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Abstract  24 

Soil extracellular enzymes released by microorganisms break down organic matter and are crucial 25 

in regulating C, N and P cycling. Soil pH is known to influence enzyme activity, and is also a 26 

strong driver of microbial community composition; but little is known about how alterations in 27 

soil pH affect enzymatic activity and how this is mediated by microbial communities. To assess 28 

long term enzymatic adaptation to soil pH, we conducted enzyme assays at buffered pH levels (2.5 29 

to 10, 0.5 interval) on two historically managed soils maintained at either pH 5 or 7 from the 30 

Rothamsted’s Park Grass Long-term experiment ). The pH optima for a range of enzymes was 31 

found to differ between the two soils, the direction of the shift being toward the source soil pH, 32 

indicating the production of pH adapted isoenzymes by the soil microbial community. Soil 33 

bacterial and fungal communities determined by amplicon sequencing were found to be clearly 34 

distinct between pH 5 and soil pH 7 soils, possibly explaining differences in enzymatic responses. 35 

Furthermore, β-glucosidase sequences extracted from metagenomes revealed an increased 36 

abundance of Acidobacteria  in the pH 5 soils, and increased abundance of Actinobacteria in pH 7 37 

soils; these taxonomic shifts were more pronounced for enzymatic sequences when compared with 38 

a number of housekeeping gene sequences. Particularly for the Acidobacteria, this indicates that 39 

broad taxonomic groups at phylum level may possess enzymatic adaptations which underpin 40 

competitiveness in different pH soils.  More generally our findings have implications for modelling 41 

the efficiency of different microbial enzymatic processes under changing environmental 42 

conditions; and future work is required to identify trade-offs with pH adaptations, which could 43 

result in different activity responses to other environmental perturbations.  44 
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1. Introduction 48 

Soil microbes produce exoenzymes  to degrade complex plant and soil organic matter (OM) 49 

into smaller compounds, which are then assimilated for growth and metabolism (Allison, 2005). 50 

These proteins break down large OM compounds through hydrolytic and oxidative processes 51 

(Burns et al., 2013; German et al., 2011; Sinsabaugh, 2010) and their activity rates have been 52 

hypothesized to be a rate-limiting step in OM decomposition (Bengtson and Bengtsson, 2007).  53 

Enzyme activity is predominantly controlled by temperature and pH which affect enzyme kinetics 54 

through change in substrate binding and stability. In contrast to intracellular enzymes, the physico-55 

chemical conditions in which exoenzymes operate are poorly controlled by microorganisms and 56 

activity rates are thus influenced by local conditions (e.g pH). Thus, to cope with their local 57 

environment, microorganisms evolve to produce different types of enzyme (isoenzyme), resulting 58 

in equivalent functionality but with altered thermodynamic and kinetic properties. For example, 59 

cold adapted enzymes, are believed to exhibit higher conformational flexibility within their active 60 

site or protein surface to become more efficient at lower temperatures due to a decrease in the 61 

enzyme activation energy (Ea) (Åqvist et al., 2017). However exoenzymes adaptation results in 62 

various trade-offs between efficiency and enzyme stability (Åqvist et al., 2017; Zanphorlin et al., 63 

2016); meaning both specific exoenzymes catalyzed processes as well as other non-specific 64 

microbial processes may be affected by a changing environment. Though it is known that microbes 65 

can tune the properties of EE they produce to adapt to new conditions, little is known about the 66 

drivers, mechanisms and timescale of such adaptations in natural habitats such as soil. 67 
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 To date, in soil systems much research has focused on enzyme adaptation to cold 68 

temperatures and extreme environmental conditions (Åqvist et al., 2017) with little reporting of 69 

adaption to other edaphic properties. Soil pH is one of the main variables affected by global change 70 

through agricultural intensification, climate change and other polluting events such acid rain. In 71 

addition, pH is known to be one of the main factors affecting soil microbial diversity and function 72 

(Fierer et al, 2017; Griffiths et al., 2011, Malik et al, 2018). How changes in soil pH affect 73 

microbial life constraints is poorly understood, but should be addressed to better understand 74 

microbial ecophysiology, competition and efficiency in degrading substrates across different soil 75 

systems. This is especially true when considering pH constraints on enzyme catalytic efficiency in 76 

cycling essential nutrients (C, N, and P) from organic matter compounds, and determining how 77 

that may impact soil microbial function and decomposition rates. Moreover, recent C 78 

decomposition models now explicitly integrate enzyme kinetics (Allison, 2012; Davidson et al., 79 

2012; Wang et al., 2013) but little empirical data on enzyme kinetic parameters under changing 80 

environmental conditions are available. Currently, there is little understanding in the degree to 81 

which microbial extracellular enzymes can be or are adapted to their local soil pH, a factor which 82 

could help explain different functional responses across different soil systems.  83 

 84 

In order to evaluate potential exoenzymatic adaptation to local soil pH, we conducted enzymatic 85 

assays at a range of buffered pH levels (from 2.5 to 10, 0.5 interval) on soil of the Park Grass long-86 

term experiment (Rothamsted) which had been maintained at either pH 5 or 7 for over 100 years. 87 

Hydrolytic exoenzymes studied were selected to correspond to enzymes involved in organic 88 

carbon, nitrogen and phosphorus cycling. We hypothesise that enzyme pH optimum will be 89 

affected by ancestral soil pH treatment, with soil exoenzymes from soil pH 5 being more adapted 90 
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towards acidic conditions and exoenzymes from soil pH 7 more adapted towards more neutral or 91 

alkaline conditions. To better understand the microbial community relationships underpinning EE 92 

pH adaptation, we investigated the change in microbial community composition (bacteria and 93 

fungi) with amplicon sequencing, and functional genes using a metagenomics sequencing 94 

approach. Specifically, we wished to determine whether change in enzyme activity is associated 95 

with change in specific microbial enzyme producers or adaptation of exoenzymes to environmental 96 

conditions.  97 

 98 

2. Method  99 

2.1  Soil sampling 100 

The Park Grass Long-term experiment (Rothamsted, UK, McDonald 2018), originally started in 101 

1856 on permanent pasture to investigate ways of improving hay yields, is managed with a range 102 

of fertilisers and pHs with the hay cut twice a year. Soils cores (0-15cm, 4 cm Ø) were sampled 103 

on the 27th of November 2015 in subplots ‘a’ (pH ~ 7) and ‘c’ (pH ~ 5) of the Nil plot 12, which 104 

has never received any fertilisers (Storkey et al., 2016). The soil pH is regularly monitored and 105 

controlled by liming, in subplot ‘a’ to reach pH~7 since 1903 (every 4 yr and then every 3 yr from 106 

1976), in subplot ‘c’ to reach pH~5 since 1965 (every 3 yr). However, because the natural soil pH 107 

was 5.4-5.6, the Nil plot received little liming. Five samples were taken in a straight line in each 108 

plot. 109 

 110 

2.2  Basic characterization of bulk soil samples 111 

Gravimetric soil moisture content was determined by drying 15g of soil at 105 °C for 48 h. All 112 

other chemical analyses were perform using sieved soil (2mm) and dried (40 °C). Soil pH was 113 
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measured in H2O (1:5 weight:vol) according to the protocol NF ISO 10390 (2005). Soil organic 114 

carbon C, total nitrogen (N) and total phosphorus (P) were measured according to CS Technical 115 

report No. 3/07 (Emmett et al., 2008). The chemical fingerprint of soil samples was assessed using 116 

mid-infrared (MIR) spectroscopy. Dried soil samples were ball-milled and further dried overnight 117 

at 40 °C to limit interferences with water, without altering OM chemistry. Milled samples were 118 

analyzed using a Nicolet iS10 FT-IR spectrometer (Thermo Fisher Scientific Inc., Madison, WI, 119 

USA). Spectral acquisition was performed by diamond attenuated total reflectance (MIR-ATR) 120 

spectroscopy over the spectral range 4,000–650 cm-1, with spectral resolution of 8 cm-1 and 16 121 

scans per replicate. 122 

 123 

2.3 Enzyme assays  127 

Hydrolytic soil extracellular enzyme activities of β-glucosidase (GLU, EC number: 3.2.1.21, 128 

substrate: 4-MUB-β-D-glucopyranoside ), acetyl esterase (ACE, EC number: 3.1.1.6, substrate: 4-129 

MUB-acetate), phosphatase (PHO, EC number: 3.1.3.1, substrate: 4-MUB-phosphate), and 130 

leucine-aminopeptidase (LEU, EC number : 3.4.11.1, substrate: L-Leucine-7-AMC) were 131 

measured by fluorogenic methods using methylumbelliferyl (MUB) and 7-amino-4-132 

methylcoumarin (AMC). PHO, GLU, ACE and LEU are involved in phosphorus mineralization, 133 

release of glucose from cellulose, deacetylation of plant compound and degradation of protein into 134 

amino acids, respectively. Enzyme assays were performed according to Turner et al. (2010) with 135 

modifications. A range of buffered pH solutions (from 2.5 to 10, in increments of 0.5) was prepared 136 

by adjusting 50mL of modified universal buffer with 1.0M HCl and 1.0M NaOH, at 20°C, then 137 

diluting to 100mL with deionized water. For each sample, a soil slurry was prepared by adding 138 

20mL deionized water to 0.5g of soil, then rotary shaking on a magnetic plate for 20min at 28°C. 139 
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10mL of this soil solution was diluted in 25mL of deionized water to give a 1:100 soil-to-water 140 

ratio. Enzyme reactions were measured in 96-well microplates containing 50 µL of the specific 141 

buffer, 50 µL of soil slurry and 100µL of substrate solution (saturated concentration, 200µM). 142 

Microplates were then incubated in the dark for 4 hours at 28 °C, with one fluorometric 143 

measurement every 30 minutes (BioSpa 8 Automated Incubator) to follow the kinetic of the 144 

reaction.   145 

For each sample, three methodological replicates (sample + buffer + substrate) and a quenched 146 

standard (sample + buffer + 4-MUB or 7-AMC) were used. Quenching curves were prepared with 147 

a serial dilution of 4-MUB solution for different amount of fluorophore in well (3000, 2000, 1000 148 

pmol). For each substrate, a control including the 4-MUB- or 7-AMC-linked substrate and the 149 

buffer solution alone were used to check the evolution of fluorescence without enzyme degradation 150 

over the duration of assay. The fluorescence intensity was measured using a Cytation 5 151 

spectrophotometer (Biotek) linked to the automated incubator (Biospa 8, Biotek) and set to 330 152 

and 342 nm for excitation and 450 and 440 nm for emission for the 4-MUB and the 7-AMC 153 

substrate, respectively. All enzyme activities were calculated in nmol of product per minute per g 154 

of dry soil and normalized per the highest enzyme activity value measured at the pH optimum in 155 

order to express enzyme activity as relative activity in percentage. 156 

  157 

2.4 Soil microbial community composition 158 
 159 

For sequencing analyses of bacterial and fungal communities, DNA was extracted from 5 replicate 160 

soil samples per treatment using 0.25 g of soil and the PowerSoil-htp 96 Well DNA Isolation kit 161 

(Qiagen) according to manufacturer’s protocols. The dual indexing protocol of Kozich et al (2013), 162 

was used for Illumina MiSeq sequencing of the V3-V4 hypervariable regions of the bacterial 16S 163 
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rRNA gene using primers 341F (Muyzer et al., 1993) and 806R (Youngseob et al., 2005); and the 164 

ITS2 region for fungi using primer ITS7f and ITS4r, (Ihrmark et al., 2012). Amplicon 165 

concentrations were normalized using SequalPrep Normalization Plate Kit (Thermo Fisher 166 

Scientific) prior to sequencing on the Illumina MiSeq using V3 chemistry. Fungal ITS sequences 167 

were analysed using PIPITS (Gweon et al., 2015) with default parameters as outlined in the 168 

citation. A similar approach was used for analyses of bacterial sequences, using PEAR (sco.h-169 

its.org/exelixis/web/software/pear) for merging forward and reverse reads, quality filtering using 170 

FASTX tools (hannonlab.cshl.edu), chimera removal with VSEARCH_UCHIME_REF and 171 

clustering to 97% OTUs with VSEARCH_CLUSTER (github.com/torognes/vsearch). The 172 

Illumina MiSeq sequencing generated in average per sample 28205 reads for 16S rRNA gene and 173 

40406 for ITS2 region.   174 

 175 

2.5 Metagenome Sequencing 176 

DNA was extracted from 2g of soil from 4 field replicates for the two pH treatments using the 177 

PowerMax Soil DNA Isolation kit (Qiagen), and subsequently concentrated and purified using  178 

Amicon® Ultra filters. Illumina libraries were constructed using the Illumina TruSeq library 179 

preparation kit (insert size < 500- 600 bp) and paired-end sequencing (2 x150 bp) was conducted 180 

using the Illumna HiSeq 4000 platform.  Prior to annotation, Illumina adapters were removed from 181 

raw fastq files using Cutadapt 1.2.1 (Martin, 2011), reads were trimmed using Sickle (Joshi and 182 

Fass, 2011) with a minimum window quality score of 20 and short reads were removed (<20bp). 183 

Preliminary analysis was conducted using MGRAST to functionally annotate with SEED 184 

subsystems and taxonomically annotate with refseq. For more detailed analyses of β-glucosidase 185 

sequences, all reads from the 8 samples were co-assembled using MEGAHIT (Li et al., 2015) with 186 
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a minimum contig length of 1000. Sequences were translated and open reading frames were 187 

predicted using FragGeneScan (Rho et al., 2010).  Contigs were assigned CAZY (Carbohydrate-188 

Active enZYmes) subfamilies (Lombard et al., 2014) using a hmmer search (Finn et al., 2011) 189 

against dbCan2 profiles with an e-value of 1e-15 (Zhang et al., 2018). Contigs were taxonomically 190 

annotated against the NCBI Blast non-redundant protein database using Kaiju, a fast translated 191 

method, which identifies protein-level maximum exact matches (MEM’s) (Menzel et al., 2016). 192 

Regions of contigs annotated as relevant β-glucosidase CAZY domains (GH1, GH2, GH3, GH5, 193 

GH9, GH30, GH39, GH116) were extracted. To identify pH associations of these sequences, DNA 194 

reads were mapped back to assembled domain protein sequences using BlastX, mappings with an 195 

identity percentage of < 97% and/or an e-value of > 0.001 were discarded. Mapping outputs were 196 

used to identify the relative abundance of assembled domain sequences across pH5 and pH7 197 

samples, multinomial species classification method (CLAM) (Chazdon et al., 2011) was used to 198 

classify pH generalists and specialists and to discount sequences that were too rare for meaningful 199 

categorisation. 200 

 201 

2.7 Statistical analysis 202 

The effects of assay pH, soil field pH treatment and their interactions were assessed by repeated 203 

measures ANOVA. Fixed factors were sampling “assay pH” and “soil field pH”, while soil field 204 

replicate was added as a random factor. One-way ANOVA was used to test the effects of enzymatic 205 

pH reaction on soil enzyme relative at each pH step (from 2.5 to 10). Differences in relative 206 

abundances of microbial taxa between soil pH 5 and soil pH 7 was assessed with one-way 207 

ANOVA. Assumptions of normality and homoscedasticity of the residuals were verified visually 208 

using diagnostic plots and a Shapiro-Wilk test. To identify soil bacterial and fungal community 209 
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composition patterns, a principal component analysis (PCA) based on Hellinger-transformed OTU 210 

data was performed (Legendre and Gallagher, 2001). Permutational multivariate ANOVA 211 

(PERMANOVA) was used to test the effect of soil pH field treatment on soil microbial community 212 

composition. All statistical analyses were performed under the R environment software (R 213 

Development Core Team 2011), using the R packages vegan (Oksanen et al., 2013) and ade4 (Dray 214 

and Dufour, 2007). Fourier-transform infrared spectroscopy (FTIR) spectral data were further 215 

processed and analyzed using the hyperSpec package (Beleites and Sergo, 2011), 216 

 217 

3. Results 218 

3.1 Soil characteristics 219 

The pH values of the two soils were confirmed to be consistent with the treatments applied, with 220 

pH measured at 5.5  and 7.5 for  the pH 5 and pH 7  plots, respectively (supplementary figure). 221 

Liming soil from pH 5 to pH 7 significantly increased by ~20% soil carbon content and soil total 222 

nitrogen (Table 1).  Soil moisture, total P and C:N were not significantly different between  oil pH 223 

5 and soil pH 7 (Table 1). Soil infrared mid-infrared spectroscopy was used to fingerprint soil 224 

mineralogy and to assess heterogeneity within and between the two soil pH field treatments. The 225 

fingerprints confirm that soil mineralogy is consistent within and between pH field treatments 226 

(supplementary figure). The most prominent feature of the FTIR spectra corresponded to peaks 227 

indicative of phyllosilicate mineral compound absorption (kaolinite) with peaks at 3696, 3621, 228 

1003, 912, 692 cm-1 (Dontsova et al., 2004). The 774 cm-1 peak is likely to be an indicator of quartz 229 

content and the 1642 cm-1 peak corresponds to the H–O–H bending band of water (Stuart, 2004, 230 

Dontsova et al., 2004). Small differences in peak amplitude between pH 5 and pH 7 soils are the 231 

result of small changes in the relative concentrations of compounds but overall the two soils 232 
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presented very similar mineralogy profiles (according to the peak wavelength positions) which 233 

indicates a shared ancestral origin.  234 

 235 

3.2 Soil microbial community composition 236 

The composition of soil bacterial and fungal community determined by amplicon sequencing (16S 237 

rRNA genes and ITS region, respectively) were clearly distinct between soil pH 5 and pH 7 for 238 

both communities (Fig.1; PERMANOVA: R2 = 0.82, p-value: <0.001 for fungal community and, 239 

R2 = 0.51, p-value: <0.01 for bacterial community). As observed on the PCA (Fig.1) and 240 

PERMANOVA results, fungal community structure was more affected than bacterial community 241 

by the liming treatment. Stacked bar plots representing the relative proportions of microbial phyla 242 

demonstrated relatively greater changes in the fungal compared to the bacterial community from 243 

pH 5 to pH 7 (Fig.1). Basidiomycota was significantly more abundant at soil pH 5 (83%, p-value: 244 

<0.001, Fig.1) whereas their relative abundance decreased at soil pH 7 (36%) to the advantage of 245 

Ascomycota and Zygomycota taxa (30% and 24% at soil pH 7 compared to 4.5% and 4% at soil 246 

pH 5, p-value: <0.01, respectively, Fig.1). Concerning the bacterial community, higher relative 247 

abundance of the phyla Acidobacteria and Verrucomicrobia was observed at pH 5 versus pH 7 248 

(22% vs 16%, p-value: 0.02; 26% vs 18%, p-value: <0.01, respectively Fig.1). In contrast, higher 249 

relative abundance of Proteobacteria and Actinobacteria phylum was observed at pH 7 versus pH 250 

5 (33% vs 27%, p-value: 0.01; 11% vs 7%, p-value: <0.01, respectively Fig.1).  251 

 252 

3.3  Extracellular enzyme pH optimum assays 253 

The pH of the enzymatic reaction had a highly significant impact on the catalytic efficiency of all 254 

enzymes examined (Fig.2, Table 2). At extremely low pH (2.5), activity was low or could not be 255 
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detected for leucine aminopeptidase and acetate esterase. For each enzyme, changes in the assay 256 

pH strongly impacted the relative enzyme activity with a 15-fold increase between lowest and 257 

highest activity at the pH optimum (Fig.2). After reaching the optima, the activity decreased more 258 

or less rapidly depending on the assay. Regardless of the initial pH of the soil, pH optima appeared 259 

to be specific to the enzyme studied (Fig.2). The pH optimum of leucine aminopeptidase and acetyl 260 

esterase enzymes were close to neutrality, with an average pH optimum at 7.2 and 6.7, respectively 261 

(Fig.2). The pH optima for β-glucosidase enzyme was acidic with an average of pH 4.3 (Fig.2). 262 

Two pH optima were observed for phosphomonoesterase, one acidic (pH 5.7) and the other 263 

alkaline (pH 10), although the alkaline optima may not have been fully reached. 264 

 265 

Maintaining field soil at either pH 5 or pH 7 for over 100 years had a strong significant impact on 266 

the pH optimum of all enzymes (Table 2). Enzyme pH optima shifted between acidic and alkaline 267 

soil whatever the enzyme considered, though this was more pronounced for phosphatase, β-268 

glucosidase and acetate esterase compared to leucine-aminopeptidase. The interaction between 269 

enzymatic assay pH and field soil pH was significant for each enzyme assayed, indicating that the 270 

magnitude of the difference in enzyme activity between pH 5 and pH 7 soil is dependent upon 271 

enzymatic assay reaction pH (Table 2). For each enzyme, optimum activity differed between the 272 

two soils by 0.5 pH units. Similar optimal activities were found for acetate esterase and leucine 273 

aminopeptidase, while the activity of β-glucosidase and phosphatase was reduced by 4-6% in a pH 274 

7 soil. A second optimum at pH 10 was observed for phosphatase and acetyl esterase from pH 7 275 

soil, in contrast to little or no activity of these enzymes from pH 5 soil (Fig. 2D). Additionally, the 276 

relative activity of enzymes from pH 5 soil was always higher in acidic assay conditions (< pH 277 
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5.5), while the relative activity of enzymes from pH 7 soil was always higher in more alkaline 278 

conditions (> pH 7). 279 

 280 

3.4 Soil metagenomics  281 

The amplicon sequencing results  revealed large shifts in broad taxa between the two soils.,To 282 

determine whether similar shifts were also observed in associated enzymatic gene production 283 

shotgun metagenomes generated from the same soils was utilized. We focussed our analyses on 284 

bacterial β-glucosidases, since the bacteria dominate soil metagenomics gene libraries (Malik et, 285 

2017) and the β-glucosidases are genetically well characterized enzymes, known to be important 286 

for soil carbon transformations.  Analyses of the functional and taxonomic annotations of β-287 

glucosidase related genes using MGRAST revealed they were relatively more  abundant 288 

insequences from the Acidobacteria in the pH 5 compared to pH 7 soils (15.9% vs 1.9%, p-value: 289 

7.4 x 10-5; Fig.3 A), while this was reversed in sequences from Actinobacteria in pH 7 compared 290 

to pH 5 soils (34.6% vs 43.4%, p-value: 6 x 10-3; Fig.3 A). When normalized by housekeeping 291 

genes abundances, Acidobacteria β-glucosidase gene abundance were significantly enriched in pH 292 

5 soil compared with pH 7 soil (Fig. 3 B) being on average twice as abundant.  293 

It is clear that Acidobacterial β-glucosidases are a unique feature of the more acid soils and 294 

therefore can be highly implicated as responsible for the pH related differences in enzyme activity.  295 

However, this does not rule out that other phyla may have distinct pH-selected sub clades which 296 

could also be responsible. To address this, we sought to classify individual taxa according to pH 297 

association, by assembling contigs based on the pooled metagenomics sequence reads (all samples 298 

from pH 5 and pH 7 soils); extracting β-glucosidase sequences using a hmmer search against 299 

dbCan2 profiles; and then mapping back individual reads to these sequences. Sequences were then 300 
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classified as pH specialists, generalists or too rare to categorise using multinomial species 301 

classification method (CLAM).  The majority of Acidobacteria sequences were classed as pH 5 302 

specialists, this suggests that not only isthere  a higher relative abundance of Acidobacteria β-303 

glucosidase sequences at pH 5 but that the majority of these sequences appear to be unique to pH 304 

5 soils (Fig. 4). Sequences annotated as other dominant phyla such as Actinobacteria and 305 

Proteobacteria appeared to have a higher proportion of pH 5 specialist and generalist sequences 306 

(supplementary table), whilst Verrucomicrobia included a clear sub-clade of pH 7 specialist 307 

sequences (Fig. 4). 308 

 309 

4. Discussion 310 

The activity of enzymes involved in C, N and P cycles were all found to be strongly 311 

dependent on the pH of the assay. Beta-glucosidase had an acidic pH optimum (pH=4.3), which is 312 

generally observed for glycosidase enzymes (Niemi and Vepsäläinen, 2005; Sinsabaugh et al., 313 

2008; Turner, 2010), whereas leucine aminopeptidase had an alkaline pH optimum (7.2) as is 314 

commonly reported for proteases (Niemi and Vepsäläinen, 2005; Sinsabaugh et al., 2008). Acetyl 315 

esterase pH optima were at pH 7 for both soils studied, also in line with previous findings( Degrassi 316 

et al., 1999 and  Humberstone and Briggs, 2000 respectively). However, source soil pH had a 317 

significant and strong impact on soil exoenzyme pH optimum response curves. For each enzyme 318 

studied, extracellular enzymes originally from pH 5 soil were more adapted towards acidic pH 319 

conditions, whereas pH 7 soil possessed enzymes adapted towards more alkaline conditions 320 

(Fig.2). Interestingly, the enzymatic pH optima observed in this study did not correspond exactly 321 

to the local soil pH, presumably due to constraints within the active sites that enable 322 

physicochemical function to be maintained. It is possible that the responses observed are due to 323 
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the presence of isoenzymes, which have different kinetic properties adapted toward the local soil 324 

pH. Alkaline and acid phosphatases are the most studied example of soil isoenzymes (Nannipieri 325 

and al, 2011), and our phosphatase pH response curves illustrate this with a marked bimodal 326 

distribution, and extremely low activity for the pH 7 soil compared to the pH 5 soil, at acidic assay 327 

pH.  Acetyl esterase also exhibited a bimodal response but only in the pH 7 soil, which also 328 

exhibited a second pH optimum developing at pH 10.  329 

Previous studies have observed different pH optima for the same enzyme across different 330 

soil types (Niemi and Vepsäläinen, 2005; Turner, 2010), though the specific causes were not 331 

empirically assed. Mechanisms proposed include either abiotic stabilization by soil chemical 332 

properties which alter the conformation of the enzyme and thus kinetics; or differences in the 333 

microbes that produce the enzymes. Our experiment, conducted on the same soil type, provides 334 

strong evidence for microbial control, mediated through altered soil pH. Shifts in enzyme pH 335 

optima due to enzyme sorption to different clay types (Leprince and Quiquampoix, 1996; Ramirez-336 

Martinez and McLaren, 1966; Skujins and al., 1974) was discounted as IR based soil chemistry 337 

fingerprints (incorporating information on clay content) were very similar between the pH 5 and 338 

pH 7 soils (Supplementary Fig.2). Moreover, the dilution factor used to perform enzyme assays 339 

1:100 soil-to-water ratio helped to reduce potential effect of small increases in soil organic matter 340 

content and total nitrogen observed between the pH 5 and pH 7 soils. Further strong evidence for 341 

biotic mechanisms is provided by the consistent non-random shift in optima towards the source 342 

soil pH and the presence of bi-modal pH optimum curve indicating clearly the presence of 343 

isoenzyme. 344 

Our data suggest that differences in microbial communities underpin the observed 345 

functional responses. Bacterial and fungal communities were found to be clearly distinct between 346 
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the two pH soils investigated, as anticipated from previous work in the Park Grass long-term 347 

experiment (Zhalnian et al., 2015; Liang et al., 2015). Such differences in microbial community 348 

composition are likely to be responsible for the production of different versions of the same 349 

enzyme (Fig.2). For example, the Acidobacteria phylum has been reported to possess more diverse 350 

and abundant genes encoding for carbohydrate-decomposing enzymes than Proteobacteria (Lladó 351 

et al., 2019; Lladó et al., 2016) which could be responsible for shift observed in bulk soil beta-352 

glucosidase pH optimum between pH 5 and pH 7 soils. The metagenomics results clearly showed 353 

that different proportions of bacterial phyla produced β-glucosidases across the two soils. Notably, 354 

the Acidobacteria contributed more to the β-glucosidase gene pool in the acid soil, and this 355 

contribution was more marked than would be expected from examining abundances based on 356 

housekeeping genes alone. Furthermore, sub clades of acidobacterial glucosidase were unique in 357 

being exclusively found in acid soils, with other broad taxa possessing both generalist enzymes, 358 

and a mix of pH specialized genes for either acid or neutral pH. This indicates that acidophilic 359 

acidobacterial lineages may possess enzymatic adaptations which underpin their demonstrated 360 

competitiveness in acidic soils (Griffiths et al, 2011), and confirms recent genomic studies which 361 

have identified enzyme production for carbohydrate degradation as a key feature of these 362 

organisms (Eichorst et al, 2018).  363 

As soil microorganisms can depend upon proximate decomposition agents for acquiring resource 364 

and energy, the efficiency of (costly) extracellular enzymes may represents a fundamental 365 

competitive trait (Wallenstein et al. (2011). Here we provide evidence that beta-glucosidase 366 

enzymes from pH 5 soil are half as efficient as those from pH 7 soil relative to their total activity 367 

(Fig.3, 4% vs 8% of total activity at a pH 7 assay, soil pH5 vs soil pH7 respectively) at neutral 368 

assay pH; and these functional changes are accompanied by large changes in the relative 369 
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abundance of enzyme producing bacteria. We note however that our data does not empirically 370 

prove that the taxa detected through metagenomics are directly responsible for altered efficiency. 371 

Further support could be achieved through new computational approaches predicting pH optima 372 

based on amino acid sequence composition (Yan and Wu, 2012; Lin et al, 2013), or in vitro enzyme 373 

testing on novel isolates or expressed metagenomic sequences. We also cannot discount 374 

evolutionary processes acting within populations contribute to the observed soil pH optima, e.g. 375 

through mutations affecting enzyme active sites (Ohara et al., 2014). Whilst a number of 376 

evolutionary adaptations to pH have been documented for bacterial strains (Harden et al, 2015), 377 

we found only one study addressing experimentally evolved enzymatic adaptions, which was 378 

refuting (Gale & Epps, 1945). Comparatively more is known about the adaptation of microbial 379 

enzymes to temperature (Åqvist et al, 2017), and local temperature adaptation has been, in 380 

comparison, extensively studied in bulk soil enzyme assays across thermal gradients 381 

(Blagodatskaya et al, 2016; Alvarez et al, 2018; Nottingham et al 2016 ; Allison et al, 2018a). 382 

However, few studies have examined adaptive capacities of individual populations (Allison et al, 383 

2018b). Clearly more detailed testing of community selection versus evolutionary processes in 384 

governing enzymatic adaptation to environmental factors is required, but our data strongly 385 

implicate a role for the Acidobacteria in carbohydrate-degrading processes in acidic soils. Linking 386 

(meta)genetic information to explicit enzymatic functional potential is an exciting new area, where 387 

advances could allow prediction of soil function from microbial biodiversity data. More 388 

specifically, we feel it is of utmost importance to determine whether the enzymatic adaptations to 389 

soil pH observed here, give rise to other functional outcomes or trade-offs, such as alteration of 390 

temperature optima. Such knowledge will allow better prediction of decomposition processes in 391 

response to changing climate, across global pH-defined soil systems.  392 
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 568 

TABLES 569 

Table 1. Effect of soil field pH treatment (soil pH 5 vs soil pH 7) on soil properties. Values 570 

represent the mean (n=5) with the associated standard error (SE). Bold letters indicate significant 571 

differences (p<0.05).  572 

 573 

    Low pH (5) High pH (7) 

 units   

pH (H2O) - 5.5 ± 0 a 7.3 ± 0.1 b 

Soil moisture % 30.2 ± 1.1 31.5 ± 1.2 

Carbon content % 3 ± 0.1 b 3.9 ± 0.3 a 

CN ratio - 10.7 ± 0.1  11 ± 0.1  

Total Nitrogen % 2.8 ± 0.1 b 3.5 ± 0.2 a 

Total phosphorus mg/Kg 54 ± 12.9  59.3 ± 2.5  

 574 
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 575 

Table 2. Effects of pH, soil treatment and interactions of both factors on relative enzyme 576 

activity at different assay pH (mixed model, overall repeated measures ANOVA tests).  577 

 578 

 579 

 580 

 581 

FIGURES: 582 

  

Assay pH Field soil pH  Assay pH x  field 

soil pH  

F-value P-value F-value P-value F-value P-value 

Leucine amino-peptidase 190.1 <0.001 6.9 0.03 3.42 <0.001 

Phosphatase 89.1 <0.001 51.4 <0.001 44.2 <0.001 

ß-glucosidase 88.4 <0.001 23.4 <0.01 33.7 <0.001 

Acetate esterase 397.2 <0.001 30.9 <0.001 38.4 <0.001 

A

B

C D
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 583 

 584 

Fig 1. Principal component analysis (PCA) ordination of soil bacterial (A) and fungal (B) 585 

communities. Stacked bar plots show the relative proportion of the main abundant phyla 586 

(>0.5 %) for C) bacterial and D) fungal community. 587 

 588 
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 595 

Fig 2.  Enzyme pH optima of acetylesterase (A), beta-glucosidase (B), leucine aminopeptidase 596 

(C), phosphomonoesterase (D). Activity is expressed as a percentage of the total activity 597 

measured across the entire pH range (from pH 2.5 to pH 10). The orange and blue lines correspond 598 

to pH 5 and soil pH 7 soils respectively. Shaded area represents 95% confidence intervals around 599 

the trend line using a t-based approximation (LOESS smoothing).  Stars indicate result of the 600 

mixed model used to evaluate the effects of assay pH, soil field pH treatment and their interactions 601 

were assessed by repeated measures ANOVA. Fixed factors were sampling “assay pH” and “soil 602 

pH***
Field pH ***
pH x Field pH***

pH***
Field pH ***
pH Field pH ***

pH***
Field pH*
pH x Field pH**

pH***
Field pH **
pH x Field pH ***

A B

C D

Commented [IC2]: Check that legend is the same for A, B, 
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field pH”, while soil field replicate was added as a random factor. Significance codes for 603 

ANOVA’s are (***) p<0.001; (**) p<0.01; (*) p<0.05. 604 

 605 

 606 

 607 

Fig 3. Abundances of beta-glucosidase genes from different microbial taxa, from MG-RAST 608 

annotated metagenomes (SEED Subsystems). A: Stacked plot representing the total proportion 609 

of beta-glucosidase genes from dominant bacterial phyla. B: The proportional change of beta-610 

glucosidase gene abundance compared to the abundance of the DNA gyrase subunit B gene. 611 

Orange and blue colors correspond to pH 5 and pH 7 soil respectively. The x-axis shows the 612 

relative fold change on log2 scale. Error bars indicate +/- standard deviation and the means are 613 

*

A
B
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indicated by filled diamond shape. Asterisks indicate significance difference between pH 5 and 614 

pH 7 soil (ANOVA p<0.05). 615 

 616 

 617 

 618 

 619 

 620 

Fig 4. Taxonomy and pH associations of β-glucosidase sequences assembled from 621 

metagenomes. Inner tree and labels depict the taxonomy of β-glucosidase gene assemblies 622 
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constructed from pooled metagenomes from the pH 5 and pH 7 soils (n=4). Outer ring shows 623 

putative pH associations of each assembled gene, following tabulation of reads mapped to the 624 

contigs from each of the 8 soil metagenomes, and statistical classification using a multinomial 625 

model based on relative abundance across the two soils (CLAM). 626 
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