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The Stability Principle and Global Weak Solutions of the
Free Surface Semi-Geostrophic Equations in Geostrophic

Coordinates
M. J. P. Cullen∗, T. Kuna†, B. Pelloni‡ and M. Wilkinson‡

Abstract
The semi-geostrophic equations are used widely in the modelling of large-scale atmospheric flows.
In this note, we prove the global existence ofweak solutions of the incompressible semi-geostrophic
equations, in geostrophic coordinates, in a three-dimensional domain with a free upper boundary.
The proof, based on an energy minimisation argument originally inspired by the Stability Principle
as studied by Cullen, Purser, and others, uses optimal transport techniques as well as the analysis
of Hamiltonian ODEs in spaces of probability measures as studied by Ambrosio and Gangbo. We
also give a general formulation of the Stability Principle in a rigorous mathematical framework.
Keywords: Semi-geostrophic Equations; Optimal Transport; Wasserstein Spaces; Stability Crite-
ria.

1 Introduction
The semi-geostrophic equations for an incompressible flow subject to a constant Coriolis force com-
prise the following system of equations for an unknown Eulerian velocity field u, geostrophic velocity
field ug = (ug,1, ug,2, 0), pressure p, and density �,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Dtu
g + e3 ∧ (u − ug) = 0,

Dt� = 0,

∇ ⋅ u = 0,

∇p = (ug2,−u
g
1, �),

(1.1)

where Dt denotes the material derivative operator, namely
Dt = )t + u ⋅ ∇. (1.2)

In this note, we shall solve the above system formulated in so-called geostrophic coordinates in the
time-dependent spatial domain Ωℎt ⊂ ℝ3 given by

Ωℎt ∶= {(x1, x2, x3) ∈ ℝ3 ∶ (x1, x2) ∈ B and 0 < x3 < ℎ(x1, x2, t)},

with the upper free surface denoted by t, namely
t ∶=

{

(x1, x2, ℎ(x1, x2, t)) ∈ ℝ3 ∶ (x1, x2) ∈ B
}

,

where B ⊂ ℝ2 is a fixed open bounded set to be considered as the base of the fluid domain, while ℎ
is an unknown surface height function which characterises the free surface t in the absence of sin-
gularity formation, e.g. splashes or overturning crests. Moreover, in this work, the Eulerian velocity
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field u is subject to the following flux-free condition on the time-independent part of the boundary,
u ⋅ n = 0 on )Ωℎt ⧵ t, (1.3)

whilst it is subject to the kinematic boundary condition
)ℎ
)t
+

2
∑

j=1
uj
)ℎ
)xj

= 0 (1.4)

on the free surface t. Finally, the pressure p is assumed to be the constant 0 on t for all times.
For a model which includes more realistic physics of the behaviour of large-scale atmospheric flows,
one ought to consider the compressible semi-geostrophic equations together with a variable Coriolis
parameter and a free upper boundary condition; we refer the reader to the monograph of Cullen
([?], chapter 4) for more information on the physics of semi-geostrophic flows. The mathematical
complexity of this problem has meant that so far results in the literature have only been obtained after
relaxing one or more of these physical criteria. We now give a brief summary of those mathematical
results pertinent to system (1.1) above, and systems related to it.

1.1 Brief Overview of the State of the Art
In [?], Benamou and Brenier assumed the atmospheric fluid under study to be incompressible, the
Coriolis parameter constant and the fluid domain to be fixed and independent of time. By regarding
∇p(⋅, t) as a diffeomorphism for all times t, inspired by the original work of Hoskins in [?], the authors
derived what has been termed the dual formulation of the semi-geostrophic equations in geostrophic
co-ordinates that reveals the formal Hamiltonian structure of the dynamics. Indeed, in this formu-
lation, the dynamics are characterised by way of a Monge-Ampère equation coupled with an active
transport equation corresponding to a time-dependent BVloc(ℝ3)-vector field, and this elegant inter-
pretation yields the proof of the existence of weak solutions of the system in geostrophic coordinates
by way of the well-known Polar Factorisation Theorem of Brenier [?].

This result was generalised by Cullen andMaroofi in [?], wherein the authors proved the existence
of weak solutions of the 3-dimensional compressible system, still under the assumption of a fixed fluid
domain subject to a no-flux boundary condition.

In [?], Cullen and Gangbo relaxed the assumption of a rigid fluid domain by assuming the more
physically-appropriate free boundary condition for the incompressible system. In this study, the pres-
ence of a free upper boundary led the authors to reformulate the Stability Principle in terms of a
double minimisation procedure. However, as the authors made the additional assumption of shal-
lowness, together with a constant potential temperature, they resulted in studying a 2-dimensional
system known widely in the literature as the semi-geostrophic shallow water system, posed on a fixed
two-dimensional domain. The novelty in their work was that the presence of the free surface was
transformed away from the problem by considering the aforementioned double minimisation proce-
dure. The approach of this work has served as significant inspiration for us in this article, which rather
treats the full semi-geostrophic equations without any assumption of shallowness. After passing to
variables in geostrophic coordinates, the authors in [?] proved the existence of weak solutions of the
resulting problem in geostrophic coordinates.

All results above were obtained for the dual formulation of the equations in geostrophic coordi-
nates, which is also the setting we consider in the present paper. However, we mention for complete-
ness more recent results regarding the existence of solutions in Lagrangian coordinates. The first step
in this direction was taken by Cullen and Feldman, who proved in [?] the existence of Lagrangian so-
lutions in physical variables for the rigid boundary case, a result that was extended in Cullen, Gilbert
and Pelloni in [?] to the compressible system. In a relatively-recent pair of works [?, ?], Ambrosio,
Colombo, De Philippis and Figalli succedeed in constructing weak solutions of the semi-geostrophic
equations in Eulerian co-ordinates for a small class of initial data.

1.2 Contributions of this Article
Motivated in part by the original unpublished paper of Cullen, Gilbert, Kuna and Pelloni [?], in his
work [?] Cheng recently proved the existence of Lagrangian weak solutions of the incompressible
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system, in three-dimensional space, in a domain with a free upper boundary. He also gave a direct
proof, without appealing to the work of Ambrosio and Gangbo [?], of the existence of weak solutions
of the free-surface system in geostrophic coordinates. The latter result was first announced in the
PhD thesis of Gilbert [?]. In this work, we give a more concise presentation of the results in [?] and
introduce some novel elements:

• To the knowledge of the authors, for the first time, we give a rigorous mathematical formulation
of the Stability Principle (also known as the Convexity Principle) for solutions of the semi-
geostrophic equations. We do this by making use of the notion of inner variation of an energy
functional (see Giaquinta and Hildebrandt [?]). Using this, we offer a precise definition of
stable weak solution of the free-surface system;

• We introduce the notion of-Hamiltonianwhich allows us to develop a general theory of free-
surface problems when the source measure in the Monge-Kantorovich problem is an unknown;

• We obtain our proof of the main existence result (See Theorem 1.1 below) by employing the
general theory of Hamiltonian ODEs in Wasserstein spaces of probability measures due to
Ambrosio and Gangbo in [?]. The strategy of the proof is to show that the Hamiltonian of the
system, which is related to the geostrophic energy, satisfies the conditions necessary to invoke
the general theory of [?]. This approach is more direct than that taken in [?], in which the
author constructs a dynamics by way of a time-stepping algorithm ‘by hand’.

1.3 Main Result of this Article
The main result states the existence of solutions for system (1.1) formulated in geostrophic coordi-
nates, namely equation (2.7) below. We state this for initial surface profiles assumed to be in a space
of Lipschitz continuous functions.
Theorem 1.1. Let 1 ⩽ p ⩽ ∞, and let 2ac(ℝ

3) ∋ �0 ≪ ℒ 3 with a compactly-supported density in
Lp(ℝ3) be given. Let also ℎ0 ∈ W 1,∞(B) be given, and be compatible with �0 in the sense that

ℎ0 = argmin
ℎ∈∗

W 2
2 (�ℎ, �0),

where ∗ is defined in (3.15) below and W2 denotes the 2-Wasserstein distance. It follows that the
free-surface semi-geostrophic equations in geostrophic coordinates given by

{

)t� + ∇ ⋅ (J (idℝ3 − ∇P ∗)�) = 0,

detD2P ∗ = �,
(1.5)

admits a corresponding stable1 global-in-time weak solution (ℎ, �).

We bring to the attention of the reader that while one would expect to furnish the initial-value
problem associated to (1.1) with ℎ0 and ∇P0, one rather furnishes the initial-value problem for (1.5)
with �0 alone. The reason for this will hopefully become clear to the reader in our formulation of the
problem in geostrophic coordinates (see section 2 below). Moreover, the precise definition of stable
global-in-time weak solution of (1.5) will be offered in section 2.5 below.

1.4 Notation
In all that follows: ∧ denotes the exterior product on ℝ3 ×ℝ3;ℒ 3 denotes the Lebesgue measure on
measurable subsets of ℝ3; � ≪ ℒ 3 denotes that a measure � is absolutely continuous with respect
toℒ 3, whileℒX denotes the restriction ofℒ 3 to a measurable subset X ⊂ ℝ3; 2ac(ℝ3) denotes theset of all probability measures � on ℝ3 which admit the property � ≪ ℒ 3 and which have a finite
second moment on ℝ3; idX denotes the identity map x ↦ x on a set X ⊆ ℝ3; if T = T (x, t) is a
space-time map, the we write Tt ∶= T (⋅, t); ifX, Y ⊆ ℝ3 are open sets, then for each k ∈ {1, 2, 3, ...},

1The precise definition of stable global-in-time weak solution of this system is given in 2.14 below.

3



Diffk(X, Y ) denotes the set of all diffeomorphisms of class k between X and Y , while Diff(X, Y )
denotes the set of all infinitely-differentiable diffeomorphisms between X and Y ; ℝ3×3+ denotes the
set of 3 × 3 positive semi-definite matrices with real entries;W k,p(X) denotes the Sobolev space of
distributionally-differentiable maps onX with smoothness k and integrability p, built with respect to
the measure ℒX . Finally, in all the sequel, we identify any measure which is absolutely continuous
(w.r.t. ℒ 3) with its corresponding density.

2 Derivation of the Free Surface Semi-Geostrophic Equations in
Geostrophic Coordinates

In this section, we derive the free surface semi-geostrophic equations in geostrophic coordinates
which we shall study in all the sequel. We do so by following the original approach of Benamou
and Brenier ([?], section 2.2) in the present more complicated case of a time-dependent free surface
t. The main difficulty in performing this derivation is that, unlike in [?], the source measure in a
certain important Monge-Kantorovich problem is an unknown when the fluid domain can vary with
time, and this point requires some careful discussion.

2.1 Alternative Eulerian Formulation of the Equations
The system (1.1) is a formulation of semi-geostrophic dynamics in Eulerian coordinates for a fluid
with Eulerian velocity profile u. However, as the reader will note, there is no explicit time evolution
equation for u. An alternative Eulerian formulation in terms of a conservative vector field can be
obtained by defining a modified pressure P defined pointwise as

P (x, t) ∶= p(x, t) + 1
2
(

x21 + x
2
2
) for x ∈ Ωℎt .

Equations (1.1) can then be written in the equivalent form given by
{

Dt∇P = J (∇P − idΩℎt ) on Ωℎt ,

∇ ⋅ u = 0 on Ωℎt ,
(2.6)

where the matrix J ∈ ℝ3×3 is given by

J =
⎛

⎜

⎜

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎟

⎟

⎠

.

The semi-geostrophic equations now read as an active semi-linear transport equation in an unknown
time-dependent conservative vector field, namely ∇P . The unknown Eulerian velocity field u may
be determined by way of the nonlinear condition that it advect ∇P whilst preserving its property
of conservativeness. As originally observed by Cullen and Purser [?], it is physically meaningful to
solve system (2.6) only for those conservative vector fields which are the gradient of a time-dependent
convex-in-space function. We shall return to the importance of convexity in section 2.5 below.

2.2 Classical Solutions in Eulerian Coordinates
We begin by stating our definition of classical solution of the initial-value problem for (1.1). To do
so, we must first state what we mean by smoothness of maps on a time-dependent graph domain.
Definition 2.1. Suppose � > 0 and k ∈ {0, 1, 2, ...} are given. Let B ⊂ ℝ2 be an open set with
boundary )B of class Ck. If ℎ ∈ Ck(B × (0, T )) is a given non-negative function, we write ℎ to
denote the associated open subset of ℝ4 given by

ℎ ∶=
⋃

t∈(0,�)
Ωℎt × {t}.
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For the given ℎ, we say that a one-parameter family of functions
 ∶=

{

ft ∶ 0 < t < �
} with ft ∶ Ωℎt → ℝ

is of class k (on ℎ) if and only if the map (x, t)↦ ft(x) belongs to Ck(ℎ).
We are now able to offer the following definition of classical solution of the free surface semi-

geostrophic equations.
Definition 2.2 (Global-in-time Classical Solutions in Eulerian Coordinates). Suppose given initial
data

ℎ0 ∈ C1(B) ∩ C0(B) and P0 ∈ C2(Ωℎ0 ) ∩ C
0(Ωℎ0 )

satisfying ℎ0 > 0 on B and
P0(x1, x2, ℎ0(x1, x2)) =

1
2
(

x21 + x
2
2
) for all (x1, x2) ∈ B

are given. We say that the triple (ℎ, P , u) is an associated global-in-time classical solution of (2.6)
for the given data (ℎ0, P0) if and only if for every � > 0, one has that

ℎ ∈ C1(B × (0, �)) ∩ C0(B × [0, �]) with ℎ > 0 on B × (0, �),

the maps P and u are of class 2 and 1 on ℎ, respectively, and satisfy the equations (2.6) and the
boundary conditions (1.3)–(1.4) pointwise in the classical sense. In particular, the solution preserves
the (modified) surface pressure condition

P (x1, x2, ℎ(x1, x2, t), t) =
1
2
(

x21 + x
2
2
)

, for all (x1, x2) ∈ B and 0 ⩽ t ⩽ �,

and the triple (ℎ, P , u) is compatible with the initial data in the sense that
ℎ(x1, x2, 0) = ℎ0(x1, x2) for all (x1, x2) ∈ B

and
∇P (x, 0) = ∇P0(x) for all x ∈ Ωℎ0 .

Owing to the dearth of techniques which would allow one to construct smooth solutions in Eule-
rian coordinates, we instead aim to construct solutions of (1.1) in a different andmoremathematically-
amenable coordinate system.

2.3 Formulation in Geostrophic Coordinates
Let us suppose that (ℎ, P , u) is a global-in-time classical solution of (1.1) with the additional property
that x ↦ ∇P (x, t) is a smooth diffeomorphism for all times t. Following [?], by taking Euclidean
inner products throughout (2.6) with ∇�(∇P (x, t), t) for any � whose associated family {�t}t>0 is ofclass ∞ on ℎ, one can show that

∫

�

0 ∫∇Pt(Ωℎt )

(

)t + (U ⋅ ∇)
)

�(X, t)�(X, t) dXdt = 0

holds true, where
U ∶= J (idℝ3 − ∇P

∗)
and � is defined pointwise as

�(X, t) ∶= detD2P ∗(X, t),
where P ∗(⋅, t) denotes the Legendre-Fenchel transform of P (⋅, t) on the open set Ωℎt . In other words,one has that the quantities ∇P ∗ and � satisfy the coupled system

{

)t� + div(U�) = 0,

detD2P ∗ = �
(2.7)

pointwise in the classical sense on ∇Pt(Ωℎt ) for each time t. As such, this calculation motivates the
following definition of global-in-time weak solution of system (2.7).
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Definition 2.3 (Global-in-time Weak Solutions in Geostrophic Coordinates). Suppose �0 ∈ 2ac(ℝ
3)

and ℎ0 ∈ W 1,∞(B) are given. We say that (ℎ, �) is a global-in-time weak solution of (2.7) if and
only if for any � > 0, one has that

ℎ ∈ C0([0, �);L∞(B)), ℎ(⋅, t) ∈ C0(B),

and the map � ∶ [0, �) → 2ac(ℝ
3) is absolutely continuous and satisfies the transport equation in

weak form given by

∫

∞

0 ∫ℝ3
(

)t�(X, t) + (U ⋅ ∇X)�(X, t)
)

�(X, t) dXdt = 0

for all � ∈ C∞(ℝ3 × (0, �)) for which {�t}t>0 is of class ∞ onℎ. Moreover, for a.e. t ∈ (0, �), the
map P (⋅, t) is a Brenier solution of second boundary value problem for the Monge-Ampère equation

detD2P ∗t = �t

with ∇Pt(Ωℎt ) = supp �t.
Remark 2.4. Whilst we restrict our attention to the case that �0 ∈ 2ac(ℝ

3) in this paper, the case
when �0 is not absolutely continuous w.r.t. ℒ 3 may be tacked using techniques from Ambrosio and
Gangbo ([?], section 7).

In the case of the semi-geostrophic equations in a fixed fluid domain, the second boundary value
problem for the Monge-Ampère equation in (2.7) is fully determined, in the sense that the source
domain Ω (and therefore the source measure ℒΩ) is known and fixed for all times. However, in the
present study of the free surface semi-geostrophic equations in geostrophic coordinates, the source
domain Ωℎt is an unknown of the problem for each t. Indeed, due to the absence of an evolution
equation for the velocity field u in geostrophic coordinates, there is no immediately-obvious way by
which to determine the free surface function ℎ. Understanding how to solve the second BVP for the
Monge-Ampère equation in the case of a free surface is one of the contributions of this paper. Our
means by which to do this is a careful study of the Stability Principle.

2.4 The Geostrophic Energy Functional
The geostrophic energy, defined for solutions ∇p of the semi-geostrophic equations, is given by the
functional

Ωℎt [∇p] = ∫Ωℎt

(

1
2
((ug1)

2 + (ug2)
2) − �x3

)

dx, (2.8)

or equivalently if T = ∇P solves (2.6), then

Ωℎt [T ] = ∫Ωℎt

(

1
2
((T1(x, t) − x1)2 + (T2(x, t) − x2)2) − T3(x)x3

)

dx, (2.9)

where dx denotes the restriction of the Lebesgue measureℒ 3 to the open setΩℎt . Formally, a smooth
solution of the system is to be regarded as stable if and only if it admits the following property:
Principle 2.1 (The Stability Principle). Stable solutions of (2.6) are those which, at each fixed time t,
minimise the energy given by (2.8) with respect to the rearrangements of particles, in physical space,
that conserve the absolute momentum (ug1 − x2, u

g
2 + x1) and the density �.

Of course, what constitute ‘rearrangements of particles’ is yet to be specified in precise mathemat-
ical terms. This principle was expressed in [?] as the requirement that those flows corresponding to
critical points of (2.8) with respect to such constrained rearrangements of particles in physical space
are precisely those flows in hydrostatic and geostrophic balance. By way of some formal calculations
(namely [?], section 3.2), Cullen has shown principle 2.1 formally to be equivalent to the following:
Principle 2.2 (The Convexity Principle). Minima of the energy (2.8) correspond to a modified pres-
sure P (x, t) which is a convex function of x.
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Whilst having been very successful in leading one’s intuition and understanding of the system, and
certainly being of importance when analysing system (2.6) with the tools of elliptic PDE theory, these
principles have not been expressed in the literature in precise mathematical terms. We do this below
by appealing to the notion of inner variation from the general theory of the calculus of variations.

It is important to state that, following the work of Ambrosio and Gangbo ([?], section 8.1(c)) and
noting that the geostrophic energy admits the representation

Ωℎt [T ] =
1
2 ∫Ωℎt

|T (x) − x|2 dx − 1
2 ∫Ωℎt

(

(T3(x))2 + x23
)

dx, (2.10)

we aim in this work to construct a geostrophic dynamics by considering a Hamiltonian built using the
Wasserstein 2-distance, as opposed to the geostrophic energy functional as originally set out in Cullen
[?]. These approaches are equivalent, but there are certain mathematical advantages to working with
the Wasserstein 2-distance.

2.5 Mathematical formulation of Cullen’s Stability Principle
In what follows, we employ the following notion of inner variation of an energy functional (see
Giaquinta and Hildebrandt [?], section 3.1).
Definition 2.5 (First Inner Variation). Suppose X ⊂ ℝ3 is an open bounded set, and c ∈ C1(ℝ3,ℝ).
For some 1 ⩽ p ⩽∞, consider the functional E ∶ Lp(X, dℒX)→ ℝ defined by

E[T ] ∶= ∫X
c(T (x)) dx for T ∈ Lp(X, dℒX).

If the limit exists, we say that ⟨�E[T ],Φ⟩ ∈ ℝ defined by
⟨�E[T ],Φ⟩ ∶= lim

"↓0

E[T ◦Φ"] − E[T ]
"

for Φ ∈ C∞c (X)
is the inner variation of E at T in the direction Φ ∈ C∞c (X), where Φ" ∶= Id + "Φ for " > 0
sufficiently small.

In a natural manner, we can also define the notion of second inner variation of an energy func-
tional.
Definition 2.6 (Second inner variation). Under the same conditions of definition 2.5, if the limit
exists, we say that ⟨�2E[T ]; Ψ,Φ⟩ ∈ ℝ defined by

⟨�2E[T ]; Φ,Ψ⟩ ∶= lim
"↓0

⟨�E[T ◦Ψ"],Φ⟩ − ⟨�E[T ],Φ⟩
"

forΨ,Φ ∈ C∞c (X) is the second inner variation ofE at T in the direction (Φ,Ψ) ∈ C∞c (X)×C∞c (X),where Ψ" ∶= Id + "Ψ for " > 0 sufficiently small.
Using the second inner variation as given above, one can define a notion of stable weak solution

of (2.7). The following definition constitutes a rigorous reformulation of the Stability Principle.
Definition 2.7 (Stable Weak Solutions of (2.7)). Let (ℎ, �) be a global-in-time weak solution of (2.7)
corresponding to given initial data (ℎ0, �0). We say that (ℎ, �) is stable if and only if for each time
t ⩾ 0, it holds that the energy functional EΩℎt defined by

EΩℎt [T ] ∶= ∫Ωℎt
|T (x) − x|2 dx (2.11)

satisfies
⟨EΩℎt [∇Pt],Φ⟩ = 0

and
⟨�2EΩℎt [∇Pt]; Φ,Φ⟩ ⩾ 0

for all Φ ∈ C∞c (Ωℎt ,ℝ3).
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At this point, it is far from obvious how one can construct a solution of the active transport equa-
tion which admits this stability property. The following useful proposition provides a necessary and
sufficient condition for stability of suitably-regular weak solutions.
Proposition 2.8. A global-in-time weak solution (ℎ, �) of (2.7) with the property that ∇P (⋅, t) ∈
W 1,p(Ωℎt ) for a.e. t ∈ (0,∞) and some 3 < p ⩽ ∞ is stable if and only if ∇P (⋅, t) is a critical point
of EΩℎt with the property that Pt is convex on Ωℎt .

Proof. For any Ψ ∈ C∞c (Ωℎt ,ℝ3), one has that
⟨�EΩℎt [∇Pt◦Ψ"] − �EΩℎt [∇Pt◦Ψ0],Φ

"

⟩

= ∫Ωℎt

(

∇Pt(Ψ"(x)) − ∇Pt(x)
"

)

⋅Φ(x) dx,

from which it follows that

⟨�2EΩℎt [∇Pt]; Φ,Ψ⟩ = ∫Ωℎt
Φ(x) ⋅D2P (x, t)Ψ(x) dx.

Thus, it follows from definition 2.7 above that (ℎ, �) is a stable global-in-time weak solution of (2.7)
if and only if ∇P (⋅, t) is a critical point of EΩℎt such that Pt is convex on Ωℎt .

We infer from this proposition that if for a.e. time t, the map ∇Pt minimises the geostrophic
energy EΩℎt in some suitable class of vector fields containing Diff(Ωℎt ), then the associated weak
solution (ℎ,∇P , u) of (2.7) is stable.

It was observed by Benamou and Brenier in the original study of (2.7) posed on a fixed bounded
fluid domain Ω ⊂ ℝ3 that a natural means by which to ensure convexity of the geopotential P (⋅, t) is
to treat the minimisation of the geostrophic energy as a Monge (or, equivalently, in the case we deal
with the cost function in (2.12) below, a Monge-Kantorovich) problem. Indeed, it follows from the
well-known work of Brenier that optimal maps are the realised as the gradient of convex functions,
where c ∶ ℝ3 ×ℝ3 → ℝ is the classical squared Euclidean cost given by

c(x, y) ∶= 1
2
|x − y|2 (2.12)

for x, y ∈ ℝ3. The following proposition is immediate from the above.
Proposition 2.9. A global-in-timeweak solution (ℎ, �) of (2.7)with the property that∇Pt ∈ W 1,p(Ωℎt )
for a.e. t is stable if and only if for a.e. t, ∇Pt is the c-optimal map from the source measureℒΩℎt

to
the target measure ∇Pt#ℒΩℎt

, i.e.

∇Pt = argmin
T∈ (ℒΩℎt

,∇Pt#ℒΩℎt
)
EΩℎt [T ],

where  (�, �) denotes the set of all transport plans from � to �.

We refer the reader to the monograph of Villani [?] for basic concepts in the theory of optimal
transport.

It is now that we face our first major difficulty in the construction of weak solutions of the free-
surface semi-geostrophic system in geostrophic coordinates (2.7). To have a well-posed Monge or
Monge-Kantorovich problem, one needs to provide both the source and target measure. In the current
formulation of the problem in geostrophic coordinates, there is no way by which to determine the free
surface functionℎ, and so the sourcemeasureℒΩℎt

is unknown. We now develop a general framework
in which one may consider free-surface semi-geostrophic dynamics in geostrophic coordinates.
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2.6 Determination of the Source Measure
The idea to which we shall appeal in the sequel (which is consistent with the Stability Principle as
stated in Cullen and Gangbo [?]) is that for each time t it is not only the geopotential P (⋅, t) ∶ Ωℎt → ℝ
that ought to be stable (in the sense of definition 2.7 above), but the free surface t should enjoy some
kind of ‘natural’ stability property as well. In rough terms, the notion of stability we employ is that
a weak solution (ℎ, �) ought to have the property that for almost all times the free surface profile ℎtminimises the functional

� ↦ inf
∈Γ(ℒΩ� ,�t)∫Ω�×ℝ3

c(x, y) d(x, y) (2.13)

over some appropriate class of surface profiles � ∶ Ω → [0,∞), where the absolutely continuous
measure �� ∈ 2ac(ℝ

3) associated to the surface profile � is defined to be
�� ∶= 1Hℒ

3, where H ∶= {(x1, x2, �(x1, x2)) ∈ ℝ3 ∶ (x1, x2) ∈ B}.

Defining a functional by the minimisation requirement (2.13) gives rise to a double minimisation
problem, in which the inner minimisation constitutes a Monge problem (or a Monge-Kantorovich
problem), while the outer minimisation is to be tackled using techniques of the calculus of variations.
To define our notion of stability of free surface dynamics rigorously, we are required to specify the
class of profiles � in which the minimisation is considered. We do this now.
Definition 2.10 (Admissible Class of Fluid Domains). A non-empty class ⊆ 2ℝ3 of subsets is said
to be admissible if and only if it has the following properties:

1. each A ∈  admits the representation
A = Ω� ∶=

{

(x1, x2, x3) ∈ ℝ3 ∶ (x1, x2) ∈ B and 0 < x3 < �(x1, x2)
}

,

for some � ∶ Ω2 → [0,∞] which is of class L1(B);
2. each A ∈  is of unit mass, i.e. ℒ 3(A) = 1 for all A ∈ .
In our context, one interprets each admissible class of sets as the collection of all possible con-

figurations that the free surface geostrophic fluid can assume during its motion. It will be particularly
convenient in what follows to generate classes of admissible sets by functional spaces.
Definition 2.11. Suppose  is a non-empty subset of non-negative maps contained the unit sphere
of L1(Ω). We say that an admissible class of sets  is generated by  ⊂ L1(Ω) if and only if

 =
{

Ω� ∶ � ∈ 
}

.

We shall also employ the notation  to denote the class of characteristic functions associated to
members of , namely

 ∶=
{

1A ∈ L∞(B × [0,∞)) ∶ A ∈ 
}

With these definitions in place, we define one of the fundamental object of interest in this article.
Indeed, we shall focus our efforts on its analysis in the rest of our work.
Definition 2.12 (-Hamiltonian). Let  be an admissible class of fluid domains. The associated
-HamiltonianH ∶ 2ac(ℝ

3)→ [−∞,∞] is defined by
H(�) ∶= inf

�∈
W 2
2 (�, �), (2.14)

for � ∈ 2ac(ℝ
3).

Remark 2.13. The use of the term Hamiltonian will be fully justified in section 3.1 below, when we
understandH as giving rise to a smooth map on aWasserstein metric space of probability measures
for well-chosen .
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The specific properties of a given-HamiltonianH depend on the chosen admissible class.
Therefore the admissible class  should be viewed as a datum of the problem, thereby becoming a
part of the model to be chosen appropriately. In this article we shall work with one ‘natural’ choice
of , as studied in [?], namely all those generated by bounded continuous functions on B.

We are now in a position to define a notion of stable weak solution of the incompressible free
surface semi-geostrophic equations in geostrophic coordinates which depends on the choice of class
 of free surface profiles.
Definition 2.14 (-stable Global-in-time Weak Solution of (2.7)). Suppose that  is an admissible
class of fluid domains. We say that a global-in-time weak solution (ℎ, �) of is-stable if and only if
for a.e. t ⩾ 0, one has that

∫Ωℎt
c(x,∇P (x, t)) d�ℎt (x) = H(�t).

The above definition makes it clear that if is well chosen, one can expect the stability criterion
2.14 to select (in a unique manner) the form of the free surface at each time. In this framework, the
second BVP for the Monge-Ampère equation is thus fully determined, and it is in turn possible to
construct a global-in-time weak solution of the free surface semi-geostrophic equations expressed in
geostrophic coordinates.

3 Proof of the Main Theorem
In all that follows, we work with the particular -Hamiltonian which corresponds to an admissible
∗ which is generated by a class of continuous functions, namely

∗ ∶=
{

Ω� ⊂ ℝ3 ∶ � ∈ C0(B), � ⩾ 0 and ∫B
� = 1

}

. (3.15)

In this section, we draw upon the results of Cheng which aid in showing thatH∗
may be considered

as a Hamiltonian on a Wasserstein metric space of probability measures, following Ambrosio and
Gangbo. Indeed, we quote the following result which is contained in [?].
Proposition 3.1 (Cheng (2016)). Suppose � ∈ 2ac(ℝ

3)with compact support is given. The functional

� ↦ inf
T∈ (�� ,�)∫ℝ3

c(x, T (x)) d��(x) (3.16)

admits a minimum over the class ∗ which is realised by a unique ℎ ∈ ∗. The assignment � ↦ ℎ
is continuous as a map from 2ac(ℝ

3) (endowed with the narrow topology) to L∞(B).

Proof. This follows from [?], corollary 2.11 and theorem 2.16.

3.1 Construction of a Free-Surface Dynamics
In this section we prove our main result, namely Theorem 1.1. As mentioned above, we shall make
use of the theory of Hamiltonian ODE of [?] in order to construct global-in-time weak solutions of
system (2.7). We refer the reader to that work for basic definitions (such as the Fréchet subdifferential
of a map on 2ac(ℝ3), or �-convexity). Let us begin with some definitions.
Definition 3.2 (Hamiltonian on 2ac(ℝ

3)). We say that a map H ∶ 2ac(ℝ
3) → ℝ is a Hamiltonian

on 2ac(ℝ3) if and only if for any �0 ∈ 2ac(ℝ
3), it admits the following three properties:

(H1) There exist associated constants C0 = C0(�0) ∈ (0,∞) and R0 = R0(�0) ∈ (0,∞] such that for
all � ∈ 2ac(ℝ

3) with W2(�, �0) < R0, one has � ∈ D(H), )H(�) ≠ ∅, and w ∶= ∇H(�) satisfies
|w(y)| ⩽ C0(1 + |y|) for �-a.e. y ∈ ℝ3.
(H2) If for � ∈ 2ac(ℝ

3) and {�j}∞j=1 ⊂ 2ac(ℝ
3) one has supjW2(�j , �0) < R0 and �j → � in
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the narrow topology as j → ∞, then there exists a (relabelled) subsequence of {�j}∞j=1 such that
wj ∶= ∇H(�j) and w ∶= ∇H(�) admit the property that wj → wℒ 3-a.e. in ℝ3 as j → ∞.
(H3)H ∶ 2ac(ℝ

3)→ (−∞,∞] is proper, lower semi-continuous and �-convex on 2ac(ℝ3) for some
� ∈ ℝ.

Condition (H1) essentially requires that the growth of the velocity maps ∇H(�) is uniformly
sublinear on bounded sets, while condition (H2) is a stability criterion. Condition (H3) ensures that
any dynamics t ↦ �t which is ‘generated by’ H admits the property H(�t) = H(�0) for all times t,
which is typical of classical Hamiltonian systems on finite-dimensional symplecticmanifolds. Indeed,
as noted by Ambrosio and Gangbo, any HamiltonianH on2ac(ℝ3) gives rise to the following abstractODE thereon,

)t�t + ∇ ⋅ (J∇H(�t)�t) = 0, (3.17)
where J ∈ ℝ3×3 is the matrix

J =
⎛

⎜

⎜

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎟

⎟

⎠

. (3.18)

The utility of this class of evolution equation in our context of the free-surface semi-geostrophic
equations in geostrophic coordinates is that the vector field J∇H(�t) is precisely the geostrophic
velocity field at any time t. With this noted, let us now state in precise terms what we mean by a weak
solution of the initial-value problem associated to (3.17) above.
Definition 3.3 (Global-in-time Weak Solution of (3.17)). Suppose an initial �0 ∈ 2ac(ℝ

3) is given.
We say that � ∶ [0,∞)→ 2ac(ℝ

3) is an associated global-in-time weak solution of (3.17) if and only
if t↦ �t is absolutely continuous and satisfies

∫

∞

0 ∫ℝ3
(

)t� + ∇� ⋅ J∇H(�t)
)

d�tdt = 0

for all � ∈ C∞c (ℝ3 × (0,∞)). Moreover, limt→0+ �t = �0 in the narrow topology on 2ac(ℝ
3).

The strategy of the proof of Theorem 1.1 is to show that H∗
is a Hamiltonian on 2ac(ℝ

3) in
the sense of definition 3.2 above, and moreover that the map J∇H∗

(�) coincides precisely with
the geostrophic wind U in geostrophic coordinates. It will then follow readily that the existence of a
global-in-time weak solution of (3.17) immediately implies the existence of a stable global-in-time
weak solution of (2.7).

We begin by establishing the following basic properties of the mapH∗
on 2ac(ℝ3).

Proposition 3.1. The map � ↦ −H∗
(�) is subdifferentiable, lower semi-continuous and (−1)-

convex on 2ac(ℝ
3).

Proof. Suppose � ∈ 2ac(ℝ
3) is given and fixed. We shall show that )H∗

(�) ≠ ∅. For ease of
presentation, let us define the following maps:

• ∇P denotes the c-optimal map in  (�ℎ, �), where ℎ = ℎ(�)∗ is the surface profile which
minimises the free surface geostrophic energy;

• ∇Q denotes the c-optimal map in  (�k, �), where k = k(�) ∈ ∗ is the surface profile whichminimises the free surface geostrophic energy;
• ∇R denotes the c-optimal map in  (�k, �);
• ∇S denotes the c-optimal map in  (�, �).

11



Suppose � ∈ 2ac(ℝ
3) is arbitrary. One finds that
−H∗

(�) +H∗
(�)

= −∫Ωℎ
c(∇P (x), x) dx + ∫Ωk

c(∇Q(x), x) dx

⩾ −∫Ωk
c(∇R(x), x) dx + ∫Ωk

c(∇Q(x), x) dx

= −∫ℝ3
c(y,∇R∗(y)) d�(y) + ∫ℝ3

c(y,∇Q∗(y)) d�(y)

⩾ −∫ℝ3
c(y,∇Q∗(∇S(y))) d�(y) + ∫ℝ3

c(y,∇Q∗(y)) d�(y)

= −∫ℝ3
c(∇S∗(y),∇Q∗(y)) d�(y) + ∫ℝ3

c(y,∇Q∗(y)) d�(y)

⩾ ∫ℝ3
(∇Q∗(y) − y) ⋅ (∇S∗(y) − y) d�(y) − 1

2
W 2
2 (�, �),

from which it follows by definition that ∇Q∗ − idℝ3 ∈ )H∗
(�). As such, we deduce that −H∗

is
Fréchet subdifferentiable on 2ac(ℝ3). Lower semi-continuity ofH∗

on 2ac(ℝ3) (with respect to thenarrow topology thereon) follows from Cheng ([?], corollary 2.15). Finally, (−1)-convexity of−H∗

follows from the (−1)-convexity of the map � ↦ − 12W
2
2 (�, �) for any fixed � ∈ 2ac(ℝ

3), following
an infimisation over measures generated by ∗ in the first measure argument ofW 2

2 .
Let us now proceed to the proof our main result.

Theorem 3.2. Let 1 ⩽ p ⩽∞ and �0 ≪ ℒ 3 with density of class Lp(ℝ3) and of compact support in
ℝ3 be given. There exists a global-in-time ∗-stable weak solution of (2.7) associated to �0.

Proof. The proof of this result comes in two parts. For the first part, we characterise the minimal
element ∇H∗

(�) of the subdifferential )H∗
(�) to ensure that the HamiltonianH∗

admits proper-
ties (H1) and (H2) and, in turn, that any weak solution t↦ �t of (3.17) is indeed aH∗

-stable weak
solution of (2.7). For the second part, we appeal to [?] to deduce the existence of a weak solution of
the abstract evolution equation (3.17).

We follow the argument from ([?], lemma 6.8). Suppose � ∈ 2ac(ℝ
3) is given. To characterise

the elements of )H∗
(�), we let � ∈ C∞c (ℝ3) and set

gs(y) ∶= y + s∇�(y)

for y ∈ ℝ3 and s ∈ ℝ. Note that for |s| sufficiently small, gs is realised as the gradient of a convex
function. We now define the measure �s ∶= gs#�, and denote by ℎs ∈ ∗ the map which minimises
the argument in the free surface Hamiltonian expressionH∗

(�s), namely

H∗
(�s) = inf

T∈ (�ℎs ,�s)∫Ωℎs
c(x, T (x)) dx.

Let � ∈ )H(�). Combining the (−1)−concavity of H∗
on 2ac(ℝ

3) and making use of ([?], propo-
sition 4.2), we obtain

−H∗
(�s) +H∗

(�) − ∫ℝ3
�(y) ⋅ (R�s� (y) − y) d�(y) +

1
2
W 2
2 (�, �s) ⩾ 0, (3.19)

where R�s� denotes the unique optimal map in  (�, �s). For s ∈ ℝ with |s| taken sufficiently small
for the choice of � ∈ C∞c (ℝ3), we conclude that

W 2
2 (�, �s) = ∫ℝ3

|y − R�s� (y)|2 d�(y) = ∫ℝ3
|y − gs(y)|2 d�(y) = s2 ∫ℝ3

|∇�(y)|2 d�(y)
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and

∫ℝ3
�(y) ⋅ (R�s� (y) − y) d�(y) = ∫ℝ3

�(y) ⋅ (gs(y) − y) d�(y) = s∫ℝ3
�(y) ⋅ ∇�(y) d�(y).

Combining this observation with (3.19), we therefore obtain

−s∫ℝ3
�(y) ⋅ ∇�(y) d�(y) + s2

2 ∫ℝ3
|∇�(y)|2 d�(y)

⩾ −H∗
(�) +H∗

(�s)

⩾ −∫ℝ3
c(g−1s (y), S

�ℎs
�s (y)) d�s(y) + ∫ℝ3

c(y, S
�ℎs
�s (y)) d�s(y),

(3.20)

since gs#� = �s. In the above, S�ℎs�s denotes the unique optimal transport map from � to �ℎs . Notingthat one has the expansion

g−1s (y) = y − s∇�(y) +
s2

2
∇2�(y)∇�(y) + �(s, y),

where � is a function such that |�(s, y)| ⩽ |s|3‖'‖C3(ℝ3). Combining this expression for g−1s with
(3.20), we conclude that

−s∫ℝ3
�(y) ⋅ ∇�(y) d�(y) + s2 ∫ℝ3

|∇�(y)|2 d�(y)

⩾ s∫ℝ3
(S

�ℎs
�s (y) − y) ⋅ ∇�(y) d�s(y) + o(|s|)

as |s| → 0. By definition of gs and �s, one has that �s → � with respect to the narrow topology on
2ac(ℝ

3) as s → 0. Moreover, by the stability result in proposition 3.1 above, we have that �ℎs → �ℎin the narrow topology as s → 0. Hence, dividing both sides first by s > 0 (also s < 0) and letting
|s| → 0, we use the stability of optimal transport maps to obtain

−∫ℝ3
�(y) ⋅ ∇�(y) d�(y) = ∫ℝ3

(

S�ℎ� (y) − y
)

⋅ ∇�(y) d�(y).

Thus, we have that J (��(�)) = J
(

idℝ3 − S
�ℎ
�
), where �� ∶ L2(�;ℝ3) → T�2ac(ℝ

3) denotes the
canonical orthogonal projection operator. We conclude that

J (∇H(�)) = J (idℝ3 − S
�ℎ
� ). (3.21)

By using elementary properties of c-optimal transport maps, one can now check directly that condi-
tions (H1) and (H2) onH∗

hold true. Finally, by an application of ([?], theorem 6.6), we conclude
the existence of a global-in-time weak solution of (3.17). Owing to the characterisation result (3.21),
we may conclude that t ↦ �t is in fact a global-in-time weak solution of (2.7).

4 Closing Remarks
In this note, we chose the admissible class  to be ∗, namely that which is generated by bounded
continuous functions on B. It would be of interest to extend the main result of our article to a strictly
larger class ⊃ ∗ of free surface profiles (e.g.  generated by free surface profiles only in L1(B):
see [?]). However, as we have not shown that all minimisers of the functional (3.16) (in most ‘rea-
sonable’ classes) should be continuous functions on B, it is therefore not obvious that the dynamics
generated byH coincides with, in any sense, that generated byH∗

. Indeed, in many ways, the suc-
cess of the theory we have proposed in this note is contingent uponH generating the same dynamics
for all ‘reasonable’ choices of . This remains an interesting open problem for future work.

Whilst the original initial-value problem of interest is that associated to (1.1), we have only been
able to construct weak solutions of the initial-value problem associated to (2.7), which should be
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considered only as an auxiliary system. Ultimately, one would like to be able to construct solutions
of (1.1) by using solutions of (2.7). The only result to date which achieves this is for the special case
that Ωℎt is a convex subset of ℝ3 (in fact, a fixed convex subset thereof), and is due to Ambrosio,
Colombo, De Philippis and Figalli [?]. As it is unclear (and most likely untrue) that Ωℎt maintains
its convexity at all times, if it is so endowed at time t = 0, we cannot apply the techniques of [?] to
build a weak solution of the free-surface semi-geostrophic equations in Eulerian co-ordinates. Let us
mention also that Caffarelli and McCann have developed in [?] a general theory of optimal transport
in domains with free boundaries. It would be interesting to investigate whether those results can be
used to give an alternative proof of the problem considered here in this work.

It is physically correct, when modelling atmospheric flows as opposed to oceanic flows, to under-
stand the analogue of system (1.1) in which the Eulerian velocity field u is compressible. We hope to
consider this in future work.
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