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Improving River Flood Extent Delineation
From Synthetic Aperture Radar Using

Airborne Laser Altimetry
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3

David C. Mason, Matthew S. Horritt, Johanna T. Dall’Amico, Tania R. Scott, and Paul D. Bates4

Abstract—Flood extent maps that are derived from synthetic5
aperture radar (SAR) images provide spatially distributed data6
for validating hydraulic models of river flood flow. The accuracy of7
such maps is reduced by a number of factors, including variation8
in backscatter from the different land cover types that are adjacent9
to the flood, changes in returns from the water surface that are10
caused by different meteorological conditions, and the presence of11
emergent vegetation. This paper describes how improved accuracy12
can be achieved by modifying an existing flood extent delineation13
algorithm to use airborne laser altimetry [light detection and14
ranging (lidar)] as well as SAR data. The lidar data provide an15
additional constraint that waterline heights should vary smoothly16
along the flooded reach. The method was tested on a SAR image17
of a flood for which contemporaneous aerial photography existed,18
together with lidar data of the unflooded reach. The waterline19
heights of the SAR flood extent that was conditioned on both SAR20
and lidar data matched the corresponding heights from the aerial21
photograph waterline significantly more closely than those from22
the SAR flood extent that was conditioned only on SAR data.23
For waterline heights in areas of low slope and vegetation, the24
root-mean-square error on the height differences reduced from25
221.1 cm for the latter case to 55.5 cm for the former.26

Index Terms—Data fusion, hydrology, lidar, snake.27

I. INTRODUCTION28

F LOOD extent maps that are derived from remotely sensed29

data are of considerable use in hydrology, providing spa-30

tially distributed data for validation of hydraulic models of river31

flood flow, for emergency flood relief management, and for32

development of spatially accurate hazard maps [1], [2]. The all-33

weather day–night capability of synthetic aperture radar (SAR)34

sensors gives these a considerable advantage for flood mapping35

over sensors operating at visible or infrared wavelengths, as the36

latter ones are unable to penetrate the cloud that often accom-37

panies flood events. This advantage is tempered by the fact that38

a number of factors conspire to reduce the accuracy of flood39

maps that are derived from SAR imagery. These include the40
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substantial variation in backscatter from the different land cover 41

types that are adjacent to the flood, the changes in returns from 42

the water surface that are caused by different meteorological 43

conditions, the presence of emergent vegetation, and the effects 44

of man-made structures in urban areas. This paper describes 45

a study to reduce inaccuracies from some of these sources 46

in an existing flood extent delineation algorithm by using an 47

additional data source, namely, airborne laser altimetry. 48

The simplest model of SAR backscatter from a river flood 49

assumes that the water surface is smoother than the surrounding 50

land and acts as a specular reflector, reflecting radiation away 51

from a side-looking sensor, so that the water appears dark 52

compared to the land. Two factors complicating the simple 53

specular reflection model in practice are the effects of wind 54

or rain roughening of the water surface, and emergent vege- 55

tation. The relationship between SAR backscatter and surface 56

roughness that is caused by wind blowing over the oceans is 57

well understood [3], and the effect may raise the backscatter 58

from the water to similar or greater levels than the adjacent 59

land [4], [5]. Wind roughening of a river flood surface can give 60

rise to similar effects, but these can have substantial spatial 61

variation, depending on the local topography, which determines 62

the fetch for a given wind direction. The presence of emergent 63

vegetation can give rise to multiple reflections between the 64

water and the vegetation, leading to a substantial enhance- 65

ment of backscatter, the magnitude of which is a function 66

of radar wavelength, look angle, and polarization. The effect 67

has been observed in a number of studies of flooded forest 68

and marshland (e.g., [6]–[9]), and the increase in backscatter 69

has been modeled mathematically in [10]. Enhanced backscat- 70

ter from the water surface that is caused by wind roughen- 71

ing or emergent vegetation will also result in an increased 72

level of noise due to the multiplicative nature of noise in 73

SAR images. 74

A number of methods for the automated delineation of flood 75

extent in SAR imagery of both fluvial and tidal environments 76

have been developed [4], [5], [9], [11]–[21]. Several of these 77

studies have illustrated the great potential of SAR sensors for 78

synoptic observation of large flooding events. An automatic 79

technique for delineating a fluvial flood using a statistical 80

active contour model (or snake) that is applied to a SAR 81

image to identify areas of homogeneous speckle statistics is 82

described in [18] and [19]. This assumes that single-frequency 83

single-polarization SAR intensities are available and was aimed 84

at producing an observed flood extent against which to validate 85
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a modeled flood extent. Due to the difficulties of imaging urban86

areas using SAR, its use is limited to large-area mapping of87

floods in rural areas. The SAR segmentation uses both local88

tone and texture measures, and is capable of accurate feature89

boundary representation. The method was applied to a flood90

that was imaged using the ERS-1 satellite SAR sensor and91

proven to be capable of identifying 75% of the flooded area92

correctly, with 70% of the waterline coinciding with ground93

data within 20 m. The main error in waterline position was94

found to be due to unflooded short vegetation that was adjacent95

to the flood giving similar radar returns to open water, causing96

an overestimation of flood extent. The loss of flood extent due97

to emergent vegetation was found to be a secondary source98

of error.99

Further work on this topic [22], [23] found that, as a result of100

these error sources and the relatively large size of the European101

Remote Sensing Satellite (ERS) SAR pixel, the heights of the102

SAR waterline along a flooded reach could sometimes be in103

error by several meters (although, generally, it was much less)104

and could exhibit significant noise. One reason for this was that105

there was no constraint that the waterline heights should vary106

smoothly along the reach, whereas, in reality, the longitudinal107

slope of typical flood flows is low (∼0.001−0.0001 m · m−1),108

and changes in slope are very gradual. With this level of dif-109

ferences, the SAR image becomes much less useful for model110

flood extent validation than it could otherwise be.111

Horritt et al. [19] point out that their flood extent map-112

ping procedure identifying the flood as a region of rela-113

tively homogeneous speckle statistics may be improved by114

the adoption of a model-based approach. In this vein, this115

paper describes the use of light detection and ranging (li-116

dar) data to modify the SAR waterline, so that it becomes117

more useful for validation. The snake algorithm [18], [19]118

is modified to look not only at SAR image space but also119

at lidar digital terrain model (DTM) and vegetation height120

maps, so that the snake can be conditioned to be smoothly121

varying in ground height as well as in SAR intensities and122

textures. This should reduce errors that are caused by un-123

flooded vegetation that is adjacent to the flood giving similar124

returns to open water and also errors due to the SAR pixel125

size. It could also help somewhat in reducing errors due to126

emergent vegetation. An additional benefit of producing a127

more smoothly varying waterline is that it may allow the128

development of improved performance measures for flood ex-129

tent validation based on patterns of height differences rather130

than on patterns of wet or dry pixels, as currently done [24].131

The algorithm specifically sets out to improve the vertical132

accuracy of the SAR waterline, although any improvement133

should also lead to improvement in the horizontal waterline134

accuracy due to their correlations that are contained within135

the DTM.136

Used in this way, the lidar data may actually play a dual137

role in the modeling process, as lidar is often used to pa-138

rameterize the hydraulic model being validated, with the li-139

dar DTM providing the model bathymetry and possibly the140

vegetation heights being used to estimate bottom friction141

[22]. However, the use of lidar data in SAR waterline ex-142

traction as well as model parameterization does not under-143

Fig. 1. Location of the test area.

mine the independence of the SAR waterline in the validation 144

process. 145

II. TEST DATA SET 146

An ideal data set on which to validate the method would be 147

from a flood for which both satellite SAR data and simultaneous 148

aerial photography were available, so that the SAR snake 149

waterlines that are conditioned without and with the lidar data 150

could be compared with the waterline from the aerial pho- 151

tographs. In addition, lidar data of the unflooded area should be 152

available. 153

Biggin and Blyth [25] acquired oblique aerial photos of a 154

flood on the Thames west of Oxford, U.K., on December 4, 155

1992, at the same time (to within 2 h) as an ERS-1 SAR 156

overpass of the area. The Thames is a low-relief slow-response 157

catchment, and at this point along its course, the river discharge 158

during a flood changes only very gradually, so that such timing 159

differences are unimportant. The peak discharge for this event 160

was measured at 76 m3 · s−1, which represents a ∼1-in-5-year- 161

recurrence interval flow. The ERS-1 SAR image was acquired 162

approximately 36 h after the flood peak when the discharge had 163

dropped to 73 m3 · s−1, indicating the very slow response of the 164

catchment. At the time of overpass, there was no wind or rain in 165

the area. The location of the test area is shown in Fig. 1, and an 166

example of the aerial photography is shown in Fig. 2. The flood- 167

plain over this reach is semirural, with the majority of fields 168

being used at the time for pasture or having been ploughed. 169

There are also several urban areas, and the region is crossed 170

by a number of major roads and railways. The flood waterline 171

was delineated by eye from the aerial photos and vectorized 172

[19]. The waterline vectors were then georeferenced using an 173

orthographic transform that is parameterized by a least squares 174

method using 15–20 control points for each photograph. The 175

error in the waterline position was assessed from waterline 176

segments where the waterline was observed to lie alongside a 177

hedgerow or field boundary that could be located on a 1 : 25 000 178

scale map and was found to be less than 20 m. 179
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Fig. 2. Example of the aerial photography in the upper section of the reach, looking southwest from the north of the region (the view direction is V in Fig. 1).4/C

Lidar data at 1-m resolution were acquired for a section180

of this reach west of Oxford and approximately 12 km long181

by the Environment Agency of England and Wales (EA). The182

lidar was an Optech ALTM 2033 that was flown on a Cessna183

aircraft at 120 kn at a flying height of 900 m, with a laser184

firing rate of 33 kHz, a scanning frequency of 30 Hz, and a185

scanner half angle of 18◦. The lidar heights were validated by186

the EA by comparing them with a set of global positioning187

system (GPS) heights of several flat unvegetated surfaces in188

the area. Based on a sample of 299 GPS readings, the lidar189

heights were found to have an rms error of 10.6 cm, which190

comprised a random error of 10.2 cm and a systematic error191

of 2.6 cm. Lidar height accuracy reduces on steeper slopes192

and in vegetated regions [26]. Lidar positional accuracy was193

about 0.4 m [27]. The postprocessed lidar DTM and vege-194

tation height mask were obtained from the EA. These were195

degraded to 2-m pixel size to avoid too large a mismatch196

with the SAR pixel size of 12.5 m. Fig. 3 shows the lidar197

DTM with the high land of Wytham Hill in the west and the198

raised Oxford Nature Park in the east (see Fig. 1), both of199

which are relevant to this study. Fig. 3 also shows the aerial200

photo waterline overlain on the lidar DTM, with the waterline201

color representing its difference in height from the local mean202

waterline height (within 0.5-km distance). The presence of203

large sections of waterline having small differences (blue color)204

from the local mean height indicates that the aerial waterline205

height varies smoothly along the reach. The waterline includes206

instances of islands of higher ground that are surrounded by207

water. It is assumed here that all areas of water have been208

accurately mapped, so that the validation data are essentially209

error free.210

III. FLOOD EXTENT EXTRACTION FROM SAR DATA 211

A. Algorithm Description 212

A detailed description of the algorithm to delineate a flood 213

using an active contour model is given in [18], and only an 214

overview is presented here. Active contour models or snakes 215

are useful for converting incomplete or noisy edge maps into 216

smooth continuous vector boundaries [5], [28]. The edge image 217

space is searched using a dynamic curvilinear contour that is 218

driven to be attracted to edge pixels using an energy minimiza- 219

tion function, so that the contour can link together unconnected 220

edge segments. The contour (snake) is represented in a piece- 221

wise linear fashion as a set of nodes (i.e., the coordinates of the 222

snake points) that are linked by straight-line segments. Ivins 223

and Porrill [29] developed a statistical snake that operates on 224

the image itself rather than an edge image, dispensing with the 225

need for a prior edge detection stage. Their technique involves 226

estimating the local image mean intensity (tone) at a node using 227

the pixels between this node and its adjacent nodes. This gives 228

the advantage that noise due to SAR speckle is reduced by 229

averaging pixel intensities along an edge while, at the same 230

time, maintaining resolution that is perpendicular to the edge, 231

giving accurate edge positioning. The local intensity variance 232

(texture) is also calculated from these pixels, as this has proven 233

to be a useful discriminator between different natural land- 234

cover types having similar mean intensities in SAR imagery. 235

The statistical snake is formulated as an energy minimization 236

problem with the total snake energy E(u(s)) given by 237

E (u(s))=Etension+Ecurvature−
∫∫

G (I(x, y)) dx dy (1)
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Fig. 3. Aerial photo waterline overlain on the lidar DTM. The colors represent the difference in height of the waterline from the local mean waterline height.4/C

where u(s) = (x(s), y(s)) describes the contour position (x, y)238

in the 2-D image space as a vector function of arc length239

parameter s. Etension and Ecurvature are energies that are gen-240

erated by the model’s internal tension and stiffness constraints,241

which favor a smooth uncrenellated contour that is made up242

of evenly spaced nodes (see the following). G is a goodness243

function that assesses how well a set of image pixels I(x, y)244

meets certain criteria. The total energy is minimized if the con-245

tour encloses a region of pixels that is homogeneous in tone and246

texture.247

If the mean and variance of the intensities of the set of pixels248

that are immediately at either side of a particular snake node are249

measured, the knowledge of how these variables are distributed250

can be used to estimate the probability that these pixels match251

those that are already within the region that is enclosed by the252

contour. Horritt [18] relates G to the log of this probability, with253

the dependence on the measured sample mean µ′, for example,254

having the form255

G(µ′) = 1 − n(µ′ − µ)2/vk2 (2)

where µ and v are the mean and variance of the seed population256

that is already enclosed within the contour, respectively; n is257

the sample size; and k is a parameter that can be adjusted 258

to tune algorithm performance. G is then equal to 1 for a 259

set of pixels with the expected mean but falls to zero if the 260

mean differs by k
√

(v/n) (i.e., k standard deviations) from 261

the expected value. The parameter k is usually set at about 262

2 or 3 but may be increased further to allow for a level of 263

statistical inhomogeneity in the region being segmented. The 264

overall goodness function (with components that are based on 265

both the measured mean and variance) is limited to a minimum 266

value of −1. 267

The roles of the tension and curvature constraints are to pro- 268

duce a contour of appropriate smoothness with evenly spaced 269

nodes, by a consideration of the balance between image and 270

curvature forces. Consider the situation that is shown in Fig. 4 271

for snake nodes at ui−1, ui, and ui+1 that are linked by unit 272

vectors vi and vi+1. The local curvature is ∆θ/∆s, where ∆θ 273

is the change of angle along arc length ∆s. Horritt [18] gives 274

the contribution to the total curvature energy as 275

∆Ecurvature = γ(∆θ/∆s)2/∆s = γ|vi+1 − vi|2/ai (3)

where ai is the distance between the midpoints of vi and vi+1, 276

and γ is a curvature energy weighting parameter. Equation (3) 277
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Fig. 4. Vectors for describing curvature and tension energies (after [18]).

is valid for small values of ∆θ. Similarly, the contribution to278

the tension energy is given by279

∆Etension = λ
(
|ui+1 − ui|2 + |ui − ui−1|2

)
(4)

where λ is the tension energy weighting parameter. The mag-280

nitudes of these energies can be adjusted using the weighting281

parameters. Too large a value for the curvature parameter282

will make the curvature term dominate the model energy and283

produce an unrealistically smooth contour. Too large a value of284

the tension parameter will favor a short contour and stifle the285

growth of the snake.286

The scheme that was used to minimize the energy is the287

algorithm of Williams and Shah [28]. For each node at each288

iteration, the change in energy dE is computed for moves to all289

eight neighbors of the node290

dE = −GdA + dEtension + dEcurvature. (5)

The lowest (most negative) dE is chosen. Obviously, dE is291

equal to zero for no node movement. G is calculated along the292

line segments linking the node with its two neighbors, and dA is293

the local change in area. If G is positive, the snake is in a region294

of homogeneous pixels, a positive dA is favored, and the snake295

expands. If G is negative, the snake is in an inhomogeneous re-296

gion, a negative dA is favored, and the snake retreats. The mean297

and standard deviation of the seed population are calculated298

from all pixels lying inside the contour every ten iterations.299

The flooded region may not be simply connected, as islands300

and isolated water bodies may form holes and outliers. To cope301

with this, the algorithm incorporates a method for dealing with302

complex topology and snake self-intersection. As an example,303

a snake may spawn a smaller subsnake within itself to represent304

an island.305

B. Implementation and Qualitative Assessment of Results306

A personal computer (PC)-based implementation of the al-307

gorithm (Psnake NT) was used in this paper [30]. Psnake NT308

is a software package that is available to the hydrological309

modeling community for the semiautomatic extraction of flood310

Fig. 5. Waterline conditioned only on SAR data overlain on SAR data (a) for 4/C
parameter k = 3 and (b) k = 2. The colors represent the difference in height
of the waterline from the local mean waterline height.

extents from SAR data. Fig. 5 shows snake waterlines that are 311

generated using SAR data only, for the number of standard 312

deviations k of 3 and 2, overlain on SAR data. It has been found 313

by experiment that k is probably the most important parameter 314

controlling the snake [19]. Other parameter settings were a 315

minimum node spacing of 6 pixels, a maximum node spacing 316

of 12 pixels, curvature parameter γ of 68.3, tension parameter λ 317

of 0.1, a texture weight of 0.2, and iterations of 200. The snake 318

was seeded (i.e., initialized) manually as a narrow strip lying 319
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Fig. 6. Example error that might be corrected using lidar.

along the course of the unflooded river channel, ensuring that320

it contained only flooded pixels.321

In Fig. 5, the snake shows a tendency to leak onto higher322

ground on Wytham Hill [point A in Fig. 5(a), see also Fig. 3].323

This is likely to be due to the presence of vegetated fields,324

which correspond to areas of low SAR backscatter and are325

likely to be misclassified as flooded. While no ground reference326

data were acquired at the time of the flood, evidence for this327

comes from a recent aerial photograph that was obtained later328

than the SAR image. A further example of leakage of the snake329

onto higher ground is visible at point B in Fig. 5(a), where330

the snake has leaked onto the Oxford Nature Park, which is331

higher than the land toward the Thames yet again exhibits low332

SAR backscatter.333

IV. FLOOD EXTENT EXTRACTION FROM334

SAR AND LIDAR DATA335

A. Algorithm Modification336

The snake algorithm was modified so that the snake was337

conditioned not only on the SAR image but also on the lidar338

DTM, so that it becomes smoothly varying in ground height as339

well as in SAR intensities and textures. The principle that was340

adopted was that the SAR image should still be the primary341

determinant of the flood extent. In most areas, the flood extent342

that was determined by the SAR will be correct within the SAR343

resolution, but where errors creep in the lidar can help to correct344

these.345

The lidar DTM is able to provide a ground height at each346

pixel, so that each position u(x, y) becomes u(x, y, z). The347

modification involves using the lidar heights to measure curva-348

tures and tensions at snake nodes in 3-D rather than 2-D space.349

Consider an instance where an unflooded field with low SAR350

backscatter is adjacent to a flood edge, such that the field is351

included in the SAR waterline determined by the snake (Fig. 6).352

As there will likely be a rise in height (dh) across the field353

that is perpendicular to the true flood edge, the error in the354

waterline will give rise to a significant component of curvature355

in the vertical plane, which will not be present in the waterline356

segments that are adjacent to the field. To be specific, in Psnake357

NT, the contribution to the 3-D curvature energy at the snake 358

node at u(xi, yi, zi) from its two adjacent nodes is 359

∆Ecurvature =γ|vi+1−vi|2/ai =
(
c2
ix+c2

iy+c2
iz

)
/ai (6)

where 360

cix =(xi+1 − xi)/di+1 − (xi − xi−1)/di

ciy =(yi+1 − yi)/di+1 − (yi − yi−1)/di

ciz =(zi+1 − zi)/di+1 − (zi − zi−1)/di

di =
(
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

)0.5

di+1 =
(
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

)0.5

ai =
(

((xi+1 + xi)/2 − (xi + xi−1)/2)2

+ ((yi+1 + yi)/2 − (yi + yi−1)/2)2

+ ((zi+1 + zi)/2 − (zi + zi−1)/2)2
)0.5

and the suffixes refer to the node numbers in Fig. 6. To reduce 361

the vertical curvature component c2
iz at node i in Fig. 6, the 362

snake will try to contract to drag node i back to be collinear 363

with nodes i − 1 and i + 1, which will also reduce c2
ix and c2

iy . 364

The 3-D tension energy, which is proportional to (d2
i+1 + d2

i ), 365

will also be reduced by this move. 366

A waterline error due to the presence of emergent vegetation 367

at the edge of the flood might also have significant components 368

of vertical curvature and tension that could be reduced by 369

correcting the error. A complicating factor in this case is that 370

the SAR and lidar forces might be acting against each other. In 371

order to reduce the vertical curvature and tension by incorporat- 372

ing the area of enhanced backscatter into the flooded area, the 373

inhomogeneity of the SAR returns in the flooded area would 374

generally have to increase. Which force won out in a particular 375

case would depend on their relative strengths. However, this 376

effect is not the dominant source of error [19]. 377

In order to take account of the fact that a change in height at 378

a node should, in general, cause different changes in curvature 379

and tension compared to the same magnitude change of node 380

position in the xy plane, the lidar heights were scaled by 381

weighting factor wl with respect to the (x, y) coordinates. 382

The straightforward approach to combining the SAR and 383

lidar data would be to use the existing algorithm with both 384

data sets and simply calculate 3-D rather than 2-D curvature 385

and tension energies. A possible objection to this might be that, 386

if there were flooded mounds in the floodplain that are not 387

visible to the SAR but visible to the lidar, these might retard 388

the expansion of the snake and distort the eventual waterline. 389

An alternative approach could be to use the algorithm with 390

SAR data and 2-D curvatures and tensions only initially. Then, 391

the snake iterations could continue using SAR and lidar data, 392

and 3-D curvatures and tensions, causing the snake to adjust 393

itself to correct errors where necessary. However, in cases 394

where the waterline was significantly in error, it might be 395

difficult to recover from these errors. For example, if the snake 396

leaked onto higher ground, it might be impeded from returning 397

to the true waterline position by a hollow in the higher ground. 398

In practice, it turns out that the straightforward approach using 399
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the existing algorithm and calculating 3-D curvatures and ten-400

sions works well enough.401

The SAR data may have significantly lower resolution than402

the airborne lidar data, as in the present test data set comprising403

ERS satellite SAR data. In this case, it may be possible to404

correct the waterline position to sub-SAR pixel accuracy in a405

second pass of the algorithm. The idea would be to rescale the406

SAR image and the snake waterline from the first pass to the407

higher resolution of the lidar, and to continue iterating to try to408

move the snake nodes away from the centers of the enlarged409

SAR pixels to create a waterline varying more smoothly in410

height along its length. A constraint would be that a node should411

not be allowed to move outside its enlarged SAR pixel, as no412

further information could be extracted from the SAR image at413

this stage.414

B. Implementation and Qualitative Assessment of Results415

For the first pass of the modified algorithm, the lidar image416

was degraded to the same pixel size as the SAR image (12.5 m)417

by averaging the lidar heights within each SAR pixel. The418

parameter settings for this pass were the same as those for the419

snake that was conditioned on only the SAR data (other than for420

k and wl). The initial value of lidar weight factor wl was chosen421

by experiment to be 0.15. This took into account the fact that422

the leakage at Wytham Hill [at point A in Fig. 5(a)] occurs over423

a distance of about 0.5 km. Curvature at a node is calculated424

using the two adjacent nodes on either side of the central node,425

spanning four internode spacings. For an internode spacing of426

eight pixels, this corresponds to a distance of about 400 m,427

roughly matching that required. The wl setting also reflected428

the facts that the lidar heights were expressed in millimeters429

and that a, for example, 1000-mm rise in the lidar height of the430

central node should give rise to a significant increase in 3-D431

curvature. Even though a node can only be moved horizontally432

by one SAR pixel at each iteration, this still amounts to a433

horizontal shift of 12.5 m, which is large compared to a 1-m434

vertical rise.435

The original snake seed that was used contained only pixels436

south of the A40 road west of Oxford (Fig. 1), and it was437

found on the first pass that, with the 3-D curvature constraint,438

the snake would not expand into the flooded areas north of the439

embanked road, even though this was, on average, only 1.5 m440

higher than the fields surrounding it. In practice, floodwater441

from the Thames flows under the A40 onto the lower land442

to the north through culverts that are spaced at about 250-m443

intervals. To overcome this difficulty, additional snake seed444

pixels were inserted to the north of the A40, which were445

then able to expand into the northernmost part of the flooded446

region. The same snake seed was used for all snakes that447

were generated, whether they were conditioned using the lidar448

data or not.449

The second pass took place at higher resolution, i.e., at the450

2-m pixel spacing of the lidar data. The input to this pass was451

the snake output from the first pass, with the node coordinates452

scaled up by 6.25 to match the change in resolution. The453

SAR image was interpolated from 12.5 to 2 m using nearest454

neighbor interpolation. The number of iterations was set to 3,455

Fig. 7. Waterline conditioned on SAR and lidar data overlain on SAR data 4/C
(a) for parameter k = 3 and wl = 0.15, and (b) for k = 4 and wl = 0.15.
The colors represent the difference in height of the waterline from the local
mean waterline height.

to ensure that the snake nodes would not move outside the SAR 456

pixels within which they had stabilized after the first pass. The 457

minimum and maximum node spacings were also upscaled to 458

37 and 74 pixels, respectively, ensuring similar 3-D curvatures 459

to those on the first pass. 460

Fig. 7 shows snake waterlines that were conditioned on both 461

SAR and lidar data, for k values of 3 and 4 and lidar weight 462

wl = 0.15, overlain on 12.5-m SAR data. It is clear that the 463

tendency for the snake to leak to higher ground at Wytham Hill 464

and at the Oxford Nature Park has been much reduced (see 465
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also Fig. 3). A further benefit is that the snake appears to be466

more stable to parameter changes. For example, in Fig. 5, the467

snake that was conditioned only on SAR data shows substantial468

change when k is raised from 2 to 3, whereas in Fig. 7, the snake469

that was conditioned on SAR and lidar shows less change when470

k is raised from 3 to 4. This finding is born out more rigorously471

in the quantitative analysis described in the next section.472

The main errors in waterline position that were corrected473

using the lidar data are due to the unflooded short vegetation474

that is adjacent to the flood giving similar returns to open water.475

The ability of the algorithm to correct loss of flood extent due to476

emergent vegetation is hardly tested using this data set, as this477

has few significant examples. The most obvious instances are478

emergent hedges between adjacent flooded fields, but these are479

generally of insufficient area to stop the snake subsuming them480

into its interior, even if conditioned only on SAR data.481

V. PARAMETER OPTIMIZATION AND QUANTITATIVE482

COMPARISON OF METHODS483

The snake parameters were optimized using a quantitative484

measurement of algorithm performance. The snake and aerial485

photo waterlines were first heighted by superimposing them486

on the lidar DTM. The snake waterline is defined only at the487

snake nodes. Only nodes on low slopes and in areas of short488

vegetation in the lidar vegetation height map were selected for489

heighting, as these are the ones that are likely to be heighted490

most accurately. The lower the slope, the smaller the node491

height error for a given error in its position. No requirements492

were made that selected nodes should have a strong SAR edge493

[indicated by a low G value (2)] associated with them, as this494

would reject nodes at the boundaries between the flood and495

an unflooded field giving low SAR backscatter, or between a496

region of emergent vegetation at the flood edge and an adjacent497

unflooded land (both giving high SAR backscatter).498

For each snake node that was selected, the aerial photo height499

to associate with the snake height was found by finding the500

height of the closest aerial photograph waterline point. This501

was found by applying a distance-with-destination transform to502

the aerial photo waterline image. The distance-with-destination503

transform is a form of distance transform that stores, for each504

pixel in the transform image, its distance to the nearest wa-505

terline point and also the direction from which the minimum506

distance was propagated. This allows backtracking from a507

pixel to find its nearest waterline point [31]. Corroborating the508

finding of [19], the average separation distance was about 50 m,509

although this value was strongly influenced by a small number510

of pairs having large separations, and the average separation511

of 70% of the pairs having separations of less than 50 m512

was only 20 m. However, the pairs with large separation were513

not rejected, as they included examples where, e.g., the SAR514

waterline was displaced from the aerial photo waterline by a515

complete field width due to misclassification of the field as516

flooded. The anticipation was that these events would be less517

common when the snake was conditioned on the SAR and lidar518

data than on the SAR data alone.519

Parameters were optimized by minimizing the sum of the520

squared height differences between the snake nodes and their521

corresponding aerial photo waterline points. To ensure that 522

adjacent pairs of heights were largely uncorrelated, the pairs 523

that were selected so far were thinned further, so that no 524

pair was closer than 200 m to another. This distance was 525

estimated by constructing a correlogram from the set of pairs 526

[32] and was the distance at which the average correlation 527

between adjacent pairs became less than 0.2. From the remain- 528

ing pairs, the mean and standard deviations of the snake and 529

aerial photograph waterline heights were calculated, as was 530

the rms error of the height differences, with this being the 531

variable to minimize in the parameter optimization. The mean 532

height difference and the standard deviation of the differences 533

were also calculated, and this allowed a paired t-test to be 534

performed to test whether the differences were significantly 535

nonzero. The paired t-test is used to exploit the fact that, while 536

corresponding SAR and aerial photograph waterline heights 537

will be correlated due to the gradual drop in height along the 538

reach, the height differences at corresponding nodes will be 539

uncorrelated due to the thinning process, as required by the 540

paired test. 541

Only the most important parameters were investigated in the 542

optimization procedure. For the snake that was conditioned 543

on only SAR data, the parameter that was optimized was k. 544

For the snake that was conditioned on SAR and lidar data, k 545

and wl were optimized. 546

Table I(a) shows the results of varying k for the snake that 547

was conditioned on only the SAR data. The minimum rms error 548

is 221.1 cm, which was obtained for k = 2.0. The associated 549

high t value implies that there is a significant height difference 550

at the 5% level between the snake and aerial photo waterlines. 551

The corresponding snake is shown in Fig. 5(b). Higher values 552

of k give significantly larger rms errors, and the high t values 553

that were coupled with positive mean height differences imply 554

that, for all these k values, the snake waterline heights are 555

significantly higher than those of the aerial photograph. 556

Table I(b) shows the results of varying k for the snake that 557

was conditioned on SAR and lidar data, with wl held constant 558

at 0.15. The minimum rms error is 55.5 cm, which was obtained 559

for k = 3.0. The associated t value is not significantly nonzero, 560

so that there is no significant difference between the snake 561

and aerial photo waterline heights. The corresponding snake is 562

shown in Fig. 7(a). 563

Table I(c) shows the results of varying wl for the snake that 564

was conditioned on SAR and lidar data, with k held constant 565

at 3.0. The minimum rms error is obtained at wl = 0.15. Over 566

the ranges of k and wl that were investigated, none of the t 567

values are significantly nonzero, implying greater robustness 568

to parameter changes than the case for the snake that was 569

conditioned on only SAR data. 570

Table II gives the frequency tables of the absolute differences 571

of the paired heights for the parameter sets giving the minimum 572

rms errors for the snake that was conditioned on only the SAR 573

data and the snake that was conditioned on SAR and lidar data. 574

It can be seen that the increase in the rms error in the case of 575

the snake that was conditioned only on SAR data is due almost 576

entirely to the large number of pairs having height differences 577

of greater than 300 cm. This is also apparent in Fig. 8, where 578

the paired height differences for the two cases are plotted as a 579
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TABLE I
RESULTS OF (a) VARYING k FOR THE SNAKE CONDITIONED ON ONLY THE

SAR DATA, (b) VARYING k FOR THE SNAKE CONDITIONED ON SAR AND

LIDAR DATA, WITH wl HELD CONSTANT AT 0.15, AND (c) VARYING wl

FOR THE SNAKE CONDITIONED ON SAR AND LIDAR DATA,
WITH k HELD CONSTANT AT 3.0

function of distance downstream. The main effect of the lidar580

data is to correct errors in the sections of waterline containing581

these outliers, when the snake is conditioned on both SAR and582

lidar.583

The effect of the second pass of the algorithm in correcting584

the waterline position to sub-SAR pixel accuracy was also585

assessed. For the parameter set giving the minimum rms error586

for the snake that was conditioned on SAR and lidar data587

(k = 3.0 and wl = 0.15), the algorithm was run for only the588

first pass. The minimum rms error was 58.1 cm, which is589

only slightly higher than the 55.5 cm that was achieved when590

both passes were employed. There was slightly more difference591

when k was raised to 4.0 and when the rms error increased to592

70.8 from 63.7. This indicates that the main reduction in error is593

being generated in the first pass and that the second gives only594

a second-order improvement. This may be partly because only595

snake nodes on low slopes have been selected, and thus, height596

differences across the SAR pixel, due to its size, will be small.597

TABLE II
FREQUENCY TABLES OF THE ABSOLUTE DIFFERENCES OF PAIRED

HEIGHTS FOR THE PARAMETER SETS GIVING THE MINIMUM RMS
ERRORS FOR THE SNAKE CONDITIONED ON ONLY THE SAR DATA

AND THE SNAKE CONDITIONED ON SAR AND LIDAR DATA

VI. DISCUSSION 598

The method may be applied to the validation of the flood 599

models of other river reaches, with the only prerequisites 600

additional to the usual data required to set up a hydraulic 601

model (e.g., an inflow hydrograph and river channel cross- 602

sectional data) being the availability of SAR imagery of the 603

river in flood and reasonably contemporaneous lidar data of 604

the unflooded reach. It would be relatively straightforward to 605

make the procedure operational. Lidar data are now often used 606

to parameterize the hydraulic model, making it more likely that 607

they would also be available to improve the SAR waterline. 608

It would be straightforward to implement the modified algo- 609

rithm within the Psnake NT software package. For this catch- 610

ment, the algorithm processing time was less than 1 min on a 611

Pentium IV personal computer. 612

The emphasis in the foregoing has been on ERS satellite 613

SAR data because of the availability of simultaneous ERS SAR 614

and aerial photography of the 1992 Oxford flood. While ERS 615

SAR data have poorer resolution than airborne lidar data, the 616

technique should also be applicable in cases where the SAR 617

resolution is similar to that of the lidar (e.g., airborne SAR), 618

in which case a second pass of the algorithm would certainly 619

be unnecessary. The algorithm of [18] and [19] has been used 620

to delineate flood extents in airborne SAR imagery [33], [34]. 621

However, given the increasing number of satellite SAR sensors 622

flying or planned and the difficulty of flying aircraft in poor 623

weather often accompanying floods, satellite SARs are likely 624

to remain to be a major source of SAR data for flood mapping 625

in the future. While the ERS SAR sensor has single VV polar- 626

ization and a fixed 23◦ viewing angle, the advent of later sensors 627

with higher resolutions, multiple polarizations, and variable 628

viewing angles (e.g., RADARSAT and Envisat Advanced SAR) 629

has allowed improved flood delineation (e.g., [15]). The high- 630

resolution satellite SAR sensors due for launch shortly (e.g., 631

RADARSAT-2, TerraSAR, and the Cosmo-Skymed constella- 632

tion) will have resolutions that match or almost match that of 633

airborne lidar. 634

Production of a more smoothly varying waterline may allow 635

the development of improved performance measures for flood 636

extent validation based on patterns of height differences be- 637

tween observed and modeled waterlines rather than on patterns 638

of wet or dry pixels, as currently done. Aronica et al. [24] 639
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Fig. 8. Paired height differences versus distance downstream for the parameter sets giving the minimum rms errors for the snake that was conditioned on
(a) SAR data and (b) SAR and lidar data.

describe current performance measures based on binary pat-640

terns. One measure representative of these is641

F (2) =
(
Aobs

⋂
Amod

)
/
(
Aobs

⋃
Amod

)
(7)

where Aobs and Amod represent the set of pixels that are ob-642

served to be inundated and predicted as inundated, respectively.643

F (2) is equal to 1 when observed and predicted areas coincide644

exactly and equal to 0 when no overlap between predicted and645

observed areas exists. A performance measure based on height646

differences might have several advantages over one such as647

F (2) based on binary pattern data. First, as the distribution of648

t is known, it is possible to estimate the probability P (t > |t0|)649

of obtaining a t value that is greater than the absolute value650

of that measured (t0), whereas F (2) is simply a weight factor.651

Second, the height difference measure between two model652

runs with different parameter settings might turn out to be653

more sensitive than F (2), because a small change in mean654

height might cause a large change in P (t > |t0|) yet only a655

small change in F (2). Third, the sign of the t value identifies656

whether an overprediction or an underprediction has occurred,657

whereas F (2) may give similar values for overprediction and658

underprediction.659

In this case, the parameters of the snake that was generated660

using SAR and lidar have been optimized using the aerial661

photo waterline, but this will not be available in the more usual662

situation in which the snake is being used to validate a model663

waterline. It is interesting that, for those nodes in areas of low664

slope and low vegetation, the standard deviation of their heights665

relative to their local mean height (within an 0.5-km distance)666

is a minimum at the same parameter setting at which the rms667

error of height differences between snake and aerial photo668

waterlines is minimized [Table I(b) and (c)]. This presumably669

reflects the fact that the snake is most smoothly varying when670

the relative height standard deviation is minimized, and it may671

be possible to use this measure as a surrogate for optimizing the672

snake parameters when using the snake to validate a modeled673

flood extent. However, a more likely scenario is that a single674

optimum parameter set would not be sought in this situation. In675

flood model validation, emphasis is now placed on associating676

uncertainties with model flood extents, by deriving flood extent677

probability maps showing the probability of each pixel being 678

flooded, given a flood event of the given magnitude. It has 679

been found that, for a particular event, many different sets 680

of model parameters may give flood extents that match the 681

observed extent to a greater or lesser degree. Such equifinality 682

has been well documented and has resulted in the development 683

of the generalized likelihood uncertainty estimation (GLUE) 684

technique, whereby many model runs are carried out, spanning 685

the likely ranges of model parameters [35]. A flood extent 686

probability map is obtained by performing a weighted average 687

of the binary-valued modeled flood extents (with the value for 688

a pixel being 1 for flooded and 0 for not flooded), with each 689

model flood extent being weighted according to its performance 690

measure relative to an observed flood extent. As previously 691

mentioned, the performance measure could be based on pat- 692

terns of height differences between observed and modeled 693

waterlines rather than on patterns of wet or dry pixels. To date, 694

the GLUE methodology has been mainly used to assess flood 695

extent uncertainty due to model parameter errors (see, e.g., [21] 696

and [36]). However, it seems a natural future step to try to 697

extend the method to cope with uncertainty in both model and 698

snake algorithm parameters [36]. Some method of limiting the 699

number of model runs that are required would probably need to 700

be employed (e.g., Gaussian emulation [37]), although some 701

reduction might result from using an improved performance 702

measure based on height differences. 703

VII. CONCLUSION 704

An algorithm has been developed for the automatic 705

extraction of flood extent using a snake that was generated 706

from combined SAR and lidar data, and the resulting waterline 707

compared to that generated using SAR data alone. From the re- 708

sulting snakes, sets of nodes in areas of low slope and low veg- 709

etation have been extracted, followed by further thinning. After 710

optimization of parameters, the heights of the resulting node set 711

from the snake that was conditioned on SAR and lidar matched 712

the corresponding node heights from the aerial photo waterline 713

significantly more closely than those from the snake that was 714

conditioned solely on SAR data. The conclusion is that, for 715

the variety of situations that are present in this particular 716
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data set, the use of the lidar data has resulted in an observed717

waterline that varies more smoothly along the reach and is a718

better match to our best estimate of the true waterline heights.719
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Improving River Flood Extent Delineation
From Synthetic Aperture Radar Using

Airborne Laser Altimetry

1

2

3

David C. Mason, Matthew S. Horritt, Johanna T. Dall’Amico, Tania R. Scott, and Paul D. Bates4

Abstract—Flood extent maps that are derived from synthetic5
aperture radar (SAR) images provide spatially distributed data6
for validating hydraulic models of river flood flow. The accuracy of7
such maps is reduced by a number of factors, including variation8
in backscatter from the different land cover types that are adjacent9
to the flood, changes in returns from the water surface that are10
caused by different meteorological conditions, and the presence of11
emergent vegetation. This paper describes how improved accuracy12
can be achieved by modifying an existing flood extent delineation13
algorithm to use airborne laser altimetry [light detection and14
ranging (lidar)] as well as SAR data. The lidar data provide an15
additional constraint that waterline heights should vary smoothly16
along the flooded reach. The method was tested on a SAR image17
of a flood for which contemporaneous aerial photography existed,18
together with lidar data of the unflooded reach. The waterline19
heights of the SAR flood extent that was conditioned on both SAR20
and lidar data matched the corresponding heights from the aerial21
photograph waterline significantly more closely than those from22
the SAR flood extent that was conditioned only on SAR data.23
For waterline heights in areas of low slope and vegetation, the24
root-mean-square error on the height differences reduced from25
221.1 cm for the latter case to 55.5 cm for the former.26

Index Terms—Data fusion, hydrology, lidar, snake.27

I. INTRODUCTION28

F LOOD extent maps that are derived from remotely sensed29

data are of considerable use in hydrology, providing spa-30

tially distributed data for validation of hydraulic models of river31

flood flow, for emergency flood relief management, and for32

development of spatially accurate hazard maps [1], [2]. The all-33

weather day–night capability of synthetic aperture radar (SAR)34

sensors gives these a considerable advantage for flood mapping35

over sensors operating at visible or infrared wavelengths, as the36

latter ones are unable to penetrate the cloud that often accom-37

panies flood events. This advantage is tempered by the fact that38

a number of factors conspire to reduce the accuracy of flood39

maps that are derived from SAR imagery. These include the40
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substantial variation in backscatter from the different land cover 41

types that are adjacent to the flood, the changes in returns from 42

the water surface that are caused by different meteorological 43

conditions, the presence of emergent vegetation, and the effects 44

of man-made structures in urban areas. This paper describes 45

a study to reduce inaccuracies from some of these sources 46

in an existing flood extent delineation algorithm by using an 47

additional data source, namely, airborne laser altimetry. 48

The simplest model of SAR backscatter from a river flood 49

assumes that the water surface is smoother than the surrounding 50

land and acts as a specular reflector, reflecting radiation away 51

from a side-looking sensor, so that the water appears dark 52

compared to the land. Two factors complicating the simple 53

specular reflection model in practice are the effects of wind 54

or rain roughening of the water surface, and emergent vege- 55

tation. The relationship between SAR backscatter and surface 56

roughness that is caused by wind blowing over the oceans is 57

well understood [3], and the effect may raise the backscatter 58

from the water to similar or greater levels than the adjacent 59

land [4], [5]. Wind roughening of a river flood surface can give 60

rise to similar effects, but these can have substantial spatial 61

variation, depending on the local topography, which determines 62

the fetch for a given wind direction. The presence of emergent 63

vegetation can give rise to multiple reflections between the 64

water and the vegetation, leading to a substantial enhance- 65

ment of backscatter, the magnitude of which is a function 66

of radar wavelength, look angle, and polarization. The effect 67

has been observed in a number of studies of flooded forest 68

and marshland (e.g., [6]–[9]), and the increase in backscatter 69

has been modeled mathematically in [10]. Enhanced backscat- 70

ter from the water surface that is caused by wind roughen- 71

ing or emergent vegetation will also result in an increased 72

level of noise due to the multiplicative nature of noise in 73

SAR images. 74

A number of methods for the automated delineation of flood 75

extent in SAR imagery of both fluvial and tidal environments 76

have been developed [4], [5], [9], [11]–[21]. Several of these 77

studies have illustrated the great potential of SAR sensors for 78

synoptic observation of large flooding events. An automatic 79

technique for delineating a fluvial flood using a statistical 80

active contour model (or snake) that is applied to a SAR 81

image to identify areas of homogeneous speckle statistics is 82

described in [18] and [19]. This assumes that single-frequency 83

single-polarization SAR intensities are available and was aimed 84

at producing an observed flood extent against which to validate 85

0196-2892/$25.00 © 2007 IEEE
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a modeled flood extent. Due to the difficulties of imaging urban86

areas using SAR, its use is limited to large-area mapping of87

floods in rural areas. The SAR segmentation uses both local88

tone and texture measures, and is capable of accurate feature89

boundary representation. The method was applied to a flood90

that was imaged using the ERS-1 satellite SAR sensor and91

proven to be capable of identifying 75% of the flooded area92

correctly, with 70% of the waterline coinciding with ground93

data within 20 m. The main error in waterline position was94

found to be due to unflooded short vegetation that was adjacent95

to the flood giving similar radar returns to open water, causing96

an overestimation of flood extent. The loss of flood extent due97

to emergent vegetation was found to be a secondary source98

of error.99

Further work on this topic [22], [23] found that, as a result of100

these error sources and the relatively large size of the European101

Remote Sensing Satellite (ERS) SAR pixel, the heights of the102

SAR waterline along a flooded reach could sometimes be in103

error by several meters (although, generally, it was much less)104

and could exhibit significant noise. One reason for this was that105

there was no constraint that the waterline heights should vary106

smoothly along the reach, whereas, in reality, the longitudinal107

slope of typical flood flows is low (∼0.001−0.0001 m · m−1),108

and changes in slope are very gradual. With this level of dif-109

ferences, the SAR image becomes much less useful for model110

flood extent validation than it could otherwise be.111

Horritt et al. [19] point out that their flood extent map-112

ping procedure identifying the flood as a region of rela-113

tively homogeneous speckle statistics may be improved by114

the adoption of a model-based approach. In this vein, this115

paper describes the use of light detection and ranging (li-116

dar) data to modify the SAR waterline, so that it becomes117

more useful for validation. The snake algorithm [18], [19]118

is modified to look not only at SAR image space but also119

at lidar digital terrain model (DTM) and vegetation height120

maps, so that the snake can be conditioned to be smoothly121

varying in ground height as well as in SAR intensities and122

textures. This should reduce errors that are caused by un-123

flooded vegetation that is adjacent to the flood giving similar124

returns to open water and also errors due to the SAR pixel125

size. It could also help somewhat in reducing errors due to126

emergent vegetation. An additional benefit of producing a127

more smoothly varying waterline is that it may allow the128

development of improved performance measures for flood ex-129

tent validation based on patterns of height differences rather130

than on patterns of wet or dry pixels, as currently done [24].131

The algorithm specifically sets out to improve the vertical132

accuracy of the SAR waterline, although any improvement133

should also lead to improvement in the horizontal waterline134

accuracy due to their correlations that are contained within135

the DTM.136

Used in this way, the lidar data may actually play a dual137

role in the modeling process, as lidar is often used to pa-138

rameterize the hydraulic model being validated, with the li-139

dar DTM providing the model bathymetry and possibly the140

vegetation heights being used to estimate bottom friction141

[22]. However, the use of lidar data in SAR waterline ex-142

traction as well as model parameterization does not under-143

Fig. 1. Location of the test area.

mine the independence of the SAR waterline in the validation 144

process. 145

II. TEST DATA SET 146

An ideal data set on which to validate the method would be 147

from a flood for which both satellite SAR data and simultaneous 148

aerial photography were available, so that the SAR snake 149

waterlines that are conditioned without and with the lidar data 150

could be compared with the waterline from the aerial pho- 151

tographs. In addition, lidar data of the unflooded area should be 152

available. 153

Biggin and Blyth [25] acquired oblique aerial photos of a 154

flood on the Thames west of Oxford, U.K., on December 4, 155

1992, at the same time (to within 2 h) as an ERS-1 SAR 156

overpass of the area. The Thames is a low-relief slow-response 157

catchment, and at this point along its course, the river discharge 158

during a flood changes only very gradually, so that such timing 159

differences are unimportant. The peak discharge for this event 160

was measured at 76 m3 · s−1, which represents a ∼1-in-5-year- 161

recurrence interval flow. The ERS-1 SAR image was acquired 162

approximately 36 h after the flood peak when the discharge had 163

dropped to 73 m3 · s−1, indicating the very slow response of the 164

catchment. At the time of overpass, there was no wind or rain in 165

the area. The location of the test area is shown in Fig. 1, and an 166

example of the aerial photography is shown in Fig. 2. The flood- 167

plain over this reach is semirural, with the majority of fields 168

being used at the time for pasture or having been ploughed. 169

There are also several urban areas, and the region is crossed 170

by a number of major roads and railways. The flood waterline 171

was delineated by eye from the aerial photos and vectorized 172

[19]. The waterline vectors were then georeferenced using an 173

orthographic transform that is parameterized by a least squares 174

method using 15–20 control points for each photograph. The 175

error in the waterline position was assessed from waterline 176

segments where the waterline was observed to lie alongside a 177

hedgerow or field boundary that could be located on a 1 : 25 000 178

scale map and was found to be less than 20 m. 179
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Fig. 2. Example of the aerial photography in the upper section of the reach, looking southwest from the north of the region (the view direction is V in Fig. 1).4/C

Lidar data at 1-m resolution were acquired for a section180

of this reach west of Oxford and approximately 12 km long181

by the Environment Agency of England and Wales (EA). The182

lidar was an Optech ALTM 2033 that was flown on a Cessna183

aircraft at 120 kn at a flying height of 900 m, with a laser184

firing rate of 33 kHz, a scanning frequency of 30 Hz, and a185

scanner half angle of 18◦. The lidar heights were validated by186

the EA by comparing them with a set of global positioning187

system (GPS) heights of several flat unvegetated surfaces in188

the area. Based on a sample of 299 GPS readings, the lidar189

heights were found to have an rms error of 10.6 cm, which190

comprised a random error of 10.2 cm and a systematic error191

of 2.6 cm. Lidar height accuracy reduces on steeper slopes192

and in vegetated regions [26]. Lidar positional accuracy was193

about 0.4 m [27]. The postprocessed lidar DTM and vege-194

tation height mask were obtained from the EA. These were195

degraded to 2-m pixel size to avoid too large a mismatch196

with the SAR pixel size of 12.5 m. Fig. 3 shows the lidar197

DTM with the high land of Wytham Hill in the west and the198

raised Oxford Nature Park in the east (see Fig. 1), both of199

which are relevant to this study. Fig. 3 also shows the aerial200

photo waterline overlain on the lidar DTM, with the waterline201

color representing its difference in height from the local mean202

waterline height (within 0.5-km distance). The presence of203

large sections of waterline having small differences (blue color)204

from the local mean height indicates that the aerial waterline205

height varies smoothly along the reach. The waterline includes206

instances of islands of higher ground that are surrounded by207

water. It is assumed here that all areas of water have been208

accurately mapped, so that the validation data are essentially209

error free.210

III. FLOOD EXTENT EXTRACTION FROM SAR DATA 211

A. Algorithm Description 212

A detailed description of the algorithm to delineate a flood 213

using an active contour model is given in [18], and only an 214

overview is presented here. Active contour models or snakes 215

are useful for converting incomplete or noisy edge maps into 216

smooth continuous vector boundaries [5], [28]. The edge image 217

space is searched using a dynamic curvilinear contour that is 218

driven to be attracted to edge pixels using an energy minimiza- 219

tion function, so that the contour can link together unconnected 220

edge segments. The contour (snake) is represented in a piece- 221

wise linear fashion as a set of nodes (i.e., the coordinates of the 222

snake points) that are linked by straight-line segments. Ivins 223

and Porrill [29] developed a statistical snake that operates on 224

the image itself rather than an edge image, dispensing with the 225

need for a prior edge detection stage. Their technique involves 226

estimating the local image mean intensity (tone) at a node using 227

the pixels between this node and its adjacent nodes. This gives 228

the advantage that noise due to SAR speckle is reduced by 229

averaging pixel intensities along an edge while, at the same 230

time, maintaining resolution that is perpendicular to the edge, 231

giving accurate edge positioning. The local intensity variance 232

(texture) is also calculated from these pixels, as this has proven 233

to be a useful discriminator between different natural land- 234

cover types having similar mean intensities in SAR imagery. 235

The statistical snake is formulated as an energy minimization 236

problem with the total snake energy E(u(s)) given by 237

E (u(s))=Etension+Ecurvature−
∫∫

G (I(x, y)) dx dy (1)
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Fig. 3. Aerial photo waterline overlain on the lidar DTM. The colors represent the difference in height of the waterline from the local mean waterline height.4/C

where u(s) = (x(s), y(s)) describes the contour position (x, y)238

in the 2-D image space as a vector function of arc length239

parameter s. Etension and Ecurvature are energies that are gen-240

erated by the model’s internal tension and stiffness constraints,241

which favor a smooth uncrenellated contour that is made up242

of evenly spaced nodes (see the following). G is a goodness243

function that assesses how well a set of image pixels I(x, y)244

meets certain criteria. The total energy is minimized if the con-245

tour encloses a region of pixels that is homogeneous in tone and246

texture.247

If the mean and variance of the intensities of the set of pixels248

that are immediately at either side of a particular snake node are249

measured, the knowledge of how these variables are distributed250

can be used to estimate the probability that these pixels match251

those that are already within the region that is enclosed by the252

contour. Horritt [18] relates G to the log of this probability, with253

the dependence on the measured sample mean µ′, for example,254

having the form255

G(µ′) = 1 − n(µ′ − µ)2/vk2 (2)

where µ and v are the mean and variance of the seed population256

that is already enclosed within the contour, respectively; n is257

the sample size; and k is a parameter that can be adjusted 258

to tune algorithm performance. G is then equal to 1 for a 259

set of pixels with the expected mean but falls to zero if the 260

mean differs by k
√

(v/n) (i.e., k standard deviations) from 261

the expected value. The parameter k is usually set at about 262

2 or 3 but may be increased further to allow for a level of 263

statistical inhomogeneity in the region being segmented. The 264

overall goodness function (with components that are based on 265

both the measured mean and variance) is limited to a minimum 266

value of −1. 267

The roles of the tension and curvature constraints are to pro- 268

duce a contour of appropriate smoothness with evenly spaced 269

nodes, by a consideration of the balance between image and 270

curvature forces. Consider the situation that is shown in Fig. 4 271

for snake nodes at ui−1, ui, and ui+1 that are linked by unit 272

vectors vi and vi+1. The local curvature is ∆θ/∆s, where ∆θ 273

is the change of angle along arc length ∆s. Horritt [18] gives 274

the contribution to the total curvature energy as 275

∆Ecurvature = γ(∆θ/∆s)2/∆s = γ|vi+1 − vi|2/ai (3)

where ai is the distance between the midpoints of vi and vi+1, 276

and γ is a curvature energy weighting parameter. Equation (3) 277
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Fig. 4. Vectors for describing curvature and tension energies (after [18]).

is valid for small values of ∆θ. Similarly, the contribution to278

the tension energy is given by279

∆Etension = λ
(
|ui+1 − ui|2 + |ui − ui−1|2

)
(4)

where λ is the tension energy weighting parameter. The mag-280

nitudes of these energies can be adjusted using the weighting281

parameters. Too large a value for the curvature parameter282

will make the curvature term dominate the model energy and283

produce an unrealistically smooth contour. Too large a value of284

the tension parameter will favor a short contour and stifle the285

growth of the snake.286

The scheme that was used to minimize the energy is the287

algorithm of Williams and Shah [28]. For each node at each288

iteration, the change in energy dE is computed for moves to all289

eight neighbors of the node290

dE = −GdA + dEtension + dEcurvature. (5)

The lowest (most negative) dE is chosen. Obviously, dE is291

equal to zero for no node movement. G is calculated along the292

line segments linking the node with its two neighbors, and dA is293

the local change in area. If G is positive, the snake is in a region294

of homogeneous pixels, a positive dA is favored, and the snake295

expands. If G is negative, the snake is in an inhomogeneous re-296

gion, a negative dA is favored, and the snake retreats. The mean297

and standard deviation of the seed population are calculated298

from all pixels lying inside the contour every ten iterations.299

The flooded region may not be simply connected, as islands300

and isolated water bodies may form holes and outliers. To cope301

with this, the algorithm incorporates a method for dealing with302

complex topology and snake self-intersection. As an example,303

a snake may spawn a smaller subsnake within itself to represent304

an island.305

B. Implementation and Qualitative Assessment of Results306

A personal computer (PC)-based implementation of the al-307

gorithm (Psnake NT) was used in this paper [30]. Psnake NT308

is a software package that is available to the hydrological309

modeling community for the semiautomatic extraction of flood310

Fig. 5. Waterline conditioned only on SAR data overlain on SAR data (a) for 4/C
parameter k = 3 and (b) k = 2. The colors represent the difference in height
of the waterline from the local mean waterline height.

extents from SAR data. Fig. 5 shows snake waterlines that are 311

generated using SAR data only, for the number of standard 312

deviations k of 3 and 2, overlain on SAR data. It has been found 313

by experiment that k is probably the most important parameter 314

controlling the snake [19]. Other parameter settings were a 315

minimum node spacing of 6 pixels, a maximum node spacing 316

of 12 pixels, curvature parameter γ of 68.3, tension parameter λ 317

of 0.1, a texture weight of 0.2, and iterations of 200. The snake 318

was seeded (i.e., initialized) manually as a narrow strip lying 319
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Fig. 6. Example error that might be corrected using lidar.

along the course of the unflooded river channel, ensuring that320

it contained only flooded pixels.321

In Fig. 5, the snake shows a tendency to leak onto higher322

ground on Wytham Hill [point A in Fig. 5(a), see also Fig. 3].323

This is likely to be due to the presence of vegetated fields,324

which correspond to areas of low SAR backscatter and are325

likely to be misclassified as flooded. While no ground reference326

data were acquired at the time of the flood, evidence for this327

comes from a recent aerial photograph that was obtained later328

than the SAR image. A further example of leakage of the snake329

onto higher ground is visible at point B in Fig. 5(a), where330

the snake has leaked onto the Oxford Nature Park, which is331

higher than the land toward the Thames yet again exhibits low332

SAR backscatter.333

IV. FLOOD EXTENT EXTRACTION FROM334

SAR AND LIDAR DATA335

A. Algorithm Modification336

The snake algorithm was modified so that the snake was337

conditioned not only on the SAR image but also on the lidar338

DTM, so that it becomes smoothly varying in ground height as339

well as in SAR intensities and textures. The principle that was340

adopted was that the SAR image should still be the primary341

determinant of the flood extent. In most areas, the flood extent342

that was determined by the SAR will be correct within the SAR343

resolution, but where errors creep in the lidar can help to correct344

these.345

The lidar DTM is able to provide a ground height at each346

pixel, so that each position u(x, y) becomes u(x, y, z). The347

modification involves using the lidar heights to measure curva-348

tures and tensions at snake nodes in 3-D rather than 2-D space.349

Consider an instance where an unflooded field with low SAR350

backscatter is adjacent to a flood edge, such that the field is351

included in the SAR waterline determined by the snake (Fig. 6).352

As there will likely be a rise in height (dh) across the field353

that is perpendicular to the true flood edge, the error in the354

waterline will give rise to a significant component of curvature355

in the vertical plane, which will not be present in the waterline356

segments that are adjacent to the field. To be specific, in Psnake357

NT, the contribution to the 3-D curvature energy at the snake 358

node at u(xi, yi, zi) from its two adjacent nodes is 359

∆Ecurvature =γ|vi+1−vi|2/ai =
(
c2
ix+c2

iy+c2
iz

)
/ai (6)

where 360

cix =(xi+1 − xi)/di+1 − (xi − xi−1)/di

ciy =(yi+1 − yi)/di+1 − (yi − yi−1)/di

ciz =(zi+1 − zi)/di+1 − (zi − zi−1)/di

di =
(
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

)0.5

di+1 =
(
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

)0.5

ai =
(

((xi+1 + xi)/2 − (xi + xi−1)/2)2

+ ((yi+1 + yi)/2 − (yi + yi−1)/2)2

+ ((zi+1 + zi)/2 − (zi + zi−1)/2)2
)0.5

and the suffixes refer to the node numbers in Fig. 6. To reduce 361

the vertical curvature component c2
iz at node i in Fig. 6, the 362

snake will try to contract to drag node i back to be collinear 363

with nodes i − 1 and i + 1, which will also reduce c2
ix and c2

iy . 364

The 3-D tension energy, which is proportional to (d2
i+1 + d2

i ), 365

will also be reduced by this move. 366

A waterline error due to the presence of emergent vegetation 367

at the edge of the flood might also have significant components 368

of vertical curvature and tension that could be reduced by 369

correcting the error. A complicating factor in this case is that 370

the SAR and lidar forces might be acting against each other. In 371

order to reduce the vertical curvature and tension by incorporat- 372

ing the area of enhanced backscatter into the flooded area, the 373

inhomogeneity of the SAR returns in the flooded area would 374

generally have to increase. Which force won out in a particular 375

case would depend on their relative strengths. However, this 376

effect is not the dominant source of error [19]. 377

In order to take account of the fact that a change in height at 378

a node should, in general, cause different changes in curvature 379

and tension compared to the same magnitude change of node 380

position in the xy plane, the lidar heights were scaled by 381

weighting factor wl with respect to the (x, y) coordinates. 382

The straightforward approach to combining the SAR and 383

lidar data would be to use the existing algorithm with both 384

data sets and simply calculate 3-D rather than 2-D curvature 385

and tension energies. A possible objection to this might be that, 386

if there were flooded mounds in the floodplain that are not 387

visible to the SAR but visible to the lidar, these might retard 388

the expansion of the snake and distort the eventual waterline. 389

An alternative approach could be to use the algorithm with 390

SAR data and 2-D curvatures and tensions only initially. Then, 391

the snake iterations could continue using SAR and lidar data, 392

and 3-D curvatures and tensions, causing the snake to adjust 393

itself to correct errors where necessary. However, in cases 394

where the waterline was significantly in error, it might be 395

difficult to recover from these errors. For example, if the snake 396

leaked onto higher ground, it might be impeded from returning 397

to the true waterline position by a hollow in the higher ground. 398

In practice, it turns out that the straightforward approach using 399
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the existing algorithm and calculating 3-D curvatures and ten-400

sions works well enough.401

The SAR data may have significantly lower resolution than402

the airborne lidar data, as in the present test data set comprising403

ERS satellite SAR data. In this case, it may be possible to404

correct the waterline position to sub-SAR pixel accuracy in a405

second pass of the algorithm. The idea would be to rescale the406

SAR image and the snake waterline from the first pass to the407

higher resolution of the lidar, and to continue iterating to try to408

move the snake nodes away from the centers of the enlarged409

SAR pixels to create a waterline varying more smoothly in410

height along its length. A constraint would be that a node should411

not be allowed to move outside its enlarged SAR pixel, as no412

further information could be extracted from the SAR image at413

this stage.414

B. Implementation and Qualitative Assessment of Results415

For the first pass of the modified algorithm, the lidar image416

was degraded to the same pixel size as the SAR image (12.5 m)417

by averaging the lidar heights within each SAR pixel. The418

parameter settings for this pass were the same as those for the419

snake that was conditioned on only the SAR data (other than for420

k and wl). The initial value of lidar weight factor wl was chosen421

by experiment to be 0.15. This took into account the fact that422

the leakage at Wytham Hill [at point A in Fig. 5(a)] occurs over423

a distance of about 0.5 km. Curvature at a node is calculated424

using the two adjacent nodes on either side of the central node,425

spanning four internode spacings. For an internode spacing of426

eight pixels, this corresponds to a distance of about 400 m,427

roughly matching that required. The wl setting also reflected428

the facts that the lidar heights were expressed in millimeters429

and that a, for example, 1000-mm rise in the lidar height of the430

central node should give rise to a significant increase in 3-D431

curvature. Even though a node can only be moved horizontally432

by one SAR pixel at each iteration, this still amounts to a433

horizontal shift of 12.5 m, which is large compared to a 1-m434

vertical rise.435

The original snake seed that was used contained only pixels436

south of the A40 road west of Oxford (Fig. 1), and it was437

found on the first pass that, with the 3-D curvature constraint,438

the snake would not expand into the flooded areas north of the439

embanked road, even though this was, on average, only 1.5 m440

higher than the fields surrounding it. In practice, floodwater441

from the Thames flows under the A40 onto the lower land442

to the north through culverts that are spaced at about 250-m443

intervals. To overcome this difficulty, additional snake seed444

pixels were inserted to the north of the A40, which were445

then able to expand into the northernmost part of the flooded446

region. The same snake seed was used for all snakes that447

were generated, whether they were conditioned using the lidar448

data or not.449

The second pass took place at higher resolution, i.e., at the450

2-m pixel spacing of the lidar data. The input to this pass was451

the snake output from the first pass, with the node coordinates452

scaled up by 6.25 to match the change in resolution. The453

SAR image was interpolated from 12.5 to 2 m using nearest454

neighbor interpolation. The number of iterations was set to 3,455

Fig. 7. Waterline conditioned on SAR and lidar data overlain on SAR data 4/C
(a) for parameter k = 3 and wl = 0.15, and (b) for k = 4 and wl = 0.15.
The colors represent the difference in height of the waterline from the local
mean waterline height.

to ensure that the snake nodes would not move outside the SAR 456

pixels within which they had stabilized after the first pass. The 457

minimum and maximum node spacings were also upscaled to 458

37 and 74 pixels, respectively, ensuring similar 3-D curvatures 459

to those on the first pass. 460

Fig. 7 shows snake waterlines that were conditioned on both 461

SAR and lidar data, for k values of 3 and 4 and lidar weight 462

wl = 0.15, overlain on 12.5-m SAR data. It is clear that the 463

tendency for the snake to leak to higher ground at Wytham Hill 464

and at the Oxford Nature Park has been much reduced (see 465
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also Fig. 3). A further benefit is that the snake appears to be466

more stable to parameter changes. For example, in Fig. 5, the467

snake that was conditioned only on SAR data shows substantial468

change when k is raised from 2 to 3, whereas in Fig. 7, the snake469

that was conditioned on SAR and lidar shows less change when470

k is raised from 3 to 4. This finding is born out more rigorously471

in the quantitative analysis described in the next section.472

The main errors in waterline position that were corrected473

using the lidar data are due to the unflooded short vegetation474

that is adjacent to the flood giving similar returns to open water.475

The ability of the algorithm to correct loss of flood extent due to476

emergent vegetation is hardly tested using this data set, as this477

has few significant examples. The most obvious instances are478

emergent hedges between adjacent flooded fields, but these are479

generally of insufficient area to stop the snake subsuming them480

into its interior, even if conditioned only on SAR data.481

V. PARAMETER OPTIMIZATION AND QUANTITATIVE482

COMPARISON OF METHODS483

The snake parameters were optimized using a quantitative484

measurement of algorithm performance. The snake and aerial485

photo waterlines were first heighted by superimposing them486

on the lidar DTM. The snake waterline is defined only at the487

snake nodes. Only nodes on low slopes and in areas of short488

vegetation in the lidar vegetation height map were selected for489

heighting, as these are the ones that are likely to be heighted490

most accurately. The lower the slope, the smaller the node491

height error for a given error in its position. No requirements492

were made that selected nodes should have a strong SAR edge493

[indicated by a low G value (2)] associated with them, as this494

would reject nodes at the boundaries between the flood and495

an unflooded field giving low SAR backscatter, or between a496

region of emergent vegetation at the flood edge and an adjacent497

unflooded land (both giving high SAR backscatter).498

For each snake node that was selected, the aerial photo height499

to associate with the snake height was found by finding the500

height of the closest aerial photograph waterline point. This501

was found by applying a distance-with-destination transform to502

the aerial photo waterline image. The distance-with-destination503

transform is a form of distance transform that stores, for each504

pixel in the transform image, its distance to the nearest wa-505

terline point and also the direction from which the minimum506

distance was propagated. This allows backtracking from a507

pixel to find its nearest waterline point [31]. Corroborating the508

finding of [19], the average separation distance was about 50 m,509

although this value was strongly influenced by a small number510

of pairs having large separations, and the average separation511

of 70% of the pairs having separations of less than 50 m512

was only 20 m. However, the pairs with large separation were513

not rejected, as they included examples where, e.g., the SAR514

waterline was displaced from the aerial photo waterline by a515

complete field width due to misclassification of the field as516

flooded. The anticipation was that these events would be less517

common when the snake was conditioned on the SAR and lidar518

data than on the SAR data alone.519

Parameters were optimized by minimizing the sum of the520

squared height differences between the snake nodes and their521

corresponding aerial photo waterline points. To ensure that 522

adjacent pairs of heights were largely uncorrelated, the pairs 523

that were selected so far were thinned further, so that no 524

pair was closer than 200 m to another. This distance was 525

estimated by constructing a correlogram from the set of pairs 526

[32] and was the distance at which the average correlation 527

between adjacent pairs became less than 0.2. From the remain- 528

ing pairs, the mean and standard deviations of the snake and 529

aerial photograph waterline heights were calculated, as was 530

the rms error of the height differences, with this being the 531

variable to minimize in the parameter optimization. The mean 532

height difference and the standard deviation of the differences 533

were also calculated, and this allowed a paired t-test to be 534

performed to test whether the differences were significantly 535

nonzero. The paired t-test is used to exploit the fact that, while 536

corresponding SAR and aerial photograph waterline heights 537

will be correlated due to the gradual drop in height along the 538

reach, the height differences at corresponding nodes will be 539

uncorrelated due to the thinning process, as required by the 540

paired test. 541

Only the most important parameters were investigated in the 542

optimization procedure. For the snake that was conditioned 543

on only SAR data, the parameter that was optimized was k. 544

For the snake that was conditioned on SAR and lidar data, k 545

and wl were optimized. 546

Table I(a) shows the results of varying k for the snake that 547

was conditioned on only the SAR data. The minimum rms error 548

is 221.1 cm, which was obtained for k = 2.0. The associated 549

high t value implies that there is a significant height difference 550

at the 5% level between the snake and aerial photo waterlines. 551

The corresponding snake is shown in Fig. 5(b). Higher values 552

of k give significantly larger rms errors, and the high t values 553

that were coupled with positive mean height differences imply 554

that, for all these k values, the snake waterline heights are 555

significantly higher than those of the aerial photograph. 556

Table I(b) shows the results of varying k for the snake that 557

was conditioned on SAR and lidar data, with wl held constant 558

at 0.15. The minimum rms error is 55.5 cm, which was obtained 559

for k = 3.0. The associated t value is not significantly nonzero, 560

so that there is no significant difference between the snake 561

and aerial photo waterline heights. The corresponding snake is 562

shown in Fig. 7(a). 563

Table I(c) shows the results of varying wl for the snake that 564

was conditioned on SAR and lidar data, with k held constant 565

at 3.0. The minimum rms error is obtained at wl = 0.15. Over 566

the ranges of k and wl that were investigated, none of the t 567

values are significantly nonzero, implying greater robustness 568

to parameter changes than the case for the snake that was 569

conditioned on only SAR data. 570

Table II gives the frequency tables of the absolute differences 571

of the paired heights for the parameter sets giving the minimum 572

rms errors for the snake that was conditioned on only the SAR 573

data and the snake that was conditioned on SAR and lidar data. 574

It can be seen that the increase in the rms error in the case of 575

the snake that was conditioned only on SAR data is due almost 576

entirely to the large number of pairs having height differences 577

of greater than 300 cm. This is also apparent in Fig. 8, where 578

the paired height differences for the two cases are plotted as a 579
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TABLE I
RESULTS OF (a) VARYING k FOR THE SNAKE CONDITIONED ON ONLY THE

SAR DATA, (b) VARYING k FOR THE SNAKE CONDITIONED ON SAR AND

LIDAR DATA, WITH wl HELD CONSTANT AT 0.15, AND (c) VARYING wl

FOR THE SNAKE CONDITIONED ON SAR AND LIDAR DATA,
WITH k HELD CONSTANT AT 3.0

function of distance downstream. The main effect of the lidar580

data is to correct errors in the sections of waterline containing581

these outliers, when the snake is conditioned on both SAR and582

lidar.583

The effect of the second pass of the algorithm in correcting584

the waterline position to sub-SAR pixel accuracy was also585

assessed. For the parameter set giving the minimum rms error586

for the snake that was conditioned on SAR and lidar data587

(k = 3.0 and wl = 0.15), the algorithm was run for only the588

first pass. The minimum rms error was 58.1 cm, which is589

only slightly higher than the 55.5 cm that was achieved when590

both passes were employed. There was slightly more difference591

when k was raised to 4.0 and when the rms error increased to592

70.8 from 63.7. This indicates that the main reduction in error is593

being generated in the first pass and that the second gives only594

a second-order improvement. This may be partly because only595

snake nodes on low slopes have been selected, and thus, height596

differences across the SAR pixel, due to its size, will be small.597

TABLE II
FREQUENCY TABLES OF THE ABSOLUTE DIFFERENCES OF PAIRED

HEIGHTS FOR THE PARAMETER SETS GIVING THE MINIMUM RMS
ERRORS FOR THE SNAKE CONDITIONED ON ONLY THE SAR DATA

AND THE SNAKE CONDITIONED ON SAR AND LIDAR DATA

VI. DISCUSSION 598

The method may be applied to the validation of the flood 599

models of other river reaches, with the only prerequisites 600

additional to the usual data required to set up a hydraulic 601

model (e.g., an inflow hydrograph and river channel cross- 602

sectional data) being the availability of SAR imagery of the 603

river in flood and reasonably contemporaneous lidar data of 604

the unflooded reach. It would be relatively straightforward to 605

make the procedure operational. Lidar data are now often used 606

to parameterize the hydraulic model, making it more likely that 607

they would also be available to improve the SAR waterline. 608

It would be straightforward to implement the modified algo- 609

rithm within the Psnake NT software package. For this catch- 610

ment, the algorithm processing time was less than 1 min on a 611

Pentium IV personal computer. 612

The emphasis in the foregoing has been on ERS satellite 613

SAR data because of the availability of simultaneous ERS SAR 614

and aerial photography of the 1992 Oxford flood. While ERS 615

SAR data have poorer resolution than airborne lidar data, the 616

technique should also be applicable in cases where the SAR 617

resolution is similar to that of the lidar (e.g., airborne SAR), 618

in which case a second pass of the algorithm would certainly 619

be unnecessary. The algorithm of [18] and [19] has been used 620

to delineate flood extents in airborne SAR imagery [33], [34]. 621

However, given the increasing number of satellite SAR sensors 622

flying or planned and the difficulty of flying aircraft in poor 623

weather often accompanying floods, satellite SARs are likely 624

to remain to be a major source of SAR data for flood mapping 625

in the future. While the ERS SAR sensor has single VV polar- 626

ization and a fixed 23◦ viewing angle, the advent of later sensors 627

with higher resolutions, multiple polarizations, and variable 628

viewing angles (e.g., RADARSAT and Envisat Advanced SAR) 629

has allowed improved flood delineation (e.g., [15]). The high- 630

resolution satellite SAR sensors due for launch shortly (e.g., 631

RADARSAT-2, TerraSAR, and the Cosmo-Skymed constella- 632

tion) will have resolutions that match or almost match that of 633

airborne lidar. 634

Production of a more smoothly varying waterline may allow 635

the development of improved performance measures for flood 636

extent validation based on patterns of height differences be- 637

tween observed and modeled waterlines rather than on patterns 638

of wet or dry pixels, as currently done. Aronica et al. [24] 639
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Fig. 8. Paired height differences versus distance downstream for the parameter sets giving the minimum rms errors for the snake that was conditioned on
(a) SAR data and (b) SAR and lidar data.

describe current performance measures based on binary pat-640

terns. One measure representative of these is641

F (2) =
(
Aobs

⋂
Amod

)
/
(
Aobs

⋃
Amod

)
(7)

where Aobs and Amod represent the set of pixels that are ob-642

served to be inundated and predicted as inundated, respectively.643

F (2) is equal to 1 when observed and predicted areas coincide644

exactly and equal to 0 when no overlap between predicted and645

observed areas exists. A performance measure based on height646

differences might have several advantages over one such as647

F (2) based on binary pattern data. First, as the distribution of648

t is known, it is possible to estimate the probability P (t > |t0|)649

of obtaining a t value that is greater than the absolute value650

of that measured (t0), whereas F (2) is simply a weight factor.651

Second, the height difference measure between two model652

runs with different parameter settings might turn out to be653

more sensitive than F (2), because a small change in mean654

height might cause a large change in P (t > |t0|) yet only a655

small change in F (2). Third, the sign of the t value identifies656

whether an overprediction or an underprediction has occurred,657

whereas F (2) may give similar values for overprediction and658

underprediction.659

In this case, the parameters of the snake that was generated660

using SAR and lidar have been optimized using the aerial661

photo waterline, but this will not be available in the more usual662

situation in which the snake is being used to validate a model663

waterline. It is interesting that, for those nodes in areas of low664

slope and low vegetation, the standard deviation of their heights665

relative to their local mean height (within an 0.5-km distance)666

is a minimum at the same parameter setting at which the rms667

error of height differences between snake and aerial photo668

waterlines is minimized [Table I(b) and (c)]. This presumably669

reflects the fact that the snake is most smoothly varying when670

the relative height standard deviation is minimized, and it may671

be possible to use this measure as a surrogate for optimizing the672

snake parameters when using the snake to validate a modeled673

flood extent. However, a more likely scenario is that a single674

optimum parameter set would not be sought in this situation. In675

flood model validation, emphasis is now placed on associating676

uncertainties with model flood extents, by deriving flood extent677

probability maps showing the probability of each pixel being 678

flooded, given a flood event of the given magnitude. It has 679

been found that, for a particular event, many different sets 680

of model parameters may give flood extents that match the 681

observed extent to a greater or lesser degree. Such equifinality 682

has been well documented and has resulted in the development 683

of the generalized likelihood uncertainty estimation (GLUE) 684

technique, whereby many model runs are carried out, spanning 685

the likely ranges of model parameters [35]. A flood extent 686

probability map is obtained by performing a weighted average 687

of the binary-valued modeled flood extents (with the value for 688

a pixel being 1 for flooded and 0 for not flooded), with each 689

model flood extent being weighted according to its performance 690

measure relative to an observed flood extent. As previously 691

mentioned, the performance measure could be based on pat- 692

terns of height differences between observed and modeled 693

waterlines rather than on patterns of wet or dry pixels. To date, 694

the GLUE methodology has been mainly used to assess flood 695

extent uncertainty due to model parameter errors (see, e.g., [21] 696

and [36]). However, it seems a natural future step to try to 697

extend the method to cope with uncertainty in both model and 698

snake algorithm parameters [36]. Some method of limiting the 699

number of model runs that are required would probably need to 700

be employed (e.g., Gaussian emulation [37]), although some 701

reduction might result from using an improved performance 702

measure based on height differences. 703

VII. CONCLUSION 704

An algorithm has been developed for the automatic 705

extraction of flood extent using a snake that was generated 706

from combined SAR and lidar data, and the resulting waterline 707

compared to that generated using SAR data alone. From the re- 708

sulting snakes, sets of nodes in areas of low slope and low veg- 709

etation have been extracted, followed by further thinning. After 710

optimization of parameters, the heights of the resulting node set 711

from the snake that was conditioned on SAR and lidar matched 712

the corresponding node heights from the aerial photo waterline 713

significantly more closely than those from the snake that was 714

conditioned solely on SAR data. The conclusion is that, for 715

the variety of situations that are present in this particular 716
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data set, the use of the lidar data has resulted in an observed717

waterline that varies more smoothly along the reach and is a718

better match to our best estimate of the true waterline heights.719
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