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Abstract1

Plant diseases often cause serious yield losses in agriculture. A pathogen’s invasiveness can2

be quantified by the basic reproductive number, R0. Since pathogen transmission between host3

plants depends on the spatial separation between them, R0 is strongly influenced by the spatial4

scale of the host distribution.5

We present a proof of principle of a novel approach to estimate the basic reproductive6

number, R0, of plant pathogens as a function of the size of a field planted with crops and its7

aspect ratio. This general approach is based on a spatially-explicit population dynamical model.8

The basic reproductive number was found to increase with the field size at small field sizes and9

to saturate to a constant value at large field sizes. It reaches a maximum in square fields and10

decreases as the field becomes elongated. This pattern appears to be quite general: it holds for11

dispersal kernels that decrease exponentially or faster as well as for fat-tailed dispersal kernels12

that decrease slower than exponential (i.e. power-law kernels).13

We used this approach to estimate R0 in wheat stripe rust (an important disease caused by14

Puccinia striiformis), where we inferred both the transmission rates and the dispersal kernels15

from the measurements of disease gradients. For the two largest datasets, we estimated R0 of P.16

striiformis in the limit of large fields to be of the order of 30. We found that the spatial extent17

over which R0 changes strongly is quite fine-scaled (about 30 m of the linear extension of the18

field). Our results indicate that in order to optimize the spatial scale of deployment of19

fungicides or host resistances, the adjustments should be made at a fine spatial scale. We also20

demonstrated how the knowledge of the spatial dependence of R0 can improve21

recommendations with regard to fungicide treatment.22

Keywords: basic reproductive number, disease control, disease gradient, dispersal,23

epidemiology, host-pathogen interaction, mathematical model, plant disease, population24

dynamics, spatial scales25
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1 Introduction26

When plant pathogens succeed in infecting their hosts, they colonize the host tissue and deprive27

hosts of resources and energy. This often leads to serious yield losses in agriculture (Strange and28

Scott, 2005). Disease-resistant crop varieties and chemicals (fungicides or antibiotics) are widely29

used to control infectious diseases of plants. But both of these control measures are highly30

vulnerable to pathogen adaptation: pathogens evolve to overcome host resistances and to become31

insensitive to fungicides (McDonald and Linde, 2002). In order to devise effective and durable32

strategies of disease control (Mundt, 2014), a thorough understanding of basic epidemiological33

properties of plant pathogens with the help of appropriate mathematical models is necessary.34

The spread of infectious diseases depends on the contact structure, a network in which each host is35

a node and has a number of weighted, directional links to other hosts. The strength of each link36

represents the probability of transmission from one host to another. In infectious diseases of37

humans and animals contact structures are determined by networks of social contacts. Plant38

pathogens spread over global scales of countries and continents by natural means and through39

networks of trade and exchange (Brown and Hovmoller, 2002; Shaw and Pautasso, 2014).40

However, at a local scale of a single field of crop plants or several adjacent fields, plant pathogens41

spread primarily through passive dispersal of infectious propagules through air, water or soil42

between immobile plants. Insect pests may disperse both actively and passively between hosts43

plants (Mazzi and Dorn, 2012). In both of these cases, the probability of transmission between44

hosts depends on the geographical distance between them. Hence, the contact structure is45

determined by the spatial scales of pathogen dispersal and the spatial scales of the host population.46

Full information on the contact structure is difficult to obtain and to analyze. Several global47

measures are used to characterize networks of contacts, such as the average degree, i. e. the average48
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number of links per host. Yet, a better measure that characterizes the disease spread is its basic49

reproductive number, R0, defined intuitively as “the average number of secondary cases of50

infection generated by one primary case in a susceptible host population” (Anderson and May,51

1986). Mathematically, it is given by the dominant eigenvalue of the next generation operator52

(Heesterbeek, 2002). Hence, the basic reproductive number is a quantity with a clear biological53

meaning that characterizes reproductive fitness of the pathogen. In deterministic models, it54

determines the invasion threshold: if R0 > 1 the disease will spread in the population, otherwise at55

R0 < 1 the pathogen will eventually die out. Therefore, R0 can be used to estimate the critical56

proportion of the host population that needs to be immunized (i. e. vaccinated) in order to eradicate57

the disease (Anderson and May., 1991). Also, R0 often allows one to estimate the final58

(equilibrium) disease level.59

Much attention has been devoted to estimation of R0 for infectious diseases of humans and animals60

(Anderson and May., 1991; Fraser et al., 2009; Hampson et al., 2009). Several studies discuss R0 in61

the context of infectious diseases of plants (Gubbins et al., 2000; Park et al., 2001; Parnell et al.,62

2005; van den Bosch et al., 2008; van den Berg et al., 2011), and in (Montarry et al., 2010) was63

estimated for potato late blight. But only one study provided estimates for wheat stripe rust64

(Segarra et al., 2001) based on measurements of the apparent infection rate r (the rate of growth of65

the disease proportion over time, assuming logistic growth (Vanderplank, 1963)). Another approach66

is to estimate R0 by fitting the solution of a population dynamics model of disease spread to an67

empirical disease progress curve (i. e. the plot of the proportion of disease over time). However, this68

appears to be difficult, because we expect R0 to depend on the spatial scales of the host population.69

In an agricultural setting, crop plants are usually arranged in nearly rectangular fields. Each field is70

characterized by its area S and aspect ratio α. Hence, R0 should depend on S and α, provided that71

the planting density is fixed. Given the wide variation in field sizes and shapes across individual72
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fields and growing regions, countries and continents, a useful estimate for R0 should also capture73

the dependence on the field size and shape. But measuring disease progress curves in many fields74

with different sizes and shapes requires enormous efforts and resources.75

In this study we propose a novel way to estimate the basic reproductive number R0 as a function of76

field size and shape. This approach uses a spatially explicit population dynamics model formulated77

as a system of integro-differential equations. In this approach, estimation of R0 requires knowledge78

of a dispersal kernel, a function that describes dispersal properties of the pathogen. In general,79

estimation of dispersal kernels is a highly non-trivial problem, as often only limited80

spatially-resolved disease data is available. Here, we estimate dispersal kernels using disease81

gradient measurements in which the amount of disease is characterized as a function of the distance82

from a localized source of initial inoculum. These measurements are only possible for some plant83

disease systems, while in other cases only limited disease data can be obtained. In these cases,84

more elaborate statistical methods are necessary to estimate dispersal kernels (Filipe et al., 2012;85

Gibson et al., 2006).86

To provide a proof of principle for this method of estimating R0, we applied it to wheat stripe rust87

(an important pathogen of wheat caused by Puccinia striiformis (Wellings, 2011)), since disease88

gradients for this pathogen were thoroughly measured over large distances (Sackett and Mundt,89

2005a; Cowger et al., 2005). Using these data, we estimated R0 as a function of the field size and90

shape. From this dependence we determined the ranges of field sizes and shapes over which R091

exhibits a considerable change. The advantage of this approach is that, by measuring the disease92

gradient over a large enough distance in a single experiment, one captures the information on the93

dependence of R0 on the field size and aspect ratio. In this way, more useful information can be94

extracted from disease gradient data than thought previously.95
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2 Methods96

We assume that the hosts are continuously distributed across the rectangular field with the97

dimensions dx and dy. The field area is S = dxdy and its aspect ratio is α = dx/dy, so that α close98

to zero refers to long, narrow fields, while α = 1 represents a square field. We trace the densities of99

healthy hosts H(x, y, t), infected hosts I(x, y, t) and removed hosts R(x, y, t) in space and time100

using the system of integro-differential equations101

∂H(x, y, t)

∂t
= rHH(x, y, t) [1−H(x, y, t)/K]− βλ(x, y)H(x, y, t), (1)102

∂I(x, y, t)

∂t
= βλ(x, y)H(x, y, t)− µI(x, y, t). (2)103

∂R(x, y, t)

∂t
= µI(x, y, t). (3)104

105

Here, the force of infection λ(x, y) at a location x, y is determined by integrating over all possible106

sources of infection:107

λ =

∫ dx

0

du

∫ dy

0

dv κ(x, y, u, v)I(u, v, t). (4)108

109

In obtaining Eqs. (1)-(3) we assumed that the characteristic time scale of spore dispersal is much110

shorter than the characteristic time scales associated with other stages of the pathogen life cycle111

and, hence, the density of spores is proportional to the density of the infectious host tissue (see112

Appendix A.4 in Supporting Information for more details). We also neglected the latent113

compartment consisting of hosts that are infected but not yet infectious, in spite of the fact that114

average duration of latent infection was estimated to be around 10 days in wheat stripe rust115

(van den Bosch et al., 1988; Sache and Vallavieille-Pope, 1993). This simplification is justified116

because here we focus on determining R0, the basic reproductive number, at the starting phase of117
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the epidemic. This phase corresponds to the beginning of the growing season of wheat, when the118

senescence of leaves (natural death of hosts) is negligibly small. Under these conditions, latently119

infected hosts are likely to survive and be transformed into infectious hosts. Hence, the basic120

reproductive is not affected by latency. At the same time, latency of stripe rust played an important121

role in distinguishing the primary disease gradients from subsequent pathogen generations when122

collecting the data (Sackett and Mundt, 2005a) that we analyze here.123

The quantities H(x, y, t), I(x, y, t) and R(x, y, t) represent the areas of the corresponding host124

tissue per unit land area. The host tissue could be leaves, stems or grain, depending on the specific125

host-pathogen interaction. Healthy hosts H(x, y, t) grow logistically with the rate rH and the126

“carrying capacity” K, which may imply limited space or nutrients. We consider a single growing127

season and neglect leaf senescence. Furthermore, healthy hosts may be infected by the pathogen128

and transformed into infected hosts with the rate βλ(x, y). The transmission rate β is a compound129

parameter given by the product of the sporulation rate of the infected tissue and the probability that130

a spore causes new infection. Infected host tissue loses its infectivity at a rate µ, where µ−1 is the131

average infectious period. In this way, infected hosts I(x, y, t) are continuously transformed into132

removed hosts R(x, y, t). Here, R(x, y, t) quantifies the amount of host tissue that was previously133

infected, but subsequently lost its ability to produce infectious spores and cannot be re-infected. To134

complete the initial-value problem, the initial conditions for the system of Eqs. (1)-(3) can be135

defined as, H(x, y, t = 0) = H0(x, y), I(x, y, t = 0) = I0(x, y), R(x, y, t = 0) = R0(x, y). Most136

of the results of this study were obtained from the solution of the eigenvalue problem [Eq. (6)137

below] that does not require initial conditions. The results in Sec. 3.3 were obtained using an138

approximate spatially uniform model. Accordingly, in Sec. 3.3 we used spatially uniform initial139

conditions: H(x, y, t = 0) = H0, I(x, y, t = 0) = I0, R(x, y, t = 0) = 0. The border condition140

requires H(x, y, t) = 0 for all x, y that lie outside the field. An approximate version of the model141
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Eqs. (1)-(3), in which the host densities were assumed to be homogeneous in space, was used in142

several previous studies of plant disease epidemics (Hall et al., 2007; van den Bosch and Gilligan,143

2008; Mikaberidze et al., 2014b).144

The integral in Eq. (4) is weighted using κ(x, y, u, v), the dispersal kernel (or contact distribution145

(Mollison, 1977)) that characterizes dispersal properties of the pathogen. The dispersal properties146

as well as the environmental conditions are assumed to be the same along the field. Moreover,147

dispersal is assumed to be isotropic, meaning that a spore has the same probability to move in any148

direction along the two-dimensional field. The latter assumption can be problematic when strong149

winds prevail in a certain direction and may be the cause of discrepancy with the empirical findings.150

In this case, the dispersal kernel is only determined by the distance151

r =
√

(x− u)2 + (y − v)2 (5)152

between the source and the target of infection, i. e. κ(x, y, u, v) = κ(r). For aerially dispersed plant153

diseases, κ(r) is defined as a probability density function for an infectious spore to land at a154

distance r from its source (Nathan et al., 2012).155

In order to determine the basic reproductive number, R0, we perform the linear stability analysis of156

the disease-free equilibrium H(x, y, t) = K, I(x, y, t) = 0, R(x, y, t) = 0 of the system157

Eqs. (1)-(2). Essentially, we examine whether small deviations from the disease-free equilibrium158

grow or die out. This leads to the eigenvalue problem for the Fredholm equation of the second kind159

(see Appendix A.1 for the derivation)160

R0∞

∫ dx

0

du

∫ dy

0

dv κ(r)w(u, v) = σw(x, y), (6)161

where R0∞ = βK/µ is the basic reproductive number in the limit of a very large field. Definition162

8



A. Mikaberidze et al.

of R0∞ here, requires that µ > 0. This holds for wheat stripe rust, where the infectious period was163

estimated to be µ−1 ≈ 30 days (Sache and Vallavieille-Pope, 1993). Also, this infectious period is164

shorter than the duration of the growing season of wheat. By solving the eigenvalue problem165

Eq. (6), we can find the eigenvalues σi and eigenfunctions wi(x, y) that satisfy the Eq. (6). The166

dominant eigenvalue σd determines the basic reproductive number, i. e. R0 = σd.167

An approximate expression for the basic reproductive number for the model Eqs. (1)-(2) can be168

found by applying its intuitive definition (Anderson and May, 1986) and averaging over the spatial169

coordinates. This leads to the expression:170

R0c(x0, y0) =
βK

µ

∫ dx

0

dx

∫ dy

0

dy κ(x, y, x0, y0), (7)171

where we set H(x, y, t = 0) = K, I(x, y, t = 0) = Itot0δ(x− x0)δ(y − y0), R(x, y, t = 0) = 0.172

Here, the approximate basic reproductive number depends on the position x0, y0 of the initial173

inoculum, in contrast to the exact basic reproductive number determined from Eq. (6), which is174

independent on the position of the initial inoculum. The approximate basic reproductive number in175

Eq. (7) does not yield the invasion threshold at R0c(x0, y0) = 1 (Diekmann et al., 1990). However it176

may serve as a useful approximate expression, since the calculation according to Eq. (7) is often177

much simpler than the solution of the eigenvalue problem Eq. (A.3). We found (Appendix A.2) that178

the approximate expression for the basic reproductive number Eq. (7) generally underestimates the179

actual R0, because it neglects the contribution of the subsequent generations of infection. But it180

holds well in the two limiting cases: at small field sizes (i. e. when d� a) and at large field sizes181

(i. e. when d� a).182

R0 is computed by numerically solving the eigenvalue problem in Eq. (6) for different values of the183

field dimensions dx and dy that characterize the field size and shape. Before performing this184
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calculation, we estimated the dispersal kernel κ(r) and the compound parameter R0∞ from185

experimental data (Sackett and Mundt, 2005a; Cowger et al., 2005) [see Appendix A.3 for the186

details of the estimation procedure].187

In these experiments, winter wheat cultivar Jacmar was planted in three replicate plots measuring188

6.1 m wide by 128 to 171 m long, oriented parallel to the dominant wind direction (see Fig. 1 in189

(Sackett and Mundt, 2005a)). Small areas of experimental plots (foci) were artificially inoculated190

by pathogen spores (0th generation). These spores give rise to lesions in the focus (first generation)191

that further produce spores, which are dispersed through the air. This results in infection outside of192

the focus, producing the second generation of pathogen lesions. The corresponding disease severity193

(the proportion of the leaf area infected) is measured as a function of the distance r from the focus.194

We are confident that the observed disease patterns result primarily from the artificial inoculum in195

the focus, rather than natural infection, because stripe rust levels were overall very light in Oregon196

in 2002 (Long, 2003). Further, disease levels declined consistently with distance and often reached197

zero at the farther distances from the inoculum source, which would not be expected if there was198

significant inoculum from outside of the plots.199

When considering fungicide treatment (Sec. 3.3), we take into account the effect of the fungicide on200

the transmission rate of the pathogen using the expression201

β(D) = β0 [1− ε(D)] , (8)202

where the fungicide efficacy, ε(D), is given by the Hill’s function203

ε(D) = εm
D

D +D50

(9)204

and describes the proportion by which the transmission rate is reduced by the fungicide. In Eq. (9),205
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D is the fungicide dose, εm is the maximum fungicide effect at high doses, and D50 is the dose at206

which half of the maximum effect is achieved.207

3 Results208

3.1 Dependence of the basic reproductive number on the field size209

The basic reproductive number, R0, is shown in Fig. 1 as a function of the linear extension d of a210

square field for three different dispersal kernels (Gaussian, exponential and modified power-law).211

These three functional forms are often used to describe dispersal gradients in plant diseases (Fitt212

et al., 1987; Frantzen and Bosch, 2000; Sackett and Mundt, 2005a), but also in other taxonomic213

groups, for example, in pollen, seeds, seedlings, beetles, moths and butterflies (Nathan et al., 2012).214

These three functions represent the three classes of dispersal kernels: “thin-tailed” (Gaussian) that215

decrease faster than exponential, exponential, and “fat-tailed” that decrease slower than exponential216

(power-law). “Thin-tailed” and exponential kernels give rise to travelling epidemic waves with a217

constant velocity, while the “fat-tailed” kernels result in accelerating epidemic waves (Mollison,218

1977; Medlock and Kot, 2003; Cowger et al., 2005; Sackett and Mundt, 2005b).219

For all the three types of dispersal kernels that we considered, the basic reproductive number first220

increases as a function of the field size d and then, eventually, saturates to a constant value (Fig. 1).221

Thus, we find that the qualitative dependence of R0, a more basic epididemiological parameter than222

the epidemic velocity, on the field size is quite robust with respect to the functional form of the223

dispersal kernel. In particular, it is not affected much by the nature of the tails of the dispersal224

kernel. Moreover, we expect this behaviour to hold for any dispersal kernel, as long as it a225

monotonically decreasing function of the distance r.226

The initial growth of R0 versus d follows a quadratic function (see Eq. (A.10)). It occurs because in227
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this range, the field size is much smaller than the dispersal radius a (a characteristic length scale of228

pathogen dispersal), i. e. d� a. Therefore, by making the field larger, more spores will land within229

the field and lead to new infections. In other words, in this range the field size is the limiting factor230

for the pathogen fitness. On the contrary, when the field size is much larger than the dispersal231

radius, i. e. d� a, the basic reproductive number becomes independent of d. Here, pathogen does232

not become fitter on a larger field, because its fitness is now limited by the range of dispersal and233

not by the size of the field.234

While the three curves in Fig. 1 exhibit a universal qualitative behaviour, they differ in the rate at235

which the saturation occurs at large field sizes. The Gaussian dispersal kernel decreases faster with236

the distance r than the exponential dispersal kernel. As a result, R0 grows and saturates as a237

function of the field size d faster for the Gaussian than for the exponential. The result for the238

power-law dispersal kernel is difficult to compare with the results for other kernels, since the power239

law lacks a meaningful characteristic length scale. Asymptotically, at large field sizes R0240

approaches the constant value slower in the case of the power-law dispersal kernel than for the241

other two kernels. However, at small field sizes, R0 as a function of d may grow faster or slower for242

the power-law kernel as compared to the other two kernels, depending on the values of the243

parameters r0 and b. In Fig. 1, we present an example when the R0 for the power law first grows244

faster than that for the Gaussian or exponential dispersal kernels, but subsequently its growth slows245

down and becomes slower than for the Gaussian and exponential (as expected from the asymptotic246

behavior of the corresponding dispersal kernels).247
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3.2 Case study: dependence of the basic reproductive number on the248

field size and shape for wheat stripe rust249

We infer the dependence of the basic reproductive number, R0, on the field size and shape from the250

detailed measurements of primary disease gradients of wheat stripe rust (Sackett and Mundt,251

2005a; Cowger et al., 2005). The outcome of this measurement is shown in Fig. 2 for the two252

largest datasets (Hermiston 2002 and Madras 2002, downwind) obtained in this experiment. These253

two datasets were chosen because they contained measurements over large enough distances that254

allowed us to obtain sound fits. Disease severity strongly depends on the distance r: the value is255

largest closer to the focus and decreases monotonically with r. The data can be fitted well by the256

modified power-law function (solid curve in Fig. 2)257

κPL2(r) = κ0
(
r20 + r2

)−b/2
. (10)258

In contrast, exponential and Gaussian functions provide poor fits (dashed and dotted curves in259

Fig. 2). (For more details on fitting see Appendix A.3.1 and Fig. 6 in the Electronic Supplementary260

Materials).261

Disease gradients, measured in this way, contain information on the three key processes in the262

pathogen life-cycle: spore production, aerial movement of spores, and infection of healthy host263

tissue. We assume that the rate of spore production and the probability to infect healthy host tissue,264

once the spore has landed on it, are homogeneous across the field, i. e. do not depend on the265

distance r between the source and the target of infection [Eq. (5)]. Hence, the compound parameter266

R0∞ = βK/µ that characterizes these processes does not depend on the distance r. Therefore, the267

aerial movement of spores is the only process that depends on the distance r. Further, we assume268

that there is a large enough number of spores produced and the probability of infection is large269
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enough such that the recorded disease severity is proportional to the spore concentration in the air.270

Under these assumptions, our estimate for the dispersal kernel κ(r) is the modified power-law271

function [Eq. (10)] fitted to the disease gradient data and normalized as a probability density272

function (i. e. such that its integral over the whole two-dimensional space equals to unity273

[Appendix A.3.2]). We also estimated the parameter R0∞ from the disease gradient data (see274

Appendix A.3.3) and obtained the value R0∞ = 35± 3 for the Hermiston 2002 downwind dataset;275

and the value R0∞ = 23± 4 for the Madras 2002 downwind dataset.276

Using our estimates for the dispersal kernel, κ(r), and the parameter R0∞ we solved the eigenvalue277

problem Eq. (6) numerically for different field sizes and shapes. In this way, we obtained the278

dependence of the basic reproductive number R0 on the field size (Fig. 3) and its aspect ratio279

(Fig. 4). In Fig. 3, R0 first grows steeply versus the linear extension of a square field and saturates280

towards the asymptotic value R0∞ for large fields. The basic reproductive number is about two281

times larger for the parameter values corresponding to Hermiston 2002 dataset, than for the case of282

Madras 2002 dataset. This difference stems from the difference in the asymptotic values R0∞ and283

also from different shapes of the disease gradients (cf. panel (a) and (b) in Fig. 2).284

The asymptotic value, R0∞, (indicated by the horizontal dashed line in Fig. 3), is approached faster285

in the case of Hermiston 2002 dataset (solid curve in Fig. 3), than for Madras 2002 dataset (dashed286

curve in Fig. 3). The reason for this is a different exponent of the power-law function that best fits287

the corresponding disease gradients (b = 3.04 for Hermiston 2002, Eq. (A.15), and b = 2.23,288

Eq. (A.16)). The disease gradient in Madras 2002 decreases slower due a lower exponent.289

In Fig. 4, R0 exhibits a saturating growth as the field aspect ratio α is increased from 0.01 to 1.290

Hence, the square fields, with α = 1, are most conducive for the disease growth. The basic291

reproductuve number grows faster and saturates at larger values of α in smaller fields (cf. dotted,292

dashed, dash-dotted and solid curves in Fig. 4).293
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A number of empirical studies have reported that, in agreement with our results, smaller plots294

resulted in lower disease levels in wheat stripe rust (Mundt et al., 1996), wheat brown rust295

(Puccinia recondita f. sp. tritici) (Bowen et al., 1984), potato late blight (Paysour and Fry, 1983)296

and Valdensia heterodoxa on Vaccinium myrtillus (Strengbom et al., 2006). However, in a more297

recent study in wheat stripe rust (Sackett and Mundt, 2009) that used considerably larger plot sizes,298

the plot size did not affect the epidemic velocity. Our estimation framework predicts moderate299

differences in the values of R0 between larger square plots and smaller elongated plots used in300

experiments (Sackett and Mundt, 2009) (cf. the white and gray circles in both panels of Fig. 4).301

This is expected to result in higher epidemic velocities in larger plots compared to smaller plots,302

according to theoretical arguments (Keeling and Rohani, 2008). We suggest two possible303

explanations for this discrepancy. First, strong wind with a prevailing direction along the axis of the304

elongated plot was observed in the experimental setting (Sackett and Mundt, 2009), but in our305

model isotropic dispersal was assumed. The differences in R0 between smaller elongated plot and a306

larger square plot that we predict using the model are possibly masked by the wind. This is because307

the wind may increase the pathogen’s R0 in the smaller elongated plot by preventing the spores to308

land outside the plot. Second, a moderate difference of 20-30 % that we predict for epidemic309

velocities may be difficult to detect given the level of experimental uncertainties.310

3.3 Effect of the plot size on the fungicide dose-response311

Control of stripe rust greatly relies on fungicides. Field experiments, in which disease severity is312

measured as a function of the fungicide dose, inform strategies of fungicide treatement. These313

experiments are typically performed on rather small fields, in the range of 20-60 m2. The outcomes314

are used to choose appropriate fungicide doses (Paveley et al., 1998).315

How do the sizes of experimental plots affect the outcomes of dose-response measurements? What316
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implications does it have for disease control? Figure 5 illustrates the effect of the plot size on the317

fungicide dose-response as predicted by the model. Severity of stripe rust [panel (a)] and the318

pathogen’s basic reproductive number, R0, [panel (b)] are shown versus the fungicide dose for two319

field sizes: 60 m2 (solid) and 90 m2 (dashed). We fitted the solid curve in Fig. 5 (a) to the320

dose-response data (Bounds et al., 2012) (filled triangles), while the other three curves in Fig. 5(a,b)321

were devised from it using theoretical considerations. In particular, we chose to use a non-spatial322

approximation to the full solution of the system of Eq. (1)-(3), which assumes homogeneous323

mixing and more specifically assumes that the disease severity changes over time according to a324

logistic function [Eq. (A.49) in Appendix A.5]. This choice is justified, because there is no325

availability of empirical data on spatial dynamics within individual field-plots in fungicide326

dose-response experiments. Nevertheless, the effect of the spatial extension is incorporated through327

the dependence of the basic reproductive number, R0, on the field size that was determined above.328

We also assumed that the field size and the fungicide affect the basic reproductive number329

independently, hence their effects enter as multiplicative factors. (Please refer to Appendix A.5 for330

details).331

Disease severity strongly depends on both the fungicide dose and the field size (cf. solid and332

dashed curves in Fig. 5(a)). R0 also depends on both the fungicide dose and the field size (cf. solid333

and dashed curves in Fig. 5(b)), but the changes in R0 are less pronounced than changes in disease334

severity. Hence, in this parameter regime of large R0-values, moderate changes in R0 may lead to335

considerable changes in disease severity.336

What do these insights mean for disease control? First, achieving good disease control in a337

relatively small plot (. 100m2) does not guarantee good control in larger fields. For example, in338

the 60 m2 plot, disease severity of < 5% was reached at a fungicide dose D = 0.25 [solid curve in339

Fig. 5(a)]. But in a larger field of 90 m2 this dose was able to reduce the severity only down to about340
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30% [dashed curve in Fig. 5(a)]. Therefore, typical dose-response measurements that are341

performed in the range of field sizes of 30-60 m2 may strongly underestimate the disease severity in342

larger fields used by growers. As a result, recommendations with regard to fungicide dosage and343

other control options based on dose-response measurements in small fields may be unreliable.344

However, a considerable increase in sizes of experimental plots seems impractical, because it345

would greatly increase the costs. Moreover, even when using larger plots, one would still not be346

certain that the plot is large enough to reach saturation. Here, we propose a more economical347

alternative. Using the dependence of the basic reproductive number, R0, on the plot size in the348

absence of fungicides, this approach allows to extrapolate a dose-response curve, measured for a349

particular plot size, to other plot sizes. Figure 5 illustrates possible outcomes. Based on the350

empirical dose-response curve for the 60 m2 plot and the dependence of R0 on the plot size for351

stripe rust that we determined above in Sec. 3.1 (Fig. 3), we found the dependence of R0 on the352

fungicide dose for different field sizes [Fig. 5(b)]. After that, we computed dose-response curves at353

different field sizes: an example for a somewhat larger field of 90 m2 is shown as a dashed curve in354

Fig. 5(a). Thus, the scenario shown in Fig. 5 illustrates how the knowledge of the basic reproductive355

number can inform strategy of fungicide application. These results should not be considered as356

quantitatively exact, because we combined the fungicide dose-response data and disease gradient357

data from different locations. But we believe they illustrate a useful principle and reflect correctly358

important qualitative trends.359

4 Discussion360

We found that the basic reproductive number, R0, of crop pathogens depends on the size and361

geometry of the field planted with host plants using a single-field, single-season epidemic model.362
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R0 increases with the field size at small field sizes and saturates to a constant values at large field363

sizes. The value of R0 reaches its maximum in square fields and decreases as the field becomes364

elongated, while retaining the same area. This is because for smaller and more elongated fields, a365

larger number of pathogen spores will land outside the field and not reach host plants. This pattern366

appears to be quite general: it holds for dispersal kernels that decrease exponentially or faster (i. e.367

Gaussian kernels) as well as for “fat-tailed” dispersal kernels that decrease slower than exponential368

ones (i. e. power-law kernels). We expect the same qualitative behavior for any dispersal kernel,369

provided that it is a monotonically decreasing function of the distance r between the source and the370

target of infection.371

As expected, this qualitative picture also holds for the dispersal kernels estimated in wheat stripe372

rust. The asymptotic values of the basic reproductive number at large field sizes (R0∞ = 35± 3 for373

Hermiston 2002, R0∞ = 23± 4 for Madras 2002 dataset) are noticeably smaller than the estimate374

of around 60 that was obtained (Segarra et al., 2001) from the measurements of the apparent rate of375

infection r (van den Bosch et al., 1988). This difference may result from differences in wheat376

cultivars, pathogen strains and environmental conditions in these field experiments.377

We assumed that the pathogen dispersal is isotropic with the dispersal kernel estimated from the378

downwind disease gradient. This is a major simplification that will affect the dependence of R0 on379

field size and field geometry. Anisotropy of the dispersal kernels was detected in P. striiformis380

Soubeyrand et al. (2007) and Mycosphaerella fijiensis Rieux et al. (2014), an important pathogen of381

banana trees. However, we expect that this assumption does not influence much our estimates of382

R0∞. This is because R0∞ corresponds to the situation when the field is large enough, such that it383

does not limit pathogen dispersal. Hence, our R0∞ estimates are determined by384

spatially-independent estimates of the transmission rate that we obtained from downwind disease385

gradients.386
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The estimates for R0∞ that we obtained for wheat stripe rust are considerably larger than typical387

estimates for the basic reproductive number for human or animal diseases. For example, the388

relatively large values of R0 were estimated for childhood diseases such as measles (14-18) and389

pertussis (5-18) (Anderson and May., 1991), the estimates for the “swine flu” influenza H1N1 were390

in the range 1.4-1.6 (Fraser et al., 2009), the estimates for rabies were in the range 1-2 (Hampson391

et al., 2009). A possible exception is malaria, where the estimates of R0 between one and more392

than 3000 were reported (Smith et al., 2007). The R0 determines the critical proportion pc of the393

host population that needs to be immunized in order to eradicate the disease (pc = 1− 1/R0)394

(Anderson and May., 1991). For example, our estimate for the wheat stripe rust of R0 ' 30 yields395

the critical proportion pc ' 0.97. This may be one of the factors to explain why it is so difficult to396

eradicate rusts, while there are cases of dangerous human diseases (for example, small pox) that397

were eradicated with the help of vaccination programmes (Anderson and May., 1991). This398

difference in the values of R0 may result from a different biology of hosts (animals versus plants),399

or, alternatively, it could be due to different nature of the diseases, i. e. systemic diseases in the case400

of humans and animals versus local lesion diseases in the case of wheat stripe rust. To determine401

which of these two explanations is more plausible, one needs to estimate R0 for systemic disease of402

plants and local lesion (i. e. skin diseases) of animals. This difference may also be caused by the403

characteristic features of host populations in agroecosystems, where genetically uniform hosts are404

planted with high densities in a homogeneous environment. Hence, it would be interesting to405

compare the R0 of crop pathogens with the R0 of plant pathogens in natural ecosystems. To make406

these comparisons valid, one needs to include seasonal cycles of hosts. In the case of annual crops407

like wheat, this means the consideration of the “between-season” R0, in addition to the408

“within-season” R0 discussed in this study.409

These findings may help manage some plant diseases, if one knows the spatial scales, i. e. field410
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sizes and aspect ratios, over which R0 changes considerably. We found that the R0 of wheat stripe411

rust exhibits a large change at a fine spatial scale: when the linear dimension of a square field412

increases from zero to about thirty meters (Fig. 3). The most substantial change of R0 as a function413

of the field aspect ratio occurs between aspect ratios of 0.01 and 0.2. These results suggest, that414

decreasing field sizes and elongating fields may not be a practical measure to control wheat stripe415

rust, because the beneficial effect of lowering the disease levels is in this case unlikely to outweigh416

the economical costs associated with using smaller and longer fields. But this method could be417

feasible for controlling other diseases of crops or pests (for example, western corn rootworm that418

can disperse over longer distances (Carrasco et al., 2010) than wheat stripe rust). We hope that our419

study will stimulate more detailed empirical characterization of transmission rates and dispersal420

kernels for different crop pathogens over long enough distances, such that the framework proposed421

here could be used to infer how the R0 depends on the spatial scales of the host population.422

Although similar ideas about possibilities to control plant diseases by adjusting field size and423

geometry were explored mathematically in (Fleming et al., 1982), their framework based on424

reaction-diffusion models was not capable of including realistic dispersal kernels. Hence, they425

could not estimate the spatial scales at which the pathogen fitness changes considerably.426

The experiments in Hermiston 2002 and Madras 2002 used the same planting density, the same427

wheat cultivar and the same pathogen race was used for initial inoculation. But the environmental428

conditions were somewhat different in these two locations. In particular, the inoculation was429

substantially more successful in Hermiston than in Madras. Hence, we can largely attribute the430

difference in the disease gradients between these two datasets and the resulting difference in the431

estimated values of the basic reproductive number to the difference in the environmental432

conditions. In contrast, in natural epidemics the variation in the outcomes of pathogen dispersal can433

also result from the genetic variation in pathogen and host population (Tack et al., 2013).434
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Therefore, it would be interesting to explore the effect of simulataneously adjusting the spatial435

scales and introducing genetic diversity to the host population by using host mixtures or multiline436

cultivars (Mundt, 2002; Mikaberidze et al., 2014a)437

From another point of view, our findings could be helpful for choosing the minimum plot sizes and438

aspect ratios for field experimentation that focuses on transmission properties of plant pathogens.439

For the experimental plots to be representative of larger fields used by growers in terms of the440

pathogen’s basic reproductive number, the plot size and aspect ratio should be chosen such that they441

correspond to the start of the saturation of the dependency of R0 on the field size (Fig. 3) and aspect442

ratio (Fig. 4). Thus, our results indicate that in the case of wheat stripe rust, the plot area at which443

saturation starts is about 0.25 ha and the aspect ratio should be at least 0.2 (this corresponds444

approximately to a 20 m×110 m elongated plot, or, alternatively, a 50 m×50 m square plot). In445

Sec. 3.3 we presented a specific scenario illustrating that the knowledge of the spatial dependence446

of the basic reproductive number, R0, can inform fungicide treatment strategies. Our analysis447

revealed that in the range of plot sizes typically used to measure the fungicide dose-response curves448

(20-60 m2), both the disease severity and the basic reproductive number depend strongly on the449

field size. We proposed a method to extrapolate the dose-response curves measured in small plots450

to larger plots based on the knowledge of R0.451

Our results could also help to manage fungicide resistance. Several different fungicides may be452

applied over smaller, elongated patches within a larger field. In a future study, we plan to determine453

conditions, when this spatial arrangement of fungicide applications gives the sensitive strain a454

selective advantage over different resistant strains. This may only work for asexually reproducing455

pathogens, such as wheat stripe rust outside the Himalayan region and surrounding areas. This456

strategy allows one to keep the overall field size large enough to be economically advantageous, but457

requires availability of several different fungicides that have little or no cross-resistance. The same458
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reasoning applies also for the case of break-down of disease resistance in host plants. In this case,459

host cultivars with different disease resistances should be arranged in smaller, elongated patches460

within a larger field. Favorable arrangements of these patches with different fungicides and host461

cultivars that would reduce selection for fungicide resistance and minimize break-down of host462

defences can be investigated using dynamical simulations of the population dynamics model based463

on Eqs. (1)-(3).464

So far we discussed disease control on the level of a single field of crops. But in practice, major465

crops such as wheat are grown in cultivated landscapes that consist of many fields. Consider the466

situation when the total area of the landscape and its proportion allocated for wheat cultivation are467

fixed. Under these constraints, what is an optimal arrangement of wheat plots across the landscape468

in terms of disease control? Our finding that pathogen fitness decreases in smaller and more469

elongated fields can be used to optimize the spatial structure of cultivated landscapes in the case470

when every individual field is far enough from other fields such that inter-field pathogen471

transmission is negligible. This is only possible when the area allocated for wheat cultivation472

occupies only a moderate fraction of the total landscape area. But if the area allocated for wheat473

constitutes a large fraction of the total landscape area, making fields smaller will increase their474

number and bring them closer to each other. Also, elongated fields may lead to better connectivity475

between fields in terms of pathogen dispersal. These effects will likely increase the pathogen’s476

basic reproductive number over the landscape scale. We expect that the trade-off between the477

pathogen transmission within individual fields and between different fields will lead to intermediate478

optimum field sizes and aspect ratios. To quantify these optima, epidemic models need to include479

both the scale of single fields and the regional landscape scale (Parnell et al., 2006; Papaı̈x et al.,480

2014). Our study lays a solid foundation for future modeling work in this direction.481
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Table 1: Variables and parameters

Description Dimension

Variables

H(x, y, t) Density of healthy host tissue dl

I(x, y, t) Density of infected host tissue dl

Parameters

dx, dy Linear dimensions of the field along x and y m

a Characteristic spatial scale of pathogen dispersal (dispersal radius) m

β Transmission rate days−1

µ−1 Average infectious period days

rH Growth rate of healthy host tissue days−1

K “Carrying capacity” of the healthy host tissue dl

R0∞ Basic reproductive number in the limit of a very large field dl

Functions

κ(r) Dispersal kernel m−1

R0(dx, dy) Basic reproductive number dl

λ(x, y) The force of infection [Eq. (4)]
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Figure 1. Basic reproductive number R0 as a function of the field size d for the two-dimensional627

field according to the numerical solution of Eq. (6) (solid green) using (i) the Gaussian [Eq. (A.21)628

at n = 2, a = 10m], (ii) the exponential [Eq. (A.21) at n = 1, a = 10m] and (iii) the power law629

dispersal kernel [Eq. (A.19) at r0 = 1 m, b = 2.1]. Model parameters: R0∞ = βK/µ = 2.630

Figure 2. Disease severity of wheat stripe rust is plotted as a function of the distance from focus,631

according to outcomes of field experiments (Sackett and Mundt, 2005a; Cowger et al., 2005). Two632

datasets, Hermiston 2002 downwind (left panel) and Madras 2002 downwind were fitted with the633

exponential function [Eq. (A.21) with n = 1, dashed curve], the Gaussian function [Eq. (A.21) with634

n = 2, dotted curve] and the modified power-law function [Eq. (A.19), solid curve].635

Figure 3. Basic reproductive number R0 as a function of the field size d of a square field calculated636

[by solving numerically the eigenvalue problen Eq. (6)] using the modified power-law dispersal637

kernel [Eq. (10)] fitted in Fig. 2 to disease gradient datasets (i) Hermiston 2002 downwind (solid638

curve), and (ii) Madras 2002 downwind (dashed curve) obtained in (Sackett and Mundt, 2005a;639

Cowger et al., 2005). Horizontal dashed lines show the asymptotic values of the basic reproductive640

number at large field sizes, R0∞, for Hermiston 2002 (upper line) and Madras 2002 (lower line)641

datasets. Error bars represent 95 % confidence intervals for R0∞ estimates (see Appendix A.3).642

Figure 4. Basic reproductive number R0 as a function of the field aspect ratio dx/dy (the field area643

S = dxdy was kept the same). The calculation was performed numerically using the power-law644

dispersal kernels fitted to disease gradient data (Fig. 2) from Hermiston 2002 (upper panel) and645

Madras 2002 (lower panel) datasets obtained in (Sackett and Mundt, 2005a; Cowger et al., 2005).646

Different curves show the R0 for different field areas: S = 4 ha (yellow solid), S = 1 ha (blue647

dashed), S = 0.37 ha (red dash-dotted), S = 0.04 ha (orange dotted).648
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Figure 5. Dependence of stripe rust severity (panel (a)) and the basic reproductive number, R0,649

(panel (b)) on the fungicide dose (epoxiconazole) for two different sizes of square fields:650

S = 60m2 (blue, solid) and S = 90m2 (red, dashed).651
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