The effects of native and modified clupeine on the structure of gram-negative model membranes

[thumbnail of FOOSTR_2019_26_Revision 1_V0_R1.pdf]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

English, M., Paulson, A., Green, R. J., Florek, O., Clifton, L. A., Arnold, T. and Frazier, R. A. orcid id iconORCID: https://orcid.org/0000-0003-4313-0019 (2019) The effects of native and modified clupeine on the structure of gram-negative model membranes. Food Structure, 22. 100127. ISSN 2213-3291 doi: 10.1016/j.foostr.2019.100127

Abstract/Summary

Clupeine, a cationic antimicrobial peptide found in fish, is of interest as a food additive but non-specific binding of the peptide to anionic molecules reduces its antimicrobial activity. The overall positive charge of clupeine can be reduced by blocking 10% of its arginine residues with 1,2-cyclohexanedione (CHD). The modified peptide retains antimicrobial activity but it is not known if its effect on the structure of Gram-negative model membranes is the same as the native peptide. In the presented paper, neutron reflectometry (NR) and X-ray reflectometry were used to investigate the effect of native and modified clupeine on the structure of model monolayer membranes composed of Phosphatidylethanolamine (PE), Phosphatidylglycerol (PG), and Cardiolipin (CL). The effect of the peptides on the structure of 1,2-dipalmitoyl (d62)-sn- glycero-3-phosphocholine (DPPC)/PE:PG:CL bilayers were also examined by NR. In both model systems, modified clupeine demonstrated a greater effect on the lipid structure. Charge reduction in the modified sample also resulted in improved hydrophobicity, and the formation of thicker peptide layers in the membrane models. Some lipid translocation was observed in the inner tail region (~69 ± 0.24% DPPC and ~24 ± 0.02% PE:PG:CL); and in the outer tail region (~24 ± 0.02% DPPC and ~56 ± 0.01% PE:PG:CL). Improved hydrophobicity and electrostatic interactions with lipid head groups, strongly suggests that the modified clupeine may use the carpet mechanisms to exert its effect on model membranes. These findings suggest that changing the charge on the native peptide changes the way in which the modified peptide disrupts Gram-negative model membranes.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/86551
Identification Number/DOI 10.1016/j.foostr.2019.100127
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Research Group
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar