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ABSTRACT
Linear kernel driven models of the surface Bidirectional Reflectance Distribution
Function (BRDF) are valuable tools for exploiting Earth observation data acquired
at different sun–sensor geometries. Here we present a method that efficiently deter-
mines linear BRDF model weights using Tikhonov smoothing where the smoothing
parameter λ is determined via a Generalised Singular Value Decomposition with
the root mean square error prescribed depending on the MODIS band. We applied
this method to twenty-six different deciduous broadleaf sites across an entire year
using the MODIS Terra and Aqua reflectance data products. Kernel weights and
white sky albedo derived from this GSVD method were generally consistent with
those provided by the MCD43 data products. The GSVD derived results had less
sample variability compared to the MCD43 data products, attributable to the as-
sumed smoothness between kernel weights in the Tikhonov smoothing method. The
GSVD technique consistently outperforms MCD43 in the reconstruction of observed
MODIS reflectance data, of which retrievals from this method will do a better job
of estimating albedo and normalising data to specified geometries.

KEYWORDS
bidirectional reflectance; data analysis; reflectance; regularisation; generalised
singular value decomposition; Taylor diagrams

1. Introduction

Since their inception several decades ago, modern wide-swath remote sensors such as
MODIS Terra and Aqua provide an unprecedented view of biological and ecological
processes across large landscapes (Cleugh et al. 2017; Mu et al. 2013; Guay et al. 2014;
Kussul et al. 2015; Mu et al. 2013). Data products provided by these sensors have
broad applications for terrestrial ecosystems. Some of these applications include (1)
validation and prediction of landscape primary productivity (Turner et al. 2003, 2006;
Hilker et al. 2008; Hufkens et al. 2012; Pan et al. 2014), (2) determining the timing
of phenological changes such as spring green up or disturbance (Soudani et al. 2008;
Hufkens et al. 2012; Garonna et al. 2014; Hirschmugl et al. 2017), or (3) quantifying
biophysical measurements (e.g surface temperature, emissivity, albedo) (Hashimoto
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et al. 2008; Li et al. 2013; Qu et al. 2014). Beyond ecological and biological contexts,
such remote sensing data can also be applied in near real-time applications such as
drought, public health, or disaster management (Mu et al. 2013; Kansakar and Hossain
2016; Mahecha et al. 2017).

For any given point on the surface of the Earth wide swath sensors such as MODIS
provide data at a variety of sun–sensor geometries. Consequently there is a signal
in those data from the Bi–directional Reflectance Distribution Function (BRDF) of
the surface. For many applications it is important to correctly account for this effect,
either to normalize observations to a common geometry or to exploit this information
to estimate onward variables such as albedo. The MCD43 data products are derived
from MODIS Terra and Aqua sensors, which in turn serve as inputs to several other
downstream products. The data products transform surface reflectance ρ at wavelength
ξ, given viewing and illumination geometries Ω′ and Ω, to express them as a linear
transformation of different scattering processes with a series of kernels Kj :

ρ(Ω,Ω′, ξ) =

3∑
j=1

fj(ξ)Kj(Ω,Ω
′). (1)

The variable j indexes the different kernels (isotropic, volumetric, and geometric re-
spectively). The kernels Kj represent photon scattering from isotropic, volumetric,
and geometric processes and quantify the variation of reflectance with the viewing
and illumination geometry, and fj denotes the kernel weights for the contribution of
each kernel at a given wavelength (Roujean, Leroy, and Deschamps 1992; Wanner et al.
1997; Strahler and Muller 1999; Lucht and Schaaf 2000). In the MCD43 product the
isotropic kernel has a value of unity and the volumetric and geometric kernels are the
so–called Ross–Thick and Li–Sparse models (Wanner et al. 1997). When kernel weights
fj in Equation (1) are determined via a given set of m reflectance measurements across
t time periods, Equation (1) can be succinctly described as a matrix equation:

ρ = Kf (2)

where K is a matrix of the kernels Kj , ρ is a vector of m reflectance values and f is
a vector of kernel weights of length n, which for this study equals 1095 (three kernel
weights times the number of days in a year). Since Collection 6 of the MODIS data
processing a 16-day sliding window is applied where the window is moved one day per
retrieval thus generating a daily product. Mathematically Equation (2) does not have
a unique solution when K is not full rank.

There have been a number of developments to kernel-driven BRDF models over
recent years. Important examples include the development of the Li-Transit kernel
(Gao et al. 2000) which selects between the Li-Sparse and Li-Dense kernels at the
sun-sensor geometry transition point at which the two kernels are equivalent. This
provides improved fitting for dense canopies compared to the Li-Sparse kernel that
is used in the operational algorithm. A snow kernel has recently been proposed (Jiao
et al. 2019) to better account for strong forward scattering that is present in snow. This
results in the introduction of an additional free parameter into the inversion, for which
the authors provide a default value that can be used for applications where tuning a
non–linear parameter might not be practical. A modification to improve the hotspot
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representation in the Ross-Thick kernel also exists (Jiao et al. 2016) and closely follows
the modification proposed by Chen and Cihlar (1997).

However, the actual kernels used in the operational MCD43 product have not
changed since the publication of the Algorithm Theoretical Basis Document. The
inversion algorithm, on the other hand, has been updated. The original product used
a 16-day window, which was moved forward in time by eight days for each inversion
and used standard least squares. There were separate data products for Terra and
Aqua MODIS (MOD43 and MYD43 respectively). The current algorithm combines
data from both sensors and weights data to favour the centre of the window more
than those on either side.

One alternative to the 16-day sliding window approach relies on mathematical as-
sumptions based on the temporal structure of kernel weights f . A reasonable assump-
tion in many cases is that the kernel weights relative to time should be smooth. The
approach proposed in Quaife and Lewis (2010) introduced a first order smoothing
matrix B which when considered with Equation (2) led to the following solution for
f :

f = (KTK + λ2BTB)−1KTρ, (3)

where in Equation 3 the hyperparameter λ controls the amount of resulting smoothness
in the BRDF kernel weights f , and T represents matrix transpose. This approach
is more commonly known as Tikhonov smoothing (Tikhonov 1977). The approach
presented in Quaife and Lewis (2010) allowed for a large time window (e.g. K and
B contained information for an entire year to estimate daily f) and the recovery of
kernel weights in domains that exhibited a large degree of temporal variability.

The Tikhonov smoothing approach can easily accommodate multiple daily obser-
vations in the matrix K (as in the case when data from the MODIS Terra and Aqua
satellites are used together), with two key caveats. First, Equation (3) requires param-
eterization of λ for each MODIS spatial pixel; it is unknown whether the same value
of λ can be applied across different spatial domains. Second, Equation (3) requires
matrix inversion, which may become computationally prohibitive as the size of the
matrix increases (Golub and Van Loan 2014).

The goal of this manuscript is to make more robust the approach presented by Quaife
and Lewis (2010), focusing on three key objectives: (1) reformulate the Tikhonov
smoothing presented in Quaife and Lewis (2010) as a constrained least squares problem
in order to determine the hyperparameter λ; (2) corroborate our estimates of the kernel
weights f and associated derived products to existing MODIS data products on a daily
timescale; and (3) provide recommendations for selection of values of λ to allow for the
broader applicability of the least squares and optimization methods across large spatial
and temporal domains. For our analysis we select sites with a distinct phenological
signal, co-located with towers from the FLUXNET database.

2. Methods

2.1. Site Selection & Data Processing

We selected MODIS pixels located in deciduous broad–leaf forests that contained
eddy covariance towers monitored in the FLUXNET database. (www.fluxdata.org).
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The sites selected spanned a range of latitudes and longitudes across seven different
continents (see Figure 1 and Table 1) and the use of deciduous species means that the
sites will exhibit temporally variability with which to test the retrievals.

[Figure 1 about here.]

[Table 1 about here.]

We utilised three different MODIS data products, accessed via the AppEEARS web
service (https://lpdaacsvc.cr.usgs.gov/appeears/, AppEEARS Team (2018)).
The primary data for analysis was daily 500 m MODIS Terra (MOD09GA, Vermote
and Wolfe (2018a)) and MODIS Aqua (MYD09GA, Vermote and Wolfe (2018b)) sur-
face reflectance (ρ in Equation (1)) and solar and viewing azimuth and zenith angles
to compute kernels Kj in Equation (1), using equations developed in Strahler and
Muller (1999); Lucht and Schaaf (2000). We utilised all seven MODIS bands in the
analysis, confining our analysis to measurements made in 2017.

We compare our estimated daily BRDF kernel weights to those provided by the
MCD43A1 data product (combined Terra+Aqua, Schaaf and Wang (2018a)). The
MCD43A1 data product determines kernel weights from a rolling 16 day window
centered on the observation day. (https://lpdaac.usgs.gov/dataset_discovery/
modis/modis_products_table/mcd43a3_v006)

Our derived BRDF kernel weights are utilised to compute white-sky albedo as a
linear combination of the kernel weights (Strahler and Muller 1999; Lucht and Schaaf
2000). We also compare our white-sky albedo to the MCD43A3 data product (Schaaf
and Wang 2018b).

All data products were filtered using the MODLAND “good” quality assurance flags
for both the data quality and state flags. For the MOD09GA data product there are
seven data quality flags (one for each MODIS band) and eight different state flags. For
a given site and time, a reflectance measurement passed QA if all seven data quality
flags and all eight state flags are good. This strict QA filtering was done to avoid
different dimensioned K matrices for each MODIS band. Figure 2 displays the daily
temporal coverage for each of the sites listed in Table 1, along with the number of
unique days utilised in building the matrix of kernel values, K. We applied the same
quality assurance protocols when comparing our results to other MODIS products.

[Figure 2 about here.]

2.2. Formulation of the constrained least squares problem

We formulate Equation (2) as an equality-constrained least squares problem:

minimize ‖Bf‖ such that
‖ε‖√
n

= δ (4)

where ε = Kf − ρ is the residual vector, δ a user-defined tolerance for the residual
norm (described later), and the matrix B is a square, rank-deficient smoothing matrix

(here we assume it is a first order difference matrix). The quantity
‖ε‖√
n

is equivalent

to the root mean square error (RMSE).
To solve this constrained least squares problem, we consider the Tikhonov smoothing

equation for the BRDF kernel weights (Tikhonov 1977) (which is Equation (3) written
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without the inverse):

(KTK + λ2BTB)f = KTρ. (5)

As previously described Equation (5) is a regularised equation that can be applied
to solve a rank-deficient least squares problem. In order to determine our solution f
(and also ‖Bf‖ or ‖ε‖) from Equation (5) the parameter λ must be specified. For
a unique determination of the BRDF kernel weights f from Equation (5) we have

made the assumption that the rank of the matrix
[
KT BT

]T
equals n, the number

of components in f ; by direct calculation we find this is true for all the sites studied
here. We use this formulation to determine daily kernel weights f . Over the course of
the year f has 1095 components, which is 365 times the number of kernels (isotropic,
volumetric, or geometric).

When λ needs specification (which is the case for this study) one approach is to
consider ‖Bf‖ and ‖ε‖ as a parametric curve in λ that is monotonically decreasing
(termed the L-curve, see Figure 5; Hansen (1992); Hansen and O’Leary (1993)). A
choice of λ represents the weighted average between a solution f that minimizes the
residual norm (‖ε‖, λ near 0) or the solution norm (‖Bf‖, λ infinite). To solve Equation
(4) we apply Morozov’s Discrepancy Principle (Hansen 1992, 1996), which selects the
point on the L-curve where ‖ε‖ =

√
nδ. While the level assigned to δ can be arbitrary,

we fix δ to be the typical theoretical accuracy for each MODIS band (see Table 2,
from values published by the Land Surface Reflectance Science Computing Facility
http://modis-sr.ltdri.org/pages/validation.html).

[Figure 3 about here.]

[Table 2 about here.]

2.3. The Generalised Singular Value Decomposition

The selection of λ to solve Equation (4), and by association, the BRDF kernel weights
f , varies for each MODIS band. Iteratively determining the value of λ via matrix
inversion of Equation (5) is computationally inefficient over large time domains. Here
we outline an efficient way to determine λ through the application of the Generalised
Singular Value Decomposition (GSVD, Bai (1992); Golub and Van Loan (2014)) to
Equation (5). The GSVD is similar to the singular value decomposition, with the goal
of diagonalizing a pair of matrices.

The GSVD computes a matrix decomposition of K and B so that K = UΣ[0 R]QT

and B = VM[0 R]QT. The matrices U, Q, V are orthogonal. The non-singular
matrix R is upper triangular. The matrices Σ and M are diagonal non-increasing
matrices with entries bounded between zero and unity. The ratio of corresponding
diagonal entries in ΣTΣ to MTM form what are called generalised singular values
of K and B (Hansen 1996). The specific forms of Σ and M depend on the rank of
the matrices K, B, and [KT BT]T. For the sites we examined (and by association
the construction of the matrices K, B, and [KT BT]T), the application of the GSVD
leads to a diagonalized problem where we can uniquely determine the parameter λ
and the BRDF kernel weights f .

An advantage to applying the GSVD is that the kernel weights f can be ex-
pressed via linear combinations of the GSVD matrices. Similarly, the residual and
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solution norms can also be easily computed via linear combinations of the GSVD ma-
trices (Hansen 1996). We outline the specific matrix decompositions leading to the
determination of f , ‖Bf‖ and ‖ε‖ in the Supplemental data.

We apply LAPACK algorithms to compute the GSVD from K and B (Anderson
et al. 1999). We apply a bisection method to determine the value of λ where ‖ε‖ =

√
nδ.

In the Supplemental data we provide pseudocode to implement ‖ε‖, ‖Bf‖, kernel
weights f , and the bisection method.

2.4. Laplace formulation to determine kernel weights

We also estimated kernel weights assuming the residuals ε followed Laplace (double
exponential) distribution. This approach is similar to the current algorithm behind
the MCD43A1 data product (Wang et al. 2018). Kernel weights are estimated using
data from a sixteen-day sliding window, with the kernel weights for a day of interest
to be day 9 of the sliding window. We require a minimum of seven days worth of data
in the window to determine the kernel weights. We denote kernel weights estimated
from this method as “Laplace”.

2.5. Algorithm Cross-Validation on Subsetted Data

To validate the computational approaches utilized we selected the FLUXNET site
with the largest number of represented days (195 days, site IT-CA1, Figure 2) and
performed a modified cross-validation approach to estimate BRDF kernel weights for
the GSVD and Laplace methods. The reflectance data were randomly sampled to a
certain percentage (25%, 50%, 75%, and 100%) of the 195 days to generate a smaller
vector of reflectance measurements ρ and smaller dimensioned matrices K. With these
smaller datasets we then estimated the kernel weights using the GSVD or the Laplace
approaches.

2.6. Software Utilised

We utilised R (R Core Team 2014) and RStudio (RStudio Team 2015) for data pro-
cessing and analysis. Specific R packages included tidyverse (http://tidyverse.
tidyverse.org) for data processing and visualization, geigen (https://CRAN.
R-project.org/package=geigen) for implementation of the GSVD, and greybox
(https://CRAN.R-project.org/package=greybox) for the Laplace parameter esti-
mation.

3. Results

We present results for six sites from Table 1, selected based according to the num-
ber of reflectance measurements available for analysis. From Figure 2 three of the
sites (AU-Lox, IT-CA1, and ZM-Mon) have a high number of reflectance measure-
ments across 2017; the remaining three (JP-MPF, DE-Hai, US-Wi3) do not. Re-
sults from the sites not shown here can be found via an interactive applet (https:
//jmzobitz.shinyapps.io/BRDF-shiny/). Figure 4 shows the inversion of the kernel
weights (isotropic, volumetric, and geometric) for both MODIS bands 1 and 2, pre-
sented along with the corresponding BRDF kernel weights provided by the MCD43A1
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data product.

[Figure 4 about here.]

Figure 5 compares the computational runtime for GSVD method to the Tikhonov
smoothing in Equation (4). We selected the matrices K, B, and vector ρ from the
site AU-Lox and reflectance band 2 and evaluated our GSVD algorithm compared
to an iterative algorithm that solves Equation (4) through inversion of Equation (5),
applying the same bisection method to determine λ.

[Figure 5 about here.]

Figure 6 compares the calculated white sky albedo for our GSVD method to that
provided by the MCD43A3 data product.

[Figure 6 about here.]

Figures 4 and 6 allow for two different comparisons of the GSVD estimates of f ,
forward modeled reflectance ρ (computed from K with the GSVD estimates of f), and
white-sky albedo to the MODIS data products. We utilize a Taylor diagram (Taylor
2001) to display this variability across all of the sites and MODIS bands analyzed
(Figure 7 for the BRDF kernel weights, Figure 8 for the forward modeled ρ, and Fig-
ure 9 for the white sky albedo). Figure 8 additionally compares measured to modeled
ρ in a 1:1 plot. A Taylor diagram is displayed on a polar coordinate plot with the
radius equal to the modeled standard deviation (in this case the GSVD estimates of
kernel weights, reflectance, or albedo). For comparison, the horizontal axis of the Tay-
lor diagram contains the standard deviation of the reference values (in this case the
MODIS data products). The azimuthal angle in the Taylor diagram is the correlation
coefficient r between the modeled (GSVD) to reference (MODIS) values. In addition,
the centered root mean square difference between modeled to measured values can be
inferred with isoclines that are concentric circles centered at the reference standard
deviation. For ease of comparison with several different sites, the quantities shown on
a Taylor diagram are normalised by the reference standard deviation.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

Figure 10 shows the comparison to GSVD and Laplace kernel weights from randomly
subsampled reflectance data (Section 2.5). The same input data was utilized in the
both inversion approaches. Figure 10 suggests there is less variability in the GSVD
kernel weights even as the number of reflectance measurements decreases. A likely
explanation for this is due to the influence of the smoothing matrix B on the inversion.

[Figure 10 about here.]

Figure 11 shows the distribution of the computed values of λ for each of the different
sites across the different MODIS bands. Generally speaking for five of the MODIS
bands the distribution of λ was uniform across the different sites. The mean value
of λ shown in Figure 11 increases as wavelength decreases, with band 1 (blue) and 2
(green) having notably higher values. A likely explanation for this is that the data in
the shorter wavelengths is more affected by residual noise from aerosols.
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[Figure 11 about here.]

4. Discussion

4.1. Evaluation of the GSVD algorithm compared to the MCD43
products

Our manuscript describes and validates an algorithm to produce efficient and consis-
tent retrievals of the MODIS MCD43 product to a specified degree of accuracy. Similar
to Quaife and Lewis (2010) the value of the smoothness parameter λ is determined
by the RMSE of each waveband, but for this study we have developed an iterative
method to determine λ as part of the solution. Our approach applies a constrained
least squares problem (rather than a weighted inversion as in the current operational
algorithm); additional constraints can be implemented for future development of the
code. Our GSVD method is objectively better than the current operational algorithm
for three primary reasons.

First, our results are based on a strict set of filtering criteria which in most cases
reproduced patterns in the kernel weights and albedo products. Patterns in the kernel
weights and white sky albedo from the GSVD approach generally showed consistency
with expected phenological patterns from deciduous broad–leaf forests, i.e. a signal
that corresponds to timing of leaf–on and leaf–off depending on the timing of the
season and its geographic location (Figures 4 and 6), but can be further compared
using the Taylor diagrams.

We would expect some differences between the GSVD-estimated kernel weights to
the MCD43A1 data products due to the addition of the smoothness matrix B (Fig-
ure 4). Taylor diagrams (Figures 7, 8, and 9) also provide a comprehensive comparison
beyond timeseries comparisons. In Taylor diagrams both the angle and radius are im-
portant. Points that lie close to the horizontal axis with a normalised radius of unity
indicate a high degree of correlation with the modeled standard deviation commen-
surate to the reference value. There is a high degree of correlation for the modeled
reflectances and albedo data products, but less so with the kernel weights (Figure 7).
The standard deviation of the kernel weights derived by our GSVD algorithm was
significantly less than the standard deviation for the MCD43A1 product, which we
attribute to the value of λ generating results smoother in time than the MCD43 oper-
ational algorithm. The reduced standard deviation is consistent across all sites, except
for a small number of instances in bands 5, 6 and 7. Despite this, our albedo estimates
agree relatively closely with those from MCD43 albedo, with the largest deviation
coming from sites with the fewest number of observations.

Second, the GSVD algorithm produced less variability in the BRDF kernel weights
as the number of reflectance data used to estimate kernel weights decreases (Figure 10),
and more closely align with the patterns in the MCD43A1 product. From these results
we infer that the Tikhonov smoothing method used produces temporally consistent
estimates of the kernel weights (and other products derived from BRDF weights) even
when the number of input reflectance data decreases. Generally speaking, consistency
in reproducing a data product (e.g. kernel weights, modeled reflectances, or albedo)
across sites is a direct function of the number of reflectance measurements used in the
inversion, as determined by the applied QA filtering (Figure 2).

Third, our forward modeled reflectances also are consistent with measured re-
flectance compared to the MCD43A1 data product. The Taylor diagram comparing

8



modeled reflectance (Figure 8) from the GSVD approach (salmon circles) have several
sites that are close to the reference value (r = 1 with θ = 0) compared the current
MCD43 algorithm (blue triangles). When a point is close to the reference value on
the Taylor diagram it indicates modeled values that are consistent in pattern to the
reference value (in the case of Figure 8 the reference values are measured reflectances).
The apparent consistency using the GSVD approach is present with modeled albedo
(Figure 9) as well. From these figures we can infer that our retrievals will do a better
job of estimating albedo and normalising data to specified geometries - i.e. the two
primary roles that MCD43 has in the onward MODIS processing chain.

4.2. Evaluation of the GSVD algorithm

The algorithm presented here presents an efficient way to implement Tikhonov smooth-
ing. Usually the value of λ is selected at the corner of the L-curve in Figure 5 (Hansen
1992; Hansen and O’Leary 1993). For this study the value of λ is determined by the
residual norm (=

√
nδ), similar to Morozov’s discrepancy principle (Hansen 1992,

1996). Our approach fixes δ to be the target theoretical accuracy (Table 2); increasing
δ would make the kernel weights f more smooth.

Figure 5 illustrates that iteratively determining the value of λ via matrix inversion
of Equation (5) is computationally inefficient over large time domains. For one site and
band the GSVD method is half the computational time to the Tikhonov smoothing
approach. For the GSVD method a single decomposition can be done for a specified
time period and then applied across different MODIS bands, rather than a separate
matrix inversion for each MODIS band with the Tikhonov smoothing approach. Addi-
tional computational efficiency is gained as the residual norm is a linear combination
of the GSVD decomposed matrices, facilitating selection of λ.

The efficiency of our algorithm hinges on the ability to compute the Generalised
Singular Value Decomposition, which is dependent on the matrix dimensions K and
B. It is known that computation of the GSVD scales on same order of magnitude as
matrix inversion (O(n3), with n being the number of rows of K, see Paige (1986); Bai
(1992)). While this study concentrated over the course of a year, the window can be
shortened to smaller time intervals (such as a quarter or half year) to speed processing.
In addition techniques such as multiparameter Tikhonov regularization (Belge, Kilmer,
and Miller 2002; Chung and Español 2017) or Krylov subspace recycling (Renaut 1998;
Renaut, Lin, and Guo 2012) have the potential to expand this approach for flexibility
in determining λ. Given the consistency of λ across different MODIS bands (Figure 11),
an approximate value of λ would also provide approximate inversions rather than doing
the GSVD. Future work can evaluate if this holds true across different landscapes.

The kernel weights should be non-negative based on physical considerations and
semi-orthogonality of the BRDF kernels (Lucht and Schaaf 2000). In the current
MCD43 algorithm this is accomplished through setting the corresponding kernel weight
to zero and than re-estimating the kernel weights. The GSVD approach implemented
here allows for negative kernel weights; we do not see negative kernel weights as a
limitation of our method for two primary reasons.

First, the occurrence of negative kernel weights with the GSVD approach is pro-
portionally less than what we would find for the Laplace implementation. There are
four cases to consider when comparing the GSVD to the Laplace approach in terms
of positive and negative kernel weights. Through a direct comparison of the two ap-
proaches across each site, band, and time (Figure 12), the GSVD approach produces
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fewer cases of negative kernel weights, and can also generate positive kernel weights
when the corresponding Laplace inversion is negative. By association we would expect
a similar comparison between our GSVD method to the MCD43A1 algorithm.

[Figure 12 about here.]

Second, the occurrence of negative kernel weights is related to the design of B
and can be viewed as a trade-off between a solution (Equation (3) constrained to
the observations Kf = ρ or to a minimum norm solution ‖Bf‖, where the solution is
expressed as a curve parameterised by λ. As λ grows without bound Equation (3) forces
the un-regularised solution f to exist in the nullspace of B. Since the matrix B consists
of first order differences across time, the nullspace for B contains entirely constant
vectors. Through the GSVD transformations that generate a solution f (detailed in
the Supplemental data), one of these constant vectors is negative.

Future refinements to our algorithm can be applied in two approaches. First, a non-
negativity constraint can be incorporated directly into Equation (4) as a constrained
least squares problem. Constrained least squares have separate algorithms for com-
putation (Golub 1973; Bro and De Jong 1997; Chen and Plemmons 2009; Golub and
Van Loan 2014); to the best of our knowledge no study has combined the GSVD ap-
proach with a constrained least squares optimization with non-negativity constraints.
Second, Equation (4) could be defined as minimizing ‖Kf − ρ‖ subject to ‖Bf‖ = 0.
This alternative least squares problem is mathematically equivalent to determining an
f in the nullspace of B that also minimizes the residual norm. Such an approach could
be a more tractable problem to solve because the space of potential solutions for f is
confined to the nullspace of B.

5. Conclusions

We have described a new algorithm for the inversion of linear kernel-driven BRDF
models that allows for retrievals to be performed over arbitrary length time windows,
where the values of the kernel weights can vary within that window and in cases where
data is relatively sparse. Our approach builds on that of Quaife and Lewis (2010) but
includes an efficient automated method for determining the strength of the smoothness
constraint in the inversion. Although the kernel weights retrieved by our method are
notably different from those in the MCD43 product the values of albedo and reflectance
calculated from these are similar to those in MCD43. In particular we find that the
surface reflectance values derived by our method match more closely with data from
the MODIS surface reflectance product than those forward modelled from MCD43
parameters.
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Site ID Latitude (◦) Longitude (◦) Location Fluxnet DOI
AU-Lox -34.4704 140.6551 Loxton DOI:10.18140/FLX/1440247

CA-Oas 53.6289 -106.1978 Saskatchewan - Western Boreal Mature Aspen DOI:10.18140/FLX/1440043

CA-TPD 42.6353 -80.5577 Ontario - Turkey Point Mature Deciduous DOI:10.18140/FLX/1440112

DE-Hai 51.0792 10.453 Hainich DOI:10.18140/FLX/1440148

DE-Lnf 51.3282 10.3678 Leinefelde DOI:10.18140/FLX/1440150

DK-Sor 55.4859 11.6446 Soroe DOI:10.18140/FLX/1440155

FR-Fon 48.4764 2.7801 Fontainebleau-Barbeau DOI:10.18140/FLX/1440161

IT-CA1 42.3804 12.0266 Castel d’Asso1 DOI:10.18140/FLX/1440230

IT-CA3 42.38 12.0222 Castel d’Asso 3 DOI:10.18140/FLX/1440232

IT-Col 41.8494 13.5881 Collelongo DOI:10.18140/FLX/1440167

IT-Isp 45.8126 8.6336 Ispra ABC-IS DOI:10.18140/FLX/1440234

IT-PT1 45.2009 9.061 Parco Ticino forest DOI:10.18140/FLX/1440172

IT-Ro1 42.4081 11.93 Roccarespampani 1 DOI:10.18140/FLX/1440174

IT-Ro2 42.3903 11.9209 Roccarespampani 2 DOI:10.18140/FLX/1440175

JP-MBF 44.3869 142.3186 Moshiri Birch Forest Site DOI:10.18140/FLX/1440238

PA-SPn 9.3181 -79.6346 Sardinilla Plantation DOI:10.18140/FLX/1440180

US-Ha1 42.5378 -72.1715 Harvard Forest EMS Tower DOI:10.18140/FLX/1440071

US-MMS 39.3232 -86.4131 Morgan Monroe State Forest DOI:10.18140/FLX/1440083

US-Oho 41.5545 -83.8438 Oak Openings DOI:10.18140/FLX/1440088

US-UMB 45.5598 -84.7138 Univ. of Mich. Biological Station DOI:10.18140/FLX/1440093

US-UMd 45.5625 -84.6975 UMBS Disturbance DOI:10.18140/FLX/1440101

US-WCr 45.8059 -90.0799 Willow Creek DOI:10.18140/FLX/1440095

US-Wi1 46.7305 -91.2329 Wisconsin Intermediate Hardwood DOI:10.18140/FLX/1440054

US-Wi3 46.6347 -91.0987 Wisconsin Mature Hardwood DOI:10.18140/FLX/1440057

US-Wi8 46.7223 -91.2524 Wisconsin Clearcut Young Hardwood DOI:10.18140/FLX/1440062

ZM-Mon -15.4378 23.2528 Mongu DOI:10.18140/FLX/1440189

Table 1. Description of each FLUXNET site utilized in this study. All selected sites are from deciduous

broadleaf forests. We selected MODIS pixels co-located with the respective eddy covariance tower monitored

in the FLUXNET database. (www.fluxdata.org). Data were accessed through the AppEEARS web service
(https://lpdaacsvc.cr.usgs.gov/appeears/, AppEEARS Team (2018))

15



Band 1 2 3 4 5 6 7
δ (Reflectance) 0.005 0.014 0.008 0.005 0.012 0.006 0.003

Table 2. Utilised values of δ for the GSVD algorithm each MODIS band. The algorithm proceeds to determine

an f such that the residual RMSE equals δ for each band. The δ values reflect the typical theoretical accuracy
for each reflectance band (see http://modis-sr.ltdri.org/pages/validation.html for information regarding

validation of the MOD09 surface reflectance product).
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Figure 1. Geographic distribution of sites from the FLUXNET 2015 dataset for this study.
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Figure 2. Distribution of the daily temporal coverage in 2017 for each of the sites listed in Table 1, where a dot
represents a day where reflectance measurement ρ was utilised to determine BRDF kernel weights (Equation

(3)) for each site and reflectance band using the QA filtering described in Section 2.1. The total number of

unique days is listed on the right hand side of the figure.
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Figure 3. Sample L-curve illustrating the relationship between the solution norm (‖Bf‖) and the residual

norm (‖ε‖). The curve is parameterised by λ, which is a weighting towards a solution conditioned to be more
smooth (minimizing the solution norm) or conditioned on the residual norm.
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Given K, B, ρ, δ

Compute GSVD
(81 s)

Determine λ
using GSVD

with Equation (4).
(1 s)

Compute f
(1 s)GSVD:

Determine λ
with Equation (4)
via Equation (5).

(176 s)

Compute f
(2 s)Tikhonov:

Figure 5. Runtime comparison of the runtime to solve Equation (4) via the GSVD method and the Tikhonov

smoothing method (inversion of Equation (5)) using an iterative bisection method to determine λ. Runtime is

presented for the site AU-Lox and Band 2.
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Figure 6. Calculated albedo for MODIS bands 1 and 2 for six of the MODIS pixels analyzed, determined

from the GSVD inversion presented here (red circles) or the MCD43A1 data product (blue triangles). Some of
the MCD43A3 measurements for a given site were omitted by the quality assurance filtering.
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Figure 7. Taylor diagram for kernel weights (isotropic, volumetric, and geometric respectively) by the GSVD

method across all seven MODIS bands and sites analyzed in this study, normalised by the reference standard
deviation (MCD43A1 data product). The Taylor diagram is a polar coordinate system. The location of a point
on the Taylor diagram conveys the standard deviation in the GSVD estimates, with the angle representing the

correlation coefficient r (radial values of r annotated). The red square on the horizontal axis at r = 1 is the
normalised reference standard deviation. The concentric circles centered at the reference standard deviation

allow for the inference of the centered root mean square difference between the GSVD and the MODIS data

products. Each concentric circle represents centered RMS difference of 0.25.
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Figure 8. Left plots: Taylor diagram for the forward modeled reflectance from the GSVD method (salmon

circles) or the current MCD43A1 algorithm (blue triangles) across all seven MODIS bands and sites analyzed

in this study, normalized by the reference standard deviation (measured MCD43A1 reflectance). This figure
has the same annotations as Figure 7. Each concentric circle represents centered RMS difference of 0.25. Right

plots: Comparison of measured to modeled ρ from the GSVD method (salmon circles) or the current MCD43A1

algorithm (blue triangles) across all seven MODIS bands and sites analyzed in this study.
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Figure 9. Taylor diagram for the white sky albedo from the GSVD method across all seven MODIS bands
and sites analyzed in this study, normalised by the reference standard deviation (MCD43A3 data product).
This figure has the same annotations as Figure 7. Each concentric circle represents centered RMS difference of

0.25.
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Figure 10. Kernel weights (isotropic, volumetric, and geometric respectively) from MODIS band 2, using

sampled data from site IT-CA1. The percentages refer to the percentage of reflectance measurements subsam-

pled. The black line is the MCD43A1 data product for comparison.
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Figure 11. Distribution of optimised values of λ for each MODIS band for the analyzed MODIS pixels. The

number of sites where the GSVD method converged (out of 26) is labeled for each MODIS band.
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Figure 12. Comparison of negative values from the GSVD to the Laplace inversion approach, using kernel
weights across all the sites, band, and days in this study. Cases are grouped compared to when the GSVD or

Laplace inversion produces a positive or negative kernel weight value.
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