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Abstract: Clustering is an essential data mining technique that divides observations
into groups where each group contains similar observations. K-Means is one of the most
popular clustering algorithms that has been used for over fifty years. Due to the current
exponential growth of the data, it became a necessity to improve the efficiency and
scalability of K-Means even further to cope with large-scale datasets known as Big Data.
This paper presents K-Means optimisations using triangle inequality on two well-known
distributed computing platforms: Hadoop and Spark. K-Means variants that use triangle
inequality usually require caching extra information from the previous iteration, which
is a challenging task to achieve on Hadoop. Hence, this work introduces two methods to
pass information from one iteration to the next on Hadoop to accelerate K-Means. The
experimental work shows that the efficiency of K-Means on Hadoop and Spark can be
significantly improved by using triangle inequality optimisations.
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1 Introduction

The last two decades witnessed an exponential growth
of the data generated by many sources such as, scientific
experiments, social media Web sites, government
statistics, sensor networks, and many other. For
example, the Large Hadron Collider project (LHC),

which provides more knowledge about the universe
by accelerating particles and examining the results
from their collisions, is expected to produce around
50 petabytes of data in 2017, and the collected data
could reach 10 gigabytes per second (WLCG, 2017).
YouTube users eceeded 1 billion users, where 100 hours
of videos are uploaded every minute, and 135,000 hours
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are watched (YouTube, 2017). eBay stores and preocess
about 150 billion new records daily (Lin and Dyer, 2010).
In order to cope with this rapid increase in the data,
novel solutions are developed to manage and process
large-scale datasets known as big data.

Collecting, storing and managing the data is a crucial
process. However, the data itself is worthless unless
meaningful knowledge can be extracted from it. For
this reason, various innovative techniques were developed
over the years dedicated to knowledge discovery. One of
the essential approaches to unveil the hidden patterns
in a given set of observations is to divide these
observations into a number of groups (clusters), such
that observations in one group have more similarities
than observations in other groups. This process is
known as clustering or cluster analysis. Clustering
algorithms are developed and used in many fields
such as engineering, computer science, life and medical
sciences, astronomy and earth sciences, social sciences
and economics (Xu and Wunsch, 2009). Most clustering
algorithms, however, are computationally expensive or
iterative in nature. This made the clustering task
very challenging, especially when dealing with large
and high-dimensional datasets. Therefore, the focus
has been shifted lately to parallel clustering solutions
on distributed processing models to overcome these
challenges. One of the most popular and attractive
distributed processing models is known as MapReduce
(Dean and Ghemawat, 2008). Apache Hadoop (Apache,
2017) provides an open-source implementation of the
MapReduce programming model. The popularity of
MapReduce comes from its ability to offer a reliable and
fault-tolerant parallel programming paradigm without
the need to deal with the underlying details of the
distributed system, such as data distribution and tasks
scheduling.

Ranked as one of the top ten data mining algorithms
(Wu et al., 2008), K-Means takes the number of
clusters as an input and iterates over the input
data points until it converges. In each iteration, the
standard implementation of K-Means, known as Lloyd’s
algorithm (Lloyd, 1982), computes the distance from
each data point to all cluster centroids. This process
is a performance bottleneck in K-Means. Most of
these distance calculations, however, are redundant
and can be avoided using geometric approaches based
on triangle inequality. Although these approaches
could produce efficient versions of K-Means, most
of them require using extra information from the
previous iteration. This is not a straightforward task to
achieve under the MapReduce programming paradigm
that Hadoop implements. MapReduce does not have
the ability to cache any information between two
consecutive iterations. Therefore, this paper introduces
two approaches that allow Hadoop to pass intermediate
data from one iteration to the next in order to be able
to implement highly scalable and efficiently optimised
K-Means algorithms based on triangle inequality.

The aim of this paper is to improve the efficiency
and scalability of Lloyd’s K-Means on Hadoop while
maintaining the same deterministic clustering results
that Lloyd’s algorithm produces. Some K-Means variants
that are based on triangle inequality can be more efficient
and deterministically equivalent to Lloyd’s K-Means.
However, implementing such variants on Hadoop is a
challenging task. This is because most of these variants
require the use of some extra information (e.g. distance
bounds and cluster assignments) from the previous
iteration to be able to eliminate unnecessary distance
computations and Hadoop does not cache intermediate
data between two consecutive iterations. Therefore,
this work presents two techniques to store required
intermediate data in one iteration for it to be used in the
next. The first technique appends the extra information
to the original input data vector and forms an Extended
Vector (EV). The second technique stores the extra
information that corresponds to each data point into a
file called a Bounds File (BF).

To evaluate the effectiveness of the proposed
techniques, two optimised algorithms, Elkan’s algorithm
and Compare-means algorithm, are implemented using
each technique and tested with real and artificially
generated datasets. The performance of each optimised
algorithm is compared against the performance of
Lloyd’s K-Means on Hadoop, which is referred to in
the remaining of this work as Naive K-Means on
Hadoop (NKM-H). Furthermore, an implementation of
K-Means on Hadoop and Spark using the most basic
form of triangle inequality to skip distance computations
is introduced and also compared with the algorithms
mentioned earlier. The experimental work investigates
the impact of several important factors that influence
the performance of K-Means. These factors include
variable number of clusters (k), dimensions (d) and data
points (n). The results show that variants of K-Means
based on triangle inequality implemented on Hadoop
with the proposed techniques can achieve significant
speedups relative to NKM-H. For example, Elkan’s K-
Means and Compare-means on Hadoop using Bounds
Files outperform NKM-H by upto 7x and 33x speedups,
respectively.

The remainder of the paper is organised as follows:
Section 2 reviews the related work. Section 3 presents
a background about K-Means and how it can be
optimised using triangle inequality. A brief introduction
to MapReduce, Hadoop, and Spark is also presented in
Section 3. Section 4 explains the implementation of the
Naive K-Means on Hadoop. Section 5 Introduces the
new implementations of efficient K-Means on Hadoop.
Section 6 explains the implementation of two K-Means
implementations on Spark. Section 7 discusses the
experimental results. Finally, section 8 concludes the
paper and discusses the future work.

1.1 Contributions

The contributions of this paper are:
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• The design and the development of two techniques:
K-Means on Hadoop using an Extended Vector
(EV) and K-Means on Hadoop using a Bounds File
(BF). These techniques give Hadoop the ability to
pass information from one iteration to the next on
iterative algorithms;

• Parallel implementations of K-Means variants on
Hadoop using EVs and BFs to evaluate the
effectiveness of the proposed approaches;

• An extensive experimental analysis that tests the
scalability and efficiency of implementations of K-
Means on Hadoop using BFs and EVs with respect
to the number of clusters, dimensions, data points,
and mappers;

2 Realted Work

A parallel implementation of K-Means on distributed
memory multiprocessors based on Message Passing
Interface MPI was introduced by (Dhillon and Modha,
2002). The algorithm partitions the original dataset
into a number of subsets. Then, each processor works
on an independent subset where distance calculations
are performed and each point is assigned to its closest
centroid. Then, partial sums and SSE s are collected and
new centroids are calculated. This process is repeated
until the algorithm converges. (Judd et al., 1998)
introduced parallel K-Means based on MPI and used a
method called Spheres of Guaranteed Assignment which
follows the concept of pruning unnecessary distance
calculations per iteration based on triangle inequality
but without maintaining upper or lower bounds.

(Zhang and Qiu, 2013) presented a parallel K-
Means on Twister (Ekanayake et al., 2010), which
is an optimised implementation of the MapReduce
framework that supports iterative algorithms based on
publish/subscribe messaging infrastructure and caches
static data in memory to cluster high dimensional social
image data. Triangle inequality was used to reduce
distance computations based on (Elkan, 2003) work,
except that instead of keeping nk lower-bounds, a
fewer number of lower-bounds is maintained. The work
presented in this paper is different in terms of adopting
the standard unoptimised MapReduce programming
paradigm which is implemented by Hadoop.

K-Means++ (Arthur and Vassilvitskii, 2007) is a
variant of K-Means which carefully selects the initial
set of centroids that has a constant factor away from
the optimum solution. K-means‖ or Scalable K-mean++
(Bahmani et al., 2012) and Competitive K-Means
(Esteves et al., 2014), address a downside of the k-
means++ initialisation which is its inherently sequential
nature and provide solutions to make it work efficiently
on a parallel environment, specifically, MapReduce.

In (Li et al., 2014), K-Means was implemented on
MapReduce and its efficiency was improved by using

locality sensitive hashing LSH to divide points into
buckets where the original points are transformed into
weighted representative points. This method is used to
prune unnecessary distance computations by computing
the distance of a given point with only a small number
of centres that exist in the same bucket as the point.
The algorithm was tested with real datasets and shows
improvement in speed by 67% and 76% when k is
1500 and 3000 respectively, compared to scalable K-
Means++. However, the dimensionality of both datasets
is low (26 and 41 dimensions) which does not give a full
understanding of the algorithm’s behaviour with high
dimensional datasets.

The work in (Shi et al., 2015), compares MapReduce
and Spark in terms of three major architectural
components: shuffle, execution model, and caching. On
both frameworks, five algorithms were tested: Word
Count, Sort, K-Means, linear regression, and PageRank.
In K-Means, three artificially generated datasets were
used as input where each point has 20 dimensions and the
number of data points for each dataset are: 1 million, 200
million, and 1 billion. The results showed that K-Means
on Spark was 1.5x faster than K-Means on MapReduce in
the first iteration, and 5x faster in subsequent iterations.

3 Background

3.1 K-Means

Ranked as one of the top ten most influential data
mining algorithms (Wu et al., 2008), K-Means is a well-
known clustering algorithm that partitions data into
clusters of similar features. Simplicity, efficiency, and
straight-forward implementation made K-Means one the
most used algorithms in cluster analysis (Jain, 2010).
K-Means was proposed independently in different works
(Steinhaus, 1956); (Lloyd, 1982); (Ball and Hall, 1965);
(MacQueen, 1967) targeting different problems.

K-Means has been used in many fields to cluster
variant types of data. Some of the applications that K-
Means was applied to are:

• Colour quantisation where the pixels of an image
grouped into clusters (Celebi, 2011); (Kanungo
et al., 2002).

• Market segmentation (Kuo et al., 2002), where
markets are broken down into meaningful
segments, such as segmenting buyers habits based
on age groups.

• Analysis of gene expression data (Tavazoie et al.,
1999); (Yeung et al., 2003).

• Documents clustering (Effat et al., 2016);
(Steinbach et al., 2000), where similar documents
are grouped into one cluster while other documents
are assigned to other clusters.
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Algorithm 1: Sequential Naive K-Means(X, k)

1 select k initial cluster centroids randomly from X
2 while not converged and an early termination

condition is not met do
3 for i = 1 to n do
4 minDistance←∞
5 for j ← 1 to k do
6 d← d(xi, cj)
7 if d < minDistance then
8 minDistance← d
9 assign xi to cj

10 end

11 end

12 end
13 for j ← 1 to k do
14 cj ← 1

|cj |
∑

x∈cj
x //Compute the mean

15 end

16 end

Lloyd’s K-Means

The basic K-Means algorithm was independently
proposed by (Steinhaus, 1956); (Lloyd, 1982); (Ball
and Hall, 1965); and (MacQueen, 1967). The focus of
this paper is on Lloyd’s algorithm which is the most
commonly used version (Celebi et al., 2013); (Hamerly
and Drake, 2015). Lloyd’s algorithm is referred to in the
remainder of this paper as Naive K-Means.

Given a set X = {x1, x2, ..., xn}, where n is the
number of data points in a d-dimensional space Rd,
partitioned into k clusters C = {C1, C2, ..., Ck}, K-Means
aims to minimise the Sum of Squared Error SSE =∑k

j=1

∑
x∈cj

d(x− cj)
2, where j is the index of the j-th

C ∈ C, cj is the centroid (mean of points) of Cj , and d(.,.)
is the Euclidean distance between two points. Algorithm
1 describes the pseudo-code of the Naive K-Means where
it starts by randomly picking k initial cluster centroids.
Then, the distance from each x ∈ X to each cj ∈ C is
computed and x gets assigned to its closest cj . In line 14,
the location of each cj is updated by computing the mean
of all points assigned to each cluster, where |cj | is the
number of points assigned to cluster Cj . The algorithm
iterates until it converges where cluster centroids do
not move any more or an early termination condition is
met. K-Means finds a local minimum solution in O(ndk)
running time per iteration.

The next section explains how triangle inequality can
be used on eliminating redundant distance computations
from data points to centroids in the Naive K-Means.

3.2 Using Triangle Inequality to Accelerate
K-Means

The most expensive operation in K-Means is computing
the distance from each data point to all centres to
find the centre with the minimum distance. One of the
most important remarks in K-Means is that after a few

number of iterations, most data points do not change
their cluster assignment, especially with well-clustered
datasets. The reason behind this is that after a few
number of iterations the movement of cluster centroids is
insignificant (Elkan, 2003); (Hamerly and Drake, 2015).
Thus, most of the distance calculations from points
to centroids are redundant, and this is where triangle
inequality excels.

In general, the main goal of using triangle inequality
with K-Means is to prove that a given point in the input
dataset is closer to a certain centroid without the need
to calculate the distance to other centroids. Triangle
inequality was used in different ways to prune distance
calculations. For a point x and two cluster centroids a
and b, the following are some of the cases that triangle
inequality can be applied to K-Means (Elkan, 2003);
(Hamerly and Drake, 2015):

1. Show that x is closer to a than b, with calculating
only d(x, a) and d(a, b).

2. Form an upper-bound from x to its closest
centroid.

3. Form a lower-bound from x to one or more
centroid.

The following Lemma is used in finding the closest
centroid from a given point by using pre-calculated
centre-centre distances and the distance from the point
to its previously assigned centroid.

Lemma 1 Let x be a point, and p and q be two centroids,

if d(p, q) ≥ 2d(x, p) then d(x, q) ≥ d(x, p)

Proof. From the triangle inequality property, it is known
that:

d(p, q) ≤ d(x, p) + d(x, q)
d(p, q)− d(x, q) ≤ d(x, p).

The left hand side can be written as:

d(p, q)− d(x, q) ≥ 2d(x, p)− d(x, p) = d(x, p).

Hence:

d(x, p) ≤ d(x, q).

�

The usage of Lemma 1 was proposed by (Hodgson,
1988). Hodgson’s approach compared a given centroid
c with only its closest centroid c′, that is, if d(x, c) <
d(c, c′) then the distance calculation to only c′ is avoided.
In (Orchard, 1991), triangle inequality was used to
improve the search of the nearest-neighbor. For a given
point x and a candidate nearest-neighbor y, the author
showed that another point z cannot be closer to x if
Lemma 1 holds. The same approach was applied to
K-Means by (Phillips, 2002) on an algorithm called
Compare-means. (Elkan, 2003) algorithm uses Lemma 1
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with a set of upper and lower bounds on the distance
from each data point to cluster centroids to avoid a large
number of distance computations. The following sections
show how the scalability of Compare-means and Elkan’s
algorithms can be improved by implementing them on
distribution fashion on Hadoop.

3.3 MapReduce and Apache Hadoop

MapReduce is a programming paradigm that is designed
to store and process large-scale datasets efficiently
and reliably on large clusters of commodity machines.
MapReduce is designed to provide a high performance
parallel execution of programs without dealing with
underlying details of the distributed system such as
scheduling, distribution and fault-tolerance.

In the MapReduce paradigm, the input data is stored
on a distributed file system (e.g. Hadoop Distributed
File System (HDFS)). The input and output data are
in the form of key-value pairs. The computation process
is expressed by implementing two functions: map and
reduce from the MapReduce library, which are typically
implemented by the user.

Hadoop is a popular open-source implementation of
MapReduce that is widely used by many organisations
such as Yahoo!, Facebook, Twitter and IBM to manage
and analyse massive amounts of daily generated data
(White, 2012). The dataflow in Hadoop consists of three
phases: 1) map phase; 2) shuffle phase; and 3) reduce
phase.

In the map phase, as the input dataset loaded to
HDFS, it is split into what is known as input-splits.
The number of mappers equals the number of input-
splits and the size of each input-split can be modified
(default 128 MB). Each mapper processes one input-
split independently. The map function takes as an input
the records in each input-split in the form of key and
value (<K,V>) pairs and outputs a new <K2,V2> pair.
In the shuffle phase, each reducer uses HTTP protocol
to fetch its own partition from the mappers’ output
files that reside on the mappers’ nodes. The shuffle
starts as a predefined percentage (default is 5%) of
mappers complete their work. Finally, the reduce phase
starts after each reducer fetches its own partition from
the mapper’s output files. Before invoking the reduce
function, the reducer merges and sorts the the mappers’
output files fetched from different mappers and then the
reduce method is invoked and each reducer outputs the
resulted <K3,V3> pairs to HDFS.

Limitations: despite the advantages that Hadoop
offers to store, manage, and process large-scale datasets,
several limitations are addressed in many works (e.g.
(Mohebi et al., 2016); and (Grolinger et al., 2014)). Some
of the limitations that are specific to the support of
iterative Machine Learning algorithms such as K-Means
are:

• Absence of loop-aware task scheduling where each
iteration is a new MapReduce Job.

• Reload and reshuffle of static data which creates an
unnecessary I/O and communication overheads.

• Lack of support to cache and retrieve information
from previous iterations. This limitation imposes
extra complexities on iterative algorithms that
require information from previous iterations in
order to proceed their work efficiently. This paper
investigates this limitation in particular.

3.4 Apache Spark

Apache Spark (Zaharia et al., 2010) is a distributed
framework that is designed to process large-scale
working sets that are reused over multiple parallel
operations in-memory. The goal of Spark is to process
iterative machine learning algorithms and interactive
analytics problems faster than Hadoop MapReduce
while maintaining the fault tolerance and scalability
of MapReduce. Spark can operate on several clusters
managers (e.g. Hadoop YARN) or as a standalone
system.

Two main abstractions are provided by Spark
to process parallel applications, Resilient Distributed
Datasets (RDDs) and parallel operations. An RDD is a
collection of immutable (read-only) objects partitioned
among cluster nodes that can be rebuilt in case a
partition is lost. RDDs can be cached in-memory
once across worker nodes (executors) and reused by
applications that run on multiple parallel operations.
Parallel operations can be either transformations, where
an RDD can be transformed from a file on stable storage,
or from another existing RDD; or actions, where a value
is returned to the application driver, or stored on a data
storage.

4 Naive K-Means on Hadoop

This section explains the implementation of the Naive
K-Means on Hadoop (NKM-H). The implementation of
NKM-H consists of three main classes: Driver, Mapper
and Reducer.

Driver: The Driver starts by randomly selecting the
initial set of centroids from the input dataset and sends
the centroids file to the mappers. The Driver controls
the iterative process where a new MapReduce job is set
and initiated for each iteration. In case of having more
than one reducer, the Driver merges the centroid files
produced by each reducer into one file which becomes the
input centroids file in the following iteration. Algorithm
2 describes the pseudo-code of the Driver.

Mapper: Each mapper consists of three functions,
setup, map, and cleanup. While the map function is
invoked for each record in the input-split, setup and
cleanup are executed only once on each run of the
mapper class. As shown in Algorithm 3, setup reads
the set of centres and loads them to C. Then, the map
function takes as an input, key-value pairs where the
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Algorithm 2: Driver(X, k)

1 C ← select k initial cluster centroids from X
randomly

2 while not converged or an early termination
condition is not met do

3 send the set of centroids C to mappers
4 set mapper to NKM–H-Mapper
5 set reducer to NKM-H-Reducer
6 run a new MapReduce job
7 if numberOfReducers > 1 then
8 merge reducers output into one file
9 end

10 end

Algorithm 3: NKM-H-Mapper(k)

1 Function setup():
2 load centroids from HDFS to C
3 Function map(offset, value)
4 x← value minDistance←∞
5 a← −1
6 for j ← 1 to k do
7 d← d(x, cj)
8 if d < minDistance then
9 minDistance← d

10 a← j

11 end

12 end
13 output(a, x)

key is the offset of the data point in the input file, and
the value is the data point itself. Subsequently, the map
function iterates over C to find the centroid with the
minimum distance from the input data point. Finally,
the index of the closest centroid (a) is emitted to the
reducers with its assigned data point as a key-value pair.

Reducer: After each mapper outputs a key-value
pair, these pairs are grouped by key and sent to the
reducer in the form of (key, list(values)) pairs, where
key is the cluster index j and values are the data points
that were assigned to centroid cj by the mappers. In
Algorithm 4, the setup function initialises C ′ which holds
the set of updated centroids. In the reduce function,
the vector sum of all the points in the list is calculated
and stored in sum. The updated centroid, which is
represented by the mean of the data points in each
cluster, is calculated by dividing the sum over the count
of the points in each cluster. Finally, each reducer writes
the new centroids in C ′ to HDFS. Note that since the
Reducer’s implementation is identical in all the following
implementations of K-Means it implementation will not
be discussed in further section.

As discussed in section 3.3, Hadoop does not
support iterative algorithms, particularly, Hadoop does
not have the ability to cache intermediate data
between two consecutive MapReduce jobs. The following

Algorithm 4: NKM-H-Reducer

1 Function setup():
2 let C‘ be a list holds the new centroids
3 Function reduce(j, values):
4 pointsCounter ← 0
5 sum ← (0,0,...,0)
6 foreach x ∈ values do
7 sum← sum + x //vector sum
8 pointsCounter ← pointsCount + 1

9 end
10 c′j ← sum/pointsCounter

11 load c′ to C ′

12 Function cleanup():
13 write recodes in C ′ to HDFS

sections discuss the challenge of implementing K-Means
variants that use triangle inequality and require extra
information from the previous iteration and presents two
techniques to overcome such challenge.

5 Efficient K-Means based on Triangle
Inequality on Hadoop

As it was explained in section 3.3, one of Hadoop’s
limitations is its lack to cache intermediate data
between two consecutive MapReduce jobs. Several K-
Means variants, such as Elkan’s algorithm (Elkan,
2003), Hamerly’s algorithm (Hamerly, 2010), Adaptive
algorithm (Drake and Hamerly, 2012), and Compare-
means algorithm (Phillips, 2002), require information
from the previous iteration to use them in the
current iteration to avoid computing the exact distances
from data points to centroids. Therefore, this section
introduces two approaches: K-Means on Hadoop using
an Extended Vector (EV); and K-Means on Hadoop
using a Bounds File (BF). These approaches aim to
allow Hadoop to pass information from one iteration
to the next to efficiently accelerate the K-Means
algorithm. Furthermore, the implementation of two
optimised algorithms, Elkan’s algorithm and Compare-
Means algorithm, on Hadoop using each approach is
explained.

In general, the assignment of data points to
their closest centres in K-Means on Hadoop is the
responsibility of the mappers, while the reducers are
responsible for aggregating points belonging to each
centroid and producing the new set of centroids.
Therefore, the optimisation steps occur in the map phase
and, as a consequence, several mapper algorithms will
be discussed in the next sections. On the other hand,
the implementation of the reducer in all of the proposed
solutions is identical to the reducer in Algorithm 4.
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5.1 K-Means on Hadoop using an Extended
Vector (EV)

This section explains the use of a data structure called
Extended Vector (EV) to pass extra information from
one iteration to the next. The idea of the Extended
Vector is to append any required information in the
current iteration to the original input data vector to form
an EV. This EV will be the input in the next iteration
where the input data along with any extra information
associated to it can be read together. Therefore, the
Extended Vector can be defined as: a data structure that
stores the input data vector and any extra information
related to this data vector in a given iteration, in
order to be used in subsequent iterations. This can
be considered as the straight-forward solution to the
problem of passing information between iterations in
Hadoop. Two K-Means variants are implemented using
this approach, Elkan’s algorithm and Compare-means.
The following sections will explain the implementation
of each algorithm on Hadoop using an EV.

5.1.1 Elkan’s Algorithm on Hadoop using EVs
(ELK-H-EV)

The implementation of Elkan’s algorithm on Hadoop
using an Extended Vector is referred to as ELK-H-EV.
Elkan’s algorithm efficiently eliminates a large number
of unnecessary distance computations while maintaining
the same output as the Naive K-Means. In addition to
the need of computing the k2 centre-centre distances at
the beginning of each iteration, the algorithm needs to
cache the following information in one iteration and use
them in the next:

• n upper-bounds on the distance between each data
point and its assigned centroid.

• nk lower-bounds on the distance between each data
point and each centroid.

• n cluster assignments for each data point from the
previous iteration.

Figure 1: Structure of an Extended Vector in ELK-H-
EV.

EV Size: Since extra information is associated
with each data point, the required information will be
appended to the data point, which forms the Extended
Vector (EV). Figure 1 illustrates the structure of an
EV in ELK-H-EV. Each EV in ELK-H-EV consists of
a data point vector in d dimensions, one upper-bound
for the distance from the point to its closest centroid,
one cluster assignment index from the previous iteration

Notation Description

X Input dataset of size n
C The set of cluster centroids of size k
k Number of clusters
cj Cluster centroid, where cj ∈ C, with 1 ≤ j ≤

k
c′j New location for centroid cj
ca Closest centroid to data point x, where 1 ≤

a ≤ k
si,j Distance between centroids ci and ci, where

1 ≤ i, j ≤ k and i 6= j
hj Half minimum distance from cj to its closest

centroid
mj Distance that centroid cj has moved in the

last iteration, i.e. d(cj ,c
′
j)

u An upper-bound from data point x ∈ X to
its closest centroid ca

lj A lower-bound from data point x ∈ X to
centroid cj

w An ExtendedVector class object which stores
the data vector w.x (x ∈ X) and required
extra information

Table 1 Notations description

and k lower-bounds for the distances from the point to
each centre. Therefore, the size of each EV in ELK-H-
EV is d + k + 2. This means that each mapper writes
n
p (d + k + 2) EVs to HDFS per iteration.

Table 1 describes the notations that are used in the
pseudo-codes.

Algorithm

The implementation of each of the following algorithms
can be divided into three major phases:

1. A driver that initiates the MapReduce jobs
and controls the iterative process. Because the
implementation of the driver in all algorithms is
similar to the driver in section 4, Algorithm 2,
only significant changes will be highlighted to avoid
redundancy.

2. A map phase that assigns each point to its closest
centroid (distance computation elimination steps
occur in this phase).

3. A reduce phase that computes the means of points
assigned to each cluster centroid and produces new
set of centroids. The implementation of the reducer
is identical to the reducer in Algorithm 4, section
4.

Driver: The driver in ELK-H-EV and ELK-H-BF,
which will be explained later in section 5.2.1, is similar
to the driver’s implementation in Algorithm 2. One
exception is that because ELK-H’s implementation has
two mappers’ implementations, it runs the first mapper
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Algorithm 5: ELK-H-EV-Mapper-1(k)

1 Function setup():
2 load centroids C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, point)
5 let w be an Extended Vector
6 let t be a boolean list of size k
7 w.x ← point
8 for j ← 1 to k do
9 tj ← false

10 end
11 minDistance←∞
12 for j ← 1 to k do
13 if tj then continue
14 d← d(w.x, cj)
15 w.lj ← d
16 if d < minDistance then
17 minDistance← d
18 w.u← minDistance
19 w.a← j
20 for z ← j + 1 to k do
21 if sj,z ≥ 2 ∗ d then
22 tz ← true
23 end

24 end

25 end

26 end
27 write w to HDFS
28 output(w.a, w.x)

(Algorithm 5) in the first iteration, and the second
mapper (Algorithm 6) in subsequent iterations.

Map phase: ELK-H requires two mappers’
implementations, the first mapper is executed in the
first iteration, and the second mapper is executed
in subsequent iterations. This is because in the first
iteration distance bounds and cluster assignments are
not initialised yet. Therefore, the first mapper runs in
the first iteration and initialises the distance bounds
and cluster assignments, and the second mapper runs
in subsequent iterations and performs the techniques for
eliminating unnecessary distance computations.

First Mapper: The first mapper initialises
the distance bounds and the cluster assignments.
Furthermore, the algorithm uses Lemma 1 to skip
some distance computations where information from
the previous iteration is not required. The pseudo-code
in Algorithm 5 shows how upper and lower bounds
associated to each input data point x are initialised in
ELK-H-EV. w represents an ExtendedVector (EV) class
object with the index of the assigned cluster centroid
(a), the upper-bound (u), the lower-bound (l), and the
data point (x), as members of w. First, a new Extended
Vector (w) is declared in line 5, then, the input data
point is assigned to w.x. The distance from the input
data point w.x to the closest centroid is assigned to the
upper-bound w.u. The lower-bound w.lj is set to the

distance from point w.x to any centroid cj . Lemma 1
states that: given two centres p and a, and a point x,
if d(p, a) ≥ 2d(x, p) then d(x, a) ≥ d(x, p). This Lemma
can be used to skip the distance computation from w.x
to the next centroid in the centroids list. To achieve
this, t holds the skip status of each centroid, that is, if
the distance computation from w.x to centroid cj can
be skipped, cj ’s status in tj will be true, otherwise, it is
false. Line 13 tests the status of the currently processed
centroid. The distance computation to this centroid is
avoided if its status is true. Lines 14-19 find the closest
centroid from w.x. Then in line 20 the distance from the
current centroid to the next centroid is extracted from
structure s, and line 21 tests Lemma 1 to check if the
distance to the next centroid can be eliminated. If the
test holds, the skip status of the next centroid is set to
true and the distance computation to it is skipped. In
line 27 w is written to HDFS. EVs that are written by
each mapper will be the input for the mappers in the
next iteration. Finally, the mapper outputs data point
(w.x) and its assigned cluster index (w.a) to reducers as
a key-value pair.

Second Mapper: Algorithm 6 illustrates the
pseudo-code of the second mapper in ELK-H-EV, which
is executed on iterations > 1. The second mapper takes
as input key-value pairs, where each value represents
an EV that was stored by a mapper in the previous
iteration. In lines 9-12, the lower and upper bounds are
updated. The distance (mj) that centroid cj has moved
in the previous iteration is added to the upper-bound
and subtracted from each lower-bound. The centroid’s
movement is part of the data structure that holds the
centroid’s vector and is computed and stored at the
end of the reduce stage. If the test in line 15 holds,
all distance calculations associated to the currently
processed point are skipped. Furthermore, if any of the
three tests in lines 14-16 does not hold, the distance
computation to currently processed centroid is avoided.
The distance from the point w.x to any centroid other
than the one assigned to the it does not get calculated
until line 29, where the tests at line 28 repeats the tests
at lines 18 and 19 but with an updated upper-bound
w.u. At this point w acquires updated values for the
assigned cluster index a, the upper-bound u, and the
lower-bounds lj (1 ≤ j ≤ k) and can be written to HDFS
at line 39. Finally, the mapper outputs the point w.x
with the index of its closest centroid w.a to the reducers.

5.1.2 Compare-means on Hadoop using EVs
(CMP-H-EV)

Compare-means (Phillips, 2002) is a variant of K-Means
that also uses triangle inequality to skip redundant
distance computations. While Elkan’s algorithm uses a
combination of distance bounds and triangle inequality
to eliminate unnecessary distance computations,
Compare-means uses only triangle inequality without
any distance bounds. The only required information
from the previous iteration is the cluster assignment for
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Algorithm 6: ELK-H-EV-Mapper-2(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj), for all 1 ≤ i, j ≤ k
4 compute hj ← minj 6=j′d(cj , cj′) ∗ 0.5, for all

1 ≤ j, j′ ≤ k

5 Function map(offset, value):
6 let w be an Extended Vector
7 w ← value
8 //update k lower-bounds
9 for j ← 1 to k do

10 w.lj ← max[w.lj −mj , 0]
11 end
12 w.u← w.u + mw.a //update upper-bound
13 g ← true //flag to check if u is updated
14 d1, d2← 0
15 if w.u ≤ h(w.a) then continue
16 for j ← 1 to k do
17 if (j 6= w.a)
18 &(w.u > w.lj)
19 &(w.u > sw.a,j ∗ 0.5) then
20 if g then
21 d1← d(w.x, cw.a)
22 w.u← d1
23 w.lw.a ← d1
24 g ← false

25 else
26 d1← w.u
27 end
28 if d1 > w.lj or d1 > sw.a,j ∗ 0.5 then
29 d2← d(w.x, cj)
30 w.lj ← d2
31 if d2 < d1 then
32 w.a← j
33 w.u← d2
34 g ← false

35 end

36 end

37 end

38 end
39 write w to HDFS
40 output(w.a, w.x)

each data point. The implementation of Compare-means
on Hadoop using an Extended Vector is referred to as
CMP-H-EV.

As in ELK-H-EV, CMP-H-EV needs to compute k2

centre-centre distances at the beginning of each mapper.
In addition, the algorithm needs to cache one cluster
assignment for each data point from last iteration. Each
EV in CMP-H-EV consists of a data point vector of size
d dimensions, and one cluster assignment index from
the previous iteration. Therefore, the size of each EV
in CMP-H-EV is d + 1. This means that each mapper
writes n

p (d + 1) EVs to HDFS per iteration.

Algorithm 7: CMP-H-EV-Mapper(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, value)
5 let w be an Extended Vector
6 if iteration == 1 then
7 w.x← value
8 w.a← 1

9 end
10 minDistance← d(w.x, cw.a)
11 d← 0
12 for j ← 1 to k do
13 if sj,w.a ≥ 2 ∗minDistance or j == w.a

then
14 continue
15 end
16 d← d(w.x, cj)
17 if d < minDistance then
18 minDistance← d
19 w.a← j

20 end

21 end
22 write w to HDFS
23 output(w.a, w.x)

Algorithm

Map phase: Unlike ELK-H-EV, CMP-H-EV has only
one mapper because it does not need to initialise any
distance bounds. As mentioned previously in this section,
the only extra information CMP-H-EV needs from the
previous iteration is the index (a) of the assigned cluster
to each data point, which needs to be initialised in the
first iteration. In this situation, a is initialised to 1 in the
first iteration for all data points, which is the index of
the first centroid in the centroids list C.

The pseudo-code in Algorithm 7 describes the steps
of the mapper in CMP-H-EV. First, it can be observed
that CMP-H-EV’s algorithm is simpler than ELK-
H-EV with regards to the method each algorithm
eliminates distance computations. This simplicity makes
the algorithm lighter than ELK-H-EV in terms of I/O
overhead, but this come on the cost of the amount of
skipped distance computation.

In the first iteration, the map function receives the
byte-offset of the input record and the data point vector
as a key-value pair. A new Extended Vector (w) is
declared in line 5 and the received value (data point)
is assigned to w.x. The index for the cluster centroid
that was assigned to w.x in the previous iteration is
initialised to one for all data points, which is the index
of the first centroids in the centroids list. Consequently,
minDistance in line 10 will be the distance from w.x
to the first centroid in the centroids list. Distance
computations are avoided if the test in line 13 holds. The
test in line 13 uses Lemma 1, which states that: for two
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centres c1 and c2, and a data point x, if we know that
d(c1, c2) ≥ 2d(x, c1) then d(x, c2) ≥ d(x, c1), and d(x, c2)
can be avoided. CMP-H-EV performs this test at line 13
using the last centroid that point w.x was assigned to
in the previous iteration (w.a). If the test does not hold,
the distance to the centroid is computed as in NKM-H.
Finally, w is written to HDFS, and the pair (w.a,w.x) is
emitted to the reducers.

In iterations > 1, the map function receives the value
as an EV that contains the data point w.x and cluster
index for the centroids that point w.x was assigned to in
the previous iteration. The algorithm then attempts to
skip distance computations at line 13.

5.2 K-Means on Hadoop using a Bounds File
(BF)

This section introduces the second approach called K-
Means on Hadoop using a Bounds File (BF). The idea
behind this approach is motivated by the large overhead
EVs create when processing large number of clusters and
dimensions. Thus, BFs attempt to reduce the overhead
from writing EVs to HDFS in each iteration.

A Bounds File (BF) can be defined as a flat file that
is written to HDFS in the each mapper, where each
record in this file represents an extra information that
is associated to a data point in the input dataset. In
other words, in a given iteration, each mapper stores
the desired extra information related to each input data
point on a file on HDFS, this file is called a Bounds File.
Unlike implementations that use EVs, each record in a
BF stores only the extra information without the data
point. These files can then be read by the mappers in
subsequent iterations and each point is joined with its
corresponding extra information.

The following sections explain the implementations of
two K-Means variants: Elkan’s algorithm, and Compare-
means on Hadoop using BFs. Sections 5.1.1 and 5.1.2
explained the implementation steps of both algorithms
on Hadoop using EVs (ELK-H-EV and CMP-H-EV)
with an explanation of the method each algorithm
follows to eliminate distance computations. Therefore,
the following sections will focus on how to store extra
information in one iteration and retrieve it in the next
using BFs.

5.2.1 Elkan’s Algorithm on Hadoop using BFs
(ELK-H-BF)

In a given iteration, each mapper in Elkan’s algorithm
on Hadoop using a Bounds File (ELK-H-BF) writes
one upper-bound, k lower-bounds, and one cluster
assignment, which are associated to each data point
to a BF on HDFS. In the following iteration, each
mapper finds the BF that corresponds the input-split
that was assigned to that mapper and loads all the extra
information in the BF to memory. At this point, each
mapper acquires the extra information that each data
point needs to proceed with the elimination process.

How to identify which BF corresponds to
which input-split? Hadoop splits the original input
dataset into a number of input-splits where each
mapper processes an individual input-split. The splitting
mechanism does not change from one iteration to
another, that is, each input-split contains the same data
points in the same order from one iteration to the next.
However, the input-split processed by a given mapper in
one iteration could be processed by a different mapper
on different node in the next iteration. This issue causes
a difficulty in associating each BF to its corresponding
input-split. To solve this issue, the BF’s name is set to be
the starting byte offset of the currently processed input-
split. Hence, in given iteration, the mapper searches
HDFS for the BF with the name that matches the
starting byte offset of the input-split assigned to this
mapper in the current iteration. The contents of the BF
are then loaded the memory of the mapper’s node. Since
the order of the records in the input-split does not change
from one iteration to another, the order of the records
on the input-split will match the order of records in the
corresponding BF.

BF Size: In a given iteration, each mapper in
ELK-H-BF writes the following extra information for
each data point to a BF: one upper-bound for the
distance from the point to its closest centroid, one cluster
assignment index from the previous iteration, and k
lower-bounds for the distances from the point to each
centre. Therefore, each record in a BF in ELK-H-BF is
of size: K + 2, which makes the size of each BF n

p (k + 2)
per iteration, where n is the total number of data points,
and p is the number of mappers.

Algorithm

Map phase: Similar to ELK-H-EV (section 5.1.1),
ELK-H-BF requires two mappers’ implementations, the
first mapper runs in the first iteration and initialises
the distance bounds and cluster assignments, while
the second mapper runs in subsequent iterations and
performs the techniques for eliminating unnecessary
distance computations.

First mapper: Algorithm 8 shows the pseudo-code
of the first mapper in ELK-H-BF, where most of the
steps are similar to the steps in Algorithm 5, except that
ELK-H-BF stores and reads extra information to/from
BFs.

Each time the distance from the input data point to
a given centroid cj is calculated (line 13), the the lower-
bound b.lj is set to that distance in line 14. Additionally,
when the distance to the closest centroid is determined,
the upper-bound (b.u) is set to that distance in line 17,
and the index of this closets centroid is assigned to b.a in
line 18. At this point all the extra information for point
x are acquired and can be written to a BF in line 26.

Second mapper: The pseudo-code of ELK-H-BF’s
second mapper is shown in Algorithm 9. ELK-H-BF
follows the same method that ELK-H-EV uses on
eliminating distance computations, which was illustrated
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Algorithm 8: ELK-H-BF-Mapper-1(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, value)
5 x← value
6 let b be a collection that stores the extra

information for x
7 for j ← 1 to k do
8 tj ← false
9 end

10 minDistance←∞
11 for j ← 1 to k do
12 if tj then continue
13 d← d(x, cj)
14 b.lj ← d
15 if d < minDistance then
16 minDistance← d
17 b.u← minDistance
18 b.a← j
19 for z ← j + 1 to k do
20 if sj,z ≥ 2 ∗ d then
21 tz ← true
22 end

23 end

24 end

25 end
26 write b to a BF on HDFS
27 output(b.a, x)

in Algorithm 6. The two algorithms differ in the method
of reading and writing cluster assignments and distance
bounds from/to HDFS. The second mapper assumes that
the extra information was stored to a BF by a mapper in
the previous iteration. Therefore, each mapper searches
HDFS for the BF that corresponds to the input-split
that is assigned to this mapper (line 6). When the BF is
located, each record in the BF is parsed to a collection
structure called b in the algorithm, where the size of b is
k + 2 (k lower-bounds, one upper-bound, and one cluster
assignment). All b’s are then loaded to the list f . The
map function reads each b from f that corresponds to
each data point and uses the information in b to eliminate
distance computations. Before sending the output to the
reducers, each b is written to a BF on HDFS in line
41. This BF is then read by a mapper in the following
iteration.

5.2.2 Compare-means on Hadoop using BFs
(CMP-H-BF)

The detailed explanation of the method Compare-means
follows to eliminate accelerate K-Means is discussed in
section 5.1.2. Therefore, the focus of this section is on
how Compare-means on Hadoop writes and reads the
cluster assignment for each data point from the previous
iteration using Bounds Files.

Algorithm 9: ELK-H-BF-Mapper-2(k)

1 Function setup():
2 load centroids from DistributedCache to C
3 compute si,j ← d(ci, cj), for all 1 ≤ i, j ≤ k
4 compute hj ← minj 6=j′d(cj , cj′) ∗ 0.5, for all

j ∈ k
5 let f be a list that stores the cluster

assignments for all data point
6 find the BF that corresponds to the

input-split assigned to this mapper and load
its records to f

7 Function map(offset, value):
8 x← value
9 let b be a collection that stores the cluster

index assigned to x
10 b← f(pointsCounter)
11 //update k lower-bounds
12 for j ← 1 to k do
13 b.lj ← max[b.lj −mj , 0]
14 end
15 b.u← b.u + mb.a //update upper-bound
16 g ← true //flag to check if u is updated
17 d1, d2← 0
18 if b.u 6 hb.a then continue
19 for j ← 1 to k do
20 if (j 6= b.a) &(b.u > b.lj)

&(b.u > sb.a,j ∗ 0.5) then
21 if g then
22 d1← d(x, cb.a)
23 b.u← d1
24 b.lb.a ← d1
25 g ← false

26 else
27 d1← b.u
28 end
29 if d1 > b.lj or d1 > sb.a,j ∗ 0.5 then
30 d2← d(x, cj)
31 b.lj ← d2
32 if d2 < d1 then
33 b.a← j
34 b.u← d2
35 g ← false

36 end

37 end

38 end

39 end
40 pointsCounter ← pointsCounter + 1
41 write b to a BF on HDFS
42 output(b.a, x)

BF Size: In a given iteration, each mapper in CMP-
H-BF writes the index for the cluster assigned to each
data point in the previous iteration to a BF. Therefore,
each mapper writes a BF of size: n

p per iteration, where
n is the total number of data points, and p is the number
of mappers.
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Algorithm

Map phase: The pseudo-code in Algorithm 10
illustrates the implementation steps of the mapper in
CMP-H-BF. In the first iteration, the index of the
assigned cluster to point x from previous iteration is
initialised to one, which is the first centroid in the
centroids list C. If the test at line 20 holds, the distance
computation to centroid cj is skipped. After assigning
x to its closest centroids cj , index j is assigned to b.a
which is then written to a BF on HDFS. This process is
repeated on subsequent iterations where previous cluster
assignments can be read from BFs. Therefore, in the
setup function, the records of the BF that corresponds
the input-split that is assigned to the mapper is loaded
to f . The map function can read updated cluster
assignments (line 15) from the previous iteration for each
data point.

5.3 Triangle Inequality K-Means on Hadoop
(TIKM-H)

This section explains the implementation of Triangle
Inequality K-Means on Hadoop (TIKM-H). As
illustrated in Algorithm 11, TIKM-H uses the most
basic form of triangle inequality to skip redundant
distance computations from points to cluster centroids.
That is why it was named after triangle inequality. By
the most basic form of triangle inequality we mean that
this approach does not require any information from
the previous iteration to skip distance computations.
This approach needs to compute only the intra centre
distances at the start of each mapper. In fact, the
method TIKM-H follows to skip distance computations
is the same as the one used in the first mapper of
ELK-H-EV (Algorithm 5), and ELK-H-BF (Algorithm
8), where the centre-centre distances are computed at
the setup function of each mapper and the map function
tests the inequality in Lemma 1 to check if the distance
to the next centroids in the list can be skipped (see
Algorithms 5 or 8 for a detailed explanation).

This approach does not have the potential to prune
lots of distance computations compared to ELK-H and
CMP-H. However, its very small overhead could make it
a good competitor to ELK-H and CMP-H on situations
where the overhead becomes the dominant cost.

6 K-Means on Spark

Two versions of K-Means are implemented on Spark.
The first version implements the Naive K-Means on
Spark (NKM-S), and the second implements the Triangle
Inequality K-Means on Spark (TIKM-S).

6.1 Naive K-Means on Spark (NKM-S)

The driver caches the input dataset in-memory for both
algorithms in the first iteration as an RDD (RDD-1).

Algorithm 10: CMP-H-BF-Mapper(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k
4 if iteration > 1 then
5 let f be a list that stores the cluster

assignments for all data point
6 locate the BF that corresponds to the

input-split assigned to this mapper and
load its records to f

7 pointsCounter ← 1

8 end

9 Function map(offset, value)
10 x← value
11 let b be a collection that stores the cluster

index assigned to x
12 if iteration == 1 then
13 b.a← 1 //initialise cluster assignment
14 else
15 b← f(pointsCounter)
16 end
17 minDistance← d(x, cb.a)
18 d← 0
19 for j ← 1 to k do
20 if sj,b.a ≥ 2 ∗minDistance or j == b.a

then
21 continue
22 end
23 d← d(x, cj)
24 if d < minDistance then
25 minDistance← d
26 b.a← j

27 end

28 end
29 if iteration > 1 then
30 pointsCounter ← pointsCounter + 1
31 end
32 write b to a BF on HDFS
33 output(b.a, x)

RDD-1 is partitioned and distributed over a number of
worker nodes (executors) where each executor finds the
closest centroid from each data point and returns the
index of the cluster centroid associated with the data
point as a pair to driver. The driver creates a new RDD
(RDD-2) of size n composed of pairs of data points
and the index of their assigned centroids. To update
the location of each centroid, the vector sum of points
assigned to each centroid and the count of these points
are required to compute the mean of points in each
cluster. Therefore, RDD-2 is reduced by key (key is the
centroid’s index) to compute the vector sum and the
number of points in each cluster is counted. Finally,
the mean of points in each cluster (represents the new
centroid) is computed in the driver. The old and new
centroids are compared in the driver and new a iteration
starts in case of failed convergence.
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Algorithm 11: TIKM-H-Mapper(k)

1 Function setup():
2 load centroids to C
3 compute si,j ← d(ci, cj) //for all 1 ≤ i, j ≤ k

4 Function map(offset, value)
5 x ← value
6 //initialise all values in t
7 for j ← 1 to k do
8 tj ← false
9 end

10 minDistance←∞
11 for j ← 1 to k do
12 if tj then
13 continue
14 end
15 d← d(x, cj)
16 if d < minDistance then
17 minDistance← d
18 a← j
19 for z ← j + 1 to k do
20 if sj,z ≥ 2 ∗ d then
21 tz ← true
22 end

23 end

24 end

25 end
26 output(a, x)

6.2 Triangle Inequality K-Means on Spark
(TIKM-S)

TIKM-S uses the same approach used in TIKM-H
(section 5.3). A basic triangle inequality optimisation
based on Lemma 1 is used to eliminate unnecessary
distance computations where the only required
information is the centre-centre distances before
computing the distance from each point to each centroid.

TIKM-S was implemented because it has a light
overhead compared to Elkan and Compare-means
algorithms. This gives TIKM-S the potential to gain
speedup with a relatively small overhead.

7 Experimental Work

7.1 Software and Hardware

Hardware: Apache Hadoop and Apache Spark are
deployed on the same cluster which consists of 1 master
node and 16 worker nodes. The master node has 2 AMD
CPUs running at 3.1GHz with 8 cores each, and 8x8GB
DDR3 RAM, and 6x3TB Near Line SAS disks running
at 7200 rpm. Each worker node has 1 Intel CPU running
at 3.1 GHz with 4 cores, 4x4GB DDR3 RAM, and a
1x1TB SATA disk running at 7200 rpm. All the nodes
run CentOS-6 (x86 64) operating system.

Software: The cluster uses Hadoop version 2.2.0 to
run MapReduce on YARN. HDFS is configured with
128 MB default block size, and a replication factor of 3
replicas for each file. The default JVM heap size is 1 GB
per task.

Apache Spark 2.1.1 is deployed on the same cluster
as Hadoop, where YARN is used as the cluster manager,
and HDFS as the distributed file system.

All algorithms were implemented in Java and
compiled using JDK 1.7.0 79.

7.2 Datasets

The datasets used in the experimental work are either
artificially generated datasets or real-world datasets.

Artificial datasets: Table 2 describes the
characteristics of each artificial and real-world dataset
in terms of its number of data points (n), number
of dimensions (d), and the size in megabytes (MB).
The data points in datasets DS[1-6] and DS[8-
12] are normally distributed around 128 centres to
form 128 well-separated clusters. This was done by,
first, generating 128 centre vectors with a uniform
distribution in Rd. Then, an equal number of data
points was generated and assigned to each centre with
an independent univariate Gaussian distribution for
each dimension. Except for dataset DS7, datasets DS[1-
12] have a constant standard deviation SD = 0.02.
This low SD generates clusters with high density
around the centre vectors which creates well-separated
clusters. The data points in dataset DS7 are generated
with a uniformly random distribution where there
is no underlying structure in the data. Dataset DS7
was generated to test the worst performance for the
optimised algorithms where there are no meaningful
clusters to be found.

Real-world datasets: To observe the practicality
of the proposed algorithms on real-world settings, two
naturally-clustered datasets haven been used in the
experimental work.

The first dataset covertype, contains collected
observations of trees from four areas of the Roosevelt
National Forest in Colorado. The dataset contains
581,012 observations, where each observation has
55 integer attributes. The collected data represent
information about the types of soil, the wilderness
areas, elevation, slop, forest cover type, and several
other characteristics. The dataset is publicly available at
the UCI Machine Learning Repository (Blackard et al.,
1998).

The second dataset mnist contains images of
handwritten digits. Each image is represented by a 28×
28 array. This array is flattened to form a 784 (28× 28 =
784) dimensional vector, where each number in each
dimension describes the darkness level of a specific pixel.
The total number of images in this dataset is 60,000
images. The dataset is available online at (LeCun et al.,
1998).
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Name Points (n) Dimensions (d) Size (MB)

DS1

100,000

8 15

DS2 32 28

DS3 128 235

DS4 512 941

DS5 1024 1884

DS6 2048 3788

DS7 512 947

DS8 1,000,000

128

1638

DS9 3,000,000 3584

DS10 5,000,000 5836

DS11 7,000,000 8192

DS12 9,000,000 10588

covertype 581,012 55 72

mnist 60,000 784 104

Table 2 Characteristics of artificial and real-world
datasets.

7.3 Evaluation Metrics

Each iteration of K-Means on Hadoop consists of three
major phases: map, shuffle, and reduce. The major
operations that consumes the majority of K-Means
running time occur in the map phase. Therefore, to fully
understand the time consumed by each operation in the
map phase, the map time is broken down into three
major operations: 1) the average time to compute centre-
centre distances, 2) the average time to compute point-
centre distances, and 3) the average time to write extra
information to HDFS. The shuffle time and reduce time
are also reported.

The following is a detailed description of the
evaluation metrics that are used to evaluate the
performance of each algorithm.

• Average iteration time is the average running
time per iteration over the total number of
iterations that an algorithm has executed. This
time includes: the CPU time, the I/O time, and
the communication time. To compute the average
time per iteration, the time for each iteration is
obtained from Hadoop’s job history log files at the
end of each iteration. After all iterations complete
running, the average time spent by each iteration
is computed by dividing the sum of all iterations’
times over the total number of iterations. The
iteration time dose not include the time to initialise
cluster centroids because it is a one time cost that
occurs only once in each test.

• Speedup: In general, speedup measures the
improvement in speed for an enhanced algorithm
over a baseline algorithm (Grama et al., 2003).
In this work, the performance of an optimised
algorithm is reported as the speedup relative to
NKM-H algorithm, where speedup is defined as the

ratio of the average iteration time in NKM-H to the
average iteration time of an optimised algorithms.
For each algorithm, the average speedup over 10
trials is reported.

• Average number of distance calculations
is the average number of point-centre distance
calculations per iteration over the total number of
iterations.

• Average time to compute point-centre
distances: To obtain the time to compute
point-centre distances, in a given mapper, the
total consumed time by point-centre distance
computations for points assigned to this mapper
is computed. After the completion of all mappers,
the average time per mapper over the number
of mapper is computed. After that, The total of
these averages is divided by the total number of
iterations to obtain the average time per iteration.

• Average time to compute centre-centre
distances: The average time to compute centre-
centre distances per mapper over the total number
of mappers is computed in each iteration. Then,
the average time to compute these distances per
iteration over the total number of iterations is
reported.

• Average shuffle time: The average shuffle time
per reducer over the total number of reducers is
computed. This time is then averaged over the
total number of iterations.

7.4 Comparative Analysis of All Implementations
on Hadoop

The aim of this section is to investigate the scalability
and efficiency of K-Means implementations using EVs
and BFs with a wide range of number of clusters (k)
and dimensions (d). Another aim is to determine the
best and worse range of k and d for each algorithm. To
accomplish these aims, algorithms: ELK-H-EV, CMP-
H-EV, ELK-H-BF, and CMP-H-BF are tested against
variable number of clusters k and dimensions d.

7.4.1 Variable Number of Clusters

This experiment uses dataset DS4 as input to test
the performance of each algorithm with a variable
number of clusters (k). Note that the number of
distance computations in ELK-H-EV and CMP-H-EV is
equivalent to ELK-H-BF and CMP-H-BF respectively.
As shown in Figure 2(a) ELK-H-BF efficiently eliminates
a large number of distance computations with all
variations of k. ELK-H-BF eliminates around 76% when
k = 8, and around 98% when k = 512 and 2048. CMP-
H-BF works best with large number of clusters on well-
separated clusters where it eliminates 98% and 99%
when k = 512 and 2048, but skips only 13% and 11%
distance computations with k = 8 and 32 respectively.



Efficient Clustering Techniques on Hadoop and Spark 15

Since TIKM-H implements the simplest approach to
avoid distance computations, it does not prune many
computations with small k. For instance, only 0.3% and
5% of the distance computations are skipped when k =
8 and 32, respectively. However, the skipped distance
computations rises to up to 78% when k = 512, and 94%
when k = 2048.

It can be noticed from Figure 2(b) that, in general,
the speedup for algorithms implemented with BFs is
higher than the ones implemented using EVs. When
8 ≤ k ≤ 128, ELK-H-EV and CMP-H-EV perform the
same or worse than NKM-H. This is because the time
to write EVs to HDFS in each iteration outweighs the
time gained by skipping distance computations. When
k = 512 and 2048, the speedups of ELK-H-BF are 6.6x
and 5.4x, while ELK-H-EV achieves speedups of 3.4x and
4.4x. CMP-H-BF, on the other hand, is 9.3x and 9.6x
faster than NKM-H when k = 512 and 2048, while CMP-
H-EV is 3.8x and 6.6x faster with the same numbers of
k. The speedup in ELK-H-BF drops from 6.6x when k =
512 to 5.4x as k in creases to 2048 due to the increase
in the time to write BFs which is dependent on k. As
the number of clusters gets larger than 32, TIKM-H
starts to benefit from the pruned distance computations
combined with the light computational overhead from
centre-centre computations. The algorithm gains more
speedups as the number of clusters increases.

7.4.2 Variable Number of Dimensions

It can be observed from Figure 2(b) in the previous
experiment that the speedup of ELK-H-EV, CMP-H-
EV, CMP-H-BF, and TIKM-H started to increase when
k = 128. In order to measure the ability to accelerate
with higher dimensions, each algorithm is tested with
variable number of dimensions (8 ≤ k ≤ 2048), while the
number of clusters is fixed at k = 128. Datasets DS[1-6]
are used as input in this experiment.

In Figure 3(b), the speedup of ELK-H-EV reaches
the peek when d = 128 (2.2x) and starts to decline as
d gets larger than 128. Although ELK-H-EV eliminates
most distance computations (see Figure 3(a)) with all
variations of d, the speedup of ELK-H-EV drops to 0.3x
when d = 2048. This drop in speed is caused by the
dramatic increase in the overhead from writing EVs to
HDFS (see Figure 3(c)).

7.5 Detailed Analysis of Implementations using
BFs

It can be observed from the previous experiments that
using BFs to implement K-Means variants has more
potential to scale with increasing numbers of k and d
than variants implemented with EVs. Therefore, further
tests were carried on with BF implementations on
various datasets with various number of clusters (k),
dimensions (d) and data points (n).

7.5.1 Variable Number of Clusters and
Dimensions

This section aims to investigate the impact of the number
of clusters (k) and the number of dimensions (d) on
the performance of ELK-H-BF, CMP-H-BF, and TIKM-
H compared with NKM-H. The values of k and d
varies from small, medium and large where 8 ≤ k ≤
2048 and 8 ≤ d ≤ 512. The number of data points is
fixed at n = 100, 000, and the number of reducers r =
1. While datasets DS[1-4] are used as input to test
the performance of each algorithm with clustered data,
dataset DS7 is used as an input to test each algorithm
with uniform random data, which is the worst case for
the optimised K-Means implementations presented here.
The real dataset covertype is used to test each algorithm
with a real-world dataset.

From Figure 4 to Figure 7, it can be observed that,
in general, CMP-H-BF outperforms NKM-H, ELK-H-
BF, and TIKM-H when 512 ≤ k ≤ 2048 for all the tests
on variations of d. The highest speedup that CMP-H-
BF achieves relative to NKM-H is 21.2x where d = 128
and k = 2048 (Figure 6(b)). This can be attributed to
two reasons: 1) CMP-H-BF eliminates larger number of
distance computations that is close to ELK-H-BF and
larger than TIKM-H, which can be observed in Figures
4(a), 5(a), 6(a) and 7(a); and 2) the small overhead
CMP-H-BF generates compared to ELK-H-BF, as can
be seen in Figures 4(c), 5(c), 6(c) and 7(c).

The best performance for ELK-H-BF with artificial
datasets is when 128 ≤ d ≤ 512 and 128 ≤ k ≤ 2048,
as shown in Figures 6(b) and 7(b). This is because
distance computations become the dominant cost in
NKM-H and ELK-H-BF eliminates more than 95%
of these computations. Furthermore, the time gained
from pruning distance computations outweighs the time
wasted on reading and writing distance bounds and
cluster assignments. Although ELK-H-BF eliminates the
largest number of distance computations compared to
the other two algorithms, the overhead it generates
affects the performance greatly.

For small numbers of clusters and dimensions where
8 ≤ k, d ≤ 32, no significant improvements in speed are
reported for all the optimised algorithms. This is because
even though the optimised algorithms eliminate some
distance computations, the time that NKM-H spends
on distance computations is already small, and the time
gained from eliminating distance computations does not
compensate the time spent on reading and writing the
extra information.

The results of tests on uniformly random dataset
DS7 is illustrated in Figure 8(b). Figure 8(b) shows
that there is no gain in speedup for CMP-H-BF and
TIKM-H relative to NKM-H. This is caused by the small
number of eliminated distance calculations, which is
bellow 1% of the total number of distance computations
in both algorithms (see Figure 8(a)). ELK-H-BF, on
the other hand, eliminates up to 82% (when k = 2048)
distance computations from the total number of distance
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Figure 2: Average distance computations per iteration over the total number of iterations shown in Figure 2(a), and
speedup relative to NKM-H shown in Figure 2(b). Each algorithm is tested against variable number of clusters (k).
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Figure 4: Average distance computations per iteration (Figure 4(a)), speedup relative to NKM-H (Figure 4(b)), and
average time to write EVs and BFs (Figure 4(c)). (Dataset: DS1, d = 8)

computations. This is reflected on the speedup where
ELK-H-BF was 2.8x times faster than NKM-H when the
number of clusters are in the range of 128 ≤ k ≤ 512.

To study the performance of each algorithm with
real-world settings, the real dataset covertype is used as
an input for each algorithm and tested against variable
number of clusters (8 ≤ k ≤ 2048). In general, CMP-
H-BF and TIKM-H achieve high speedups relative to
NKM-H as the number of clusters increases, as it can
be observed from Figure 9(b). The speedups for CMP-

H-BF and TIKM-H, relative to NKM-H, are 33x and
15x, respectively, where k = 2048. ELK-H-BF, on the
other hand, achieves a speedup of 7.2x when k = 128
then the speedup starts to drop as the number of clusters
gets larger until it reaches 3x when k = 2048. This drop
in speed in ELK-H-BF is due to the increase of the
overhead that is generated from writing distance bounds
and cluster assignments to HDFS as Figure 9(c) shows.
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Figure 5: Average distance computations per iteration (Figure 5(a)), speedup relative to NKM-H (Figure 5(b)), and
average time to write EVs and BFs (Figure 5(c)). (Dataset: DS2, d = 32)
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Figure 6: Average distance computations per iteration (Figure 6(a)), speedup relative to NKM-H (Figure 6(b)), and
average time to write EVs and BFs (Figure 6(c)). (Dataset: DS3, d = 128)
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Figure 7: Average distance computations per iteration (Figure 7(a)), speedup relative to NKM-H (Figure 7(b)), and
average time to write EVs and BFs (Figure 7(c)). (Dataset: DS4, d = 512)

7.5.2 Variable Number of Data Points

This section aims to test the performance of each
algorithm against a variable number of data points (n),
where 1, 000, 000 ≤ n ≤ 9, 000, 000. Each algorithm is
tested against five clustered datasets, DS[8-12], each with
a variable number of data points and constant number
of clusters k = 128, and dimensions d = 128.

Figure 10(a) illustrates the average number of
distance computations per iteration and Figure 10(b)
plots the average running time per iteration over the
total number of iterations for each algorithms. The
impact of the reduction in distance computations can

be clearly observed in these two figures. When the
number of data points is in the range of 1, 000, 000 ≤
n ≤ 7, 000, 000, CMP-H-BF and TIKM-H skip around
40% and 70% distance computations, respectively. The
number of skipped distance computations increases for
both algorithms when n = 9, 000, 000 to about 85% for
CMP-H-BF and 80% for TIKM-H, which in return
reduces the iteration time for both algorithms (see
Figure 10(b)). Although ELK-H-BF eliminates most of
the distance computations (about 95%), the time to
write BFs to HDFS, illustrated in Figure 10(c), makes
the algorithm runs at almost the same speed as TIKM-
H, except when n = 9, 000, 000, where TIKM-H is faster.
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Figure 8: Average distance computations per iteration (Figure 8(a)), speedup relative to NKM-H (Figure 8(b)), and
average time to write EVs and BFs (Figure 8(c)). (Dataset: DS7 (uniform), d = 512)
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Figure 9: Average distance computations per iteration (Figure 9(a)), speedup relative to NKM-H (Figure 9(b)), and
average time to write EVs and BFs (Figure 9(c)). (Dataset: covertype, d = 55)
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Figure 10: Results of tests on variable number of points (n). Average distance computations per iteration (Figure
10(a)), average iteration time (Figure 10(b)), and average time to write EVs and BFs (Figure 10(c)). (Dataset:
DS[8-12], d = 128, k = 128)

This is because TIKM-H takes advantage of the light
overhead and the large amount of skipped distance
computations compared to the number of distance
computations that was skipped where n < 9, 000, 000.

7.5.3 Comparative Analysis of K-Means
Implementations on Hadoop and Spark

This section presents the results obtained from the
experimental work on Apache Spark and compares these
results against experimental work on Apache Hadoop.
The goal of this experiment is to provide a comparative

analysis between the performances of NKM-H, ELK-H-
BF, CMP-H-BF, TIKM-H, NKM-S, and TIKM-S.

The experiments are executed on the real dataset
mnist, and tested against variable number of clusters
where 32 ≤ k ≤ 2048, with fixed d = 748 and n = 60000.
It can be observed from Figure 11(b) that NKM-S is
faster than all K-Means implementations on Hadoop
for 32 ≤ k ≤ 128. This is attributed to the caching
mechanism in Spark where input data is distributed
over the cluster executer nodes and cached in-memory
in the first iteration and reused in subsequent iterations
in the form of Resilient Distributed Datasets (RDDs).
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Figure 11: Results of testing algorithms on Hadoop using BFs and algorithms on Spark on real dataset mnist with
variable number of clusters (k). Average distance computations per iteration illustrated in Figure 11(a) and speedup
relative to NKM-H illustrated in Figure 11(b). (Dataset: mnist, d = 748, n = 60000)

This feature, unlike Hadoop, reduces the I/O and
communication overheads. However, as k increases,
distance computations become the bottleneck and the
speedup of NKM-S starts to decline to the point where
it becomes very close to the running time of CMP-H-BF
and TIKM-H when k = 2048.

TIKM-S, on the other hand, outperforms all
algorithms including NKM-S when 128 ≤ k ≤ 2048. This
is because TIKM-S skips around 17%, 33%, and 45%
of distance computations when k = 128, 512 and 2048,
respectively, as can be seen in Figure 11(a), with a small
overhead from computing k2 centre-centre distances
performed by each executer. CMP-H-BF and TIKM-H
were able to reduce the large gap in speedup between
them and NKM-S when k = 2048. That is, when k =
2048, CMP-H-BF and TIKM-H achieve 1.4x speedups,
while NKM-S achieves and 1.9x. This makes CMP-H-BF
and TIKM-H compete with NKM-S when the number of
clusters is large.

8 Conclusion

The aim of this paper was to improve the efficiency
and scalability of K-Means. To achieve this aim efficient
variants of K-Means were implemented on Hadoop and
Spark. The variants used triangle inequality to reduce
the number of distance computations in each iteration.
Some of these variants required extra information from
the previous iteration, which Hadoop does not support.
Therefore, two techniques , Extended Vectors (EVs) and
Bounds Files (BFs), were proposed to allow Hadoop
to pass required extra information from one iteration
to the next. Furthermore, the performance of several
optimisations of K-Means was investigated on Hadoop
and Spark.

The comparative analysis of EV and BF approaches
showed that significant speedups could be achieved
by implementations using both approaches. However,
implementations that use BFs are more efficient and

scalable than those that use EVs to pass information
to subsequent iterations. As the number of clusters and
dimensions increases, the overhead that is generated
from writing EVs to HDFS increases dramatically.

It was found through the use of clustered and
uniform random datasets that the best performance of
the optimised algorithms that use triangle inequality is
with datasets that have well-separated clusters. This is
because more distance computations can be avoided with
well-clustered datasets.

The optimised algorithms did not achieve any
significant speedups relative to NKM-H with low number
of dimensions and clusters. The number of distance
computations must be large enough to compensate the
time spent on writing/reading extra information by the
gained time from skipping distance computations in the
optimised algorithms.

The comparison between the performances of
algorithms that were implemented on Hadoop using
BFs and the two implementations of K-Means on
Spark showed the superiority of TIKM-S over all the
implementations on Hadoop and Spark as the number
of clusters was increased. Combining the in-memory
caching mechanism that Spark employs with the simple
triangle inequality optimisation gave TIKM-S the ability
to outperform all the other implementations.

In the future work it would be interesting to
compare these implementations with implementations
of K-Means on other distributed computing frameworks
such as Twister (Ekanayake et al., 2010) and Piccolo
(Power and Li, 2010). In addition, implementations
of other variants based on triangle inequality such as
Hamerly’s algorithm (Hamerly, 2010), and Adaptive K-
Means (Drake and Hamerly, 2012) could be tested and
compared on Hadoop and Spark.



20

References

Apache (2017). Welcome to Apache Hadoop. http://

hadoop.apache.org/ [Accessed: 15/10/2017].

Arthur, D. and Vassilvitskii, S. (2007). k-means++: The
advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial
and Applied Mathematics.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R.,
and Vassilvitskii, S. (2012). Scalable k-means++.
Proceedings of the VLDB Endowment, 5(7):622–633.

Ball, G. and Hall, D. (1965). Isodata: A novel method
of data analysis and pattern classification. Technical
report, Stanford Research Institute, Menlo Park.

Blackard, J., Dean, D., and Anderson, C. (1998).
Covertype Data Set. https://archive.ics.

uci.edu/ml/datasets/covertype [Accessed:
02/04/2017].

Celebi, M. (2011). Improving the performance of k-
means for color quantization. Image and Vision
Computing, 29(4):260–271.

Celebi, M., Kingravi, H., and Vela, P. (2013). A
comparative study of efficient initialization methods
for the k-means clustering algorithm. Expert Systems
with Applications, 40(1):200–210.

Dean, J. and Ghemawat, S. (2008). Mapreduce:
Simplified data processing on large clusters. Commun.
ACM, 51(1):107–113.

Dhillon, I. and Modha, D. (2002). A data-clustering
algorithm on distributed memory multiprocessors.
In Large-Scale Parallel Data Mining, pages 245–260.
Springer.

Drake, J. and Hamerly, G. (2012). Accelerated k-means
with adaptive distance bounds. In 5th NIPS workshop
on optimization for machine learning, pages 42–53.

Effat, N., Divya, S., Sirisha, D., and Venkatesan,
M. (2016). Enhanced k-means clustering approach
for health care analysis using clinical documents.
International Journal of Pharmaceutical and Clinical
Research, 8(1):60–64.

Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae,
S., Qiu, J., and Fox, G. (2010). Twister: a runtime
for iterative mapreduce. In Proceedings of the 19th
ACM international symposium on high performance
distributed computing, pages 810–818. ACM.

Elkan, C. (2003). Using the triangle inequality
to accelerate k-means. In Proceedings of the
20th International Conference on Machine Learning
(ICML-03), pages 147–153.

Esteves, R. M., Hacker, T., and Rong, C. (2014). A new
approach for accurate distributed cluster analysis for
big data: competitive k-means. International Journal
of Big Data Intelligence 5, 1(1-2):50–64.

Grama, A., Gupta, A., Karypis, G., and Kumar, V.
(2003). Introduction to Parallel Computing. Pearson
Education. Addison-Wesley, 2 edition.

Grolinger, K., Hayes, M., Higashino, W. A., L’Heureux,
A., Allison, D. S., and Capretz, M. A. (2014).
Challenges for mapreduce in big data. In Services
(SERVICES), 2014 IEEE World Congress on, pages
182–189. IEEE.

Hamerly, G. (2010). Making k-means even faster.
In Proceedings of the 2010 SIAM international
conference on data mining, pages 130–140. SIAM.

Hamerly, G. and Drake, J. (2015). Accelerating lloyds
algorithm for k-means clustering. In Partitional
clustering algorithms, pages 41–78. Springer.

Hodgson, M. (1988). Reducing the computational
requirements of the minimum-distance classifier.
Remote Sensing of Environment, 25(1):117–128.

Jain, A. (2010). Data clustering: 50 years beyond K-
means. Pattern Recognition Letters, 31(8):651–666.

Judd, D., Mckinley, P., and Jain, A. (1998). Large-
scale parallel data clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20:871–
876.

Kanungo, T., Mount, D., Netanyahu, N., Piatko,
C., Silverman, R., and Wu, A. (2002). An
efficient k-means clustering algorithm: Analysis and
implementation. IEEE transactions on pattern
analysis and machine intelligence, 24(7):881–892.

Kuo, R., Ho, L., and Hu, C. (2002). Integration of
self-organizing feature map and k-means algorithm
for market segmentation. Computers & Operations
Research, 29(11):1475–1493.

LeCun, Y., Cortes, C., and Burges, C. (1998). THE
MNIST DATABASE. http://yann.lecun.com/

exdb/mnist/ [Accessed: 02/04/2017].

Li, Q., Wang, P., Wang, W., Hu, H., Li, Z., and Li, J.
(2014). An efficient k-means clustering algorithm on
mapreduce. In International Conference on Database
Systems for Advanced Applications, pages 357–371.
Springer.

Lin, J. and Dyer, C. (2010). Data-Intensive Text
Processing with Mapreduce. Morgan & Claypool
Publishers, San Rafael, Calif.

Lloyd, S. (1982). Least squares quantization in pcm.
IEEE transactions on information theory, 28(2):129–
137.

http://hadoop.apache.org/
http://hadoop.apache.org/
https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/covertype
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Efficient Clustering Techniques on Hadoop and Spark 21

MacQueen, J. (1967). Some methods for classification
and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Mohebi, A., Aghabozorgi, S., Ying Wah, T., Herawan,
T., and Yahyapour, R. (2016). Iterative big data
clustering algorithms: a review. Software: Practice and
Experience, 46:107–129.

Orchard, M. (1991). A fast nearest-neighbor search
algorithm. In Acoustics, Speech, and Signal
Processing, 1991. ICASSP-91., 1991 International
Conference on, pages 2297–2300. IEEE.

Phillips, S. (2002). Acceleration of k-means and related
clustering algorithms. In Workshop on Algorithm
Engineering and Experimentation, pages 166–177.
Springer.

Power, R. and Li, J. (2010). Piccolo: Building fast,
distributed programs with partitioned tables. In
OSDI, volume 10, pages 1–14.

Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C.,
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