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Abstract. A bond graph Input-State-Output Port-Hamiltonian formulation of memristive 

networks for Josephson junction circuits in state space is presented. The methodology has 

applications to the modeling of SQUIDs and other non-linear transducers and enables the 

formulation of input-output models of complex components embedded in non-linear networks. 

1.  Introduction 
 

As suggested first by Paynter in 1959 [3], circuits that consist of non-linear elements can be 

analysed using Bond graph (BG) modelling. Following his work, in the 70's Oster [2] proposed to 

integrate the memristor with the other bond graph elements [3, 4]. The method provides a graphical 

representation of a physical systems and is designed to represent the continuous flow of the power or 

the energy exchanges within the components of a system using energy and power alone. This type of 

modeling can incorporate processes in multiple domains seamlessly (e.g. mechanical, electrical, 

magnetic, etc.).  

Because of the non-linearity associated to the response of memristive components, Laplace 

transforms may not be used to derive transfer functions that would uniquely relate the input with the 

output function of these 2-port devices. Their dynamics may be studied instead, using differential 

algebraic models arising from descriptor representations derived from nodal analysis associated to the 

underlying circuit topology. Since circuits with memristive components interact nonlinearly, in order 

to formulate a BG model of a circuit, one needs to consider two dissipative parts, a linear one for the 

resistive behaviour (R) and a nonlinear one for the memristive behaviour (M).  

State space models of the circuit dynamics are made possible by adopting an Input-State-Output 

Port-Hamiltonian System (ISO-PHS), directly from bond-graph analysis. In our previous work [5] it 

was shown that the equations obtained from BG can be mapped to Port-Hamiltonian System (PHS) 

formulations [6, 7]. PHS formulations preserve the energy exchange between storage, dissipation, 

source and junction structures. Both PHS and BG representations share the same fundamental 

postulations making inter-conversion between the two formulations possible. Memristors have also 

been discussed within a port-Hamiltonian framework by Jeltsema [8, 9].  

2.  Bond graph with nonlinear elements 

In BG theory, power is the result of the product between effort e(t) and flow f(t). Flow and effort 

variables at all the ports of the network are described using causality postulations. The causality 

concept is used to assign the direction of power-conjugated input-output pairs [10]. As discussed in 

[11], a BG general structure is composed of: dissipation fields that can be splits into two parts (linear 

and nonlinear), storage fields (C and I), source fields associated with effort and flow (Se and Sf), and 

junction structures (denoted by JS) containing transformers TF and gyrators GY as shown in Fig. 1. 

Dissipation is seen as composed of input (subscript i) and output variables (subscript o). The 

dissipation variables consist of two types of elements: linear (superscript l) and nonlinear (memristive 

behaviour with superscript M). Similar expressions can be defined to model memristive dissipative 

elements using the BG framework after assuming the following general junction structure in Fig. 1:  
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A defined junction structure for systems with a memristor can be developed using the generic 

expression shown in Fig. 1 after making the following hypotheses: (a) All storage elements are linear, 

(b) all storages are in integral causality (which implies there is no element in differential causality) this 

leads to 41 15 0S S  , (c) no storages are assigned in differential causality by source 44( 0)S  , (d) by 

definition the dependent state variables are functions only of integral causal state and the system 

inputs 42 45 43( 0)S S S   , (e) in the case where there are no coupled resistors 

22 32 23 33( 0)S S S S    .  

In the derivation for a system with linear storage elements and non-linear dissipative elements, the 

constitutive relations of the elements are defined as follows: 

( ) ( ),  x ( ) ( ),  ( ) ,  ( ) ( ) ( )
l l M M

d d o i o i
z t Fx t t Gz t D t LD D t M x D t     where ( )x t  is an integral causal 

input variable, ( )dx t  is a differential causal input variable and u are the output variables. Substituting 

these constitutive relations into the ones in Fig 1: 
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                           (1) 

which leads to: 

   1 1

11 12 22 21 13 31 12 22 24 13 34 14
( ) ( ) ( ) ( ) ( ) ( ) ( )x t E S S L I S L S S M x S Fx t S L I S L S S M x S S u t

 

       

 

(2) 

where
15 41

( ).I S GSE F   This is a state space equation of the form ( ) ( ) ( ).x t Ax t Bu t   It is worth 

noting that the above expression is still not a proper PHS formulation. This is discussed in the 

following section.    

3.  ISO-PHS Formulation 

 

A Port-Hamiltonian framework incorporates the interconnection structure of power dissipation 

within the system. The total energy flow expressions across ports reflect the circuit physical structure 

using a Hamiltonian function H(x). Thus, Port-Hamiltonian systems (PHS) have a physical 

interpretation associated with connectivity of all the elements in the circuit.  

One important class of PHS is the standard ISO-PHS formulation. In this formulation, the flow and 

effort variables are split into input-output pairs of power-conjugated charge and momentum (q, p) [12]. 

The generic input state-output port-Hamiltonian for the total stored energy is:  

 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

( )

( )
( )

( )
( )

( )

( )

( )
( )

i

l

ol

i M

oM

i

d

i

d

z t
S S S S S

D t
D t S S S S S

D t
D t S S S S S

u t
z t S S S S S

x t

x t

 
    
    
    
    
    
       

Fig. 1 Structure of a causal bond graph and corresponding state space matrix representation. 
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 ( ) ( ) ( ) ( ) , ( ) ( )TH H
x J x R x x g x u y g x x

x x

 
   

 
  (3) 

where H(q, p) represents the total energy stored in the system for the conjugate variables, x is the state 

variable, u and y are the power variables of the input and output ports, g(x) is the output vector, J(x) is 

a skew-symmetric matrix representing the interconnection structure (which is power conserving), and 

R(x) is the dissipation structure symmetry matrix. The skew-symmetric properties in J(x) imply that 

the flow of energy within the circuit is such that the power consumed by the inductors and the 

capacitors equals the difference between the power provided to the circuit by the external port and the 

power dissipated by the resistors. 

To compute H(x) using BG variables, first the energy function E(x) must be expressed as the 

integration of power which is the product between the input and output variables of the storage 

elements [13].  

 

       ( , ) T T

i d i i d dE x x z x t z x t                                           (4) 

 

One can write:. 

 

   41( , ) ( , ( )) ( , ( )) ( )i d i d i i iE x x E x g z E x g s z H x                  (5) 

 

The total energy H(x) expressed using BG variables is: 
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H

z
x
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


                                                             (6) 

 

Substituting (6) into (2), the resulted equation will be: 

  

1 1 1
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              (7) 

 

From the definition of J it can be observed that this is a skew- symmetric matrix, where J=-J. 

Similarly, R is a symmetric matrix. The expressions of symmetric and skew-symmetric components 

are defined in terms of BG as follows:  

 
1
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
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where Wsy and Wsk are the symmetric and skew-symmetric parts of (7). For the expression in Eq. (7) 

that contains the memristance M, the symmetric and skew-symmetric parts are: 

 

13 31( )M S M x SW        (12) 
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  13 31, 13 31( ) ( )
1

2
k

T
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    (14) 

 

As J(x) combines the skew-symmetric parts of Eqs 11 and14 and R(x) combines the symmetric parts 

of Eqs 10 and 13, it follows that the system equation matrices shown in (3) will be: 

 

11 ,( ) T T T

sk M skJ x E S E E W E E W E       (15) 

,( ) T T

sy M syR x E W E E W E        (16) 

1

12 22 24 13 34 14( (( )) )T S L I S L Sg x E S M x S S        (17) 

 

4. Formulating PCHD models of sensor systems using bond graphs: A Josephson junction 

application example: 

 

Josephson junctions circuits can be broadly defines as circuit components where there is a 

flow of current and voltage across a weak link when there is quantized current leakage even in 

the absence of a constant source supply [14]. Such junctions have important applications in 

quantum-mechanical circuits e.g. in magnetic sensors where they can measure the total 

magnetic field or the vector components of the magnetic field [15]. An important class of 

sensing elements that make use of the Josephson junction current to perform measurements 

are the superconducting quantum interference devices (SQUIDs). In their simplest realisation 

these have two Josephson junctions in parallel in a superconducting loop [16]. An electrical 

model of a Josephson junction using memristive elements is shown in Fig. 2a. [17]. 
 

 

 

 

 
 

 

 

 

 

 

 

The corresponding bond graph for the circuit in preferential integral causality is shown in 

fig.2b. It can be seen that there are no internal connections, and the derived junction structure 

matrix after rearranging the junction elements into the form of Eq. (2) is: 
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The constitutive relations are: 1 2

1 1 1 1
,  ,  ,  .
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F F L M

l C R M 
     The ISO PH matrices for a 

Josephson junction circuit can be expressed by using equations (7-13) as follows: 

l I(t) M
 M1 

1 

R C
 M1 

1 

Fig. 2 (a) Josephson junction circuit model with the non-linearity emulated using a memristor.   

          (b) The corresponding bond graph with causality marks.  
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From the above matrices, it is possible to obtain the Port-Hamiltonian system components (1). 
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5.  Conclusion 

 

ISO-PHS formulations are derived from BG to model the memristive behaviour of a Josephson 

junction circuit and should enable the modelling of more complex networks associated to recently 

proposed SQUID designs. These have applications in the modelling of dielectric loading in HTS 

resonators [18][19] enabling them to be used for the implementation of phase conjugation in the 

microwave region [20]. Additional applications can be found in the modelling of noise in magnetic 

field measurements [21], in inductive measurements [22] also as applied to thermometry and 

calorimetry [23, 24], in single-photon and macro-molecule detection [25, 26], and other quantum 

detection sensing schemes as well as in nano-electromechanical systems e.g., resonators [27]. The 

formulations should be also particularly useful for the design of coupled nanoSQUIDs [28, 29]  e.g., 

Dayem Bridge Junctions [30].  

The methodology has also other applications to other sensors and transducers that have non-linear 

responses and are embedded in more complex networks as encountered in the modelling of bio-

dielectrics e.g., neuronal structures [31]. The proposed analysis should also find new uses in the 

analysis of other RLCM networks, thus extending the applications of PHS-BG theory originally 

proposed by Donaire [13]. 
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