

Refining the eruptive history of Ulleungdo and Changbaishan volcanoes (East Asia) over the last 86 kyrs using distal sedimentary records

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

McLean, D., Albert, P. G., Suzuki, T., Nakagawa, T., Kimura, J.-I., Chang, Q. C., MacLeod, A., Blockley, S., Staff, R. A., Yamada, K., Kitaba, I., Haraguchi, T., Kitagawa, J., SG14 Project Members, and Smith, V. C. (2020) Refining the eruptive history of Ulleungdo and Changbaishan volcanoes (East Asia) over the last 86 kyrs using distal sedimentary records. Journal of Volcanology and Geothermal Research, 389. 106669. ISSN 0377-0273 doi: https://doi.org/10.1016/j.jvolgeores.2019.106669 Available at https://centaur.reading.ac.uk/86408/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1016/j.jvolgeores.2019.106669

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other

copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

REFINING THE ERUPTIVE HISTORY OF ULLEUNGDO AND CHANGBAISHAN VOLCANOES (EAST ASIA) OVER THE LAST 86 KYRS USING DISTAL SEDIMENTARY RECORDS

- DANIELLE MCLEAN*^a, PAUL G ALBERT^a, TAKEHIKO SUZUKI^b, TAKESHI
 NAKAGAWA^c, JUN-ICHI KIMURA^d, QING CHANG^d, ALISON MACLEOD^{e,f},
 SIMON BLOCKLEY^e, RICHARD A STAFF^{a,g}, KEITARO YAMADA^c, IKUKO
 KITABA^c, TSUYOSHI HARAGUCHI^h, JUNKO KITAGAWAⁱ, SG14 PROJECT
 MEMBERS^j AND VICTORIA C SMITH^a

^a Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3TG, UK ^b Department of Geography, Tokyo Metropolitan University, Tokyo, 192-0397, Japan ^c Research Centre for Palaeoclimatology, Ritsumeikan University, Shiga, 525-8577, Japan ^d Department of Solid Earth Geochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan ^e Department of Geography, Royal Holloway University of London, TW20 OEX, UK ^f Department of Geography and Environmental Science, University of Reading, RG66AB, UK ^g Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, G75 0QF, UK ^h Osaka City University, Osaka, 558-8585, Japan ⁱ Fukui Prefectural Satovama-Satoumi Research Institute, Wakasa, 919-1331 Japan ^jwww.suigetsu.org *Corresponding author: mclean.tephra@gmail.com **Highlights:** Distal records show eruptions are more frequent and widespread • At least 8 Changbaishan eruptions produced widespread ash over the last 86 kyrs Explosive eruption of Changbaishan at ca. 42.5 ka dispersed ash >1000 km

 4 Ulleungdo eruptions are now precisely dated using the Lake Suigetsu chronology

U-Ym tephra is identified in Suigetsu and dated to 40,332 – 39,816
 IntCal13 yrs BP

40 Abstract

The eruptive histories of Ulleungdo (South Korea) and Changbaishan (North Korea/China border) volcanoes are not well constrained since their proximal stratigraphies are poorly exposed or largely inaccessible. However, determining the past behaviour of these volcanoes is critical since future eruptions are likely to disperse ash over some of the world's largest metropolitan regions. Alkaline tephra deposits erupted from both centres are routinely identified in marine cores extracted from the Sea of Japan, as well as high-resolution lacustrine records east of the volcanoes. Here, we review the distal ash occurrences derived from Ulleungdo and Changbaishan and provide new data from the Lake Suigetsu (central Honshu, Japan) sediment core, in order to provide a more complete and constrained eruption framework. The intensely-dated Lake Suigetsu archive provides one of the most comprehensive distal eruption records for both centres, despite being located ca. 500 km E of Ulleungdo and ca. 1000 km SSE of Changbaishan. The Suigetsu record is utilised to precisely date and geochemically fingerprint (using major, minor and trace element glass compositions) ash fall events that reached central Honshu. Here, we identify a new non-visible (cryptotephra) layer in the Suigetsu sediments, which reveals a previously unreported explosive event from Changbaishan at 42,750 - 42,323 IntCal13 yrs BP (95.4 % confidence interval). This event is chronologically and

geochemically distinct from the B-J (Baegdusan-Japan Basin) tephra reported in the Sea of Japan (ca. 50 ka). Furthermore, we also confirm that the widespread U-Ym tephra erupted from Ulleungdo reached central Japan, and is herein dated to 40,332 – 39,816 IntCal13 yrs BP (95.4 % confidence interval). This terrestrial ¹⁴C-derived age of the U-Ym can be used to constrain the chronology of marine records containing the same marker layer. This reviewed and integrated tephrostratigraphic framework highlights the pivotal role that distal sedimentary records can play in evaluating the eruptive histories and hazard potential of Ulleungdo and Changbaishan.

71 Keywords: Ulleungdo, Changbaishan; Glass geochemistry; Eruption history;
72 Sedimentary archives; Lake Suigetsu

1. Introduction

Intraplate volcanoes Ulleungdo (South Korea) and Changbaishan (North Korea/China border) are responsible for two of the largest Holocene eruptions (≥ Volcanic Explosivity Index (VEI) 6; Newhall and Self, 1982) in East Asia, blanketing large parts of Japan and the surrounding seas in ash (Figure 1; Machida and Arai, 2003). Fine ash from the AD 946 'Millennium Eruption' (ME) (Hakozaki et al., 2017; Oppenheimer et al., 2017) of Changbaishan has also been identified ca. 9000 km from its source in northern Greenland (Sun et al., 2014a), which demonstrates the enormous potential of the volcano to cause major disruption to airspace across the East Asian and Pacific region. Yet, the complete eruptive histories of Ulleungdo and Changbaishan are not well

86 constrained since proximal eruption deposits are poorly exposed and are

87 largely inaccessible.

Figure 1. (a) Location of Ulleungdo (South Korea; blue triangle) and Changbaishan (North Korea/China: orange triangle) and other sources of Japanese tephras outlined in the text (black triangles). Distal sites mentioned in the text are marked by white circles; 1 = Marine cores; Lim et al. (2013); 2 = Marine cores; Arai et al. (1981); Chun et al. (2007); 3 = Marine cores; Chun et al. (2007); 4 = Lake Biwa; Nagahashi et al. (2004); 5 = Marine cores; Ikehera et al. (2004); 6 = Yuanchi Lake; Sun et al. (2018); 7 = Marine cores; Ikehara (2003); 8 = Lake Hane; Sawada et al. (1997); 9 = Marine cores; Derkachev et al. (in press); 10 = Hakusan volcano; Higashino et al. (2005); 11 = Lake Kushu; Chen et al. (2016, 2019). A white star notates the location of Lake Suigetsu, and ocean basins are marked in grey (JB= Japan Basin; YR= Yamato Rise; OR= Oki Ridge; UB = Ulleungdo Basin). Dispersal boundaries of the B-Tm (AD 946; Oppenheimer et al., 2017), U-Oki (ca. 10 ka) and U-Ym (ca. 40 ka) are marked by dashed lines (B-Tm and U-Oki as defined by Machida and Arai, 2003). (b) Location of Lake Suigetsu, which is the largest of the five Mikata lakes, adjacent to Wakasa Bay. The positions of coring campaigns SG06 and SG14 are marked on Lake Suigetsu (modified after Nakagawa et al., 2005).

It is likely that proximal evidence of older eruptions, especially those of low- to mid-intensity, have been destroyed, or are now completely buried, following more recent large magnitude Holocene events. At Changbaishan clear depositional breaks and soil horizons are not well documented within proximal eruption successions (e.g., Chen et al., 2016; Sun et al., 2017), making it unclear how many eruption deposits are preserved.

Distal sedimentary records (e.g., marine and lacustrine sequences) have proved very important archives of past explosive eruptions, and can be used to help constrain the frequency and dispersal of tephra-forming events (e.g., Wulf et al., 2004; Albert et al., 2013; 2018; Smith et al., 2013; Tomlinson et al., 2014; Ponomareva et al., 2018). Ulleungdo and Changbaishan are the only sources known to have dispersed alkaline tephra across Japan (Machida and Arai, 2003; Kimura et al., 2015; Albert et al., 2019), and their distal deposits can be easily discriminated from other intraplate sources in the back-arc (e.g., Doki and Jeju volcanoes; Brenna et al., 2014). Tephra layers preserved in marine cores extracted from the Sea of Japan (Oki ridge, Yamato and Japan basins; Figure 1), indicate that both Ulleungdo and Changbaishan have been very active during the Late Quaternary, however the number and precise timing of these events remains uncertain. This is partly since successive eruption deposits are difficult to geochemically distinguish, and because marine cores in some localities are susceptible to reworking processes (e.g., turbidites; Albert et al., 2012; Cassidy et al., 2014), and often cannot be precisely dated (i.e., due to variations in the marine radiocarbon reservoir; Ikehara et al., 2013).

294 129

In order to provide new insight into the eruptive histories of Ulleungdo and Changbaishan, this study provides a detailed review of the distal occurrences of alkaline ash deposited in sedimentary records (marine and lacustrine cores) spanning the last 86 kyrs (i.e., post-dating the widespread Aso-4 tephra that is dated to 86.4 \pm 1.1 ka using the ⁴⁰Ar/³⁹Ar method; Albert et al., 2019). We also provide new tephra data from the intensely-dated Lake Suigetsu archive (central Honshu, Japan), a record that has significant potential to develop a comprehensive eruption history for both centres (despite being located 500 km E of Ulleungdo and 1000 km SSE of Changbaishan). Using the lake sediments, we identify and geochemically characterise two new ash layers erupted from Ulleungdo and Changbaishan, allowing these eruptive events to be precisely dated for the first time. New trace element data are also generated for the previously identified marker layers preserved as cryptotephra in the Holocene sediments (McLean et al., 2018), offering new possibilities to discriminate between successive eruption deposits. This reviewed and integrated distal eruption framework for Ulleungdo and Changbaishan permits critical new insight into the hazard potential of these active centres.

341
3421482. Regional setting and proximal volcanic deposits

2.1. Ulleungdo Island, South Korea

- 344 149

Ulleungdo Island (12 km x 10 km) is the sub-aerial portion of a Quaternary
 stratovolcano located in the mid-western part of the Sea of Japan (37°30'N,
 153
 154
 130°52'E), 130 km east of the Korean Peninsula (Figure 1; Kim, 1985).

Ulleungdo is the youngest volcano in the back-arc basin, and is known to have erupted intermittently from the Pliocene until the mid-Holocene (Kim et al., 1999; Okuno et al., 2011; Im et al., 2012). Nari caldera is located at the centre of the island (2.8 km in diameter) and is the source of the most recent phase of activity (< 19 ka; Kim et al., 2014), erupting rocks that range from alkali basalt to trachyandesite in composition (Kim, 1985; Brenna et al., 2014; Chen et al., 2018).

³⁷⁸ 162

The most recent activity of Ulleungdo is exposed at several outcrops near or within Nari caldera. Machida et al. (1984) defined seven pyroclastic units at extra-caldera outcrops in the north (named in ascending order: U-7 to U-1), which are comprised of trachytic or phonolitic ash and pumice that were emplaced as fall deposits and/or by pyroclastic flows (Figure 2). The Holocene stratigraphy (U-4 to U-2) was further subdivided by Okuno et al. (2011) and Shiihara et al. (2011) at exposures in the southeast, where the units have also been geochemically analysed and radiocarbon dated (Figure 2). Two widespread Japanese tephra marker layers erupted from volcanoes of southern Kyushu Island are found within the soils that formed between these pumice falls, and are named the Aira-Tanzawa (AT; ca. 30.0 ka) and Kikai-Akahoya (K-Ah; ca. 7.3 ka) ash. The U-7 to U-5 eruption units are stratigraphically identified below the AT tephra, and the K-Ah ash is positioned between the U-3 and U-2 eruptions (Shiihara et al., 2011). Radiocarbon dates obtained from buried soils (ca. 2 cm thick) between units, and charred tree material preserved in the Holocene deposits suggest that the U-3 eruption occurred ca. 8.3 or 9 ka BP, respectively, and the U-2 eruption at ca. 5.6 ka BP.

caldera outcrops on Ulleungdo Island (Machida et al., 1984; Okuno et al., 2010; Shiihara et al., 2011; Kim et al., 2014). The radiocarbon ages (s = soil; c = charcoal) reported by Okuno et al. (2010) have been recalibrated using IntCal13 (IntCal13 yrs BP). Two Japanese tephra layers erupted from volcanoes in Kyushu are identified within the soils of the extra-caldera sequences, which include the AT (30 ka) and K-Ah (7.3 ka) ash.

Major element glass compositions for Holocene eruptions U-4 to U-2 are known to be geochemically similar (Machida et al., 1984; Martin Jones, 2012; Shiihara et al., 2011). Slight geochemical differences between some subunits are reported by Shiihara et al. (2011), who show that U-4a and U-3c contain glass with lower Al₂O₃ and higher CaO and FeO^T. Furthermore, subunits U-3a and U-

195 2a are characterised by slightly lower CaO, TiO_2 and FeO^T contents compared 196 to the other units.

Intra-caldera outcrops at Nari are ca. 70 m thick, and are composed of un-welded pyroclastic and epiclastic deposits spanning the last 19 kyrs (Figure 2; Im et al., 2012; Kim et al., 2014). This sequence is named the Nari Tephra Formation, and consists of five key eruptive units (in ascending order, N-5 to N-1), some of which exhibit signs of weathering and soil formation (Figure 2). Several radiocarbon ages have been obtained from this formation by Im et al. (2012), which have been used to correlate the intra- and extra-caldera Holocene deposits (U-4 to U-2, and N-4 to N-2) as shown in Figure 2. Kim et al. (2014) have proposed a detailed succession of eruption styles for the last 19 ka, and suggest that only a few of the events generated sustained eruption columns or pyroclastic density current (PDC) deposits large enough to overtop the caldera wall, and therefore extra-caldera sequences may underestimate the eruption frequency.

211

2.2. Changbaishan, North Korea/China border

Changbaishan (also referred to as Baitoushan, Paektusan, or Hakutozan) is an intraplate stratovolcano situated on the border of North Korea and China (41°00'N, 128°03'E; Figure 1), located on a Neogene trachybasalt lava shield (the Gaema Plateau). Activity at Changbaishan began in the Middle Pleistocene, and has been divided into three main episodes: early shield building, middle cone construction, and a late explosive stage (Wei et al., 2007; 2013). The most recent of which (< 20 ka) culminated with the caldera-forming

Millennium Eruption (ME; VEI 7) which ejected ca. 100 km³ of tephra (Dense Rock Equivalent ca. 25 km³), blanketing the northernmost regions of Japan in ash (Horn and Schmincke, 2000; Zou et al., 2010; Wei et al., 2013; Sun et al., 2014b; McLean et al., 2016) and injecting 45 Tg of sulphur into the atmosphere (lacovino et al., 2016). This eruption produced a ca. 4.5 km wide caldera, which today contains Lake Tianchi (meaning "Heavenly Lake"; Machida et al., 1990). The age of the ME has been precisely dated to AD 946, by combining dendrochronology with the presence of a closely related (AD 994) 'Miyake event' (pronounced radiocarbon peak) preserved in charred tree deposits (Hakozaki et al., 2017; Oppenheimer et al., 2017). The hazard potential of Changbaishan is considerable and is particularly concerning given that there has been recent seismic unrest at the crater (Stone, 2010; Xu et al., 2012; Wei et al., 2013).

The most comprehensively studied proximal outcrop at Changbaishan is at Twianwenfeng peak, which is on the northern Chinese flank of the summit (e.g., Chen et al., 2016; Pan et al., 2017; Sun et al., 2017; 2018). There are many inconsistent interpretations of these Late Quaternary eruption deposits, even amongst those assigned to the ME (see Pan et al., 2017). Sun et al. (2017) identify and geochemically characterise five sequential deposits (oldest to youngest, named NS-1 to NS-5) at Twianwenfeng peak, and suggest that the three uppermost units (NS-3 to NS-5) are associated with the ME, due to the geochemical (major element glass chemistry) overlap with distal ash deposits, and that no depositional break is evident between units NS-4 and NS-5. This is in contrast to other studies that suggest that the youngest unit (NS-5) may

603
604
605
606
247
1668 or AD 1702 (Cui et al., 1995; Liu et al., 1998).

The ME had two explosive phases, with the initial main phase (ca. 95% by volume) associated with a ca. 25 km-high Plinian column, producing a widespread rhyolitic pumice fall unit (Machida et al., 1990; Horn and Schmincke, 2000), which equates to NS-3 of Sun et al. (2017). This fall unit is overlain by partially-welded PDC deposits attributed to the partial collapse of the Plinian column. Trachytic magma was erupted in a late phase of the eruption (i.e., NS-4 and NS-5), forming moderately welded PDC units that overlie the rhyolitic fall and PDC deposits (Horn and Schmincke, 2000). Chen et al. (2016) report trace element compositions for the ME at Twianwenfeng peak (therein named units C-3 to C-1), and show that the rhyolitic fall deposits (C-3 to C-2) had higher contents of incompatible trace elements (e.g., Th, Ta, Nd, Y) and lower contents of compatible elements (e.g., Ba, Sr) relative to the upper trachyte unit (C-1).

Sun et al. (2017) identify two pre-ME pyroclastic fall deposits at Twianwenfeng peak, NS-1 (grey fall unit) and NS-2 (yellow fall unit), which are compositionally distinct from the ME deposits. These units are estimated to have been erupted between 4 – 5 ka based on 40 Ar/ 39 Ar, uranium series disequilibrium, 14 C and optically stimulated luminescence (OSL) methods (Liu et al., 1998; Wan and Zheng, 2000; Wang et al., 2001; Yang et al., 2014).

A large "lava flow" landform, named the Qixiangzhan Comendite that is 5 km long and 400-800 m wide, is observed on the northern summit of Changbaishan (Yang et al., 2014; Sun et al., 2017). This is widely considered as another pre-ME event, although ⁴⁰Ar/³⁹Ar ages generated from this deposit span several thousand years (e.g., Singer et al., 2014; Yang et al., 2014) and its stratigraphic relationship to the units preserved at Twianwenfeng peak is unclear (Sun et al., 2017). Major element glass compositions of the Qixiangzhan comendite overlap with those of the rhyolitic phase of the ME (Sun et al., 2018).

681 278

683 279

2.3. Distal marine and lacustrine tephra records

685 280

The Sea of Japan (East Sea) is a semi-enclosed marginal sea located between the Japanese islands and the Asian continent, and is the product of the rear-arc extension (Figure 1). Due to the prevailing westerly winds, tephra erupted from Ulleungdo and Changbaishan is typically dispersed to the east and deposited in the surrounding marine basins (Arai et al., 1981; Chun et al., 1997, 2007; Ikehara, 2003; Machida and Arai, 2003; Ikehara et al., 2004; Lim et al., 2013, 2014; Derkachev et al., in press). Furthermore, several Japanese tephra layers erupted from volcanoes on Kyushu Island have been dispersed to, and deposited in the Sea of Japan, including the K-Ah (Kikai), AT (Aira), SAN1 (Kuju) and Aso-4 eruption deposits (Machida and Arai, 2003; Albert et al., 2019). The marine sediments across the Sea of Japan are characterised by alternations of light and dark coloured sediments, which have been attributed to millennial-scale palaeoenvironmental changes associated with changes in the East Asian summer monsoon (Tada, 1999; Ikehara, 2003). These organic rich

dark-layers are commonly used to date tephra layers that are preserved in the marine sediments (Tada et al., 1999). It has proved very difficult to correlate between the proximal eruption successions exposed at Ulleungdo and Changbaishan with those in distal records (Shiihara et al., 2011; Kim et al., 2014; Chen et al., 2016; Pan et al., 2017). Typically, only the largest Holocene eruptions that reached the Japanese islands have been correlated to specific eruption units within proximal stratigraphies of these two volcanoes.

The most widespread tephra layer from Changbaishan is associated with the AD 946 ME, and is distally named the Baegdusan-Tomakomai (B-Tm tephra). The B-Tm tephra was named and characterised using glass refractive indices and major element compositions (Machida and Arai, 1983; McLean et al., 2016) at a distal type-locality in Tomakomai Port, Hokkaido (northern Japan), where it was identified above the Tarumai-c (ca. 50 BC) and below the Tarumai-b (AD 1667) tephra layers from the nearby Tarumae volcano (Machida and Arai, 1983). The B-Tm tephra has since been identified in numerous marine, lacustrine and archaeological sequences across northern Japan, northeast China and coastal regions of Russia (see Sun et al., 2014b; McLean et al., 2016) and B-Tm glass shards have been identified in the Greenland ice cores (Sun et al., 2014a).

The most widespread tephra erupted from Ulleungdo is the Ulleung-Oki (U-Oki), which is correlated to the proximal U-4 deposits on the island (Machida et al., 1984; Okuno et al., 2010; Shiihara et al., 2011; Smith et al., 2011; Kim et al., 2014). The U-Oki tephra has been identified in several marine cores in the Sea

of Japan, and in archives on the islands of Japan, including Lake Biwa, Lake Suigetsu and Lake Hane (Chun et al., 1997; Domitsu et al., 2002; Nagahashi et al., 2004; Smith et al., 2011; Figure 1). As outlined further below, several of these archives contain a younger phonolitic/trachytic ash that post-dates the U-Oki tephra, and are thought to be distal correlatives of the U-3 eruption of Ulleungdo.

796 326

One of the most comprehensive records of East Asian volcanism is the Lake Suigetsu sedimentary archive, which is located ca. 500 km E of Ulleungdo and ca. 1000 km SSE of Changbaishan (35°35'0"N, 135°53'0"E, 0 m above present sea level; Figure 1). The sequence spans approximately 150 ka (Nakagawa et al., 2012), and contains a detailed record of visible and non-visible (cryptotephra) layers derived from Ulleungdo and Changbaishan eruptions, as well as over thirty visible tephra layers erupted from sources that span the length of Japan (Smith et al., 2013; McLean et al., 2016, 2018; Albert et al., 2018, 2019). Despite the difficulties of identifying non-visible layers in a productive arc setting, cryptotephra layers are precisely preserved and identified in Lake Suigetsu, partially due to its unique hydrological setting. Suigetsu is a tectonic lake, adequately situated away from the large calderas in Hokkaido and Kyushu, and so is not inundated with locally sourced volcanic glass which would preclude the identification of cryptotephra layers deposited during large distally occurring eruptions. Furthermore, no rivers flow directly into Lake Suigetsu (Figure 1b) with the water level controlled by input into the other connected lakes. The fine-grain sedimentation in the lake is often interrupted by deposits of coarse volcanic ash that fall through the water column.

842		
843 844	345	
845 846	346	Since the Lake Suigetsu sediments have been extensively radiocarbon (14C)
847 848	347	dated, and seasonal laminae (varves) are preserved between ca. 10 and 50 ka
849 850	348	(Staff et al., 2011; Bronk Ramsey et al., 2012; Marshall et al., 2012; Schlolaut et
851 852	349	al., 2012), eruptions within the radiocarbon timeframe can be precisely dated if
853 854	350	their associated tephra layers are identified. The Lake Suigetsu
855 856	351	tephrostratigraphic record is therefore utilised in this study to precisely date ash
857 858	352	fall events of Ulleungdo and Changbaishan that reached central Honshu, and
859 860	353	integrate their tephrostratigraphies.
861 862	354	
863 864	355	3. Tephra identification and analytical methods
865 866	356	
867 868	350	2.4. Noustanting identification in Later Ouisstau
869 870	357	3.1. New tephra identification in Lake Suigetsu
871 872	358	
873 874	359	The high-resolution and intensely dated sediments of Lake Suigetsu (SG06 and
875 876	360	SG14 cores) have been re-investigated for the presence of thin (i.e., sub
877 878	361	millimetre in thickness) and cryptotephra layers, in order to supplement the
879 880	362	visible tephrostratigraphy as introduced above, and published by Smith et al.,
881 882	363	(2011, 2013) and Albert et al. (2018, 2019). Cryptotephra extraction procedures
883 884	364	(modified from Turney, 1998; Blockley et al., 2005) were undertaken through
885 886	365	the 12 m of Holocene sediments (≤ 10 ka; McLean et al., 2016, 2018) and more
887 888	366	recently the 14 m of annually laminated (varved) sediments dating to between
889 890	367	ca. 50 and 30 ka, These sections were chosen for analysis as they were
891 892	368	expected to contain low-background levels of volcanic glass, which would not
893 894	369	obscure primary cryptotephra peaks (see McLean et al., 2018). On average,
895 896 897		

through these investigated sediments cryptotephra layers are four times more frequently preserved than visible ash layers. Identified tephra layers in the Suigetsu sediments are named, and are referred to using their SG06 (correlation model 06 June '17) or SG14 (correlation model 30 May '16) core composite depth(s) in cm.

914 375

The Suigetsu Bayesian age model (Staff et al., 2011; Bronk Ramsey et al., 2012) was used to determine the age for ash layers preserved in the sediments. The composite Suigetsu sedimentary sequence was modelled on to the IntCal13 timescale (Reimer et al., 2013) implementing three successive cross-referenced Poisson-process ('P Sequence') depositional models using OxCal (ver. 4.3; Bronk Ramsey, 2008, 2017). These include 775 AMS ¹⁴C dates obtained from terrestrial plant macrofossils from the upper 38 m (SG06-Composite Depth (CD) of the SG93 and SG06 cores (Kitagawa and van der Plicht, 1998a; 1998b, 2000; Staff et al., 2011, 2013a, 2013b; Bronk Ramsey et al., 2012) and varve counting between 12.88 and 31.67m SG06 CD (Marshall et al., 2012; Schlolaut et al., 2012). Outside of the varve-counted depth interval, SG06 event-free depth(s) (EFD, ver. 29th Jan '11) were used within the age model, which excludes instantaneous deposits > 5 mm in thickness, (e.g., floods, and tephra deposits; Staff et al., 2011; Schlolaut et al., 2012).

946 390

 393 Major and minor element compositions of individual glass shards extracted from 394 the Suigetsu visible and cryptotephra layers were measured using a JEOL-8600

3.2. Major and trace element analysis of the glass shards

wavelength-dispersive electron microprobe (WDS-EMP) at the Research Laboratory for Archaeology and History of Art (RLAHA), University of Oxford. All glass analyses used an accelerating voltage of 15 kV, beam current of 6 nA and 10 µm-diameter beam. Peak counting times were 12 s for Na, 50 s for Cl, 60 s for P, and for 30 s for all other elements. The electron microprobe was calibrated using a suite of mineral standards, and the PAP absorption correction method was applied for quantification. The accuracy and precision of these data were assessed using analyses of the MPI-DING reference glasses from the Max Plank Institute (Jochum et al., 2006), which were run as secondary standards. Analyses of these secondary standards lie within the standard deviation of the preferred values and are presented in the Supplementary Material. All these data were filtered to remove non-glass analyses, and those with low analytical totals <93%. The raw values were normalised (to 100 %) for comparative purposes and to account for variable glass hydration, and are presented as such in all tables and figures.

410

Trace element compositions of the glass shards >25 µm (i.e. large enough for analysis) were measured by laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the Department of Solid Earth Geochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The analytical equipment used include the deep-ultraviolet (200 nm) femtosecond laser ablation system (DUV-FsLA) of OK-Fs2000K (OK Laboratory, Tokyo, Japan) connected to the modified high-sensitivity sector field ICP-MS of Element XR (Thermo Scientific, Bremen, Germany). All analyses used a 25 µm crater diameter and depth, and conditions followed those reported by Kimura

1022		
1023 1024	420	and Chang (2012). Ten major elements including P_2O_5 and 33 trace elements
1025 1026	421	were analysed for each sample, and were also run alongside several MPI-DING
1027 1028	422	reference glasses (Jochum et al., 2006), and the BHVO-2G standard provided
1029 1030	423	by the United States Geological Survey. Accuracies of the BHVO-2G glass
1031 1032	424	analyses are typically < 3 % for most elements, < 5 % for Sc, Ga, Sm, Eu, Gd,
1033 1034	425	U and < 10 % for Ni, Cu, Lu. Full trace element datasets and secondary
1035 1036 1037	426	standard analyses are provided in the Supplementary Material.
1037 1038 1039	427	
1033 1040 1041	428	4. Results
1042 1043	429	
1044 1045	430	4.1. Suigetsu tephrostratigraphy
1040 1047 1048	431	
1048 1049 1050	432	To date, thirty-three visible tephra layers (Smith et al., 2011, 2013; Albert et al.,
1050	433	2018; 2019; McLean et al., 2016, 2018) and thirty-four cryptotephra layers
1053 1054	434	(between 50 to 30 ka, and > 10 ka; McLean et al., 2018) have been identified
1055 1056	435	and geochemically fingerprinted in the Lake Suigetsu sediments. The
1057 1058	436	distinctively high alkali content of glass shards (Na ₂ O + K ₂ O = > 9 wt. %; Figure
1059 1060	437	3) of eight of these tephra layers indicates that they are not from the Japanese
1061 1062	438	arc volcanoes (Machida and Arai, 2003; Kimura et al., 2015; Albert et al., 2019),
1063 1064	439	and are correlated by McLean et al. (2016, 2018; $n = 6$) and herein ($n = 2$) to
1065 1066 1067 1068 1069 1070 1071 1072	440	eruptions from Ulleungdo and Changbaishan.
1073 1074 1075 1076 1077		

Figure 3. The composite Lake Suigetsu tephrostratigraphy and the positioning of Ulleungdo (blue lines), Changbaishan (orange) and other key Japanese (black/grey) tephra layers preserved through the sequence (Smith et al., 2013; McLean et al., 2016, 2018; Albert et al., 2018; 2019). The glass shard total alkali content (Na₂O + K₂O) of these layers is also plotted against eruption age, with Ulleungdo and Changbaishan tephras containing > 9 wt. %.

1143
11444484.1.1. New Ulleungdo and Changbaishan deposits

449

As part of detailed cryptotephra investigations through the Suigetsu sediments dated between ca. 50 to 30 ka, two new alkaline ash layers named SG14-3380 and SG14-3216 have been identified. These are positioned between the Sambe-Ikeda (46.4 ka: Albert et al., 2019) and AT (30.0 ka: Smith et al. 2013: Albert et al., 2019) tephras (Figure 3; Table 1). SG14-3380 is a highly concentrated cryptotephra horizon erupted from Changbaishan, and contains over 18,000 shards per gram of dried sediment (Figure 4a.). This eruption is dated to between 42,750 – 42,323 IntCal13 yrs BP (95.4 % confidence interval) using the Suigetsu age model. SG14-3216 is a thin visible (ca. 1 mm) white ash layer (Figure 4b) that is ca. 1.6 m above SG14-3380, and represents an Ulleungdo eruption between 40,332 - 39,816 IntCal13yrs BP (95.4 % confidence interval).

1173 462

¹¹⁷⁵ 463 4.1.2. Previous identifications of Ulleungdo and Changbaishan deposits

464

As previously reported by McLean et al. (2018), the Lake Suigetsu Holocene tephrostratigraphy contains three eruptions from Ulleungdo: SG06-1288, SG14-1091 and SG14-0803 that are dated to 10,230 - 10,171 IntCal13 yrs BP, 8,455 - 8,367 IntCal13 yrs BP and 5,681 - 5,619 IntCal13 yrs BP (95.4 % confidence interval), respectively (Table 1; Figure 3; Smith et al., 2011; McLean et al., 2018). A younger ash layer that also has glass compositions that are similar to eruptions from Ulleungdo (SG14-0433) is dated to 2,737 – 2,620 IntCal13 yrs BP (Table 1; Figure 3).

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233 1234 1235

1236

1237

1238

1239

1240

1241 1242

1243

1244

481

482

1203 1204 473

1205 474 Table 1. Summary of the Ulleungdo and Changbaishan derived tephra layers identified 1206 475 in the Lake Suigetsu (SG06 & SG14) sequence (in bold and shaded grey), along with 1207 476 their stratigraphic positioning relative to key Japanese marker layers. Tephra 1208 correlations for SG06 tephra layers are discussed by Smith et al. (2013), McLean et al. 477 1209 478 (2016) and Albert et al. (2018, 2019) and SG14 tephra layers are correlated in McLean 1210 479 et al. (2018, this study). 1211 480

¹⁴C date (AD/ IntCal13 SG Label Tephra code Tephra name Source volcano Source location yrs BP) SG14-0221 Ma-b Mashu-b Mashu Kurile arc, Japan AD 960 - 9921 AD 946² SG06-0226 B-Tm Baegdusan-Tomakomai Changbaishan North Korea / China Kozushima AD 838³ SG14-0239 Iz-Kt Izu-Kozushima-Tenjosan Izu arc. Japan SG14-0433 Ulleungdo South Korea 2,737 - 2,620¹ U-1 Ulleung-1 SG14-0490 KGP Kawagodaira Pumice Kawagodaira Izu arc, Japan 3,227 - 3,129¹ SG14-0803 U-2 Ulleung-2 Ulleungdo South Korea 5,681 - 5,619¹ Towada-Chuseri Towada Northern Honshu, Japan $5.986 - 5.899^{1}$ SG14-0840 To-Cu 7,307 - 7,196¹ Kikai-Akohova Kikai Southern Kyushu, Japan SG06-0967 K-Ah B-Sq-08 Chanobaishan North Korea / China SG14-1058 Baegdusan-Suigetsu-08 8,166 - 8,099¹ Ulleungdo SG14-1091 South Korea 8,455 - 8,367¹ U-3 Ulleung-3 SG14-1185 9,372 - 9,301¹ 1185 U-Oki/U-4 Ulleung-4/ Ulleung-Oki Ulleungdo South Korea 10,230 - 10,171¹ SG06-1288 SG06-1965 Md-fl Sambe-Midorigaoka fl Sambe SW lapan 19,631 - 19,471⁴ SG06-2650 AT Aira-Tanzawa Aira Southern Kyushu, Japan 30,174 - 30,078 4 SG14-3216 U-Ym Ulleung-Yamato Ulleungdo South Korea 40,332 - 39,816⁵ Changbaishan North Korea/China SG14-3380 B-Sg-42 Baegdusan-Suigetsu-42 42.750 - 42.323⁵ SW Japan SG06-3668 SI Sambe-Ikeda Sambe 46,566 - 46,162 4 50,311 - 49,637 4 SG06-3912 ACP4 Aso-Central Pumice 4 Aso Central Kyushu, Japan 86.4 ± 1.1 ⁴⁰Ar/³⁹Ar⁴ SG06-4963 Aso-4 Aso-4 Central Kyushu, Japan Aso

1) McLean et al. (2018); 2) Oppenhemier et al. (2017); Hakozaki et al., 2017; 3) Tsukui et al. (2006); 4) Smith et al. (2013); Albert et al. (2019); 5) This study

1245 483 Figure 4. (a) Glass shard concentrations (shards per gram of dry sediment) preserved 1246 484 in SG14 core E-35 and the positioning of cryptotephra SG14-3380. Concentration of 1247 485 low-resolution (5 cm) samples are shown in grey and high-resolution samples (1 cm) 1248 486 are overlain in blue. Shard counts for the other Holocene cryptotephra layers are 1249 487 published by McLean et al. (2018). (b) Photograph of visible tephra layer SG14-3216 in 1250 488 Lake Suigetsu Core G-09. 1251

- 1252 1253
- 1253
- 1255
- 1256
- 1257
- 1258 1259
- 1260

1262		
1263 1264	489	Two Holocene Changbaishan eruptions are preserved in the sediments: SG14-
1265 1266	490	1058 at 8,166 – 8,099 IntCal13 yrs BP (McLean et al., 2018); and SG06-0226,
1267 1268	491	which has been correlated to the AD 946 B-Tm tephra from the ME (McLean et
1269 1270	492	al., 2016; Hakozaki et al., 2017; Oppenheimer et al., 2017). Several other
1271 1272	493	widespread markers have been identified in the Holocene sediments, which are
1273 1274 1275	494	able to stratigraphically separate eruption events from Ulleungdo and
1275 1276 1277	495	Changbaishan (Figure 3; Table 1). SG14-1185 stratigraphically separates the
1278 1279	496	SG06-1288 and SG14-1091 Ulleungdo layers, and the K-Ah (7.3 ka; Kikai
1280 1281	497	volcano) and To-Cu (5.9 ka; Towada) tephra layers separate SG14-1091 and
1282 1283	498	SG14-0830 (McLean et al., 2018; Table 1; Figure 3).
1284 1285	499	
1286 1287	500	4.2. Major and trace element volcanic glass geochemistry
1288 1289	501	
1290 1291 1202	502	4.2.1. Ulleungdo glass geochemistry
1292 1293 1294	503	
1295 1296	504	The newly analysed glass of SG14-3216 geochemically overlaps with the other
1297 1298	505	previously identified Ulleungdo derived tephra layers preserved in the Suigetsu
1299 1300	506	tephrostratigraphy (e.g., SG06-1288, SG14-1091 and SG14-0803). Collectively
1301 1302	507	they straddle the phonolitic/trachytic boundary on the basis of the Total Alkalis
1303 1304	508	versus Silica (TAS) classification (Le Bas et al., 1986) and contain 60 – 63 wt.
1305 1306	509	$\%$ SiO_2, ca. 7 wt. $\%$ K_2O and 19 – 20 wt. $\%$ Al_2O_3 (Table 2; Figure 5). These
1307 1308	510	glasses are characterised by < 2.5 wt. % CaO and contain between 2.5 and 3.5
1309 1310 1311	511	wt. % FeO [⊤] .
1312 1313	512	
1314 1315		
1316		
1318		
1319 1320		22

When normalised to the primitive mantle (Sun and McDonough, 1989), we find the newly obtained trace element compositions of SG14-3216 and SG14-1091 show enrichments in the Light Rare Earth Elements (LREE) relative to the Heavy Rare Earth Elements (HREE) (La/Yb = 30 - 35 ppm) and significant depletions in Ba, Sr and Eu that reflect K-feldspar fractionation (Figure 6). The paucity of a depletion in Nb and Ta content within these volcanic glasses, when normalised to the primitive mantle, is inconsistent with subduction related volcanism (Figure 6).

1341 521

The four tephra layers with Ulleungdo compositions are difficult to distinguish using their major element glass compositions, but we find that the younger glasses of SG14-0803 are more elevated in CaO (by ca. 0.5 wt. %), compared to the early Holocene and SG14-3216 glass (Figure 5c). In addition, the alkaline glasses of SG14-3216 (59.5 – 62.5 wt. % SiO₂ and total alkalis [Na₂O + K₂O] of 11.6 – 14.9 wt. %) can be discriminated from SG14-1091 by larger feldspar-related depletions in Sr, Ba and Eu, that are normalised to primitive mantle compositions (Figure 6). The alkaline glass shards of SG14-0433 (Na₂O + K₂O = 10.4 - 11.0) are also likely to derive from Ulleungdo, but contain ca. 2.5 wt. % lower K₂O, and ca. 2 wt. % higher CaO compared to the older eruption events outlined here (Figure 5a; 5c).

1	381
1	382

Table 2. Average major, minor and trace element glass compositions of the Ulleungdo 534 and Changbaishan tephra layers in the Lake Suigetsu sediment core.

	SG14-0	433	SG14-0	0803	SG14-1	091	SG06-1	1288	SG14-3	3216
	McLean et a	al. 2018	McLean et	al. 2018	McLean et	al. 2018	Smith et a	l. 2011	this st	udy
wt. (%)	Mean	±1σ	Mean	±1σ	Mean	±1σ	Mean	±1σ	Mean	±1σ
SiO ₂	61.76	0.16	60.54	0.63	60.52	0.24	60.85	0.42	60.75	0.67
TiO	0.79	0.05	0.62	0.07	0.51	0.08	0.50	0.07	0.39	0.07
	16.66	0.05	19.48	0.30	19.87	0.22	19.55	0.17	19.85	0.28
	5 45	0.03	2 16	0.00	2 77	0.24	2 16	0.10	2 12	0.16
MnO	0.00	0.17	0.14	0.42	2.77	0.24	0.14	0.17	0.12	0.10
440	1.00	0.05	0.14	0.10	0.15	0.03	0.14	0.05	0.18	0.05
vigO	1.07	0.00	6.40	0.12	6.23	0.03	1.61	0.00	1.24	0.07
	2.57	0.10	1.00	0.00	1 49	0.40	4.51	0.17	7.04	0.12
Na ₂ O	2.57	0.00	1.77	0.33	1.40	0.14	0.51	0.77	7.20	0.70
N ₂ O	4.59	0.10	0.01	0.21	7.03	0.19	7.07	0.20	0.50	0.33
² ₂ O ₅	0.36	0.04	0.1/	0.05	0.05	0.04	0.10	0.03	0.05	0.03
1	0.23	0.03	0.21	0.04	0.40	0.08	0.24	0.03	0.37	0.10
analytical total	96.85		96.84		97.81		99.72		97.03	
1	8	226	19	1050	24	200	12		3/	
	Mel cap et	220	SG14-	2/ 2019	SG14-3	0380 udv				
ut (%)	Moon	ai. 2010	Moon	ai. 2018 ±1σ	Moon	-1σ				
	74.90	0.21	75.01	0.19	66.26	0.70				
10 ²	0.02	0.21	75.01	0.10	0.20	0.70				
	0.22	0.04	0.20	0.03	0.60	0.09				
1 ₂ O ₃	10.27	0.10	10.28	0.11	14.97	0.28				
eO'	4.05	0.14	3.89	0.10	5.12	0.14				
√lnO	0.08	0.05	0.07	0.03	0.15	0.04				
ИgO	0.02	0.03	0.01	0.01	0.25	0.06				
LaU	0.22	0.02	5.30	0.16	1.24	0.1/				
Na ₂ O	5.36	0.15	0.20	0.02	5.67	0.66				
K ₂ O	4.38	0.09	4.50	0.06	5.49	0.09				
2,0,2 I			0.04	0.04		0 00				
2~5	-	-	0.01	0.01	0.09	0.03				
Cl	0.50	0.03	0.52	0.01	0.09 0.16	0.03				
205 Cl Analytical total	0.50 96.19	0.03	0.01 0.52 95.54	0.01 0.02	0.09 0.16 95.90	0.03 0.02				
205 Cl Analytical total N	0.50 96.19 29	0.03	0.01 0.52 95.54 24	0.01	0.09 0.16 95.90 <u>14</u>	0.03				
CI Analytical total n	0.50 96.19 29	- 0.03 1226	0.01 0.52 95.54 24	0.01	0.09 0.16 95.90 14 SG14-1	0.03 0.02	SG14-3	3216	SG14-3	3380
Cl Analytical total n	0.50 96.19 29 SG06-0 this stu	- 0.03 1226 udy	0.01 0.52 95.54 24 SG14 : this st	0.01 0.02	0.09 0.16 95.90 14 SG14-1 this st	0.03 0.02	SG14-3	3216 udy	SG14-3 this st	3380 udy
ppm	- 0.50 96.19 29 SG06-0 this stu Mean	- 0.03 226 udy ±1σ	0.01 0.52 95.54 24 SG14-: this st	0.01 0.02 1058 tudy ±1σ	0.09 0.16 95.90 14 SG14-1 this st Mean	0.03 0.02 091 udy ±1σ	SG14-3 this st Mean	3216 udy ±1σ	SG14-3 this st	3380 udy ±1σ
205 Cl Analytical total 7 ppm Rb	0.50 96.19 29 SCO6-C this sta Mean 396.4	0.03 226 udy ±10 9.8	0.01 0.52 95.54 24 SG14-: this st Mean 383.9	0.01 0.02 1058 tudy ±1σ 23.9	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7	0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.03 0.03	SG14-3 <i>this st</i> Mean 195.4	3216 udy ±1σ 19.1	SG14-3 <i>this st</i> Mean 143.5	3380 udy ±1σ 8.9
QD Cl Analytical total 7 Qpm Qb Sb Sr	0.50 96.19 29 SCO6-C this sta Mean 396.4 2.2	- 0.03 226 udy ±10 9.8 0.6	0.01 0.52 95.54 24 SCI4: this st Mean 383.9 4.4	0.01 0.02 1058 tudy ±10 23.9 0.9	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5	0.03 0.02 0.09 0.09 0.09 0.02 0.02 0.02 0.02	SG14-3 <i>this st</i> Mean 195.4 14.3	3216 udy ±1σ 19.1 10.2	SG14-3 <i>this st</i> Mean 143.5 25.0	3380 udy ±1σ 8.9 24.4
Analytical total n ppm Rb Sr (0.50 96.19 29 SCO6-O this stu Mean 396.4 2.2 143.3	- 0.03 2226 udy ±10 9.8 0.6 3.9	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8	0.01 0.02 1058 1058 1058 1058 1058 1058 1058 1058	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5	0.03 0.02 0.02 0.09 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.02	SG14- <i>this st</i> Mean 195.4 14.3 26.0	3216 udy ±1σ 19.1 10.2 2.9	SG14-3 <i>this st</i> Mean 143.5 25.0 51.1	3380 udy ±1σ 8.9 24.4 3.9
Analytical total Analytical total 7 opm Rb Sr (2r	- 0.50 96.19 29 SCO6-C this str Mean 396.4 2.2 143.3 2415.2	- 0.03 2226 udy ±1σ 9.8 0.6 3.9 80.0	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5	0.01 0.02 1058 1058 1058 1058 1058 1058 23.9 0.9 11.4 189.8	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0	0.03 0.02 0.02 0.01 udy ±10 10.1 36.2 2.0 50.9	SG14- <i>this st</i> Mean 195.4 14.3 26.0 709.6	3216 udy ±1σ 19.1 10.2 2.9 104.3	SG14-3 <i>this st</i> Mean 143,5 25,0 51,1 741,4	3380 udy ±10 8.9 24.4 3.9 45.8
2015 Analytical total 71 Pppm Rb Sr Y Zr Nb	0.50 96.19 29 SG06C this sta 396.4 2.2 143.3 2415.2 286.1	- 0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9	0.01 0.52 95.54 24 SG14: this st Mean 383.9 4.4 149.8 2302.5 261.1	0.01 0.02 1058 1058 1058 23.9 0.9 11.4 189.8 21.1	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8	0.03 0.02 0091 udy ±1σ 10.1 36.2 2.0 50.9 11.5	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2	3216 udy ±1σ 19.1 10.2 2.9 104.3 21.2	SG14-3 <i>this st</i> Mean 143.5 25.0 51.1 741.4 97.0	3380 udy ±10 8.9 24.4 3.9 45.8 5.5
2015 Analytical total 7 ppm Rb Sr Y Zr Nb Ba	0.50 96.19 29 SG06-0 this stu Mean 396.4 2.2 143.3 2415.2 286.1 6.4	0.03 226 udy ±1σ 9.8 0.6 3.9 80.0 8.9 0.9	0.01 0.52 95.54 24 SG14- this st Mean 383.9 4.4 149.8 2302.5 261.1 6.6	0.01 0.02 1058 23.9 0.9 11.4 189.8 21.1 2.5	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1	0.03 0.02 0091 udy ±1 σ 10.1 36.2 2.0 50.9 11.5 83.5	SG14-3 <i>this st</i> Mean 195.4 14.3 26.0 709.6 175.2 16.3	3216 udy ±1σ 19.1 10.2 2.9 104.3 21.2 13.3	SG14-3 <i>this st</i> Mean 143.5 25.0 51.1 741.4 97.0 77.3	3380 udy ±1σ 24.4 3.9 45.8 5.5 57.3
205 Cl Analytical total <i>n</i> ppm Rb Sr Y Zr Nb Ba La	0.50 96.19 29 SG06-0 this sta Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5	0.01 0.52 95.54 24 SG14- 383.9 4.4 149.8 2302.5 261.1 6.6 125.2	0.01 0.02 1058 23.9 0.9 11.4 189.8 21.1 2.5 14.6	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 23.5 626.0 169.8 99.1 86.4	0.03 0.02 0.02 0.09 10.1 36.2 2.0 50.9 11.5 83.5 4.3	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2	3216 <i>udy</i> ±1o 19.1 10.2 2.9 104.3 21.2 13.3 9.0	SG14-3 <i>this st</i> Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4	3380 udy ±1σ 8.9 24.4 3.9 45.8 5.5 57.3 4.7
Analytical total n ppm Rb Sr Y Zr Nb Ba La Ce	0.50 96.19 29 SG06-0 this stu Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2	0.01 0.02 1058 23.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8	0.03 0.02 0.02 0.09 10.1 36.2 2.0 50.9 11.5 83.5 4.3 6.9 2.0	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7	3216 udy ±1σ 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 	SG14-3 this st Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3	3380 udy ±1σ 8.9 24.4 3.9 45.8 5.5 57.3 4.7 9.6
Abalytical total Analytical total n ppm Rb Sr Y Zr Zr Nb Ba La Ce Pr	0.50 96.19 29 SCOGC this stu Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 80.0 8.9 4.5 13.5 1.2 1.2	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 28.3 28.3	0.01 0.02 1058 104 ±10 23.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 (5)	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8	0.03 0.02 0.02 0.02 0.01 10.1 36.2 2.0 50.9 11.5 83.5 4.3 6.9 0.9 0.9	SG14- 3 <i>this</i> sti Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5	3216 <i>udy</i> ±1 <i>o</i> 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 .2 .2 .2 .2 .2 .2 .2 .2 .2	SG14-3 <i>this st</i> Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 (5.5)	3380 udy ±1σ 24.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 (1)
Cl Analytical total n ppm Rb Sr Y Zr Zr Nb Ba La Ce Pr Nd	- 0.50 96.19 29 SCOGEC this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 1.2 4.8 1.2 4.8	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 243.2 28.3 102.3	0.01 0.02 1058 1058 23.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 0.9	0.09 0.16 95.90 14 SG14-J this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3	0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02	SG14- <i>this</i> st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9	3216 udy ±1σ 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 2.7	SG14-3 <i>this st</i> Mean 143,5 25,0 51,1 741,4 97,0 77,3 76,4 154,3 17,1 65,6	3380 udy ±1σ 8.9 24.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4
Cl Analytical total n ppm Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Sm Sm	0.50 96.19 29 SCOGE this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 1.2 4.8 1.2 4.8 1.2 2.6	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 243.2 28.3 102.3 26.1	0.01 0.02 0.02 0.02 1058 1058 14.0 12.3 14.6 12.3 1.8 6.9 4.5 0.0 0.0 0.9 0.9 11.4 189.8 0.9 14.6 12.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 4.5	0.03 0.02 0.02 0.02 0.02 10.1 36.2 2.0 50.9 11.5 83.5 4.3 6.9 0.9 3.5 1.0 0 2.0 2.0 50.9 11.5 83.5 1.0 0.02	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4	3216 udy ±1σ 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.7	SG14-3 this st Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 2.2	3380 udy ±1σ 8.9 24.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2015 Cl Analytical total n ppm Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Eu Ca	- 0.50 96.19 29 SCOGC this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 247	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 13.5 13.5 13.5 12.4 4.8 1.2 4.8 1.2 4.8 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.01 0.52 95.54 24 SG14 this st Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 28.3 102.3 26.1 0.3 28.0	0.01 0.02 1058 107 23.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3 2.0	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0	0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5 4	3216 udy ±1σ 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.2 10.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	SG14-3 this st Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 0.6 12.7	3380 udy ±1σ 244.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 1.4 1.9 0.2 1.4 1.4 1.4 1.9 0.2 1.4 1.4 1.4 1.9 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
A 255 CI Analytical total n ppm Rb Sr Y Zr Nb Ba Zr Nb Ba La Ce Pr Nd Sm Eu Sm Eu Gd Dy	- 0.50 96.19 29 SCOGC this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.2	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 13.5 13.5 13.5 13.5 1.2 4.8 1.2 0.1 1.5 1.2 4.8 1.2 0.1 1.5 1.2 1.5 1.2 1.5 1.2 1.5 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.01 0.52 95.54 24 SG14: this st Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 243.2 243.2 243.2 243.2 26.1 0.3 26.1 0.3 25.5	0.01 0.02 0.02 0.02 0.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3 12.3 18 6.9 4.5 0.3 3.3 3.3 2.2	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 28	0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.02	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4	3216 <i>udy</i> ±10 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.2 1.9 0.4	SG14-3 this st Mean 143,5 25,0 51,1 741,4 97,0 77,3 76,4 154,3 17,1 65,6 12,9 0,6 10,7 9,2	3380 udy ±1σ 8.9 244.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
2	- 0.50 96.19 29 SGOGO this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.3 14.0	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 1.2 4.8 1.2 4.8 1.2 0.1 1.5 1.8 0.6	0.01 0.52 95.54 24 SG14: this st Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 243.2 243.2 243.2 243.2 243.2 26.1 0.3 26.1 0.3 28.0 25.5 14.0	0.01 0.02 0.02 0.02 0.02 1058 23.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3.3 2.2 1.4	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 3.8 2.5	0.03 0.02 0.09 0.09 10.1 36.2 2.0 50.9 11.5 83.5 4.3 6.9 0.9 3.5 1.0 0.3 1.4 0.6 0.5	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4 4.4 2.8	3216 udy ±1σ 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.2 1.9 0.6 0.4	SG14-3 this st Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 0.6 10.7 9.3 5.1	3380 udy ±1σ 8.9 24.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.9 0.7 0.7 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
C Analytical total total Analytical total total Analytical total total total Analytical total total total total Analytical total to	- 0.50 96.19 29 SGOGC this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.3 14.0 11.4	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 1.2 4.8 1.2 0.1 1.5 1.8 0.6 0.5	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 28.3 102.3 26.1 0.3 28.0 25.5 14.0 11 2	0.01 0.02 1058 23.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3.3 2.2 1.6 2.0	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 3.8 2.5 2.4	0.03 0.02 0.02 0.02 0.02 10.1 36.2 2.0 50.9 11.5 83.5 4.3 6.9 0.9 3.5 1.0 0.3 1.4 0.6 0.5 0.4	SG14- 3 <i>this</i> st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4 4.4 2.8 3.1	3216 <i>udy</i> ±10 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.7 0.2 1.9 0.6 0.6 0.6 0.7	SG14-3 this st Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 0.6 10.7 9.3 5.1 4.3	3380 udy ±10 8.9 24.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.9 0.7 0.7 0.6 0.7 0.7 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
C Analytical total total Analytical total total Analytical total total total Analytical total total total total Analytical total to	- 0.50 96.19 29 SCOGC this sub Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.3 14.0 11.4 55.6	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 1.2 4.8 1.2 4.8 1.2 0.1 1.5 1.8 0.6 0.5 2.3	0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 28.3 102.3 26.1 0.3 28.0 25.5 14.0 11.2 55.6	0.01 0.02 1058 104 1239 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3.3 2.2 1.6 2.0 5.4	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 3.8 2.5 2.6 (12.0)	0.03 0.02 0.02 0.02 0.02 0.0 0.09 11.5 83.5 4.3 6.9 0.9 3.5 1.0 0.3 1.4 0.6 0.5 0.4 1.1	SG14- 3 <i>this</i> st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4 4.4 2.8 3.1 13.4	3216 udy ±10 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.7 0.2 1.9 0.6 0.6 0.7 2.1	SG14-3 <i>this st</i> Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 0.6 10.7 9.3 5.1 4.3 1.4 9.3 16.9	3380 udy ±10 24.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.9 0.7 0.6 1.2 1.4 0.9 0.7 0.6 1.2 1.4 0.9 0.7 0.6 1.2 0.4 0.9 0.2 0.4 0.9 0.7 0.4 0.7 0.4 0.9 0.7 0.4 0.7 0.7 0.4 0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Cl Analytical total n ppm Rb Sr Y Zr Nb Ba La Ce Pr Nd Sa La Ce Pr Sm Eu Gd Dy Er Yb Hf Ta	- 0.50 96.19 29 SCOGEC this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.3 14.0 11.4 55.6 17.0	- 0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 1.2 4.8 1.2 4.8 1.2 4.8 1.2 4.8 1.2 4.8 1.2 4.8 0.6 0.9 1.5 1.8 0.6 0.5 2.3 1.1	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 28.3 102.3 26.1 0.3 28.0 25.5 14.0 11.2 55.6 16.4	0.01 0.02 1058 udy ±10 23.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3.3 2.2 1.6 2.0 5.4 1.9	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 3.8 2.5 2.6 (1.5) 5.0 3.8 2.5 2.6 (1.5) 5.0 3.8 2.5 2.6 (1.5) 5.0 3.8 2.5 2.6 (1.5) 5.0 3.8 2.5 2.6 (1.5) 5.0 3.8 2.5 2.6 (1.5) 5.0 3.8 2.5 3.8 2.5 5.0 3.8 2.5 5.0 3.8 2.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.0 3.8 3.5 5.0 3.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 3.8 3.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.09 11.5 83.5 4.3 6.9 0.9 3.5 1.00 0.3 1.4 0.6 0.5 0.4 1.1 0.7	SG14- 3 <i>this st</i> Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4 4.4 2.8 3.1 13.4 9,7	3216 udy ±1σ 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.2 1.9 0.6 0.6 0.7 2.1 1.1	SG14-3 <i>this</i> st Mean 143,5 25,0 51,1 741,4 97,0 77,3 76,4 154,3 17,1 65,6 10,7 9,3 5,1 4,3 16,9 5,6	3380 udy ±1σ 8.9 24.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.9 0.7 0.6 1.2 0.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
2	- 0.50 96.19 29 SCOGEC this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.3 14.0 11.4 55.6 17.0 49.9	- 0.03 226 udy ±1σ 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 1.2 4.8 1.2 4.8 1.2 4.8 1.2 0.1 1.5 1.8 0.6 0.5 2.3 1.1 3.1	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 243.2 243.2 243.2 243.3 102.3 26.1 0.3 28.0 25.5 14.0 11.2 55.6 16.4 49.6	0.01 0.02 0.02 0.02 0.02 1058 1058 1058 23.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3.3 2.2 1.6 2.0 5.4 1.9 5.0	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 3.8 2.5 2.6 12.0 9.8 23.5	0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4 4.4 2.8 3.1 13.4 9.7 25.2	3216 udy ±1σ 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.2 1.9 0.6 0.6 0.7 2.1 1.1 3.2	SG14-3 <i>this st</i> Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 0.6 10.7 9.3 5.1 4.3 16.9 5.6 14.1	3380 udy ±1σ 8.9 24.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.9 0.7 0.6 1.2 0.5 1.1
Cl Analytical total n ppm Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Eu Gd Dy Er Yb Hf Ta Th U	- 0.50 96.19 29 SCOGE this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.3 14.0 11.4 55.6 17.0 9.9 10.8	- 0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 1.2 4.8 1.2 4.8 1.2 0.1 1.5 1.8 0.6 0.5 2.3 1.1 0.7	0.01 0.52 95.54 24 SG14: this st Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 243.2 243.2 243.3 102.3 26.1 0.3 26.1 0.3 28.0 25.5 14.0 11.2 55.6 16.4 49.6 9.7	0.01 0.02 0.02 0.02 1058 140 140 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3.3 2.2 1.6 2.0 5.4 1.9 5.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 3.8 2.5 2.6 12.0 9.8 23.5 4.8	0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4 4.4 2.8 3.1 13.4 9.7 25.2 5.3	3216 udy ±1σ 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.2 1.9 0.6 0.6 0.7 2.1 1.1 3.2 0.9 0.6 0.6 0.7 2.1 0.6 0.7 0.2 0.9 0.6 0.6 0.7 0.2 0.9 0.6 0.6 0.7 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	SG14-3 this st Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 0.6 10.7 9.3 5.1 4.3 16.9 5.6 14.1 2.8	3380 udy ±1σ 8.9 244.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.9 0.7 0.6 1.2 0.5 1.1 0.3
Cl Analytical total n ppm Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Eu Ce Pr Nd Sm Eu Gd Dy Er Yb Hf Ta Ta Th U V/Th	- 0.50 96.19 29 SGOGC this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.3 14.0 11.4 55.6 17.0 49.9 10.8 2.9	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 13.5 13.5 13.5 13.5 1.2 4.8 1.2 0.1 1.5 1.8 0.6 0.5 2.3 1.1 3.1 0.7 0.2	0.01 0.52 95.54 24 SG14: this st Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 243.2 28.3 102.3 26.1 0.3 26.1 0.3 26.1 0.3 26.0 14.0 11.2 55.6 16.4 49.6 9.7 3.0	0.01 0.02 0.02 0.02 1058 140 1239 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3.3 2.2 1.6 2.0 5.4 1.9 5.0 0.9 0.9 0.3 0.3 0.9 0.9 0.3 0.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 3.8 2.5 2.6 12.0 9.8 23.5 4.8 1.0	0.03 0.02	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4 4.4 2.8 3.1 13.4 9.7 25.2 5.3 1.0	3216 udy ±1σ 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.2 1.9 0.6 0.6 0.7 2.1 1.1 3.2 0.9 0.4	SG14-3 this st Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 0.6 10.7 9.3 5.1 4.3 16.9 5.6 14.1 2.8 3.6	3380 udy ±10 244.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.9 0.7 0.6 1.2 0.5 1.1 0.3 0.2
Cl Analytical total n Ppm Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Eu Gd Dy Er Yb Hf Ta Th U V/Th Zr/Th	- 0.50 96.19 29 SGOGC this str Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.3 14.0 11.4 55.6 17.0 49.9 10.8 2.9 48.5	- 0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 1.2 4.8 1.2 0.1 1.5 1.8 0.6 0.5 2.3 1.1 3.1 0.7 0.2 2.5	0.01 0.52 95.54 24 SG14: this st Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 28.3 102.3 26.1 0.3 28.0 102.5 14.0 11.2 55.6 16.4 49.6 9.7 3.0 46.5	0.01 0.02 0.02 0.02 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3.3 2.2 1.6 2.0 5.4 1.9 5.0 0.9 0.1 2.0 0.9 0.1 2.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 3.8 2.5 2.6 12.0 9.8 23.5 4.8 1.20 9.8 23.5 2.6 12.0 9.8 23.5 2.6 12.0 9.8 23.5 2.6 12.0 9.8 23.5 2.6 12.0 2.5 2.6 1.5 5.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.04 1.11 0.7 1.07 0.07 0.02 0	SG14-3 this st Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4 4.4 2.8 3.1 13.4 9.7 25.2 5.3 1.0 28.1	3216 udy ±10 19.1 10.2 2.9 104.3 21.2 13.3 9.00 15.7 1.2 4.7 0.7 0.2 1.9 0.6 0.6 0.6 0.7 2.1 1.1 3.2 0.9 0.1 2.3	SG14-3 this st Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 0.6 10.7 9.3 5.1 4.3 16.9 5.6 14.1 2.8 3.6 5.2.6	3380 udy ±10 8.9 244.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.9 0.7 0.6 1.2 0.5 1.1 0.3 0.2 3.3
Cl Analytical total n Ppm Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Eu Gd Dy Er Yb Hf Ta Ta Th J J Y/Th Zr/Th La/Yb	- 0.50 96.19 29 SCOGEC this sub Mean 396.4 2.2 143.3 2415.2 286.1 6.4 138.9 286.9 31.9 115.8 27.6 0.3 26.7 25.3 14.0 11.4 55.6 17.0 49.9 10.8 2.9 48.5 2.9 48.5 12.1	0.03 226 udy ±10 9.8 0.6 3.9 80.0 8.9 0.9 4.5 13.5 1.2 4.8 1.2 0.1 1.5 1.8 0.6 0.5 2.3 1.1 3.1 0.7 0.2 2.5 0.4	0.01 0.52 95.54 24 SG14: Mean 383.9 4.4 149.8 2302.5 261.1 6.6 125.2 243.2 28.3 102.3 26.1 0.3 28.0 25.5 14.0 11.2 55.6 16.4 49.6 9.7 3.0 46.5 11.3	0.01 0.02 0.02 1058 23.9 0.9 11.4 189.8 21.1 2.5 14.6 12.3 1.8 6.9 4.5 0.3 3.3 2.2 1.6 2.0 5.4 1.9 5.0 0.9 0.1 2.0 1.9 5.0 0.9 0.1 2.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0.09 0.16 95.90 14 SG14-1 this st Mean 188.7 59.5 23.5 626.0 169.8 99.1 86.4 144.8 12.8 39.3 5.6 1.5 5.0 3.8 2.5 2.6 12.0 9.8 23.5 4.8 1.0 9.8 23.5 4.8 1.0 9.8 23.5 4.8 1.0 9.8 23.5 4.8 1.0 9.8 23.5 4.8 1.0 9.8 23.5 4.8 1.5 5.0 3.8 2.5 4.8 3.0 3.5 4.8 3.0 3.5 4.8 3.0 3.5 4.8 3.0 3.5 4.8 3.0 3.5 4.8 3.0 3.5 4.8 3.0 3.5 4.8 3.0 3.5 4.8 3.0 3.5 4.8 3.0 3.5 4.8 3.4 4.8 3.4 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	0.03 0.02 0.02 0.02 0.02 0.02 10.1 36.2 2.0 50.9 11.5 83.5 4.3 6.9 0.9 3.5 1.0 0.3 1.4 0.6 0.5 0.4 1.1 0.7 1.9 0.5 1.1 27.5 6.5	SG14- <i>this</i> sti Mean 195.4 14.3 26.0 709.6 175.2 16.3 98.2 161.7 14.5 43.9 6.4 0.6 5.4 4.4 2.8 3.1 13.4 9.7 25.2 5.3 1.0 28.1 32.7	3216 udy ±10 19.1 10.2 2.9 104.3 21.2 13.3 9.0 15.7 1.2 4.7 0.7 0.2 1.9 0.6 0.6 0.6 0.7 2.1 1.1 3.2 0.9 0.1 1.1 3.2 0.9 0.4 3.2 0.9 0.4 0.7 0.7 0.7 0.2 1.9 0.6 0.6 0.7 0.7 0.7 0.2 1.9 0.4 0.7 0.7 0.7 0.2 1.9 0.4 0.7 0.7 0.7 0.2 1.9 0.4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	SG14-3 this st Mean 143.5 25.0 51.1 741.4 97.0 77.3 76.4 154.3 17.1 65.6 12.9 0.6 10.7 9.3 5.1 4.3 16.9 5.6 14.1 2.8 5.6 14.1 2.8 3.6 52.6 18.0	3380 udy ±1σ 24.4 3.9 45.8 5.5 57.3 4.7 9.6 1.1 6.4 1.9 0.2 1.4 0.9 0.7 0.6 1.2 0.5 1.1 0.3 0.2 3.3 2.4 4 3.9 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

(FeO^T = all Fe reported as FeO). Raw dataset and secondary standards are included in the Supplementary Material.

¹⁴²⁶ 535

1427 536

normalised to primitive mantle compositions, all glasses are enriched in LREE relative to HREE, with La/Yb ratios higher in those of SG14-3880, relative to SG14-1058 and SG06-0226 (Table 2) and show pronounced negative feldspar-related anomalies in Ba, Sr and Eu (Figure 6).

The newly analysed glasses of SG14-3380 are exclusively trachytic (65.4 -67.9 wt. % SiO₂, 14.4 – 15.5 wt. % Al₂O₃ and Na₂O + K₂O = 8.7 – 11.7 wt. %) and are compositionally similar to the single trachytic analysis from SG06-0226. Trace element compositions for SG14-3380 are homogenous with 14.1 ± 1.1 ppm Th, 144 ± 9.0 ppm Rb, and 51 ± 4 ppm Y (Table 2). Unfortunately, no trace elements could be obtained for the trachytic end-member of SG06-0226 for further comparison with SG14-3380.

1589 570

As discussed by McLean et al. (2018), the rhyolitic SG06-0226 glass compositions overlap with SG14-1058 for all major elements (Table 2; Figure 5). Both tephras contain glass compositions that are geochemically homogenous, with ca. 75 wt. % SiO₂, 10.3 wt. % Al₂O₃ and ca. 4.4 wt. % K₂O, and are characterised by very low CaO concentrations (< 0.3 wt. %). The newly generated trace element compositions of SG14-0226 and SG06-1058 show significant overlap, and are more enriched in incompatible elements (e.g., Th, Ta and Y), whilst depleted in compatible elements (e.g., Sr, Ba, and Eu) relative to the trachytic glass of SG14-3380 (Table 2; Figure 6b). SG06-0226 and SG14-1058 have similar mantle normalised profiles and levels of incompatible trace element enrichment (Figure 6). Glasses of both tephra layers have greater feldspar-related depletions in Ba, Sr and Eu relative to SG14-3380. The SG06-0226 glasses show a significant depletion in Nb, which is not observed in

- 1623
1624584SG14-1058 and SG14-3380, which given the intraplate setting of the volcano1625
1626585may relate to late stage, high-level fractionation processes.

1632 588 **5. Review of Ulleungdo and Changbaishan eruption framework**

1634 589

Here, the distal ash deposits erupted from Ulleungdo and Changbaishan are outlined and reviewed using the relative stratigraphy, geochemical glass compositions and eruption chronology. Published occurrences are centred on the Lake Suigetsu tephrostratigraphy to provide an integrated framework that is constrained by numerous widespread ash layers erupted from Japanese volcanoes (Figure 7). There are no pre-50 ka visible ash layers in Lake Suigetsu with Ulleungdo or Changbaishan compositions, but we should highlight that cryptotephra extraction techniques have not yet been carried out on these older sediments. It is possible that there are other pre-50 ka Ulleungdo or Changbaishan layers preserved cryptically in Lake Suigetsu.

5.1. Ulleungdo eruption history

Ulleungdo has erupted explosively at least five times over the last 86 kyrs (since the eruption of the Aso-4 tephra) with associated widespread ash fall events recognised by the ca. 60 – 61 ka U-Sado tephra (Lim et al., 2013); the ca. 40.1 ka U-Ym tephra (*this study*); the ca. 10 ka U-Oki/U-4 tephra (Smith et al., 2011; 2013); ca. 8.4 ka U-3 tephra (McLean et al., 2018); and the ca. 5.7 ka U-2 tephra (McLean et al., 2018). The known distal deposits of these events and possible proximal correlations are illustrated in Figure 7 and discussed further below.

5.1.1. Post 86 ka (Aso-4) Ulleungdo eruptions

Distal ash layers erupted from Ulleungdo were identified stratigraphically below the AT tephra (30 ka) in marine sediments obtained from the Oki ridge (Arai et al., 1981) and Yamato Basin (Ikehara et al., 2004). These pre-AT Ulleungdo tephra layers were originally considered to be from a single eruption, but the age was controversial. However, Chun et al. (2007) clarified the issue by identifying two separate alkaline ash deposits in marine core MD01-2407 (Figure 1), which they named SKPI and SKPII, and were dated to 40 – 41 ka and 60 – 61 ka, respectively, based on correlations with the regional-scale thinly-laminated marine stratigraphy (Tada, 1999; Chun et al., 2007).

Figure 8. Glass shard major and trace element compositions of Ulleungdo (SG14-0803; SG14-1091; SG06-1288; SG14-3216) and Changbaishan (SG06-0226; SG14-1058; SG14-3380) tephra layers preserved in the Lake Suigetsu archive, compared to other proximal (Chen et al., 2016; Sun et al., 2017, 2018) and distal occurrences (Ikehara et al., 2004; Lim et al., 2013; Derkachev et al. (in press). Error bars represent 2 x standard deviations of repeat analysis of the StHs6/80-G MPI-DING reference glass analyses, error bars for (d) are smaller than the data symbols.

Lim et al. (2013) also identified two equivalent cryptotephra layers in several other marine cores northeast of Ulleungdo (e.g., GH86-2-N, GH89-2-25, GH89-2-26 and GH89-2-28), which were stratigraphically positioned between the rhyolitic Aso-4 and AT tephra. These distal tephra layers were therein named the Ulleung-Yamato (U-Ym) and Ulleung-Sado-Oki (U-Sado), and are considered to be equivalent to SKP-I and SKP-II, respectively (Figure 7).

 The Lake Suigetsu sediments verify that an ash fall event from Ulleungdo occurred at 40,332 - 39,816 IntCal13 yrs BP (95.4 % confidence interval). This 1 mm thick ash layer (SG14-3216; Figure 4) contains volcanic glass that compositionally overlaps the other Ulleungdo-derived tephra deposits preserved in the Suigetsu sequence (e.g. SG06-1288, SG14-1091), and other distal and proximal occurrences of the U-Oki tephra (Figure 5; Figure 8; Furuta et al., 1986; Nagahashi et al., 2004; Chun et al., 2007; Park et al., 2003, 2007).

1893 659

Although grain-specific glass compositional datasets for the U-Ym tephra preserved in the Sea of Japan have not been published for comparison, the broad geochemical and chronological data and the stratigraphic position is consistent with SG14-3216, meaning this ash must also correlate to the same eruption of Ulleungdo. The Suigetsu-derived deposit age of 40,332 - 39,816 IntCal13 yrs BP (95.4 % confidence interval) provides the most precise eruption age, and this date can now be imported into other site-specific age models that contain this marker.

No other distal ash occurrences have been reported that are chronologically or geochemically consistent with the ca. 19 ka eruption (proximal unit N-5; Kim et al., 2014), suggesting that this eruption of Ulleungdo was probably not widespread.

1934 674 5.1.2. Holocene Ulleungdo eruptions

1936 675

As previously outlined, the largest known Plinian eruption from Ulleungdo generated the U-Oki tephra layer that is dated to 10,230 - 10,171 IntCal13 yrs BP (95.4 % confidence interval; Smith et al., 2011, 2013). The U-Oki ash is found in several high-resolution sedimentary records in Japan, including Lake Biwa (BT-4; Nagahashi et al., 2004) and Lake Suigetsu (SG06-1288; Smith et al., 2011) (Figure 7). This U-Oki tephra is the only distal tephra that has been correlated to proximal deposits on Ulleungdo, and equates to the proximal U-4 unit of Shiihara et al. (2011).

684 1956

Lake Suigetsu tephra layers SG14-1091 (ca. 8.4 ka) and SG14-0803 (ca. 5.7 ka) overlay the U-Oki tephra and are considered distal equivalents of proximal deposits U-3 and U-2, respectively, due to their close agreement to the proximal radiocarbon dates of soils between fall units (Okuno et al., 2010). Furthermore, the K-Ah tephra is stratigraphically positioned between the U-3 (SG14-1091) and U-2 (SG14-0803) deposits (Shiihara et al., 2011). Distal equivalents of the U-3 eruption have been reported in the Sea of Japan (TRG1 sediment core; Domitsu et al., 2002), Lake Biwa (Nagahashi et al., 2004), and close to Hakusan volcano in central Honshu (Higashino et al., 2005). In comparison,

1983
1984694SG14-0803 is the only known distal equivalent of the U-2 tephra, indicating that1985
1986695it was either a lower magnitude event or the eruption plume was dispersed in a1987
1988696different direction.

The proximal deposits of the youngest U-1 eruption of Ulleungdo suggest it was a small strombolian-type eruption with a lava dome extrusion (Kim et al., 2014). Whole rock trace element data reported for this youngest event have a distinct tephriphonolite composition (Brenna et al., 2014). Similarly, distal SG14-0433 glass compositions are distinct from those of other Ulleungdo derived tephras in Suigetsu. Unfortunately, the lack of proximal glass chemistry for the U-1 unit means that this correlation cannot be confirmed but it is likely that the SG14-0433 layer at 2,737 - 2,620 IntCal13 yrs BP (95.4 % confidence interval) correlates to the U-1 eruption.

5.2. Changbaishan eruption history

709 2016

The newly identified Changbaishan-derived tephra layer outlined here, in addition to the previously recognised layers, indicate that at least eight explosive eruptions have produced widespread ash dispersals over the last 86 kyrs. These include the: ca. 85.8 ka B-Ym tephra (Lim et al., 2013); ca. 67.6 ka B-Sado tephra (Lim et al., 2013); ca. 50.5 ka B-J tephra (Ikehara et al., 2014; Lim et al., 2013); ca. 42.5 ka B-Sg-42 tephra (this study), ca. 38 ka B-Un1 tephra (Derkachev et al., in press), ca. 25 ka B-V tephra (Machida and Arai, 2003); ca. 8.1 ka B-Sq-08 tephra (McLean et al., 2018); and AD 946 B-Tm tephra associated with the ME (McLean et al., 2016; Hakozaki et al., 2017;

2041 2042		
2043 2044	719	Oppenheimer et al., 2017). All the known distal ash deposits associated with
2045 2046	720	eruptions at Changbaishan and possible correlations to proximal units on the
2047 2048	721	volcano are summarised in Figure 7 and are discussed below.
2049 2050	722	
2051 2052 2053	723	5.2.1. Post 86 ka (Aso-4) Changbaishan eruptions
2054	724	
2055 2056 2057	725	To date, at least four individual tephra layers originating from Changbaishan
2058 2059	726	have been recognised in marine cores stratigraphically positioned between the
2060 2061	727	Aso-4 and AT tephra layers (Figure 7). The two oldest, Baegdusan-Yamato
2062 2063	728	Basin (B-Ym; ca. 85.8 ka) and Baegdusan-Sado-Oki (B-Sado; ca. 67.6 ka)
2064 2065	729	tephras, have been identified as cryptotephra horizons in both the GH89-2-26
2066 2067	730	and GH89-2-28 marine cores (Figure 7; Lim et al., 2013). Lim et al. (2013)
2068 2069	731	report that the B-Ym and B-Sado glass shards are trachytic in composition
2070 2071	732	(Figure 8). More recently, Derkachev et al. (in press) also identify visible
2072 2073	733	deposits in several marine cores across the Yamato and Pervenets Rise (e.g.,
2074 2075 2076	734	cores Lv53-25, Lv53-20, Lv53-27, and Lv53-29) that they correlate to the B-
2070 2077 2078	735	Sado tephra. The constructed age models for these marine cores suggest an
2079 2080	736	eruption age ca. 71 ka (Derkachev et al., in press).
2081 2082	737	
2083 2084	738	The Baegdusan-Japan (B-J) tephra is found between Ulleungdo U-Ym and U-
0005		

Sado tephra layers (Figure 7), and estimated to have been erupted at ca. 50 ka based on correlations with the regional-scale thinly laminated layer stratigraphy (Ikehara et al., 2004; Lim et al., 2013; Derkachev et al., in press). Ikehara et al. (2004) and Lim et al. (2013) report a homogenous rhyolitic composition for the B-J tephra, with ca. 71.2 wt. % SiO₂, ca. 12.0 wt. % Al₂O₃,

- and total alkalis of 11.1 wt. % (Figure 8). It contrasts with the exclusively
 trachytic glass compositions of the older ca. 67.6 ka B-Sado tephra (Lim et al.,
 746 2013).

Derkachev et al. (in press) report a 5 mm thick volcanic ash layer in a sequence (Lv53-23 at 211 cm) from the Yamato Rise, about 270 km SE of Changbaishan, in the Sea of Japan. This deposit is therein named the Baegdusan-Unknown (B-Un1) tephra and represents another explosive event dated to around 38.3 ka. The glass chemistry of this layer is somewhat distinct, containing ca. 73.9 wt. %, ca. 13.5 wt. % AI_2O_3 , and total alkalis of 8.2 wt. %

754

The Lake Suigetsu sediments also provide evidence of another explosive eruption of Changbaishan chronologically occurring between the B-J and B-Un1 event. A cryptotephra layer (SG14-3380) is found ca. 1.6 m below the U-Ym tephra (SG14-3216) and this depth corresponds to a date of 42,750 - 42,323 IntCal13 yrs BP (95.4 % confidence interval). The glass compositions of SG14-3380 are exclusively trachytic and geochemically overlap with proximal units assigned to the late phase of the ME (e.g., NS-4 and NS-5 proximal deposits; Sun et al., 2017) (Figure 8) and other distal occurrences of the trachytic end member of the B-Tm ash (e.g., Okuno et al., 2011; Hughes et al., 2013; Sun et al., 2015; Chen et al., 2016). SG14-3380 does not geochemically overlap with the reported composition of the ca. 38 ka B-Un1 tephra reported in the Yamato Rise (Derkachev et al., in press), or the ca. 50.5 ka B-J tephra (Ikehara et al., 2004; Lim et al., 2013) clearly indicating that they represent separate eruptions of Changbaishan. Here, we name the Suigetsu distal ash of this Changbaishan

- 2163
 2164
 2165
 2165
 2166
 2167
 2168
 771
 10cality.
- 2170 772

A post-AT distal tephra named the Baegdusan-Vladivostok (B-V) ash was found in the Primory regions of Russia, and in the north-eastern part of the Japan Sea (Figure 1; Machida and Arai, 2003; Ikehara, 2003; Derkachev et al., in press). The eruption age is estimated to ca. 29 ka (Derkachev et al., in press).

777 2181

2182
21837785.2.2. Holocene Changbaishan eruptions

779

An eruption from Changbaishan was identified in Lake Suigetsu (SG14-1058) at 8,166 – 8,099 IntCal13 yrs BP (95.4 % confidence interval; McLean et al., 2018) and was the first known discovery of a large early Holocene eruption from this volcano. A visible patchy grey peralkaline tephra has since been identified in Lake Yuanchi, located ca. 30 km east of Changbaishan in China, which is dated to a similar age as the Suigetsu layer, 8,831 - 8,100 IntCal13 yrs BP (95.4 % confidence interval; Sun et al., 2018). The major element glass compositions of this Yuanchi tephra broadly overlap with those of SG14-1058 (Figure 8c), although some offsets, which are close to instrumental/analytical uncertainty, are observed. Sun et al. (2018) also suggest the Suigetsu SG14-1058 and Yuanchi tephra are distal deposits from the eruption that produced the Qixiangzhan comendite lava flow, but it is not known if there was an explosive phase associated with this eruption, and the stratigraphic relationship between the Qixiangzhan comendite and the explosive pre-ME fall deposits is not

known. Furthermore, the chronological uncertainty on ⁴⁰Ar/³⁹Ar ages for the Qixiangzhan comendite mean that it could be a separate eruption (e.g., Singer et al., 2014; Yang et al., 2014). When normalised to mantle concentrations, we find that SG14-1058 only shows a minor depletion in Nb, unlike SG06-0226 (B-Tm ash) and C-3 unit (Chen et al., 2016), which could help identify the proximal deposit. We suggest that the distal ash erupted from Changbaishan at ca. 8.1 ka (e.g., SG14-1508) is named Baegdusan-Suigetsu-08 (B-Sg-08).

801 2239

No distal ash deposits have been identified that geochemically or chronologically overlap with the pre-ME proximal deposits of NS-4 and NS-5 that are dated to ca. 4 - 5 ka (Sun et al., 2017). Similarly, even in the high-resolution archives in northern Japan (e.g., Lake Kushu; Chen et al., 2019) there are no clear isochrons representing post-ME ash eruptions of Changbaishan.

808 2254

2255 809 **6. Conclusions** 2256

2258 810

Distal records can provide useful information on past eruption activity from volcanoes whose deposits are inaccessible for various reasons, e.g., burial or deposition into dynamic ocean environments. The new occurrences reported here and considered with other known distal alkali-rich ash units found in marine and lacustrine cores (spanning the last 86 kyrs) in the East Asian/Pacific region provide an improved eruption framework for intraplate volcanoes, Ulleungdo and Changbaishan. This framework shows that there are numerous

2283
2284
2284
2285
2286
819 recorded in the geological record.

Ulleungdo has erupted explosively at least five times over the last 86 kyrs (since the deposition of the Aso-4 tephra) and these are: the 60 - 61 ka U-Sado tephra (Lim et al., 2013); the ca. 40.1 ka U-Ym tephra (this study); the ca. 10 ka U-Oki/U-4 tephra (Smith et al., 2011; 2013); ca. 8.4 ka tephra (U-3; McLean et al., 2018); and the ca. 5.7 ka U-2 tephra (McLean et al., 2018). Furthermore, it is likely that a younger eruption from Ulleungdo occurred ca. 2.7 ka, but chemical analyses of proximal deposits are required to confirm the correlation. This age would be consistent with an eruption repose interval of <3 ka throughout the Holocene.

2309 830

The new Changbaishan-derived tephra layers identified in the Suigetsu sediments indicate that at least eight explosive eruptions have produced significant ash dispersals over the last 86 kyrs which include the: ca. 85.8 ka B-Ym (Lim et al., 2013); ca. 70 ka B-Sado (Lim et al., 2013; Derkachev et al., in press); ca. 50.5 ka B-J tephra (Ikehara et al., 2014; Lim et al., 2013; Derkachev et al., in press); ca. 42.5 ka B-Sg-42 (this study), ca. 38 ka B-Un1 (Derkachev et al., in press), ca. 25 ka B-V (Machida and Arai, 2003); ca. 8.1 ka B-Sq-08 (McLean et al., 2018); and AD 946 B-Tm tephra associated with the ME (Hakozaki et al., 2017; Oppenheimer et al., 2017). It is possible that additional ash fall events will be discovered in other distal records in the future, as there are some proximal units near Changbaishan (e.g., the compositionally distinct

NS-4 and NS-5 layers; Sun et al., 2017) that have not yet been correlated todistal markers.

Even though Lake Suigetsu is located ca. 500 km E of Ulleungdo and ca. 1000 km SSE of Changbaishan (i.e., not downwind of the current prevailing winds), tephra from these volcanoes is clearly preserved in the sediments. The eruptions responsible for the B-Sg-42 and B-Sg-08 distal tephra must have been large eruption events (i.e., greater than VEI 5-6), based on the shard concentrations preserved in Suigetsu (>18,000 shards per gram of dried sediment). Unfortunately, it is not possible to get better constraints on volume and magnitude of these events given that they have not yet been found as visible layers and have not been identified in multiple locations. The precise ages provided in this paper from the Lake Suigetsu chronology may help locate these deposits in other records, which may provide more information about the eruptions and the dispersal of the events. Critically, these tephra occurrences demonstrate that both Ulleungdo and Changbaishan have been more active than previously thought, and the ash plumes from these explosive eruptions were widespread.

861

2386 862 Acknowledgements

The SG14 (formally 'Fukui-SG14') sediment coring campaign was funded by the Fukui Prefectural government, and the coring was conducted by the team of Seibushisui Co. Ltd. Japan, led by Mr. Atsumi Kitamura. KAKENHI grants by MEXT, Japan (15H021443 and 18H03744 to TN) as well as grants by Casio

Science Promotion Foundation were used to purchase laboratory equipment and consumables during the project. Trace element analysis was funded by the Japan Society for the Promotion of Science (JSPS) 2018 Summer Program. DM was funded by NERC (grant: NE/L002612/1) and part of the Environmental Research Doctoral Training Program at the University of Oxford. PGA and RAS were supported by Early Career Fellowships from the Leverhulme Trust (grant: ECF-2014-438 and ECF-2015-396). Geochemical bi-plots were generated using the RESET plot function (https://c14.arch.ox.ac.uk). We would like to thank the two anonymous reviewers for their feedback on an earlier version of the manuscript. References Albert, P. G., Tomlinson, E. L., Smith, V. C., Di Roberto, A., Todman, A., Rosi, M., Marani, M., Muller, W. and Menzies, M. A. 2012. Marine-continental tephra correlations: volcanic glass geochemistry from the Marsili Basin and the Aeolian Islands, Southern Tyrrhenian Sea, Italy. Journal of Volcanology and Geothermal Research, 229: 74-94 Albert, P. G., Tomlinson, E. L., Lane, C. S., Wulf, S., Smith, V. C., Coltelli, M., Keller, J., Castro, D. L., Manning, C. J., Müller, W. and Menzies, M. A. 2013. Late glacial explosive activity on Mount Etna: Implications for proximal-distal tephra correlations and the synchronisation of Mediterranean archives. Journal of Volcanology and Geothermal Research, 265: 9-26 Albert, P. G., Smith, V. C., Suzuki, T., Tomlinson, E., Nakagawa, T., Yamada, K., McLean, D., Staff, R. A., Schlolaut, G., Takemura, K., Nagahashi, Y., Kimura, I-P, SG06 Project Members. 2018. Constraints on the frequency and dispersal of explosive eruptions at Sambe and Daisen volcanoes (South-West

2461			
2463	896	Japan Arc) from the distal Lake Suigetsu record (SG06 core). Earth-Science	
2464 2465	897	<i>Reviews</i> , 185: 1004-1028	
2466 2467	898		
2468	899	Albert, P. G., Smith, V. C., Suzuki, T., McLean, D., Tomlinson, E. L., Miyabucl	hi,
2469 2470	900	Y., Kitaba, I., Mark, D. F., Moriwaki, H., SG06 Project Members, Nakagawa, T	
2471 2472	901	2019. Geochemical characterisation of the widespread Japanese	
2473	902	tephrostratigraphic markers and correlations to the Lake Suigetsu sedimentar	у
2474 2475	903	archive (SG06 core). Quaternary Geochronology, 52: 103 - 131	
2476	904		
2477	905	Arai, F., Oba, T., Kitazato, H., Horibe, Y., Machida, H. 1981. Late Quaternary	
2479 2480	906	tephrochronology and paleo-oceanography of the sediments of the Japan Sea	Э.
2481	907	Quaternary Research (Daiyonki-kenkyu) 20: 209–230 (in Japanese, with	
2482 2483	908	English Abstract)	
2484	909		
2486	910	Blockley, S. P. E., Pyne-O'Donnell, S. D. F., Lowe, J. J., Matthews, I. P., Ston	e,
2487 2488	911	A., Pollard, A. M., Turney, C. S. M. and Molyneux, E. G. 2005. A new and less	3
2489	912	destructive laboratory procedure for the physical separation of distal glass	
2490 2491	913	tephra shards from sediments. Quaternary Science Reviews, 24: 1952-1960	
2492	914		
2494	915	Brenna, M., Price, R., Cronin, S. J., Smith, I. E., Sohn, Y. K., Kim, G. B. and	
2495 2496	916	Maas, R. 2014. Final magma storage depth modulation of explosivity and	
2497	917	trachyte-phonolite genesis at an intraplate volcano: a case study from Ulleung	g
2498 2499	918	Island, South Korea. Journal of Petrology, 55: 709-747	
2500 2501	919		
2502	920	Bronk Ramsey, C. 2008. Deposition models for chronological records.	
2503 2504	921	<i>Quaternary Science Reviews</i> , 27: 42-60	
2505	922		
2506 2507	923	Bronk Ramsey, C. 2017 OxCal Project, Version 4.3. Retrieved December 201	7.
2508 2509	924	https://c14.arch.ox.ac.uk/oxcal/OxCal.html Retrieved June 2017	
2510	925		
2511 2512	926	Bronk Ramsey, C., Staff, R. A., Bryant, C. L., Brock, F., Kitagawa, H., Van De	r
2513	927	Plicht, J., Schlolaut, G., Marshall, M. H., Brauer, A., Lamb, H. F., Payne, R. L.	,
2515 2516	928	Tarasov, P. E. Haraguchi, T., Gotanda, K., Yonenobu, H., Yokoyama, Y., Tad	a,
2517 2518			
2519			42

2521 2522			
2523	929	R. and Nakagawa, T. 2012. A complete terrestrial radiocarbon record for 11.2	to
2524 2525	930	52.8 kyr BP. <i>Science</i> , 338: 370-374	
2526 2527	931		
2528	932	Cassidy, M., Watt, S. F., Palmer, M. R., Trofimovs, J., Symons, W., Maclachla	n,
2529 2530	933	S. E. and Stinton, A. J. 2014. Construction of volcanic records from marine	
2531 2532	934	sediment cores: A review and case study (Montserrat, West Indies). Earth-	
2533	935	Science Reviews, 138: 137-155	
2534 2535	936		
2536 2537	937	Chen, S. S., Lee, S. G., Lee, T. J., Lee, Y. S. and Liu, J. Q. 2018. Multi-stage	
2538	938	magmatic plumbing system of the volcano: A case study from Ulleung Island,	
2539 2540	939	South Korea. <i>Lithos</i> . 314: 201-215	
2541	940		
2542 2543	941	Chen, X. Y., Blockley, S. P., Tarasov, P. E., Xu, Y. G., McLean, D., Tomlinson	,
2544 2545	942	E. L., Albert, P. G., Liu, J. Q., Müller, S., Wagner, M. and Menzies, M. A., 2016	3.
2546	943	Clarifying the distal to proximal tephrochronology of the Millennium (B–Tm)	
2547 2548	944	eruption, Changbaishan Volcano, northeast China. Quaternary Geochronology	/,
2549 2550	945	33: 61-75	
2551	946		
2552 2553	947	Chen X. Y., McLean, D., Blockley, S., Tarasov, P., Xu. Y. G. and Menzies, M.	
2554	948	2019. Developing a Holocene tephrostratigraphy for northern Japan using the	
2555 2556	949	sedimentary record from Lake Kushu, Rebun Island, Quaternary Science	
2557 2558	950	<i>Reviews,</i> 215: 272-292	
2559	951		
2560 2561	952	Chun, J. H., Han, S. J. and Cheong, D. K., 1997. Tephrostratigraphy in the	
2562 2563	953	Ulleung Basin, East Sea: Late Pleistocene to Holocene. Geosciences Journal,	
2564	954	1: 154-166	
2565 2566	955	Chun III Chaong D. Kabara K. and Jan S. J. 2007. And of the SKD Jan	d
2567	956	Chun, J. H., Cheong, D., Ikenara, K. and Han, S. J. 2007. Age of the SKP-1 an	U
2569	957	interstadial events recorded in sediment from marine isotope stages 3 and 4	
2570 2571	950	Releeogeography Peleeoclimatology Peleeoecology 247: 100-114	
2572	959		
2573 2574	500		
2575 2576			
2577			
2578 2579			43

2581 2582			
2583	961	Cui, Z. X., Wei, H. Q., Liu, R. X. 1995. Historical documentation research of	
2584 2585	962	eruptions of the Tianchi volcano, Changbaishan. In: Liu, R.X. (Ed.), Volcanism	1
2586 2587	963	and Human Environment. Seismology Press, Beijing, pp. 36-39 (In Chinese).	
2588	964		
2589 2590	965	Derkachev, A.N., Utkin, I.V., Nikolaeva, N.A., Gorbarenko, S.A., Malakhova,	
2591 2592	966	G.I., Portnyagin, M.V., Sakhno, V.G., Shi, X. and Lv, H. in press. Tephra layer	S
2593	967	of large explosive eruptions of Baitoushan/Changbaishan Volcano in the Japa	n
2594 2595	968	Sea sediments. Quaternary International.	
2596	969	https://doi.org/10.1016/j.quaint.2019.01.043	
2597	970		
2599 2600	971	Domitsu, H., Shiihara, M., Torii, M., Tsukawaki, S. and Oda, M. 2002.	
2601	972	Tephrostratigraphy of the piston cored sediment KT96-17 P-2 in the southern	
2602 2603	973	Japan Sea: the eruption age of Daisen-Kusadanihara Pumice (KsP). Journal of)f
2604	974	the Geological Society of Japan. 108: 545-556 (in Japanese with English	
2605	975	abstract)	
2607 2608	976		
2609	977	Furuta, T., Fujioka, K. and Arai, F. 1986. Widespread submarine tephras arou	nd
2610 2611	978	Japan—petrographic and chemical properties. Marine Geology, 72: 125-142	
2612	979		
2613	980	Hakozaki, M., Miyake, F., Nakamura, T., Kimura, K., Masuda, K. and Okuno, M	Л.
2615 2616	981	2017. Verification of the Annual Dating of the 10th Century Baitoushan Volcan	0
2617	982	Eruption Based on an AD 774–775 Radiocarbon Spike. Radiocarbon, 60: 1-8	
2618 2619	983		
2620	984	Higashino, T., Tsujimori T. and Itaya T. 2005. An alkaline tephra found at	
2622	985	Midagahara, Mt. Hakusan. 32. Annual Report Hakusan Nature Conservation	
2623 2624	986	Center, 32: 1 –7	
2625	987		
2626 2627	988	Horn, S. and Schmincke, H. U. 2000. Volatile emission during the eruption of	
2628	989	Baitoushan Volcano (China/North Korea) ca. 969 AD. Bulletin of Volcanology,	
2630	990	61: 537-555	
2631 2632	991		
2633	992	Hughes, P. D. M., Mallon, G., Brown, A., Essex, H. J., Stanford, J. D., Hotes, S	3.
2634 2635 2636 2637 2638 2639	993	2013. The impact of high tephra loading on late-Holocene carbon accumulatio	n 44

2642		
2643 2644	994	and vegetation succession in peatland communities. Quaternary Science
2645	995	<i>Reviews,</i> 67: 160-175
2646 2647	996	
2648	997	lacovino, K., Ju-Song, K., Sisson, T., Lowenstern, J., Kuk-Hun, R., Jong-Nam,
2649 2650	998	J., Kun-Ho, S., Song-Hwan, H., Oppenheimer, C., Hammond, J. O. and
2651	999	Donovan, A. 2016. Quantifying gas emissions from the "Millennium Eruption" of
2652 2653	1000	Paektu volcano, Democratic People's Republic of Korea/China. Science
2654 2655	1001	Advances, 2: 1600913
2656	1002	
2657 2658	1003	Ikehara, K. 2003. Late Quaternary seasonal sea-ice history of the North-eastern
2659	1004	Japan Sea. Journal of Oceanography, 59: 585-593
2660 2661	1005	
2662 2663	1006	Ikehara, K., Kikkawa, K., Chun, J. H. 2004. Origin and correlation of three
2664	1007	tephras that erupted during oxygen isotope stage 3 found in cores from the
2665 2666	1008	Yamato Basin, central Japan Sea. The Quaternary Research. 43, 201–212 (in
2667 2668	1009	Japanese with English abstract)
2669	1010	
2670 2671	1011	Ikehara, K., Ohkushi, K., Noda, A., Danhara, T. and Yamashita, T. 2013. A new
2672	1012	local marine reservoir correction for the last deglacial period in the Sanriku
2673 2674	1013	region, northwestern North Pacific, based on radiocarbon dates from the
2675 2676	1014	Towada-Hachinohe (To-H) tephra. The Quaternary Research. 52: 127-37
2677	1015	
2678 2679	1016	Im, J. H., Shim, S. H., Choo, C. O., Jang, Y. D. and Lee, J. S. 2012.
2680	1017	Volcanological and palaeoenvironmental implication of charcoals of the Nari
2681 2682	1018	Formation in Nari Caldera, Ulleung Island, Korea. Geosciences Journal, 16:
2683 2684	1019	105-114
2685	1020	
2686 2687	1021	Jochum, K. P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A. W., Amini, M. <i>et</i>
2688	1022	al., 2006. MPI-DING reference glasses for in situ microanalysis: New reference
2689 2690	1023	values for element concentrations and isotope ratios. Geochemistry,
2691 2692	1024	Geophysics, Geosystems, 7: 2
2693	1025	
2694 2695		
2696		
∠697 2698		
2699 2700		45

2701 2702		
2703	1026	Kim, Y. K. 1985. Petrology of Ulreung Volcanic Island. The Journal of the
2704 2705	1027	Japanese Association of Mineralogists, Petrologists and Economic Geologists,
2706 2707	1028	80: 292–303
2708	1029	
2709 2710	1030	Kim, K. H, Tanaka T, Nagao K, Jang, S. K. 1999. Nd and Sr isotopes and K- Ar
2711 2712	1031	ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea.
2713	1032	Geochemical Journal, 33: 317–341
2714 2715	1033	
2716	1034	Kim, G. B., Cronin, S. J., Yoon, W. S. and Sohn, Y. K. 2014. Post 19 ka BP
2718	1035	eruptive history of Ulleung Island, Korea, inferred from an intra-caldera
2719 2720	1036	pyroclastic sequence. Bulletin of Volcanology, 76: 802
2721	1037	
2722 2723	1038	Kimura, J. I. and Chang, Q. 2012. Origin of the suppressed matrix effect for
2724 2725	1039	improved analytical performance in determination of major and trace elements
2726	1040	in anhydrous silicate samples using 200 nm femtosecond laser ablation sector-
2727 2728	1041	field inductively coupled plasma mass spectrometry, Journal of Analytical
2729	1042	Atomic Spectrometry, 27: 1549 – 1559
2730 2731	1043	
2732 2733	1044	Kimura, J. I., Nagahashi, Y., Satoguchi, Y. and Chang, Q. 2015. Origins of felsic
2734	1045	magmas in Japanese subduction zone: Geochemical characterizations of
2735 2736	1046	tephra from caldera-forming eruptions< 5 Ma. <i>Geochemistry, Geophysics,</i>
2737	1047	<i>Geosystems</i> , 16: 2147-2174
2739	1048	
2740 2741	1049	Kitagawa, H. and van der Plicht, H. 1998a. A 40,000-year varve chronology
2742	1050	from Lake Suigetsu, Japan: Extension of the C-14 calibration curve.
2743 2744	1051	<i>Radiocarbon,</i> 40: 505-515
2745 2746	1052	
2747	1053	Kitagawa, H. and van der Plicht, H. 1998b. Atmospheric Radiocarbon
2748 2749	1054	Calibration to 45,000 yr B.P.: Late Glacial Fluctuations and Cosmogenic Isotope
2750	1055	Production. <i>Science</i> , 279: 1187-1190
2751	1056	
2753 2754	1057	Kitagawa, H. and van der Plicht, J. 2000. Atmospheric radiocarbon calibration
2755	1058	beyond 11,900 cal BP from Lake Suigetsu laminated sediments. <i>Radiocarbon</i> ,
2756 2757	1059	42: 370-381
2758 2759		46

2761 2762			
2763 2764	1060		
2765	1061	Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. and Zanettin, B. 1986. A	
2766 2767	1062	chemical classification of volcanic rocks based on the total alkali-silica diagra	ım.
2768	1063	Journal of petrology, 27: 745-750	
2769 2770	1064		
2771 2772	1065	Lim, C., Toyoda, K., Ikehara, K. and Peate, D.W. 2013. Late Quaternary	
2773	1066	tephrostratigraphy of Baegdusan and Ulleung volcanoes using marine	
2774 2775	1067	sediments in the Japan Sea/East Sea. Quaternary Research, 80: 76-87	
2776	1068		
2778	1069	Lim, C., Kim, S. and Lee, C. 2014. Geochemical fingerprint of the primary	
2779 2780	1070	magma composition in the marine tephras originated from the Baegdusan an	d
2781	1071	Ulleung volcanoes. Journal of Asian Earth Sciences, 95: 266-273	
2782 2783	1072		
2784 2785	1073	Liu, R. X., Wei, H. Q., Li, J. T. 1998. The Latest Eruptions from Tianchi Volca	no.
2785	1074	Changbaishan. <i>Science Press,</i> Beijing, p. 159 (In Chinese)	
2787 2788	1075		
2789	1076	Machida, H. and Arai, F. 1983. Extensive ash falls in and around the Sea of	
2790 2791	1077	Japan from large late Quaternary eruptions. Journal of Volcanology and	
2792 2793	1078	Geothermal Research, 18: 151-164	
2794	1079		
2795 2796	1080	Machida, H. and Arai, F. 2003. Atlas of tephra in and around Japan. Revised	
2797	1081	ed. Tokyo University Press, Tokyo	
2798	1082		
2800 2801	1083	Machida, H., Arai, F., Lee, B., Moriwaki, H. and Furuta, T. 1984. Late	
2802	1084	Quaternary tephras in Ulreung-do Island, Korea. Journal of Geography	
2803 2804	1085	(Chigaku-Zasshi), 93: 1-14 (in Japanese with English abstract)	
2805	1086		
2800	1087	Machida, H., H. Moriwaki, and D. Zhao. 1990. The recent major eruption of	
2808 2809	1088	Changbai volcano and its environmental effects. Geographical Reports of	
2810	1089	Tokyo Metropolitan University, 25: 1–20	
2811 2812	1090		
2813 2817	1091	Marshall, M., Schlolaut, G., Nakagawa, T., Lamb, H., Brauer, A., Staff, R.,	
2815	1092	Ramsey, C.B., Tarasov, P., Gotanda, K., Haraguchi, T. and Yokoyama, Y.	
2816 2817	1093	2012. A novel approach to varve counting using μ XRF and X-radiography in	
2818			47
2819 2820			4/

2821 2822		
2823	1094	combination with thin-section microscopy, applied to the Late Glacial
2825	1095	chronology from Lake Suigetsu, Japan. Quaternary Geochronology, 13: 70-80
2826 2827	1096	
2828 2829	1097	Martin-Jones, C. 2012. Defining fractionation in LA-ICP-MS analysis of volcanic
2830	1098	glass shards and its application to the correlation of tephra deposits from
2831 2832	1099	Ulleungdo, Korea (Doctoral dissertation, MPhil thesis, Aberystwyth University).
2833	1100	
2834 2835	1101	McLean, D., Albert, P. G., Nakagawa, T., Staff, R. A., Suzuki, T. and Smith,
2836	1102	V.C. 2016. Identification of the Changbaishan 'Millennium' (B-Tm) eruption
2838	1103	deposit in the Lake Suigetsu (SG06) sedimentary archive, Japan:
2839 2840	1104	Synchronisation of hemispheric-wide palaeoclimate archives. Quaternary
2841	1105	Science Reviews, 150: 301-307
2842 2843	1106	
2844	1107	McLean, D., Albert, P. G., Nakagawa, T., Suzuki, T., Staff, R. A., Yamada, K.,
2845 2846	1108	Kitaba, I., Haraguchi, T., Kitagawa, J., Members, S.P. and Smith, V. 2018.
2847 2848	1109	Integrating the Holocene tephrostratigraphy for East Asia using a high-
2849	1110	resolution cryptotephra study from Lake Suigetsu (SG14 core), central Japan.
2850 2851	1111	Quaternary Science Reviews, 183: 36-58
2852	1112	
2853 2854	1113	Nagahashi, Y., Yoshikawa, S., Miyakawa, C., Uchiyama, T. and Inouchi, Y.
2855 2856	1114	2004. Stratigraphy and chronology of widespread tephra layers during the past
2857	1115	430 ky in the Kinki District and the Yatsugatake Mountains: major element
2858 2859	1116	composition of the glass shards using EDS analysis. The Quaternary Research
2860	1117	(Daiyonki-Kenkyu), 43: 15-35 (in Japanese with English abstract)
2861 2862	1118	
2863 2864	1119	Nakagawa, T., Kitagawa, H., Yasuda, Y., Tarasov, P. E., Gotanda, K. and
2865	1120	Sawai, Y. 2005. Pollen/event stratigraphy of the varved sediment of Lake
2866 2867	1121	Suigetsu, central Japan from 15,701 to 10,217 SG vyr BP (Suigetsu varve years
2868	1122	before present): description, interpretation, and correlation with other regions.
2869 2870	1123	Quaternary Science Reviews 24: 1691–1701
2871 2872	1124	
2873	1125	Nakagawa, T., Gotanda, K., Haraguchi, T., Danhara, T., Yonenobu, H., Brauer,
2874 2875	1126	A., Yokoyama, Y., Tada, R., Takemura, K., Staff, R. A., Payne, R., Bronk
2876	1127	Ramsey, C., Bryant, C., Brock, F., Schlolaut, G., Marshall, M., Tarasov, P.,
2877 2878		
2879 2880		48

2881 2882			
2883	1128	Lamb, H. and Suigetsu 2006 Project Members. 2012. SG06, a perfectly	
2884 2885	1129	continuous and varved sediment core from Lake Suigetsu, Japan: stratigraph	у
2886 2887	1130	and potential for improving the radiocarbon calibration model and	-
2888	1131	understanding of late Quaternary climate changes. Quaternary Science	
2889 2890	1132	<i>Reviews,</i> 36: 164-176	
2891	1133		
2892 2893	1134	Nakajima, T., Kikkawa, K., Ikehara, K., Katayama, H., Kikkawa, E., Joshima, I	М.,
2894 2895	1135	Seto, K. 1996. Marine sediments and late Quaternary stratigraphy in the	
2896	1136	southeastern part of the Japan Sea – Concerning the timing of dark layer	
2897 2898	1137	deposition. Journal of Geological Society of Japan, 102: 125 – 138 (in	
2899	1138	Japanese with English abstract)	
2900 2901	1139		
2902 2903	1140	Newhall, C. G. and Self, S. 1982. The volcanic explosivity index (VEI) an	
2904	1141	estimate of explosive magnitude for historical volcanism. Journal of Geophysic	cal
2905 2906	1142	Research: Oceans, 87: 1231-1238	
2907 2908	1143		
2909	1144	Okuno, M., Shiihara, M., Torii, M., Nakamura, T., Kim, K. H., Domitsu, H.,	
2910 2911	1145	Moriwaki, H. and Oda, M. 2010. AMS radiocarbon dating of Holocene tephra	
2912	1146	layers on Ulleung Island, South Korea. Radiocarbon, 52: 1465-1470	
2913	1147		
2915 2916	1148	Okuno, M., Torii, M., Yamada, K., Shinozuka, Y., Danhara, T., Gotanda, K.,	
2917	1149	Yonenobu, H. and Yasuda, Y. 2011. Widespread tephras in sediments from	
2918 2919	1150	lake Ichi-no-Megata in northern Japan: Their description, correlation and	
2920 2921	1151	significance. Quaternary International, 246: 270-277	
2922	1152		
2923 2924	1153	Oppenheimer, C., Wacker, L., Xu, J., Galván, J. D., Stoffel, M., Guillet, S.,	
2925	1154	Corona, C., Sigl, M., Di Cosmo, N., Hajdas, I. and Pan, B. 2017. Multi-proxy	
2926 2927	1155	dating the 'Millennium Eruption' of Changbaishan to late 946 CE. Quaternary	
2928 2929	1156	Science Reviews, 158: 164-171	
2930	1157		
2931 2932	1158	Pan, B., de Silva, S.L., Xu, J., Chen, Z., Miggins, D.P. and Wei, H. 2017. The	
2933	1159	VEI-7 Millennium eruption, Changbaishan-Tianchi volcano, China/DPRK: Nev	V
2934 2935	1160	field, petrological, and chemical constraints on stratigraphy, volcanology, and	
2936 2937			
2938			40
2939 2940			49

2941 2942		
2943	1161	magma dynamics. Journal of Volcanology and Geothermal Research, 343: 45-
2944 2945	1162	59
2946 2947	1163	
2948	1164	Park, M. H., Kim, I. S. and Shin, J. B. 2003. Characteristics of the late
2949 2950	1165	Quaternary tephra layers in the East/Japan Sea and their new occurrences in
2951 2952	1166	western Ulleung Basin sediments. Marine Geology, 202: 135-142
2953	1167	
2954 2955	1168	Park, M. H., Kim, J. H. and Kil, Y. W. 2007. Identification of the Late Quaternary
2956	1169	tephra layers in the Ulleung Basin of the East Sea using geochemical and
2957 2958	1170	statistical methods. Marine Geology, 244: 196-208
2959 2960	1171	
2961	1172	Ponomareva, V., Polyak, L., Portnyagin, M., Abbott, P. M., Zelenin, E.,
2962 2963	1173	Vakhrameeva, P. and Garbe-Schönberg, D. 2018. Holocene tephra from the
2964	1174	Chukchi-Alaskan margin, Arctic Ocean: Implications for sediment
2965 2966	1175	chronostratigraphy and volcanic history. Quaternary Geochronology, 45: 85-97
2967 2968	1176	
2969	1177	Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C.
2970 2971	1178	B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M. and Grootes, P.M.
2972	1179	2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000
2973 2974	1180	years cal BP. <i>Radiocarbon</i> , 55: 1869-1887
2975 2976	1181	
2977	1182	Sawada, Y., Nakamura, T., Umeda, Y., Yoon, S. and Tokuoka. 1997. Drifting
2978 2979	1183	pumice clasts derived from Ulleung Island in early Holocene sediments at Oda,
2980	1184	Shimane Prefecture, Southwestern Japan. The Quaternary Research (Daiyonki-
2981 2982	1185	Kenkyu), 36: 1 – 16 (in Japanese with English abstract)
2983 2084	1186	
2985	1187	Schlolaut, G., Marshall, M. H., Brauer, A., Nakagawa, T., Lamb, H. F., Staff, R.
2986 2987	1188	A., Bronk Ramsey, C., Bryant, C. L., Brock, F., Kossler, A., Tarasov, P. E.,
2988	1189	Yokoyama, Y., Tada, R. and Haraguchi, T. 2012. An automated method for
2989 2990	1190	varve interpolation and its application to the Late Glacial chronology from Lake
2991	1191	Suigetsu, Japan. Quaternary Geochronology. 13: 52-69
2992 2993	1192	
2994 2995	1193	Shiihara, M., Torii, M., Okuno, M., Domitsu, H., Nakamura, T., Kim, K.,
2996	1194	Moriwaki, H. and Oda, M. 2011. Revised stratigraphy of Holocene tephras on
∠997 2998		
2999 3000		50

3001 3002		
3003	1195	Ulleung Island, South Korea, and possible correlatives for the U-Oki tephra.
3004 3005	1196	Quaternary International 246: 222-232
3006 3007	1197	
3008	1198	Singer, B. S., Jicha, B. R., He, H. and Zhu, R. 2014. Geomagnetic field
3009 3010	1199	excursion recorded 17 ka at Tianchi volcano, China: New ⁴⁰ Ar/ ³⁹ Ar age and
3011	1200	significance. Geophysical Research Letters, 41: 2794–2802
3012	1201	
3014 3015	1202	Smith, V. C., Mark, D. F., Staff, R. A., Blockley, S. P. E., Bronk-Ramsey, C.,
3016	1203	Bryant, C. L., Nakagawa, T., Han, K. K., Weh, A., Takemura, K., Danhara, T.
3017 3018	1204	and Suigetsu 2006 Project Members. 2011. Toward establishing precise Ar/Ar
3019 3020	1205	chronologies for Late Pleistocene palaeoclimate archives: an example from the
3021	1206	Lake Suigetsu (Japan) sedimentary record, Quaternary Science Reviews, 30:
3022 3023	1207	2845-2850
3024	1208	
3025 3026	1209	Smith, V. C., Staff, R. A., Blockley, S. P. E., Bronk Ramsey, C., Nakagawa, T.,
3027 3028	1210	Mark, D. F., Takemura, K., Danhara, T. 2013. Identification and correlation of
3029	1211	visible tephras in the Lake Suigetsu SG06 sedimentary archive, Japan:
3030 3031	1212	Chronostratigraphic markers for synchronising of east Asian/west Pacific Pacific
3032	1213	palaeoclimatic records for 150 ka, Quaternary Science Reviews, 61: 121-137
3034	1214	
3035 3036	1215	Staff, R. A., Bronk Ramsey, C., Bryant, C. L., Brock, F., Payne, R. L., Schlolaut,
3037	1216	G., Marshall, M. H., Brauer, A., Lamb, H. F., Tarasov, P., Yokoyama, Y.,
3038	1217	Haraguchi, T., Gotanda, K., Yonenobu, H., Nakagawa, T. and Suigetsu 2006
3040 3041	1218	project members. 2011. New 14C determinations from Lake Suigetsu, Japan:
3042	1219	12,000 to 0 cal. BP, <i>Radiocarbon,</i> 53: 511-528
3043 3044	1220	
3045	1221	Staff, R. A., Schlolaut, G., Ramsey, C. B., Brock, F., Bryant, C. L., Kitagawa, H.,
3046 3047	1222	Van der Plicht, J., Marshall, M. H., Brauer, A., Lamb, H. F. and Payne, R. L.
3048 3049	1223	2013a. Integration of the old and new Lake Suigetsu (Japan) terrestrial
3050	1224	radiocarbon calibration data sets. <i>Radiocarbon</i> , 55: 2049-2058
3051 3052	1225	
3053 3054	1226	Statt, R. A., Nakagawa, T., Schlolaut, G., Marshall, M.H., Brauer, A., Lamb, H.
3055 3056 3057 3058 3059	1227	F., Bronk Ramsey, C., Bryant, C. L., Brock, F., Kitagawa, H. and Plicht, J.,
3060		

3061 3062			
3063	1228	2013b. The multiple chronological techniques applied to the Lake Suigetsu	
3064 3065	1229	SG06 sediment core, central Japan. Boreas, 42: 259-266	
3066 3067	1230		
3068	1231	Stone, R. 2010. Is China's riskiest volcano stirring or merely biding its time?	
3069 3070	1232	Science, 329: 498-499	
3071 3072	1233		
3073	1234	Sun, S. S. and McDonough, W. F. 1989. Chemical and isotopic systematics	of
3074 3075	1235	oceanic basalts: implications for mantle composition and processes. Geologi	ical
3076	1236	Society, London, Special Publications, 42: 313-345	
3077	1237		
3079 3080	1238	Sun, C., Plunkett, G., Liu, J., Zhao, H., Sigl, M., McConnell, J. R., Pilcher, J.	R.,
3081	1239	Vinther, B., Steffensen, J. P. and Hall, V. 2014a. Ash from Changbaishan	
3082 3083	1240	Millennium eruption recorded in Greenland ice: Implications for determining t	he
3084	1241	eruptions timing and impact. Geophysical Research Letters, 41: 694-701	
3085	1242		
3087 3088	1243	Sun, C., You, H., Liu, J., Li, X., Gao, J. and Chen, S. 2014b. Distribution,	
3089	1244	geochemistry and age of the Millennium eruptives of Changbaishan volcano,	,
3090 3091	1245	Northeast China—A review. Frontiers of Earth Science, 8: 216-230	
3092	1246		
3093 3094	1247	Sun, C., You, H., He, H., Zhang, L., Gao, J., Guo, W., Chen, S., Mao, Q., Liu	١,
3095 3096	1248	Q., Chu, G. and Liu, J., 2015. New evidence for the presence of Changbaish	an
3097	1249	Millennium eruption ash in the Longgang volcanic field, Northeast China.	
3098 3099	1250	Gondwana Research, 28: 52-60	
3100 3101	1251		
3102	1252	Sun, C., Liu, J., You, H. and Nemeth, K. 2017. Tephrostratigraphy of	
3103 3104	1253	Changbaishan volcano, northeast China, since the mid-Holocene. Quaternal	ſУ
3105	1254	Science Reviews, 177: 104-119	
3106	1255		
3108 3109	1256	Sun, C., Wang, L., Plunkett, G., You, H., Zhu, Z., Zhang, L., Zhang, B., Chu,	G.
3110	1257	and Liu, J. 2018. Ash from the Changbaishan Qixiangzhan eruption: A new	
3111 3112	1258	early Holocene marker horizon across East Asia. Journal of Geophysical	
3113	1259	Research: Solid Earth, 123: 6442-6450	
3114	1260		
3116 3117			
3118			
3119			52

1261 Tada, R. 1999. Late Quaternary paleoceanography of the Japan Sea. The 1262 Quaternary Research (Daiyonki-Kenkyu), 38: 216-222 1263 Tada, R., Irino, T. and Koizumi, I. 1999. Land-ocean linkages over orbital and 1264 Tada, R., Irino, T. and Koizumi, I. 1999. Land-ocean linkages over orbital and 1265 millennial timescales recorded in Late Quaternary sediments of the Japan Sea. 1266 Paleoceanography, 14: 236-247 1267 Tomlinson, E. L., Albert, P. G., Wulf, S., Brown, R. J., Smith, V. C., Keller, J., 1270 Orsi, G., Bourne, A. J. and Menzies, M. A. 2014. Age and geochemistry of 1271 tephra layers from Ischia, Italy: constraints from proximal-distal correlations with 1272 287: 22-39 1273 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra 1706 from minerogenic lake sediments. Journal of Paleolimnology, 19: 199-206 1717 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in 1728 the 9th century, Izu Islands, Japan. Revision of volcano-stratigraphy based on 1279 tephras and historical document. Bulletin of Volcanological Society of Japan, 1: 1280 valanic rocks by FT method-illustrated by dating of Changbaishan volcanic 1281 volcanic rocks by FT method-ill	3121 3122		
 242 Quaternary Research (Daiyonki-Kenkyu), 38: 216-222 243 244 Tada, R., Irino, T. and Koizumi, I. 1999. Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea. 245 Paleoceanography, 14: 236-247 246 Tomlinson, E. L., Albert, P. G., Wulf, S., Brown, R. J., Smith, V. C., Keller, J., 247 Orsi, G., Bourne, A. J. and Menzies, M. A. 2014. Age and geochemistry of tephra layers from Ischia, Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio. <i>Journal of Volcanology and Geothermal Research</i>, 287: 22-39 247 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. <i>Journal of Paleolimnology</i>, 19: 199-206 247 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. <i>Journal of Volcanological Society of Japan</i>, 1: 327. 327.338 327.338 328. 327.338 328. 327.338 328. 328. 329. 329. 321.328 327.338 328. 327.338 328. 327.338 328. 328. 329. 327.338 328. 327.338 328. 328. 329. 329. 321.328. 327.338 328. 328. 329. 329. 321.328. 321.328. 321.328. 321.328. 323.338 323.338 324.339. 325.338 326.338 328.338. 328.338. 329.341.348. 329.349.348. 320.349.349.349.349.349.349.349.349.349.349	3123	1261	Tada, R. 1999. Late Quaternary paleoceanography of the Japan Sea. <i>The</i>
 1263 1264 1264 1264 1264 1264 1264 1265 1266 1266 1267 1267 1268 1268 1269 1269 1260 1270 1280 1271 1280 1272 1287 1287 1289 1271 1289 1272 1287 1272 1287 1287 1287 1288 1271 1289 1272 1287 1272 1287 1272 1287 1274 1270 1271 1280 1272 1287 1272 1287 1273 1274 1274 1274 1277 1287 1273 1274 1284 1285 1281 1284 1285 1281 1285 1285 1286 1286 1287<td>3125</td><td>1262</td><td>Quaternary Research (Daiyonki-Kenkyu), 38: 216-222</td>	3125	1262	Quaternary Research (Daiyonki-Kenkyu), 38: 216-222
 1264 Tada, R., Irino, T. and Koizumi, I. 1999. Land-ocean linkages over orbital and 1265 millennial timescales recorded in Late Quaternary sediments of the Japan Sea. 1266 Paleoceanography, 14: 236-247 1267 1268 Tomlinson, E. L., Albert, P. G., Wulf, S., Brown, R. J., Smith, V. C., Keller, J., 1269 Orsi, G., Bourne, A. J. and Menzies, M. A. 2014. Age and geochemistry of tephra layers from Ischia, Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio. <i>Journal of Volcanology and Geothermal Research</i>, 287: 22-39 1270 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. <i>Journal of Paleolimnology</i>, 19: 199-206 1277 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in tephra and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 327-338 1280 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) 1286 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 1289 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3126 3127	1263	
 millennial timescales recorded in Late Quaternary sediments of the Japan Sea. <i>Paleoceanography</i>, 14: 236-247 Tomlinson, E. L., Albert, P. G., Wulf, S., Brown, R. J., Smith, V. C., Keller, J., Orsi, G., Bourne, A. J. and Menzies, M. A. 2014. Age and geochemistry of tephra layers from Ischia, Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio. <i>Journal of Volcanology and Geothermal Research</i>, 287: 22-39 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. <i>Journal of Paleolimnology</i>, 19: 199-206 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in te 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 327-338 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3128	1264	Tada, R., Irino, T. and Koizumi, I. 1999. Land-ocean linkages over orbital and
 1266 Paleoceanography, 14: 236-247 1267 1268 Tomlinson, E. L., Albert, P. G., Wulf, S., Brown, R. J., Smith, V. C., Keller, J., 1269 Orsi, G., Bourne, A. J. and Menzies, M. A. 2014. Age and geochemistry of 1270 tephra layers from Ischia, Italy: constraints from proximal-distal correlations with 1271 Lago Grande di Monticchio. <i>Journal of Volcanology and Geothermal Research</i>, 1272 287: 22-39 1273 1274 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra 1275 from minerogenic lake sediments. <i>Journal of Paleolimnology</i>, 19: 199-206 1276 1277 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in 1278 the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on 1279 tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 1280 327-338 1281 1282 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) 1286 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 1289 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3129 3130	1265	millennial timescales recorded in Late Quaternary sediments of the Japan Sea.
 1267 1268 1269 1269 1260 1270 1260 1270 1270 1270 1270 1270 1270 1270 1270 1270 1271 1280 1271 1280 1272 1287: 22-39 1273 1274 1274 1274 1274 1275 1276 1276 1276 1276 1277 1281: 1272 1273 1275 1276 1276 1276 1276 1276 1276 1277 1281: 1275 1276 1276 1276 1276 1276 1276 1277 1284: 1277 1287: 129.206 1276 1277 1284: 1277 1280: 1276 1276 1276 1277 1280: 1276 1281 1277 1280 1271 1280 1283 1281 1281 1282 1281 1283 1283 1284 1284 1285 1284 1285 1286 1286 1287 1286 1288 1281 1281 1281 1281 1282 1283 1284 1285 1284 1285 1285 1286 1286 1287 1286 1288 1286 1287 1286 1288 1288 1289 1289 1280 1281 1280 1281 1281 1281 1285 1286 1286 1287 1286 1288 1286 1288 1289 1289 1280 1280 1281 1281 1281 1285 1286 1286 1286 1287 <	3131 3132	1266	Paleoceanography, 14: 236-247
 Tomlinson, E. L., Albert, P. G., Wulf, S., Brown, R. J., Smith, V. C., Keller, J., Orsi, G., Bourne, A. J. and Menzies, M. A. 2014. Age and geochemistry of tephra layers from lschia, Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio. <i>Journal of Volcanology and Geothermal Research</i>, 287: 22-39 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. <i>Journal of Paleolimnology</i>, 19: 199-206 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 327-338 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3133	1267	
3136 3137 3137 31371269 1270Orsi, G., Bourne, A. J. and Menzies, M. A. 2014. Age and geochemistry of tephra layers from Ischia, Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio. Journal of Volcanology and Geothermal Research, 287: 22-393141 3142 31431277Z87: 22-393144 3144 3144 31441274 3147Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. Journal of Paleolimnology, 19: 199-2063147 3148 31491277Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. Journal of Paleolimnology, 19: 199-2063147 3149 31411277Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on tephras and historical document. Bulletin of Volcanological Society of Japan, 1: 327-3383151 3151 3151 3153327-3383152 31531280 volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. Seismology and Geology, 22: 19-24 (In Chinese with English abstract)3163 3164 31701286 Vang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294: 2345-23483164 	3134 	1268	Tomlinson, E. L., Albert, P. G., Wulf, S., Brown, R. J., Smith, V. C., Keller, J.,
 tephra layers from Ischia, Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio. <i>Journal of Volcanology and Geothermal Research</i>, 287: 22-39 287: 22-39 1274 1274 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. <i>Journal of Paleolimnology</i>, 19: 199-206 1276 1277 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 327-338 1280 volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) 1286 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 1289 1290 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3136	1269	Orsi, G., Bourne, A. J. and Menzies, M. A. 2014. Age and geochemistry of
 Lago Grande di Monticchio. Journal of Volcanology and Geothermal Research, 287: 22-39 287: 22-39 273 274 274 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. Journal of Paleolimnology, 19: 199-206 75 truney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. Journal of Paleolimnology, 19: 199-206 75 truney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. Journal of Paleolimnology, 19: 199-206 75 truney, T.S., Naito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on tephras and historical document. Bulletin of Volcanological Society of Japan, 1: 327-338 1280 227-338 1281 1282 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. Seismology and Geology, 22: 19-24 (In Chinese with English abstract) 1285 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294: 2345-2348 1289 1290 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos, 96: 315-324 1293 	3137 3138	1270	tephra layers from Ischia, Italy: constraints from proximal-distal correlations with
 287: 22-39 287: 22-39 1273 1274 1274 1274 1275 1276 1276 1276 1277 1280 1278 1278 1279 1279 1280 1279 1280 1270 1280 1271 1280 1272 1281 1281 1281 1281 1282 1283 1283 1284 1284 1284 1285 1285 1286 1286 1287 1286 1288 1288 1281 1284 1284 1285 1285 1286 1286 1287 1286 1288 1288 1289 1286 1287 1286 1288 1288 1289 1280 1284 1287 1284 1285 1286 1287 1286 1288 1288 1289 1284 1287 1286 1287 1286 1288 1289 1289 1289 1290 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 1293 	3139 3140	1271	Lago Grande di Monticchio. Journal of Volcanology and Geothermal Research,
 1273 1273 1274 1274 1274 1276 1276 1276 1277 1280 1278 1278 1278 1279 1280 1279 1280 1279 1280 1270 1280 1271 1280 1281 1281 1281 1281 1282 1283 1283 1284 1284 1284 1285 1285 1286 1286 1287 1288 1288 1288 1289 1286 1286 1287 1286 1288 1288 1289 1286 1287 1286 1286 1287 1286 1287 1286 1288 1289 1287 1280 1287 1286 1287 1286 1284 1285 1284 1285 1285 1286 1287 1286 1286 1287 1286 1287 1286 1287 1286 1287 1286 1286 1287 1286 1287 1286 1286 1287 1286 1287 1286 1287 1286 1287 1286 1287 1286 1287 1287 1286 1286 1287 1286 1286 1287 1286 1286 1287 1286 1286 1287 1286 1287 1287 1287 1288 1289 1290 1291 1291 1291 1292 1292 1293 1293 1294 1293 1294 1293 1295 1295 1296 1296 1296 1297 1297 1298 1298 1298 1298 1299 1291 1291 1291 1292<td>3140</td><td>1272</td><td>287: 22-39</td>	3140	1272	287: 22-39
 Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. <i>Journal of Paleolimnology</i>, 19: 199-206 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 327-338 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3142 3143	1273	
 from minerogenic lake sediments. <i>Journal of Paleolimnology</i>, 19: 199-206 from minerogenic lake sediments. <i>Journal of Paleolimnology</i>, 19: 199-206 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 327-338 280 volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) volcanic, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 vei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3144	1274	Turney, C.S., 1998. Extraction of rhyolitic component of Vedde microtephra
 1276 1277 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in 1278 the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on 1279 tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 1280 327-338 1281 1282 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) 1286 1287 1286 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 1289 1290 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 1293 	3145 3146	1275	from minerogenic lake sediments. Journal of Paleolimnology, 19: 199-206
 Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 327-338 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3147 3148	1276	
 the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 327-338 1280 327-338 1281 1280 1282 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) 1285 1286 1287 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 1289 1290 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 1293 	3149	1277	Tsukui, M., Saito, K. and Hayashi, K. 2006. Frequent and intensive eruptions in
 tephras and historical document. <i>Bulletin of Volcanological Society of Japan</i>, 1: 327-338 1280 327-338 1281 1282 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) 1285 1286 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 1289 1290 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3150 3151	1278	the 9th century, Izu Islands, Japan: Revision of volcano-stratigraphy based on
 3153 1280 327-338 1281 1282 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. Seismology and Geology, 22: 19-24 (In Chinese with English abstract) 1284 rocks. Seismology and Geology, 22: 19-24 (In Chinese with English abstract) 1285 1286 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294: 2345-2348 1289 1290 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos, 96: 315-324 	3152	1279	tephras and historical document. Bulletin of Volcanological Society of Japan, 1:
3155 3156128131571282Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic31581283volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic31601284rocks. Seismology and Geology, 22: 19-24 (In Chinese with English abstract)3161128531631286Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and31641287Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon31661288record from Hulu Cave, China. Science, 294: 2345-234831701290Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and31711291evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming3172129231731293	3153 3154	1280	327-338
 Wan, J. and Zheng, D. 2000. Several notable problems on dating of young volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) 1284 rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) 1285 1286 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 1289 1290 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3155 3156	1281	
 volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3157	1282	Wan, J. and Zheng, D. 2000. Several notable problems on dating of young
 rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) rocks. <i>Seismology and Geology</i>, 22: 19-24 (In Chinese with English abstract) respective to the service of the ser	3158 3159	1283	volcanic rocks by FT method-illustrated by dating of Changbaishan volcanic
3161 316212853163 31641286Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i> , 294: 2345-23483166 31671288 12893168 3169 317012903171 3172 3173Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i> , 96: 315-3243174 31751293	3160	1284	rocks. Seismology and Geology, 22: 19-24 (In Chinese with English abstract)
 Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 1289 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 1293 	3161 3162	1285	
3104 31651287Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon3166 31671288 1288record from Hulu Cave, China. Science, 294: 2345-23483168 3169 31701290Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming3172 31731292eruption, Changbaishan, Northeast China. Lithos, 96: 315-3243176 31771293	3163 3164	1286	Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and
 record from Hulu Cave, China. <i>Science</i>, 294: 2345-2348 1289 1290 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 1293 	3165	1287	Dorale, J. A. 2001. A high-resolution absolute-dated late Pleistocene monsoon
 1289 1290 1290 1290 1291 1291 1291 1291 1291 1291 1291 1291 1291 1292 1292 1292 1292 1292 1293 1293 	3166 3167	1288	record from Hulu Cave, China. Science, 294: 2345-2348
 Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 	3168	1289	
 1291 evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming 1292 eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 1293 1293 1293 	3169 3170	1290	Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.H. and Jin, B. 2007. Timescale and
 1172 1292 eruption, Changbaishan, Northeast China. <i>Lithos</i>, 96: 315-324 1293 175 1293 176 3177 	3171	1291	evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming
3174 1293 3175 3176 3177	3173	1292	eruption, Changbaishan, Northeast China. Lithos, 96: 315-324
3176 3177	3174 3175	1293	
31//	3176		
3178	3177 3178		
3179 53	3179 3180		53

3181 3182		
3183	1294	Wei, H., Liu, G. and Gill, J. 2013. Review of eruptive activity at Tianchi volcano,
3184 3185	1295	Changbaishan, northeast China: implications for possible future eruptions.
3186 3187	1296	Bulletin of Volcanology, 75: 706
3188 3189	1297	
3190	1298	Wulf, S., Kraml, M., Brauer, A., Keller, J. and Negendank, J.F. 2004.
3191 3192	1299	Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di
3193 3194	1300	Monticchio (southern Italy). Quaternary International, 122: 7-30
3195	1301	
3196 3197	1302	Xu, J., Liu, G., Wu, J., Ming, Y., Wang, Q., Cui, D., Shangguan, Z., Pan, B., Lin,
3198	1303	X. and Liu, J. 2012. Recent unrest of Changbaishan volcano, northeast China:
3199 3200	1304	A precursor of a future eruption? Geophysical Research Letters, 39: 16
3201 3202	1305	
3203	1306	Yang, L., Wang, F., Feng, H., Wu, L. and Shi, W. 2014. ⁴⁰ Ar/ ³⁹ Ar geochronology
3204 3205	1307	of Holocene volcanic activity at Changbaishan, Northeast China. Quaternary
3206	1308	Geochronology, 21: 106 – 114
3207	1309	
3209 3210	1310	Zou, H., Fan, Q., Zhang, H. 2010. Rapid development of the great millennium
3211	1311	eruption of Changbaishan (Tianchi) volcano, China/North Korea: evidence from
3212 3213	1312	U-Th zircon dating. Lithos, 119: 289-296
3214 3215		
3216		
3217 3218		
3219		
3220 3221		
3222		
3223 3224		
3225		
3226		
3227 3228		
3229		
3230 3231		
3232		
3233		
ऽ∠34 3235		
3236		
3237 3238		
3239		54
3240		

and the second se		لينا من	L. Ruteratu	82. at 31.23	1	111 111 111 1111 1111 1111 1111 1111 1111		AL RUMENT	21 15. 49. 331	PET" \$1' IN	R 112 B4	11 2		1. 18 A. A.	B		and	in. R. \$5	L. R. M. Br	а. 3. М. В .	р. 9. Ц.Я., 20.	3. E. L.	. 2 X. S	kan at the second	18. 8.1 19 1			AL 18. R. 14	11 H M 11		8. RE-LL-31	ж. щ. Г. 19	n se allente. Si se allente	1 BKL 2	+	1			1. N. M	2. R. L. 2.	18. J.F. 18.	an 18. a.L. an	18 115 81. 3	14 IR 8				
and a second second	and the second s			1997 - 1997 - 1997 - 1997 - 19	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		ייים איין איין דייין	Transformation T	range ange	1	1	5.1. J	18 56 F		1 1 1 1 1 1			т ж т ж т	r n 147 n 3	E. 81 152			т. ж . ж.	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		6 Bud	5. AL M.1			1	La contract					65 1			r 114 a	e 114 11	and the second	- n			े स् ्र		
and a demonstra	and the second sec		第一般 二単	5 - 36 - BT		116. 20.	r teally.	- B 1R.			1. R.J. T.	a de la composición d	167 B	. 11 - Mar - R	14 W 14	er nængar.	annonen -			8. B. J.		R R	fr ar men	IT 11 87		19 19 19 19 19 19 19 19 19 19 19 19 19 1	1. 120 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -			and the second second		21、藤 鶴		1. 1. 1. 1.	and and the	17 Pro 18		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 11 38 T	47 FT 187	1 11 p.	A. 11 3.	""""""""""""""""""""""""""""""""""""""				
e	iş G	1	10	61 ··· 511	n- m			11 - TI			8		4		1			100、100	18. 61	18 1. h.	a, ii		. .		1977 - 197 7-1	12. A.L.	. 		- 1981 25.	11 B.	-11 (B)	1.1	21		· •	2RL.	81°'18	118	1.8 . 611		8-1 			- 3 44, some	and the Branch	e t	ġ.	,
e e e e e e e e e e e e e e e e e e e	1. June 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	a to formation	стан ст. 1	JR . L.	an a	6 1 2	14. A.4	1.1.1.1	4.4I.4	8 4L.J	R 31		1.3.5. 5	R. 13	88. J.K	alle series	dadaan.	· ••••	£4 A.	·何 副者	LS	143 J. J.	ST 1.2	a s 1.0.			BS	M 4 .		ел в. а. В. с. в. а.	18. B.	ह्यू हे स्		- CT - T	YT 77	1 2 2 1	दं वर्ष इ. १९		3	Biline a	. 1		1.8.1.8.	· · · · ·		1	1 1
2 · ·	i,	, ;	ţ	1.1	20 B)	ı ı	12	·· T	, L	т	~ T		-	-	-			-	-	-			L	F			I	T	1		å. T				1 187	1.84	- 4- 1		- 2 8. 1	41 1	1.11	R.# 1	4.1.1	L.J. 1	11.		R. 1	

an a**m**antanti santa ana antanan a**fa**a. Ana amin'ny faranana amin'ny amin'ny fara いるい ないない いいしょう 23 RE 57"Y 2488 E3 (77 (77 4174347.443848 **2**6.434 THERE IS NOT STREET 11.11.11.11.11.11.11.11.11.11.11 T MT THE IT WHE CREATERN LW. 5 2.51.53.3.23.8.41. L.51...L 3 AA\$\$\$, L&\$\$4\$\$. L.\$4. 法 "我们就要让你要帮助。" 1、1444年1月1日1月1日1日 BANA KEEL LING 45 歐是。主象要主 九31.43. and marked and that a fe a W. manuara maria T**ET** BATTING and the second and a second second second second second A set to the first set of set of a set of the set of n oon a same of store and the standard stan and the second second second out and the second 1 1 **1 1 1** ; ા ગુરુ ના બા જ જા

shards/gram of dried sediment

Construction and the second s second second seco	
	400000000000000000000000000000000000000
	a Antonina antonina a
the state of the	
	Allen (12), (12), 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
	72232222222222222222222222222222222222
	3/////////////////////////////////////
3. A Construction of the second se	deninatio instanton francasionale no distinsione instantoni instantoni e a a a n M
	#

i v v v de les services y services de la verse de les services de les services de la verse de la verse de la ve	3.1.6.単効とココライヤを使きることであるというであるが、1.3.5.5