expression of Sulfs, RTK signalling 

components and Wnts becomes aberrant that plays a part in the muscle losing its 

normal functional capacity. We present data that shows expression of Sulfs and 

these signalling components not only in the satellite cells but also in muscle fibres. A 

similar expression profile has been reported for members of the FGF signalling 

cascade [12].  Herein Chakkalakal and colleagues suggest that the primary function 

of the FGF molecules is to support fibre repair that relies on autocrine signalling. 

However, the undesirable side effect of the autocrine action is that it works in a 

paracrine manner to deregulate the activity of satellite cells. There is accumulating 

evidence that aberrant signalling activation in satellite cells that leads to them losing 

their normal function either by compromising their self-renewal capacity or losing 

their muscle identity by converting into fibroblasts [7, 12, 13]. We suggest that the 

expression of Sulfs as well as Wnts, FGF & cMet would fit into this model and that 

the expression in the fibres is desirable but not in the satellite cells.   

Stem cells are normally activated during repair or only when required and preserve a 

stem cell sub-population set aside that does not undergo repeated rounds of cell 

division. A recent study [12], however, reported spontaneous satellite cell activation 

in the absence of apparent injury due to a change in satellite cell niche e.g. activation 

of FGF signalling breaking satellite cell quiescence.  Such an age-related change in 

muscle stem cell niche can trigger unwarranted satellite cell activation leading to 

reduced longer term regenerative capacity of such stem cells.  Satellite stem cell 

niche, however, constitutes complex microenvironment that does not only include 

FGF cell signalling but many other cell signalling pathways that can equally 

promote/substitute, inhibit or regulate muscle cell repair in ageing muscle.  We 

investigated the role of SULF1/SULF2 cell signalling in this study that are known to 

promote some cell signalling pathways such as Wnt signalling while inhibit many 

receptor tyrosine kinase mediated cell signalling pathways.  Raised levels of SULF 

expression thus have the potential to promote Wnt signalling but inhibit FGF and/or 

HGF cell signalling.  This can thus disrupt satellite cell quiescence as well as 

unwarranted or regulated cell signalling. Levels of both SULFs were clearly up-

regulated during ageing process that our earlier in vitro study showed to be 
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associated with early phase of satellite cell activation and proliferation but down-

regulated during later phase of myogenic differentiation [8].  Concomitent increase in 

Wnt signalling indicates increased Wnt signalling but yet not sufficient muscle repair.  

Concomitent increase in RTK cell signalling pathways likely to be inhibited or down-

regulated by SULFs also indicates dysregulated cell signalling.               

Activated satellite cells during earlier in vivo as well as in vitro stages generally 

showed single cell activation as satellite cell clusters are generally not apparent until 

after 24 hours while up to 4-cell clusters were sometimes observed on older muscle 

fibres at time 0hr. Such in situ proliferation of activated satellite cells should promote 

muscle cell repair but yet loss of muscle mass is observed in ageing muscle.  This 

may result from dysregulated cell signalling as indicated by non-activation of 

simultaneous MyoD and SULFs in some activated satellite cells in aged muscle 

unlike satellite cells of younger muscles [8]. The finite ability of satellite cells to 

undergo only a limited number of cell cycles thus limiting cell proliferation may 

explain loss of muscle mass but it is unclear how activity or exercise helps maintain 

muscle mass for longer. It is possible that better cell signalling regulation due to 

maintenance of higher satellite cell activation threshold in exercised muscle helps 

preserve a set of satellite cells as a reserve population.  

 

In this study we show that the Ercc model of accelerated ageing shows elevated 

expression of Sulf1/Sulf2 as well as Wnt molecules and RTK signalling components 

at an earlier stage as those displayed by aged muscle. Importantly we show that the 

expression of all factors associated with ageing are in general normalised by the 

sActRIIB molecule. Previously we have shown that sActRIIB treatment of the Ercc 

mouse for an identical period as deployed in this study lead to improved intracellular 

architecture as well as a normalisation of the ECM which we posited was due to 

increased autophagy [18]. In the same study we showed, using the single fibre 

model, that satellite cell activity was normalised. The results from this study add an 

extra layer of understanding of how the introduction of sActRIIB promotes muscle 

health in the progeric model. We suggest that it improves muscle fibre homeostasis 

so that the fibres never get to the point where they need to express signalling 

molecules to maintain its function. As a consequence the satellite cells are not 

aberrantly activated which helps attenuate the ageing process. 
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MATERIALS & METHODS:  

Mice and Ethical approval: Normal timed ageing muscles of C57BL/6J mice were 

obtained from mice supplied by Charles River. The experiments were performed 

under a project license from the United Kingdom Home Office in agreement with the 

Animals (Scientific Procedures) Act 1986. The RVC and University of Reading 

Animal Care and Ethical Review Committee approved all procedures.  Animals were 

humanely sacrificed via Schedule 1 killing.  Muscles for qPCR and histological and 

immunocytochemical analyses constituted a minimum of 3-4 Mice in each group.   

Ercc progeric mice and sActRIIB treatment: Control (Ercc1+/+) and transgenic 

(Ercc1Δ/-) mice were bred as previously described [18] and maintained in 

accordance to the Animals (Scientific Procedures) Act 1986 (UK) and approved by 

the Biological Resource Unit of Reading University or the Dutch Ethical Committee at 

Erasmus MC.  Mice were housed in individual ventilated cages under specific 

pathogen free conditions (20–22°C, 12–12 hr light–dark cycle) and provided food 

and water ad libitum. Since the Ercc1Δ/− mice were smaller, food was administered 

within the cages and water bottles with long nozzles were used from around two 

weeks of age.  Animals were bred and maintained (for the lifespan cohort) on 

AIN93G synthetic pellets (Research Diet Services B.V.; gross energy content 4.9 

kcal/g dry mass, digestible energy 3.97 kcal/g). Post-natal Myostatin/Activin block 

was induced in seven week-old males, through intraperitoneal injection (IP) with 10 

mg/kg of soluble Activin receptor IIB (sActRIIB-Fc) every week two times till week 16 

[18]. Each experimental group consisted of a minimum of 5 male mice. Lifespan 

experiments were performed on both genders. 

CELL CULTURE: Both EDL muscles (n = 12 from 6 mice) were carefully dissected 

from C57BL/6J mice of  different ages following Home-Office-approved Schedule 1 

killing procedure. Each dissected muscle was transferred to a bijou containing 1 ml 

of 0.12% Type 1 collagenase (Sigma) in DMEM. Isolated muscles in collagenase 

solution were incubated at 37°C for 2-3 hours with light shaking every 15 minutes, 

until the muscle fibres had dissociated. Once dissociated, the collagenase activity 

was inhibited by the addition of 10% FCS-DMEM before single-fibre selection was 

carried out under a Leica stereo microscope and 12-15 single fibres transferred into 
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each of the wells of a 24-well Linbro plate with 0.5 ml/well culture medium. The 

normal culture medium was composed of DMEM (Gibco), 4 mM L-glutamine 

(Sigma), 1% penicillin-streptomycin (Sigma), 10% foetal calf serum (FCS) and 0.5% 

chick embryo extract (MP Biomedicals).  HGF at 100 ng/ml in some experiments as 

specified was added at time 0. The dissociated single muscle fibres suspended in 

culture medium were incubated at 37°C in 5% CO2 after 72 hours while a proportion 

of isolated muscle fibres were fixed in 4% paraformaldehyde for 15 minutes without 

incubation at this stage of 0hr.  Following immunostaining [8, 23] and imaging, the 

total number of satellite cells per cluster were counted for each category at 0 and 72 

hours. A minimum of 30 cell clusters from at least 15 different muscle fibres were 

counted for each group.  Each experiment was repeated three times and the data 

from multiple clusters were pooled to obtain a mean (± s.e.m.) for each category. 

Data are presented as mean ± standard deviation. Statistical analysis was performed 

using ANOVA, regarding P<0.05 as statistically significant. 

 

Immunocytochemistry: Single muscle fibres following 15 minute fixation in 4% 

paraformaldehyde and PBS washes were incubated with permeabalisation buffer for 

15 min at room temperature before PBS washes and incubation with 10% FCS to 

block non-specific antibody binding as previously described (Gill et al 2010). Fibres 

were then incubated with primary antibodies against MyoD (1/100) and SULF1 

(1/200) or SULF2 (1/100). Goat anti-rabbit immunoglobulins secondary antibodies 

and both fluorochromes were diluted 1/400. All primary antibody reactions were 

incubated overnight at 4 °C followed by secondary antibody incubations for 1 hour 

each at room temperature. The binding of rabbit primary antibodies was detected 

using streptavidin Alexa Fluor 594 or Alexa Fluor 488 fluorochrome bound to biotin-

linked goat anti-rabbit immunoglobulins. The binding of MyoD mouse 

immunoglobulins was detected using goat anti mouse immunoglobulins linked to 488 

fluorochrome. Following four PBS washes between and after each incubation, 

labelled tissues were mounted in polyvinyl alcohol mounting medium with DABCO 

and 2.5 μg/ml DAPI for nuclear visualisation and photographed using a Leica 

DM4000B fluorescent microscope.  Paraffin tissue sections were also stained using 

single or double immunofluorescence procedure. Tissue sections treated with 

permeabalisation buffer for 15 min at room temperature, PBS washes and incubation 

with 10% FCS were treated with diluted primary and secondary antibodies as 
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described above. Sections treated with pre-immune rabbit sera (not shown) were 

similarly incubated with fluorochrome-labelled secondary antibodies as controls. The 

dilutions of other primary antibodies were as follows: rabbit anti Laminin: 1/50, rabbit 

anti phospho-FGFR1: 1/100, rabbit anti phospho-cMet: 1/100, rabbit anti Wnt1: 

1/100, rabbit anti Wnt2: 1/100, rabbit anti Wnt3a: 1/300, rabbit anti Wnt4: 1/100, 

rabbit anti Wnt6: 1/100, rabbit anti Wnt7a: 1/100 and mouse (83B6) anti myosin 

heavy chain: 1/100.  Volocity software version 6.3 (PerkinElmer, Waltham, MA) was 

used to quantify relative levels of expression in individual fluorescent images.  Areas 

of positive staining were measured by application of an intensity threshold that was 

held constant across all images examining the same antibody stain.  

 

qPCR: RNA from mouse Gastrocnemius muscles of different ages was prepared 

using an Invitrogen Trizol method. RNA, 1μg from each sample was reverse-

transcribed with SuperScript II RNase reverse transcriptase (Invitrogen) using 

random primers. Real-time qPCR was carried out as previously described [24] using 

QuantiTect SYBR green PCR kit and Opticon 2 LightCycler (MJ Research, Waltham, 

MA, USA). The expression levels of Sulf1 and Sulf2 were normalised to the 

reference gene 18s rRNA.  PCR primers used in this study were as follows: Sulf1 (5′- 

ATGAAGTATTCCCTCTGGGCTCTG-3′; 5′-CAATGTGGTAGCCGTGGTCC-3′); 

Sulf2(5′-ATGGCACCCCCTGGCCTGCCACTAT -3′; 5′-

CATAGACTTGCCCTTCACCAGCCC-3′) and 18s RNA (5′-

CGCGGTTCTATTTTGTTGGT-3′; 5′-AGTCGGCATCGTTTATGGTC-3′). 

 

FIGURE LEGENDS:        

FIGURE 1:                                                                                                                 

Pattern of SULF1 and SULF2 expression in fetal (A, B) and  6 month (C, D) of 

Gastrocnemius muscle was compared with their expression pattern in mdx 

regenerating (E, F) and 28 month old aged Gastrocnemius muscle (G,H, K, L).  The 

SULF1 (G & H) and SULF2 (K & L) expression in 28 month old mouse represents 

two different areas of the same muscle to highlight some regional variation. SULF1 

and SULF2 expression in 6-week old mdx regenerating muscle (E, F) is also 

compared with myosin heavy chain expression (I, J) using immunofluorescence 
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staining.  Procedure of qPCR was used to measure the changes in the levels of 

Sulf1 (M) and Sulf2 (N) in this muscle at different ages. **p<0.001, *p<0.01. Scale 

bars: A, B, E, F, I, J: 20 µM with magnified regions being 50 µM; C, D, G, H, K, L=35 

µM. 

FIGURE 2 = Progressive increase in the levels of phospho-cMet (A,B,C) and 

phospho-FGFR1 (D,E,F) in Gastrocnemius muscle with age investigated at 6 months 

(A, D), 18 months (B, E) and 28 months (C, F) using immunocytochemical staining 

procedure. Scale bar: 50 µM 

FIGURE 3 = Progressive increase in the levels of several Wnt ligands (Wnt1, Wnt3a, 

Wnt4, Wnt6, Wnt71) with age in Gastrocnemius muscle is apparent when levels are 

compared at 6 (A-F) and 28 months (G-L) of age using immunocytochemical staining 

procedure.  Some variation in the levels of Wnts was also observed between 

individuals of similar age as well as some regional variation (G1/G2, H1/H2, I1/I2, 

J1/J2, K1/K2, L1/L2) in the same muscle.  Quantification of staining levels using 

volocity software showed higher increase in the levels of Wnt1 and Wnt2 with lowest 

increase in Wnt7a and moderate levels of increases in Wnt3a, Wnt4 and Wnt6 (M). 

**p<0.001.  Scale bar: A-F = 50µM; G1-L2 = 10050µM. 

FIGURE 4 = Sulf1 (red) and MyoD (green) immunocytochemical staining of single 

muscle fibres at 0hr following isolation to determine level of spontaneous satellite cell 

activation with age (1a,1b,1c.i and 1.c.ii) analysed in EDL muscle at 2, 12 and 24-25 

months of age.  The proliferative potential of satellite cells on single fibres prepared 

from 2 month, 12month and 24-25 months was further investigated by in vitro culture 

of muscle fibres for 72hr without (2a,2b,2c.i and 2c.ii) and with HGF (3a,3b,3c.i and 

3c.ii). Relative levels of spontaneous satellite cell activation at 2, 6,12,18 & 24 

months and changes in proliferative potential at 2, 12 and 24 months is shown in 4a 

and 5a. **p<0.001, *p<0.01.  Scale bar: 75µM. 

FIGURE 5 = Sulf1/Sulf2 or cell signalling components are not detectable in 

significant amounts in wild type mouse Gastrocnemius at 16 weeks of Age as shown 

for pFGFR1 in A. The regional staining for pFGFR1, SULF1 and SULF2, however, is 

apparent in age matched Ercc1Δ/− muscle. Such areas of positive staining could 

represent areas of damaged muscle fibres and regenerating myotubes in Ercc1Δ/− 
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muscle as is apparent from H&E (F) and Laminin (G) staining but not from H&E 

staining of WT muscle (E).  scale bar: 25µM. 

FIGURE 6 = Unlike wild type controls (A, D, G & J), SULF1 (B), SULF2 (E), pFGFR1 

(H) & p-cMet (K) activation became detectable in a proportion of 16 week old 

apparently uninjured Ercc1Δ/− Gastrocnemius muscle fibres.  The expression of 

SULF1 (C), SULF2 (F), pFGFR1 (I) & p-cMet (L), however, was barely detectable in 

sActRIIB treated Ercc1Δ/− muscles that show activation in only an occasional 

activated satellite cell. Scale bar: 50µM. 

FIGURE 7 =  Unlike wild type controls (A & E), Wnt signalling detected by the 

expression of Wnt ligands Wnt1, Wnt2, Wnt3a, Wnt4, Wnt6 and Wnt7a (B-D, F-H) 

was apparent in Gastrocnemius muscles of Ercc1Δ/− mice at16 weeks of age. These 

Wnt ligands, however, were barely detectable  in sActRIIB treated Ercc1Δ/− 

Gastrocnemius muscles (I-N). Scale bar: 50µM. 
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