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Accurate, high-throughput phenotyping for quantitative traits is a limiting factor for progress in plant breeding. We developed an
automated image analysis to measure quantitative resistance to septoria tritici blotch (STB), a globally important wheat disease,
enabling identification of small chromosome intervals containing plausible candidate genes for STB resistance. 335 winter wheat
cultivars were included in a replicated field experiment that experienced natural epidemic development by a highly diverse but
fungicide-resistant pathogen population. More than 5.4 million automatically generated phenotypes were associated with 13,648
SNP markers to perform the GWAS. We identified 26 chromosome intervals explaining 1.9-10.6% of the variance associated
with four independent resistance traits. Sixteen of the intervals overlapped with known STB resistance intervals, suggesting that
our phenotyping approach can identify simultaneously (i.e., in a single experiment) many previously defined STB resistance
intervals. Seventeen of the intervals were less than 5Mbp in size and encoded only 173 genes, including many genes associated
with disease resistance. Five intervals contained four or fewer genes, providing high priority targets for functional validation.
Ten chromosome intervals were not previously associated with STB resistance, perhaps representing resistance to pathogen
strains that had not been tested in earlier experiments. The SNP markers associated with these chromosome intervals can be
used to recombine different forms of quantitative STB resistance that are likely to be more durable than pyramids of major
resistance genes. Our experiment illustrates how high-throughput automated phenotyping can accelerate breeding for
quantitative disease resistance.

1. Introduction

Genome-wide association studies (GWAS) provide a
powerful approach to identify genetic markers associated
with important quantitative traits in crops (e.g., [1, 2]).
The single nucleotide polymorphism (SNP) markers sig-
nificantly associated with a trait in the GWAS can be
directly used in breeding programs for marker-assisted
selection or genomic selection and also as tools to enable
map-based cloning of the corresponding genes underlying
quantitative traits.

An abundant supply of SNP genetic markers is now avail-
able for most crops as a result of rapid advances in sequenc-
ing technologies. Because phenotyping technologies have not
developed as quickly as genotyping technologies, the ability
to generate accurate and reproducible phenotypes for quanti-
tative traits is now the primary limitation to progress in
breeding for favorable traits [3, 4], including resistance to
pests and pathogens [5]. Many research groups are working
to develop automated/semiautomated and high-throughput
phenotyping of important traits under field conditions, with
some reports of success [5–7], but we remain far from the
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2 Plant Phenomics
goal of using automated phenotyping to speed progress in
plant breeding for useful traits.

Septoria tritici blotch (STB), caused by the fungus Zymo-
septoria tritici, is currently the most damaging leaf disease on
wheat in Europe [8] and is one of the most significant dis-
eases on wheat around the world [9]. Z. tritici has a mixed
reproductive system, producing airborne ascospores through
sexual reproduction that can be disseminated over distances
of several kilometers and asexual conidia that are splash-
dispersed over spatial scales of only 1-2 meters during the
course of a growing season [10]. Z. tritici populations are
highly variable within fields as a result of its mixed reproduc-
tive system, large effective population sizes, and high levels of
gene flow among populations [10, 11]. These properties
provide a high evolutionary potential that leads to rapid
development of virulence against resistant cultivars [10,
12] as well as resistance to fungicides [10, 13, 14]. STB in
Europe is controlled mainly by applying fungicides costing
over $1 billion per year [15], but many European Z. tritici
populations have now evolved sufficiently high levels of
resistance that fungicides are losing their efficacy [16, 17].
The European Union is planning to ban many fungicides
in the near future (EU Regulation 1107/2009). These devel-
opments have stimulated new efforts to increase STB resis-
tance through plant breeding.

Many studies have identified strain-specific STB resis-
tance genes that could prove useful in breeding programs
(summarized in [18]). These genes are typically identified
and mapped by inoculating a single strain of Z. tritici onto
a segregating population derived from a cross between two
parents that differ in their resistance to that strain, with dis-
ease ratings often made on seedlings under greenhouse con-
ditions. STB resistance in the field is mainly quantitative,
but some examples of major gene resistance were identified
(e.g., Stb6) that were recently shown to follow the gene-for-
gene (GFG) pattern of inheritance [19, 20]. Unfortunately,
major STB resistance genes such as Stb6 typically failed
within 3-4 years of deployment as a result of pathogen evolu-
tion [12]. A different breeding approach that is expected to
slow pathogen evolution and be more durable is to make
pyramids of quantitative resistance (QR) genes with addi-
tive effects [21, 22]. This approach requires the identifica-
tion and deployment of QR that is effective across a
broad cross section of the Z. tritici population as opposed
to major gene resistance that works against only a small
fraction of the strains found in natural field populations.

Identification of QR is difficult for most pathogens for
many reasons including (1) measurement error associated
with visual assessments of disease, (2) inherent differences
in disease measurements conducted by different people, (3)
differences in expression of QR in different environments,
(4) the phenotypic effect associated with a QR locus (e.g., 5-
10% reduction in disease) which can be too small to detect
using disease ratings that operate in larger increments (e.g.,
0-9 scales that differentiate disease increments of 10%), and
(5) the occurrence of mixed infections by several pathogens
under typical field conditions, with overlapping symptoms
that often cannot be teased apart (e.g., STB symptoms look
very similar to the symptoms associated with tan spot and
stagonospora nodorum leaf blotch). These factors combine
to create a low heritability for QR that slows progress in accu-
mulating different sources of QR in breeding programs.

The recent development of automated image analysis for
STB enabled rapid acquisition of large datasets, including
millions of phenotype datapoints that were highly informa-
tive under both greenhouse and field conditions, and facili-
tated the cloning of genes encoding several avirulence
effectors, including AvrStb6 [20] and Avr3D1 [23, 24], as well
as the Zmr1 gene affecting melanization of Z. tritici colonies
and pycnidia [25, 26]. We took advantage of the high levels
of fungicide resistance in Swiss populations of Z. tritici by
using fungicide treatments to eliminate competing patho-
gens in a replicated field experiment [16]. The fungicide
treatments enabled a pure-pathogen read-out of quantitative
resistance to STB caused by a genetically diverse, natural
population of Z. tritici in an epidemic that developed under
natural field conditions. Here, we use this extensive pheno-
type dataset in the GWAS to identify 26 chromosome inter-
vals associated with quantitative STB resistance in a broad
panel of 335 elite European winter wheat cultivars. Many
of these intervals explained 6%-10% of the variance for the
associated resistance trait. Several of the intervals contained
a relatively small number of annotated genes, including
genes known to be associated with disease resistance in
wheat or other plants. There was a significant enrichment
(P < 0:0001) for genes encoding putative receptor kinases
and kinases within the 17 chromosome segments spanning
less than 5Mbp. Other candidate genes for STB resistance
encoded NB-LRR proteins, F-box LRR proteins, sugar
transporters, an ABC transporter, superoxide dismutase,
and a TCP transcription factor, illustrating how automated
image analysis can lead to identification of plausible candi-
date genes for quantitative disease resistance.

2. Materials and Methods

335 European winter wheat cultivars chosen from the GABI
wheat panel [27] were grown in 1:1 × 1:4m plots replicated
twice as complete blocks at the Field Phenotyping Plat-
form of the ETH research station in Lindau, Switzerland
(47.449°N, 8.682°E, 520masl) [28]. The plots received full
agrochemical inputs typically associated with intensive wheat
cultivation in Europe, including mineral fertilizers, a stem
shortener, and several pesticide applications. Among the pes-
ticides, fungicides comprising five different active ingredients
with three modes of action were applied at three time points
over the growing season. Additional details associated with
the field experiment are given in [16].

An unusual feature of this experiment is that all STB
infection was natural, with the epidemic caused by a highly
diverse Z. tritici population that immigrated into the experi-
mental plots via windborne ascospores coming from nearby
wheat fields that were treated with fungicides. This local Z.
tritici population carried sufficient resistance to all fungicides
applied in the experimental plots to enable an STB epidemic
to develop despite the intensive fungicide treatments. But
other wheat diseases common in this region, including leaf
rust, stripe rust, stagonospora nodorum blotch, powdery
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mildew, and tan spot, were practically absent because the
fungicides excluded these pathogens [16]. As a result, we
were able to obtain a pure-culture read-out of quantitative
STB resistance across all 335 wheat cultivars without con-
founding effects from other diseases. The local weather
during the 2015-2016 growing season was cooler and wetter
than usual, providing a highly conducive environment for
the development of an STB epidemic. At least six asexual
reproduction cycles occurred during the most active period
of wheat growth between March and July [16]. Other compo-
nents of STB epidemiology associated with this experiment
were already reported [16].

All experimental plots were assessed for STB resistance at
two time points, t1 (20 May 2016, approximately growth
stage GS 41 [29]) and t2 (4 July 2016, approximately GS 75-
85) using automated image analysis of 21,420 scanned leaves
infected by Z. tritici [16, 30]. Nearly sixteen infected leaves
collected from the same leaf layer in each plot were mounted
on A4 paper and scanned at 1,200 dpi using flatbed scanners
as described earlier [16]. The scanned images were analyzed
using an ImageJ macro script [16]. Automatically generated
outputs of the script included percentage of leaf area covered
by lesions (PLACL), average pycnidia density within lesions
(ρlesion), and average pycnidia darkness (measured using the
256-point gray scale). To measure pycnidia sizes, we devel-
oped a Python (version 3.6.7, https://www.python.org/) pro-
gram based on the determination of contours of constant
brightness in the vicinity of each detected pycnidium with
the help of the skimage package (version 0.13, https://scikit-
image.org/). Each of these STB-associated phenotypes was
analyzed separately in the GWAS. The grand means for each
phenotype were calculated based on an average of 60 scanned
leaves for each wheat cultivar, including both time points and
both replicates for each plot (i.e., four measurements of each
trait associated with STB resistance). The actual number of
leaves analyzed for each cultivar ranged from 31 to 64, with
some leaves omitted because of errors made during the
collecting, mounting, or scanning processes. Only 35 culti-
vars had fewer than 55 leaves included in the analysis. The
mean values of PLACL and ρlesion were 1/x transformed to
better fit a normal distribution, yielding a P < 0:01 for the
Shapiro-Wilk test after transformation. Figure 1 illustrates
the steps involved in data acquisition and analysis.

The SNPmarkers used for the GWAS came from the Illu-
mina 90K SNP array (iSelect, San Diego, USA, [31]). The
majority of the markers on this array were not useful for
our experiment because they were not polymorphic in the
GABI panel. The remaining markers were positioned on
the IWGSC wheat genome [32] using a BLASTn search with
E value < 10-30. The position with the lowest E value was
assigned as the marker position. In the case of ties where it
was not possible to unequivocally assign a marker to one of
the homeologous chromosomes, the markers were omitted.
Additional filtering criteria to choose SNPs for the GWAS
were a call rate of >95% per marker, >5% minor allele fre-
quency, and identity by state ðIBSÞ < 0:975, using the GenA-
BEL software in the R statistical environment [33]. After
filtering, a total of 13,648 high-quality SNP markers were
used for the GWAS. Haplotypes were identified using a slid-
ing window of three consecutive SNPs with PLINK [34] and
tested using linear regression models. GWAS Manhattan
plots were constructed using R (version 3.5.1, [35]) with
ggplot2 (version 3.1.0. [36]). Bonferroni thresholds were cal-
culated using P/N (0.05/13,648) yielding a LOD (-log10(P))
score of 5.44. The fraction of the phenotypic variance associ-
ated with the 26 chromosome intervals at or exceeding the
Bonferroni threshold was calculated using linear regression
models in R (lm function). The adjusted R2 provided a mea-
sure of the proportion of the variance explained.

The coordinates of the 26 intervals exceeding the Bonfer-
roni threshold were plotted onto the Chinese Spring refer-
ence genome as described earlier and used to compare the
positions of the SNPs associated with the STB resistance
traits identified in this analysis with the positions of STB
resistance identified in earlier studies [18]. The sequence data
of the markers associated with STB resistance in earlier
studies were retrieved from GrainGenes (https://wheat.pw
.usda.gov/GG3/) and then searched using BLASTn against
the IWGSC reference [32] assembly using Unité de
Recherche Génomique Info (URGI, https://wheat-urgi
.versailles.inra.fr/) for the corresponding chromosome. The
position of the best hit was used as the genome position.
We then calculated the probability of finding a chance over-
lap involving at least 16 of the 26 new associations with the
previously identified chromosome segments for STB resis-
tance. We treated each new association as an individual
point because the new segments were very narrow and cal-
culated the probabilities of overlaps based on a binomial
distribution. For each new association, the probability of
overlapping with an already known STB resistance interval
(which we extended by 5Mbp at both ends) was 41.2%
(i.e., 5.89Gbp of the 14.30Gbp genome was included in
the previously known intervals, many of which included
a large fraction of a chromosome).

Candidate gene identification was based on the gene anno-
tation of the IWGSC v1.0 reference sequence of the wheat
landrace Chinese Spring [32]. All high confidence genes in
chromosome segments shorter than 5Mb were identified.

3. Results

The three fungicide treatments eliminated all competing fun-
gal pathogens, enabling a mono disease readout of the rela-
tive degree of quantitative resistance to STB under the field
conditions typically used for intensive wheat production in
Europe. All STB infection was natural, with an epidemic
resulting from at least six cycles of infection by a diverse Z.
tritici population that included a high degree of gene and
genotype diversity, with infections caused by millions of dif-
ferent Z. tritici strains despite the fungicide applications. As
an indicator of the pathogen genetic diversity in these plots,
genome sequences of 161 Z. tritici isolates obtained from
21 of the plots revealed 147 unique genome sequences,
with all but two of the identified clones found within the
same 1.5m2 plot (Daniel Croll, personal communication).
This high level of pathogen diversity was consistent with
earlier findings from other naturally infected wheat fields
around the world and was expected given that Z. tritici

https://www.python.org/
https://scikit-image.org/
https://scikit-image.org/
https://wheat.pw.usda.gov/GG3/
https://wheat.pw.usda.gov/GG3/
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Figure 1: Flow diagram showing steps involved in the acquisition and analysis of phenotype data used in this experiment.
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populations experience high levels of recombination [11, 35]
that enable different fungicide resistance mutations to segre-
gate and reassort into many different genetic backgrounds in
natural populations.

The automated analysis pipeline generated phenotypes for
21,420 leaves, with an average of 30 leaves sampled per plot
across the two time points. Nearly 37m2 of leaf area was ana-
lyzed, with approx. 11m2 scored as damaged by STB. The
mean analyzed area for an individual leaf was 17 cm2. The per-
centage of leaf area covered by STB lesions (PLACL) ranged
from 0 to 99 with a mean value of 32. The number of pycnidia
found on a leaf ranged from 0 to 4,034, with a mean value of
127. The density of pycnidia within STB lesions (ρlesion)
ranged from 0 to 256 per cm2 of lesion, with a mean value
of 24. The automatically generated phenotypes included
21,420 measures each of PLACL and ρlesion and 2.7 million
measures each of pycnidia size and pycnidia melanization,
yielding a total of >5.44 million automatically measured phe-
notypes that were not prone to human scoring error.

The quantitative measures of STB severity generated by
automated image analysis followed the continuous distribu-
tion typically associated with quantitative traits [16, 30]. Ear-
lier analyses of relationships among these traits [16] showed
that resistance that minimizes host damage (PLACL) was
largely independent of resistance that minimizes pathogen
reproduction (ρlesion). Hence, the GWAS was conducted
independently for each trait. In addition to the traits PLACL
and ρlesion, we measured the average size of pycnidia formed
within lesions, which reflects the average size and number
of spores contained in each fruiting body [24] (i.e., pycnidia
size is an independent indicator of pathogen reproduction),
and the average gray value of pycnidia, which reflects the
average amount of melanin accumulated in each fruiting
body [25, 30]. Our earlier work indicated that pycnidia mel-
anization is on average greater on wheat cultivars with more
resistance to STB [24, 30].

Manhattan plots for PLACL, ρlesion, pycnidia size, and pyc-
nidia gray value revealed the SNPs with the highest associa-
tions for each STB resistance trait (Figure 2). A total of 109
SNPs were at or above the Bonferroni threshold across all
traits based on the GWAS. Marker-trait associations were cal-
culated using sliding windows including three consecutive
SNPs. Among these, 52 haplotypes were at or above the Bon-
ferroni threshold. Further evaluation of the 52 haplotypes
revealed overlaps that were combined to produce a nonredun-
dant set of 26 chromosome segments that explained from
1.9% to 10.6% of the overall phenotypic variance associated
with each measured trait (Table 1).

For the PLACL trait that reflects the ability of a wheat cul-
tivar to limit the degree of necrosis caused by an STB infection,
14 SNPs identified 4 different genomic positions distributed
across chromosomes 5A, 5B, and 5Dwith LOD scores exceed-
ing 5.5. Interval 4 on 5D had a LOD score of 9.2 and explained
10.3% of the total variance associated with PLACL (Table 1).
For the ρlesion trait that reflects the ability of a wheat cultivar
to restrict Z. tritici reproduction, 51 SNPs identified 13 geno-
mic positions located on chromosomes 2B, 4A, 5D, 6A, 6B,
6D, and 7B, with LOD scores ranging from 5.5 to 7.1. Interval
15 on 6B had the highest LOD score and explained 9.3% of the
phenotypic variance associated with ρlesion. For the pycnidia
size trait, three SNPs located on 2B defined a chromosome
interval that surpassed the Bonferroni threshold. Interval 18
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Figure 2: Manhattan plots showing significant SNP markers associated with each trait. The horizontal line indicates the Bonferroni-adjusted
significance threshold. The A, B, and D genomes of wheat are shown in red, green, and blue, respectively. SNPs associated with the interval
IDs shown in Table 1 are indicated in colored circles. (a) Percentage of leaf area covered by lesions (PLACL) had four significant associations
distributed across chromosomes 5A, 5B, and 5D. (b) Density of pycnidia within lesions (ρlesion) had 13 significant associations distributed
across chromosomes 2B, 4A, 5A, 5D, 6A, 6B, 6D, and 7B. (c) Pycnidia size had a single significant association located on chromosome 2B.
(d) Pycnidia melanization had 8 significant associations distributed across chromosomes 1A, 2A, 3B, 4D, 5A, 5B, and 7B.
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explained 5.9% of the total variance associated with pycnidia
size. For the pycnidia melanization trait, 36 SNPs defined 8
genomic positions located on chromosomes 1A, 2A, 3B,
4D, 5A, 5B, and 7B. Interval 23 on 4D showed the highest
LOD score of 8.7 and explained 10.6% of the total variance
associated with pycnidia melanization.

The positions of the 26 chromosome segments identified
in this experiment were compared to the positions of mapped
STB genes reported in earlier publications (summarized in
Figure 1 of [18]). Figure 3 shows that 16 of the 26 chromo-
some segments identified in our analyses overlapped with
or were very close to genomic regions identified in earlier
publications. The probability of finding at least 16 associa-
tions within or close to the chromosome intervals previously
associated with STB resistance was 2.9%. Ten of the chromo-
some segments were in chromosomal regions that were not
previously associated with STB resistance. Among those,
two were associated with PLACL (3, 4), five with ρlesion
(7, 8, 9, 16, and 17), and three with pycnidia melanization
(20, 23, and 26) (Table 1).



Table 1: Chromosomal intervals defined by 26 significant GWAS associations and the phenotypic variance explained by each association. All
chromosome intervals and base pair (BP) positions were defined based on the Chinese Spring reference genome (IWGSC 2018).
PLACL= percentage of leaf area covered by lesions; PDL= pycnidia density within lesions (ρlesion); MPA=mean pycnidia area (size);
PGV=pycnidia gray value; NA = no associations.

Trait
Interval

ID
Chromosome

BP start of
interval

BP end of
interval

Interval
size

SNPs in
interval

LOD R2 Other known STB R-genes in
this region

PLACL 1 5A 644275 1225606 581,331 3 5.51 0.065 MQTL19

PLACL 2 5A 20816445 20998554 182,109 4 5.95 0.068 MQTL19

PLACL 3 5B 671238689 671360289 121,600 3 5.93 0.089 NA

PLACL 4 5D 1612786 2664314 1,051,528 4 9.16 0.103 NA

PDL 5 2B 648912764 651932324 3,019,560 3 5.93 0.078 2Mbp away from MQTL8

PDL 6 2B 781584349 781830297 245,948 3 5.59 0.085 5Mbp away from Stb9

PDL 7 4A 648893451 658970236 10,076,785 4 6.37 0.021 NA

PDL 8 5D 52615122 60899123 8,284,001 3 6.13 0.044 NA

PDL 9 5D 403075850 413073376 9,997,526 3 6.19 0.066 NA

PDL 10 6A 411095227 415905355 4,810,128 3 6.24 0.019 Stb15

PDL 11 6A 421527350 425277806 3,750,456 5 6.47 0.091 Stb15

PDL 12 6B 175719208 176403432 684,224 5 5.79 0.073 QStb.6B

PDL 13 6B 453931609 455449000 1,517,391 4 6.03 0.062 QStb.6B

PDL 14 6B 462130236 468736016 6,605,780 8 6.99 0.052 QStb.6B

PDL 15 6B 472609890 474177953 1,568,063 4 7.10 0.093 QStb.6B

PDL 16 6D 394936301 406340008 11,403,707 3 5.70 0.074 NA

PDL 17 7B 265441725 325980844 60,539,119 3 5.46 0.034 NA

MPA 18 2B 245888219 247935045 2,046,826 3 5.50 0.059 MQTL17

PGV 19 1A 12369332 12506454 137,122 6 6.64 0.083 Qstb.1A

PGV 20 1A 472140874 472168930 28,056 4 5.53 0.063 NA

PGV 21 2A 635581134 639988522 4,407,388 3 6.12 0.078 MQTL15

PGV 22 3B 30319666 32286228 1,966,562 3 5.60 0.075 QStb.3B

PGV 23 4D 485524935 502402946 16,878,011 5 8.71 0.106 NA

PGV 24 5A 685438196 685537900 99,704 4 5.67 0.075 QTL9

PGV 25 5B 442374822 455735533 13,360,711 5 6.40 0.096 Stb1

PGV 26 7B 65661891 83030127 17,368,236 6 6.34 0.078 NA
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Seventeen of the 26 chromosome segments were
smaller than 5Mb. For these, we identified putative candidate
genes responsible for STB resistance based on the wheat
reference genome sequence of Chinese Spring [32]. In
total, the 17 intervals spanned 26.2Mb and contained 173
high confidence genes (Supplementary Table 1). There was
a significant enrichment (P < 0:0001) for genes encoding
putative receptor kinases and kinases within these 17
chromosome segments. Receptor kinase genes were recently
shown to play major roles in disease resistance in cereals [19,
37, 38], including the Stb6 gene encoding resistance to STB
[19]. Five of the chromosome segments contained four or
fewer genes, with three of these segments (19, 20, and 24)
associated with pycnidia gray value and two segments (2, 3)
associated with PLACL. The smallest chromosome segment
(20) encompassed 28 kb on chromosome 1A and contained
a single gene in Chinese Spring (TraesCS1A01G277000)
encoding a putative solute carrier family 35 member. The
99.7 kb segment 24 on the long arm of chromosome 5A
also had a single gene (TraesCS5A01G524800) encoding a
putative 4-hydroxy-tetrahydrodipicolinate reductase, a protein
involved in lysine biosynthesis. Intervals 2 (chromosome 5A)
and 19 (chromosome 1A) had three candidate genes each, of
which a putative kinase gene and a putative nucleotide
binding site—leucine-rich repeat (NLR)—represent the
most obvious candidates as these categories of genes are
known to affect disease resistance [39]. Interval 3 contained
four candidate genes, all of which were associated with F-
box proteins, a class of proteins often associated with plant
defense responses [40]. Other candidate genes known to be
involved in disease resistance include sugar transporters
(associated with PLACL in intervals 1 and 4), superoxide
dismutase (associated with pycnidia size in interval 18), an
ABC transporter (associated with PLACL in interval 1),
and a TCP transcription factor (associated with ρlesion in
interval 15).

4. Discussion

In a year that was highly conducive for the development of an
STB epidemic, we combined a novel automated image analy-
sis tool that could differentiate independent components of
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STB severity with the high level of fungicide resistance exist-
ing in a local Swiss population of Z. tritici to make a quanti-
tative comparison of STB resistance across a broad cross
section of elite European winter wheat cultivars. GWAS anal-
yses that coupled these quantitative measures of STB resis-
tance with 13,648 SNP markers enabled identification of
109 SNPs on 13 chromosomes that defined 26 chromosome
segments highly associated with STB resistance. Because all
STB infection in this experiment was natural, including mil-
lions of different pathogen genotypes originating from a
recombining population, and the growing season was highly
conducive to the development of an STB epidemic, we believe
that the SNP markers defining the chromosome intervals
associated with the highest levels of STB resistance could be
especially useful in European breeding programs aimed at
increasing overall levels of STB resistance to the Z. tritici pop-
ulations found in Europe.
The 26 chromosome intervals associated with STB resis-
tance ranged from 28kbp to 60Mbp in size and were distrib-
uted across 13 chromosomes, with individual intervals
explaining 1.9% to 10.6% of the phenotypic variance for each
trait. Some of the intervals were clustered in the same chro-
mosomal region (e.g., intervals 1 and 2 associated with
PLACL on chromosome 5A; intervals 13, 14, and 15 associ-
ated with pycnidia gray value on chromosome 6B), but most
of the intervals were genetically distant from each other. Six-
teen of the intervals were embedded within or located very
close to chromosomal regions previously associated with
STB resistance, but 10 intervals were in genomic regions that
had not been associated with STB resistance. Though the
known STB resistance intervals identified in earlier studies
were quite large (covering in total ~40% of the entire wheat
genome), the probability that at least 16 new intervals would
overlap with these known intervals by chance was less than

https://wheat.pw.usda.gov/GG3/


8 Plant Phenomics
3%. This finding increases our confidence that our new phe-
notyping method can identify simultaneously (i.e., in a single
experiment) many previously defined STB resistance inter-
vals that had been identified individually in studies involving
only one pathogen strain. Particularly notable novel regions
were the intervals 4, 8, and 9 located on 5D, a chromosome
which had not previously been associated with STB resis-
tance [18], though [27] found some weak associations with
STB resistance on this chromosome. There was no overlap
between chromosomal segments associated with host dam-
age (PLACL) and pathogen reproduction (pycnidia density
or pycnidia size), indicating that these resistance traits were
under independent genetic control as hypothesized earlier
[16]. Intervals 4, 14, 15, and 23 had LOD scores at or exceed-
ing 7. These are candidate regions for genes encoding
broadly based field resistance to STB that may be especially
useful against the genetically diverse Z. tritici populations
in Europe.

The chromosome segments identified in our GWAS are
much smaller than the intervals defined in earlier work as
shown in Figure 2. For example, STB15 was previously
mapped to a region that includes most of chromosome 6A
(~590Mbp) while we identified two separate chromosome
regions (10 and 11) within the STB15 region that encompass
only ~8.5Mbp. Similarly, STB1 was mapped to a region that
covered ~69.9Mbp on chromosome 5B while interval 25
covers only ~13Mbp within this region. The smaller intervals
detected in our GWAS reflect the much higher marker den-
sity used in our experiment coupled with more accurate
knowledge of marker positions coming from the new wheat
genome assembly. Other contributors to the small intervals
were the more accurate quantitative phenotypes yielding rel-
atively large effect sizes and the haplotype-based GWAS
approach that increased the statistical power compared to
standard GWAS pipelines.

Seventeen of the 26 chromosome segments identified in
the GWAS were less than 5Mbp in size and contained
between 1 and 28 candidate genes annotated in the Chinese
Spring reference genome. The 173 genes located in these
intervals were significantly enriched for receptor kinases
and kinases, including clusters of 6 and 10 kinases found in
intervals 18 and 22, respectively. We consider this enrich-
ment to be notable because Stb6, the only cloned STB resis-
tance gene, is a receptor kinase [19]. Also notable was our
finding that genes encoding receptor kinases are strongly
upregulated during infection by all tested strains of Z. tritici
[38]. Hence, we hypothesize that some of the receptor kinase
genes found in these intervals may be responsible for the
STB resistance we observed. The interval 4 associated with
PLACL explained 10.3% of the overall variance and provided
the first report of STB resistance on chromosome 5D. This
interval contained 12 genes, including three encoding pro-
teins already shown to affect disease resistance, including
an NLR, a S/T protein kinase, and a sugar transporter
[39, 41]. We hypothesize that one or more of these genes
are responsible for the STB resistance in this chromosome
segment. Other interesting candidate genes found in the 17
intervals encode an ABC transporter, a TCP transcription
factor, and superoxide dismutase. The Lr34 gene encoding
quantitative resistance to leaf rust and other diseases in wheat
was shown to be an ABC transporter [42]. Superoxide dismu-
tases are involved in synthesis of hydrogen peroxide, which
was already shown to be involved in wheat’s defense response
against STB [43]. TCP transcription factors were shown
recently to be important components of the signaling path-
way involved in systemic acquired resistance [44]. Segment
24, which explained 8% of the variance in pycnidia melaniza-
tion and lies within the QTL9 region identified in earlier
mapping studies, contained a single gene encoding a protein
involved in lysine biosynthesis. Recent work on the wheat
pathogen Cochliobolus sativus showed that lysine was essen-
tial for melanin biosynthesis [45] and lysine was recently
shown to be essential for virulence in Z. tritici [46]. We
conclude from this analysis that many of the genes found
in the intervals identified in the GWAS are plausible candi-
dates to explain the observed phenotypes associated with
STB resistance, but functional validation studies will be
needed to confirm whether any of these genes actually play
a role in resistance.

Earlier field trials also used association mapping to iden-
tify genetic markers associated with STB resistance [27, 47,
48]. In all of these trials, the experimental plots were inocu-
lated with a small number of Z. tritici isolates that were
sprayed when all wheat genotypes had fully extended flag
leaves (i.e.,GS > 41) a few weeks before scoring for STB resis-
tance. As a result, the associations identified in those experi-
ments are likely to be strain-specific and represent the
outcome of a single cycle of infection based on a high dose
of artificially applied blastospore inoculum. Similarly, most
experiments that identified STB genes with major effects
were based on greenhouse inoculations of seedlings by a sin-
gle pathogen strain and used disease scores made at a single
point in time, leading to identification of genes that encode
seedling resistance to the strain used in the experiment. It is
now clear that natural field infections of STB are caused by
many millions of Z. tritici strains, with a different strain
occurring on each infected leaf, on average, and with most
leaves infected by more than one strain [10, 49]. The signifi-
cant STB resistance associations identified in our experiment
were based on a natural epidemic that included at least six
cycles of pycnidiospore infection by a highly diverse popula-
tion of the pathogen and included two time points during
epidemic development. We believe that the STB resistance
identified in our experiment is more likely to be broadly
applicable under natural field conditions and hence more
useful in breeding programs aiming for stable STB resistance.

An important and novel aspect of our experiment was the
use of an automated image analysis pipeline for phenotyping
that eliminated human scoring bias while generating millions
of accurate phenotype datapoints. As is the case for many
plant diseases [50], the traditional visual assessment of STB
typically generates a single number on a 0-9 scale [51] that
tries to integrate the totality of disease in a particular plot,
often relative to other plots in the same field or trial. Visual
assessments are fast, often requiring less than one minute
per plot to produce a measurement, but are prone to varia-
tion caused by fatigue, changes in lighting over the course
of a day, and differences in opinion among different scorers.
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The automated image analyses allowed us to simultaneously
assess four quantitative phenotypes that could not be accu-
rately measured by the eye. A traditional visual assessment
would have generated a total of 4 STB measurements per cul-
tivar to use in the GWAS. Our automated analyses generated
an average of over 16,000 STB measurements per cultivar.

The leaf scanning method required significant manual
labor (approx. 360 hours in total) to harvest infected leaves,
mount them on paper, and scan them on flatbed scanners
(Figure 1). A key element of our success was the ability to
reproducibly count and measure properties (size and melani-
zation) associated with millions of pycnidia, which measure
only 0.5-1.5mm across. Reliable identification of pycnidia
required high-resolution images (1,200 dpi) acquired under
uniform, high-intensity lighting, in this case provided by
inexpensive flatbed scanners. Further automation of data col-
lection done completely in the field will present new chal-
lenges. Flying drones at a height close to the canopy surface
may be able to image pycnidia on the top leaf layer, but these
drones would need to be coupled with strobe lighting systems
and cameras that could produce images with sufficient mag-
nification to reliably identify pycnidia over a significant
depth of crop canopy. Ground-based mobile robots would
make more sense for data acquisition in row crops such as
maize, but wheat fields would be more difficult due to the
high plant density. In the near future, we consider it likely
that modest amounts of field data (10s-100s of leaves) could
be acquired using mobile phone cameras outfitted with clip-
on macro lenses or hand-held computers attached to porta-
ble single-leaf scanners. We can also envision portable
high-throughput conveyor belt leaf scanning systems fit in
the bed of a pickup truck that could scan more than 10,000
leaves in a day.

The detailed phenotype data generated by our automated
analysis pipeline enabled us to separate different components
of STB resistance, in particular allowing us to separate STB
resistance that affects host damage (PLACL) from STB resis-
tance that affects pathogen reproduction (ρlesion and pycnidia
size). We believe that resistance affecting pathogen reproduc-
tion is likely to be more effective in the long run for several
reasons, including the following: (1) Our earlier analyses
[16] showed that measures of pathogen reproduction
(ρlesion) early in the growing season were the best predictors
of host damage (PLACL) late in the growing season, showing
that resistance that reduces pathogen reproduction is likely to
minimize yield losses caused by STB. (2) A decrease in path-
ogen reproduction diminishes the amount of inoculum avail-
able to cause new cycles of infection, which will lower the
transmission rate (i.e., decrease the basic reproductive num-
ber, R0) during each infection cycle and result in less overall
infection by the end of the epidemic. (3) A decrease in path-
ogen inoculum will lead to a decrease in the pathogen popu-
lation size, which will decrease the overall genetic diversity
and provide fewer opportunities for favorable mutations
(e.g., for fungicide resistance or gain of virulence) to emerge.
This should lower the overall evolutionary potential of the
pathogen population [52].

Recombining the SNP markers associated with the STB
resistance intervals identified in this experiment may accel-
erate breeding efforts aimed at increasing quantitative
resistance to STB in European wheat. We showed that resis-
tance affecting leaf damage (PLACL) is genetically distinct
from resistance affecting pathogen reproduction (ρlesion).
We consider it likely that these different resistance pheno-
types reflect different underlying mechanisms of STB resis-
tance. We hypothesize that PLACL reflects the additive
actions of toxin sensitivity genes that interact with host-
specific toxins produced by the pathogen, as shown for Para-
stagonospora nodorum on wheat [53, 54], while pycnidia
density reflects the additive actions of quantitative resistance
genes that recognize pathogen effectors (e.g., [23]). Under
this scenario, breeders should aim to recombine these two
forms of resistance into the same genetic background, bring-
ing together different forms of resistance that may be more
durable when deployed together than when either mecha-
nism is deployed in isolation. We anticipate that functional
analyses of the most compelling candidate genes identified
in this experiment will enable us to identify new genes under-
lying the different STB resistance traits. Our experiment illus-
trates how high-throughput automated phenotyping can
accelerate breeding for quantitative disease resistance.
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