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ABSTRACT 

The global financial crisis towards the end of the last decade saw an increasing need in the role of 

risk measurement and management in the mainstream financial investment market.  Among other 

things, the measurement and management of market risk, credit risk, and operational risk have 

become pronounced than ever before. Different strategies have been employed in dealing with the 

unpredictable nature of the market. This research focuses on the risk-driven investment in public 

real estate. The aims of this research are threefold 

1. To examine whether the real estate allocation based on risk parity leads to better 

performance compared to other allocation methods 

2. To assess the performance of market risk models, namely value at risk (VaR) and expected 

shortfall on the real estate market. 

3.  To investigate the volatility transmission of the UK implied volatility index and UK REITs 

with traded options 

The results for the risk allocation generally show that risk parity does in some instances perform 

better than other allocation methods. Concerning market risk modelling, VaR offers much simple 

modelling in comparison to expected shortfall. The challenge in the expected shortfall is in its time-

consuming nature but it does address the shortcoming of VaR. With regards to the volatility 

transmission, the results are significant there showing that there is a volatility spillover 

(transmission) between the changes in implied volatility of the FTSE 100 volatility index, the REIT 

companies with traded options and the UK REIT index prices. 
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CHAPTER 1  

INTRODUCTION 

The global financial crisis towards the end of the last decade saw an increased need in the role of risk 

measurement and management in the mainstream financial investment market.  Among other things, 

the measurement and management of market risk, credit risk, and operational risk have become 

pronounced than ever before.  Different strategies have been employed in dealing with the 

unpredictable nature of the market.  Investors have seen the need to spread their risk through 

diversification.  However, the conventional asset allocation methods have been challenged given their 

performance in the crisis.  Despite this, the traditional asset allocation methods, i.e., equally-weighted, 

minimum-variance and mean-variance optimisation based on modern portfolio theory (MPT) are still 

used with MPT being the most widely used notwithstanding its inherent estimation error caused by the 

forecasting of expected returns.  Portfolio construction using MPT in real estate presents similar 

challenges where naïve diversification is predominately used to diversify portfolios; this is especially so 

for liquid real estate investments also referred to as public real estate.  The challenges in the return-

driven strategies have given rise to risk parity, an asset allocation method whose aim is equal risk 

allocation across asset classes in a portfolio.  By so doing, there is equal risk contribution in a portfolio. 

The risk parity portfolio strategy has grown in popularity in the last two decades as it is seen to be an 

investor’s ‘all weather’ strategy compared to the return based strategies.  Risk parity is said to provide 

equivalent returns but with lower risk than conventional methods.  This is because it does not require 

the formulation of expected return assumption as only the asset classes’ variances and covariances are 

needed, and these are easier to estimate than expected returns.  

This research was motivated by this risk-based strategy to see if its application to public real estate 

results in better performing portfolios.  The undertaking of a study in this new allocation method, risk 

parity exposed the research to concepts of volatility measures.  Traditionally, standard deviation is used 

as a measure of risk, but for market risk, value at risk (VaR) was the method of choice particularly in 

the banking sector.  VaR assesses the maximum possible loss of an investment, given a confidence level 

and it is widely used for both market and credit risk.  This method, however, has come under constant 

criticism as it only considers the maximum loss for the chosen confidence level and ignores any losses 

beyond that threshold.  The underlying assumption is that of normally distributed returns and the hope 

that extreme events rarely happen. However, financial returns are prone to ‘fat tails’ therefore the 
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probability of extreme returns is more than what the normality assumption predicts.  Following the 

financial crisis of 2008/9, VaR has lost credibility as a risk measure, and Expected Shortfall (ES) is 

replacing it.  ES is preferred to VaR because it concentrates on the tail side of risk unlike the latter; 

however, its primary challenge is that it is not easy to backtest compared to VaR.  In real estate, there 

is limited research in modelling market risk, in particular using expected shortfall.  The second study in 

this research hence investigates market risk modelling in real estate and examines the application of 

both VaR and ES on public real estate. 

The modelling of market risk to public real estate brought the modelling of volatility to light and how 

volatility changes over time and also the underlying assumption of constant volatility in option pricing.  

So, rather than assuming that volatility is constant, options can be used to reveal the volatility that the 

market implies when trading in that option.  This volatility that is gleaned from the market is referred 

to as implied volatility.  Over the years, research has been undertaken in studying the influence of 

implied volatility indices on the performance of REITs.  Most of the research undertaken has been at 

index level and also at sector and individual REIT level in the US.  The last paper in this research 

investigates the influence or transmission effect of the UK implied volatility index (VFTSE) on UK REIT 

companies that have traded options.  In summary, the aims of this research are threefold. 

 

1. To examine whether the real estate allocation based on risk parity leads to better performance 

compared to other allocation methods 

2. To assess the performance of market risk models, namely value at risk (VaR) and expected 

shortfall on public real estate. 

3.  To investigate the volatility transmission of the UK implied volatility index (VFTSE) and UK REITs 

with traded options. 
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CHAPTER 2 

THE CASE FOR RISK PARITY AS AN ALTERNATIVE STRATEGY FOR ASSET 

ALLOCATION IN PUBLIC REAL ESTATE PORTFOLIOS  

2.1. Introduction 

The recent global financial crisis saw a significant rise in correlations among risky assets (Chow and 

Kritzman, 2009) thus bringing to the fore the [increasing] need for risk management in the investment 

market.  The ongoing Eurozone sovereign crisis has further exacerbated this need.  The application of 

efficient asset allocation strategies is one way accomplishing the management of this risk.  Most of 

these allocation strategies entail the creation of diversified portfolios as opposed to putting all the 

proverbial eggs in one basket.  Asset allocation, therefore, plays a crucial role both in risk management 

and in enhancing investment performance through the achievement of higher returns and/or lower 

risk.  Traditionally, the asset allocation strategies comprise of equally-weighted; minimum-variance, 

and mean-variance optimisation based on modern portfolio theory (MPT).  The question is which 

strategy can best achieve the best portfolio performance while managing risk through efficient 

diversification at the same time?  

 

Owing to the poor performance of investments following the 2008 financial turmoil, investors have 

raised concerns about the efficacy of the conventional asset allocation methods in both the financial 

and real estate investment markets.  This concern led to investment professionals criticising 

Markowitz’s Modern Portfolio Theory (MPT) with some announcing the death of the Markowitz’s 

model as it no longer served institutional investors (Rancalli, 2014 and DiBasio, 2012).  While it is 

tempting to merely redistribute the assets in an inefficient portfolio in response to a crisis, the 

execution of a plain reallocation does not necessarily lead to true diversification (Qian, 2009).  In this 

vein, research around portfolio allocation approaches that put more emphasis on risk and 

diversification as opposed to expected returns has been on the rise.  This shift of emphasis has led to a 

rise in the adoption of a different approach called risk parity whose aims is to equalize risk contributions 

of constituent assets towards the overall portfolio risk.  According to Bruder and Roncalli (2013), several 

large institutional investors have adopted this asset allocation method, notably since 2011.  This is 

because unlike other asset allocation methods, predominantly those based on optimisation; the risk 

parity method achieves full diversification because of its ability to allocate risk equally to all the assets 



  

4 
 

in a portfolio.  Accordingly, corner solutions which lead to risk maximisation are avoided.  Furthermore, 

risk parity also loosely referred to as risk budgeting is assumed to be more robust because it is risk-

based and therefore does not dependent on the forecasting of returns.   

Risk parity has predominantly been used in portfolios which mostly consist of equities and bonds of 

different markets for example equities from American, European, Japanese and Emerging Markets, 

large cap and small cap, REITs as part of multi-asset portfolios.  With regards to bonds these could be 

European sovereign bonds, inflation-linked, corporate and high yield bonds (Bruder and Roncalli, 2013, 

Dalio, Prince and Jensen, 2015, Wealthfront Risk Parity Fund, 2018)).  

Although the assets managed under risk parity amounts to about 175 billion US dollars, it only about 

represents about 0.21% of the global assets under management (AuM) and about 0.24% of the global 

stock market which stood at 84 billion and 73 billion US dollars in 2018 and 2017 respectively (Risk 

Magazine 2018, The Boston Consulting Group, 2018 and Visual capitalist, 2019).  Despite its relative 

size compared to the AuM and the stock market, 175 billion is a significant amount of money given the 

nascency of this allocation method compared to the maturity of the stock market. 

While research on risk parity is mainly conducted using multi-asset portfolios which include real estate, 

as far as the researcher is aware only one piece of research (Moss, Clare, Thomas, and Seaton, 2017) 

currently exists which includes risk parity as one of the asset allocation methods for to REITs. However, 

Moss, Clare, Thomas, and Seaton (2017) only considered the equally-weighted, minimum-variance, 

mean-variance, and risk-parity approaches to asset allocation by comparing their performance to 

diversified benchmarks.  This research extends the previous research by considering estimation risk 

and therefore including asset allocation methods that apply various regularisation methods and also 

concentrates on international public real estate securities.  Furthermore, the research investigates the 

performance of these asset allocation methods using different rolling periods and also considers 

transaction costs 

 

This research examines whether the risk parity approach to asset allocation, when applied to real estate 

securities, is likely to provide the most diversification while producing superior risk-reward tradeoff at 

the same time.  As institutional investors constitute the largest investors in real estate, this research 

has be done with institutional investors; like pension fund, insurance compenies, banks, and asset 

managers; in mind.  
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2.2. The Asset allocation methods and regularization  

Below is a brief review of the asset allocation methods widely employed in mainstream finance.  Firstly, 

the traditional asset allocation method, mean-variance optimization and its variants, equally-weighted 

and minimum-variance, are presented.  This is followed by other non-conventional allocation methods 

that attempt to address the shortcomings of the traditional mean-variance optimization.  These 

allocation methods form part of the basis for which the ‘new’ allocation method, risk parity is be 

compared against. This recap has been provided because these methods will be referred to from time 

to time in the risk parity discussion. 

 

2.2.1. Mean-variance optimization (MVO) 

The mean-variance optimization (MVO) approach also referred to as the Modern Portfolio Theory 

(MPT) approach was famously developed by Markowitz (1952) typically for constructing equity 

portfolios.  The main aim of mean-variance optimisation portfolios is the achievement of the highest 

return for a given level of risk or the lowest risk for a given level of return.  Speidell, Miller, and Ullman 

(1989) describe portfolio optimization as a procedure for measuring and controlling portfolio risk and 

expected returns while taking into consideration correlations [or covariances] between assets.  In other 

words, portfolio optimization entails combining assets with return and price movements that balance 

one another hence offsetting each other’s idiosyncratic risks and ultimately reducing portfolio risk.  This 

risk reduction is as a result of low covariances of returns of assets in the portfolio.  By and large, MVO 

portfolios aim to maximize [or optimize] the risk-adjusted returns, i.e., the [excess] return per unit risk 

(also called the Sharpe ratio). The resulting portfolios, therefore, tend to allocate more weight to the 

asset with higher returns.  As a consequence, these portfolios become more correlated with these high 

return assets.   

 

MPT was the predominant asset allocation method used leading to the subprime crisis.  However, this 

approach could not withstand the crisis because most of the portfolios in the mainstream financial 

market were overweight in equities which unfortunately achieved negative returns of up to -50% during 

the crisis (Roncalli, 2014).  Accordingly, these portfolios performed very poorly as they were more 

correlated to equity returns.  For this reason, it is argued that MVO portfolios are under-diversified and 

hence fail to provide the required risk control especially in volatile periods such as in financial crises 
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(Hewitt EnnisKnupp 2012 and Allen, 2010) when there is an increase in correlations between asset 

classes.  Following the crisis, MPT has inevitably faced a lot of criticisms with some even going as far as 

declaring its demise.   

 

Michaud and Michaud (2008) outline four categories under which criticisms towards the 

implementation of MVO are likely to fall:  

1. Investor utility: the limitations of representing investor utility and investment objectives with 

the mean variance of return; 

2. Normal distribution: the limitations of representing return with normal distribution parameters 

3. Multi-period framework: the limitations of mean-variance efficiency as a single-period 

framework for investors with long-term investment objectives, such as pension plans and 

endowment funds 

4. Asset- Liability financial planning: claims that an asset-liability simulation is a superior approach 

for asset allocation. 

Michaud and Michaud (2008) however argue that the criticisms above (which they refer to as 

‘traditional,’ do not address what they call the most critical limitations of MVO, namely instability and 

ambiguity arising from the estimation of input parameters. 

The execution of Markowitz ‘s MVO is not straightforward as it requires the estimation of the vector of 

expected returns and covariance matrix; which are the input parameters needed in order to compute 

optimized portfolios.  These optimized portfolios so created are, however, sensitive to these inputs.  

Therefore, MVO portfolios are occasionally referred to as “maximum error” portfolios due to their 

sensitivity to estimation errors arising from the estimation of these expected returns and covariances 

(Michaud, 1989) which are normally calibrated from historical returns.  Chaves et al. (2011) argue that 

these estimates are subjective as a result of investor influence arising from behavioural biases.  They 

attribute these potential biases as emanating from over-estimation of expected returns due, for 

example, to the asset’s recent strong historical performance or under-estimation of an asset class risk 

arising from personal familiarity with it.  As a result, this can lead to better performance by equal 

weighted portfolios in some conditions, for instance, if mean-variance optimisation is unconstrained.  

Furthermore, Roncalli (2014) observes that the problem of MVO does not necessarily stem from the 

allocation method per se but rather much of its criticism is more in the manner in which it is used – 

specifically the input parameters.  Yet still, Roncalli (2014) argues that because MPT sets outs to 
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construct portfolios that are based on arbitrage factors established, it is an aggressive model of active 

management as opposed to passive management.  With this in mind, Green and Hollifield (1992) argue 

that the sensitivity to input parameters should hence be expected in MPT.  However, while Kritzman 

(2006) recognises that MVO results are highly sensitive to input errors, he argues that these input errors 

have little significance to estimates of exposure to loss and gain.  With regards to real estate, Armonat 

and Pfnuer (2004) note that this asset class possesses different attributes compared to financial 

markets upon which MPT was originally developed for.  They hence caution on the blind application of 

capital market theory to real estate as small changes in the parameters are also big drawbacks in MVO 

for real estate portfolio construction.   

 

Due to the problems posed by estimation error, in practice, the MVO portfolios are perceived to be less 

robust and are used in conjunction with constraints.  The employment of constraints is one of the 

regularisation techniques used to improve the robustness of MVO (Bruder and Roncalli, 2013).  Other 

regularisation techniques include shrinkage and resampling which essentially create variants of MVO 

portfolio (these techniques will be looked at in more detail later on in the study).  Because of the 

aforementioned sensitivity to input parameters that emanate from the estimation of expected returns 

and also the complex computation required to perform mean-variance analysis, some investors prefer 

the minimum-variance and equally-weighted portfolio approaches.  These approaches are widely used 

in practice because they are more heuristic1 and computationally simple while still presumed to be 

robust (Maillard, Roncalli and Teiletche (2010).   

 

2.2.2. Equally weighted (1/N)    

The equally-weighted or equal-weighting is arguably the most heuristic portfolio allocation approach 

due to its straightforward construction that involves equal (value) weighting across a portfolio’s asset 

classes in an attempt to attain diversification.  When equal weighting is assigned to each asset in a 

portfolio, a portfolio with “N” assets will each have a 1/N allocation.  Consequently, it is often referred 

to as naïve diversification due to its simplicity.  In contrast to MVO, expectations of asset characteristics 

(or moments) such as the return and risk are ignored entirely.  Moreover, the equally weighted 

                                                 
1 “Heuristic” means being able to employ experience based techniques and trial and error methods to find an acceptable 

solution (Roncalli, 2014).   
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approach is a non-optimised portfolio allocation method that does not involve any forecasting of 

expected return, and thus its sensitivity to input parameters is significantly reduced. 

There are mixed findings regarding the efficiency of the equally weighted approach when compared to 

other asset allocation approaches.  Lee (2011) identifies two contrasting findings. The first is DeMiguel, 

Garlappi, and Uppal (2009) and the other is Kritzman, Page and Turkington (2010).  Despite its 

simplicity, the results of the former indicate that this (1/N) approach is not necessarily inferior to the 

other well-known techniques like mean-variance optimisation and minimum variance because they are 

not consistently better out-of-sample.  They further point out that in instances when N was large, the 

simple 1/N approach was more likely to outperform the optimisation strategy because the 

diversification potential was much enhanced while the optimisation models saw an increase in the 

number of estimated parameters and hence a corresponding increase in estimation errors.  Similar 

results have been found in real estate by Cheng and Liang (2000) who suggest that the mean-variance 

approach was not statistically better than naïve diversification.   Kritzman, Page and Turkington (2010) 

on the other hand argue that optimised portfolios usually outperform equal weighting on longer-term 

samples.  They contend that the apparent superiority of the MVO approach arises not from limitations 

in optimisation but, rather, from reliance on rolling short-term samples for estimating expected returns 

(Lee 2011).  Kritzman, Page and Turkington (2010) further observe [from their simulations] that 1/N 

portfolios on average exhibited more risk concentration than optimised portfolios.  This said, the 

equally weighted asset allocation method is said to be mean-variance optimal under restrictive 

conditions, for instance, when the assets have homogeneous returns, volatilities and equivalent 

correlations between each other (Qian 2011 and Lee 2011).  Nevertheless, most assets do not behave 

the same and have different returns and volatilities.  In this instance, the equally weighted approach 

will still result in risk concentration and therefore lead to very limited diversification due to the 

application of the same weight regardless of whether the assets have the highest or lowest risk (Lee, 

2011).  There is also a fallacy that the equally weighted portfolios are passive portfolios which do not 

need rebalancing.  Contrary to this belief, over time, the portfolio will become imbalanced as some 

asset classes would have gained (or lost) value, therefore, necessitating the need for rebalancing to 

ensure that each asset has an allocation of 1/N (Stevenson 2002). 

 

2.2.3. Minimum variance (MV) 

A minimum variance (MV) method is also an optimisation approach but unlike the MVO, only relies on 

the use of covariances to produce portfolios with the lowest variances while completely ignoring 
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estimates of expected returns.  In this respect, it is somewhat similar to the 1/N approach and therefore 

also appealing because it avoids the estimation risk inherent in the forecasting of expected returns.  For 

that reason, MV portfolios are said to be more stable and therefore perform better compared with 

mean-variance portfolios in some instances (Jorion 1985).  The increasing emphasis on risk 

management following the recent financial crisis gives credence to this asset allocation approach.  

Additionally, research shows that on average low volatility stocks have performed just as well or even 

outperformed the market (Clarke, de Silva and Thorley, 2011 and Ang et al. 2006), a phenomenon 

referred to as the volatility anomaly.  This notwithstanding, there are concerns about these portfolios 

turning out to be fairly concentrated in one asset thus increasing the impact of idiosyncratic shock to 

the portfolio out-of-sample (Northern Trust, 2012; and Maillard, Roncalli and Teiletche, 2010) and 

possibly leading to poorly diversified portfolios (Stoyanov and Goltz, 2011).  According to Northtrust 

(2012), modifications to the minimum variance approach can be made to address these concerns by 

including additional portfolio construction constraints.  If all the expected returns across all the assets 

are identical, then the minimum-variance portfolio becomes mean-variance optimal.  

Having covered the traditional asset allocation approaches, and introduced the main shortcoming of 

the MVO approach – the estimation error, the study now turns to techniques that are used to minimise 

this. These techniques come under the umbrella of regularisation and result in portfolios that are also 

variants of the MVO.  

 

2.3. Regularisation approaches to asset allocation 

As stated earlier, the starting point of portfolio analysis is the mean-variance optimisation (MVO) 

technique based on Markowitz’s modern portfolio theory (MPT).  The two main input parameters 

needed to create an MVO portfolio are the [expected] return vector and the covariance matrix.  These 

parameters are unknown and therefore have to be estimated.  Wolf (2007) notes that expected returns 

represent the portfolio manager’s ability to forecast future price movements while the covariance 

matrix typically has to be estimated from ex-post return data.  Portfolio analysis based on ex-post data 

is straightforward since it is based on actual returns achieved in the past.  The presumption here is that 

past returns will repeat themselves in future and hence disregarding any possible structural economic 

changes, and for that reason, it is referred to as the naïve (or unconditional) approach.  Despite looking 

inadequate, it is the most common way of estimating expected returns in asset management (Roncalli, 

2014).  Apart from the equal weighted approach to asset allocation, the conventional practical 

implementation of the theory for efficient portfolio techniques often leads to questionable results 
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(Disatnik and Benninga, 2007).  More often than not this produces portfolios with stability problems in 

most cases and is a reason for the reticence and disapprovals in the use of optimised portfolios by 

investment managers.  The weakness in this approach arises because optimal portfolios are subject to 

estimation risk because they require the estimation of future returns, and/or risk usually in the form of 

the covariance matrix.  Inevitably, this leads to the existence of estimation errors because, as 

mentioned before, the future return distributions are unknown.  For this reason, the mean-variance 

approach to portfolio construction can hence result in a portfolio composition that varies substantially 

due to this sensitivity to expected returns as input parameters.  The other input, the covariance matrix 

is usually estimated by working out the sample covariance matrix derived from ex-post returns thus 

also leading to errors in the estimation.  Ledoit and Wolf (2003) observe that these errors come about 

when exceptional values taken from extremely unreliable coefficients are predominantly used by 

optimisers as a basis of placing bets.  The implication is that the resulting portfolio is inaccurate and 

can lead to what Michaud (1989) refers to as “error maximisation”.     

 
It was previously highlighted that because MVO is an aggressive model of active asset management, its 

sensitivity to input parameters should be expected as it sets out to find arbitrage factors and construct 

portfolios that play on them (Roncalli, 2014).  This means that implied bets are therefore a function of 

these input parameters.  Accordingly, wrong input parameters are expected to cause the resulting 

portfolio not being satisfied because it will be based on erroneous arbitrage factors and bets (ibid).  In 

order to reduce the impact of the errors caused by input parameters or to stabilise these portfolios, 

one needs to regularise these input parameters or the objective function.  Several portfolio 

regularisation techniques are usually applied in practice (Bruder and Roncalli 2013, Tutuncu and 

Koening, 2004, and Lee and Stevenson, 2000).  The underlying idea behind portfolio regularisation is 

that less dynamic parameter values should be employed by investors who want a more defensive 

model (i.e., less aggressive active portfolios).  Bruder and Roncalli (2013) present the following 

regularisation techniques applied in practice: 

 
• Regularisation of the programme specification by imposing some weight constraints 

• Regularisation of the return vector or covariance matrix 

• Regularisation of the objective function by using resampling techniques.   

 
Imposing constraints to the weights is the easiest of the regularisation techniques.  This is done because 

unconstrained mean-variance optimisation can result in portfolios with substantial short sale positions 

which in turn could lead to performance that is inferior to that of the simple equally weighted portfolio 



  

11 
 

(Michaud, 1989).  However, Roncalli (2014) shows that the introduction of weight constraints has the 

possibility of giving rise to a covariance matrix that could be very different from the original one.  

Furthermore, these constraints are typically applied arbitrarily and can often give rise to instability 

rather than reducing it (Michard and Michard, 2008) thus making it hard to generalise the outcomes. 

Because of the potential for error maximisation, optimal portfolios are said to have a tendency of 

excessive concentration in a limited subset of the full set of assets (Maillard, Roncalli and Teiletche, 

2011), a condition referred to as “corner solutions” by Black and Litterman (1992).   

 
In order to obtain a more satisfactory solution from a financial point of view, a combination of the 

techniques above can be applied.  For example, the resampling technique is generally used in 

conjunction with constraints on weights.  This, according to Jagannathan and Ma (2003) cited in Bruder 

and Roncalli (2013) corresponds to shrinking the covariance matrix albeit implicitly (Wolf, 2007). 

In a separate study, Disatnik and Bennunga (2007) identify two approaches for dealing with the 

problematic results obtained from mean-variance optimisation; namely the theoretical and 

implementation approaches.  The former involves the re-examining of portfolio optimisation 

theoretical aspects and assumptions.  The latter involves the estimation of the unknown return vector 

and the covariance matrix, being the two main parameters needed in Markowitz’s mean-variance 

approach as highlighted earlier.  This research focuses on the implementation approach and will 

consider the regularisation of the return vector and covariance matrix through “shrinkage”.  In addition 

to this, the regularisation of the objective function by using the “resampling” technique will also be 

explored. 

2.3.1. Shrinkage 

“Shrinkage” is a transformation applied to sample statistics so as to take into account some 

uncertainties.  Ledoit and Wolf (2003) observe that a fundamental principle of statistical decision 

theory is that there exists an interior optimum in the trade-off between bias and estimation error and 

that this optimal trade-off can be obtained by simply taking a weighted average of the biased and 

unbiased estimators.  In other words, the shrinkage process entails pulling (“shrinking”) the unbiased 

estimator full of estimation error towards a fixed target characterised by the biased estimator (Ledoit 

and Wolf, 2003).  Hence, in the quest of reducing estimation error, extreme values of the sample 

statistics (unbiased estimator) are dragged in the direction of more central value (biased estimator).  

While the shrinkage method was introduced to asset management by Jorion (1986), it has been used 

for linear regression for a long time (Roncalli, 2014).  In this study, the sample statistics to be “shrunk” 
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are the return vector (Jorion, 1986; Chopra and Ziemba, 1993; Stevenson, 2001) and the covariance 

matrix (Ledoit and Wolf, 2004; and Vu Anh Tuan, 2013).  These shrinkage methods are covered below. 

2.3.2. Bayes Stein return [vector] shrinkage est imator  

A study by Chopra and Ziemba (1993) observes that errors in means (expected returns) are about ten 

times as important as errors in variances and covariances, and errors in variances, in turn, are about 

twice as important as errors in covariances.  This remark is consistent with Bengstssen (2004) who 

shows that means possess more estimation errors compared to the covariance matrix.  The difference 

in significance is, however, directly proportional to the risk tolerance.  For this reason, Michaud (1989) 

declares that mean-variance optimisation considerably over-weights those securities that have large 

estimated returns, negative correlations and small variances and vice versa which eventually leads to 

portfolios with corner solutions.  Stevenson (2000) outlines two serious defects of employing modern 

portfolio theory in portfolio construction as (1) the intertemporal instability of portfolio weights and 

(2) the sharp deterioration in performance of optimal portfolios out-of-sample.  As stated on several 

occasions, the sensitivity of mean-variance optimisation portfolios to input parameters leads to 

estimation errors and moreover these portfolios have a tendency to form corner solutions.  These 

solutions can be suboptimal bearing in mind that resulting extreme allocations go against the principle 

of diversification.   

Bayes Stein estimators are used to decrease these estimation errors as well as also reduce the chance 

of arriving at corner solutions.  This is achieved by “shrinking” extreme input parameters towards a 

global mean.  By implication, the magnitude of the shrinkage increases with the distance from the 

global mean.  Therefore it is a function of the distance from the global mean and asset variability, and 

it also decreases with the number of historical observations (Michaud and Michaud, 2008).  The 

outcome is that the differences between extreme values are reduced thereby decreasing the sensitivity 

of these parameters which in turn helps lower the estimation errors (Jorion, 1985, 1986). The general 

form of the estimators is defined as: 

 

𝐸(𝑟𝑖) = 𝑤�̅�𝑔 + (1 − 𝑤)�̅�𝑖                                                             (2.1) 
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Where 𝐸(𝑟𝑖) is the adjusted, mean, �̅�𝑖 is the original asset mean, �̅�𝑔 is the global mean and 𝑤 is the 

shrinkage factor (Lee and Stevenson, 2005, and Stevenson, 2000, 2001).  The shrinkage factor can be 

estimated from a suitable prior using Jorion (1985, 1986)2.  

�̂� =
�̂�

(𝑇 + �̂�) 
                                                                   (2.2) 

 

�̂� =
(𝑁 + 2)(𝑇 − 1)

(𝑟 − 𝑟01)
′𝑆−1(�̅� − 𝑟01)(𝑇 − 𝑁 − 2)

                                          (2.3) 

 

Where S is the sample covariance matrix; T the number of observations, 1 (in the denominator) a vector 

of ones.  The sample covariance matrix is used in this instance because it is said to be more stable over 

time as previously stated.  The above formulae show that the Bayes- Steins estimator shrinks the 

sample mean �̅�𝑖 to the global mean, �̅�𝑔, while using the sample covariance S.  

2.3.3. Shrinking the covariance matrix  

Unlike the return vector shrinkage, the covariance matrix shrinkage is more challenging and needs 

more explanation.  The covariance matrix measures how assets in a portfolio vary with each other.  

These assets are paired together and identified as the 𝑖𝑡ℎ and 𝑗𝑡ℎ assets thus generating (𝑖, 𝑗) elements 

of the matrix.  Michaud and Michaud (2008) describe the covariance matrix as being square with n rows 

and columns equal to the number of assets where the 𝑖𝑡ℎ diagonal element is equal to the variance of 

the 𝑖𝑡ℎasset.  The off-diagonal elements represent all pairwise covariances.  For this reason, the 

covariance matrix can be reduced to a correlation matrix if each variable is normalized to take a unit 

variance.  As observed in the Bayes-Stein return [vector] shrinkage estimator, the covariance matrix is 

gleaned from historical data and is not subject to shrinkage because it is considered not to be as 

important as the expected return estimate in terms of portfolio optimization estimation risk.  In view 

of that, it is assumed to have little effect on optimized portfolios.  However, the covariance matrix is 

mainly exposed to either the sampling error or specification error.  Disatnik and Benninga (2007) 

describe sampling error as that which comes about when a sample consists of more estimated 

parameters compared to the number of observations, that is, there are not enough degrees of freedom 

per estimated parameter.  This implies that significantly more data is required for covariance estimation 

than is typically available otherwise portfolio optimisation is not feasible because the covariance matrix 

                                                 
2 Michaud and Michaud (2008) define a prior as either a reasonable guess at the answer or an assumption that imposes 
exogenous structure on potential solutions. Imposing structure on forecasts lowers the estimation error in sample statistics 
hence reducing dependence on pure statistically estimated data 
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becomes singular (Michaud and Michaud, 2008). A signular covarinace matrix does not have an inverse 

matrix.  Specification error is that which arises when some form of structure is imposed on the model 

used in the estimation process.  In this case, the estimator becomes too specific in comparison with 

reality (Disatnik and Benninga, 2007).  They further argue that the development of a better estimator 

requires the reduction of the huge sampling error of the covariance matrix without the creation of too 

much specification error.  This is because of the existence of a trade-off between sampling error and 

specification error. 

Why shrink the covariance matrix? 

Shrinking the covariance matrix approach is the most common approach of portfolio regularisation 

(Roncalli, 2014).  The precise forecasting of covariances is a challenging aspect of financial economics 

as this input tends to lead to extreme allocation and under-diversified portfolio (Wolf, 2007).  Seeing 

that the returns data are captured from historical means, they are said to be unreliable and non-robust 

(unstable) estimators of expected returns due to the presence of outliers which heavily influence the 

covariance matrix [and are therefore prone to errors] (Parret-Gentil and Victoria-Feser, 2003; Jorion, 

1986; and Ledoit and Wolf, 2004).  It was stated earlier that according to some schools of thought 

(Chopra and Ziemba, 1993; Lee and Stevenson, 2005; and Bengtsson, 2004) the estimation of expected 

returns is more important than that of variances and covariance matrix.  The reason behind this 

argument is because of the belief that errors in the expected returns are more superior compared to 

variances and covariances, the higher the levels of risk tolerance.  However, Michard and Michard 

(2008) highlight the importance of the practice of dealing with estimation error in both risk and return 

for defining effective investment- optimised portfolios. 

Similarly, Markowitz and Usmen (2003) also take cognisance of the noisy nature of empirically observed 

means, variances and covariances when applied to the mean-variance analysis.  Ledoit and Wolf (2003) 

go further and show the critical role played by the covariance matrix in the reduction of portfolio risk.  

This is owing to the fact that a reduction of risk translates into an increase of expected return due to 

the tradeoff of risk and return in the mean-variance analysis.  They further argue that a good estimator 

of the covariance matrix is needed in the estimation of more precise excess returns.  The analysis is 

done through the use of optimisers whose required inputs are the expected returns and the covariance 

matrix usually estimated from the sample covariance matrix.   

However, MVO is also likely to be affected by the estimation error that comes about as a result of using 

the sample covariance matrix to estimate the covariance matrix (Wolf, 2007).  The estimation error is 

predominantly high in instances when the number of assets in the portfolio (N) exceeds the number of 
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the historical observations (T) used in the period from which sample covariance is estimated (Jobson 

and Korkie, 1980; Ledoit and Wolf, 2003, 2004; Clarke, de Silva, and Thorley, 2006; Scowcroft and 

Sefton, 2006; Disatnik and Benninga, 2007; and Michaud and Michaud, 2008).  This leads to the 

resulting estimated covariance matrix becoming ‘ill-conditioned’ (i.e., small errors in the data are likely 

to produce large errors in the solution) and has come to be referred by Pafka, Potters and Kondor 

(2004) as the “curse of dimensions”.  Kwan (2010) shows that in portfolio analysis a covariance matrix 

has to be “positive definite3” to be acceptable.  This assertion is true for what Michaud and Michaud 

(2008) refer to as ad hoc estimators of which the single-index model of which Sharpe (1963) is the best 

known.  The question is whether the covariance matrix estimation problem as mentioned above is 

relevant to real estate due to few sectors?  Maybe not at direct property sector level but the problem 

should still arise when individual properties, as well as REITs, are considered.  According to Ledoit and 

Wolf (2004), the problem above leads to a tendency in which the “most extreme coefficients in the 

estimated covariance matrix take on extreme value not because this is “the truth”, but because they 

contain an extreme amount of error.”  For this reason, they contend that the sample covariance matrix 

should not be used in portfolio optimisation but a “shrunk” covariance matrix ought to be used instead 

since it is more stable and less sensitive to estimation error.  This can be attributed to its ability to 

reduce outlier influences and improve the accuracy of target allocation (Ledoit and Wolf, 2003, 2004).  

 

The Ledoit & Wolf (2004) covariance matrix shrinkage estimator  

Ledoit & Wolf (2004) propose an explicit shrinkage estimator for the sample covariance matrix based 

on the Stein method but distinct to Jagannathan and Ma (2003) who employ some form of shrinkage 

to the sample covariance matrix by adding constraints to mean-variance optimised portfolios.  Ledoit 

and Wolf (2004) address shortcomings of erstwhile research of Muirhead (1987) and Frost and Savarino 

(1986) who propose shrinkage estimators that cannot be applied when the number of assets exceeds 

the historical periods examined (i.e. when N > T).  Ledoit and Wolf (2003, 2004) resolve this problem 

by proposing a general technique by defining an optimal shrinkage intensity that minimizes the loss 

function without engaging the covariance matrix inverse.  The loss is a quadratic measure of distance 

between the true and the estimated covariance matrices.  This optimal shrinkage intensity is dependent 

on the correlation between estimation error on the sample covariance matrix and the shrinkage target.  

                                                 
3 Positive definite covariance matrices have non-zero determinants, are invertible and therefore always provide positive 
variances of portfolio returns. 
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The correlation is inversely related to the benefit of combining the information contained by the 

estimation error and the sample covariance matrix.   

Ledoit and Wolf (2004) observe that using this “correlation term resolves a deep logical inconsistency 

in earlier empirical Bayesian literature, where the prior is estimated from the sample data, yet at the 

same time is assumed to be independent of the sample data.”  They start with the sample covariance 

matrix 𝑆, which is the traditional and probably most intuitive estimator of the covariance matrix.  On 

one hand, they say it is easy to compute and it has an expected value that is equal to the true covariance 

matrix (and therefore is assumed to be unbiased).  On the other hand, they observe that the sample 

covariance matrix has a lot of estimation error when the number of data points is of a comparable or 

even smaller order than the number of individual assets.  As an alternative, they suggest the use of 

estimators that contain little estimation error such as those with a lot of structure like the single-factor 

model of Sharpe (1963).  They however, observe that such estimators tend to be misspecified and can 

be exceptionally biased.  This said, models that integrate multiple factors (multi-factor models) are the 

industrial standard because they provide more flexibility and are less biased even though they have 

higher estimation errors compared to single factors models (Ledoit and Wolf, 2003, 2004).   

 

Ledoit and Wolf (2004) employ a shrinkage technique as used in statistics whose outcome is a 

‘compromise’ estimator that merges two ‘extreme’ estimators but has a better performance than 

either extreme.  The ingredients for this shrinkage technique consist of an estimator with no structure 

i.e., sample covariance matrix 𝑆; a highly structured estimator (also called the shrinkage target) 𝐹; and 

a shrinkage constant, 𝛿 which is a number between 0 and 1.  In other words, this is the weighted 

average of the sample covariance matrix with an invertible covariance matrix estimator whose diagonal 

elements are sample variances (Disatnik and Benninga, 2007).  The aim is to ‘shrink’ the covariance 

matrix towards the structured estimator by computing a convex linear combination.  This is shown in 

equation (2.4) in its basic form 

 

𝛿𝐹 + (1 − 𝛿)𝑆                                                                   (2.4) 

The shrinkage target 

Ledoit and Wolf (2004) observe that the shrinkage target should fulfil two requirements 

simultaneously; it must involve only a small number of free parameters (i.e., a lot of structure) as well 

as reflecting essential characteristics of the unknown quantity being estimated.  The single factor matrix 

of Sharpe (1963) was suggested as the shrinkage target in their previous study (Ledoit and Wolf, 2003).  
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However, in their 2004 study, they suggest “the constant correlation model” which they assert is easier 

to implement but has comparable performance.  In the model all the (pairwise) correlations are 

therefore identical.  The use of constant correlation model is appropriate to this study as assets 

considered (Real Estate Securities) are from the same asset class, i.e. real estate; however, this may not 

be so when the assets are from different asset classes (Ledoit and Wolf, 2004).  The estimator of the 

common constant correlation is the average of all the sample correlations.  They use this number in 

conjunction with the vector of sample variances as the shrinkage target, 𝐹. 

Shrinkage constant  

The statistical problem is to estimate the optimal value of 𝛿 i.e., the shrinkage constant/intensity 

(Roncalli, 2014).  The idea for the shrinkage constant is a number between 0 and 1 that gives a 

compromise between 𝑆 and 𝐹 however, there are infinite possibilities.  Ledoit and Wolf (2004) suggest 

an ‘optimal’ shrinkage constant i.e., one that minimizes the expected distance between the shrinkage 

estimator 𝐹 and the true covariance matrix ∑ thus arriving at the quadratic loss function: 

 

 

𝐿(𝛿)‖𝛿𝐹 + (1 − 𝛿)𝑆 − ∑̂‖
2
                                                        (2.5) 

 

As earlier stated, this loss function is not dependent on the inverse of the covariance matrix hence 

overcoming the typical inverse matrix problem faced when the number of assets (N) is more than the 

observations (T).  In comparison to the typically large off-diagonal elements of the sample covariance 

matrix, the off-diagonal elements of the shrinkage estimator are shrunk (Disatnik and Benninga, 2007) 

while the variance elements in the diagonal are left untouched.  This shrinkage constant has been 

denoted by 𝛿∗and therefore the shrinkage estimator for the covariance matrix ∑ is: 

 

∑̂𝑆ℎ𝑟𝑖𝑛𝑘 = 𝛿
∗𝐹 + (1 − 𝛿∗)𝑆                                                                   (2.6) 

Please see Ledoit and Wolf (2004), and Vu Anh Tuan (2013). for more explanation on the mathematical 

derivation of 𝛿∗. 

 
Having covered the Stein based shrinkage methods the last regularization technique – resampling is 

explored next. 
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2.3.4. Resampling  

 
Resampling is another regularisation method for overcoming the earlier mentioned shortcomings of 

the mean-variance optimization approach.  Wolf (2007) observes that resampling is theoretically 

distinct from shrinkage estimation because it creates artificial return data by resampling from the 

observed data rather than depending on the improved estimator of either the return vector or the 

covariance matrix discussed previously.  Resampling, sometimes referred to as bootstrapping, is not 

necessarily a new method.  Although it gained much traction in asset allocation following Michaud 

(1989) famous paper, it was notably applied before by Jobson and Korkie (1981) in the form of Monte 

Carlo simulation method used on unbounded MVO.  Like many others, Michaud and Michaud (2008) 

observe that though not appreciated by the investment industry, estimation error is critical as ignoring 

it leads to counterproductive and suboptimal investment practices.  They attribute the disregard of the 

MVO by many equity investment practitioners to their lack of statistical understanding of the MVO 

process and therefore tend to overuse statistically estimated information which amplifies the impact 

of estimation errors.  Michaud and Michaud (2008) contend that a well understood statistical view of 

MVO could boost investment value at the same time offering a more intuitive framework for asset 

management because it leads to new procedures that remove the most severe shortcomings, i.e., 

instability and ambiguity that lead to portfolio optimality that is not well defined.  As earlier alluded to, 

this is because minor changes in input assumptions frequently result in significant changes in the 

optimised portfolios leading to estimation errors.  Michaud and Michaud (2008) go further and note 

that “it is not simply a matter of garbage in, garbage out, but rather a molehill of garbage in, a mountain 

of garbage out.”  Consequently, the outcome is the famous “error maximising” portfolios as coined by 

Michaud (1989).  

 

Resampling entails sampling (taking samples) from a sample hence the name “re-sampling”.  After the 

data has been resampled, the sample covariance matrix is then calculated and utilised into the mean-

variance (or minimum-variance depending on the portfolio strategy) optimisation process.  This 

iteration is carried out several times, and the resulting optimal resampled portfolios are averaged.  

Michaud and Michaud (2008) and Scherer (2002) argue that the subsequent average portfolio is more 

diversified and is likely to improve out of sample performance compared to that produced from the 

sample covariance matrix obtained from observed data only.  
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Michard and Michard (2008) have come up with a portfolio allocation strategy based on resampling 

which they call Resampled Efficient FrontierTM (REF) and have patented it.  REF optimisation seem to 

produce inferior portfolios because by definition, it average returns of resampled portfolios and as 

expected this produces lower returns and is said to have a more restricted range of risk compared to 

traditional MVO portfolios.  Michard and Michard (2008) argue that this perceptible inadequacy of REF 

highlights the limitations of in-sample MVO efficiency in portfolio analysis as it is an unreliable and 

often misleading framework.  Due to the instability and sensitivity to input parameters of the MVO, 

Michard and Michard (2008) suggest that REF optimisation is the paradigm of choice in an environment 

of information uncertainty as it is less dependent on particular characteristics of these inputs.  REF 

optimised portfolios are likely to perform better out of sample because they are said to present less 

extreme portfolio weights because they are a product of averages taken from numerous possible 

outcomes in sharp contrast with the MVO which only depends on one possible outcome.  As a 

consequence, the REF optimisation approach, on the whole, tends to produce safer and more reliable 

portfolios with better risk-adjusted performance.  This is attested by the result of an experiment carried 

out by Markowitz and Usmen (2003) which showed better performance of the REF optimisation 

compared to the MVO in all of the independent simulation tests carried out.  

 

Up to this point the study has considered allocation methods that are widely known namely; mean-

variance optimization, equal-weighting and minimum-variance. The study has also reviewed 

regularization techniques that are used to counter some shortcomings of the mean-variance approach 

and result in variants of the mean-variance optimization approach.  These techniques are the Bayes 

Stein return vector shrinkage; Ledoit and Wolf covariance matrix shrinkage; and resampling. The next 

section considers a relatively new approach to asset allocation called “Risk Parity”. 

 

2.4. Enter Risk Parity  

 
Classically, the investment allocation for most pension funds predominately consists of equities and 

bonds with other asset classes only accounting for very little.  As a result, equities and bonds account 

for the most contribution to portfolio risk compared to other alternative asset classes.  In portfolios 

consisting of only equity and bonds, pension funds typically take a 60/40 portfolio variant approach to 

asset allocation.  Dalio (2004) however, argues that this allocation is under-diversified in terms of risk 

exposure because most of the returns are earned from exposures to equity risk and little from bonds.  
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Due to the usually higher volatility in the equity market compared to that of the bond market and the 

increase in the realized equity correlation following the advent of the financial crisis, equities contribute 

more than 90% of the risk in traditional 60/40 equity/bond portfolios (Thiagarajan and Schachter, 2011 

and Qian, 2011).  This is illustrated in Exhibit 2.1(a).  A risk parity approach, on the other hand, will 

allocate the same risk contribution towards the total portfolio risk resulting in a portfolio that allocates 

25% and 75% to equities and bonds respectively as shown in Exhibit 2.1(b). 

 
 
 

 

(a): Typical Equity/Bond pension fund 

 

 
(b): Risk parity Equity/Bond portfolio 

Exhibit 2.1: Asset allocation example 

 

For the preceding reason, following the 2007 - 2008 financial crisis, risk management has become more 

important than performance management (Roncalli, 2014).  Accordingly, there has been a growing 

adoption of ‘risk parity’ (RP), a strategy that requires less discretionary inputs (Roncalli, 2014), which 

until recently, was used to manage global multi-asset portfolios.  Risk parity was established way back 

in 1996 by Bridgewater under the name of the “All weather” asset allocation mix (Dalio, 2004).  Though 

this approach has been used under different names the term “risk parity” was first devised by Qian 

(2005).   

 

Risk parity sometimes referred to as “risk budgeting”, “weight budgeting” and “performance 

budgeting” falls under the umbrella of a suit of budgeting methods in asset allocation (Roncalli, 2014).  
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Risk budgeting, often confused with “risk attribution” entails risk measurement, risk attribution, and 

risk allocation when viewed in a risk management setting (Berkelaar, Kobor and Tsumagari, 2006).  The 

weight budgeting approach entails specifying the weights in a portfolio, for example, a typical 60/40 

equity and bond policy, would allocate 60% to equities and 40% to bonds.  The risk budget approach 

chooses the risk budgets of the assets in the portfolio. If say 20% risk is required for a portfolio, then 

12% and 8% will be the risk budgets for equity and bonds respectively.  Subsequently, the weights have 

to be calculated that will correspond to these risk budgets.  Lastly, performance budgeting requires the 

determination of weights consistent with achieving a set level of portfolio performance. For example, 

if the level of performance needed is 15%, then, the contribution to the performance of the portfolio 

will be 9% for equities and 6% for bonds. The preceding budgeting definitions are illustrated in Exhibit 

2.2.  As part of the risk budgeting strategy, risk parity is an alternative heuristic approach which sets 

out to attain both superior diversification and higher total returns through an allocation method that 

enables equal risk contribution to the portfolio’s total risk across the asset classes within this portfolio.  

This risk contribution approach is unique since it offers the flexibility of stipulating the preferred 

targeted risk contribution profile and hence presenting an additional degree of freedom (Qian, 2011).   

 

 
      Exhibit 2.2: Risk budgeting methods – adapted from Roncalli (2014) 

 

This study defines risk parity to represent equally weighted risk contribution (or ERC) portfolios.  As 

previously stated this can also be looked at as a risk budget that distributes equally a portfolio’s total 

risk to all the constituent assets.  The study will use the terms risk parity and risk budgeting 

interchangeably.   
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2.4.1. Risk contribution principle 

As earlier highlighted, the sensitivity of MVO portfolios to input parameters leads to the use of 

regularisation methods in the form of resampling, shrinkage or enforcing weight constraints.  This 

introduces discretionary decisions on the portfolio solution (Roncalli, 2014) (and as will be seen later 

these are not usually easy to implement).  He argues that the choice of the regularisation method 

affects the performance of a portfolio and it is, therefore, difficult to attribute this performance to the 

allocation method as this could be as a result of the regularisation method, for example, the 

constraints.  The risk parity approach, however, solves this problem.  Roncalli (2014) notes that the 

main difference between a risk budget portfolio and an optimised portfolio are twofold:  Firstly unlike 

the optimised portfolio, a risk budgeting portfolio is not based on the maximisation of a utility function.  

Secondly, while optimised portfolios hinge on the expected portfolio performance which has to be 

estimated, risk budget portfolios do not need to explicitly estimate this performance (expected 

returns). 

 

The interest in risk parity portfolios lies in their ability to mimic the diversification effect of equally 

weighted portfolios while taking into account single and joint risk contributions of the assets (Maillard, 

Roncalli and Teiletche, 2010).  This means that no asset in the portfolio contributes to the total portfolio 

risk more than any other.  However, if the performance contribution of all the assets are the same, i.e. 

if they have the same Sharpe ratios; and uncorrelated returns, this then becomes a mean-variance 

optimal portfolio (Qian 2005, Bruder and Roncalli, 2013).   

The portfolio orientated risk management does not end with the measuring of risk. In order to have a 

more in-depth comprehension of diversification, it is essential to go beyond the risk measure.  This is 

because this risk measure is usually represented by a single number only, that is, either the standard 

deviation, value at risk or expected shortfall4 (Roncalli, 2014).  As this part of the research focuses on 

asset allocation based on risk contribution, the principle of “risk contribution” has to come to the 

forefront.  Risk contribution involves the decomposition of the portfolio risk into the proportion that 

each constituent asset (or sub-portfolio) in the portfolio is responsible for (Tasche, 2008).  In other 

words, the contribution of each asset to the total portfolio risk has to be established as it is fundamental 

in identifying the concentration and understanding the risk profile of the portfolio (Roncalli, 2014 and 

Tasche, 2008).  Formally, Maillard, Roncalli and Teiletche (2010) define the risk contribution of an asset 

                                                 
4 It should be explicitly stated that the purpose of this research is not to ascertain the “risk measure” but portfolio allocation.  
The chapter will therefore not go into the debate as to which risk measure is better but it will use the standard deviation as 
the risk measure. 
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𝑖 as the share of total portfolio risk attributed to that asset.  Roncalli (2014) argues that there are a 

various methods of achieving this however, the Euler principle is the most used and accepted which he 

summarizes as shown below based on Tasche (2008).   

 

Let  be the Profit and Loss (P & L) of the portfolio. This can be decomposed as the sum of the 𝑛 asset 

P & L: 

 =∑𝑖

𝑛

𝑖=1

                                                                          (2.7)  

If 𝑅() is the risk measure associated with the P& L, then the risk-adjusted performance measure 

(RAPM) can be defined as 

RAPM() =  
E[]

R()
                                                     (2.8) 

The portfolio-related RAPM of the 𝑖𝑡ℎ asset is defined by  

RAPM(𝑖 ) =  
E[

𝑖
]

R(𝑖 )
                                                           (2.9) 

 

Based on the notion of RAPM, two properties of risk contributions that are desirable from an economic 

point of view are stated by Tasche (2008): 

 

1. Risk contributions R(𝑖 ) to portfolio – wide risk R() satisfy the full allocation property if:  

∑R(𝑖 ) 

𝑛

𝑖=1

= R()                                                              (2.10) 

This implies that the sum of all risk contributions of the constituent assets in a portfolio is equal to the 

portfolio risk. 

2. Risk contributions R(𝑖 ) are RAPM compatible if there are some 𝜀𝑖 > 0 such that: 

 

RAPM(𝑖) >  RAPM()   RAPM(+ h𝑖) > RAPM()                    (2.11) 

for all 0 < h < 𝜀𝑖  

 

It is shown that if there are risk contributions that are RAPM compatible in the sense of the two 

previous properties (1) and (2) then RAPM(𝑖 ) is uniquely determined as:  
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RAPM(𝑖 ) =
𝑑

𝑑ℎ
𝑅(+ h𝑖)|ℎ=0                                         (2.12) 

 

and the risk measure is homogeneous of degree 1.  In the case of a sub-additive risk measure, it can be 

shown that:  

 

R(𝑖 ) ≤ 𝑅(𝑖)                                                                   (2.13) 

 

This implies that the risk contribution of asset 𝑖 is always smaller than its stand-alone risk measure.  The 

difference is related to the risk diversification. 

 

The above risk measure becomes 𝑅(𝑥) when defined in terms of weights.  In this context, the risk 

contribution is computed as the product of the allocation to asset 𝑖 and its marginal risk contribution.  

The marginal contribution equals the change in the total risk of the portfolio induced by an infinitesimal 

increase in holdings of asset 𝑖 (Maillard, Roncalli and Teiletche, 2010).  This implies that the risk 

contribution of asset 𝑖 can be defined, using Bruder and Roncalli (2013), Maillard, Roncalli and Teiletche 

(2010), Roncalli (2014), and Davies and Menchero (2010), as follows: 

 

Consider a portfolio of 𝑛 assets.  𝑥𝑖 is defined as the exposure (weights) of the 𝑖𝑡ℎasset and 

𝑅(𝑥1, … . , 𝑥𝑛) as a risk measure for the portfolio 𝑥 = (𝑥1, … . , 𝑥𝑛), ∑= covariance matrix, 𝜎𝑖𝑗= covariance 

between assets 𝑖 𝑎𝑛𝑑 𝑗: 

 

𝑅(𝑥1, … . , 𝑥𝑛) = 𝑅(𝑥) = 𝜎(𝑥) = √𝑥
𝑇∑𝑥   = √∑ 𝑥𝑖

2𝜎𝑖
2 +∑ ∑𝑥𝑖𝑥𝑗𝜎𝑖𝑗

𝑖≠𝑗
𝑖𝑖

                        (2.14) 

 

 

𝑅𝐶𝑖 = 𝑥𝑖
𝜕𝑅(𝑥)

𝜕𝑥𝑖
                                                                   (2.15)   

where 𝑥𝑖 = allocation of asset 𝑖 𝑎𝑛𝑑 

𝜕𝑅(𝑥)

𝜕𝑥𝑖
= marginal risk contribution 
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The marginal contribution to risk is a partial derivative that represents the change in the portfolio’s 

volatility resulting from an infinitesimal increase in the weight of one asset in the portfolio.  From the 

above equation (2.15), the risk contribution of asset 𝑖 is equivalent to the product of the assist’s weight 

and its marginal risk contribution (Lee, 2011).  This concept is expanded more below. 

 

This risk measure above is said to satisfy the Euler decomposition:  

 

𝑅(𝑥) =∑𝑥𝑖
𝜕𝑅(𝑥)

𝜕𝑥𝑖
=

𝑛

𝑖=1

∑𝑅𝐶𝑖                                                        (2.16)

𝑛

𝑖=1

 

 

This relationship is also called the Euler allocation principle, and it is also referred to as the risk 

attribution formula by Davies and Menchero (2010).  Euler allocation principle expresses the 

relationship between the marginal risk contributions and the portfolio risk and is at the core of risk 

parity portfolios which is used intensively by practitioners (Roncalli, 2014). 
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2.4.2. Computing the risk contributions 

Although the value-at-risk and expected shortfall are also volatility measures of returns; this research 

concentrates on standard deviation as the measure of risk.  For a two asset portfolio, risk is defined as: 

 

𝜎(𝑥) = √𝑥1
2𝜎1
2 + 2𝑥1𝑥2𝜌𝜎1𝜎2 + 𝑥2

2𝜎2
2                                                   (2.17) 

 

With this, Roncalli (2014) shows that the marginal risk of the first asset is, therefore: 

 

𝜕𝑅(𝑥)

𝜕𝑥𝑖
=

2𝑥1𝜎1
2 + 2𝑥2𝜌𝜎1𝜎2

2√𝑥1
2𝜎1
2 + 2𝑥1𝑥2𝜌𝜎1𝜎2 + 𝑥2

2𝜎2
2

 

 

         =
𝑥1𝜎1

2 + 2𝑥2𝜌𝜎1𝜎2

√𝑥1
2𝜎1
2 + 2𝑥1𝑥2𝜌𝜎1𝜎2 + 𝑥2

2𝜎2
2

 

 

=
𝑐𝑜𝑣(𝑅1, 𝑅(𝑥))

𝑣𝑎𝑟(𝑅(𝑥))
                                                                         (2.18)  

 

It can be deduced that the risk contribution of the first asset is: 

 

𝑅𝐶𝑖 = 𝑥𝑖
𝜕𝑅(𝑥)

𝜕𝑥𝑖
 

 

=
𝑥1
2𝜎1
2 + 𝑥1𝑥2𝜌𝜎1𝜎2

√𝑥1
2𝜎1
2 + 2𝑥1𝑥2𝜌𝜎1𝜎2 + 𝑥2

2𝜎2
2
                                               (2.19) 

 

It follows that the sum of two risk contributions is equal to the portfolio’s volatility.  This is verified 

below: 

𝑅𝐶𝑖 + 𝑅𝐶2 =
𝑥1
2𝜎1
2 + 𝑥1𝑥2𝜌𝜎1𝜎2

√𝑥1
2𝜎1
2 + 2𝑥1𝑥2𝜌𝜎1𝜎2 + 𝑥2

2𝜎2
2
+ 
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                    =
𝑥2𝑥1𝜌𝜎1𝜎2 + 𝑥2

2𝜎1
2

√𝑥1
2𝜎1
2 + 2𝑥1𝑥2𝜌𝜎1𝜎2 + 𝑥2

2𝜎2
2

 

 

=
𝑥1
2𝜎1
2 + 2𝑥1𝑥2𝜌𝜎1𝜎2 + 𝑥2

2𝜎2
2

√𝑥1
2𝜎1
2 + 2𝑥1𝑥2𝜌𝜎1𝜎2 + 𝑥2

2𝜎2
2
    

 

                 = √𝑥1
2𝜎1
2 + 2𝑥1𝑥2𝜌𝜎1𝜎2 + 𝑥2

2𝜎2
2 

 

= 𝜎(𝑥)                                

 

These preceding formulas can be extended to the case n > 2.  Since 𝜎(𝑥) = √𝑥𝑇∑𝑥, it follows that the 

vector of marginal volatilities is: 

 

𝜕𝑅(𝑥)

𝜕𝑥𝑖
=
1

2
(𝑥𝑇∑𝑥)−1(2∑𝑥) 

 

=
∑𝑥

√𝑥𝑇∑𝑥
                                                                        (2.20)  

 

The risk contribution of the 𝑖𝑡ℎ asset is therefore: 

 

𝑅𝐶𝑖 = 𝑥𝑖.
(∑𝑥)𝑖

√𝑥𝑇∑𝑥
                                                                   (2.21) 

 

Similar to the two-asset case, it can be verified that the full allocation property is: 

 

∑𝑅𝐶𝑖

𝑛

𝑖=1

=∑𝑥𝑖.
(∑𝑥)𝑖

√𝑥𝑇∑𝑥

𝑛

𝑖=1

 

 

= 𝑥𝑇
∑𝑥

√𝑥𝑇∑𝑥
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= √𝑥𝑇∑𝑥        

 

= 𝜎(𝑥)            

Since the aim of risk parity is to attain equal risk contribution to each particular asset in the portfolio, 

risk parity portfolios are also called risk contribution portfolios.  Research has shown similarities 

between the diversification effect of portfolios with equal weightings and that of out-of-sample mean-

variance characteristics of risk parity portfolios.  However, the latter also takes single and joint risk 

contributions of assets into consideration.  Maillard, Roncalli and Teiletche (2010) argue that mean-

variance also equalise risk contribution albeit only on a marginal basis; meaning that a small increase 

in allocation of an asset leads to the same increase in the total risk of the portfolio.  They prove that 

when assets in bivariate portfolios have the same volatility, the 1/n, minimum-variance, and risk parity 

portfolios are identical.  However, for portfolios with more than two assets with different correlations; 

the risk parity portfolio coincides with the 1/n portfolio when the volatilities are the same.  

Furthermore, they also show that risk parity portfolios correspond to the minimum-variance portfolio 

when the correlation matrix reaches its lowest possible value (i.e. when cross-diversification is the 

highest).  This suggests that risk parity approach yields portfolios with robust risk-balanced properties. 

 

The question that arises is what weight should be assigned to each asset in order to obtain an equally 

weighted risk contribution portfolio.  Roncalli (2014); Maillard, Roncalli and Teiletche (2010); and 

Bruder and Roncalli (2013) show how this can be done analytically by first showing a bivariate case and 

then the general case when there are more than two assets in a portfolio. 

 

The two-asset case (n = 2)  

The following terms are first defined. 𝜎𝑖 represents the volatility of the 𝑖𝑡ℎ asset, 𝜌 the correlation and 

𝑥 = (𝑤, 1 − 𝑤) the portfolio weights.  The marginal risk contributions are: 

 

𝜕𝜎(𝑥)

𝜕𝑥
=

∑𝑥

√𝑥𝑇∑𝑥
=

1

𝜎(𝑥)
(
𝑤𝜎1

2 + (1 − 𝑤)𝜌𝜎1𝜎2
(1 − 𝑤)2𝜎2

2 +𝑤𝜌𝜎1𝜎2
)                         (2.22 

 

Then ERC portfolio satisfies: 

 



  

29 
 

𝑤.
(𝑤𝜎1

2 + (1 − 𝑤)𝜌𝜎1𝜎2)

𝜎(𝑥)
= (1 − 𝑤).

(1 − 𝑤)𝜎2
2 +𝑤𝜌𝜎1𝜎2
𝜎(𝑥)

 

They then deduce that: 

 

𝑤2𝜎1
2 = (1 − 𝑤)2𝜎2

2 

 

Because 0 ≤ 𝑤 ≤ 1, the unique solution is: 

 

𝑤∗ =
1

𝜎1
/ (
1

𝜎1
+
1

𝜎2
) 

 

=
𝜎2

𝜎1 + 𝜎2
                                                                       (2.23) 

 

This means that the weights of the two asset ERC portfolio are inversely proportional to the volatilities.  

However, they are independent of the correlation, 𝜌. 

 

Roncalli (2014) compares this portfolio with the equally weighted (or EW) portfolio and the minimum 

variance (or MV) portfolio. To do this he uses the following parameterization 𝜎1 = 𝜎 and 𝜎2 = 𝑘𝜎 with 

𝑘 ≥ 0. 

 

The volatility for the ERC portfolio thus 

 

𝜎(𝑥𝑒𝑟𝑐) = √2(1 − 𝜌)
𝑘

1 + 𝑘
𝜎 

 

While the volatility of an equally weighted portfolio is: 

 

𝜎(𝑥𝑒𝑤) =
1

2
𝜎√1 + 𝑘2 + 2𝜌𝑘 

 

These expressions, therefore, show that 𝜎(𝑥𝑒𝑤) ≥ 𝜎(𝑥𝑒𝑟𝑐). When 𝜎(𝑥𝑒𝑤) = 𝜎(𝑥𝑒𝑟𝑐) obtainable when 

𝑘 = 1. 
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Roncalli (2014) shows that the minimum variance portfolio for a two asset portfolio has 

 

𝑥𝑚𝑣 =
1

𝜎1
2 + 𝜎2

2 − 2𝜌𝜎1𝜎2
(
𝜎2
2 − 𝜌𝜎1𝜎2
𝜎1
2 + 𝜌𝜎1𝜎2

) 

 

He, therefore, shows that the volatility of the minimum variance portfolio is thus: 

𝜎(𝑥𝑚𝑣) = 𝑘𝜎√
1 − 𝜌2

1 + 𝑘2 − 2𝜌𝑘
 

 

The general case (n > 2) 

In instances where a portfolio has more than two assets, it is not possible to find an analytical solution 

(Roncalli (2014), Bruder and Roncalli (2013) and Maillard, Roncalli and Teiletche (2010).  However, the 

same authors show some closed-form solutions for specific cases, which can be referred to as to the 

naïve risk parity because either the correlation or the volatility is assumed to be identical for the 

different assets in the portfolio. 

 

Assuming a constant correlation matrix with 𝜌𝑖,𝑗 = 𝜌 for all 𝑖, 𝑗, it follows that the weights of the ERC 

portfolios satisfy the following relationship 

𝑥𝑖𝜎𝑖 ((1 − 𝑝)𝑥𝑖𝜎𝑖 + 𝜌∑𝑥𝑘𝜎𝑘

𝑛

𝑘=1

) = 𝑥𝑗𝜎𝑗 ((1 − 𝑝)𝑥𝑗𝜎𝑗 + 𝜌∑𝑥𝑘𝜎𝑘

𝑛

𝑘=1

) 

 

If follows that 𝑥𝑖𝜎𝑖 = 𝑥𝑗𝜎𝑗. Because ∑ 𝑥𝑖 = 1,
𝑛
𝑖=1  the expression for the risk contribution can be 

deduced a:  

 

𝑥𝑖 =
𝜎𝑖
−1

∑ 𝜎𝑗
−1𝑛

𝑗=1

                                                                   (2.24) 

 

The weight allocated to the asset 𝑖 is inversely proportional to its volatility.  In other words, it is the 

harmonic average of the volatilities of the assets in the portfolio.  Similar to the two asset scenario, this 

does not depend on the value of the correlation or the covariance.  Roncalli (2014) further shows that 
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this solution is connected to the minimum-variance portfolio. Let ∑ = 𝜎𝜎𝑇 °𝐶𝑛(𝜌) with 𝛤𝑖,𝑗 = 𝜎𝑖
−1𝜎𝑗

−1 

and: 

 

𝐶𝑛
−1(𝜌) =

𝜌11𝑇 − ((𝑛 − 1)𝜌 + 1)𝐼𝑛
(𝑛 − 1)𝜌2 − (𝑛 − 2)𝜌 − 1

 

 

Because the minimum variance portfolio is: 

 

 𝑥 =
(∑−11)

1𝑇∑−11
 

 

He deduces that the expression for the minimum variance weights is, therefore: 

 

𝑥𝑖 =
−((𝑛 − 1)𝜌 + 1)𝜎𝑖

−2 + 𝜎∑ (𝜎𝑖𝜎𝑗)
−1𝑛

𝑗=1

∑ (−((𝑛 − 1)𝜌 + 1)𝑛
𝑘=1 𝜎𝑘

−2 + 𝜎∑ (𝜎𝑘𝜎𝑗)
−1𝑛

𝑗=1

 

 

Since the lower bound of 𝐶𝑛(𝜌) is achieved for 𝜌 = −(𝑛 − 1)−1.  The solution becomes: 

 

𝑥𝑖 =
∑ (𝜎𝑖𝜎𝑗)

−1𝑛
𝑗=1

∑ ∑ (𝜎𝑘𝜎𝑗)
−1𝑛

𝑗=1
𝑛
𝑘=1

=
𝜎𝑖
−1

∑ (𝜎𝑘)
−1𝑛

𝑘=1

 

 

When the correlation is at its lowest possible value, the ERC portfolio is equal to the minimum variance 

portfolio. 

 

If it is assumed that all volatilities are equal, i.e. 𝜎𝑖 = 𝜎 for all 𝑖, the risk contribution then becomes 

 

𝑅𝐶𝑖 =
(∑ 𝑥𝑖𝑥𝑘𝜌𝑖,𝑘
𝑛
𝑘=1 )𝜎2

𝜎(𝑥)
 

 

The equally-weighted risk contribution (ERC) portfolio verifies then: 
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𝑥𝑖 (∑𝑥𝑘𝜌𝑖,𝑘

𝑛

𝑘−1

) = 𝑥𝑗 (∑𝑥𝑘𝜌𝑗,𝑘

𝑛

𝑘−1

) 

 

This is then deduced as: 

 

𝑥𝑖 =
(∑ 𝑥𝑘𝜌𝑖,𝑘
𝑛
𝑘=1 )

−1

∑ (∑ 𝑥𝑘𝜌𝑖,𝑘
𝑛
𝑘=1 )

−1𝑛
𝑘=1

                                                           (2.25) 

 

The weight attributed to asset 𝑖 is equal to the ratio between the inverse of the weighted average of 

the correlations of asset 𝑖 with other assets and the same average across all the assets (Maillard, 

Roncalli and Teiletche, 2010). Put another way, the weight of asset 𝑖 is inversely proportional to the 

weighted average of correlations of asset 𝑖. However, unlike the previous bivariate case and the case 

with constant correlations, for higher-order problems, the solution is endogenous owing to the fact 

that 𝑥𝑖, is a function of itself both directly and through the constraint that ∑𝑖𝑥𝑖 = 1.  This endogeneity 

phenomenon unsurprisingly also occurs in the general case where both the volatilities and the 

correlations are unique. 

 

Maillard, Roncalli and Teiletche, (2010) show the following deduction, by starting from the definition 

of the covariance of the returns of the asset 𝑖 with the returns of the aggregated portfolio: 

𝜎𝑖𝑥 = 𝑐𝑜𝑣(𝑟𝑖, ∑𝑗𝑥𝑗𝑟𝑗 = ∑𝑗𝑥𝑗𝜎𝑖𝑗 

This is equivalent to  

𝜎𝑖(𝑥) =
𝑥𝑖𝜎𝑖𝑥
𝜎(𝑥)

 

 

The beta5, 𝛽𝑖, of asset 𝑖 is now introduced where  

 

𝛽𝑖 =
𝜎𝑖𝑥
𝜎2(𝑥)

                                                                           (2.26) 

and  

 

                                                 
5 Beta measures the sensitivity of returns of an asset to movements in the markets’ returns. In this case, however, the portfolio 
is used as a proxy for the market. So in essence what is being measured is the sensitivity of the returns asset (in a portfolio) 
to movements in the portfolio’s returns. 



  

33 
 

𝜎𝑖(𝑥) = 𝑥𝑖𝛽𝑖  𝜎(𝑥) 

 

By definition the ERC portfolio for all 𝑖, 𝑗 is: 

 

𝜎𝑖(𝑥) = 𝜎𝑗(𝑥) =
𝜎(𝑥)

𝑛
 

 

it can, therefore, be deduced that: 

 

𝑥𝑖 =
𝛽𝑖
−1

∑ 𝛽𝑗
−1𝑛

𝑗=1

 

 

Because ∑ 𝑥𝑖𝛽𝑖
𝑛
𝑖=1 = 1, this translates to  

 

𝑥𝑖 =
1

𝑛𝛽𝑖
=
𝛽𝑖
−1

𝑛
                                                                    (2.27) 

 

As highlighted earlier, this solution is also endogenous since 𝑥𝑖 is a function of the asset’s beta, 𝛽𝑖 

which, by definition, is dependant on the portfolio 𝑥, which inturn is also a function of the sum of 

portfolio weights 𝑥𝑖.  The weight attributed to asset 𝑖 is inversely proportional to its beta.  The higher 

the beta, the lower the weight and vice versa. This implies that the assets with high volatility or high 

correlations with other assets will be penalized (Maillard, Roncalli and Teiletche, 2010). 

 

2.4.3. Comparing ERC with EW and MV portfolios 

As earlier discussed, the equally weighted (EW) and minimum-variance (MV) are heuristic approaches 

that are used in practice as alternatives to the MVO due to their simplicity.  A comparison of these two 

approaches with ERC portfolio by Maillard, Roncalli and Teiletche (2010) reveal that the ERC is located 

between the EW and the MV portfolios.  They show that in the bivariate case, the EW, MV and ERC are 

identical when the two assets have the same volatility.  However, in the general n-assets case, with 

unique correlations, the ERC portfolio coincides with the EW portfolio when all the volatilities are 

identical.  Furthermore, they also show that the ERC portfolio corresponds to the MV portfolio when 

cross-diversification is the highest, i.e. when the correlation matrix reaches its lowest possible value.  
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This they argue suggests that the ERC strategy produces portfolios with robust risk-balanced properties.  

Maillard, Roncalli and Teiletche (2010) demonstrate mathematically, the general case regarding the 

EW, MV and ERC as follows 

 

𝑥𝑖 = 𝑥𝑗      (EW) 

 

𝜕𝑥𝑖𝜎(𝑥) = 𝜕𝑥𝑗𝜎(𝑥)    (MV) 

 

𝑥𝑖𝜕𝑥𝑖𝜎(𝑥) = 𝑥𝑗𝜕𝑥𝑗𝜎(𝑥)   (ERC) 

 

The previous mathematical annotations show that EW portfolio is represented by equalising the asset 

weights, while the MV portfolio matches the marginal risk contributions in the portfolio and lastly the 

ERC equalises the risk contribution of each asset in the portfolio.  Ultimately Maillard, Roncalli and 

Teiletche (2010) and Roncalli 2014) demonstrate that the risk for the ERC portfolio lies in between the 

MV and EW portfolios.  Therefore, the MV portfolio is the least volatile while the EW is the most volatile 

and in between, is the ERC. This is summarized using their famous inequality: 

 

𝜎(𝑥𝑚𝑣) ≤ 𝜎(𝑥𝑒𝑟𝑐) ≤ 𝜎(𝑥𝑒𝑤)                                            (2.28) 

 

2.4.4. Diversification benefits of risk parity  

As stated previously, while most of the conventional asset allocation approaches entail explicit asset 

return forecasting with a view to use mean-variance optimisation, risk parity hinges upon risk 

diversification.  Therefore, there is no estimation risk emanating from the estimation of expected 

returns because only variances and covariances are needed and these are said to be a tenth as 

important as estimates of means (Chopra and Ziemba, 1993).  In this approach, each asset class 

contributes approximately the same expected fluctuation in the [Dollar] value of the portfolio (Chaves 

et al., 2011) thus reducing the portfolio’s overall risk which comes about as a result of a reduction in 

the proportion of risk explained by higher volatility assets like equities.  Unlike minimum-variance and 

mean-variance optimised portfolios that are susceptible corner solutions; risk parity portfolios ensure 

that each asset has a non-zero weight allocation.  Furthermore, in contrast with equally weighted 

portfolios, correlations of these assets’ returns have an effect on these weight allocations with higher 

correlated assets getting lower allocations and vice versa.  This approach, therefore, limits the risk of 
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overexposure to any individual asset class, while providing sufficient exposure to all of them at the 

same time (Qian, 2005).   

Risk parity can, hence, be seen as an equally weighted portfolio but in terms of risk as opposed to 

weights.  Risk parity thus presents a pure method of risk management since assumptions about 

expected returns are not required.  Consequently, a risk parity portfolio comprising of only equities and 

bonds will have more funds allocated to bonds (as illustrated earlier in Exhibit 2.1(b) and therefore 

resulting in reduced volatility.  Correspondingly, the effect on the overall portfolio of the losses arising 

from the constituent assets is constrained.  Because of the positive relationship between risk and 

expected return, the reduced volatility in a risk parity portfolio also leads to a reduction in return 

possibly below the level that might be required by the investor.  To remedy this, leverage can be 

employed in order to achieve a given level of expected return [where there are no constraints for 

investors to use leverage].  The investor hence has to decide how much risk should be taken on as well 

as how this risk is distributed amongst the portfolio’s constituent assets.  

 

Getting back to the equity and bond scenario which are held by pension policies, equities are seen as 

growth assets, and frequently bonds are added to portfolios due to their risk reduction characteristics, 

primarily as a way to balance this growth.  A study by Qian (2011) that compares a 60/40 portfolio with 

a risk parity portfolio both only consisting of equities and bonds is used to illustrate the diversification 

benefits of a risk parity approach.  Quin’s study reveals that the 60/40 balanced portfolio has very high 

and very low correlations to equities and bonds respectively whereas the risk parity portfolio had the 

same correlations with both equities and bonds.  For this reason, the 60/40 portfolios are said not to 

offer true risk diversification due to their high dependence on equities.  From the risk allocation 

standpoint, the 60/40 portfolios are highly concentrated albeit, appearing balanced with regards to 

capital allocation.  The risk parity approach, on the other hand, is said to offer true risk diversification 

and hence improving portfolio diversification and are hence likely to achieve higher Sharpe ratios.  In 

the same study Qian (2011) compared the beta of equity and bonds against both the 60/40 and risk 

parity portfolios and demonstrated that the equities and the bonds had lower and higher beta 

respectively in the risk parity portfolio. The reverse was true for the 60/40 portfolio indicating that 

diversification is attained in the risk parity portfolio because equities (with high volatility) have lower 

beta and bonds (with low volatility) have higher beta. 

 



  

36 
 

The quest for risk parity to allocate equal risk contribution of assets to a portfolio can help the investor 

determine how much risk to invest in each asset class as well as to ascribe the amount of expected 

performance to the asset classes.  Additionally, because downside risk is a major concern for risk averse 

investors, it is also essential to consider loss contribution of each asset class in a portfolio to establish 

when substantial losses are expected to occur (Qian, 2011).  Loss contribution is assessed in the same 

way as risk contribution since it is an accurate indicator of risk loss (Qian, 2005).  As a result, in a 60/40 

portfolio, a significant loss in equities will result in a loss of similar magnitude for the entire portfolio 

because equities contribute more than 90% of the portfolio (see Exhibit 2.1a).  Because risk parity 

equates the risk contribution of equities and bonds (i.e. 50 – 50), it limits the downside of the overall 

portfolio against significant losses by reducing the loss contribution of the high-risk assets like equities 

in a 60/40 portfolio.  

 

Hewitt (2012) sees risk parity as an active approach that entails the skill to analyse risk and market 

conditions.  He observes that this asset allocation approach is evolving into traditional active 

management as it employs aspects of return forecasting, tactical allocation and even security allocation 

allowing managers to differentiate themselves.  Sceptics, however, dispute the benefits of risk parity 

stating that it is not realistic in its assumption of risk being quantified by standard deviation as it may 

not necessarily encapsulate the risk of an asset6.  Inker (2011) demonstrates this by considering the 

standard deviation of AAA-rated credit card backed Asset-Backed Securities from 2001 to 2010 which 

shows that the risk for this period was very stable despite the impending US home price bubble.  

However, in 2008 and 2009, the standard deviation rose by a factor of 200 (Inker 2011) validating the 

unreliability of the standard deviation as a measure of future risk, despite the unprecedented nature 

of the financial crisis.  Thiagarajan and Schachter (2011) and Bhansali (2011) share this concern and go 

beyond by observing that risk is more comprehensive than any measure of volatility, more so for geared 

portfolios.  Others also criticize the risk parity approach stating that “investors want high returns and 

diversification itself does not pay the bills” (Qian, 2011).  Likewise, Thiagarajan and Schachter (2011) 

observe that while the risk-reward performance of the risk parity approach seems impressive, it is 

worth keeping in mind that “higher risk-rewards ratios do not put money in the bank, but returns do”.  

However, as stated earlier, the implementation of the risk parity approach is driven by the investor’s 

objectives whose goal is not to maximise risk adjusted performance but to manage risk through risk 

allocation.   

                                                 
6 Again, as stated earlier the debate as to what the right risk measure should be is beyond the scope of this study. 
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While the benefits of risk parity have been shown by practitioners and researchers alike; Thiagarajan 

and Schachter (2011) nevertheless caution about the danger of the exclusive use of risk in portfolio 

construction where returns are completely ignored.  They observe that this could lead to the discarding 

of potentially valuable information and therefore suggest for a balanced investment policy in which 

appropriate consideration to risk is provided albeit not exclusively.  Lee (2011) is also of the same 

opinion and views risk-based asset allocation as a subset of modern portfolio theory paradigm rather 

than a new paradigm.  He argues that regardless of whether expected returns are explicitly used as 

inputs, a portfolio that consistently outperforms the market by definition has more information on 

future asset returns than the market portfolio.  Lee (2011) is also of the view that risk-based portfolios 

like risk parity are no exception.  He asserts that the mean-variance approach is the best and therefore 

concludes that modern portfolio theory remains modern. 

 

2.4.5. Application of risk parity to real estate  

Despite the drive to adopting mean-variance optimisation in real estate, naïve diversification has been 

predominantly utilized in this industry. As shown earlier there are arguments for and against each 

approach. Even though the naïve approach of equal weighting can be worked out statistically, its 

practicality is difficult owing to the inherent characteristics of property (Stevenson 2000a).  The 

question is whether risk parity as an alternative risk allocation approach when applied to real estate 

can provide better performance in terms of risk-adjusted returns and diversification? The ensuing 

section addresses this using empirical data from real estate. 
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2.5 Data, methodology and Empirical analysis  

2.5.1. Data 

The data used in this study consists of monthly total returns of public real estate securities from four 

international markets, namely; Australia, France, the United Kingdon (UK) and the United States of 

America (US). The data was obtained from Thomson Reuters’ Datastream®7 and spans from January 

1990 to December 2017.  The selected markets were selected based on data availability from 1990 and 

an extended period, i.e., twenty-seven years was chosen in order to take into consideration different 

market conditions.  These represent the REIT indices on Datastream for the selected markets.  Even 

though all the selected markets, apart from the US, did not have REITs in the entire period covered by 

the research, Datastream backdated the REIT indices to cover those periods.  Monthly returns were 

used rather than weekly or daily returns because research has shown that higher frequency 

observations tend to be noisier and this can affect the quality of the estimated covariance matrix (Kwan, 

2011).  Direct property and private real estate data were not used because their illiquid requires longer 

holding periods which were not deemed suitable for this study and also for easy analysis.  Furthermore, 

other asset classes were not included because the focus of the study is on the application of risk parity 

on real estate securities. 

 

Table 2.1 displays the descriptive statistics for the total returns data for international real estate 

security indices for the period extending from January 1990 to December 2017. 

 

  

Mean return Standard 
deviation 

Beta 

Australia 0.9444% 4.3203% 0.7021 
France 1.3077% 5.5662% 0.9325 
UK 0.7401% 5.9458% 1.1534 
US 1.1014% 6.2933% 1.2120 

 
Table 2.1: Summary statistics for International Real Estate Securities for the overall sample period 1990 -2017,  

 

All the sectors had positive monthly average returns ranging from 0.74% to 1.31% with the UK and 

French markets achieving the lowest and highest respectively. The total risk, measured by the standard 

deviation ranges from 4.32% to 6.29%, these being the Australian and the US market respectively.  As 

expected, the markets with lower standard deviations were defensive as they exhibited betas less than 

                                                 
7 Datastream is a platform that provides global financial and macroeconomic data. 
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unity (1) while the high standard deviation sectors had betas greater than unity and therefore 

aggressive.  The correlation matrix in Table 2.2 reveals that all the sectors are positively correlated with 

values ranging from about 0.313 to 0.557 which can be classified as weak to moderate. 

 

  Australia France UK US 

Australia 1    

France 0.3133 1   

UK 0.4629 0.4190 1  

US 0.4338 0.3959 0.5569 1 

Table 2.2: Correlation matrix for International Real Estate Securities for the overall sample period 1990 -2017, 

2.5.2. Methodology 

In order to test the performance of risk parity, a comparison with other portfolio allocation strategies, 

namely; the equally-weighted, minimum-variance, mean-variance optimisation, Bayes Stein (return 

vector shrinkage), Ledoit and Wolf (covariance matrix shrinkage) and resampling was undertaken.  The 

comparison was made after creating portfolios using the strategies mentioned above and determining 

the portfolio weights, risk contributions, returns, risk and Sharpe ratios for different rolling sub-periods.  

Note that at portfolio level the different markets in the portfolio will also be referred to as assets – 

therefore “markets” and “assets” will be used interchangeably. 

In this study, the equally-weighted portfolio as defined previously will allocate equal weights to the 

four international real estate securities markets.  Frost and Savarino (1998) and Chopra (1993) view 

this strategy as constraining the influence of input parameters unsteadiness.  However, this portfolio 

is both undesirable and impossible to hold in the direct real estate sector due to the indivisibility of 

property and the marked differences in lot sizes between different property types (Lee and Stevenson, 

2005).  While it might be possible to do this when creating a real estate securities portfolio, this 

approach is possibly neither pragmatic nor appropriate.  This said, as previously stated the performance 

of the equally-weighted portfolio, in other studies, is not necessarily inferior to the mean-variance 

optimisation and minimum-variance approaches as the latter approaches are not consistently better 

out of sample. 

 

The minimum-variance portfolio will allocate the assets such that the portfolio attains the lowest 

standard deviation while the mean-variance optimisation’s allocation will be based on the achievement 

of the maximum Sharpe ratio (MSR).  The Bayes Stein portfolio will shrink the return vector using 

equations (2.1) to (2.3).  For this study 𝑖 is the return of the respective international real estate 
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securitties markets, �̅�𝑔(the global mean) the mean of the average return of the four markets, 𝑟0 the 

minimum variance portfolio mean, T is 366 representing the total number of observed months and N 

is 4 representing the number of markets being examined.  The minimum-variance portfolio mean has 

been used as 𝑟0because it is determined purely by variances and covariances and therefore obviates 

the use of mean estimates due to their instability which lead to the increased chances of estimation 

error (Stevenson, 2001). 

 

The Ledoit and Wolf (2004) allocation approach will shrink the sample covariance matrix8. Because the 

Resampled Efficient Frontier (REF) is patented and the exact simulation is unknown this study uses a 

basic process to create a resampled portfolio.  This is done employing Monte Carlo simulation where a 

random sample from each sub-period is created, and from this, the mean return; standard deviation; 

and covariance are then calculated.  A Sharpe ratio maximising portfolio is then produced (for this 

newly created sample), and this iteration is repeated 100 times for each rolling sub-period9.  The 

resampled portfolio is then constructed from the average allocations (weights) of the 100 newly 

created portfolios after resampling. 

 

A strategy that combines the two shrinkage approaches will also be attempted just to see if there is 

any benefit – and will be called the Bayes Stein + Ledoit and Wolf (BS + LW) shrinkage.  As stated 

previously, the Bayes Stein shrinkage only shrinks the return vector but using the sample covariance 

matrix while Ledoit and Wolf shrinkage, on the other hand, utilises the sample return but applies the 

shrinkage on the covariance matrix.  Although there are cases that are put forward with regard to which 

parameter is most sensitive to estimation error i.e., the return vector or the covariance matrix (Chopra 

and Ziemba, (1993), Lee and Stevenson (2005) and Bengtsson (2004), Michard and Michard (2008), 

Markowitz and Usmen (2003), Ledoit and Wolf (2003), and Wolf (2007))  what is not disputable is that 

both of these parameters are subject to estimation errors as they are obtained from ex-post sample 

data.  Hence, the reason why this research correspondingly attempts to combine these two shrinkage 

approaches to form a new portfolio (i.e., the Bayes Stein + Ledoit and Wolf combo). 

 

                                                 
8 As shown previously the implementation of the covariance shrinkage is very complicated. This study implemented this in 
Matlab using the code provided by Ledoit and Wolf. See http://www.econ.uzh.ch/faculty/wolf/publications.html 
9 This is a very time consuming task and Matlab in conjunction with Microsoft Excel macros were used to perform this task. 
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Finally, the risk parity approach as defined earlier will result in portfolios that equalise the risk 

contribution of all the four markets in the portfolio10.  As not all investment mandates permit short 

selling, a no-short selling constraint was imposed on all the portfolios to avoid increasing estimation 

error impact (Jorion, 1992 and Stevenson, 1999).  This means that none of the assets in a portfolio has 

a negative allocation and the sum of the allocations need to be 100%.   It should be noted that the 

mean-variance optimisation, Bayes Stein, Ledoit and Wolf and Bayes Steins + Ledoit and Wolf aim to 

maximise the risk-adjusted return by optimising the weights.  This risk-adjusted return is defined by the 

Sharpe ratio (SR): 

 

𝑆𝑅 =
�̅�𝑝 − 𝑟𝑓

𝜎𝑝
                                                                            (2.29) 

 

Where �̅�𝑝 is the portfolio expected return, 𝑟𝑓 is the risk-free rate of return and 𝜎𝑝 is the standard 

deviation of the portfolio.  For simplicity, this study assumes that the risk-free rate of return (𝑟𝑓) is zero. 

 

The descriptive statistics (Tables 2.1) and the variance-covariance matrix (hereinafter only referred to 

as the covariance matrix) are the basis of the calculation of the risk contributions of the various 

portfolios shown in Exhibit 2.3.  The portfolio risk σ is calculated using equation (2.14) and is a function 

of the allocated weights (𝑥𝑖) and the covariance matrix.  The marginal risk contribution (MRCi) which 

measures the additional portfolio risk as a result for every addition of asset i is calculated from equation 

(2.18).  While the allocations for the equally weighted portfolio are the same by definition, the marginal 

risk contribution for each asset is however different.  For the minimum-variance portfolio, it can be 

observed that the marginal risk contributions are identical for the assets with non-zero allocations.  The 

marginal risk contribution can be transformed into the risk contribution RCi by multiplying it by the 

respective weight x,i as shown by equation (2.19).  Furthermore, like underscored earlier, the sum of 

the RCi should equal the portfolio risk σ.  The risk contribution ratio (RCi%) is the asset’s risk 

contribution as a proportion of the portfolio risk.  By definition the risk contribution, RCi =
σ

n
 for the 

risk parity portfolio as it shows equal risk contribution and the risk contribution ratio, RCi% =
100

n
.  It 

is noteworthy that for this study, the risk contribution refers to the risk contribution ratio (RCi%) rather 

than RCi. 

                                                 
10 Apart from the equally weighted portfolio, all the strategies where implemented using the “Solver” tool in Microsoft Excel. 
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Exhibits 3.2(a) through to 3.2(c) are graphical summaries of the performance of the four markets for 

real estate securities shown in Exhibit 3.1 and displays the standard deviations, Sharpe ratios, risk, 

allocations and risk contributions of resulting portfolios for the entire period of investigation, i.e. 

January 1990 to December 2017.  The results show that the highest risk and the lowest return are from 

the equally weighted portfolio.  The risk parity portfolio has only outperformed (albeit slightly) the 

equally weighted portfolio both in terms of risk and Sharpe ratio.  This is in harmony with Maillard, 

Roncalli and Teiletche (2010) and Roncalli 2014) who reveal that the risk parity portfolio lies 

somewhere between naïve portfolio and the minimum-variance portfolio.  For this period, the risk 

parity portfolio had the third largest standard deviation just behind that of the Ledoit and Wolf 

covariance shrinking portfolio.  What was not expected was the relatively low standard deviation of the 

mean-variance portfolio relative to that of the risk parity portfolio.  As far as the Sharpe ratio is 

concerned, the risk parity was the second lowest (after the equally weighted portfolio) while the mean-

variance was unsurprisingly the highest, as expected.  As expected, the portfolio with the lowest risk is 

the minimum-variance portfolio. 

 

Apart from the equally weighted and the risk parity portfolio, all the other portfolios have allocations 

that are concentrated in a few assets with some presenting corner solutions as shown in Exhibit (3.2(b)).   

For example, the minimum-variance, Bayes Stein and the Bayes- Steins and Ledoit and Wolf combo are 

overweight in the Australian market followed by the French market and a small proportion to the US.  

The mean-variance, Ledoit & Wolf and Resampling portfolios, on the other hand, have most of their 

allocations in France, followed by Australia and a small proportion to the US.  The mean-variance, 

Bayes-Steins and Ledoit & Wolf portfolios have completely no allocations assigned to the UK market 

resulting in corner solutions whereas the Resampling portfolio has only assigned a meagre 1% to the 

UK.  By definition, the equally-weighted portfolio allocates equal weights to all the assets in the 

portfolio.  The risk parity portfolio has allocations in all the markets in the portfolios, and like the equally 

weighted portfolio, there are no corner solutions.  

 

Exhibit 2.4(c) shows the risk contributions of the assets to the portfolio’s overall risk.  The pattern of 

the risk contributions of the assets in all portfolios, except the equally-weighted and risk parity 

portfolios, are similar to their weight allocations described above.  While the equally-weighted portfolio 

allocates equal weights to all the markets in the portfolio with the risk contributions are range from 

about 17.6% to 30.2%.  The UK and US markets contribute the most risk to the equally weighted 
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portfolio followed by France while the least risk contribution is from Australia.  The UK market did not 

contribute any risk to the mean-variance, Bayes-Steins and Ledoit & Wolf portfolios because no weight 

was assigned to this market.  As expected, all markets in the risk parity portfolio had equal risk 

contributions to the portfolio’s overall risk.   

 

Table 2.1 indicates that the US and Australian markets have the highest and lowest standard deviations 

respectively.  For this reason, the US contributes the most risk in the equally-weighted portfolio while 

Australia contributes the least.  By definition, the risk parity approach allocates lower weights to higher 

risk assets and vice versa.  This explains why the risk parity portfolio has suggested the lowest and 

highest allocations to the US and Australia respectively.  It can be discerned from the preceding that 

the allocation by risk parity is inverse proportional to the equally weighted portfolio’s risk contribution.  

Furthermore, it is in line with equation (2.27) which shows that the weight attributed to an asset in risk 

parity is inversely proportional to its beta11 (Maillard, Roncalli and Teiletche, 2010).  This can also be 

corroborated by looking at the ranking of risk as measured by both the standard deviation and beta as 

displayed in Table 2.3.   

 

  

                                                 
11 Beta measures the sensitivity of an asset or portfolio returns to market movements. 
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Exhibit 2.3:  Portfolio performances, allocations and risk contributions tables for the overall sample period 1990 -

2017 
This exhibit shows the weight allocation, marginal risk contribution, risk contribution,  and risk contribution percentage for 
each of the assets in the respective portfolios under investigation.  The expected return is calculated from the allocations 
portfolio allocation while the portfolio standard deviation is calculated by also employing the covariance matrix in addition to 
the weights. 

Australia 44.898% 0.0347 1.557% 37.897%

France 42.627% 0.0480 2.047% 49.822%

UK 0.000% 0.0317 0.000% 0.000%

US 12.475% 0.0404 0.505% 12.280%

∑ 100.000% 4.109% 100.000%

E(r ) 1.119%

σ 4.109%

E(r )/σ 0.2723     

Ledoit & Wolf Portfolio

𝑥𝑖  𝑅𝐶𝑖 𝑅𝐶𝑖 𝑅𝐶𝑖%

Australia 54.638% 0.0381 2.083% 52.679%

France 28.509% 0.0429 1.224% 30.942%

UK 6.237% 0.0354 0.221% 5.588%

US 10.616% 0.0402 0.427% 10.791%

∑ 100.000% 3.955% 100.000%

E(r ) 1.033%

σ 3.955%

E(r )/σ 0.2613     

Bayes - Steins + Ledoit & Wolf Portfolio

𝑥𝑖  𝑅𝐶𝑖 𝑅𝐶𝑖 𝑅𝐶𝑖%
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(a) Portfolio Standard Deviations and Sharpe ratios 

  

 
(b) Portfolio allocation 

 
(c) Portfolio risk contributions 

Exhibit 2.4 International Real Estate Securities Portfolio performance, allocations and risk contributions for the 
overall sample period 1990 -2017 
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Table 2.3: Ranking  (High to  Low) of risk, risk contributions and allocations for EW and RP portfolios 

This  table shows the ranking of the standard deviation and beta versus that of the risk contribution and weights for the 
equally-weighted and risk parity portfolios respectively for the overall sample period between 1990 to 2017. 

 

Instead of basing the analysis on the total 28-year period (equivalent to 336 months), the portfolio 

parameters were rolled and recalculated in accordance to the following sub-periods, i.e. 1-month, 3-

months, 6-months, 12-months and 24-months.  The data was rolled and rebalanced using the sub-

periods above in order to be able to compare both the in-sample and out-of-sample performance.  The 

estimation for the in-sample period was based on a 2-year (24 months) period similar to Lee and 

Stevenson (2005).  For instance, the first estimate for the 1-month rolling periods was done in January 

1992 based on a 2 years’ worth of data spanning from January 1990 and December 1991.  The second 

estimate was undertaken in February 1992 based on data spanning from February 1990 and January 

1992.  This rolling was carried out each month until the last estimate which was done in January 2018 

which in total results in about 312 worth of monthly estimates. This same methodology was applied by 

Stevenson (2002) and Lee and Stevenson (2005).  The same process was carried out on the other 

rebalancing periods i.e. 3-months, 6-months, 12-months and 24-months. Table 2.4 summaries how 

many estimates were performed for each of the rebalancing periods. 

 

Rolling Period Number of estimates 

1-month 312 

3-months 104 

6-months 53 

12-months 26 

24-months 13 
Table 2.4: Summary of the number of estimates for the different rolling periods 

 

  

Std Dev] Beta RC (EW) Weights (RP)

4 4 4 1

3 3 3 2

2 2 2 3

1 1 1 4

Ranking
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2.5.3. Empirical analysis of risk parity 

This section tests the robustness of the risk parity approach in the real estate environment using 

empirical data from the international public real estate securities indices from Australia, France, the UK 

and the US markets.  It compares the conventional approaches, i.e. equally-weighted, minimum-

variance, mean-variance; with risk parity.  Stein based shrinkage (i.e. of the return vector and the 

covariance matrix) and resampling regularisation techniques were applied to the portfolio above 

approaches in order to test their robustness vis--vis risk parity.   

 

In all of the rebalancing periods looked at, the risk parity approach displays more stable allocations in-

sample 12with absolutely no corner solutions in comparison with the other portfolio strategies.  Exhibits 

2.5 and 2.6 display the allocations and risk contributions suggested by the data based on the 6-months 

rolling data13 respectively for all the allocation strategies under investigation.  By definition, the equally 

weighted portfolio displays equal allocations over the rolling periods.  However, the resulting risk 

contributions vary over these periods from a minimum of 6% (Australia) to a maximum of 50% (the UK).  

Even though risk contributions for the mean-variance, Ledoit and Wolf and the Bayes-Stein are similar, 

those of the minimum-variance, Bayes-Stein and the Resampling portfolios have marked differences.  

The weights for all the allocation methods besides the equally weighted all display varying allocations 

in different time periods showing that there is no stationarity of returns consistent with Stevenson 

(2001).  All these with the exception of risk parity, equally-weighted and resampling portfolios have 

corner solutions.  Compared to the mean-variance portfolio, all the regularised portfolios seem to show 

slightly less variation in allocations and can arguably be said to be more stable due to shrinkage and 

resampling.  The Bayes-Stein + Ledoit and Wolf combo does seem to provide an improvement, albeit it 

slight, on the Bayes Stein and Ledoit & Wolf portfolios as far as allocation is concerned.  Of the 

regularised portfolios, the resampling portfolio on many occasions displays more improvement in 

terms of allocation as it results in far no corner solutions.  This said, in about seven instances the 

allocation to the UK is less than 1%, but despite this, all the assets in this portfolio have allocations 

assigned to them.  By definition risk parity provide uniform (equal) risk contributions for the entire 

periods which result in the absence of corner  and therefore superior stability because there are no 

significant swings in allocations from period to period   The trend revealed in Exhibits 2.5 and 2.6 is 

consistent for all the portfolios in the other rolling periods investigated (see appendix A for the 

                                                 
12 In-sample looks at the performance that is based on results of the rolling portfolios from historical data. This provides 
suggestions (allocations) that can be used ex ante. 
13 Due to space the allocations and risk contributions for the other rolling periods are shown in appendix A. 
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allocations of the other the 1-month rolling periods. To save space other rolling periods have not been 

included but can be made available on request).  The question is what in-sample and out of sample 

performance do these allocations and risk contributions result in? The remainder of the study focuses 

on this performance. 
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(a) 

This chart (a) shows the allocations for the equally-weighted portfolio. As the name suggests, equal weights are assigned to all the markets in the portfolio in all the periods. 
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(b) 

Chart (b) presents the allocations for the minimum variance portfolio.  The allocations result in corner solutions in some instance.  Of the allocations to the US market, 100% is allocated to 
this market 8 per cent of the time.  While most of the allocation is assigned to Australia, there is no allocation assigned to France, the UK and the US in 9 per cent, 58 per cent and 30 per 
cent of the out of the 53 rolling periods. 
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(c) 

Chat (c) shows the mean-variance portfolio. Because this portfolio aims to maximise the Sharpe ratio, most of the weights are allocated to high return assets in the portfolio.  This frequently 
results in corner solutions, e.g.,  in 2 instances 100% is allocated to Australia, and in 4 instances 100% is allocated to the US.  In 15%, 19% and 32% of the instances no weights are allocated 
to Australia, France and the US respectively. While for the UK, in 72% of the time, there is no allocation assigned to this market. 
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(d) 

Chart (d) represents the allocation for the Bayes-Stein (return vector shrinkage) portfolio. Like the minimum-variance and mean-variance portfolios, this results in the allocation of most of 
the weights in a few of the assets in the portfolio. For example, in 4 instances 100% of the weights are assigned to the US.  Australia, France, the UK and the US get no allocations in about 
9%, 13%, 70% and 26% of the instances. 
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(e) 

Chart (e) presents the allocation for the Ledoit and Wolf (covariance shrinkage) portfolio. This portfolio has more instances where 100% is assigned to one asset, i.e. 5 and 4 instances where 
100% is assigned to the Australian and US markets respectively. Concerning the proportion of time when no allocation was assigned to an asset this represents 17%, 28%, 58% and 25% for 
Australia, France, the UK and the US respectively. 
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(f) 

Chart (f) shows the allocation for the Bayes-Stein and Ledoit & Wolf portfolio. Even if the portfolio also presents some corner solution like the above portfolios, the proportion of those 
assets with no allocations is less i.e., 9%, 25%, 40% and 11% respectively. 
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(g) 

Chart (g) shows the Resampling portfolio allocations. Unlike most of the portfolios, all the assets in the portfolios have weights assigned to them.  The weights range from 0.09% to about 
83%. This is because the weights are an average of the weights one hundred portfolios based on returns resampled one hundred times. 
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(h) 

Chart (h) presents the risk parity portfolio allocations. Like the equally-weighted and resampling portfolios, all the assets in the portfolio have assigned weights, and the portfolio presents 
no corner solutions with weights range from about 11% to 50%. Unlike the other portfolio there rebalanced weights for each of the periods are not significant.  

Exhibit 2.5: Charts for 6-months rolling portfolio allocations 
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(i) 

Chart (i) displays the equally-weighted risk contributions and shows that despite equal weights allocated to the assets in this portfolio, the risk contributions are not equal as they range 
from about 6% to 50%. On average the UK contributes the most risk to the portfolio whereas Australia has the least contribution. 
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(ii) 

Chart (ii) shows that the for minimum variance portfolio ranges from 0% to 91%.  Only the assets with weight allocations contribute to the risk of the portfolio, and in some instances, there 
is risk concentration where most of the risk contribution comes from two or three of the four assets in the portfolio.  On average Australia and the UK have the most and least risk 
contributions respectively. 
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(iii) 

Chart (iii) presents the mean-variance risk contributions.  Due to corner solutions in the allocations, this portfolio presents some instances where there is risk concentration such that 100% 
of the risk contribution emanates from one asset in the portfolio namely either Australia or the US market. Similar to the minimum variance portfolio, only assets with weight allocations 
contribute to the risk of the portfolio. 
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(iv) 

Chart (iv) shows the risk contributions for the Bayes-Stein portfolio.  For this portfolio also, only the assets with allocations assigned to them contribute to the risk.  On average, Australia 
and the UK account for the most and least risk contributions while France and the US have similar average contributions.    
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(v) 

Chart (v) presents the Ledoit and Wolf portfolio risk contributions.  Similar to the mean-variance portfolio, this portfolio also has risk concentration is only one asset as 100% has been 
assigned to either the Australian or the US markets.  On average the distribution of the risk contribution is similar to minimum-variance, mean-variance and the Bayes-Stein portfolios. 
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(vi) 

Chart (vi) displays the risk contributions for the Bayes-Stein and Ledoit & Wolf portfolio.  While this portfolio also has some assets contributing 100% to the portfolio risk, the instances of 
one asset contributing no risk are less compared to the Bayes-Stein, minimum variance, mean-variance, and Ledoit andWolf portfolios. 
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(vii) 

Chart (vii) shows the resampled portfolio risk contributions.  Like the equally-weighted and risk parity portfolios, all the assets have weights allocated to them.  However, some of the 
allocations for this portfolio are very small, in the same token, the risk contributions in some instances are minimal starting from as miniature as 0.8%.  These small risk contributions mainly 
come from the UK and the US markets. 
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(viii) 

Chart (viii) displays the risk contribution for the risk parity portfolio.  By definition, this portfolio assigns weights such that each asset contributes equally to the portfolio this.  For this 
reason, the risk parity portfolio has equal risk contributions. 

Exhibit 2.6: Charts for the 6-months rolling portfolio risk contributions 
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3.3.1. In-sample and out-of-sample performance 

The in-sample performance is based on the estimated portfolio parameters using the past 24 months.  

So for the 6 months rolling period the historical 24-months’ returns are used to determine the ex-ante 

allocations.  These allocations when applied to determine the parameters based on this first 6-months 

holding period form the in-sample portfolio return, risk and risk contribution.  Consistent with Thomson 

(1997), these allocations (ex-ante) so determined are then applied to the actual performance achieved 

after the second 6 months holding period (or 1 month, 3 months, 12 months and 24 months depending 

on what the rolling/holding period is) in order to back-test the performance.  The purpose of this is to 

compare whether this performance would have been better than the actual (ex-post) had those 

allocations been applied at the beginning of that rolling period (the second period).  The out-of-sample 

performance is, therefore, that which is achieved by applying the ex-ante allocations to the ex-post 

actual returns.  This is done for all the periods within the various rebalancing durations (i.e., 1 month, 

3 months, 12 months and 24 months).  The problem with the out-of-sample analysis is that weights are 

assumed to be constant in between the rebalancing periods, but in reality, these will change to reflect 

changes in prices over the period.  So in practice one is not rebalancing from the position that the 

portfolio was at the start of the period, instead the rebalancing is done from where the portfolio has 

changed to.  The downside with this, especially in short rebalancing periods, is that there is a danger of 

selling winners and ending up buying losers.  This goes against the principles of momentum as the 

winners are the assets that should be held on to so that they continue to outperform.  Exhibits 2.7 

through to 2.9 display the in-sample and out-of-sample performance distributions for all the rolling 

periods. 
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(a) 

 

(b) 

 

(c)  

 

(d) 

 

(e) 

 

Exhibit 2.7: Distribution of in-sample returns in different rolling periods 
This exhibit shows the in-sample performance distribution for the different portfolios in all the rolling periods under 
investigation.  The returns for all the rolling periods seem to be skewed to the left with the 1-month, 3-months, 6-months and 
the 12-months rolling periods having similar mean and median returns while the those for the 24-months rolling periods for 
the mean-variance, Ledoit and Wolf, and the Resampling portfolios are higher.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 
Exhibit 2.8 Distribution of in-sample Sharpe ratios in different rolling periods 

This exhibit presents the distribution for the in-sample Sharpe ratios for all the portfolios in the different rolling periods.  With 
the exception of the 24-months rolling period, the pattern of the distributions of the Sharpe ratios is similar with the equally-
weighted, minimum variance and risk parity portfolios having a slight left skew while the other portfolios are skewed to the 
right.  The portfolios in the 24-months rolling period on the hand all have positive skews.  Generally, the median values for 
the Sharpe ratios have dropped in the 24-months rolling period. 
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(a) 

 

(b) 

 

(c)  

 

(d) 

 

(e) 

 

Exhibit 2.9: Distribution of out-of-sample Sharpe Ratios in different rolling periods  
Exhibit 2.9 shows the out-of-sample distribution of Sharpe ratios for the different rolling periods of the portfolios under 
investigations.  Overall, there is no marked difference in the distributions amongst the assets in 1-month, 3-months and 6 
months rolling periods.  However, all the assets in the 12-months rolling period have positive skews while only the mean-
variance, Ledoit and Wolf, the resampling portfolio have positive skews in the 24-months rolling periods and the rest have 
negative skews.  

 
 

The in-sample performance reveals that the Ledoit and Wolf; mean-variance optimisation and 

resampling portfolio are consistently the top three achievers in terms of the average returns in all the 

rolling periods.  On the other hand, overall, the risk parity, equally weighted and the minimum variance 

portfolios are consistently in the 6th, 7th and 8th positions respectively in all the rolling periods.  This is 
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slightly at variance with the theory which states that the risk parity is expected to fall in between the 

equally-weighted and minimum-variance portfolio (Maillard, Roncalli and Teiletche, 2010, Roncalli, 

2014).  However, there is consistency with the theory with regards to the in-sample Sharpe ratios which 

4 out 5 times shows the risk parity portfolio lie in between the equally-weighted and minimum-variance 

portfolio.  Again the first three positions in terms of the mean Sharpe ratio are taken by the mean-

variance, Ledoit and Wolf and the resampling portfolios; however, surprisingly the Bayes-Steins 

portfolio reveals the highest positive skew.  The performance of the Bayes-Stein and Ledoit & Wolf 

combo seems to deteriorate the long the rebalancing period. 

 

The Sharpe ratio out-of-sample performance is varied.  The performance of the risk parity portfolio in 

terms of the Sharpe ratio mean value is consistently good compared to its in-sample performance.  The 

risk parity Sharpe ratio mean value is the highest, second and third for the 24-months, 6-months, and 

1-month rolling periods respectively while it is fourth place in the 3-months and 12-months rolling 

periods.  The risk parity performance is more stable and is consistent with the literature as observed 

by Maillard, Roncalli and Teiletche (2010), Roncalli (2014) and Qian (2005, 2011).  The equally-weighted 

portfolio performance reveals surprisingly good performance as it is in the first position for both the 3-

months and 6-months rolling periods and third position in the 24-months rolling period.  This 

performance is consistent with DeMiguel, Garlappi, and Uppal (2009) and Cheng and Liang (2000) who 

argue that the equally-weighted portfolio is not necessarily inferior to the mean-variance and minimum 

variance portfolios as they are not consistently better out-of-sample.  In this research, the equally-

weighted portfolio and the risk parity portfolios have consistently outperformed the mean-variance 

out-of-sample for all the rolling periods.  The minimum-variance portfolio’s out of sample performance 

is also very good as it is the highest on two occasions, second also on two occasion and third and sixth 

on the other occasions.  This is because the minimum-variance allocates most of its weight to low 

volatility assets which outperform the market in some instances as observed by Clarke, de Silva and 

Thorley (2011) and Ang et al. (2006).  Of the regularised portfolio the Bayes-Steins and the Bayes-Steins 

and Ledoit and Wolf portfolios have performed better out-of-sample followed by the resampling 

portfolio and with the Ledoit and Wolf portfolio giving the worst performance of all the portfolios under 

investigation. 
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Because the purpose of this study is to test the performance of risk parity in public real estate compared 

to other allocation strategies, the study now evaluates how many times each allocation method has 

outperformed the others both in-sample and out-of-sample and the results are displayed in Exhibit 

2.1014.  Again only the portfolios for the 6-months rolling period have been shown (see Appendix B for 

the 1-month rolling period. To save space other rolling periods have not been included but can be made 

available on request).  Even if the risk parity has not done well in terms of average in-sample returns 

Exhibit 2.10 (a) shows that has outperformed in quite a lot of instances.  However, the in-sample Sharpe 

ratio performance (Exhibit 2.10(b)), results in more outperformance of the risk parity against the 

equally-weighted portfolio and less that of the minimum variance portfolio.  This is consistent with 

Moss et al (2017) that showed that the minimum-variance outperformed the risk parity portfolio in 

general.  As expected, because the objective of the mean-variance portfolio is to maximise the Sharpe 

ratio, the risk parity portfolio did not outperform it in-sample.  Exhibit 2.10(c) indicates that in 

comparison to the in-sample performance, the out-of-sample performance for risk parity shows a 

significant improvement in terms of the number of times it is outperforming other portfolios, with the 

exception of the equally-weighted portfolio.  The other strategies also reveal some outperformance 

when compared to competitive strategies supporting the earlier findings of DeMiguel, Garlappi and 

Uppal (2009) of portfolio strategies not being consistently better out of sample.  What is evident is that 

the performance whether in-sample or out-of-sample is different for different rolling periods.  The 

question is whether the performance of the various portfolios is statistically significant. This is explored 

next through statistical inference by use of hypotheses tests. 

 

(a) In sample: Number of times of return outperformance  (out of 53) 

                                                 
14 Note that the portfolios in the columns are compared with those in the rows. For instance the risk parity portfolio in the 
first column is compared against all the other portfolios and so on. 

Risk 

Parity 

Equally 

Weighted 

Minimum 

Variance 

Mean 

Variance 

Bayes 

Stein (BS)

Ledoit & 

Wolf (LW)

BS + LW

Risk Parity 

Equally Weighted 24

Minimum Variance 27 28

Mean Variance 6 10 0

Bayes Stein (BS) 15 20 23 44

Ledoit & Wolf (LW) 3 7 1 8 7

BS + LW 16 18 22 44 11 46

Resampling 3 9 4 38 8 49 9
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(b) In-sample: Number of times of Sharpe ratio outperformance (out of 53) 

 

 

(c) Out-of-sample: Number of times of returns outperformance (out of 52) 

Exhibit 2.10: A comparison of the number of outperformance of portfolios 
This exhibit compares the performance of the portfolios in relation to the others. It illustrates the number of times the 
portfolios in the top row have outperformed the portfolios in the left-most column.  For example, the risk parity portfolio in 
the top is compared to all the other portfolios being examined, i.e. from the equally-weighted to the resampling portfolio.  
Next, the equally weighted is compared to the remaining portfolios, i.e., minimum-variance to the resampling portfolio and 
so on. 

 

2.5.4. The robustness of the risk parity approach 

This section explores how robust the performance of the risk parity approach by undertaking some 

statistical tests to ascertain the statistical significance of the results. 

  

Risk 

Parity 

Equally 

Weighted 

Minimum 

Variance 

Mean 

Variance 

Bayes 

Stein (BS)

Ledoit & 

Wolf (LW)

BS + LW

Risk Parity 

Equally Weighted 40

Minimum Variance 17 0

Mean Variance 0 15 0

Bayes Stein (BS) 0 0 0 0

Ledoit & Wolf (LW) 1 0 21 42 0

BS + LW 5 1 11 30 15 0

Resampling 1 0 28 49 42 44 0

Risk 

Parity 

Equally 

Weighted 

Minimum 

Variance 

Mean 

Variance 

Bayes 

Stein (BS)

Ledoit & 

Wolf (LW)

BS + LW

Risk Parity 

Equally Weighted 23

Minimum Variance 20 19

Mean Variance 22 23 24

Bayes Stein (BS) 20 19 22 18

Ledoit & Wolf (LW) 25 24 25 24 25

BS + LW 18 17 21 16 19 13

Resampling 19 21 23 17 22 17 31
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Hypothesis testing 

The different in-sample and out-of-sample performances have been shown, but this has to be formally 

compared to see if they are statistically different.  In order to do this, two tests have been undertaken 

both of which test the equality of the Sharpe ratios.  Formally stated the hypothesis is  

Null Hypothesis, 𝐻0: 𝑆ℎ𝑎 − 𝑆ℎ𝑏 = 0 

Alternative hypothesis, 𝐻1: 𝑆ℎ𝑎 − 𝑆ℎ𝑏 ≠ 0 

where 𝑆ℎ is the Sharpe ratio. 

 

The first test is the Jobson and Korkie (1981) as corrected by Memmel (2003).  The Jobson and Korkie 

(1981) test has been used several times in real estate studies (Stevenson (2001), Stevenson (2002), and 

Lee and Stevenson (2005).  However, this test was later corrected by Memmel (2003) who found a 

typographical error that leads to the frequent rejection of the null hypothesis.  The corrected test 

statistic for Jobson and Korkie by Memmel (2003) is, therefore: 

 

𝑡 =
𝜎𝑗𝜇𝑖 − 𝜎𝑖𝜇𝑗

√𝜃
                                                                   (2.30) 

and  

 

𝜃 =
1

𝑇
[2𝜎𝑖

2𝜎𝑗
2 − 2𝜎𝑖𝜎𝑗𝜎𝑖𝑗 +

1

2
𝜇𝑖
2𝜎𝑗
2 +
1

2
𝜇𝑗
2𝜎𝑖
2 −
𝜇𝑖𝜇𝑗

𝜎𝑖𝜎𝑗
𝜎𝑖𝑗
2] 

where 𝜇𝑖  and 𝜇𝑗  are the mean returns of portfolios 𝑖 and 𝑗 respectively; 𝜎𝑖, 𝜎𝑗 are their standard 

deviations and , 𝜎𝑖𝑗is the covariance between portfolio 𝑖and 𝑗. This test assumes normally distributed 

data (Jobson and Korkie (1981).  However, Jobson and Korkie (1981), Jorion (1985) and Stevenson 

(2002) point out the low power of the Jobson and Korkie test.  Ledoit and Wolf (2008) go further and 

argue that this test is not valid for returns that are not normally distributed or are correlated over time 

and that it therefore should not be used because these traits are fairly widespread in financial returns.  

In this light, they proposed another test that also examines the difference of Sharpe ratios but is instead 

based on a studentised time series bootstrap.  It uses resampling from the observed data and they is 

argue that it is more robust (Ledoit and Wolf, 2008).  Formally, they show that the two-sided 

distribution function of the studentised statistic is approximated via the bootstrap as: 
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𝐿 (
|∆̂ − ∆|

𝑠(∆̂)
) ≈ 𝐿 (

|∆̂∗ − ∆̂|

𝑠(∆̂∗)
)                                                   (2.31) 

 

Where ∆ is the true difference between Sharpe ratios, ∆̂ is the estimated difference obtained from the 

original data, 𝑠(∆̂) is the standard error for ∆̂, ∆̂∗is the estimated difference and 𝑠(∆̂∗) is a standard 

error for ∆̂∗ both computed from the boostrap data.  𝐿() is the distribution of the random variable (𝑋). 

𝑠(∆̂) = √
∇′𝑓(𝑣)�̂�∇𝑓(𝑣)

𝑇
 

Where �̂� is a consistent estimator of 𝛹, the unknown symmetric positive semi-definite matrix (the 

covariance matrix).  Please see Ledoit and Wolf (2008) for a detailed description of the test.  Ledoit and 

Wolf (2008) admit that the test is complex to implement and offer the corresponding code which can 

freely be accessed15.  

 

For this study, this test was implemented by undertaking 5000 iterations to obtain the test statistic. For 

both the Jobson- Korkie and Ledoit-Wolf tests, the test statistics obtained are examined using the t-

test table at 10%, 5%, and 1% significant levels and the results are presented in Exhibits 3.10 and 3.13 

. Again, only the results for the 6-months rolling periods are displayed and the results for the the other 

rolling periods are in Appendix C (To save space other rolling periods have not been included but can 

be made available on request). 

 

Exhibits 2.11 and 2.12 display the in-sample results of the Jobson-Korkie and Ledoit–Wolf tests 

respectively for equal Sharpe ratios. For both tests, there is strong evidence of statistical differences in 

Sharpe ratios where the most significant is at 1% level.  The risk parity portfolio does show a significant 

difference in performance at all the significant levels i.e., 10%, 5% and 1% particularly when the Jobson–

Korkie test is used for the rolling periods that are less than 12 months.  This implies that Ho should be 

rejected in most of the instances as there is strong evidence of statistically significant differences in the 

Sharpe ratios.  The exception is for the rolling periods less than 12-months between the risk parity and 

the equally weighted portfolios.  Although the Ledoit-Wolf test suggests that Ho is rejected in most of 

                                                 
15 Its available at  http://www.econ.uzh.ch/faculty/wolf/publications.html  

http://www.econ.uzh.ch/faculty/wolf/publications.html
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the instances, the number of rejections is far less than that of the Jobson-Korkie test.  With regards to 

the risk parity, there is overwhelming statistical evidence of differences in Sharpe ratios for the rolling 

periods of 6-months or more.  In the 1-month and 3-months rolling periods, however, the evidence is 

leaning towards failing to reject Ho when risk parity is compared to the equally weighted portfolio for 

both periods.  This is in addition to the minimum-variance for the 1-month rolling period and the mean-

variance and resampling portfolios for the 3-months rolling periods (Please see appendix C for the other 

rolling periods (To save space other rolling periods have not been included but can be made available 

on request)).   

 
Exhibit 2.1:  In-sample Jobson - Korkie Hypothesis tests for the 6-months rolling period 

 
Exhibit 2.12: In-Sample Ledoit - Wolf Robust Hypothesis tests for the 6-months rolling period 

 
* Significant at the 10% level 
** Significant at the 5% level;  
*** Significant at the 1% level 

 
Exhibits 2.13 and 2.14 present the results of the portfolios out-of-sample performance using the same 

two tests.  The Jobson-Korkie test shows very little evidence for rejecting Ho for the shorter rolling 

periods when the risk parity portfolio is compared to other portfolios.  However, for the 12 and 24 

months rolling period there are more significant differences in the Sharpe ratios in the risk parity 

portfolio.  The trend is similar when the other portfolios’ Sharpe ratios are compared with each other.  

The results for the Ledoit-Wolf Robust test display statistical significance for the risk parity portfolio in 

relation to the resampling portfolio in the 1-month rolling period,  the mean-variance in the 3-months 

rolling period, and  the Ledoit and Wolf and mean-variance portfolios in the 24 months rolling periods 

(See Appendix C (to save space other rolling periods have not been included but can be made available 

Equally 

Weighted 

Minimum 

Variance 

Mean Variance Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling

Equally Weighted 

Minimum Variance -1.276
Mean Variance -4.471*** -3.178***
Bayes Stein (BS) -2.444** 0.571 4.552***
Ledoit & Wolf (LW ) -4.216*** -2.947*** 0.361 -4.204***
BS + LW -2.389** 0.477 4.601*** -1.03 4.242***
Resampling -4.029*** -2.287** 4.075*** -4.141*** 3.459*** -4.213***

Risk Parity 0.04 1.864* 4.427*** 2.408** 4.139*** 2.383** 4.103***

Equally 

Weighted 

Minimum 

Variance 

Mean Variance Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling

Equally Weighted 

Minimum Variance 1.550
Mean Variance 6.531*** 1.204
Bayes Stein (BS) 1.079 5.704*** 1.889*
Ledoit & Wolf (LW ) 3.196*** 0.813 2.994*** 2.750***
BS + LW 3.686*** 6.321*** 3.029*** 2.597** 2.651***
Resampling 13.439*** 0.770 1.841* 2.761*** 1.713* 4.270***

Risk Parity 2.818*** 2.327** 2.972*** 1.894* 3.187*** 2.062** 8.526***
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on request)).  For the other portfolios and rolling periods the test fails to reject Ho with regards to the 

risk parity versus the other portfolios.  When it comes to comparing the other portfolios with each 

other, the equally-weighted and the minimum-variance portfolio to a less extent display significant 

differences when compared to the others.  

 

 

Exhibit 2.13: Out-of-Sample Jobson - Korkie Hypothesis tests for the 6-months rolling period 
 

 
Exhibit 2.14: Out-of-Sample Ledoit - Wolf  Robust Hypothesis tests for the 6-months rolling period 

   * Significant at the 10% level 
 ** Significant at the 5% level;  
*** Significant at the 1% level 

 

Further investigation was on the performance is done by considering the effect of incorporating 

transaction costs of 2% (Stevenson, 2001) for each of the rolling periods used for all the portfolios. 

Taking the 6 months rolling period, the transaction costs are taken after the portfolio has been 

rebalanced and was compared to the allocations in the previous 6 months.  The 2% transaction cost 

was then applied to the absolute changes in the allocations, and the out-of-sample returns then 

adjusted accordingly.  This was done for all the estimation periods.  This study has also calculated the 

actual monetary transaction costs by using a notional amount of $50 million.  The method is the same 

as when calculating transaction cost-adjusted returns (described above) but the absolute differences 

in the allocations and the transaction costs are applied to the notional amount.  Exhibits 2.15 and 2.16 

display the results of the Jobson-Korkie and Ledoit-Wolf approach when transaction costs are 

incorporated.  The Jobson-Korkie results show that there are significant differences between risk parity 

and other portfolios for longer rolling periods (above 6-months rolling periods).  However, while the 

Equally 

Weighted 

Minimum 

Variance 

Mean Variance Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling

Equally Weighted 

Minimum Variance .8921
Mean Variance .9337** .4628
Bayes Stein (BS) .0536*** -.4831 -.6331
Ledoit & Wolf (LW ) .868*** .367*** -.4895 .5781
BS + LW .0075** -.5169 -.6591** -.3412 -.6081
Resampling .7879 -.1735 -.8498 .4033 -.7143 .4424

Risk Parity .1925 -1.1552 -.9643 -.0136** -.8841 .0329** -.8592

Equally 

Weighted 

Minimum 

Variance 

Mean Variance Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling

Equally Weighted 

Minimum Variance 1.170
Mean Variance 1.810* 0.520
Bayes Stein (BS) 0.203 1.609 1.750*
Ledoit & Wolf (LW ) 0.128 1.004 1.884* 0.031
BS + LW 1.658 0.331 0.742 1.374 1.756*
Resampling 0.018 1.004 1.836* 0.072 0.201 1.745*

Risk Parity 1.364 0.165 1.392 1.492 1.017 0.945 1.216
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Ledoit-Wolf test also provides strong evidence for the rejection of Ho, this is across the different rolling 

periods apart from the 12 months rolling period which has half of the instances where the null 

hypothesis cannot be rejected.  What is also noticeable is the significant difference in Sharpe ratios of 

the resampling portfolio in comparison to all the other portfolios.  The equally weighted portfolio also 

reveals a strong case for the rejection of the null hypothesis; however, this may not be the case in 

practice as explained later.  Considering the transaction costs in monetary terms could shed more light 

on the results of the preceding test and is illustrated in the distributions in Exhibit 2.17. 

 

 
Exhibit 2.15: Out-of-sample Jobson - Korkie Hypothesis tests with transaction costs for 6-months rolling period 

 

 
Exhibit 2.16: Out-of-sample Ledoit - Wolf  Robust Hypothesis tests with transaction costs for 6-months rolling period 

 
   * Significant at the 10% level 
 ** Significant at the 5% level;  
*** Significant at the 1% level 

 

 

Equally 

Weighted 

Minimum 

Variance 

Mean Variance Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling

Equally Weighted 

Minimum Variance 3.6717
Mean Variance 3.5988** 1.6922
Bayes Stein (BS) 3.2528*** .6779 -1.747
Ledoit & Wolf (LW ) 3.7175*** 1.821*** .7401 1.8313
BS + LW 3.6412** 1.3577 -1.0554** 2.3972 -1.2889
Resampling 6.3531 3.3568 .6236 2.1666 .4095 1.6271

Risk Parity 3.3715 -3.5037 -3.2265 -2.7786** -3.332 -3.2403** -6.064

Equally 

Weighted 

Minimum 

Variance 

Mean Variance Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling

Equally Weighted 

Minimum Variance 2.942***
Mean Variance 3.477*** 2.914***
Bayes Stein (BS) 2.769*** 2.518** 3.155***
Ledoit & Wolf (LW ) 2.815*** 0.821 2.591** 2.373**
BS + LW 3.327*** 2.690*** 1.043 3.114*** 2.557**
Resampling 3.047*** 1.683* 1.690* 2.580** 3.047*** 1.900*

Risk Parity 4.067*** 3.528*** 0.913 3.733*** 2.297** 0.575 1.890*
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(a) 

 

(b) 

 

(c)  

 

(d) 

 

(e) 

 

Exhibit 2.17: Distribution of out-of-sample transaction costs in different rolling periods 
This exhibit presents the distribution of transactions costs in US dollar for all the portfolios under investigation in different 
rolling periods.  The transaction costs are based on a notional amount of $50million.  Most of the portfolios in all the rolling 
periods apart from the 24-months rolling period show positively skewed distributions meaning that the number of transaction 
costs higher than the mean values is more than those that are lower than the mean transaction costs. 

 

Because the transaction costs in this study have been calculated purely using the changes in allocation, 

the equally-weighted portfolio does not show any transaction costs.  This is unlikely to be the case in 

practice because the equally-weighted portfolio will also be subject to rebalancing as the portfolio 

value appreciates or depreciates due to the changes in price.  This will invariably require rebalancing to 

maintain equal weights (Stevenson, 2002).  What is discernible in the boxplots in Exhibit 2.17 the is that 
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on average the transaction costs for the risk parity portfolio are the consistently the lowest of compared 

to the all the other portfolios in all the rolling periods.  The risk parity transaction costs are clustered 

together and do not show much variation, unlike the other portfolios. 

 

Furthermore, the low transaction costs for this portfolio is remarkable as even the highest transaction 

cost for the risk parity is lower than the mean value of each of the other assets and also the median 

value for all the other assets except for a few portfolios in the 1-month rolling period.  The low 

transaction costs for the risk parity can be attributed to the reasonably stable allocations as shown in 

Exhibit 2.5 (and Appendix A) compared to the other portfolios especially those with corner solutions.  

Overall, for shorter rolling periods, i.e. the mean values of the transaction costs are relatively low. This 

is because, in these periods, the swings in allocations for the other strategies that utilise optimisation 

(namely mean-variance; Bayes Stein; Ledoit and Wolf; and BS+LW) are minimal since the changes in 

returns would not have filtered through in the short term.  This is despite these optimised portfolios 

having corner solutions because in these periods the similar allocations are likely to be suggested for 

some time.  Conversely, with longer rolling periods, as the changes in the returns filter through so do 

the swings in the allocations, and this subsequently leads to an increase in the turnover which 

accordingly increases the transactions costs as presented in Exhibit 2.17 (c ) through (f).  On average, 

the resampled portfolio, on the other hand, seems to consistently have mean transaction costs that 

are rather high although these seem to reduce the more extended the rolling period and are finally 

dwarfed by those of the other portfolios.  

2.6 Conclusion 

This study set out to introduce a relatively new asset allocation method, risk parity, to real estate and 

examine its performance using the international real estate security markets, namely; Australia, France, 

the UK and the US. This was done by considering the ‘traditional’ allocation methods and also more 

contemporary methods that set out to solve the shortcoming of the well-known mean-variance 

optimisation based on modern portfolio theory.  While most of the allocation approaches are built 

around the expected returns, risk parity aims to create portfolios whose assets contribute equal risk to 

the total portfolio risk.  The results of the study were mixed. What came out was the diversification 

superiority of this asset allocation because it resulted in full allocations to all assets thereby helping to 

constrain a portfolio’s overexposure to risk from only a few assets.  This is not the case in other portfolio 

allocation methods examined because corner solutions are prevalent.  However, the average in-sample 
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performance was not as good considering that this allocation method underperformed against all the 

portfolio types based on international real estate securities.  However, the out-of-sample performance 

in terms of the average Sharpe ratio was good for the risk parity as it took the first, third and fourth 

positions in the rolling periods under investigation.  The regularisation based portfolios also performed 

very well with the Bayes-Stein portfolio leading the pack and followed mainly by the Bayes-Stein and 

resampled portfolio.  Conversely, the performance of the Ledoit and Wolf was not that impressive.  A 

“combo” of the two shrinkage approaches was created to form what was called the Bayes Stein + Ledoit 

and Wolf portfolio.  This produced a significant over the Lediot & Wolf portfolio and also the resampling 

portfolio and the traditional mean-variance in some instances on an out-of-sample basis. 

 

The hypothesis tests in the main revealed statistically significant differences between risk parity and 

other portfolios.  Again, this can be attributed to the characteristics of this portfolio since it sets out 

mainly to achieve diversification rather than higher performance.   

Transaction costs were also taken into consideration after portfolios are rebalanced and the risk parity 

portfolio resulted in an impressive performance when absolute transactions costs in dollars were 

considered as it gave significantly low transactions costs compared to all the other assets for all the 

rolling period under investigation.  

 

In conclusion, even if the average in-sample performance was not good, the out-of-sample 

performance was on the whole relatively, and therefore the study has established that the risk parity 

approach has a place in international real estate equities due to its diversification benefits. The most 

significant finding is the low transaction cost as a consequence of using the risk parity approach 

compared to the other asset allocation strategies that were investigated in the study.  This is mainly as 

a result of the relatively stable allocations compared to other methods of asset allocation, particularly 

those based on optimisation.  Arguably, risk parity is also much easier to implement compared to other 

regularisation portfolios like Bayes-Stein, Ledoit and Wolf, and resampling and can help reduce the 

estimation risk issue that is prevalent in mean-variance optimisation.   

The author takes cognisance that risk parity is not a magic bullet and its implementation, whether 

within real estate or mainstream finance is dependent on the objectives of the investor, if returns are 

the primary goal then probably this may not be the allocation method of choice.  Nevertheless, if 

diversification is what is sought then risk parity can be the asset allocation method of choice especially 
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for medium to long term holding periods.  Additionally, risk parity can also be of benefit if low 

transaction costs are important.  The implication of the study is that asset allocation methods in real 

estate should not be restricted to the traditional equally-weighted, minimum-variance and mean-

variance but also regularisation methods can be taken into consideration, and risk parity can be applied 

to international real estate securities investment to help and this can help manage risk through true 

diversification where there is no risk concentration as allocations are made in such a way that there is 

equal risk distribution among the assets in a portfolio.  The equal distribution of risk in the portfolio 

circumvents corner solutions and the findings of this study has shown that this can lead to the 

achievement of good out-of-sample performance and low transaction cost. 

 

It is also recognised that the choice of data may not have brought out the full potential of the different 

allocation methods examined.  This is because the data was restricted to real estate securities as this 

was the focus of the study and other asset classes were therefore outside the scope of the study.  It is 

possible that including other asset classes could have yielded different results.   

 

The contribution of this study is to apply risk parity to international real estate securities by comparing 

it to traditional asset allocation methods as well as other methods based on regularisation techniques.  

Furthermore, the study is undertaken by considering both in-sample and out-of-sample performance 

in for different rolling periods as well as taking transaction costs into considerations. 

 

 

The research in risk parity brought about more awareness of volatility in that it can also be measured 

using Value at Risk and Expected Shortfall. This, therefore, paves the way for the next chapter which 

investigates market risk modelling. 
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CHAPTER 3 

REAL ESTATE MARKET RISK MODELLING 

3.1.  Introduction 

The global financial crisis towards the end of the last decade, coupled with the European Sovereign 

crisis and more recently Brexit has seen an increased interest in the role of risk management in the 

mainstream financial investment market.  Among other things, the measurement and management of 

market risk, credit risk, and operational risk have become more pronounced than ever before.  Value-

at-risk (VaR), a tool which assesses the maximum possible loss from an investment, assuming a given 

confidence level, is widely used in the investment world to measure market and credit risk.  This 

measure has however come under constant criticism as it only considers the maximum loss for that 

confidence level and ignores any losses beyond that threshold, which could arise from extreme events.  

Secondly, VaR assumes a normal distribution of returns, and yet this is not the case with most financial 

returns, which have the added complexity of being susceptible to the phenomenon of ‘fat tails’.  Thus, 

the credibility of VaR seems to be losing ground.  Though derived from the principles of VaR, expected 

shortfall (ES) has been forwarded as an alternative proposition due to its ability to overcome some of 

the shortcomings of VaR, particularly when it comes to dealing with tail risk.  To this effect, the ES has 

been presented as a tool for market risk regulation, replacing VaR in the banking sector as proposed by 

the Basel Committee on Banking Supervision.  This said, the ES has its challenges especially because it 

cannot be subjected to back-testing due to its non-listable attribute.  Furthermore, ES is also said to be 

quite sensitive to extreme values. 

In the real estate market, while VaR has been the subject of most research when it comes to market 

risk while interest in research on expected shortfall in real estate is also increasing.  This study, 

therefore, investigates market risk modelling for real estate and assess whether and/or the extent to 

which the expected shortfall model offers a better alternative to VaR in terms of measuring market 

risk.  Public real estate has been chosen as the focus of the study because of the availability of frequent 

transaction price data which makes it more amenable to the application of VaR compared to private 

real estate. 
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The measurement and management of risk have become more pronounced than ever before.  The 

main categories of risk assets and portfolios can be exposed to are market, liquidity and credit risk. 

These categories of risk are examined below. 

 

3.1.1. Market risk 

Market risk is associated with the risk emanating from the changes in the level or volatility of market 

prices.  The assessment can be absolute in currency form, by concentrating on the volatility of the total 

return;or relative by expressing it to a benchmark thus quantifying risk by examining the deviation from 

the index or tracking error (Jorion, 2007).  Market risk is classified as directional and nondirectional.  

Directional risk relates to exposures to the direction of movements in financial variables, like share 

prices, interest rates, exchange rates, and commodity prices.  The remaining risk is nondirectional, 

consisting of nonlinear exposures to hedged positions or volatilities (Jorion, 2007).  

3.1.2. Liquidity risk  

Liquidity risk complements market risk by determining the additional loss involved if there is a rapid 

change in a position.  Nonetheless, it is distinct from market risk because it represents a temporary 

distortion due to transaction pressure (Sheppard 2013).  Jorion (2007) observes that liquidity risk is 

typically treated separately from other risks.  It is categorised as asset liquidity risk and funding liquidity 

risk.  The former, also referred to as market/product-liquidity, arises when the size of a position relative 

to the usual trading lots results in a failure of transactions to be achieved at normal market prices.  

Prevailing market conditions will have an impact on liquidity risk for different assets over different 

periods.  The bigger the market of an asset the more likely it will be able to be liquidated with ease 

without substantial price impacts.  Examples of such assets are the major currencies, Treasury bonds 

and large companies (Jorion, 2007 and Jager, 2015).  This is unlike smaller companies or exotic ‘Over 

the Counter’ (OTC) derivatives contracts where prices are easily affected by any transaction and 

liquidating them takes a longer time.  In VaR and ES, liquidity risk can be factored loosely by a 

parameter-time horizon H, referred to as the liquidity or holding period (Jager 2013). The other 

category of liquidity risk, funding liquidity risk also called cash flow risk is concerned with the inability 

to meet payments obligations, which may force early liquidation and turning “paper” losses into 

realised losses. 
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3.1.3. Credit risk 

Credit risk also referred to as default risk arising due to the inability or unwillingness of counterparties 

to fulfil their contractual obligations (Jorion 2007) for example repayment of credit, loans or mortgages. 

 

3.2 Value at Risk  

This research focuses on the uncertainty of future prices of an asset or portfolio and will consequently 

concentrate on market risk (the other risk classes are out of this study’s scope). 

 

Financial tragedies have led to a rise in the need for market risk analysis.  This is particularly true 

following the global financial crisis of 2007/8 coupled with the European Sovereign crisis and more 

recently Brexit.  In order to undertake this analysis, there is a need for the use of some risk measures 

to assess this market risk.  Emma et al. (2013) define risk measures as tools that map loss distributions 

or random variables to capital amounts.  Probability distributions are a way of measuring this risk, but 

an alternative to this involves the use of a single number related to a capital amount.  The common 

known risk measure of market risk is Value-at-Risk (VaR). 

 

VaR is defined as an estimate of maximum potential loss to be expected over a given period a certain 

percentage of the time (Beder, 1995). In other words, it is the loss that one is fairly sure, with a fixed 

probability (normally between 90% and 99%), will not be exceeded if the current asset or portfolio is 

held over some period of time (Alexander, 2008(d) and Sheppard 2013).  Alternatively, significant levels 

are used, denoting the probability of the losses exceeding the VaR.  For example, a 5% daily VaR means 

that for a given period it is anticipated that 5 per cent of the time the loss will be the VaR or more.  The 

implication is that one day in every twenty days, the asset or portfolio will lose VaR or more.  

Consequently, in a given period, VaR can also be viewed as the minimum potential loss that a portfolio 

can suffer in the 5% worst case (Acerbi et al., 2001).  An alternative approach is asking “What 

percentage of the value of the investment is at risk” (Szegö, 2005) given a certain probability (i.e., 5% 

in this case).  As can be seen from the preceding, VaR is concerned with loses, unlike the variance and 

standard deviation which consider both the upside and downside risk. 
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From the above definitions, it is discernible that VaR is contingent on a significant level or level of 

confidence chosen in advance by a user as manifested in the probabilities which it is based on.  In spite 

of this, the selection of the confidence interval or probability is subjective implying that VaR may not 

be relied on with certainty (Choudhry, 2013). This significant level denoted by (𝛼) (or the confidence 

level denoted by (1 − 𝛼)) is based on the user’s attitude to risk.  The risk attitude is inversely (directly) 

proportional to the significant level (confidence level).  Therefore, the higher the user’s risk aversion, 

the lower the significance level and the higher the confidence level thus employed.  Because VaR 

measures the volatility of asset prices, which in turn is directly proportional to the probability of loss, a 

high volatility therefore results in a high VaR figure. 

 

A formal definition of VaR as given by Sheppard (2013) is “the 𝛼 VaR of a portfolio [or asset] is the 

largest number such that the probability that the loss in portfolio value over some period of time is 

greater than the VaR is 𝛼” i.e.  

Pr (𝑅𝑡 < −𝑉𝑎𝑅) = 𝛼      (3.1) 

Another way this can be written is: 

𝑉𝑎𝑅𝛼(𝑋) = sup {𝑥|𝑃[𝑋 ≥ 𝑥] >  𝛼}     (3.2) 

Where sup {𝑥|𝐴} is the upper limit of 𝑥 given event A, so sup {𝑥|𝑃[𝑋 ≥ 𝑥] >  𝛼} indicates the upper 

100α percentile of loss distribution (Yamai and Yoshiba, 2005).  This definition can be applied to both 

discrete and continuous loss distributions.  For returns, this can be simplified below 

𝑉𝑎𝑅𝛼 = Φ
−1(1 − 𝛼)𝜎 − 𝜇     (3.3) 

Where (1 − 𝛼) is the confidence level,  Φ−1 is the inverse of the standard normal cumulative 

distribution and 𝜇 is the mean return. 

 

The time horizon that is used is usually dependant on liquidity and may thus vary from asset to asset.  

Accordingly, in periods of low liquidity, e.g. downturns, the horizon over which risk is measured should 

be increased. 

 

Because risk or volatility is at the centre of market risk, it is essential to consider the various ways of 

capturing it, using volatility models, before delving into the VaR methods.  The characteristics of the 
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various volatility models are carried over to the VaR estimation.  The research now explores the various 

models used to estimate volatility. 

 

3.3 Market risk volatility models 

Volatility and correlation (or covariance) form the underlying building blocks of market risk assessment 

models, therefore, the apparent changes in these parameters have important outcomes for all types 

of risk management decisions (Alexander, 2008b).  For this reason, it is imperative to model volatility 

and understand what type of variability of returns models measure.   

Before delving in the volatility models, it is vital to define volatility and contextualise it.  Alexander 

(2008d) defines volatility as a measure of the dispersion in a process that is used to model returns.  

Volatility of returns is measured by standard deviation (the square root of the variance) which is usually 

expressed as a percentage per annum.  The standard deviation is directly proportional to the holding 

period.  It is worth mentioning that the standard deviations for different holding periods are not directly 

comparable, consequently it necessary to transmute the standard deviations in annual terms (using the 

square root of time as earlier mentioned). 

In contrast to market prices, volatility can only be estimated and forecasted owing to it not being 

directly observable given that it is not traded on the market in its pure form.  Therefore, this makes it 

challenging to model it.  For this reason, Alexander (2008b) argues that estimating volatility can only 

be done within the context of an assumed statistical model as implied from observing price movements 

in the market.  The statistical model for estimating volatility may give rise to a formula.  However this 

estimate provides volatility that is “realised” by the process in the model for the period under 

estimation (Alexander 2008d) and hence volatility is referred to as a latent variable (Danielsson, 2011).  

High fluctuation in prices usually implies high volatility, but it is difficult to ascertain with precision how 

high this volatility is.  According to Danielsson (2011), this is due to the difficulty of distinguishing 

whether a large shock to prices is temporary or perpetual.  Furthermore, the intricacies presented by 

the existence of features such as non-normalities, volatility clustering and structural breaks makes 

volatility modelling quite arduous as making strong assumptions and utilising statistical modelling is 

required. 

Alexander (2008b) further observes that only when the normality assumptions are made is volatility a 

sufficient statistic for dispersion; otherwise, it does not provide a full description of the risks borne by 
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an investment.  Thus, understanding more about the distribution of returns in addition to the expected 

return and volatility is crucial.  For this reason, she contends that the best dispersion metric needs 

basing on the entire distribution function of returns as volatility is concerned about the scale and mean 

about the location, whereas the dispersion also depends on the shape of the distribution.  

The volatility models examined are categorised as equally weighted, exponential weighted moving 

average and GARCH. 

3.3.1. Equally weighted 

As stated earlier, the typical way of calculating volatility is by using the variance or standard deviation.   

The standard deviation is obtained by finding the square root of the variance.  The variance calculates 

the average deviation from the mean.  The easiest way to forecast volatility is to use historical volatility 

for a consistent period of time.  This results in a moving average as the consistent period is rolled over 

such that the latest return is added for each day while the oldest drop out.  The [consistent] time period 

or interval over which the average variance is calculated is referred to as the sample size or the look-

back period or averaging period (Alexander, 2008a).  For this reason, this model is also called the simple 

moving average as every point within the averaging period is given equal weighting; hence it is 

eponymously called equally weighted or historical model.  

The historical model where equal weights are presumed results in volatility forecast for future periods 

being the square root of the variance.  For time series based on daily data, the mean return is assumed 

to be zero.  This means that the estimate for the equally-weighted variance is simply the average of the 

squared returns.  

 

The moving average or equally weighted model assumes that an ‘independent and identically 

distributed’ (i.i.d.) process with elliptical joint distributions16, which also implies that the resulting 

volatility and correlations are constant, drives the returns.  As earlier mentioned, the volatility is 

normally stated in annual terms and the square root of time rule is used to annualise it.  So converting 

a daily volatility to annual terms involves multiplying the daily volatility by the square root of 250 (i.e. 

assuming there are 250 trading days in a year). 

                                                 
16  Alexander (2008b) defines elliptical distributions as those that have elliptical contours in their bivariate form and these 
include the normal distribution and the student t distribution.   
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The historical variance estimated over a period is also referred to as the ‘overall’ or ‘long-term’ average 

or “unconditional” variance for that period (Alexander, 2008b).  It is unconditional in the sense that the 

variance is constant or in other words, it is not time-varying and can thus be considered to be the long 

term average variance for the period in question.  The estimate of the unconditional parameter only 

provides an average value of the sample periods’ conditional parameter for VaR.  For this reason, the 

equally-weighted average estimate is said to have limited use in estimating VaR over a short period of 

time as the current market conditions prevailing may not be manifested.  However, the estimation may 

be useful for long-term estimation of VaR.  A longer averaging period (m) results in markedly smooth 

(stable) risk forecast; in contrast, a shorter period leads to an excessively jagged pattern of forecast 

variance over time.  Nonetheless, even though the more extended period provides more precise 

estimates, the underlying variation in the volatility could be missed (Jorion, 2007). 

Because equal weight is given to all the periods, extreme past events could lead to artificially high 

volatility levels, which happen for as long as the data range still covers these events.  This phenomenon 

produces what is referred to as ghost effects that lead to volatility clustering.  With time this could lead 

to abrupt changes in volatility not resulting from any significant adjustment in market fundamentals 

but only that the extreme event has subsequently fallen out of the look-back period T (Brooks, 2014 

and Alexander, 2008b)).  

According to Danielsson (2011), the moving average should not be used in practice when estimating 

VaR as it is very sensitive to the choice of the estimation length (which is normally chosen arbitrarily) 

and normally results in volatility forecasts that jump around and that are generally systematically too 

high or too low.  Furthermore, Alexander (2008b) observes that due to a number of pitfalls historical 

equally weighted volatility should only be used as an indication of the possible range for long-term 

volatility as they are of doubtful validity for short term volatility forecasting. 

 

The issues outlined above that the historical or equal moving average volatility models possess are also 

transferred to the normal linear VaR models (covered later).  The ghost effect or the volatility clustering 

of the equally weighted models result in high linear VaR figures.  This is because the linear VaR model 

assumes constant volatility and this will carry on for T periods.  Regardless of the market conditions, 

this high VaR will become low following the dropping out of the extreme return after T periods.  It, 

therefore, follows that the VaR models that use equally moving average are sensitive to the choice of 

the sample period T.  As highlighted before, this is because the risk sensitivity is inversely proportional 
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to the T, i.e. the larger T is, the less responsive the volatility is to market conditions hence; the less risk-

sensitive is the subsequent VaR.  It is for this reason that EWMA and GARCH models are preferred as 

they take volatility clustering into considerations.  These models are considered next, in turn. 

3.3.2. Exponentially Weighted Moving Average (EWMA)  

The exponentially weighted moving average (EMWA) addresses the inadequacies presented by the 

equally-weighted model by giving more weights to recent observations compared to older 

observations. This is done through the use of λ the ‘decay factor’ (sometimes called the smoothing 

constant), which determines how much weight is given to recent versus older observations (Brooks, 

2014). When applied to an infinite series of data, EWMA results in equation (5.1) that is recursive.   

�̂�𝑡
2 = λ �̂�𝑡−1

2 + (1 − λ)𝑟𝑡−1
2                                                            (3.4) 

Where 0 < λ < 1; and �̂�𝑡
2 is the conditional volatility forecast on day t.  Similar with the equally 

weighted model, the EWMA variance can be converted to EWMA volatility by getting the square root 

of the variance, and as before, it can be annualised by applying the square root of time rule. 

The equation is recursive because today’s lambda is a function of the previous day’s lambda.  

Furthermore, the estimated variance is a conditional variance because it is updated with new 

information from the lagged (previous day’s) variance and lagged squared return.  In other words the 

forecasted variance for day t, �̂�𝑡
2, that is estimated at the end of day 𝑡 − 1 is computed from the 

variance estimate of the previous day, �̂�𝑡−1
2  and the previous day’s squared return 𝑟𝑡−1

2 .  EWMA is 

therefore a simple updating rule that allows the update of the daily volatility estimate each day based 

on the most recent daily return (Dowd, 2005).  This results in the model being able to capture volatility 

changes in a way that is broadly consistent with observed returns (Christoffersen, 2012).  

(1 − λ)𝑟𝑡−1
2  impacts on how market changes affect the strength of reaction of the volatility to these 

occurrences.  The smaller the λ the bigger the volatility reactions to the market information in the 

previous day’s return.  λ �̂�𝑡−1
2  controls or defines the persistence (or smoothing) in volatility, the higher 

the λ, the larger the persistence in volatility following a shock in the market.  Put differently a high λ 

implies a slow decline in the volatility.  This means that if previous days’ volatility was high then it’s 

likely to remain high today irrespective of what occurs in the market (Alexander, 2008b).  A low λ on 

the other hand implies a quick decline in the volatility.   
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λ can be estimated using Maximum Likelihood Estimation (MLE) and could vary both across series and 

over time, resulting in a loss of consistency over different periods. 

 

Furthermore, the EWMA model assumes that the reaction and persistence parameters are not 

independent, which Alexander (2008b) observes as an unfortunate restriction because it is not 

generally empirically justified.  According to Jorion (2007), the varying values of λ could generate 

incompatibilities across the covariance terms and may give rise to unreasonable values for correlations.  

This can occur when volatility is highly reactive but has little persistence or volatility is very persistent 

but not highly reactive.  The cause of such a situation is because often, λ is chosen subjectively (usually 

ranging between 0.75 and 0.98) rather than determined through statistical methods (Alexander, 

2008b).  RiskMetrics, established from a large study spanning several asset classes, however, 

recommends 0.94 and 0.97 for daily and monthly data respectively and these are widely used in 

practice (Jorion (2007), Brooks (2014), Dowd (2005) and Alexander (2008b)).  The recommendations 

above by RiskMetrics suggest that there are some inconsistencies between the daily and monthly risk 

forecasts.  However, as earlier highlighted, Alexander (2008b) observes that these recommendations 

by RiskMetrics are ad hoc.  Moreover, when VaR is estimated from its conditional volatility, a 

conditional normality assumption must be brought into play (Boudoukh et al., 1998), which as stated 

earlier is inconsistent with financial data – as fat tails and skewness properties are challenging to 

account for within the EWMA method. 

The advantage of the EWMA model is that it is easy to use as it only has one unknown parameter, i.e. 

λ.  Despite the elegancy of the EWMA recursive formula, Danielsson (2011) observes that EWMA is not 

permitted under the Basel Accords to calculate VaR because the exponential weights decline to zero 

very quickly.  He, however, contends that overall, the EWMA model performs well compared to the 

other more complicated models.  Similarly, Jorion (2007) argues that in contrast to other models the 

use λ as the only parameter to estimate makes EWMA more robust.  A separate study by Alexander 

and Leigh (1997) reveals superiority of EWMA in forecasting the centre return distribution than the 

equally-weighted and other more complicated model, however, this is not the case in the tails of the 

distribution. 

Despite EWMA overcoming the inadequacies of the equally weighted historical model, it has some 

shortcomings.  The main weakness of the EWMA model is that it is insensitive to market changes 

because a constant λ is assumed for all periods and identical for all assets (Brooks 2014).  This means 
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that it is not optimal for any asset or portfolio.  EWMA, therefore, ignores recent dynamics in the data 

because it predicts that the volatility in the future is likely to level off immediately and remain at this 

current level.  Moreover, the EWMA model is not mean reverting in that it does not tend towards an 

unconditional or long-run variance.  As a result, compared to other more sophisticated models like 

GARCH, the EWMA model is likely to yield inferior forecasts.  Despite this shortcoming and in addition 

to its ease of implementation it is usually the preferred choice for volatility forecasting model 

(Daneilsson, 2011). 

The shortcomings of EWMA previously highlighted has led to the use of alternative and more superior 

family of models referred to as GARCH. 

3.3.3. Generalised Autoregressive Conditional Heteroscedasticity (GARCH)  

The moving average models covered earlier are based on the unrealistic assumption that returns are 

independent and identically distributed (i.i.d.) which implies that the volatility (and correlation) 

forecast are the same as the current estimates.  However, the volatility for financial asset returns is not 

constant over time and also exhibits volatility clustering whose magnitude depends on the data 

frequency.  The shorter the data frequency the more the volatility clustering therefore, intra-day data 

is the most prone followed by daily data.  Monthly data will exhibit less volatility clustering and annual 

data will hardly display any. The methods covered so far do not treat volatility clustering in a robust 

manner.  Volatility clustering has important implications for risk management and for pricing and 

hedging options and therefore should be taken into account (Alexander, 2008b).  For this reason, 

another family of models called GARCH are particularly designed to capture the volatility clustering of 

returns.   

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models were introduced by 

Bollerslev (1986) and Taylor (1996) as an extension and generalisation of the Autoregressive 

Conditional Heteroscedasticity (ARCH) model proposed by Engle (1982).  However, ARCH models are 

not used widely in practice due to a number of inherent limitations (Brooks, 2008).  Danielsson (2011) 

highlights the long lag lengths required to capture the impact of historical returns on current volatility 

as one of the major problems of ARCH models.  Compared to ARCH models, GARCH models are more 

parsimonious in that they are able to accomplish a desired level of prediction using as few variables as 

possible.  This avoids over-fitting and thus GARCH models are less likely to breach non-negativity 

constraints (Brooks, 2008 and Jorion, 2007) and allow an infinite number of past square errors to 

influence the current conditional variance.  Consequently, GARCH models are widely used in practice 
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and are in essence a generalised version of the EWMA model because they have the flexibility to 

accommodate specific aspects of individual assets (Christoffersen, 2012).  What is more is that, unlike 

the EWMA models GARCH models employ optimal exponential weighting of historical returns to obtain 

volatility forecasts (Danielsson, 2011).  Here, the forecasts that result from GARCH models are therefore 

not the same as the current estimate, but change and converge to the unconditional volatility over 

time.   

The GARCH model, analogous to the EWMA model, has a time series with a form that has a regression 

on itself and hence is an “autoregressive” approach as the name suggests.  The term “conditional 

heteroscedasticity” stems from the fact that as EWMA, GARCH is conditional in the sense that today’s 

volatility estimate depends (is conditional) on past [volatilities or] returns and all the information up to 

that point.  Therefore, the distribution of these returns at time 𝑡 takes into account all past returns up 

to and including time 𝑡 − 1 as being non-stochastic.  This is because it is observed and thus non-random 

so it is conditional on that information set which these returns are a part of (Alexander, 2008).  The 

implication is that markets do not totally follow a random process because yesterday’s events have a 

bearing on what is likely to happen today (Choudhrey, 2013).  However, like EWMA, the relevance of 

the past data wanes or decays with time as the older data will possess less relevance to today’s events.  

Accordingly, the data that should be used doesn’t necessarily have to extend too far into the past.  

Owing to this, the volatility is heteroscedastic in the sense that it changes overtime and is thus not 

constant.  The rationale behind is that, it represents instantaneousness given that it can change from 

time to time due to its sensitivity to recent events (Alexander, 2008b and Brooks, 2014).  Alexander 

(2008b) observes that due to the forgoing, the GARCH process is not i.i.d. because the second 

conditional moments at different points in time are related.  For that reason, the i.i.d. assumption can 

be relaxed in the GARCH models and so allowing them to be applied in estimation of VaR particularly 

in historical VaR and Monte Carlo VaR but she contends that its application to analytic linear VaR is 

questionable. 

GARCH(1,1) 

GARCH is a family of models that consists of numerous GARCH-type models under this umbrella that 

include AGARCH, EGARCH, JGRGARCH, IGARCH, IGARCH, MARCH, NARCH, QTARCH, SPARCH, SWARCH 

AND TARCH (Dowd, 2005).  GARCH (1,1) is the most popular and simplest GARCH model because it does 

not involve many parameters and fits the data typically relatively well.  It depends on only one lag of 

squared returns and one lag of the variance, and as such it is most suitable for short-term variance 
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forecasting.  In its simplest form, the GARCH(1,1) postulates that today’s volatility is contingent on 

yesterday’s volatility and yesterday’s squared returns as represented in equation (3.5).  

�̂�𝑡
2 = 𝜔 + 𝛼𝑟𝑡−1

2 + 𝛽𝜎𝑡−1
2 ;                                                     (3.5) 

𝜔 ≥ 0;  𝛼, 𝛽 ≥ 0; 𝛼 + 𝛽 < 1 
 
As seen in equation (5.1) GARCH(1,1) is similar to EWMA, but it has a constant 𝜔 and the sum of 𝛼 and 

𝛽 is less than 1.  EWMA can therefore be looked at as a special case of the GARCH(1,1) process that 

takes place when 𝜔 = 0, 𝛼 = 1 − 𝜆; 𝛽 = 𝜆 and 𝛼 + 𝛽 = 1 (Dowd, 2005 and Christoffersen, 2012).  For 

GARCH (1,1), a high 𝛽 value signifies ‘persistent’ volatility meaning that it takes a protracted time for 

the volatility to adjust.  As in EWMA, a high persistence means that model will have the tendency to 

stick to the previous day’s variance.  A low persistence indicates decay in that there is a tendency to 

move towards the long-run variance.  On the other hand, a high 𝛼 value suggests a ‘spiky’ volatility 

implying a rapid response to market changes (Dowd, 2005).  Where there are no market shocks, the 

GARCH variance ultimately settles down a long run average variance such that �̂�𝑡
2 = 𝜎2.  The long run 

average variance is stable and steady i.e. mean-reverting as earlier stated.  Generally, in periods 

following volatile market conditions the average volatility tends to decrease with the forecast horizon, 

in other words, the term structure forecasts for GARCH converge from above.  This is because on 

average a relatively high volatility will have a tendency to fall over time.  Conversely, the GARCH 

forecasts converge from below in periods following relatively calm market conditions.  Likewise, low 

volatility will have a tendency to rise over time.  Alexander (2008b) notes that this characteristic of 

mean reversion is akin to the implied volatility of option market prices of different maturities that 

nevertheless have the same strike price17.  She argues that this is the reason why the GARCH models 

are popular among practitioners.  The variance to which the forecast revert to is the long run variance 

also known as the unconditional variance (as stated earlier) and is a constant, defined in a similar way 

to that of the ARCH model as: 

𝜎2 = 𝐸(𝜔 + 𝛼𝑟𝑡−1
2 + 𝛽𝜎𝑡−1

2 )                                                        (3.6 ) 

From the above definition, �̂�𝑡
2 = �̂�𝑡−1

2 = 𝜎2.  When this is substituted in the GARCH conditional variance 

equation( 5.1), it translates to:  

                                                 
17 Implied volatility is the volatility that is implied by the options market and is covered later in Chapters 8. 
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𝜎2 = 𝜔 + 𝛼𝜎2 + 𝛽𝜎2                                                                (3.7) 

By rearranging equation 3.7, the unconditional variance is given by  

𝜎2 =
𝜔

(1 −  𝛼 − 𝛽)  
                                                                     (3.8) 

Taking the annualised square root results in the unconditional volatility which is a result of the positive 

intercept ω.   

Incorporating equation (3.8) into the GARCH equation (3.4) and rearranging it further will result in   

�̂�𝑡
2 = 𝜎2 + 𝛼(𝑟𝑡−1

2 − 𝜎2) + 𝛽(𝜎𝑡−1
2 − 𝜎2)                                                     (3.9) 

Equation (5.6) indicates that today’s variance can be described as the weighted average of the long-run 

(unconditional) variance, yesterday’s squared return and yesterday’s variance.  In other words, today’s 

variance is the long-run average variance with something added (subtracted) if yesterday’s squared 

return is above (below) its long-run average and something added (subtracted) if yesterday’s variance 

is above (below) its long-run average.  Christoffersen (2012) and Dowd (2008) show that variance of 

the daily return k days ahead can be forecast with the use of only information available at the end of 

today.  Put differently, the GARCH(1,1) forecast can be seen as a weighted average of unconditional 

variance, the deviation of last period’s squared returns from unconditional variance and the deviation 

of last period’s forecast from unconditional variance (Danielsson, 2011). 

GARCH is suitable for longer horizons as the volatility is assumed to be time-varying.  As before, this is 

true provided that 𝜔, 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1 this is to ensure positive volatility forecast and 

covariance stationarity respectively (Danielsson, 2011).   

If 𝛼 + 𝛽 ≥ 1, the unconditional variance of 𝜎2 is characterised as ‘non-stationarity invariance’ as 𝜎2  is 

not defined and is deemed to possess highly undesirable properties (Brooks, 2014).  Where 𝛼 + 𝛽 = 1, 

this is referred to as ‘unit root invariance’, also known as integrated GARCH or IGARCH (Jorion, 2007).  

IGARCH is used where the long run variance does not exist i.e. the return is not stationary.  In this case 

the GARCH(1,1) becomes 

�̂�𝑡
2 = 𝜔 + 𝛽𝜎𝑡−1

2 + (1 − 𝛽)𝑟𝑡−1
2                                                                (3.10) 
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This will be equivalent to the EWMA model if 𝜔 = 0 (see equation 3.3).  However, because the EWMA 

process does not revert to the mean, the longer-period forecasts are significantly distinctive (Jorion, 

2007).  Alexander (2008b) notes that the GARCH long-term variance is not the same as the EWMA 

unconditional variance as the latter is based on the i.i.d. return assumptions (hence also called the i.i.d. 

variance) whilst the former is not based on the same i.i.d. assumption.  Moreover, she points out that 

depending on the GARCH model, this GARCH unconditional variance can vary.  Owing to the waning 

volatility clustering effects in financial asset returns over extended time intervals beyond a week, 

GARCH models are often estimated on daily or intraday data (Alexander 2008b). 

Brooks (2014) illustrations that the general GARCH(1,1) can be extended to a GARCH(p,q) formulation 

where the current conditional variance 𝜎𝑡
2 is parameterised to depend upon q lags of the square errors 

(or returns) and p lags of the conditional variance: 

𝜎𝑡
2 = 𝜔 +∑𝛼𝑖𝑟𝑡−𝑖

2 +

𝑞

𝑖=1

∑𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

                                                         (3.11) 

However, he notes that higher order GARCH models are seldom utilised in academic finance literature 

because the volatility clustering in data can adequate be captured using a GARCH(1,1).  This is more so 

because the parameters of these higher order GARCH models are not easily interpretable 

(Christofferesen, 2012). 

Estimation of GARCH parameters  

In as much as the GARCH models seem to be more superior to the historical simulation and EWMA, 

they are challenging in that they have several unknown parameters that need estimating.  This exigence 

stems from the fact that the conditional variance must be implicitly estimated because it is not an 

observable variable (Christoffersen, 2012).  The unknown parameters, i.e. 𝛼, 𝛽 and 𝜔; can be estimated 

using the Maximum Likelihood Estimation (MLE), a technique used for finding parameters for both 

linear and non-linear models.  According to Brooks (2014), this is done by finding the most likely values 

of the parameters that maximise a model, given the actual data18.   

Even though the Microsoft Excel “solver” tool can be used to estimate the parameters of the GARCH 

models, it only provides an approximation of the optimal estimate.  Therefore, the complex nature of 

                                                 
18 Please see Brooks (2004) for more details of the use of Maximum Likelihood Estimators is in estimating the parameters for  
Garch models.   
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this estimation does not render excel to be the best tool.  This is due to the common convergence 

problem that can render the log likelihood surface in the MLE to be flat (Alexander 2008b).  

Consequently, the use of econometric software packages that have purpose-built algorithms for 

maximisation of the GARCH likelihood functions is recommended, particularly Ox19.  Other programmes 

like Eviews, MATLAB or R, can also be utilised to achieve in the estimation of these parameters. 

In order for the likelihood function to be well defined, a specific minimum amount of data is required.  

Alexander (2008b) suggests the use of daily data spanning over several years ensures proper 

convergence of the model; otherwise, the parameter estimates may lack robustness.  She further 

observes that it is typical that the GARCH constant 𝜔 estimates is predominately sensitive to the choice 

of sample data compared to the changes in the reaction and persistence parameters. 

Leverage effect on GARCH 

In the basic ARCH and GARCH models, both negative and positive shocks have the same effect on 

volatility because they are assumed to be symmetric.  However, in some series, such as equities there 

is a leverage effect in that substantial negative returns have a more significant effect on the volatility 

as compared to positive returns of the same magnitude.  This is unlike commodities where price rises 

lead to more increases in volatility compared to the price falls of the same scale.  Christoffersen (2012) 

attributes the leverage effect to a drop in the equity value of a company due to the effect of a negative 

return.  This drop-in value results in an increase in a company’s gearing level, which in turn increases 

the financial risk and hence the risk of bankruptcy.  A positive return, on the other hand, increases the 

equity value of a company which in turn reduces the risk of bankruptcy, but usually, this is by a lesser 

amount (Jorion, 2007). To this end, the basic GARCH models do not accurately model returns because 

they do not consider the leverage effect.  Nevertheless, GARCH models can be adapted into asymmetric 

models in order to accommodate the leverage effect by using two terms, one for positive shocks and 

the other for negative shocks, each with its separate alpha coefficient.  Therefore, the leverage effect 

can be captured by defining an indicator variable, 𝐼𝑡−1 to take on the value 1 if day (t-1)’s return is 

negative and zero otherwise 

𝐼𝑡−1 = {
1 𝑖𝑓 𝑟𝑡−1 < 0 
0 𝑖𝑓 𝑟𝑡−1 ≥ 0

 

                                                 
19 This is the programming language that OxMetrics, an Econometrics software developed by Doornik, J and Hendry, D, is 
based on. 
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The variance dynamic can now then be specified as 

�̂�𝑡
2 = 𝜔 + 𝛼𝑟𝑡−1

2 + 𝛼𝜃𝐼𝑡−1𝑟𝑡−1
2 + 𝛽𝜎𝑡−1

2                                              (3.12) 

Thus, a 𝜃 larger than zero will capture the leverage effect.  This is sometimes, referred to as the GJR-

GARCH model.  The GJR-GARCH is really a modification of the asymmetric GARCH (A-GARCH) model 

that also accounts for leverage effect (Alexander, 2008b).  Another GARCH model that is able to capture 

the leverage effect is the exponential GARCH (EGARCH), however, it has a major drawback in that future 

expected variance beyond one period cannot be calculated analytically. 

Having covered the volatility models, the study will now explore market risk measures by examining 

value at risk (VaR) and expected shortfall. However, before delving into these, it is important to 

examine the stylised facts of financial returns.  

Stylised facts  

- Fat tails – Financial returns exhibit a higher probability of observing large losses and large gains 

than suggested by normal distribution (Chrisoffersen, 2012).  In other words, returns for 

financial assets are not normally distributed but have what is termed as “fat tails” due to 

extreme events.  For risk management, it is important that these fat tails are captured. 

- Financial returns exhibit very little serial correlation and, therefore this makes it difficult to 

predict returns by using historical returns (Christoffersen, 2012). i.e. the financial returns do 

not fit the assumption of i.i.d. variables.  The volatility of financial returns, however, shows a 

profound serial correlation meaning that volatility is more straightforward to predict than 

returns.   

- Nonlinear dependence – states that multivariate correlation i.e. the correlation between assets 

appear to be time-varying as they depend on the market situation.  For example, bear markets 

show a high correlation than do bull markets.   

With the stylised facts in mind, similar to Jager (2015), in this study, the fat tails that are exhibited due 

to extreme values will be captured through the application of Extreme Value Theory (EVT).  In order to 

produce an i.i.d. process of random variables a combined AR(1) and GJR GARCH(1,1) process will be 

utilised, and lastly, the dependence structure of a portfolio will be simulated with copulus.  Thus, this 

approach to modelling financial returns is referred to as the GARCH GJR –EVT- Copula approach. 
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3.4 VaR models 

Broadly, VaR models fall into three categories, i.e. parametric, non-parametric and semi-parametric as 

classified by Manganelli and Engle (2001).  The difference in these categories rests in the way in which 

the distribution is constructed.  There are generally three VaR models namely; normal linear VaR, 

historical simulation and Monte Carlo  (Alexander, 2008d, Dowd, 2005, Cheung & Powell, 2012. The 

volatility models covered earlier can also be categorised as either parametric, non-parametric and 

semi-parametric. The classification, below of the VaR models and their volatility models is based on 

Manganelli and Engle (2001), Alexander (2008d) and Dowd (2005). 

The VaR models above and some volatility models are discussed below under the three categories. 

 

3.4.1 Parametric Models 

In parametric models,  the risk measure is inferred from the risk estimated by fitting probability curves 

to the data, and thus these models use additional information contained in the assumed density or 

distribution (Dowd, 2005). 

Normal linear VaR 

The normal linear VaR is a parametric model used to market risk.  It is also referred to as the covariance, 

variance-covariance, correlation, or analytical VaR.  While the covariance matrix is at the centre of this 

method, the returns on risk factors20 are assumed to be normally distributed with constant correlations 

and multivariate normal joint distributions between risk factors (Alexander, 2008d and Choudhry, 

2013).  Here it is assumed that the risk factor return dependencies are linear and fully encapsulated by 

one or more correlation matrices.  For this reason, all that is required to capture the dependency 

between the risk factors is the correlation matrix of the risk factor returns. 

The normal linear method requires historical data in order to calculate the volatility for each risk factor 

and the correlations between these risk factors.  This is a straightforward way assuming that each 

return in the time series is equally-weighted.  The other method of calculating the volatilities and 

                                                 
20 A risk factor can be described as a characteristic that is measureable, for example exchange rate, interest rate, market 
price, whose change can affect the value of an asset 
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correlation is using volatility modelling where the assumption is that the observations in the time series 

are not equally weighted because more recent observations are given more weight.  Despite this 

difference, both methods assume that future volatilities can be gleaned from historical price 

movements (Choudhry, 2013). 

If VaR is measured over a short period, for example, daily interval, then it can be assumed that the 

excess return is zero.  This, therefore, further simplifies Equation (5.3) resulting in Equation (5.10), 

which translates as a percentage of the portfolio value, the negative of the standard normal α 

quantile21, times the standard deviation of the portfolio returns over the measurement period 

(Alexander 2008d).   

𝑉𝑎𝑅𝛼 = Φ
−1(1 − 𝛼)𝜎                                                                          (3.13) 

Even though the parametric method is popular due to its simplicity, its drawbacks also stem from its 

imposition of strong assumptions of constant or stable correlations and hence only estimates linear risk 

Choudhry (2013) further observes that the overreliance on the normal distribution tends to understate 

the probability of extreme events occurring despite the presence of “fat tails” (or leptokurtosis - see 

Mandelbrot (1963) and Fama (1965)) in financial returns.  For example, Gibson et al. (2008) argue that 

the losses incurred in the 2008 financial crisis are extremely rare events, i.e. they are akin to events in 

excess of “10 standard deviations”.  They show that according to normal distribution the chance of 

observing a single 7.5 standard deviation (or greater) one-day return would be in the region of 1 in 33 

trillion meaning that the world would have to be roughly ten times older.  To help overcome this 

weakness, extreme value theory (covered later) can be used (Longin, 2000). 

There are a number of volatility models that fall under this category, and these are mainly models that 

estimate conditional volatility such as  EWMA (RiskMetrics); GARCH (1,1) and the other asymmetric 

GARCH models, i.e. EGARCH, GJR GARCH covered earlier.  

  

                                                 
21 A quantile divides a variable in equal parts. A percentile divides a variable in 100 parts and is therefore a hyponym of a 
quantile. 
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3.4.2 Non-parametric models 

Unlike parametric models, non-parametric models do not make strong assumptions in estimating the 

risk measures and instead use past data to forecast risk. 

Historical simulation 

The introduction of historical simulation (HS) as a VaR estimation method can be attributed to a series 

of papers by Boudoukh et al. (1998) and Barone-Adesi et al. (1998, 1999).  The historical VaR model is 

a non-parametric VaR, based purely on past (historical) data from where the volatilities and correlations 

are calculated.  Unlike normal linear VaR, the assumption in historical simulation is that all possible 

future variations have already been experienced in the past and that the historically simulated 

distribution is identical to the returns distribution over the forward-looking risk horizon (Alexander 

2008d).  For this reason, past or empirical percentiles of the historical return distribution are used 

directly to estimate percentiles for the VaR with skewness, leptokurtosis (fat tails) and other properties 

already directly accounted for (Boudoukh et al., 1998).  In contrast to the parametric model, this 

method is free of multivariate normality assumptions implying that no conjecture is made that the 

covariance matrix can capture all the dependencies between risk factors.  It should be pointed out, 

however, that even other models, i.e. normal linear (VaR) and Monte Carlo may if necessitated, also 

use historical data.  Then again, while the other models are capable of incorporating risk factor returns 

that are skewed and heavy-tailed, the modelling of their multivariate risk factor returns are required 

to fit a parametric form.  The difference, especially with normal linear VaR, is, therefore, the normality 

assumption.   

In performing the historical simulation, it is vital that the number of observations (or sample) is as big 

as possible to avoid an imprecise VaR that results from having very few data points.  This is particularly 

so in the lower tail of the distribution, particularly at high confidence levels.  The implication is that 

more frequent data (e.g. daily data) over many years is required in order to estimate VaR more precisely 

for high confidence levels or percentiles (e.g. 99% or 95%) otherwise the VaR estimates are likely to be 

unstable.  This need for big samples sizes to enable the accurate estimation of quantiles is a crucial 

limitation for historical VaR.  This is because large and frequent samples may not always be possible 

particularly for assets with infrequent return information (e.g. direct real estate).  According to 



  

100 
 

Alexander (2008d), the sample size constraints of historical VaR mean that VaR needs to be estimated 

at the daily horizon, to begin with then scaled up to longer horizons (h –day horizons).   

The big sample size required by historical simulation means that the data may span across several 

periods or regimes, but this is likely to present another problem.  This is because the market risk factors 

in these regimes may have different behaviour, for example, the financial crisis of 2007/8 where the 

volatilities and correlations were much higher compared to stable market conditions thus resulting in 

the earlier mentioned phenomenon referred to as volatility clustering which was referred to earlier.  

The consequence of volatility clustering is that VaR estimated using historical simulation is likely to be 

underestimated in periods immediately following stable market conditions while in periods that 

immediately follow volatile market condition, there is a tendency of overestimating VaR. 

Historical simulation, however, does not account for time-varying volatility and volatility clustering 

(Bollerslev, 1986).  This because historical simulation assigns equal weights to all the periods used for 

the volatility estimate.  The no volatility clustering assumption implies that returns have the same 

likelihood of occurring, which is akin to assuming that they are independently and identically 

distributed (i.i.d.) (Boudoukh et al., 1998).  In other words, the returns are random, so no relationship 

exists between current returns and past returns.   

In summary, the two main problems with historical simulation are that it does not perform well on 

small samples and secondly, it does not consider time-varying volatility.  The first can easily be solved 

by increasing the sample size.  The solution to the second one is the use of EWMA or GARCH models; 

however; their effectiveness is lost if a longer time frame is used.  Accordingly, Boudoukh et al. (1998) 

observe that the only way to put more weight on recent information within the historical simulation 

approach is using shorter historical periods or windows.  They sum up the problem of historical 

simulation as follows; “with long histories, the value of recent information diminishes, while with short 

histories we encounter estimation problems”.  This is also observed by Pritsker (2006) recognises the 

challenge of choosing the correct sample period because the assumption of constant conditional 

correlation is violated by too long a period, whereas the accuracy of the model’s nonparametric 

elements is reduced by too short a period. 

As earlier indicated, because the historical simulation method is constructed solely from actual 

historical data it needs minimal analytical capabilities.  Its simplicity can, however, lead to substantial 

distortion particularly when there are options in a portfolio.  Nevertheless, its simplicity has led to wide 

acceptance and use by banks and regulators (Choudhry (2013) and Alexander (2008d)).  
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3.4.3 Semi-parametric models 

Semi-parametric models combine both parametric and non-parametric approaches. 

Filtered Historical Simulation 22 

Filtered Historical Simulation (FHS) is an alternative to the historical simulation that was introduced by 

Barone-Adesi et al. (1998) and Barone-Adesi et al. (1999).  FHS is a semi-parametric model, which is a 

Monte Carlo, based approach (covered later) that combines parametric modelling of risk factor 

volatility with nonparametric modelling of the factor innovations (Pritsker, 2006).  In essence, FHS 

overcomes some of the weaknesses of both historical and Monte Carlo simulation at the same time 

using their advantages.  Although making as few assumptions as possible about the distribution of risk 

factors, FHS also incorporates historical returns’ dynamics of past and current volatilities.  The 

advantage over the parametric models is that this ensures consistency of the quantile and therefore 

the VaR, under weaker conditions because the density of the standardised residuals does not have to 

be assumed (Sheppard, 2013).  Another alternative method is the Cornish-Fisher approximation.  This 

splits the difference between a fully parametric model and a semi-parametric model.  Like the FHS, the 

Cornish-Fisher approximation can be accurate without a parametric assumption; then again, the 

drawback is that these estimators are said not to be necessarily consistent compared to the HS 

(Sheppard, 2013). 

Conditional autoregressive VaR 

The Conditional autoregressive VaR (CAViaR) is a quantile regression approach.  The quantile regression 

approach uses the time series of a specified quantile is explicitly modelled using any information 

considered to be relevant to estimate conditional quantiles. This method avoids the use of any 

distribution assumptions of the returns (Kuester et al., 2006, 2005 and Engle and Manganelli, 2004). 

 

Volatility models that also deal with extreme VaR such as Extreme Value Theory  EVT23 (covered later) 

are examples of semi-parametric models. Therefore when a conditional parametric volatility model like 

GARCH is combined with EVT to make GARCH EVT, it becomes a semi-parametric model.  

                                                 
22 The Filtered Historical Simulation model is sometimes categorised as a nonparametric model (Manganelli and Engle (2001). 
However, Alexander (2008d) and Dowd (2005) point out that this method combines the power of historical simulation (non-
parametric) and parametric dynamic flexibility of conditional volatility models such as GARCH. 

23 See chapter 4 for more on EVT 
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3.4.4 Monte Carlo Simulation 

Monte Carlo Simulation can be applied to either parametric or non-parametric models.  It involves a 

process which makes use of some given specific user-defined parameters to generate, using a computer 

programme, a series of an asset’s price that is theoretically possible (Choudhry, 2013).  These simulated 

asset prices are then used to estimate the VaR.  Similar to the normal linear VaR, Monte Carlo VaR 

assumes i.i.d. risk factors that have a multivariate normal distribution.  The normal distribution 

assumption implies that the simulated returns are unlikely to be extreme in contrast to financial returns 

distributions, which tend to have larger densities at the extremes (or fat tails) as earlier indicated.  This 

could potentially lead to underestimation of losses as highlighted before.   

Central to Monte Carlo is the assumption of the covariance matrix’s ability to capture all possible 

dependencies between the risk factor returns.  Here, a constant covariance matrix is assumed over 

time.  This, however, is not the case in reality as correlations, and therefore covariances tend to 

increase during stressed market conditions, e.g. the 2007/8 crisis.  Nevertheless, compared to the 

normal linear VaR, Monte Carlo simulation is more flexible and can accommodate many different 

assumptions about the multivariate distribution of risk factor returns (Alexander 2008d).  Furthermore,  

it is possible for more complex dependency structures to be assumed, and path-dependent behaviour 

like volatility clustering can be accounted for as well.  For instance, this can be done by assuming some 

form of risk factor evolution, e.g. that a GARCH model captures clustering for both volatility and 

correlation.  This is because both the multivariate normality and the i.i.d. assumptions for risk factors 

can be generated through simulation while this is done analytically for parametric VaR.  Alexander 

(2008d) further observes on one hand that despite being based on assumptions that are unlikely to 

hold, the normal linear (parametric) VaR is precise, but on the other hand, Monte Carlo simulation is 

subject to simulation error.  Then again, she contends that if a sufficient number of simulations are 

used, the VaR estimates from the two models should be similar.  This implies that applying Monte Carlo 

VaR to a linear portfolio has the potential of creating sampling errors not present in the normal linear 

VaR model.  This notwithstanding, Alexander (2008d) is quick to point the usefulness of applying Monte 

Carlo VaR to a linear portfolio because of its flexibility of being based on practically any multivariate 

distribution for risk factor returns.  This is in contrast to only a few selected distributions that exist in 

closed form solutions for parametric linear VaR.  Because the Monte Carlo approach can also be applied 
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to non-linear portfolios like option portfolios, it is said to be the most flexible of the models due to its 

versatility in dealing with a great diversity of risk factor return distribution. 

The criticism of Monte Carlo Simulation lies in its ‘black box’ nature which may make it impenetrable 

to some people whereas, in contrast, one can drill down to the data in historical simulation in order to 

carefully study a given risk measure.  The other criticism is that it is very computer intensive and 

therefore consumes a lot of computer resources. 

The three main VaR methodologies (normal linear, historical simulation and Monte Carlo simulation)  

above assume stationarity of the probability distributions of market price movements.  This means that 

the behaviour of the market over the recent past is a good and unbiased indicator of its near future 

behaviour (Choudhry, 2013).  Thus, this implies that recent historical data can be used in the estimation 

of future VaR. 

3.4.5 Regime switching models  

The estimation of VaR, based on a long time horizon may not yield the best estimates because this 

period is likely to cover different market conditions.  In other words, models will behave differently in 

volatile periods compared to periods of relative calm.  In order to consider the different market 

conditions, a regime-switching method can be incorporated in the analysis where the data switches 

between a stable low-volatility regime and a more unstable high-volatility regime (Hardy, 2001).  

Hamilton and Susmel (1994) describe the importance of capturing volatility changes because asset 

prices are a function of volatility and also the correct specification of conditional variance is required in 

order to make efficient econometric inferences of the conditional mean of a variable.  The regime 

switching was introduced by Hamilton (1989) as the Markov-switching model based on an 

autoregressive regime-switching process.  Regime-switching models have been used in various studies 

like, Hamilton and Susmel (1994), (Hardy, 2001), Abad and Benito (2013), Kim, Y and Hwang (2018), 

Herrera, et al (2018), Nyberg (2018), Dias (2013), Chen and Shen (2012), Anderson and Guirguis (2012), 

Anoruo and Murthy (2017) to capture the dynamic behaviour of volatility in financial. 

 

3.5 Performance of VaR models 

This section explores the performance of the VaR models. Research by Beder (1995) reveals that the 

performance of VaR differs depending on what model is used. For example, the results for her research 
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that calculates VaR on three hypothetical portfolios using several methodologies, based on historical 

and Monte Carlo Simulation models, result in significant discrepancies in the performance of VaR when 

applied to the same portfolios.  This suggests that the set of parameters, data, assumptions, and 

methodology have a significant bearing on the VaR performance.  Though this is the case, the is no set 

of models for this research that is accepted as correct.  For example, while both historical simulation 

and Monte Carlo methods are based on past data and are used to calculate VaR, they result in different 

performances due to assumptions and different data needs.  This, therefore, becomes a challenge for 

capital requirements.  For this reason, Beder (1995) advocates for uniformity in the methodologies 

used for VaR.  While Barone-Adesi et al. (2002) argue that while historical simulation reflects a more 

realistic picture of the portfolio’s risk, they argue that this results in some disadvantage because the 

changing risk of assets are not captured and therefore there is the potential of underestimating the risk 

during high volatile market conditions.  This is supported by Pritsker (2006) who demonstrates by 

investigating the capacity of the VaR estimates to respond to a crush for a portfolio which is long the 

S&P 500.  The results show that the historical simulation VaR estimate has almost no response to the 

market crash and therefore observes that the performance of any risk measures that rely on historical 

simulation is affected by its distributional assumptions.    

Berkowitz and O’Brien (2002) investigate the accuracy of VaR models at commercial banks by analysing 

the performance of VaR using bank models of six large U.S. banks. The findings for this study are that 

the bank model forecasts did not outperform GARCH model forecasts due to their ability to predict 

changes in the volatility of the P&L.  Banks models, on the other hand, exhibited challenges in 

forecasting changes in the volatility of the P&L. 

Another study by Kuester et al. (2006, 2005)  explore the univariate VaR prediction using data on the 

technology index, the NASDAQ, through the comparison of alternative strategies i.e. historical 

simulation, FHS,  GARCH, mixed normal GARCH, EVT, and similar to Engle and Manganeilli (2004) the 

conditional autoregressive VaR (CAViaR).  While the results for this study show VaR underestimation in 

most of the models, the GARCH based models yield acceptable results with those that combine with 

EVT performing better together with the FHS methods.  However, this performance depends to some 

extent on the chosen window size.  These findings are in line those of Berens et al. (2018), who argue 

that the accuracy of the risk measure forecast is significantly impacted by the selection of the 

estimation window strategy.  Although Engle and Manganeilli (2004) argue that the CAViaR models can 

adapt to new risk environments, the performance of CAViaR models in the study by Kuester et al. (2006, 
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2005 and Bao at al. (2003,2006), is not good.  However, the indirect AR(1)-GARCH(1,1) model proposed 

by Kuester et al. (2006, 2005) is the most promising in the CAViaR class.  

Abad and Benito (2013) examines several global stock indexes under two regimes (stable and unstable) 

to estimate both parametric and non-parametric VaR models; and extreme value theory. The study 

utilises conditional variance estimated by the EWMA, GARCH and EGARCH volatility models.  In terms 

of the regime performance, all the VaR models perform better in a stable period compared to the 

unstable period which implies that VaR may not be the best method in volatile periods.  Similar to Beder 

(1995) some results for the VaR methods depend on the volatility model employed, while also the 

distribution that is used is also important.  In this instance, the parametric model estimated using 

asymmetric (E)GARCH which employed a student’s t-distribution, resulted in the best model.  This 

implies that the parametric model, despite its weakness works well with conditional volatility and 

appropriate return distribution.   

Chen and Chen (2013) estimates VaR using the equally-weighted moving average, EWMA, Monte Carlo 

simulation and historical simulation for a portfolio consisting of securities from the Shanghai stock 

market. Their study concludes that VaR successfully evaluates financial risk and higher confidence levels 

resulting in higher levels of VaR albeit being varied for the different approaches.  However, at low 

confidence levels, the different approaches have similar VaR. 

Another study undertaken by Dias (2013) investigates the performance of VaR by considering 

parametric, semi-parametric and non-parametric approaches when estimated for companies with 

different market capitalisations obtained from different indices.  This is done by taking a portfolio 

consisting of stocks with small to large market capitalisation and bunched into various size sub-

portfolios whose VaR is estimated and then aggregated.  The results show that the performance of VaR 

varies with market capitalisation in that the estimates improve when market capitalisation is 

considered.  Also, the study reveals that historical simulation methods provide the best performance 

in several cases compared to the other methods.  Like Abad and Benito (2013), this is done in different 

states of the market, i.e. crisis and non-crisis periods and provide evidence of the importance of market 

fundamentals for risk measurement.   

In real estate, Lu, Wu and Wu (2009) applies VaR to the US REIT portfolios using five VaR methods 

namely, equally-weighted moving average, equally weighted moving average method fitted with a t-

distribution, EWMA, historical simulation method and the bootstrapping method.  These are done at 

95% and 99% confidence levels.  Like Beder (1995) the results showed that there was a difference in 
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the performance of the different VaR methods.  For example, different methods performed differently 

depending on leverage, i.e. the parametric methods and non-parametric methods performed better in 

the low leveraging and high leveraging portfolios respectively.  While no method dominates the other 

at different confidence levels, at 95%, the equally-weighted moving average t- distributed method is 

the worst performer as it significantly overestimates VaR.  Even if the two nonparametric methods also 

overestimating VaR, this is only slightly.  The EWMA method, on the other hand, is the worst performer 

at 99% confidence level.  In terms of the expected number of exceptions, in general, the equally 

weighted moving average has the best performance. 

In anther study, Lee and Ou (2010) examine whether VaR provides a better estimate of risk compared 

to GARCH models for the day-of-the-week effect (DWE) in REITs.  The outcome of this study reveals 

that the VaR estimate that utilises GARCH-DWE results in a more accurate forecast than GARCH and 

GARCH-DWE models.   

The volatility of REITs in turbulent market periods like the 2008/9 financial crisis increases the 

importance of risk management and therefore research in how this risk can be captured.  It is for this 

reason that Zhou (2012) undertook examines the alternative methods for measuring extreme risk for 

REITs.  Zhou (2012) exploring the prediction of VaR and expected shortfall risk measures by utilising 

parametric, non-parametric and semi-parametric methods applied to US Equity REITs.  The results 

indicate that on the one hand, two parametric models, the normal GARCH and the RiskMetrics provide 

the worst performance.  On the other hand, the other parametric models E-GARCH -skewed t, and 

GARCH-t the best performers together with the semi-parametric model, GARCH-EVT whereas, FHS24 

falls somewhere in between.  A similar study to Zhou (2012) is undertaken by Zhou and Anderson (2012) 

which also investigated extreme risk measures in REITs but at international level instead.  It examines 

REITs in nine major global markets and estimates the risk measures (VaR and expected shortfall) under 

the three categories of non-parametric, parametric and semi-parametric models.  The results show that 

while no particular method in the study is universally adequate to measure extreme risk across the 

global REIT markets, the FHS (nonparametric model) is the best method overall, unlike the results Zhou 

(2012) where this method falls somewhere in between the best and the worst performers.  The study 

also compares the performance to non-REIT equities and finds that even if the financial crisis increased 

the extreme risk to both markets, the extreme risk for the REIT market was higher.  

                                                 
24 In this study, FHS was categorised under the non-parametric model similar to Zhou and Anderson (2012). 
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The preceding literature shows varying levels of performance of VaR as an estimate of risk for both 

non-REITs and REITs, with the performance varying with the model employed.  Overall, it would seem 

that the parametric and semiparametric models perform better compared to nonparametric models.  

As can be seen from the preceding, the use of VaR as a risk measure is ubiquitous.  Even though there 

is some good performance in some intances, the question is whether VaR is a good risk measure.  In 

order to answer this, one has to ascertain whether the risk measure in question is coherent.  

 

3.5.1. Coherent risk measures 

A risk measure should have specific characteristics in order to be considered good.  Artzner et al. (1999) 

outline the axioms that should be satisfied by a ‘good’ risk measure.  These axions are monotonicity, 

subadditivity, positive homogeneity, and translation invariance.   

To satisfy the monotonicity property, an investment that has a worse result than another, for every 

event or state of the world, ought to have a higher risk measure (Hull 2015).  Monotonicity is also 

referred to as stochastic dominance.  However, Alexander (2008d) observes that this property is not 

always preserved by some risk-adjusted measures like the Sharpe ratio as it would in some instances 

result in a dominated asset exhibiting a higher Sharpe ratio than an asset that dominates it. 

Subadditivity stipulates that the risk measure for a portfolio of two investments should be less or equal 

to the weighted average of their respective risk measures (Hull, 2015 and Yamai and Yoshiba, 2005).  

This axiom accounts for diversification whose aim is to reduce risk without which there would be no 

incentive to hold portfolios.  A risk measure that does not satisfy the subadditivity axiom would be 

used, in some instances, as a motivation to split up a large firm into two smaller ones (Tasche, 2002).  

Furthermore, the lack of subadditivity can render a specific risk measure unusable for risk budgeting.   

Positive homogeneity is satisfied in an instance whereby the size of an investment changing by a factor 

h, results in the risk measure being multiplied by h (Hull, 2015).  Relative sizes of the constituent assets 

should be held constant if this is a portfolio.  The implication is that doubling the size of the investment 

or the portfolio without adjusting its relative composition would produce double the risk.  Likewise, 

this would, in turn, entail doubling the capital requirement to cover the losses.  Translational invariance 

suggests that adding (respectively, subtracting) the initial amount n to the initial position and investing 

it in the reference instrument X simply decreases (increases) the risk measure by n (Artzner et al., 1999).  

The reason for this is that this decreases (increases) the required capital cover by that amount (n).  
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Translational invariance is also referred to as the risk-free axiom (Danielson et al., 2005).  Please see 

Artzner et al. (1999) for the mathematical proof and expansion of coherent risk measures.  

Coherent risk measures need to satisfy all the above-desired axioms (Artzner et al., 1999).  In general, 

risk measures that can aggregate risks in ways that take account for the diversification effects are 

favoured.  For this reason, subadditivity is the most important property that a risk measure is expected 

to satisfy because it is key to diversification in line with Markowitz’s modern portfolio theory(Dowd, 

2005).  A risk measure that is not subadditive does not guarantee a convex efficient frontier; hence, the 

implication is that it does not allow risk to be aggregated appropriately and priced (Kondor, 2014).  

Subadditivity in the case of internal risk management indicates that the overall risk of a financial firm 

is equal or less than the sum of the risks of individual departments of the firm (Danielson et al., 2003), 

a situation which if not upheld may lead to regulatory arbitrage (Kondor, 2014).   

 

3.5.2 Problems with VaR  

Acerbi et al. (2001) highlight the strength of VaR as being dependent on its capacity to apply to any 

financial instrument and its ability to be expressed in the same unit of measure, i.e. the money lost.  

They also point out that VaR includes an estimate of future events and permits the conversion of the 

risk of a portfolio into a single number.  It is easy to apply, as it only needs the modelling of a quantile 

of a return distribution.   

Despite the strengths above, VaR has come under many criticisms because it is not a coherent risk 

measure because it does not always satisfy the subadditivity condition, and this has become a 

contentious issue.  In some instances, it exhibits “superadditivity”, a situation where the VaR of a 

portfolio is greater than the sum of the VaR of the constituent assets.  Alexander (2008d) notes that 

being as VaR is measured in value terms it can be coherent under particular assumptions regarding the 

distribution of returns, i.e. if a normal distribution is assumed.  However, she contends that the non-

coherence nature of VaR stems from the fact that the quantiles, as opposed to the variance operator, 

do not obey subadditivity unless the returns have an elliptical distribution.  Similarly, Acerbi et al. (2001) 

acknowledge that VaR is subadditive in the Gaussian world and some other special cases.  They also 

point out that this subadditivity is as a result of everything in the Gaussian world being proportional to 

the standard deviation which in turn is subadditive.  However, like Alexander (2008d) and Acerbi et al. 

(2001); Danielson et al. (2005) also recognise that VaR is subadditive in situations when asset returns 
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are normally distributed in the area below the mean, or more generally for log-concave distributions; 

nevertheless they correspondingly point out that these are exceptional cases.  Dhaene et al. (2003), 

quoted in Danielson et al. (2005) contend that VaR is subadditive most of the time and therefore there 

is no real need to adopt more complicated risk measure based exclusively on account of subadditivity. 

Furthermore, they assert that “imposing subadditivity for all risks (including dependent risks) is not in 

line with what could be called best practice”.  Also, Danielson et al. (2013) observe that the axioms of 

coherence result in a very restrictive set of risk measures that cannot be used in practical situations.  

Correspondingly, Emmer et al. (2013) argue that the lack of subadditivity of VaR may not be a serious 

issue provided that the underlying risks have a finite variance, or in some cases, a finite mean.  Despite 

subadditivity being perceived to be an important condition for a risk measure, Kou and Peng (2014) 

argue that this argument is inconclusive.  They contend that the notion that subadditivity implies that 

“a merger does not create extra risk” may not be true as observed from the merger of Bank of America 

and Merrill Lynch in 2008 arguing that mergers can lead to the creation of institutions that may become 

“too big to fail”.  Secondly, they declare that the notion that diversification is beneficial maybe a fallacy 

as Fama and Miller (1972) demonstrate the ineffectiveness of diversification for assets returns which 

exhibit fat tails.  It can be seen that the issue of subadditivity is controversial; however, what is clear is 

that VaR does often violate this axiom.  The significance of the subadditive condition is highlighted by 

Szegö (2005) who argues that measuring risk without this axiom is akin to measuring the distance 

between two points using a rubber band instead of a ruler.  For this reason and the preceding, the 

inadequacy of VaR due to the lack of subadditivity cannot be ignored. 

Another criticism of VaR is that it ignores the severity, i.e., the magnitude of the losses beyond the 

confidence level (significant level).  As outlined earlier, VaR is used to denote, either the maximum 

possible loss given a confidence level’s best case or the minimum potential loss given a significant 

level’s worst case, over a specific period.  The implication is that portfolios or assets with more 

likelihood for significant loses may be deemed to be less risky than those with less likelihood for big 

losses.  It is for this reason that Acerbi et al. (2001) refer to VaR as the “best of the worst case scenarios” 

and they note that this risk measure systematically underestimates the potential losses related with 

the specific level of probability.  Although subadditivity was earlier said to be the major weakness of 

VaR, not taking into consideration losses beyond VaR is deemed to be a more severe deficiency 

particularly when one faces choices of various risks with different tails (Emmer et al., 2013).  Because 

of the preceding reason, Bader (1995) contends that VaR can be dangerous despite its seductive 
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simplicity. To overcome the above challenges of VaR, a popular alternative, expected shortfall (ES) can 

be employed.  The study now examines the expected shortfall as a risk measure. 

 

3.6. The Expected shortfall  

In order to address the shortcoming of VaR, Artzner et al. (1997) and Acerbi et al (2001) advocate the 

expected shortfall (ES) which they define as a specified period’s mean (or [conditional] expected value) 

of the losses of the portfolio related to a particular level of a probability’s worst cases.  In other words, 

this is the mean of the losses beyond VaR for a specific confidence level.  Separately, Delbaen (1998) 

and Rockafellar and Uryasev (2002) propose a model akin to the expected shortfall referred to as the 

“Conditional VaR (CVAR) by the latter.  Expected shortfall is also referred to as Conditional VaR (CVaR), 

Tail VaR (TVaR), Tail Conditional Expectation (TCE) and Conditional Tail Expectation (CTE).  The purpose 

of the expected shortfall by definition is particularly to counter the concern of VaR’s inability to consider 

losses beyond the VaR level, also referred to as “tail risk” (Yamai and Yoshiba, 2005).  The expected 

shortfall is regarded as a special case of a broader class of statistics known as exceedance measures 

because it describes a statistical relationship conditional on one or more variables being in its tail.  

Because the expected shortfall is by characterisation an exceedance mean (Sheppard, 2013), it is 

considered to be harder to manipulate (Kondor, 2014).  In contrast with VaR, it is a coherent risk 

measure being as it does not violate any of the axioms of coherent risk measures.  This is particularly 

so for the subadditivity axiom which even though VaR does not breach it in some cases, expected 

shortfall does not violate it in all cases.  Additionally, because expected shortfall is convex, it can be 

optimised unlike VaR (Rockafeellar and Uryasev (2000).  As Acerbi et al. (2001) put it,” … in full 

generality that it’s impossible to build examples for which the assessment of relative riskiness among 

portfolios is trivial and in which at the same time expected shortfall gives opposite results”.  Therefore, 

ES can be applied without restrictions.   

In the Gaussian world, i.e. under normal distributions, both VaR and expected shortfall provide virtually 

the same information since they are both scalar multiples of standard deviation (Yami and Yoshima, 

2005).  However, they argue that for non-normal profit and loss distributions, VaR may have tail risk 

due to non-linearity of the portfolio position or non-normality of the underlying asset prices.  A massive 

difference between VaR and expected shortfall suggests that there is a fat tail loss distribution (Tasche, 

2013).  Moreover, Yamai and Yoshima (2002) (cited in Yamai and Yoshima, 2005) observe that VaR is 

consistent with expected utility maximisation when portfolios are ranked by first-order stochastic 
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dominance, while expected shortfall is consistent with expected utility maximisation when portfolios 

are ranked by second-order stochastic dominance.  This they argue makes VaR more likely to have an 

unanticipated effect on utility maximisation than the expected shortfall. 

Given the definition of the expected shortfall above, it can be formally defined as (Yamai and Yoshima, 

2005): 

𝐸𝑆𝛼 = 𝐸[𝑋 |𝑋 ≥  𝑉𝑎𝑟𝛼(𝑋)]                                                  (3.14) 

From the definition, Equation (5.11) shows that ES is the expected value of a loss given that VaR has 

been exceeded.  Yamai and Yoshima (2005) and Hull (2015) show that when the loss distribution is 

normal, the expected shortfall is calculated as follows:  

𝐸𝑆𝛼 = 𝐸[𝑋 |𝑋 ≥  𝑉𝑎𝑅𝛼(𝑋)] =
1

𝛼𝜎𝑥√2𝜋
∫ 𝑡 .
∞

𝑉𝑎𝑅𝛼(𝑋)

𝑒−𝑡
2 2𝜎𝑥

2⁄ 𝑑𝑡 =  
𝑒−𝑌𝛼

2 2⁄

𝛼√2𝜋
𝜎𝑥               (3.15) 

Where 𝑌𝛼 is the 100α percentile of standard normal distribution (Yami and Yoshima , 2005).  This is the 

point on a normal distribution with a mean of 0 and a standard deviation of 1 that has a probability 𝛼 

of being exceeded (Hull, 2015).  Therefore, when a 0 mean is assumed, expected shortfall, like VaR, is 

proportional to the standard deviation.   

It was established earlier that a good risk measure has to satisfy the axioms of coherent risk measures.  

In addition, it can be ascertained whether a risk measure satisfies the conditions of spectral risk 

measures and these are explored below. 
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3.6.1. Spectral risk measures 

A risk measure can be characterised by the weights it allocates to percentiles (or quantiles) of the loss 

distribution such risk measures are referred to as spectral risk measures.  There are conditions that 

need to be satisfied to make these spectral risk measures coherent.  Dowd (2005) citing (Acerbi, 2004) 

shows that the following conditions have to be satisfied by a weighting function ∅(𝑝) to make a risk 

measure coherent.  The first condition is non-negativity which means that all weights should be 

positive. The second condition is normalisation which states that for each risk measure all the weights 

in a portfolio ought to add up to one.  The last condition is increasingness (weakly increasing) which 

says that if some probability 𝑝2 exceeds another probability 𝑝1, then 𝑝2 must have weight equal to or 

greater than that of 𝑝1. 

According to Hull (2015), a spectral risk measure is coherent if the weights allocated to the qth quantile 

of the loss distribution is a non-decreasing function of q.  Therefore, the third condition is what ensures 

coherence in that a risk measure ought to give higher losses at least the same weight as lower losses 

(Dowd, 2005).  This reflects a user’s risk aversion and Dowd (2005) argues that for a ‘well behaved’ risk-

aversion function, then the weights will rise smoothly, and the rate at which the weights rise is 

proportional to risk aversion.  If VaR at the 𝛼 confidence level is given by 𝑉𝑎𝑅𝛼 = 𝑞𝛼,  VaR gives a 100% 

weighting to the 𝛼 quantile and zero to other quantiles (Dowd, 2008 and Hull, 2015).  This is because 

by definition, VaR is a single quantile and is considered to be degenerate since it assigns an infinite 

value of the probability density function (pdf) to the 𝛼 quantile and a zero value elsewhere (Dowd, 

2005).  Correspondingly, VaR does not satisfy the third condition and therefore does not qualify as a 

spectral risk measure.  This is because it suggests that the user is risk-loving since no weight is given to 

losses above VaR.  In other words, the VaR risk measures suggests negative risk aversion in the tail loss 

region.  On the other hand, the ES at the confidence level 𝛼 is 𝐸𝑆𝑎 =
1

1−𝛼 
∫ 𝑞𝑝𝑑𝑝
1

𝛼
 (Dowd, 2008). This 

means that ES assigns an equal weight of 
1

1−𝛼 
 to all quantiles greater than the 𝛼 quantile and zero 

weight to all quantiles below the 𝛼 (non-tail) quantile (Hull, 2015).  Put differently, ES assigns equal 

weight on tail losses thereby satisfying the condition of a coherent spectral risk measure.  Then again, 

despite ES being a coherent and spectral risk measure, like VaR, it does not display risk aversion.  

Instead, it exhibits risk neutrality since it assigns equal weights to losses above the VaR threshold 
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(Dowd, 2005).  Despite ES being a coherent spectral risk measure, there are problems associated with 

expected shortfall as examined below: 

 

3.6.2 Problems with expected shortfall  

The key advantage that VaR has over expected shortfall is the ease of backtesting.  While expected 

shortfall deals with the incoherence of VaR as a risk measure; its major criticisms stem from the 

difficulty of backtesting.  The challenge in the backtesting of ES arises because it lacks elicitability 

(Gneiting, 2011).   

3.6.2.1. Elicitability 

Elicitability is a property that enables a [risk] measure to have a scoring function that forecasts future 

losses and also makes a comparison of different models possible (Sherif, 2015 and Chen, 2014).  The 

principles behind elicitability are explained using Kou and Peng (2014) and the references therein.  

Elicitability is said to provide a decision-theoretic foundation for effective evaluation of point 

forecasting procedures.  The starting point is describing a point forecasting problem which is viewed as 

the measurement of risk of 𝑋 using 𝜌.  This is where a distribution 𝐹𝑥 is summarised by the risk 

measurement 𝜌(𝑋) (or 𝜌(𝐹𝑋)) using a real number.  Kou and Peng (2014) observe that there is a need 

to find an estimate �̂�𝑥  to use for forecasting the unknown true value 𝜌(𝑋) because the true distribution 

of 𝐹𝑋 is unknown.  Because there may be a number of methods or procedures that can be used to 

forecast 𝜌(𝐹𝑋), evaluating, which procedure provides a better forecast of 𝜌(𝐹𝑋) is of the essence. 

Suppose one wants to forecast the realisation of a random variable 𝑌 using a point 𝑥, without knowing 

the true distribution 𝐹𝑌.  The expected forecasting error is given by: 

𝐸𝑆(𝑥, 𝑌) =  ∫𝑆(𝑥, 𝑦)𝑑 𝐹𝑋(𝑦)                                                    (3.16) 

Where 𝑆(𝑥, 𝑦): ℝ2 → ℝ is a forecasting objective function.  The optimal point forecast corresponding 

to 𝑆 is 

𝜌∗(𝐹𝑌) = argmin(𝑥)  𝐸[𝑆(𝑥, 𝑌)]                                               (3.17) 

 



  

114 
 

For example, where 𝑆(𝑥, 𝑦) = (𝑥 − 𝑦)2  and 𝑆(𝑥, 𝑦) =  |𝑥 − 𝑦|, the optimal forecast of the mean 

functional (square error) and the median functional (absolute error) are 𝜌∗(𝐹𝑌) = 𝐸(𝑌) and 𝜌∗(𝐹𝑌) =

𝐹𝑌
−1 (

1

2
) respectively.  

A statistical functional 𝜌 is elicitable if there exists a forecasting objective function 𝑆, such that it is 

minimising the expected forecasting error yield 𝜌.  In other words, the mean score of the forecasting 

error should be as low as possible (as shown in Equation 5.14).  Elicitability of 𝜌 enables the evaluation 

of two point forecasting methods by comparing their respective expected forecasting errors, 𝐸𝑆(𝑥, 𝑌).  

As the distribution 𝐹𝑌 is unknown, the expected forecasting error can be approximated by the mean, 

1

𝑛
∑ 𝑆(𝑥, 𝑌)𝑛
𝑖=1 , where 𝑌1, ⋯ , 𝑌𝑛 are samples that have the distribution 𝐹𝑌 and 𝑥1,⋯ , 𝑥𝑛 are the 

corresponding point forecasts. 

If a statistical functional 𝜌 is not elicitable, then for any objective function 𝑆, the minimisation of the 

expected forecasting error does not yield the true value 𝜌(𝐹). This means that it is not possible to 

ascertain which of the competing point forecasts for 𝜌(𝐹) performs the best by comparing their 

forecasting errors, regardless of what objective function 𝑆 is used. 

Kou and Peng (2014) trace the concept of elicitability as dating back to the pioneering work of Savage 

(1971), Thomson (1979), Osband (1985), Lambert, Pennock and Shoham (2008) and Gneiting (2011).  

Kou and Peng (2014) recognise the importance of the specification of an objective function (i.e. the 

function 𝑆) being consistent for the target functional.  They quote Gneiting (2011) as pointing out that 

“in issuing and evaluating point forecasts, it is essential that either the objective function be specified 

ex ante, or an elicitable target functional be named, such as an expectation or a quantile, and objective 

functions be used that are consistent for the target functional.” 

It is possible to backtest a VaR model using the most recent data.  This can be achieved by simply 

observing whether the number of exceptions (exceedances) that would have been encountered if the 

model had been used in the past is significantly different from what is expected (Hull, 2014).  This is, 

however, not that straight forward in the case of ES.  By definition ES measures all risks in the tail of a 

distribution, i.e., it is concerned with the average losses beyond a certain VaR threshold.  Included in 

this are theoretically impossible losses not observable during backtesting (Chen, 2014).  This infers that 

in backtesting ES, the prediction is an entire distribution while the realisation is a single scenario (Acerbi 

and Szekely 2014).  Put differently; what is being tested is an expectation rather than a single quantile 

(Danielsson 2011).  Consequently, this poses a difficulty because it entails averaging of multiple 
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scenarios in backtesting in order to estimate the expected shortfall (Emmer et al., 2013).  For this 

reason, unlike VaR, ES has a deficiency in terms of forecasting.   

The standard solution to the backtesting conundrum of ES is utilising ES to carry out calculations then 

employ VaR after that do the backtesting.  In this regard, despite the proposal by the Basel Committee 

on Banking Supervision (2013) to replace VaR with ES, they opted to keep VaR as a backtesting measure.  

This approach still leaves the tails untested (Acerbi and Szekely, 2014) and makes for a somewhat 

awkward position in which the risk measure being backtested is quite different from the one used to 

calculate capital (Hull, 2014).  Besides, backtesting ES by making use of the violation ratios for VaR 

makes the shortfall procedure less reliable than that of the VaR backtest (Daielsson, 2011 and Acerbi 

and Szekely, 2014).  This is because the indicated test is a joint test of the accuracy of VaR and the 

expectation beyond this VaR.  For this reason, the estimation errors in the ES backtest also have to be 

taken into consideration.  This suggests that the ES backtest is more likely to be less accurate than that 

of the VaR backtest (Danielsson, 2011).  Accordingly, the expected shortfall backtests needs a bigger 

sample size as compared to the VaR.  Danielsson (2011) argues that in instances where VaR is 

subadditive, the ES is obtained directly from VaR and results in the same signal as VaR, and it is, 

therefore, better to utilise VaR.   

Some other methods have been proposed in practice to mitigate the deficiency above of ES (Emmer, 

2013; Acerbi and Szekely, 2014 and Fissler, Ziegel and Gneiting, 2016).  For example, Emmer et al. 

(2013) propose the approximation of ES with quantiles or expectiles hence rendering it possible to 

make use of backtesting methods for VaR.  However, Acerbi and Szekely (2014) contend that while 

expectiles are coherent and elicitable alternatives to ES, their underlying concept is less intuitive than 

the concept of VaR and ES.  Moreover, another problem that quantiles present is that they may display 

diversification where there is none (Tasche, 2013). 

Despite numerous criticisms levelled against ES, Kerkhof and Melenberg (2004) observe that it is not 

necessarily harder to backtest than VaR.  More recently, Acerbi and Szekely (2014) and Fissler, Ziegel 

and Gneiting (2016) argue that while elicitability is relevant for model selection, it is not relevant for 

model testing and it, therefore, has nothing to do with backtesting.  They contend that elicitability 

permits the comparison, naturally, of different models that forecast statistics in the precise same 

sequence of events while recording only point predictions.  This, they assert is model selection, not 

model testing and that “it is a relative ranking, not an absolute validation”.  Acerbi and Szekely (2014) 

further declare that even a hypothesis test based on elicitability still needs either the collection of the 
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predictive distribution or strong distributional assumptions, with no guarantee of better power a priori.  

Besides VaR backtests entail counting exceptions, despite being elicitable.  Moreover, they highlight 

that the simplicity of these tests and the recording of a point estimates lies in the quantiles defining a 

Bernoulli random variable as opposed to the elicitability of VaR.  In another study, Fisseler, Ziegel and 

Gneiting (2016) prove that actually, expected shortfall is jointly elicitable with VaR.  They show that the 

two backtests, i.e. the traditional backtest which is aimed at model verification by testing whether the 

estimates by the risk measure are correct and the comparative backtest whose purpose is to test the 

estimates of a particular risk measure are as good as another (e.g. one provided by a regulator).  They 

argue that unlike the comparative backtest, the traditional backtest does not require elicitability as it 

looks at model validation as pointed out earlier.  However, elicitability is crucial for the comparative 

backtesting as the purpose is to compare risk measures and in this instance, the ES and VaR can be used 

together as they are jointly elicitable. 

3.6.2.2. Estimation errors 

Yamai and Yoshima (2005) show that even though the ES has better properties than VaR where tail risk 

is concerned, it does not always generate better results than VaR when simulation methods are 

adopted.  Both VaR and ES estimates are affected by estimation error; however, the sampling 

fluctuation resulting from sample size is not substantial enough in VaR (Kondor, 2014).  As the 

underlying loss distribution becomes more fat-tailed, the ES estimates become more varied due to 

infrequent and significant losses.  Because of this, the ES estimation error grows more substantial than 

that of VaR (Yamai and Yoshima, 2005).  The remedy to the high estimation error in the expected 

shortfall is to increase the sample size used in the simulations (Emmer et al., 2013 and Yamai and 

Yoshima, 2005) to obtain the same level of accuracy as VaR.  Failure to do this, the optimisation for 

portfolios will become unfeasible (Kondor, 2014).  Likewise, Sheppard (2013) observes that ES can only 

be measured when there is a VaR exceedance and that about four years of data would only produce 

about 50 observations where this is true.  Therefore, the ES evaluation is constrained by the lack of 

data in the tails and this could result in the failure to reject a hypothesis in many cases even when using 

badly misspecified ES models (ibid).  Because of this estimation error, for Gaussian tails and where 

there are heavier tails, a 1%VaR is equivalent to 2.5% ES (Acerbi and Szekely, 2014).   
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3.7. Data, methodology and analysis 

3.7.1. Data 

In order to perform market risk analysis, frequent data, such as intra daily or daily returns are required.  

For this reason, this study has made use of REITs returns, to apply market risk modelling to real estate 

because they are more susceptible to analysis owing to the availability of frequent data.  For this 

reason, direct real estate returns were not considered due to infrequency data availability.  Five (5) 

international REIT Indices spanning three continents, namely, the US, UK, France, Australia and Canada 

were used.  The criterion for picking these markets was purely based on data availability i.e., those that 

had daily data from 1996 and this spans from January 1st, 1996 to December 31st, 2016.  This is 

equivalent to 5480 data points of returns giving a total of 21 years, which includes the global financial 

crisis period.  Like Zhou and Anderson (2012), it is noteworthy that apart from the US, not all the other 

markets had REITs in the period of investigation, for example, REITs in the UK were only introduced in 

2007 but their returns have been backdated.  This was done by making use of returns of property 

operating companies before the introduction of REITs in these markets.  All the data for the REIT 

markets under consideration were obtained from Thompson Reuters Datastream®.  

Descriptive statistics  

Table 3.1 shows the descriptive statistics of the five REIT markets along with an equally-weighted 

portfolio created from these REIT markets.  As expected the mean return for all the markets are about 

zero.  The statistics show that the returns from these markets are not normally distributed.  The returns 

are skewed as they all have non-zero third moments, i.e. the skewness.  Additionally, the fourth 

moment, i.e. kurtosis and the Jarque Bera probability reveal the existence of fat tails because they show 

values over 3 and are very large respectively.  The reported probabilities for the Jarque-Bera statistics 

are significant therefore leading to the rejection of the null hypotheses of normal distribution.  This is 

in line with one of the stylised facts of financial assets, which state that returns for financial assets are 

not normally distributed and exhibit fat tails. 
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Table 3.1…Descriptive statistics for international REIT indices 

Note: This table is for the log returns of international REITs for the entire sample period, i.e., January 1st, 1996 to December 
31st, 2016. The portfolio shown is equally -weighted. 

 

The other stylised fact as highlighted earlier is that concerned with volatility clustering.  This can be 

seen visually in Exhibit 3.1 that plots the returns of the five REIT markets and shows that periods of high 

volatility bunch up together indicating that the returns of the REITs are also prone to volatility clustering 

in the same way as mainstream financial asset returns. 

Another stylised fact about financial returns has to do with the predictability of returns.  As earlier 

pointed out, the returns of financial assets show little autocorrelation or serial correlations; however, 

squared returns, on the other hand, have a more significant serial correlation.  Exhibits 6.2 and 6.3 

show correlograms that provide a graphical display of estimates of serial correlation through the 

Autocorrelation Functions (ACFs).  This demonstrates that at least 5% of the estimated correlations for 

returns lie outside the blue lines, i.e. the 95% confidence intervals.  The squared returns show even 

more evidence of autocorrelation thus confirming volatility clustering25.  REIT returns are, therefore in 

line with this stylised fact suggesting that it is difficult to predict returns for REITs compared to volatility 

as the squared returns have higher autocorrelations.  This can be shown by utilising formal statistical 

tests like the Durbin–Watson test and the Ljung–Box test.  For the data in question, the Durbin-Watson 

statistic is 1.2393 meaning that there is a positive serial correlation as it is below 2 (Johnston and 

DiNardo, 1997).  The presence of serial correlation is supported by the Ljung-Box test whose results are 

shown in the correlogram in Exhibit 3.4 which indicate substantial and persistent autocorrelation in the 

residuals.  No serial correlations happen when AC and PAC at all lags are near zero and all Q-statistics 

should not be significant as shown by the probability.  

                                                 
25 This is perhaps with the exception of France where not all the points lie outside the blue lines but the majority do. 

Australia Canada France UK US Portfolio

Mean 0.000116 0.000257 0.000451 0.000136 0.000206 0.000292

Median 0.000000 0.000000 0.000000 0.000119 0.000104 0.000516

Maximum 0.079842 0.091943 0.144561 0.103992 0.171574 0.060999

Minimum -0.120779 -0.090097 -0.225182 -0.164104 -0.206765 -0.074997

Std Deviation 0.011914 0.009858 0.015628 0.013737 0.016602 0.008417

Skewness -0.704946 -0.405114 -0.405114 -0.499407 -0.154563 -0.669984

Kurtosis 14.350740 12.615460 18.835200 13.094350 27.145300 12.652250

Jarque-Bera 29872.17 21337.65 57405.3 23494.03 133139.2 21682.86

Probability 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000



  

119 
 

 
Exhibit 3.1: REITs log returns  

Note: this exhibit shows plots of REIT log eturns for the different REIT markets for the period from 1996to 2016 . 

 

  

-.15

-.10

-.05

.00

.05

.10

96 98 00 02 04 06 08 10 12 14 16

Australia

-.10

-.05

.00

.05

.10

96 98 00 02 04 06 08 10 12 14 16

Canada

-.3

-.2

-.1

.0

.1

.2

96 98 00 02 04 06 08 10 12 14 16

France

-.20

-.15

-.10

-.05

.00

.05

.10

.15

96 98 00 02 04 06 08 10 12 14 16

UK

-.3

-.2

-.1

.0

.1

.2

96 98 00 02 04 06 08 10 12 14 16

US

-.08

-.04

.00

.04

.08

96 98 00 02 04 06 08 10 12 14 16

Porftolio



  

120 
 

ACF for returns 

 
 

  

 

 

 
Exhibit 3.2.Autocorrelation Function (ACF) for REIT returns.  

Note: The correlogram or autocorrelation plot shows the autocorrelation function of returns with 20 lags. The blue lines 
marking the standard 95% confidence intervals for the autocorrelations of a process of i.i.d. finite-variance random variables 
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ACF squared returns 

  

 
 

 

 

Exhibit 3.3 Autocorrelation function (ACF) for squared returns 
Note: The correlogram or autocorrelation plot shows the autocorrelation function of squared returns with 20 lags. The blue 
lines marking the standard 95% confidence intervals for the autocorrelations  

 
As earlier highlighted, fat tails characterise financial returns.  This occurs because, compared to a 

normally distributed random variable, an asset or portfolio shows more extreme outcomes even when 

the mean and variance (of the random variable and the asset or portfolio) are the same.  The Quantile-
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Quantile (QQ) plots in Exhibit 3.5 demonstrate that the REIT returns are not normally distributed given 

that not all points lie alone the red line.  These REIT returns also display leptokurtosis or fat tails since 

the points on each end of the QQ plots do not lie on the red line.  In other words, these distributions 

are more narrow in the centre but have longer and heavier tails than the normal distribution.  Fat tails 

imply that the extreme values will be expected compared to those from returns obtained from a normal 

distribution (McNeil et al., 2005).  In this instance, the implication is that similar to the returns of 

financial assets; the normal distribution is not suitable to model these returns 

 

 
Exhibit 3.4: Ljung-Box Correlogram for REITs – (in Eviews) 
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Exhibit 3.5: QQ plots for 5 International REIT indices and an equally weighted portfolio 

Note: The Quantile-Quantile (QQ) plots show if the distribution of the data is normal in which case all the points lie on the 
redline. This is because the red line represents the theoretical normal distribution.   
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3.7.2. Methodology 

The study estimates VaR and ES to ascertain its performance in all the five REIT markets at both 

univariate (asset) and multivariate (portfolio) levels. The univariate level estimates VaR and ES based 

on the equally-weighted, historical simulation, EWMA, and GARCH(1,1) models and backtesting 

undertaken by making use of the Risk Management toolbox in MATLAB®26 and a method proposed by 

Danielsson (2011) for VaR and ES respectively.  At the portfolio level, the Risk Management toolbox, as 

well as Danielsson’s (2011) method, is utilised in order to assess the performance of the models.  

Further analysis is carried out taking the stylized facts of returns into consideration.  Here, the GARCH-

EVT-copula is be implemented to address the nonnormality, fat tails, non-linear dependences and also 

leverage effects.  Backtesting is then implemented using methods proposed by Acerbi and Szesky 

(2014) to test the accuracy of the risk measures.  In order to implement the above, MATLAB is utilised.  

The further analysis will use 99% and 97.5% losses at 1 day holding period estimation27 for VaR and ES 

respectively.  In order to reduce the estimation error, 1000 daily historical returns are used to forecast 

the VaR and ES.  The student t distribution is employed to model the REIT data because of the 

unsuitability of the normal distribution in modelling returns of financial assets highlighted before 

(McNeil et al., 2005 and Koliai, 2016) which can lead to the underestimation of market risk. 

3.7.3. Backtesting  

The performance of the market risk models can be tested or validated by a process called backtesting.  

Christoffersen (2012) defines backtesting as a process that considers the ex-ante risk measure forecast 

from a model (in this case VaR or ES) and compares them with the ex-post realised returns.  More 

formally, Dowd (2005) describes backtesting as the quantitative methods used in ascertaining whether 

a model’s forecasts are consistent with the assumptions on which it is based, or in ranking against each 

other, a group of models.  In other words, backtesting looks at assessing the accuracy of a model had 

it been applied in the past.  This is achieved by comparing the realised or actual ex-post (i.e. historical) 

losses with the forecasted or potential (ex-ante) losses (for VaR for instance), for a particular data point.  

If the realised loss is more than the VaR, then there has been a violation of the forecast, and these are 

considered as exceptions or exceedances (Hull, 2015).  For example, for a daily VaR with a 95% 

confident interval, the expected exceedances or exceptions should not be more than 5% of the days in 

                                                 
26 MATLAB developed by MathWorks, is a numerical computing environment and proprietary programming language. 
27 A 5 and 10 day holding period was also going to be done but this was abandoned due to the protracted time that the 

simulations take. For example a 1 day holding period took about 8 days to run 
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the sample.  Violations in excess of 5% of the days imply VaR underestimation of the losses while 

exceedances lower than 5% indicates an overestimation of losses.  Both have implications particularly 

for capital allocations with the former likely to result in large losses while the latter may result in too 

much risk averseness and potentially missing out on opportunities.  It is noteworthy, however; that 

while backtesting can identify the weakness of risk forecasting models, it does not provide information 

about the causes of the weaknesses (Danielson. 2011).  This research is based on daily returns, and it 

is assumed that there are no intra-day changes in the value of the asset or portfolio.  That said, the 

reality is that the value of an asset or portfolio changes during the day; however, for easy of calculations 

this will not be incorporated in this study.  

In order to undertake the backtesting the following notation is used: 

𝑊𝑇 Testing window size 

𝑊𝐸 Estimation window 

𝑇 = 𝑊𝑇 +𝑊𝐸 Number of observations in the sample 

An estimation window, 𝑊𝐸 (i.e. the number of observations used to forecast the risk) of 1000 days is 

used similar to Kuester, et al (2006, 2005).  A relatively high estimation window is chosen with EVT in 

mind, which according to Danielsson (2011) requires at least a sample size of 1000 as a rule of thumb.  

This is in order to capture the violations as they are normally observed infrequently.  The data sample 

over which the forecasts have been made is called the testing window (𝑊𝑇) and this corresponds to 17 

years’ worth of observations i.e. between January 2000 and December 2016.  This means that the VaR 

and ES forecasts have been evaluated using a sample size of 5480 observations over a period of 21 

years which is the sum of the estimation window and the test window.  The backtesting procedure is 

summarised in Exhibit 3.6. 

In essence, the VaR and ES are estimated over the testing period using the estimation window and the 

forecast will be compared to the return after a holding period (H) of one day.  This results in the 

(𝑉𝑎𝑅𝑊𝐸+1 for the first iteration.  The process will be repeated for the number of 4435 iterations in the 

testing window.  Even though both VaR and ES are both backtested, for simplicity the notations used 

to illustrate the backtesting process is based on VaR. 
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Exhibit 3.6: Backing procedure 
Note: The entire data spans about 21 years and 1000 daily observations are used to forecast the risk measures and backtesting is done over 17 years. 

 

 

 

Entire data sample (T) 
t =T t =1 

01/01/1996  30/12/2016 

First estimation window 

t =𝑊𝐸 

t =1 

02/01/1996 03/01/2000 

 
H=1 

 

04/01/2000 

 

VaR((𝑊𝐸 + 1) 

Second estimation window 

t =𝑊𝐸 

t =1 

03/01/1996 

 
04/01/2000 

 
H=1 

 

05/01/2000 

 
VaR(𝑊𝐸 + 2) 

Last estimation window 

t =𝑊𝐸 

t =T-1000-1 

1/3/2013 

 
29/12/2016 

 
H=1 

 

30/12/2016 

 
VaR(𝑇) 

⋮ 
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Definition of violations  

As previously stated, a violation occurs when the actual observed return exceeds the forecast VaR.  In 

other words, when the VaR limit has been violated (Danielson, 2011) and therefore there has been an 

exceedance.  Each violation is given a value of 1 whereas a value of 0 is given when there is no violation.  

Formally, the VaR violation are denoted as presented by Danielson (2011) and Jäger (2015) as 

𝐼𝑡+𝐻
𝐻 = {

1
0
     
𝑖𝑓 𝐿𝑡+𝐻 ≥ 𝑉𝑎𝑅𝑐

𝑡,𝐻

𝑖𝑓 𝐿𝑡+𝐻 ≤ 𝑉𝑎𝑅𝑐
𝑡,𝐻                                                 (3.18) 

Where 𝐿𝑡+𝐻 represents the observed loss at point 𝑡 + 𝐻 and 𝑉𝑎𝑅𝑐
𝑡,𝐻 is the forecasted VaR at time 𝐻 

but for point 𝑡 + 𝐻.  

The number of violations for the test period is given by  

𝐼 =∑𝐼𝑡+𝐻
𝐻

𝑇

𝑡=1

                                                             (3.19) 

 

Dowd (2005) highlights that formal statistical backtesting is based on standard hypothesis testing.  This 

involves stating the null hypothesis together with an alternative hypothesis that is to be accepted in 

the case of the rejection of the null hypothesis.  The hypothesis test is undertaken at a specific 

significant level which specifies the probability associated with the point at which the hypothesis is 

‘accepted’ or is ‘true’ or formally where the decision is to ‘fail to reject’ the null hypothesis.  The 

hypothesis is ‘accepted’ if the estimated value of this probability, exceeds the chosen significance level, 

and is rejected otherwise (Dowd, 2005).  The higher the significance level, the more likely the null 

hypothesis will be accepted, and the less likely a Type I error will be made, i.e. the incorrect rejection 

of an accurate model.  However, this increases the possibility of occurrence of a Type II error, i.e. the 

incorrect acceptance of a false model.  Any test, therefore, involves a trade-off between these two 

types of possible errors.  Preferably, a significance level that takes account of the likelihood of these 

errors (and, in theory, their costs as well) and strikes an appropriate balance between them, should be 

selected.  Nevertheless, it is customary in practice for an arbitrary significance level, such as 5%, to be 
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selected and applied in all the tests.  A significant level of this magnitude gives the model a particular 

benefit of the doubt suggesting that the model would only be rejected in instances where the evidence 

against it is reasonably strong (Dowd, 2005). 

As stated earlier, in order to assess the performance of VaR and ES, backtesting was undertaken using 

at univariate and multivariate level, i.e., asset and portfolio levels respectively.  Before undertaking 

these backtests, the respective backtesting methods for both VaR and ES are reviewed 

3.7.4. Backtesting VaR 

3.7.4.1. Binomial Test 

The primary frequency test also referred to as the binomial test, introduced by Kupiec (1995), is the 

most widely used because it is the most straightforward.  It tests whether the number of observed 

losses 𝑥, exceeding VaR (observed frequency of tail losses) is consistent with those predicted by the 

model (Dowd, 2005).  In other words, the aim is to test whether the fraction of violations is significantly 

different from that promised fraction (Chrisoffersen, 2012).  As indicated before, when performing a 

backtest, a violation; exception or exceedance takes a value of 1 and a value of 0 when there is no 

violation as shown by 𝐼𝑡+𝐻
𝐻  (see Equation 6.1).  The result is therefore, a sequence of ones and zeros.  

The hit sequence of violation should be completely unpredictable and therefore distributed 

independently over time as a variable that takes the value of 1 with probability 𝛼 and the value 0 with 

probability(1 − 𝛼).  When done over the testing window, (�̂�𝑡+𝐻
𝐻 )𝑡=1,…,𝑇 is a Bernoulli process of i.i.d. 

with a success probability 𝛼.  The Bernoulli process has two aspects. The first aspect tests that the 

number of violations is correct on average and is achieved by utilising a standard one-sided binomial 

test.  The other aspect checks if the i.i.d. property is satisfied (Jäger, 2015).  The former is what the 

Basel Committee demands.  The observed significance level is defined as: 

𝛼′ =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑡𝑒𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑
=
𝐼

𝑇
                     (3.20) 

The null hypothesis 𝐻0 checks whether the percentage of the violation 𝛼′ is greater than or equal to 𝛼 

i.e. (1 − 𝐶𝐿). So formally this translates to :- 

𝐻0: 𝑎 ≤ 𝛼
′                                                                        (3.21) 
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The test statistic is given by the number of violations, which in the testing window, is binomially 

distributed if 𝐻0 is satisfied; therefore  

𝑍0 (�⃗� 
𝐻 =∑𝐼𝑡+𝐻 

𝐻 ~ 𝐵(𝑇,

𝑇

𝑡=1

 𝛼′))                                               (3.22) 

The probability of getting precisely 𝑘 violations in 𝑇 trials is given by the density of the binomial 

distribution: 

𝑓(𝑘, 𝑇, 𝛼) =  (
𝑇
𝑘
)𝛼𝑘(1 − 𝛼)𝑇−𝑘, (

𝑇
𝑘
) =

𝑇!

𝑘!(𝑇−𝑘)!
   (3.23) 

Where 𝛼 is equal to 1 minus the confidence level, 𝑇 is the sample size and 𝑘 the number of observations 

whose losses exceeding the VaR.   

𝑍𝑏𝑖𝑛 =
𝑥 − 𝑁𝑝

√𝑁𝑝(1 − 𝑝)
 

The rejection of the null hypothesis implies that the VaR forecast has either been underestimated or 

overestimated.  However, 𝑎 ≠ 𝛼′does not necessarily mean that it a model is bad because the 

statistical deviations of the estimation of 𝛼′ may not be out of the ordinary (Jäger,2015).  For this 

reason, the it is necessary to measure the significance of this departure and this can be achieved by the 

application of the Basel Committee’s “traffic light” system which consists of red, yellow and green 

zones.  

3.7.4.2. The traffic light Test  

Based on a testing window (T=250) and 𝛼 = 1% the Basel Committee defines a risk model in the red 

zone as having k violations producing a Type I error with a probability of, at most, 0.01%.  This is 

equivalent to a probability of, at most, k violations amounting to at least 99.99% in which case the 

model must be rejected, as it is significant.  A model is in the green zone when the probability of, at 

most, k violations amounts to less than 95%.  This model can be used as it is not significant. The yellow 

zone lies between the green and red zones and calls for the calibration of with a factor for further 

calculation.  Table 3.2 below summarises the definitions of the Basel Committee traffic zones based on 

250 days test window. 
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Basel 
Zone 

Violations (k) Probability zone Decision 

Red  10 ≤ k 
𝑃(𝑋 ≤ 𝑘) =  ∑ (

𝑛
𝑖
) 𝛼′(1 − 𝛼)𝑇−𝑖

𝑘

𝑖=0
≥ 99.99% 

 
Reject model 

Yellow  5 ≤ k ≤ 9 
95% ≤ 𝑃(𝑋 ≤ 𝑘) =  ∑ (

𝑛
𝑖
) 𝛼′(1 − 𝛼)𝑇−𝑖

𝑘

𝑖=0
< 99.99% 

 

Calibrate model 
with factor for 
further 
calculation 
 

Green K ≤ 4 
𝑃(𝑋 ≤ 𝑘) =  ∑ (

𝑛
𝑖
) 𝛼′(1 − 𝛼)𝑇−𝑖

𝑘

𝑖=0
< 95% 

 
Use model 

Table 3.2:  Traffic light test. Source: Danielsson (2011) and Jäger (2015) 
Note: The definitions of the traffic light system in the above table is based on a 250 days (trading days) window. Green, Yellow 
and Red  signify the number violations that are 4 or less, between 5 and 9, and at least 10 respectively 

3.7.4.3. Kupiec’s proportion of failures  

The proportion of failures (POF) test is a variation of the binomial test that was introduced by Kupiec 

(1995). This test through a likelihood ratio tests whether the probability of violations corresponds with 

the probability p suggested in the confidence level of the VaR.  The VaR model is accepted or rejected 

if the probability of violation (exceptions) are in line or different with p respectively.  In its basic form, 

similar to equation (6.2) the observed proportion of failures is defined as: 

𝑝′ =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑡𝑒𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑
=
𝐼

𝑇
                     (3.24) 

The null hypothesis 𝐻0 checks whether the proportion of failures (percentage of the violation) 𝑝′ is 

greater than or equal to 𝑝 i.e. (1 − 𝐶𝐿).  So formally this translates to :- 

𝐻0: 𝑝 ≤ 𝑝
′                                                                        (3.25) 

3.7.4.4. Time Until First Failure (TUFF)  

The time Until First Failure is a simple test centred on the time when the first exceedance occurs.  Its 

recommended use is when long runs of data are unavailable, for instance in the period shortly after 

the introduction of a new risk model or major changes to an existing one have been made (Dowd, 

2005).  The model is more likely to be rejected, the shorter the time to the first failure.  The weakness 

of this test is that it ignores whatever happens after the first violation.  This test, therefore, leaves out 

a lot of information.  Give a probability of an exceedance 𝑝, the probability of observing the first 
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exceedance in period 𝑇 is 𝑝(1 − 𝑝)𝑇−1, and the probability of observing the first exceedance by period 

𝑇 is 1 − (1 − 𝑝)𝑇 thus obeying a geometric distribution (Dowd, 2005).   

The previous two tests are basic, whose strengths lie in their simplicity, easy of application and 

parsimonious nature in that they do not require a lot of information, i.e. they can be implemented by 

knowing only n, p and x.  Their foremost weakness, however, is that they are not able to identify bad 

models because they lack the power unless applied to large samples.  This stems from the earlier 

mentioned problem of disregarding potentially useful information. Dowd (2005) identifies the two 

types of discarded information below: 

• The tests discard information regarding the temporal pattern of exceedances, as the frequency 

of exceedances is the only focus.  This is so because many risk models predict that exceedances 

are i.i.d. i.e. the probability of a tail loss is constant and independent of whether or not an 

exceedance occurred the previous period.  

• Frequency tests discard information on the sizes of tail losses predicted by models.  The 

implication is that a ‘bad’ risk model that generates an acceptably accurate frequency of 

exceedances is likely to pass despite having poor forecasts of losses larger than VaR.  

In order to address the weaknesses above, the fundamental frequency tests are rewritten in the 

likelihood ratio (LR) form based on Christoffersen (1998).  The test here is that the model predicts the 

‘correct’ frequency of exceedances or in other words looks at the prediction of correct unconditional 

coverage (Dowd, 2005). If 𝑥 is the number of exceedances in a sample, and 𝑛 is the number of 

observations, then the observed frequency of exceedances is 𝑥/𝑛 (similar to Equation (3.24)).  Given 

that, the predicted probability of exceedances is 𝑝 (i.e. 1 minus the confidence level); the earlier tests 

can be expressed in terms of LR test.  Under the hypothesis/prediction of correct unconditional 

coverage, the tests statistics of the POF and TUFF are given in Equations (3.26) and (3.27) respectively: 

𝐿𝑅𝑃𝑂𝐹 = −2𝑙𝑛(
(1 − 𝑝)𝑁−𝑥𝑝𝑥

(1 −
𝑥
𝑁
)
𝑁−𝑥

(
𝑥
𝑁
)
𝑥) = −2 [(𝑁 − 𝑥)𝑙𝑜𝑔 (

𝑁(1 − 𝑝)

𝑁 − 𝑥
) + 𝑥𝑙𝑜𝑔 (

𝑁𝑝

𝑥
)] (3.26) 

 
Where 𝑥 and 𝑁 represent the number of failures and the number of observations respectively. 𝑝 =

1 − 𝐶𝐿 (CL is the confidence level) 
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𝐿𝑅𝑇𝑈𝐹𝐹 = −2𝑙𝑛(
𝑝(1 − 𝑝)𝑛−1

(
1
𝑛)(1 −

1
𝑛)
𝑛−1) 

 
= −2(log(𝑝) + (−1) log(1 − 𝑝) + 𝑛𝑙𝑜𝑔(𝑛) − (𝑛 − 1)(log(𝑛 − 1)           (3.27) 

 

In Equation (3.27), with 𝑛 represents the number of days until the first exceedance.  This test statistic 

is asymptotically distributed as a chi-square variable with one degree of freedom (Kupiec 1995). 

3.7.4.5. Coverage tests 

Unconditional coverage test  

A test of the null hypothesis that is assumed to follow an i.i.d. Bernoulli process and has a constant 

‘success’ probability equal to the significance level of the VaR, 𝛼, is referred to as unconditional 

coverage test ( Alexander, 2008d).  Here, the test statistic is a likelihood ratio statistic given by  

𝐿𝑅𝑢𝑐 =
𝜋𝑒𝑥𝑝
𝑛1 (1 − 𝜋𝑒𝑥𝑝)

𝑛0

𝜋𝑜𝑏𝑠
𝑛1 (1 − 𝜋𝑜𝑏𝑠)

𝑛0
                                                       (3.28) 

Where 𝜋𝑒𝑥𝑝 is the expected proportion of exceedances, 𝜋𝑜𝑏𝑠 is the observed proportion of 

exceedances, 𝑛1 is the observed number of exceedances and 𝑛0 = 𝑛 − 𝑛1 where 𝑛 is the sample size 

of the backtest.  Put differently, 𝑛0 is the number of returns with indicator 0 (i.e. where there are no 

exceedances), 𝜋𝑒𝑥𝑝 = 𝛼 and  𝜋𝑜𝑏𝑠 = 𝑛1/𝑛.  The asymptotic distribution of −2 ln 𝐿𝑅𝑢𝑐 is chi-squared 

with one degree of freedom. 

Alexander (2008b) observes that in order to reduce rounding errors, it is better to compute the log of 

likelihood ratio statics directly as shown below, then taking the log afterwards.  

ln(𝐿𝑅𝑢𝑐) = 𝑛1 ln(𝜋𝑒𝑥𝑝) + 𝑛0 ln(1 − 𝜋𝑒𝑥𝑝) − 𝑛1 ln(𝜋𝑜𝑏𝑠) + 𝑛0 ln(1 − 𝜋𝑜𝑏𝑠)            (3.29) 

As observed earlier, one of the stylised facts is that financial returns usually present volatility clustering.  

This can result in the clustering of exceedances indicating that the VaR model is not sufficiently 

responsive to changing market conditions (Alexander 2008d).  Consequently, a VaR model could still be 

rejected if the exceedances are not independent despite passing the unconditional coverage test.  This 
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is because violations that are clustered together increase the probability of bankruptcy compared to 

those that are spread randomly over time (Christoffersen, 2012).  For this reason, Christoffersen (1998) 

developed the independence test.   

Independence test  

Unlike the unconditional test, when exceedances are not independent the probability of an exceedance 

tomorrow, given there has been an exceedance today, is no longer equal to 𝛼.  Notations by Alexander 

(2008d) are used to describe the independence test.  As before, let 𝑛1 be the observed number of 

exceedances and 𝑛0 = 𝑛 − 𝑛1 be the number of ‘good’ returns as in the conditional test.  Let 𝑛𝑖𝑗 be 

the number of returns with indicator value 𝑖 followed by indicator value 𝑗, i.e. 𝑛00 is the number of 

times a good return is followed by another good return.  Likewise, 𝑛01 represents the number of times 

a good return precedes an exceedance, 𝑛10 the number of times with an exceedance followed by a 

good return, and 𝑛11 the number of times with an exceedance followed by another exceedance.  So 

𝑛1 = 𝑛11 + 𝑛01 and 𝑛0 = 𝑛10 + 𝑛00.  Also let 

𝜋01 =
𝑛01

𝑛00 + 𝑛01
 𝑎𝑛𝑑 𝜋11 =

𝑛11
𝑛10 + 𝑛11

 

i.e. 𝜋01 is the proportion of exceedances, given that the last return was a ‘good’ return and 𝜋11 is the 

proportion of exceedances, given that the last return was an exceedance.  The independence test 

statistic as derived by Christoffersen (1998) is: 

𝐿𝑅𝑖𝑛𝑑 =
𝜋𝑜𝑏𝑠
𝑛1 (1 − 𝜋𝑜𝑏𝑠)

𝑛0

𝜋01
𝑛01(1 − 𝜋01)

𝑛00 𝜋11
𝑛11(1 − 𝜋11)

𝑛10
                                 (3.30) 

The asymptotic distribution of −2 ln 𝐿𝑅𝑖𝑛𝑑 is chi-squared with one degree of freedom. 

The independence test only works if exceedances are consecutive because it is based on a first-order 

Markov chain only.  In order to detect exceedances that are not consecutive, an extension is applied to 

a higher order Markov chain that allows more than first-order dependence.  In such cases, the 

conditional coverage test, which is a combined test for both unconditional coverage and independence, 

can be employed.  This is given by:- 

𝐿𝑅𝑐𝑐 =
𝜋𝑒𝑥𝑝
𝑛1 (1 − 𝜋𝑒𝑥𝑝)

𝑛0

𝜋01
𝑛01(1 − 𝜋01)

𝑛00 𝜋11
𝑛11(1 − 𝜋11)

𝑛10
                                        (3.31) 
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The asymptotic distribution of −2 ln 𝐿𝑅𝑐𝑐 is chi-squared with two degrees of freedom. It follows that 

𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑 and hence −2 ln 𝐿𝑅𝑐𝑐 = −2 ln 𝐿𝑅𝑢𝑐−2 ln 𝐿𝑅𝑖𝑛𝑑 

 

3.7.5. Backtesting results   

The study has split the backtesting results into two. The first set of results utilise the Risk Management 

Toolbox from MATLAB and incorporate the results for a simple ES test proposed by Danielsson (2011). 

This looks at results for both univariate and multivariate levels. The second set of backtesting is 

undertaken at the multivariate level only and involves backtest procedures proposed by Acerbi and 

Szekely (2014).  

3.7.5.1.0 Univariate (Asset) level  

The market risk modelling of the five International REIT indices was undertaken in MATLAB using the 

“Risk Management” toolbox.  Both VaR and ES are estimated by making use of the Normal VaR, 

Historical Simulation (HS), EWMA and GARCH(1,1) at 95% and 99% confidence levels. Exhibits 3.7 and 

3.8 show the performance of VaR and ES for these approaches at 95% confidence level when compared 

to the returns for each of the five REIT markets.   

As expected, it can be seen from both Exhibits 3.7 and 3.8 that the Normal VaR and Historical Simulation 

for both 95% and 99% VaR estimates are generally stable over time because equally-weighted volatility 

is assumed.  They are generally low but increase after the 2008 financial crisis and mostly remaining 

high until around 2013.  The EWMA and GARCH volatility models result in more realistic VaR and ES 

estimate because they are time-varying, unlike the Normal and Historical Simulation.  In terms of 

whether the models are good or bad, formal backtests whose results are summarised in Exhibits 6.8 to 

6.16, were undertaken. 
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Exhibit 3.7… Comparison or returns and 95% VaR for international REIT indices  
Note:  The exhibit above shows returns of different REIT indices compared to the 95% VaR predictions estimated by the 
different VaR models, namely normal VaR, historical simulation, EWMA and GARCH(1,1) 
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Exhibit 3.8: Comparison or returns and 95% ES for international REIT Indices  
Note:  The exhibit above shows returns of different REIT indices compared to the 95% VaR predictions estimated by the 
different VaR models, namely normal VaR, historical simulation, EWMA and GARCH(1,1) 
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3.7.5.1.1. Formal VaR backtesting 

Exhibits 3.9 to 3.11 show the formal backtesting results for 95% and 99% VaR for the Normal, Historical 

Simulation, EWMA and GARCH models for all Australia, Canada, France, UK and the US REITs markets.  

Exhibit 3.9 shows the detailed backtesting results for the Normal 95% VaR.  The results for the other 

VaR models, i.e. historical simulation, EWMA and GARCH(1,1) and also the 99% VaR in Appendix D Panel 

(a) of Exhibit 3.9 comprises of the basic results for the backtests.  The expected [failure] obtained by 

multiplying the number of observations in the backtest by the significant level, illustrates the number 

of failures anticipated if the model is accurate.  The failures are the actual number of violations or 

exceedances produced by the model.  The observed level is the ratio between the actual failures and 

the number of observations.  If the tests are accurate, the observed level for 95% VaR and 99% VaR 

should be result in observed levels of 0.95 and 0.99 respectively.  The ratio simply represents the 

failures as a proportion of the expected failures and should result in a value of 1 if the model is accurate. 

Panels (b) and (c) shows the test statistics and the p-values for the VaR backtests methods described 

previously, namely; the binomial, traffic light system, proportion of failure, time until first failure, 

conditional coverage and conditional coverage independence tests. Lastly Panel (d) summarises the 

hypothesis tests using a test level of 95% for each of the volatility models. 

Exhibits 3.10 and 3.11 summarises the backtest results for both 95% VaR and 99% VaR as stated above; 

the detailed results are in Appendix D.  

3.7.5.1.2. 95% VaR backtesting results  

Normal VaR 

The traffic light system mostly results in green and yellow regions resulting in the acceptance of the 

model.  The hypothesis is rejected for all the REIT markets except Australia and Canada for the binomial 

and the proportion of failure test.  The time until first failure tests are not significant for all the markets 

and therefore the hypothesis is accepted.  The results for the conditional coverage and the conditional 

coverage independent test are significant for all the REITs markets considered. 

  



  

138 
 

Historical simulation VaR 

Exhibit 3.10 shows that the traffic light system resulted in green and yellow for Canada, France and 

Australia, the UK respectively resulting in a decision to fail to reject the null hypothesis; however, it is 

rejected for the US that is in the red zone.  The binomial and proportion of failure produce the same 

results that show that the test is not significant for all of the REITs markets except UK and US whose p-

values are statistically significant leading to rejecting the null hypothesis that the model accurately 

predicts VaR.  For the time until to first failure, only France is significant meaning that the model 

accurately predicted the VaR for the other markets.  Similar to the normal, the conditional coverage 

and conditional coverage independent are also significant leading to the reject of the hypotheses. 

EWMA 

The traffic light system suggests that the model accurately predicts VaR with all the markets falling in 

the green zone except the UK that is in the yellow zone but is still acceptable as discussed earlier.  The 

binomial, proportion of failure, time until first failure are not significant for all the REITs markets.  All 

the REITs markets are significant under the conditional coverage tests while for the conditional 

coverage independent tests only the UK is not significant. 

GARCH  

All the REITs markets are in the green zone for the traffic light system.  Similarly, the binomial and 

proportion of failure tests are not significant suggesting that null hypotheses of the model are correctly 

predicting the VaR should not be rejected.  The time until first failure test results in the falling to reject 

the hypotheses for all the REITs markets except for France.  Concerning the conditional coverage test, 

the results were not significant for all the REITs markets except Australia and Canada.  For the 

conditional coverage independent test, all the results for the backtest are significant except for the US. 

In general, the less stringent tests of the traffic light, binomial, proportion of failures, time until first 

failure backtesting tests end in the hypotheses being accepted more times than the more stringent test 

of conditional coverage and conditional coverage independence tests.  This is notably so for the more 

robust VaR estimated from EWMA and GARCH volatility models.  The conditional coverage and the 

conditional coverage independence tests result in the rejection of hypotheses for all the REITs markets 

for the VaR estimated from a normal distribution and historical simulation.  The time until first failure 

tests generally suggest that the VaR models are accurate for most markets except for the historical 

simulation and GARCH VaR estimate in which one market results in the rejection of the model. 
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Observations Expected Failures Observed Level Ratio 

Australia 4435 221.75 235 0.94701 1.0598 

Canada 4435 221.75 204 0.95400 0.9200 

France 4435 221.75 177 0.96009 0.7982 

UK 4435 221.75 256 0.94228 1.1545 

US 4435 221.75 261 0.94115 1.1770 

(a) 
 

 Binomial Traffic Light Proportion of Failure Time Until First Failure  
Z-score P Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Australia 0.9129 0.1807 0.8286 0.1892 0.8181 0.3657 3.3215 0.0684 2 

Canada -1.2229 0.1107 0.1164 0.8969 1.5350 0.2154 0.8654 0.3522 7 

France -3.0832 0.0010 0.0008 0.9994 10.1820 0.0014 0.6813 0.4092 8 

UK 2.3598 0.0091 0.9906 0.0112 5.3161 0.0211 0.3153 0.5744 11 

US 2.7042 0.0034 0.9963 0.0045 6.9370 0.0084 3.3215 0.0684 2 

(b) 
 

 Conditional Coverage Conditional Coverage independence  
Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Australia 52.27 0.0000 51.45 0.0000 4006 193 193 42 

Canada 66.69 0.0000 65.16 0.0000 4066 164 164 40 

France 19.44 0.0000 9.26 0.0000 4096 161 161 16 

UK 37.74 0.0000 32.43 0.0000 3961 217 217 39 

US 60.38 0.0000 53.45 0.0000 3960 213 213 48 

(c) 
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TL Bin POF TUFF CC CCI 

Australia Green accept accept accept reject reject 

Canada Green accept accept accept reject reject 

France Green reject reject accept reject reject 

UK Yellow reject reject accept reject reject 

US Yellow reject reject accept reject reject 

(d) 
Exhibit 3.9: Backtesting results for Normal 95% VaR  

Note: Exhibit 3.9 shows the outcomes of the binomial, traffic light system, proportion of failure, time until first failure, conditional coverage and conditional coverage independence 
backtesting methods of VaR.  Panel (a) consists of the basic results for the backtests. Panels (b) and (c) shows the test statistics and the p-values while Panel (d) summarises the hypothesis 
tests using a test level of 99% for each of the volatility models. 
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(a) Normal VaR 

 

 
(b) Historical Simulation 

 
 

 
(c)  EWMA 

 

 
(d) GARCH(1,1) 

Exhibit 3.10: 95% backtesting results for 95% VaR  
Note: This exhibit presents the results for 95% VaR for the following tests, Traffic Light (TL), Binomial (Bin), Proportion of 
Failure (POF), Time Unitll First Failure (TUFF), Conditional Coverage (CC) and Conditional Coverage Independence (CCI). Only 
p-values are presented apart from the traffic light results. 

3.7.5.1.3. 99% VaR backtesting results  

Normal VaR  

The 99% VaR is more stringent than the 95% VaR.  The backtest outcome for the traffic light, binomial, 

proportional of failures, conditional coverage and as well as the conditional coverage independence 

result in the rejection of the null hypotheses for all the REIT markets as they are all in the red traffic 

Column1 TL Bin POF TUFF CC CCI

Australia green 0.1807 0.3657 0.0684 0.0000 0.0000

Canada green 0.1107 0.2154 0.3522 0.0000 0.0000

France green 0.0010 0.0014 0.4092 0.0001 0.0023

UK yellow 0.0091 0.0211 0.5744 0.0000 0.0000

US yellow 0.0034 0.0084 0.0684 0.0000 0.0000

Column1 TL Bin POF TUFF CC CCI

Australia yellow 0.0302 0.0654 0.0684 0.0000 0.0000

Canada green 0.1173 0.2403 0.3522 0.0000 0.0000

France green 0.0585 0.1109 0.0144 0.0021 0.0018

UK yellow 0.0001 0.0004 0.5744 0.0000 0.0000

US red 0.0000 0.0000 0.0684 0.0000 0.0000

Column1 TL Bin POF TUFF CC CCI

Australia green 0.3848 0.7703 0.0684 0.0060 0.0015

Canada green 0.3848 0.7703 0.3522 0.0002 0.0000

France green 0.0626 0.1311 0.4092 0.0067 0.0054

UK yellow 0.0410 0.0873 0.2948 0.0357 0.0530

US green 0.1807 0.3657 0.6565 0.0053 0.0019

Column1 TL Bin POF TUFF CC CCI

Australia green 0.0670 0.1278 0.0684 0.0012 0.0008

Canada green 0.0982 0.1903 0.3522 0.0001 0.0001

France green 0.1107 0.2154 0.0144 0.0520 0.0364

UK green 0.3334 0.6681 0.2948 0.0592 0.0193

US green 0.3848 0.7703 0.0684 0.2663 0.1095
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light zone and the p-values are significant.  The time until first failure test, however, is only significant 

for Australia and Canada. 

Historical simulation 

The backtesting results for 99% historical simulation VaR resulted in Australia and the US laying in the 

red zone, and therefore the hypothesis is rejected for these markets.  For the binomial and proportion 

of failures, the results are significant for all the markets except for Canada and France.  The times until 

first failure the hypotheses are accepted for all the markets except Canada.  Both the conditional 

coverage and the conditional coverage independence tests are all significant for all the markets and 

therefore result in the rejection of the null hypotheses. 

EWMA  

For the EWMA the hypotheses were rejected for all the markets for the traffic light, binomial, 

proportion of failure and conditional coverage.  The time until first failure test, on the other hand, give 

rise to results that are not significant for all the markets apart from Australia.  Lastly, the results for 

conditional coverage independence test are not significant except Canada and the US. 

GARCH  

All the markets are in the red zone except for Australia that is yellow under the traffic light system.  The 

results for binomial and the proportion of failure tests are significant for all the markets.  Only Australia 

and the UK have significant results for the time until first failure and the conditional coverage 

independence test respectively.  For the conditional coverage tests, the results for all the markets are 

significant except for Australia. 

Unlike the 95% VaR the 99% VaR considers VaR at a very high confidence level.  Consequently, overall, 

the basic backtesting tests like the traffic light system, binomial and proportion of failures tests lead to 

the rejection of the null hypotheses that the models used to estimate VaR, except the historical 

simulation, are accurate.   

 
(a) Normal VaR 

Column1 TL Bin POF TUFF CC CCI

Australia red 0.0000 0.0000 0.0110 0.0000 0.0000

Canada red 0.0000 0.0000 0.0484 0.0000 0.0000

France red 0.0000 0.0000 0.5947 0.0000 0.0035

UK red 0.0000 0.0000 0.6959 0.0000 0.0045

US red 0.0000 0.0000 0.7828 0.0000 0.0000
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(b) Historical Simulation 

 

 
(c)  EWMA 

 

 
(d) GARCH(1,1) 

Exhibit 3.11: 99% backtesting results for 95% VaR  
Note: This exhibit presents the results for 95% VaR for the following tests, Traffic Light (TL), Binomial (Bin), Proportion 
of Failure (POF), Time Unitll First Failure (TUFF), Conditional Coverage (CC) and Conditional Coverage Independence 
(CCI). Only p-values are presented apart from the traffic light results. 

 

  

Column1 TL Bin POF TUFF CC CCI

Australia red 0.0000 0.0001 0.4778 0.0000 0.0013

Canada yellow 0.0394 0.0912 0.0484 0.0001 0.0001

France green 0.1038 0.1927 0.5947 0.0464 0.0350

UK yellow 0.0001 0.0004 0.6959 0.0002 0.0293

US red 0.0000 0.0001 0.7828 0.0000 0.0000

Column1 TL Bin POF TUFF CC CCI

Australia red 0.0000 0.0000 0.0110 0.0001 0.1701

Canada red 0.0000 0.0000 0.0582 0.0000 0.0195

France red 0.0000 0.0000 0.5947 0.0000 0.2247

UK red 0.0000 0.0000 0.9376 0.0000 0.0567

US red 0.0000 0.0000 0.7828 0.0000 0.0157

Column1 TL Bin POF TUFF CC CCI

Australia yellow 0.0135 0.0353 0.0110 0.1062 0.8134

Canada red 0.0000 0.0000 0.0582 0.0001 0.5636

France red 0.0000 0.0000 0.5947 0.0000 0.6788

UK red 0.0000 0.0002 0.9376 0.0001 0.0324

US red 0.0000 0.0000 0.3114 0.0000 0.0929
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3.7.5.2.0. Multivariate (Portfolio) level  

At the portfolio, level the backtesting outcomes at the 95% VaR are in yellow and green zones for the 

normal, historical simulation and the EWMA, GARCH VaR models respectively.  In contrast, at 99% VaR 

all the VaR models fall in the red zone, apart from the historical simulation that is in the yellow zone.  

For the binomial and percentage of failures tests for 95% VaR, the normal and historical simulation VaR 

model backtests are significant leading to the rejection of the null hypotheses of a good model while 

the EWMA, and GARCH backtesting results were not significant.  However, all the models are significant 

for 99% VaR, and therefore the null hypotheses are rejected for all models for the two backtesting 

tests.  The hypotheses for the time until first failure of 95% VaR are all rejected suggesting that all the 

models are good predictors of VaR.  In contrast, the same test for 99% VaR give rise to significant results 

for all the VaR models.  As expected, because the VaR used a very high confidence level (99%), the first 

failures are delayed significantly compared to those of the 95% VaR (see panel (b)) of Exhibits 3.12 and 

3.13.  For both 95% and 99% VaR, the backtest for the conditional coverage and the conditional 

coverage independence tests were all significant, leading to the rejection of the null hypotheses. 
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 Observed Level Observations Failures Expected Ratio 

Normal 95 0.9430 4435 253 221.75 1.1409 

Historical 95 0.9391 4435 270 221.75 1.2176 

EWMA 95 0.9459 4435 240 221.75 1.0823 

GARCH 95 0.9468 4435 236 221.75 1.0643 

(a) 

 Binomial Traffic Light Proportion of Failure Time Until First Failure 

 Z-score P-Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Normal 95 2.1531 0.0157 0.9843 0.0185 4.4428 0.0350 0.8654 0.3522 7 

Historical 95 3.3243 0.0004 0.9995 0.0007 10.3650 0.0013 0.8654 0.3522 7 

EWMA 95 1.2574 0.1043 0.9007 0.1116 1.5416 0.2144 0.8654 0.3522 7 

GARCH 95 0.9818 0.1631 0.8452 0.1714 0.9450 0.3310 0.8654 0.3522 7 

(b) 

 Conditional Coverage Conditional Coverage independence 

 Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Normal 95 96.0960 0.0000 91.6540 0.0000 3986 195 195 58 

Historical 95 98.3750 0.0000 88.0090 0.0000 3955 209 209 61 

EWMA 95 16.6160 0.0002 15.0750 0.0001 3982 212 212 28 

GARCH 95 21.1750 0.0000 20.2300 0.0000 3992 206 206 30 

(c) 
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 TL Bin POF TUFF CC CCI 

Normal 95 yellow reject reject accept reject reject 

Historical 95 yellow reject reject accept reject reject 

EWMA 95 green accept accept accept reject reject 

GARCH 95 green accept accept accept reject reject 

(d) 
Exhibit 3.12: 95% Portfolio VaR 

Note: Exhibit 3.12 shows the outcomes of the binomial, traffic light system, proportion of failure, time until first failure, conditional coverage and conditional coverage independence 
backtesting methods of VaR.  Panel (a) consists of the basic results for the backtests. Panels (b) and (c) shows the test statistics and the p-values while Panel (d) summarises the hypotheses 
tests using a test level of 95% for each of the volatility models. 

 

 Observed Level Observations Failures Expected Ratio 

Normal 99 0.9736 4435 117 44.35 2.6381 

Historical 99 0.9851 4435 66 44.35 1.4882 

EWMA 99 0.9820 4435 80 44.35 1.8038 

GARCH 99 0.9829 4435 76 44.35 1.7136 

(a) 

 Binomial Traffic Light Proportion of Failure Time Until First Failure 

 Z-score P-Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Normal 99 10.9640 0.0000 1.0000 0.0000 82.9030 0.0000 0.0762 0.7825 75 

Historical 99 3.2673 0.0005 0.9991 0.0013 9.2825 0.0023 0.0262 0.8713 117 

EWMA 99 5.3802 0.0000 1.0000 0.0000 23.3760 0.0000 0.0762 0.7825 75 

GARCH 99 4.7765 0.0000 1.0000 0.0000 18.7990 0.0000 0.0762 0.7825 75 

(b) 
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 Conditional Coverage Conditional coverage independence 

 Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Normal 99 112.8100 0.0000 29.9090 0.0000 4216 101 101 16 

Historical 99 18.0300 0.0001 8.7475 0.0031 4307 61 61 5 

EWMA 99 29.0180 0.0000 5.6412 0.0175 4279 75 75 5 

GARCH 99 25.2300 0.0000 6.4310 0.0112 4287 71 71 5 

 
 (c) 

 TL Bin POF TUFF CC CCI 

Normal 99 red reject reject accept reject reject 

Historical 99 yellow reject reject accept reject reject 

EWMA 99 red reject reject accept reject reject 

GARCH 99 red reject reject accept reject reject 

(d) 
Exhibit 3.13: 99% Portfolio VaR 

Note: Exhibit 3.13 shows the outcomes of the binomial, traffic light system, proportion of failure, time until first failure, conditional coverage and conditional coverage independence 
backtesting methods of VaR.  Panel (a) consists of the basic results for the backtests. Panels (b) and (c) shows the test statistics and the p-values while Panel (d) summarises the hypotheses 
tests using a test level of 99% for each of the volatility models. 
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3.7.5.3. Backtesting Expected shortfall  

As discussed before the main challenge for the expected shortfall lies in backtesting.  Backtesting ES is 

not as straight forward as that of VaR.  In order to backtest ES for univariate variables, this study utilises 

a methodology proposed by Danielsson (2011) which is similar to violation ratios for VaR.  The 

methodology is described below: 

Backtesting ES using Danielsson (2011) approach involves calculating the normalised shortfall (NS). If 

𝐸𝑆𝑡 denotes the observed ES on day 𝑡, for days when VaR is violated, normalised this is given as  

𝑁𝑆𝑡 =
𝑦𝑡
𝐸𝑆𝑡
                                                                (3.32) 

From the definition of ES, given that VaR is violated, the expected 𝑦𝑡 is: 

𝐸[𝑌𝑡|𝑌𝑡  < −𝑉𝑎𝑅𝑡
𝐸𝑆𝑡

= 1                                                      (3.33) 

The average𝑁𝑆, denoted by 𝑁𝑆̅̅ ̅̅  should be 1. The null hypothesis is therefore: 

𝐻0: 𝑁𝑆̅̅ ̅̅  =1      (3.34)  

Exhibits 3.14 and 3.15 present the results of the ES backtesting for Danielsson’s simple test which show 

that the null hypotheses should be rejected for all the ES approaches.  This is because all the values are 

not equal to 1 although generally those for the historical simulation followed by GARCH at both 95% 

and 99% ES were the closest to 1.  For both 95% and 99% ES, the Normal ES resulted in figures 

furthermost from 1. As stated before the backtesting of ES is not an easy undertaking because what is 

being tested is an expectation rather than a single figure.  This said, Acerbi and Szerkely (2015) have 

proposed more robust ways of backtesting ES, and these were applied in the study when looking at 

multivariate volatility modelling below. 
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95%ES Australia Canada France UK US 

Normal 1.25 1.26 1.19 1.22 1.30 

Historical 1.13 1.07 0.99 1.08 1.12 

EWMA 1.09 1.16 1.16 1.11 1.15 

GARCH(1,1) 1.08 1.15 1.12 1.10 1.14 
Exhibit 3.14: Backtesting results for 95% ES 

Note: This shows the backtest for 95% ES of the 4 different models using the method proposed by Danielsson (2011. According 
to this method, a good ES estimate should have a value of 1.  
 

99% ES Australia Canada France UK US 

Normal 1.26 1.27 1.12 1.26 1.33 

Historical 1.06 1.06 0.96 1.03 1.06 

EWMA 1.09 1.21 1.17 1.18 1.20 

GARCH(1,1) 1.12 1.19 1.10 1.17 1.16 
Exhibit 3.15: Backtesting results for 95% ES 

Note: This shows the backtest for 99% ES of the 4 different models using the method proposed by Danielsson (2011. 
According to this method, a good ES estimate should have a value of 1.  

 
Before implementing the portfolio level risk measures of VaR and ES, the EVT, copula and non-

symmetric GARCH are first explored. 

3.7.5.3.1. Extreme Value Theory 

Danielsson (2011) observes that most statistical models are based on modelling the entire distribution 

of a quantity of interest.  In these instances, the estimation process is dominated by observations in 

the centre of the distribution, since there are ordinarily insufficient observations that are extreme (or 

uncommon).  Central to parametric VaR is the normality assumption that is based on the central limit 

theorem28.  This, however, is only applicable to quantiles and probabilities in the central mass of the 

density function or distribution, as opposed to the tails (Dowd, 2005).  While this may result in a good 

estimation of the distribution of data for common events, the estimation of the distribution of the tails 

is likely to be inaccurate.  In order to model extremes (or tails), a semi-parametric approach called 

Extreme Value Theory (EVT) should be applied as it extends the central limit theorem but does not 

assume normality since the assumption of the distribution of returns is not required.   

Generally, the normal distribution underestimates potential losses at high confidence levels.  It is 

therefore difficult to estimate VaR reliably because empirical distributions typically have insufficient 

data in the tails (Jorion 2007); however, EVT can be used in these instances because it explicitly focuses 

                                                 
28  The key assumption of the central limit theorem is normal distribution.  It postulates the property that normalised sum of 
independent random variables tends towards a normal distribution.  This is despite the fact that these original variables 
themselves are not normally distributed. 
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on the tails.  Hull (2015) defines EVT as the term used to describe the science of estimating the tails of 

a distribution that can be used to improve VaR estimates at very high confidence levels.  Because EVT 

concentrates on modelling the tails of the distribution of returns, it takes care of the possible 

occurrence of extreme values, particularly huge negative returns suddenly arising.  This is done by 

smoothing and extrapolating the tails of an empirical distribution (Hull, 2015).  This said, because EVT 

only applies to the tails, it is not accurate for the centre of distributions (Jorion, 2007).  According to 

Christoffersen (2012), the fundamental result in EVT states that the extreme tail of a wide range of 

distributions share common properties and thus can be approximately described by a relatively simple 

distribution called the Generalised Pareto Distribution (GPD)29.  GDP incorporates other known 

distributions, including the Pareto and normal as exceptional cases (Jorion, 2007).  While the concept 

of EVT can be quite complicated, Hull (2015) simplifies it, and therefore this paper shows it as presented 

in there. 

Supposed the function 𝐹(𝑣) is the cumulative distribution function (cdf) for a variable 𝑣 for example 

the loss on a portfolio over a certain period and 𝑢 is a value of 𝑣 in the right-hand tail of the distribution.  

The probability that 𝑣 lies between 𝑢 and 𝑢 + 𝑦, (𝑦 > 0) is 𝐹(𝑢 + 𝑦) − 𝐹(𝑢).  The probability that 𝑣 is 

greater than 𝑢 is 1 − 𝐹(𝑢).  𝐹𝑢(𝑦) is defined as the probability that 𝑣 lies between 𝑢 and 𝑢 + 𝑦 

conditional on 𝑣 > 𝑢. This is  

𝐹𝑢(𝑦) =
𝐹(𝑢 + 𝑦) − 𝐹(𝑢)

1 − 𝐹(𝑢)
                                                             (3.35) 

The variable 𝐹𝑢(𝑦) defines the right tail of the probability distribution.  It is the cumulative probability 

distribution for the amount by which 𝑣 exceeds 𝑢 given that it does exceed 𝑢. 

The results state that for a wide class of distribution 𝐹𝑢(𝑦) converges to a generalised Pareto 

distribution as the threshold 𝑢 is increased. The generalised Pareto (cumulative) distribution is  

𝐺ξ,β(𝑦) =

{
 

 [1 + ξ
𝑦

𝛽
]
−1 ξ⁄

                                            𝑖𝑓 ξ > 0

[1 + exp (
𝑦

𝛽
)]                                          𝑖𝑓 ξ = 0

                                 (3.36) 

                                                 
29 Generalised Pareto Distribution is a distribution capable of modelling tails of a wide variety of distributions based on 
theoretical arguments (MathWorks, 2016) 
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The distribution has two parameters that have to be estimated from the data.  These are ξ and β.  The 

parameter ξ is the shape parameter and determines the heaviness of the tail of the distribution.  The 

parameter β is a scale parameter. 

Where the underlying variable 𝑣 has a normal distribution, ξ = 0 and the tails disappear at an 

exponential speed (Jorion, 2007).  As the tails of the distribution become heavier, the value of ξ 

increases since the tail disappears more slowly than the normal.  For most financial data, ξ > 0 and in 

the range of 0.1 to 0.4 (Dowd, 2005 and Jorion 2007). 

Estimating ξ and β 

The parameters ξ and β can be estimated using maximum likelihood methods.  The probability density 

function, 𝑔ξ,β(𝑦), of the cumulative distribution in Equation (3.36) is calculated by differentiating 

𝐺ξ,β(𝑦) with respect to y. It is  

𝑔ξ,β(𝑦) =  
1

𝛽
(1 +

ξ𝑦

𝛽
)
−1 ξ⁄ −1

                                                  (3.37) 

A value for 𝑢 has to be chosen first (usually a value close to the 95th percentile point of the empirical 

distribution usually works well).  The observations are then ranked on 𝑣 from the highest to the lowest 

and the attention is focused on those observations for which 𝑣 > 𝑢. Suppose there are 𝑛𝑢 such 

observations and they are 𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑛𝑢).  The likelihood function (assuming that ξ ≠ 0) is 

∏
1

𝛽

𝑛𝑢

𝑖=1

(1 +
 ξ(𝑣𝑖 − 𝑢)

𝛽
)

−1 ξ⁄ −1

                                                   (3.38) 

Maximising this function is the same as maximising its logarithm: 

∑𝑙𝑛 [
1

𝛽
(1 +

 ξ(𝑣𝑖 − 𝑢)

𝛽
)

−1 ξ⁄ −1

]

𝑛𝑢

𝑖=1

                                           (3.39) 

Standard numerical procedures can be used to find the value of ξ and β that maximise this expression 

Estimating the tail of the distribution  
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The probability that 𝑣 > 𝑢 + 𝑦 conditional that 𝑣 > 𝑢 is 1-𝐺ξ,β(𝑦).  The probability that 𝑣 > 𝑢 is 1 −

𝐹(𝑢).  The unconditional probability that 𝑣 > 𝑢 (when 𝑣 > 𝑢) is therefore 

[1 − 𝐹(𝑢)][1 − 𝐺ξ,β(𝑥 − 𝑢)]                                                  (3.40) 

If 𝑛 is the total number of observations, an estimate of 1 − 𝐹(𝑢), calculated from the empirical data, 

is 
𝑛𝑢

𝑛
.  The unconditional probability that 𝑣 > 𝑥  is therefore 

𝑃𝑟𝑜𝑏(𝑣 > 𝑥) =   
𝑛𝑢
𝑛
[1 − 𝐺ξ,β(𝑥 − 𝑢)] =

𝑛𝑢
𝑛
[1 + ξ

𝑥 − 𝑢

𝛽
]
−1 ξ⁄

                           (3.41) 

Estimating semi-parametric CDFs with EVT  

 

Given the fat tails revealed earlier by the REIT data (see Exhibit 3.5) EVT was used in order to model the 

data to get GPD fit resulting in the semi-parametric CDF for each market as shown in Exhibit 3.16.  This 

was done by replicating Mathworks (2016) and Jäger (2015) where the negative log-likelihood function 

is optimised to estimate parameters of the GPD by utilising MATLAB30.  Despite the normal distribution 

not being adequate for modelling market risk, the kernel of the CDF is approximately normally 

distributed necessitating the application of the normal distribution for estimating the interior of the 

distribution and EVT for the fat tails (Jäger, 2015).  Exhibit 3.17 displays the empirical CDF (for the 5 

REIT markets) of the upper 10% tail exceedances of the residuals together with the CDF fitted by the 

GPD in order to show the importance of the GPD fit.  The GPD model seems to be a good choice as the 

fitted distribution of each REIT market follows the exceedance data.   

Semi parametric  CDF 

                                                 
30 MATLAB code used form Mathworks using the POT method with threshold 𝑢 = 10% by making use of the paretotails 
function of the Statistics toolbox in MATLAB 
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Australia 

 
Canada 

 
France 

 
UK 

 
US 

 

Exhibit 3.16: REIT CDF of standardised residuals 
Note: Due to the presence of fat tails, the REIT data for each index used EVT to obtain the GPD fit therefore leading to a semi-
parametric CDF. 

The model described above is the Peak Over Threshold (POT).  POT is based on models for all large 

observations that exceed a high threshold and therefore makes better use of data on extreme values 

(Danielsson, 2011).  The other method used to model extreme values is the block maximum models.  

Similar to Danielsson (2011) and Jäger (2015) this paper utilises POT because the block maxima model 
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is said to be rather wasteful of data and requires the largest observation collected from large samples 

of identically distributed observations.  Additionally, the interior of the financial returns can be 

modelled by a normal distribution (Jäger, 2025). 

 

3.7.5.3.2. Nonlinear dependence (Copulas)  

As the study is looking at creating a portfolio of different REIT markets, it is important to consider the 

co-dependencies of these REIT markets.  This is because every joint distribution contains both a 

description of the marginal behaviour of the individual risk factors and a description of their 

dependence structure.  A way of isolating the description of the dependence structure is by using 

statistical functions, developed by Sklar (1959), referred to as copulas (McNeil et al., 2005).  Because 

normally distributed portfolio returns are assumed, it is in turn usually assumed that the returns for 

constituent assets in a portfolio have a multivariate normal distribution.  Furthermore, there is an 

assumption that each asset return follows an i.d.d. process and that the joint distribution of the 

variables is elliptical (Alexander, 2008b).  In this case, a variance-covariance framework can easily be 

applied by making use of linear correlations.  However, this will tend to underestimate the joint 

probability of simultaneous negative extreme values across constituent assets in a portfolio.  This can, 

in turn, exaggerate the benefits of portfolio diversification (Christoffersen 2012), and therefore lead to 

misleading results.  In reality, most assets or portfolios do not satisfy the assumptions above as their 

returns are rarely normal nor do they have an elliptical distribution but possess either asymmetric 

marginal distributions, non-linear dependence or both (Alexander 2008b).  On that account, correlation 

cannot be used as a measure of association or dependence.  Dowd (2005) observes that correlation is 

usually misused and applied to situations for which it is unsuitable and therefore warns against the 

tendency of using it in risk measurement as though it were an all-purpose dependence measure.   
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Australia 

 
Canada 

 
France 

 
UK 

 
US 

 

Exhibit 3.17: Upper tail of standardised residuals 
Note: This shows the Upper tail of standardised residuals along with the CDF fitted by the GPD in order to show the importance 
of the GPD fit. 
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Furthermore, constituent assets in a portfolio could be from distributions that may be distinct from a 

normal distribution and that these assets may even exhibit fat tails or excess kurtosis and volatility 

clustering.  This implies that such assets are likely to have joint distributions that are non-linear in 

nature.  For this reason, linear dependence measures such as correlation will not reflect accurate 

associations particularly in the tails.  The most common way of modelling nonlinear dependence is with 

copulas.  A Copula is a function that joins a multivariate distribution function to a collection of 

univariate marginal distribution functions (Dowd, 2005).  The joint distribution of two i.i.d. random 

variables 𝑋 and 𝑌 is the bivariate distribution function that gives the probabilities of both 𝑋 and 𝑌 

taking certain values at the same time.  However, the joint distribution of two or more variables can be 

built by first specifying the stand-alone distributions (i.e. marginal distributions) and then using copulas 

to represent the dependencies between these variables (Alexander 2008b).  Expressing these 

dependences using quantiles rather than correlations that other multivariate volatility forecasting 

models use can achieve this.  Consequently, this gives universal validity to copula approaches meaning 

that marginal distributions are taken (each of which describes the way in which a random variable 

moves ‘on its own’) and the copula function is what expresses how they ‘come together’ to determine 

the multivariate distribution (Dowd, 2005).   

Explicitly, a copula enables one to construct a multivariate distribution function from the marginal 

distribution function in a way that allows for very general dependence structure.   Here, the 

dependence structure is isolated from the structure of the marginal distributions making it possible to 

apply copulas with any marginal distributions even when they are different for each return.  For 

example, this can be a combination of assets with a range of different distributions such as; t-

distribution with 10 degrees of freedom, chi-squared distribution with 15 degrees of freedom, a gamma 

distribution. (Alexander, 2008b).  Furthermore, Dowd (2005) observes that while variance-covariance 

approaches are only valid in instances where the dependence measure used is the correlation, copula 

approaches are universally valid and can be utilised in instances where correlation-based approaches 

cannot and are therefore statistically universally correct way to estimate risk measures from the 

position level.  Because copulas expresses dependence in a quantile scale, it makes it useful for 

describing extreme outcomes dependence and thus applies to VaR in a natural way (McNeil et al., 

2005).  This is because VaR also looks at risk in quartile scale of loss distributions hence making copulas 

useful in risk management.  Another profound advantage for copulas arises when estimating an 

integrated risk measure across several diverse types of risk measures which have two different 

distributions.  The result is different univariate density functions while most multivariate methods 
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would assume a single multivariate density function.  This presents a challenge particularly for risk 

integration and enterprise-wide risk management.  Copulas, on the other hand, is able to tackle this 

challenge. An additional attractive property of copula that linear correlation does not possess is “scale 

invariance” to reasonable transformations of the random variables and /or their distribution function.  

This means that converting Profit and Loss to returns, for example, does not affect the copula, because 

it does not respond to changes in the units of measurements (Dowd, 2005).   

This paper examines copulas based on Dowd (2005) and the references therein. 

Consider two random variables, 𝑋 and 𝑌.  If 𝐹(𝑥, 𝑦) is a joint distribution function with continuous 

marginals 𝐹𝑥(𝑥) = 𝑢 and 𝐹𝑦(𝑦) = 𝑣, then  𝐹(𝑥, 𝑦) can be written in terms of a unique function 𝐶(𝑢, 𝑣): 

𝐹(𝑥, 𝑦) =  𝐶(𝑢, 𝑣)                                                                (3.42) 

Where 𝐶(𝑢, 𝑣) is known as the copula of 𝐹(𝑥, 𝑦). The copula function describes how the multivariate 

function 𝐹(𝑥, 𝑦) is derived from or coupled with the marginal distribution functions 𝐹𝑥(𝑥) and 𝐹𝑦(𝑦), 

and the copula can be interpreted as giving the dependence structure of 𝐹(𝑥, 𝑦).  

This result for the copula is fundamental as it enables the construction of joint distribution functions 

from marginal distribution functions in a way that takes account of the dependence structure of 

random variables.  To model the joint distribution function, all that is needed is to specify the marginal 

distributions, choose a copula to represent the dependence structure, estimate the parameters 

involved, and then apply the copula function to the marginals.  Upon modelling the joint distribution 

function, any risk measures in principle can be estimated from it.  

Types of copulas  

There are various kinds of copulas, the simplest ones are 

𝐶𝑖𝑛𝑑(𝑢, 𝑣) = 𝑢𝑣 - The independence (or product) copula used where X and Y are independent 

𝐶𝑚𝑖𝑛(𝑢, 𝑣) = min [𝑢, 𝑣] - The minimum (or comonotonicity) copula that is used where X and Y are 

positively dependent or comonotonic (meaning they rise or fall together). 

𝐶𝑚𝑎𝑥(𝑢, 𝑣) = max [𝑢 + 𝑣 − 1,0] - The maximum (or countermonotonicity) copula used where X and Y 

are negatively dependent or countermonotonic – meaning as one rises the other falls and vice versa. 

Other important copulas are: 
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Gaussian (or normal) copula  

𝐶𝑝
𝐺𝑎(𝑥, 𝑦) =  ∫ ∫

1

2𝜋(1 − 𝜌2)0.5
𝑒𝑥𝑝 {

−(𝑠2 − 2𝜌𝑠𝑡 + 𝑡2)

2(1 − 𝜌2)
}

Φ−1(𝑦)

−∞

Φ−1(𝑥)

−∞

𝑑𝑠𝑑𝑡           (3.43) 

Where −1 ≤ 𝜌 ≤ 1 and Φ is the univariate standard normal function. Note that this copula depends 

only on the correlation coefficient, 𝜌, which confirms that 𝜌 is sufficient to determine the whole 

dependence structure.  For variables that have standard normal marginal distributions, this 

dependence structure will then be multivariate normally distributed.  Regrettably, the Gaussian copula 

does not have a closed – form solution, so the copula has to be estimated by numerical methods. 

t-copulas 

The t-copula for 𝑣 degrees of freedom is a straightforward generalisation of the normal one: 

𝐶𝑣,𝑝
𝑡 (𝑥, 𝑦) =  ∫ ∫

1

2𝜋(1 − 𝜌2)0.5
𝑒𝑥𝑝 {1 +

(𝑠2 − 2𝜌𝑠𝑡 + 𝑡2)

2(1 − 𝜌2)
}

−
𝑣+2
𝑣𝑡𝑣

−1(𝑦)

−∞

𝑡𝑣
−1(𝑥)

−∞

𝑑𝑠𝑑𝑡          (3.44) 

Where 𝑡𝑣
−1(𝑥) is the universe of the distribution function of the standard univariate t-distribution for 

𝑣 degrees of freedom. 

Gumbel (logistic) copula 

𝐶𝛽
𝐺𝑢(𝑥, 𝑦) = 𝑒𝑥𝑝 [−{(− log 𝑥)

1
𝛽 + (− log 𝑦)

1
𝛽}

𝛽

]                                 (3.45) 

Where 𝛽 satisfies 0 < 𝛽 ≤ 1 and determines the amount of dependence between our variables: 𝛽 =

1 indicates that the variables are independent, 𝛽 > 0 indicates limited dependence, and the limiting 

value of 0 indicates perfect dependence.  Multivariate extremes can reasonably be modelled by this 

copula because in contrast to the Gaussian copula, it is consistent with EVT. 

Tail dependence 

Copulas can also be used to investigate tail dependence, which is an asymptotic measure of the 

dependence of extreme values of the joint distribution.  Unlike the ordinary density function that is 

always positive and presents greater values in the centre, copula densities used in finance often have 

higher values in the corners (Alexander 2008b).  This highlights the importance of dependence in the 
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tails because extreme events are often related (i.e., disasters often come in pairs or more), (Dowd, 

2005) and models that fail to accommodate their dependence can lead a firm to disaster.  

If marginal distributions are continuous, a coefficient of (upper) tail dependence of 𝑋 and 𝑌 can be 

defined as the limit, as 𝛼 → 1 from below, of 

Pr[ 𝑌 > 𝐹𝑦
−1(𝛼) ∣∣ 𝑋 > 𝐹𝑥

−1(𝛼) ] = 𝜆                                                 (3.46) 

provided such limit exists.  If 0 < 𝜆 ≤ 1, 𝑋 and 𝑌 are asymptotically dependent in the upper tail.  In 

other words, it represents the conditional probability that one variable takes a value in the upper tail, 

given that also the other variable takes a value in its upper tail.  In this instance, the copula is said to 

have upper tail dependence for a, 𝑋 and 𝑌, when 𝜆 > 0, and the higher the value of the dependence 

coefficient, the stronger the upper tail dependence (Alexander 2008b).  If 𝜆 = 1, 𝑋 and 𝑌 are 

asymptotically independent i.e., the upper and lower tail dependence coefficients are different, 

therefore presenting asymmetric tail dependence. 

Estimating copulas  

Estimating copulas entails choosing the copulas functional form and then estimating the parameters 

concerned by using either parametric or non-parametric methods to find estimators that best fit the 

data by some criterion.  This is done by use of maximum likelihood estimators for the parametric 

method.  Copulas can be challenging to implement (please see Alexander 2008b) and it is for this reason 

that this study makes use of readily available functions in MATLAB®. 

  



  

160 
 

Calibrate the t-Copula 

The following two sections replicate and use the approach and code provided by Jäger (2015) and 

MathWorks (2016).  Using the standardised residual and the fitted tails with the GPD, the standardised 

residuals are transformed to uniform variates using the semi-parametric CDF, and the t-copula is fitted 

to the transformed data31.   

Simulate portfolio returns with a t -Copula 

Having obtained the parameters of a t-copula, the dependent financial returns for each REIT market 

matching to the dependence of the standardised residual is then simulated32.  This was done by 

simulating 10,000 independent random trails of dependent standardised REIT residuals.  Each column 

of the simulated standardized residuals array represents an i.i.d. stochastic process when viewed in 

isolation, whereas each row shares the rank correlation induced by the copula (Mathwork and Jäger 

(2015).  Following this, the random sample was transformed into the original scale.  The autocorrelation 

and heteroscedasticity that were eliminated by the ARCH(1) and GJR-GARCH(1,1) model are then 

reintroduced to satisfy the EVT assumption (Jäger, 2015)33.  

Finally, the continuous portfolio returns for each time point is calculated and the distribution for the 

resulting portfolio returns is transformed into a loss distribution from which the VaR and ES are 

calculated.  Exhibit 3.18 displays the results of the CDF of the portfolio returns. 

                                                 
31 This uses the copulafit function of the statistic toolbox which uses the maximum likelihood approach for a t-copula to 
estimate the parameter for the copula 
32This is done by making use of the MATLAB function ‘copularnd’ of the Statistics and Machine Learning toolbox.  
33 This is done using the Econometrics ToolboxTM filter function in MATLAB. 
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Exhibit 3.18: CDF plot of portfolio returns 

Alexander (2008b) argues that an entire joint distribution of returns should be utilised.  One way of 

accommodating such conditions is to utilise parametric methods, i.e. where risk is estimated by fitting 

probability curves to the data and then inferring a risk measure (Dowd, 2005).  While parametric 

methods result in straightforward VaR and ES measures; they are prone to errors if the assumed density 

function does not adequately fit the data.  As previously discussed, a way of taking account of volatility 

clustering is by fitting a normal distribution to the data conditional on a GARCH volatility process.   

 

3.7.5.3.3. Backtesting Expected shortfall (Acerbi and Szekely, 2014) 

As indicated previous, the backtesting of ES is contentious because there is no agreed way to undertake 

it. The VaR backtesting methods cannot be applied because ES is a conditional mean and therefore, it 

is not possible to create a Bernoulli trial as a test statistic.  Furthermore, elicitability has been the main 

issue surrounding the challenges of backtesting ES.  Acerbi and Szekely (2014) nevertheless, assert that 

elicitability is not a necessary condition and have proposed three methods of backtesting ES.  Similar 

to Jäger (2015), this study uses the two methodologies that are based on and are akin to the Basel 

backtesting framework for VaR.  Acerbi and Szekely (2014) implement a standard hypothesis-testing 

framework for unconditional coverage of ES similar to the standard Basel VaR setting.  This section is 

based on Acerbi and Szekely (2014) and the annotation used are those in Jäger (2015).   
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It is assumed that distributions are continuous and strictly increasing.  In line with issues to do with 

estimation error in expected shortfall highlighted earlier, 𝐸𝑆2.5% has been chosen similar to the Basel 

Committee to equal to 𝑉𝑎𝑅1% for Gaussian tails and to penalise heavier tails.  Consistent with the Basel 

VaR test, meant to detect only excesses of VaR exceptions, Acerbi and Szekely’s null hypothesis 

generally assumes that the prediction is correct whilst the alternative hypotheses chosen are only in 

the direction of risk underestimation. 

Test 1: Testing ES after VaR  

The inspiration of this test emanates from the conditional definition of Expected Shortfall. 

𝐸𝑆𝑐
𝑡,𝐻 = −𝔼(𝐿𝐻|𝐿𝐻 + 𝑉𝑎𝑅𝑐

𝑡,𝐻)                                              (3.47) 

Jäger (2015) as has rewritten this as: 

𝐸𝑆𝑐
𝑡,𝐻 = (𝐿𝐻|𝐿𝐻 ≥ 𝑉𝑎𝑅𝑐

𝑡,𝐻) 

⇔ 1 = 𝔼(
𝐿𝐻

𝐸𝑆𝑐
𝑡,𝐻 |𝐿

𝐻 ≥ 𝑉𝑎𝑅𝑐
𝑡,𝐻) 

⇔ 𝔼(
𝐿𝐻

𝐸𝑆𝑐
𝑡,𝐻 − 1|𝐿

𝐻 ≥ 𝑉𝑎𝑅𝑐
𝑡,𝐻) = 0                                            (3.48) 

Where 𝑉𝑎𝑅𝑐
𝑡,𝐻 backtest of the Basel Committee has been satisfied already, the magnitude of the 

realised exceptions against the model predictions can be tested separately.  Defining 𝐼𝑡+𝐻
𝐻 =

(𝑋𝑡 + 𝑉𝑎𝑅𝑐
𝑡,𝐻) as the indicator function, the test statistic is defined as: 

𝑍1(�⃗� 
𝐻) =

∑
𝐿𝑡
𝐻 ∙ 𝐼𝑡+𝐻

𝐻

𝐸𝑆𝑐
𝑡,𝐻

𝑇
𝑡=1

𝐼𝑊𝐵𝑇
− 1                                                    (3.49) 

If 𝐼𝑊𝐵𝑇 = ∑ 𝐼𝑡+𝐻
𝐻𝐻𝑇

𝑡=1 > 0. 

For this test, Acerbi and Szekely choose the null hypothesis as; 

𝐻0 ∶ 𝑃𝑡
[𝛼] = 𝐹𝑡

[𝛼], ∀𝑡                                                           (3.50) 
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Where 𝑃𝑡
[𝛼](𝑥) = min (1, 𝑃𝑡(𝑥)/𝛼) is the distribution tail for 𝑥 > 𝑉𝑎𝑅𝑐

𝑡,𝐻.  The alternatives are  

𝐻1 ∶  𝐸𝑆𝑐,𝐹
𝑡,𝐻 ≥ 𝐸𝑆𝑐

𝑡,𝐻 ,  for all 𝑡 and 𝐸𝑆𝑐,𝐹
𝑡,𝐻 > 𝐸𝑆𝑐

𝑡,𝐻 for some 𝑡 

𝑉𝑎𝑅𝑐,𝐹
𝑡,𝐻 = 𝑉𝑎𝑅𝑐

𝑡,𝐻, for all 𝑡 

Acerbi and Szekely show that VaR is still correct under 𝐻1 given that VaR has been tested.  It is expected 

that the realised value 𝑍1(�⃗� 
𝐻) is zero and it rejects the null hypothesis when it is negative.  Therefore, 

it is 𝔼𝐻0(𝑍1|𝐼 > 0) = 0 and 𝔼𝐻0(𝑍1|𝐼 > 0) < 0) (Jäger, 2015).  This is as proved in proposition A.2 by 

Acerbi and Szekely (2014).  

Test 2: Testing ES directly  

The second test emanates from the unconditional expectation.  This is taken from Acerbi and Szekely 

(2014) but also uses the notations from Jäger (2015). 

𝐸𝑆𝑐
𝑡,𝐻 =  𝔼(

𝐿𝑡
𝐻 ∙ 𝐼𝑡+𝐻

𝐻

𝛼
) 

⇔ 1 =  𝔼(
𝐿𝑡
𝐻 ∙ 𝐼𝑡+𝐻

𝐻

𝛼 ∙ 𝐸𝑆𝑐
𝑡,𝐻) 

𝔼(
𝐿𝑡
𝐻 ∙ 𝐼𝑡+𝐻

𝐻

𝛼 ∙ 𝐸𝑆𝑐
𝑡,𝐻) − 1 = 0                                                  (3.51) 

Using the indictor function 𝐼𝑡+𝐻
𝐻 , following the Equation 57, the test statistics has been defined as: 

𝑍2(�⃗� 
𝐻) =∑(

𝐿𝑡
𝐻 ∙ 𝐼𝑡+𝐻

𝐻

𝑇 ∙ 𝛼 ∙ 𝐸𝑆𝑐
𝑡,𝐻) − 1

𝑇

𝑡=1

                                         (3.52) 

Similar to Test 1, Acerbi and Szekely present the hypothesis as: 

𝐻0 ∶ 𝑃𝑡
[𝛼] = 𝐹𝑡

[𝛼], ∀𝑡  

𝐻1 ∶  𝐸𝑆𝑐,𝐹
𝑡,𝐻 ≥ 𝐸𝑆𝑐

𝑡,𝐻 ,  for all 𝑡 and 𝐸𝑆𝑐,𝐹
𝑡,𝐻 > 𝐸𝑆𝑐

𝑡,𝐻  for some 𝑡 
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𝑉𝑎𝑅𝑐,𝐹
𝑡,𝐻 = 𝑉𝑎𝑅𝑐

𝑡,𝐻, for all 𝑡 

This test can directly be used for ES without testing VaR first (Jäger, 2015).  As proved in Acerby and 

Szekely (2014) proposition A.3, 𝔼𝐻0(𝑍2) = 0 and 𝔼𝐻1(𝑍2) < 0.  The implication is that the expected 

value of 𝑍2(�⃗� 
𝐻) is zero and the test rejects the null hypothesis when it is negative (Jäger, 2015). 

Test 3: Estimating ES from realised rank  

Unlike the two tests above, test 3 utilises of quantiles.  Acerbi and Szekely (2014) argue that it is possible 

to backtest the tails of a model by checking if the observed ranks 𝑈𝑡 = 𝑃𝑡(𝑋𝑡) are i.i.d. as suggested by 

Berkowitz (2011).  The rank values are uniformily distributed in the interval (0,1) if the distribution 

assumptions are correct.  In order to convert this into a specific test for ES, each quantile must be 

assigned its dollar importance that depends on the shape of its tail. Acerbi and Szekely provide a sample 

estimator of the ES for a sample 𝑌1  ,⋯ , 𝑌𝑁 as: 

𝐸𝑆𝑐
𝑇 = −

1

[𝑇𝑐]
∑𝑌𝑖:𝑁                                              (3.53)

𝑁𝑐

𝑖

 

They define the quantile test statistic as: 

𝑍2(�⃗� 
𝐻) =

1

𝑇
∑

𝐸𝑆𝑐
𝑇(𝑃𝑡

−1(𝑈))

𝐸𝑉[𝐸𝑆𝑐
𝑇(𝑃𝑡

−1(𝑉))

𝑇

𝑡=1

− 1                                     (3.54) 

Where 𝑉 is i.i.d. 𝑈(0,1). 

The denominator can be computed analytically as  

𝐸𝑉[𝐸𝑆𝑐
𝑇(𝑃𝑡

−1(𝑉)) =
𝑇

[𝑇𝑐]
∫ 𝐼1−𝑝(𝑇 − [𝑇𝑐], [𝑇𝑐]𝑃𝑡

−1(𝑝)𝑑𝑝
1

0

                          (3.55) 

Where 𝐼𝑐(𝑎, 𝑏) is a regularised incomplete beta function. 

The goal here is that ES is recalculated as a mean above the quantile 𝑃𝑡
−1(𝑈), for each day 𝑡,⋯ , 𝑇.  

After that, the average of the result is then taken.  Therefore, the hypothesis for test 3 involes the entire 

distributions; 

𝐻0: 𝑃𝑡 = 𝐹𝑡, ∀𝑡 

𝐻1: 𝑃𝑡 ≻= 𝐹𝑡, for all 𝑡 and ≻ for some t 

Where (≻=) ≻ denotes (weak) first order stochastic dominance 
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While test 3 is extremely general, it is less intuitive compared to tests 1 and 2.  Please see Acerbi and 

Szekely (2014) for more details on this test. 

Significance 

The ‘goodness’ of a model is typically tested by checking whether its deviations from the estimated 

𝔼𝐻0(𝑍1|𝐼 > 0 ) and 𝔼𝐻0(𝑍2) = 0.  However, this deviation, akin to the Basel Committee VaR backtest, 

does not always indicate that a model is bad (Jäger, 2015).  Statistical deviations are normal and for the 

Basel backtest, the distribution of the test statistic was known under 𝐻0, the binomial distribution.  

However, for the significance of the  ES backtest described above must be simulated because the 

distribution of the tests is unknown (Jäger, 2015).  Acerbi and Szekely (2014) show that for all tests 𝑍 =

𝑍𝑖, the distribution 𝑃𝑧 is simulated under 𝐻0, to compute the p-value 𝑝 = 𝑃(𝑍(𝑥 )) of the realisation 

𝑍(𝑥 ) (notations from Jäger (2015) have been used here for consistence: 

simulate independent   𝐿𝑡
𝑖~ 𝑃𝑡,  ∀𝑡 , ∀𝑖= 1,… ,  

compute  𝑍𝑖 = 𝑍(�⃗� 𝑖) 

estimate  𝑝 = ∑
(𝑍𝑖<𝑍(𝑙 ))

𝑀
𝑀
𝑖=1  

where M is a suitably large number of scenarios, given a preassigned significant level 𝛼, the test is finally 

accepted if 𝑝 > 𝛼 and rejected if 𝑝 ≤ 𝛼. 

From the previous procedure, Acerbi and Szekely (2014) observe that to backtest ES exceptions it may 

be essential to keep the memory of the entire distributions 𝑃𝑡, unlike the VaR backtest where it is 

sufficient to record a single number 𝐼𝑡per day.  For this reason, the key differences between VaR and 

ES backtesting is the storage of more information (a cumulative distribution function per day) (Acerbi 

and Szekely, 2014) and the simulation of a large number of scenarios (Jäger, 2015). 

The power of a test is the probability of rejecting the null hypothesis when the alternative is valid and 

this defined as 1 minus the probability of Type II error (Sheppard, 2013).  This is computed similar to 

the significance with the difference that the distribution 𝑃𝑧 is simulated under 𝐻1 (Jäger, 2015). 

3.7.5.3.4. ES backtesting results  

Similar to Jäger (2015), this section displays the results of backtesting VaR and two tests for ES based 

on the 21 years of REIT data.  Though the backtesting period for the Basel framework is usually one 
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year, this study carries out the test on a more extended period as well, i.e. 17 years.  Both use a holding 

period of one trading day.  Exhibits 3.19 and 3.20 present the graphic illustration of the 1 year (2016) 

and 17 years backtests respectively for the estimation of 𝑉𝑎𝑅2.5%
𝑡,𝐻 , 𝑉𝑎𝑅1%

𝑡,𝐻 and 𝐸𝑆2.5%
𝑡,𝐻 .  In both 

backtests, a violation takes place were the ex post or observed loss (in blue) touches the ex ante VaR 

or ES estimates.  It is clearly discernible that the 𝑉𝑎𝑅2.5%
𝑡,𝐻  has more violation while the 𝑉𝑎𝑅1%

𝑡,𝐻 and 

𝐸𝑆2.5%
𝑡,𝐻  estimates are very close over both the backtesting windows.  This is in conformity with the Basel 

Committee choosing the 2.5% significant level for ES as an equivalent for the 1% VaR significant level.  

The 2.5% is only used here as an indication of what the losses would have been had the same level 

been used as the ES.  The test statistics 𝑍1 and 𝑍2 were simulated in MATLAB 10000 times and Table 

3.3 displays these formal test results.  Exhibits 3.21 and 3.22 display the probability density functions 

(PDFs) whilst Exhibits 3.23 and 3.24 present the cumulative distribution functions (CDFs) of both 

backtests. 
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Concerning the Basel traffic light system, the 1-year backtest resulted in 8 violation shown in Table 3.3.  

This test falls in the yellow traffic zone.  Despite being successful and acceptable there may be, need to 

calibrate the risk model as this zone indicates some concerns.  The 17-year backtest fell in the green 

traffic zone with 55 violations observed in the period.  Therefore, for both backtesting periods (i.e. 1-

year and 17-years), the VaR backtest was successful.  

The ES backtest resulted in 12 violations and 127 violations for the 1-year and 17-years backtesting 

windows respectively. While the increase in the number of violations in the ES compared to the VaR 

test was 50% in the 1-year backtest, there was a 131% increase in the 17-year backtest.  Test 1 for the 

ES revealed that both the test statistic Z1 and the expectation of Z1 are not significant at 5% for the 1-

year backtest window.  Therefore, this result is in favour of the null hypothesis so the decision is to “fail 

to reject” H0.  In other words, the backtest was successful indicating that the model correctly predicts 

the risk.  The 17-year backtest window for the Test 1 for ES is however, significant at 5%.  This means 

that the ES backtest is unsuccessful leading to the rejection of the null hypothesis.  This could be due 

to the longer time over which the backtest covers.  It is interesting that the VaR test was successful for 

both the 1-year and 17-years backtests but the Test 1 for the ES was only successful in the 1-year 

backtest window and unsuccessful in the 17-year one.  The mixed results seems to suggest that Test 1 

for ES is not accurate over the long period given that there is an inconsistency between the losses 

forecasted by ES and the observed.  However, since the ES test is more robust than the VaR test it 

should still be used as it brings up more exceedances compared to the VaR.  

The test statistics of Test 2 for ES in both the backtesting windows (i.e. 1-year and 17-years) are not 

significant, leading to “Fail to Reject” the null hypothesis.  This means there is consistency between the 

losses forecasted by this ES model and the observed losses, consequently the test is successful. 

.  
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Exhibit 3.19:  

Backtest results for 1 year, i.e. Jan 1st 2016 to Dec 31st, 2016 
Note: The graph above shows the backtesting results and plots the observed losses against the losses estimated by ES, 99%VaR and 97.5% VaR for one year ranging from January 1, 2016 to 
December 31, 2016 
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Exhibit 3.20:   Backtest results for 17 years, i.e.  Jan 1st 2000 to Dec 31st, 2016  

Note: The graph above shows the backtesting results and plots the observed losses against the losses estimated by ES, 99%VaR and 97.5% VaR for 17 years ranging from January 1, 2000 to 
December 31, 2016 
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Parameter Testing Window 1 year Test Window – 17 Yr 

Testing Window 260 4435 

Calculation time 17 ours 8 days 

Value-at-Risk Basel Traffic Light 

𝑍0(�⃗� 
𝐻) = 𝐼1%  8 55 

𝛼1%
′  3.0769 1.2404% 

Probability for up to k 
violations 

99.8615% 94.9983 

Cumulative Type1 Error for up 
to k Violation 

0.50757% 6.6256% 

Basel zone Yellow Green 

Expected Shortfall Test 1 

𝑍1(�⃗� 
𝐻) 0.23798 0.015883 

𝔼(𝑍1(�⃗� 
𝐻)) 0.24842 0.01717276 

𝐼2.5%  12 127 

Simulated p-value of 
realization 𝑧(𝑥 ) 

43.7437% 38.5385% 

Test results with M  
simulations and 𝛼𝑧1 = 5% 

Accept H0 Reject H0 

   

Expected Shortfall Test 2 Results 

𝑍2(�⃗� 
𝐻) 1.2855 0.16389 

𝔼(𝑍2(�⃗� 
𝐻)) 1.2133 0.17136 

𝐼2.5%  12 127 

Simulated p-value of 
realization 𝑧(𝑥 ) 

43.74% 27.7277% 

Test results with M  
simulations and 𝛼𝑧1 = 5% 

Accept H0 Accept H0 

Table 3.3: Results from backtesting VaR and ES 
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(a) Pdf for 𝒁𝟏(�⃗⃗� 

𝑯) (b) Pdf for 𝒁𝟐(�⃗⃗� 
𝑯) 

Exhibit 3.21: Probability Density Function for 𝑍𝑖(�⃗� 
𝐻) for Jan 1st, 2016 to Dec 31st, 2016 

Note: This probability density function (PDF) plot shows the distribution of Test 1 and Test 2 of Acerbi and Szekely’s, (2014) 
backtests for the 1-year testing window 

  

(a) Pdf for 𝒁𝟏(�⃗⃗� 
𝑯) (b) Pdf for 𝒁𝟐(�⃗⃗� 

𝑯) 

Exhibit 3.22: Probability Density Function for 𝑍𝑖(�⃗� 
𝐻) for Jan 1st, 2000 to Dec 31st, 2016 

Note: This probability density function (PDF) plot shows the distribution of Test 1 and Test 2 of Acerbi and Szekely’s, (2014) 
backtests for the 17-year testing window 

 
 
The pdf and the CDF can perhaps provide more explanation of the results presented by the test. The 

simulated pdf for the 1-year backtesting period show PDF that is non-Gaussian like while that for the 

17-year backtesting window resembles that of a Gaussian PDF as shown in Exhibits 6.21and 6.22 

respectively.  This is probably due to the long time frame of the 17-year window as compared to the 1-

year window.  Exhibits 23 and 24 display the simulated CDFs for both backtesting windows for the two 

tests for ES.  Consistent with the pdf the 1-year backtesting windows for both ES tests do not show a 

normal distribution while those for the 17-year backtesting window show normal distribution.  The red 
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line on each of the CDFs represents the 5% significant level that represents the lower limit of the green 

zone when it touches the CDF.  For both the tests, Z1 and Z2 are higher than where the 5% significant 

line touches the CDF curve.  This shows that the tests are not significant 

 
 

(a) CDF for 𝒁𝟏(�⃗⃗� 
𝑯) (b) CDF for 𝒁𝟐(�⃗⃗� 

𝑯) 

Exhibit 3.23: Cumulative Density Function for 𝑍𝑖(�⃗� 
𝐻) for Jan 1st, 2016 to Dec 31st, 2016 

Note: This cumulative density function (CDF) plot shows the cumulative distribution of Test 1 and Test 2 of Acerbi and 
Szekely’s, (2014) backtests for the 1-year testing window 

 

  
(a) CDF for 𝒁𝟏(�⃗⃗� 

𝑯) (b) CDF for 𝒁𝟐(�⃗⃗� 
𝑯) 

Exhibit 3.24: Cumulative Density Function for 𝑍𝑖(�⃗� 
𝐻) for Jan 1st, 2000 to Dec 31st, 2016 

Note: This cumulative density function (CDF) plot shows the cumulative distribution of Test 1 and Test 2 of Acerbi and 
Szekely’s, (2014) backtests for the 17-year testing window 
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Exhibit 3.25: Number  of violations for VaR and ES from 2000 to 2016 

 

Year VaR Zone 𝔼(Z1) Result 𝔼(Z2) Result 

2000 Green Accept Ho Accept Ho 

2001 Green Accept Ho Accept Ho 

2002 Green Accept Ho Accept Ho 

2003 Green Accept Ho Accept Ho 

2004 Green Accept Ho Accept Ho 

2005 Green Accept Ho Accept Ho 

2006 Yellow Accept Ho Accept Ho 

2007 Yellow Accept Ho Accept Ho 

2008 Yellow Reject Ho Accept Ho 

2009 Yellow Reject Ho Accept Ho 

2010 Green Accept Ho Accept Ho 

2011 Green Accept Ho Reject Ho 

2012 Green Reject Ho Accept Ho 

2013 Green Reject Ho Accept Ho 

2014 Green Accept Ho Accept Ho 

2015 Yellow Accept Ho Accept Ho 

2016 Yellow Accept Ho Accept Ho 
Table 3.4: Results for the yearly backtests for VaR and ES 

 

The backtesting procedures were also applied to all the individual years of the backtesting period.  

Exhibit 3.25 shows the yearly breakdown of the violations for both VaR and ES for the backtesting 

period under investigation.  As expected ES captured more violation compared to VaR with the big 

disparity being during the global financial crisis period this is consistent with the finding of Almudha 

(2018).  The Acerbi and Szekely (2014) backtesting methods were also applied to these individual years 

with the summary shown in Table 6.4.  The results mostly fell in the green zone, and a  few in the yellow 
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zone thus suggests that the model accurately predicts the VaR.  Concerning ES, most of the results 

revealed that the test should fail to reject the null hypothesis for Test 1 meaning that there is 

consistency between the predicted ES and the observed values, therefore, suggesting that the model 

correctly predicts the ES.  However, this is with the exception of four years that include the global 

financial crisis 2008/9 period and for 2012 and 2013 were the null hypothesis is rejected.  Test 2 is only 

significant for 2011 leading to the decision to reject the hypothesis that the model correctly predicts 

the ES in this year only.  The other years suggest that the null hypothesis should be “accepted”. 

 

3.8. Conclusion 

The paper set out to explore the performance of market risk models namely, i.e. the value at risk and 

expected shortfall. Both the measures are used to quantify the risk of an investment and can be 

estimated using different parametric, non-parametric and semi-parametric models.  The models range 

from the simplistic normal VaR and historical simulation to the complicated models that involve the 

combination of conditional volatility models like GARCH and with some that incorporate EVT to account 

for extreme returns while others utilise Monte Carlo Simulation.  Various research has been undertaken 

on the performance of VaR in both non-REITs and REITs, and generally, the findings are that VaR 

performs differently for different models.  In some instances, the historical simulation works just fine 

while in others the semi-parametric models, e.g. Filtered Historical Simulation and GARCH EVT perform 

better. 

Despite the wide application of VaR for measuring market risk, owing to its simplicity, it has come under 

increasing pressure due to the major shortcoming that stems from the lack of subadditivity leading it 

not to qualify as a coherent risk measure.  This is in addition to its failure to considers losses beyond 

VaR, being its other major weakness, which has the potential of underestimating the market risk of an 

asset or a portfolio. This has led to a call for its replacement with another market risk model called 

expected shortfall (ES) which, in contrast to VaR, is a coherent risk measure and also considers losses 

beyond VaR.  Notwithstanding the elegance of ES, its main weakness hinges on its problematical 

implement of backtesting stemming from backtesting an expectation rather than a specific VaR value. 

Distinct from VaR which has several fully developed methods of backtesting, there is no agreed method 

for backtesting ES mainly due to its lack of elicitability.  This difficulty has however been challenged 

with Acerbi and Szekely (2014) arguing that elicitability is not necessarily needed to backtest ES and 

with that, they have developed some approaches of backtesting ES, some of which this paper has 
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applied to the REIT market.  This study models market risk and investigate whether ES is a better 

estimator of market risk compared to VaR.  

The study is based on REIT data from 5 international indices namely, Australia, Canada, France, the UK 

and the US for the period spanning from January 1996 to Dec 2016.  The examination of the models is 

done at both univariate and multivariate levels.  The univariate risk measures are estimated at 95% and 

99% confidence levels using the normal, historical simulation, EWMA and GARCH(1,1) and backtested 

using a look back period of 1000 days.  Various backtesting tests are employed for VaR, name; traffic 

light system, binomial, the proportion of failure, time until first failure, conditional coverage and 

conditional coverage independence test while a test by proposed by Danielson (2011) is utilised for ES.   

The findings for the study are mixed, but overall the simple tests showed that the models are accurate 

at 95% VaR in more times than the stringent test while at 99% most of the basic tests show that the 

models are inaccurate estimates of market risk for all the models except the non-parametric historical 

simulation which is accurate.  This is consistent with the literature from different studies. At 

multivariate level, the results are mixed as well, but overall, the EWMA and GARCH come out to be 

accurate estimators of market risk at 95% VaR level for the simple tests, but the stringent tests show 

that the models are inaccurate. 

The univariate ES, on the other hand, shows that results in most of the estimates are not accurate for 

all the tests except for the time until first failure which is accurate for both the 95% and 99% levels. 

The multivariate backtesting is extended by apply GARCH-GJR, EVT and copulas in order to incorporate 

challenges of data in terms of autocorrelation, fat tails and also non-linear dependence estimating VaR 

and ES.  To this effect, the backtesting is performed using Acerbi and Szekely’s (2014) Test1 and Test 2 

using a 1-year and 17-year window. The finding is that the VaR appeared to be an accurate estimator 

of market risk in both periods while test 1 accepted ES and rejected it for the 1-year and 17 years 

backtesting windows respectively, the estimate for test 2 provided evidence that ES is good at 

forecasting market risk.  The test as expected shows that ES can capture more violations than VaR so 

even though both tests seem to be accurate ES should be used because it captures more violation than 

VaR.  This, therefore, suggests that ES is not as prone to the underestimation of market risk compared 

to VaR as evident from the yearly backtesting results.   

The implication of the study is that ES should be used to measure market risk for REITs especially at  

portfolio level because its performance is more consistent compared to VaR.  Furthermore, it results in 

less underestimation of market risk, unlike VaR due to its ability to capture losses in excess of VaR. 
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While previous studies have been undertaken in the estimation of market risk in REIT, this study’s 

contribution is performing the analysis by considering stylised facts and using GARCH-EVT-and copulas 

at the multivariate (portfolio level) level and also for the first time applying the backtesting of ES to real 

estate securities using Acerbi and Szekely (2014) testing methods. 

The limitation of the study is that only two tests of Acerbi and Szekely (2014) were undertaken due to 

implementation challenges of Test 3. Also due to time constraints, switching methods were not 

employed to take into consideration performances in different market conditions. 

The market risk modelling exposed the researcher to other aspects of volatility that will be built on in 

the next chapter. The time-varying volatility and correlation are of particular interest, specifically as a 

means of further analysing, future volatility as implied by the options market. This has some bearing 

on the extent that returns and indeed volatility of an asset or market will move. The next chapter 

explores implied volatility of in public real estate. 
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CHAPTER 4 

THE  VOLATILITY TRANSMISSION OF THE UK IMPLIED VOLATILITY INDEX 

AND UK REITS WITH TRADED OPTIONS 

 

4.1. Introduction 

The complexity of risk management for REITs has increased due to the lack of traded hedging 

instruments (Cotter and Stevenson, 2006 and Diavatopoulos, Fodor et al. 2010).  This is more so in the 

UK where only three companies in the REIT sector trade in options.  Research conducted 

(Diavatopoulos, Fodor et al. 2010) has revealed that implied volatility in REITs has predictive power.  

This research was however undertaken in the US which has a more vibrant REIT market.  Despite the 

UK market having more than 50 REITs, there are only three companies which trade in options.  Research 

in the UK on implied volatility has mainly focused on the market index mainly using the VIX.  Relatively 

little research has been undertaken with regards to the UK individual REIT companies. 

 

A relationship between investor sentiment and their investment decision making has been established 

through the study of behavioural finance.  Investors’ decisions are, however, not rational because 

sentiments have a considerable bearing on them.  It follows, therefore, that share price volatility is a 

function of investor sentiment.  Implied volatility measures share price volatility, implied by the market 

and is used as an indication of investor sentiment.  In general, high implied volatility is directly related 

with risk in the market where large market movements (either positive or negative) are expected and 

vice versa.  In the US the Chicago Board of Options Exchange (CBOE) VIX, commonly referred to as the 

fear index, measures implied volatility relating to the market.  

 

Generally, as the market becomes more unpredictable due to increased uncertainty, it becomes more 

important to focus on volatility rather than returns.  Given the varied performance of UK REITs since 

their inception, volatility is of crucial importance as it is at the core in asset allocation, diversification 

and hedging instruments.  There seems to be some consensus regarding REIT volatility which shows 

that it is time-varying and predictable (Cotter and Stevenson, 2006, 2007). Furthermore, research has 
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also shown that REITs have characteristics that are unique in contrast to non-REITs (Diavantopoulos et 

al., 2010).  Also, compared to non-REITs, REITs have higher gearing ratios because their share price falls, 

make them more susceptible to financial risk because of the increased level of debt relative to the value 

(Chung et al., 2016 and Kawaguchi, Sa Aadu and Shilling, 2016).  Moreover, it is more challenging for 

REITs to reduce these gearing levels given their requirement to distribute a large proportion of their 

earnings to shareholders as dividends.  While the high dividend payout is a key factor for investing in 

REITs since it is likely to translate in high yields, Kawaguchi, Sa Aadu, and Shilling (2016) argue that the 

increase in financial risk has negative consequences for risk-averse investors who may be better off 

investing in lower yielding, fixed income securities. 

 

The performance of UK REITs since their introduction, just before the 2008 -2009 financial crisis, has 

been varied. The market generally witnessed an overall drop in the price of the REITs in the first two 

years, and after that, the trend has been upwards as shown in Exhibit 4.1.  In return terms, there is 

volatility clustering of returns with some rather extreme rises and drops in these returns, implying that 

there is a high level of volatility as shown in Exhibit 4.2.  It is evident that the performance of the UK 

REIT market exhibits high levels of unpredictability of both returns and volatility.  The issue is how 

investors can predict the direction or magnitude of future prices, returns, and volatility of this market? 

Previous research (Diavatopoulos, Fodor et al. 2010, Chung, Fung et al. 2016, Cotter and Stevenson, 

2007; Doran and Krieger, 2010; Busch, Christensen, and Nielsen, 2011 Anoruo and Murthy, 2016; 2017; 

Cotter and Stevenson 2006) shows that implied volatility contains some information that can be used 

in the prediction of future returns and volatility.  That said, most of the previous research has been 

conducted on US REITs typically at the REIT market index level.  This research, however, investigates 

the links or transmission by considering UK REIT companies to ascertain where there are spillover 

effects for the VFTSE and REIT companies iv and between the REIT companies.  In order to undertake 

this task, only UK REIT companies that trade in options are considered.   

The research proceeds as follows. The next section will explore implied volatility smiles and surfaces 

which will then be covered. The data and methodology will then follow before proceeding to the 

empirical analysis and the conclusion.  
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Exhibit 4.1: UK REIT Index Prices.  Source: Bloomberg 
 

 
Exhibit 4.2: UK REIT index daily Returns 

 

4.2. Implied volatility 

The theoretical price of a standard European option is commonly calculated by the Black-Scholes-

Merton (BSM) formula at any time prior to the option’s expiry date.  However, market prices for options 

are not determined by BSM formula, but rather the dynamics of supply and demand.  The main uses of 

the BSM formula are twofold. The first is that it can be used for pricing standard European options that 

have no market prices available (or illiquid options).  The second use of the BSM formula is in the 

calculation of implied volatility, gleaned from standard European call and put market prices.   
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The BSM model lays the foundation of the pricing of options by making some assumptions.  Some of 

the assumptions are that the distribution for underlying is normal; the price follows a geometric 

Brownian motion and operates in markets that are complete and frictionless. However, this is not the 

case in reality and therefore market participants, i.e., Investors and options traders, do not believe in 

these assumptions  The BSM model has several parameters namely, the price of the underlying, strike 

price, risk-free rate, dividend yield, time to expiry and volatility.  While all these parameters are 

observable, the volatility is the only parameter that is not directly observable in the market.  Also, as 

the price of the underlying, the risk-free rate and the dividend yield are the same for all options with 

the same expiry date, likewise it is assumed that the volatility should also be the same since it is based 

on the same underlying.  Because volatility is not an observable parameter, traders reverse engineer 

the BSM model in order to calculate the volatility implied by market option prices.  This is referred to 

as the “implied volatility”.  The implied volatility is calculated by using observed parameters in the BSM 

model and working out, the volatility that will result in an option price equal to the observed market 

option price.  In other words, if the implied volatility is used as the volatility in the BSM model, it will 

result in the market option price.  Alexander (2008c) observes that the implied volatilities for all options 

on the same underlying should be identical if market participants accept as true, the assumptions 

fundamental to the BSM model.  This resulting unique implied volatility would possess the volatility of 

the geometric Brownian motion process34.  Nevertheless, this is not so because different options on 

the same underlying result in implied volatilities that are not identical and this can be depicted 

graphically by plotting a volatility surface. 

 

This research will discuss the implied volatility based on the standard European call option.  As the 

right-hand side of the put-call parity35 relationship is not dependent on volatility, a call and put of the 

same strike and maturity have the same implied volatility if the put-call parity holds on market prices 

(Alexander, 2008c). This is keeping in mind that the fundamental attribute of the put-call parity 

relationship is that it is based on a fairly simple no-arbitrage condition.  Additionally, no probability 

distribution assumption of the underlying future price is required, making it true whether the 

underlying price distribution is lognormal or not lognormal (Hull, 2009). Hull (2009) illustrates this as 

follows: 

                                                 
34  
35  
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Suppose that, for a particular value of the volatility, 𝑝𝐵𝑆𝑀 and 𝑐𝐵𝑆𝑀are he values of european put and 

call options calculated using the BSM model. Suppose further that 𝑝𝑚𝑘𝑡 and 𝑐𝑚𝑘𝑡 are the market values 

of these options.  Because put-call parity holds for the BSM model, we should have 

𝑝𝐵𝑆𝑀 + 𝑆0𝑒
−𝑞𝑇 = 𝑐𝐵𝑆𝑀 + 𝐾𝑒

−𝑟𝑇                                           (4.1) 

In the absence of arbitrage opportunities, put-call parity also holds for the market prices, so that 

𝑝𝑚𝑘𝑡 + 𝑆0𝑒
−𝑞𝑇 = 𝑐𝑚𝑘𝑡 + 𝐾𝑒

−𝑟𝑇 

Subtracting these two equations, we get 

𝑝𝐵𝑆𝑀 − 𝑝𝑚𝑘𝑡 = 𝑐𝐵𝑆𝑀 − 𝑐𝑚𝑘𝑡                                           (4.2) 

This shows that the dollar pricing error when the BSM model is used to price a European put option 

should be exactly the same as the dollar pricing error when it is used to price a European call option 

with the same strike price and time to maturity. 

Suppose that the implied volatility of the put option is 22%. This means that 𝑝𝐵𝑆𝑀 = 𝑝𝑚𝑘𝑡, it follows 

that 𝑐𝐵𝑆𝑀 = 𝑐𝑚𝑘𝑡 when the volatility is used.  The implied volatility of the call is, therefore, also 22%.  

This argument shows that the implied volatility of a European call option is always the same as the 

implied volatility of a European put option when the two have the same strike price and maturity date.  

To put this another way, for a given strike price and maturity, the correct volatility to use in conjunction 

with the BSM model to price a European call should always be the same as that used to price a European 

put.  This means that the volatility smile (i.e. the relationship between implied volatility and strike price 

for a particular maturity) is the same for calls and puts.  It also means that the volatility term structure 

(i.e., the relationship between implied volatility and maturity for a particular strike) is the same for calls 

and puts.  

 

 From the BSM formula below, 

𝑐 = 𝑆0𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑇𝑁(𝑑2)                                                 (4.3) 

where 

𝑑1 =
ln(𝑆0/𝐾) + (𝑟 + 𝜎

2/2)𝑇

𝜎√𝑇
 

𝑑2 =
ln(𝑆0/𝐾) + (𝑟 − 𝜎

2/2)𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇 

the price and risk-free interest rate 𝑟 for a standard European call (or put) option with strike 𝐾 and time 

to maturity 𝑇 can be obtained from the market.  To work out the implied volatility, 𝜎 that agrees with 



  

182 
 

Equation (4.1) has to be calculated.  This can be done using spreadsheet software like Microsoft excel 

or functions from more sophisticated programmes like MATLAB or R. 

 

In contrast to historical volatilities that are backwards-looking, implied volatilities (also referred to as 

implicit volatilities) are forward-looking and provide an indication of the market’s sentiment regarding 

the volatility of a particular underlying.  Also, because options prices tend to be more variable than 

implied volatilities, traders frequently quote the implied volatility of options instead of their price (Hull, 

2009).  The importance of implied volatility has led to the creation of indices based on implied volatility, 

and the most popular is the Chicago Board of Options Exchange’s (CBOE) volatility index (VIX) which is 

based on the implied volatility of 30-day options of the Standard and Poor  (S&P) 500.  Another volatility 

index is the VXN, but it is based on the NASDAQ 100 index. In the UK there is also a volatility index 

called VFTSE and is based on the (Financial Times Stock Exchange) FTSE 100 index (Whaley, 2009, Emna 

and Myriam, 2017).  Implied volatility is essential because if the market implied volatility can be forecast 

successfully then the market price of options can also be forecast, and the option can, in turn, be 

hedged successfully.  For this reason, Chiang (2012) argues that implied volatility indices provide 

superior means to investigate the relationship between market risk and return.  

As stated earlier, a range of standard European options on the same underlying does not result in the 

same implied volatility.  The relationship between the strike (moneyness36), maturity and implied 

volatility is depicted through volatility surfaces referred to as implied volatility and local volatility 

surfaces.  These surfaces can be derived either from market prices or from prices based on a stochastic 

volatility model (Alexander 2008c).  As pointed out previously, the BSM model is based on a number of 

assumptions, and if these assumptions were valid, then all options on the same underlying should end 

in the same market implied volatility resulting in a flat surface of market implied volatilities. This is not 

the case as market participants do not believe in the assumptions of the BSM model as suggested by 

the surface of the market implied volatilities which is not flat.  A plot between the market implied 

volatility of all options on the same underlying with the same maturity and different strikes (or 

moneyness) results in a skewed smile shape and is called the volatility smile or volatility skew or smirk 

as shown in Exhibit 4.3.  

                                                 
36  
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Exhibit 4.3:  Volatility smile  

Note: This shows is an example of a volatility smile for Land Securities option.  The vertical and the horizontal axes represent 
the Implied volatility and the moneyness respectively.  It can be seen that the implied volatility is not constant but changes 
with moneyness. (Data Source: Bloomberg, 2018) 

 
Generally, implied volatility for equity indices is considerably higher for low strike (OTM puts and ITM 

calls) options than high strike (OTM calls and ITM puts).  There is an inverse relationship between the 

strike and the implied volatility.  Therefore, deep OTM put options are generally inexpensive because 

it is akin to buying insurance for an underlying one already holds.  Furthermore, because the log price 

density is negatively skewed, the implied volatility for equity indices results in a negative skew.  This 

negative skew emanates from the significantly high premium market participants are willing to pay for 

OTM puts as insurance to limit losses in the event of a market crash.  This phenomenon, however, has 

only been in existence post the market crash in October 1987 with market participants worried about 

another crash of a similar magnitude hence the term “crashophobia” (coined by Mark Rubinstein (Hull, 

2009).  Hull (2009) also attributes the smile of equity options to leverage.  There is an inverse 

relationship between price and volatility.  A drop in an underlying's share price results in the decline of 

the value (market capitalisation) which in turn increases the leverage or gearing of a company.  As a 

consequence, the volatility and hence the implied volatility will increase because the underlying is 

considered riskier.  The opposite scenario (an increase in the share price) has the effect of lower 

leverage and ultimately the volatility of the underlying.  Log price densities with heavier lower tails and 

lighter upper tails than the normal density tend to be pronounced in equity options corresponding to 

premiums traders charge for equity markets (Alexander, 2008c).  In the BSM world, the risk-neutral log 

price density is normal since the BSM model assumes the geometric Brownian motion price process.   

 

The underlying’s current price influences the foregoing relationship between the strike price and the 

implied volatility.  For equities, the volatility skew is likely to move to the right or left when there is a 
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price increase or decrease respectively.  In order to stabilise the volatility smile, it is sometimes 

calculated as the relationship between the implied volatility and 𝐾/𝑆0 as opposed to the relationship 

between implied volatility and strike (Hull, 2009).  𝐾/𝑆0 is what was referred to as moneyness where 

ATM options have a value of 1. 

 

A plot between the market implied volatility of all options on the same underlying with the same strike 

(or moneyness), but different maturities converges to long-term implied volatility and is called the term 

structure of implied volatility (see Exhibit 4.4). Typically, ATM options are used in conjunction with the 

maturity of the option to work out the term structure.  Volatility should be constant according to the 

BSM model, suggests that implied volatility should also be constant over time.  However, this is not the 

case as volatility is not constant and implied volatility changes over time.  This term structure can be 

used when pricing options.  In periods with historically low, short-dated volatilities, there is an 

expectation that volatilities will increase; hence the resulting volatilities tend to increase with maturity. 

Correspondingly, in periods with historically high, short-dated volatilities, the expectation is that 

volatilities will decrease, therefore resulting in volatilities that tend to decrease with maturity.    

 
Exhibit 4.4: Implied volatility term structure 

Note: This shows the term structure for Land securities which plots the relationship between the implied volatility and the 
time to maturity (term)  on an option with the same strike price. The vertical and horizontal axes represent the implied 
volatility and time to maturity respectively. . (Data Source: Bloomberg, 2018) 

 

The volatility smile and the volatility term structure when combined form the volatility surface (See 

Exhibit 4.5).  Here, the implied volatility is a function of both the strike and the maturity.  Again, if the 

assumption regarding volatility in the BSM model were correct, a flat volatility surface would result.  

However, the volatility surface is not flat because of the resulting implied volatility is not the same as 

shown in the volatility smile and volatility term structure plots.  The importance of the volatility surface 
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is that it can be used, through interpolation of the BSM model, to value options that have no market 

prices but have known strike and maturity. 

 
Exhibit 4.5: Volatility surface 

Note: This is an example of a volatility smile of Land securities.  This plots the implied volatility plotted against the moneyness 
and the term (time to maturity).  (Data Source: Bloomberg, 2018) 
 

The purpose of this research is to investigate the volatility spillover of the UK REITs with traded options 

by using implied volatility.   

4.2.1. Implied volatility in real estate 

As earlier indicated, implied volatility is the volatility implied from the price of options by reserve 

engineering the option formula to get the volatility that produces the market price for the option.  

Implied volatility is an indication of the market’s view of the volatility.  The focus of many studies hinges 

on the relationship between implied volatility and future stock returns and realised volatility. Instead 

of only observing the implied volatility of individual stocks, it is also possible to observe the implied 

volatility of a market through the volatility indices like the VIX. 

There is evidence that these volatility indices provide information on the performance of the market 

as well as individual companies (Giot, 2005; Whaley, 2009;.Chiang, 2012; Emna, 2012; Gaert and 

Hoerova, 2014).  While this is the case, there is also research that looks at the transmission or spillover 

between the volatility of a specific market to another market.  The literature examined below is two 

fold, firstly it explores the relationship between implied volatility and real estate performance and then 

also explores volatility spillover both in the different markets as well as in real estate.    
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Numerous research has been undertaken that investigates implied volatility in real estate.  One of the 

earliest studies in this respect is by Patel and Sing (2000) who estimate of implied volatility based on 

actual transaction data of property.  They do this in order to address the failure of indices based on 

appraisals to adequately reflect specific property risk-return characteristics.  They observe property is 

usually riskier than what the indices purport; therefore leading investors to carry further specific risk 

because the residual risk captured in some appraisals is nothing more than a simple adjustment of a 

local market trend.  Patel and Sing (2000) use a one -factor option model to estimate the implied 

volatility and compare it to the actual volatility of the rental transactions of the UK commercial property 

sector.   The estimation is based on the one factor real option proposed by Pindyck (1991) and Dixit 

and Pidyck (1994) and is analysed in the conditional variance in the mean framework proposed b Engle, 

Lilien, and Robins (1987) and Bollerslev, Engle, and Wooldrige(1988) and the exponential version of the 

model by Nelson (1991).  They find that there is strong orthogonality in the information impounded in 

implied volatility estimates compared to that contained in historical standard deviations.  However, 

this relationship is not clear-cut as other research present contrasting findings (Griffin and Lemmon, 

2002; Clayton and MacKinnon, 2003), Guirguis, and Shilling, 2009). 

While the work of Patel and Sing (2000) is based UK direct property, Diavatopoulos et al. (2010) 

examine equity REIT options and the predictive power of ex-ante risk measures taken from option 

prices.  While implied volatility has been extensively investigated outside the real estate sector, 

Diavatopoulos et al. (2010) were the first to apply it to REITs.  The study employed some simple 

regression as well as the reverse Fam and Macbath (1973) regressions.  The findings of the study show 

that REIT implied volatility and implied idiosyncratic volatility distributions are like those of other listed 

equities and that the future realised volatility for REITs is related to both future and implied volatility.  

Anoruo and Murthy (2016) examine the relationship between implied volatility from the US implied 

volatility index (VIX) and REIT returns by employing frequency a dependant regression and a frequency 

domain causality test allowing shocks to vary across frequency bands.  The particular aim of the study 

is to investigate whether movements in US REIT returns at different frequencies, i.e. low-, medium -, 

and long-term, can be predicted by implied volatility. The results show that there is a negative 

relationship between the implied volatility and REIT returns at all the frequency levels.  Extended 

analysis using causality tests reveal that causality runs from implied volatility to all and equity REIT 

returns in the short – and medium -term, frequently but not the other way round.  In contrast, the 

results also indicate that in the medium term, causality runs from mortgage REITs to implied volatility. 
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Overall, conclude that knowledge of implied volatility can assist investors in predicting movements in 

the capital market.  

Chung et al. (2016) focus on the global financial crisis (GFC) period in looking at the relationship 

between US REIT stock volatility and future returns by using an approach based on some regression 

models based on several regression models. The findings suggest on the one hand there is a negative 

relationship between the REIT implied volatility and contemporaneous stock returns. On the other 

hand, there is a significant positive relationship between REIT implied volatility and future stock 

volatility while the relationship between REIT implied volatility and future stock returns is significantly 

negative.   

In another study, Akinsomi, Coskun, and Gupta (2018) investigate the impact of volatility and equity 

market uncertainty on herding behaviour in the UK REIT market through different market regimes by 

employing a Markov regime switching model.  Here, the volatility of the equity market is obtained from 

the implied volatility index the VFTSE which is the UK version of the VIX.  The findings are that the static 

model rejects the existence of herding in the UK REIT market whiles the regime-switching model 

estimates show significant evidence of herding and anti herding behaviour the low and high volatility 

regimes respectively. This suggests that the level of the equity market’s volatility may provide a signal 

of herding related risk in UK REITs although this also depends on the market condition or regime in 

which the analysis is undertaken. 

As previously state implied volatility is also used in the examining transmission or spillover effects 

between different markets within or outside real estate. This study now examines spillover effects 

focusing on volatility spillovers 

 

4.3. Spillover effects 

In general financial economics, volatility spillover research dates back to the 1990s and has exploded 

particularly after the introduction of Autoregressive Conditional Heteroscedasticity (ARCH) which make 

it possible to the first and second moments to be modelled concurrently (Stevenson, 2002).  Most of 

the early research focuses on the stock market dynamics by examining the inter-linkages of return and 

volatility of international markets in studies such as Hamao et al. (1990), King, Sentana and Wadhani 

(1990), Bae and Karolyi (1994). The results are varied, for example, Bae and Karolyi (1994) reveal that 

the volatility spillovers between major stock markets are asymmetric whereas there is volatility 
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spillover evidence among the US, the UK, Canada, Japan and Germany (Thedossiou and Lee, 1993).  

Research is not only limited to countries with developed stock markets, but other studies investigate 

the integration between in emerging countries, i.e. Turkey, Russia, Brazil, Korea, South Africa, and 

Poland (Mandaci and Torun, 2007).  The results indicate the existence of significant co-integration 

between stock markets in Russian and Korea while some tests show a long- and short-term relationship 

between the Brazilian and Polish stock markets.   

Motivated by the global financial crisis (GFC) Diebold and Yilmaz (2012)using US stock, bond, foreign 

exchange, and commodities markets propose spillover measures that build on from the previous 

study‘s (Diebold and Yilmaz, 2009 (DY09).  They developed measures address the methodological and 

substantive limitations of their 2009 study.  On the methodology side, they argue that their earlier 

study (DY09) could result in variance decompositions dependent on variable ordering.  From the 

substantive side, only spillovers across identical assets can be measured by DY09.  Diabold and Yilmz 

(2012) therefore propose a spillover measure, using a generalised vector autoregressive framework, 

whose forecast-error variance decompositions are variance ordering invariant and also propose 

measures of both the total and directional volatility spillovers.  Their study covers a period from January 

1999 to January 2010 and results reveal that cross-market volatility spillovers were quite limited up 

until the GFC, notwithstanding the significant volatility fluctuations during the sample period.  They 

show that the spillovers increased as the crisis intensified.  

Other research has looked at the financial integration between emerging markets i.e. Brazil, China, 

Russia, and Turkey; and developed markets of the the US, UK and Germany (Nasser and Hajilee, 2016) 

using the bounds testing approach to cointegration coupled with error-correction modelling in order 

to ascertain the short- and long-run relationship between these two markets.  The results provide 

evidence of the existence of short-run integration between the two markets whereas on Germany 

displays a significant relationship with the long-run coefficients of all the stock markets in the emerging 

countries.  

Spillover research is not only limited to stock markets but also between commodities like oil and stock 

markets (Malik and Hammoudeh, 2007) showing that there are spillovers from the oil markets to the 

Gulf equity markets except for Saudi Arabia that displays significant volatility spillover from the equity 

market to the oil market.  In another research Bein (2017), using the  DCC GARCH model investigates 

the time-varying co-movements and volatility transmission between stock market of three Baltic states 

(Estonia, Latvia and Lithuania) and two international crude oil indices (Brent and West Taxes 
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Intermediate (WTI)).  Furthermore, the study also investigates the relationship between the two oil 

indices with the EU and the UK – major oil importing, and Norway and Russia – two exporting European 

countries.  The results reveal that a positive albeit lower level of time-varying co-movement between 

the Baltics and the international markets.  They also find contrary to the literature that impacts of oil 

shocks in the Baltics are also lower than in the European counties.  Furthermore, the time-varying and 

volatility transmission with the oil importing and oil exporting countries shows the existence of high-

level time-varying-movements.  Bein (2017) also shows that the oil-exporting countries have high 

volatility transmission and magnitude of shocks from the oil markets.  Volatility spillovers are also 

employed in research for commodity markets like steam coal (Li, Joyeux and Ripple, 2010; Papiez and 

Smiech, 2005; and Batten et al. 2019) which generally show the integration between different coal 

markets.  Volatility spillover is also applied to studies on precious metals (Batten, Ciner and Lucy, 2014) 

and non-ferrous metals( Ciner, Lucey and Yarovaya, 2018). 

Research on spillover effects also extends to real estate in general and REITs in particular.  Stevenson 

(2002) examines the linkages between US REIT and other US capital markets asset classes, i.e. US based 

equities and fixed income sectors, by employing the second moment of the return distribution or 

volatility estimated using GARCH and EGARCH specifications on monthly data.  The US REIT data in this 

study include equity, hybrid and mortgage REITs.  Results show a causal relationship emanating from 

equity REITs to other REIT sectors with small-cap stocks and value stocks being the main influencing 

asset classes.  Mortgage REITs, on the other hand, are generally not influenced by volatility in the fixed 

income sector.  Cotter and Stevenson (2006) also examine the daily volatility dynamics between REITs 

sectors by employing a time-varying approach where they divide the sample into three periods. The 

first consists of a period with a lot of IPOs, the second covers the technology boom, and the third 

extends to the periods after the technology boom when there is a correction to the market.  Like 

Stevenson (2002) they use GARCH based approaches and also investigate the influence of other US 

equities.  Cotter and Stevenson (2006) provide an indication based on the results that the general 

market sentiment plays a more critical role than a more intuitive relationship within the capital market.  

This is because unlike, the monthly based results from previous studies, the findings indicate the 

linkages with the REIT sector and with related sectors like the value stocks, diminished.  However, there 

is an enhancement of the influence of market sentiment from the large-cap indices.  Whereas, Cotter 

and Stevenson (2008) and Cotter and Stevenson (2006) investigate the linkages between the volatility 

of different REIT subsectors and other equities sectors, the influence of leveraged or indexed traded 
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funds (ETFs) on interday returns of REITs is examined by Bond and Hatch (2011) and Ertugrul, Sezer, 

and Sirmans (2008). 

Anderson, Bhargava and Dania (2018) examine the interrelationships between the performances of 

several global REIT markets through determining the return linkages, volatility spillover effects and 

covariance.  They divide the global REIT market into major world REIT indices, i.e. developed markets, 

the EU, and the far east; and secondly, into major REIT countries (Australia, Belgium, Canada, France, 

Germany Japan, Netherland and UK).  They undertake this task by utilising unrestricted vector 

autoregressive analysis (VAR), GARCH, Threshold GARCH, and MGARCH and find that there is evidence 

to support high market integration between the major developed countries and the US REIT market 

except for Japan and Australia.  Therefore there would be no benefit for a US investor to diversify 

through REITs of most of the major developed markets. 

Using the US, UK and Australian markets, Hoesli and Reka (2013) utilise an asymmetric t-BEKK (Baba-

Engle-Kraft-Kroner) covariance matrix specification when examining volatility transmission across 

markets.  They analyse the relationship between local and global securitised real estate markets.  

Motivated by the fact that despite the underlying asset of real estate stocks being direct real estate, 

real estate stocks are stocks by definition.  With this in mind, they also analyse the relationship between 

securitised real estate and common stock markets.  To assess whether there is a different dynamic 

underlying the co-movements in the whole distributions including the extreme events in the series, 

correlations from the t-BKK model and tail dependence estimated using a time-varying copula 

framework are analysed. Unlike most research on volatility spillovers in real estate, this study is 

extended by also investigating market contagion by testing for tail dependence structural changes. The 

results show that the US has the most considerable spillover effects, both domestically and 

internationally.  They also find that co-movements in tail distributions between markets seem to be 

important. Lastly, Hoesli and Reka (2013) show evidence of market contagion between the US and the 

UK markets after the subprime crisis. 

More recently, Milcheva and Zhu (2018) distinguish between co-movement due to market risk 

exposure and co-movement due to linkages between markets, i.e. spillover risk by estimating a spatial 

multi-factor model (SMFM).  This model which is estimated based on 14 developed countries’ real 

estate stock indices combines asset pricing techniques with spatial econometrics to assess systematic 

implications for REIT index returns.  Milcheva and Zhu (2018) find that during the global financial crisis, 

spillover risk increases dramatically and explains up to 60% of total asset variation whereas 
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unsystematic risks have been the predominant type of risk in real estate in the rest of the time.  

Furthermore, the results reveal that in comparison to traditional linkages such as geographical distance, 

economic integration performs a more pronounced role in the interconnectedness among markets.  

Another study for Liow and Huang (2018) investigate 10 established REIT markets and reveal that 

contrary to other findings in global REIT markets; there is less similar integration process occurring.  

They find that a significant source of REIT volatility integration shocks in 80% of the cases is the local 

stock market.  In line with other literature, this is more pronounced in crisis periods compared to 

periods of relative calm. 

4.4. Data, methodology and empirical analysis  

4.4.1 Data 

This research looks at the volatility spillover of implied volatility in the of the UK volatility index (VFTSE), 

UK REIT index and implied volatility of UK REITs.  of returns and risk for UK REITs.  Most research on 

implied volatility is around the non-REIT markets while that conducted around REITs focuses more on 

the US and other markets (Diavatopoulos et al., 2010; Anoruo and Murthy, 2016; Chung et al., 2016, 

Akinsomi, Coskun, and Gupta, 2018).  Furthermore, the research above has mainly been conducted at 

the REIT index level for different countries.  In contrast to the preceding, this research cascades to UK 

REITs companies that have traded options.  While the UK market is growing steadily since its 

introduction in 2007, it lacks a vibrant options market.  There are about 50 REITs in the UK (REITa, 2018) 

out of which only three have traded options, namely, British Land, Hammerson and Land Securities.  

These companies constitute about 30% of the market and are among the top five biggest UK REITs by 

market capitalisation.  Except for Segro, the three REITs companies mentioned above have consistently 

been in the FTSE 100 since the introduction of REITs in the UK.  Their long stock mark history and size 

make them stand far ahead of every other REIT.  Consequently, the three companies have been chosen 

because they are the only UK REIT companies that have option related data like implied volatility.  The 

three REITs have been trading in options for different lengths of time, i.e. May 2005, May 2008 and 

October 2013 for Land Securities, British Land and Hammerson respectively. Therefore, the data points 

are based on a common span and will range from October 2013 to February 2018.  During this period 

all the three companies were listed on the Financial Times Share Exchange (FTSE) 100, however, from 

March 2018, Hammerson’s was relegated from the FTSE 100 to the FTSE 250 due to a drop in its market 

capitalisation.  US REITs were also considered however, Chung et al (2016) already undertook a study 
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using examining the relationship between REIT implied volatility and stock market volatility.  The 

researcher could not find REITs with traded options in other markets. 

All data was sourced from Bloomberg, and this consists of daily data for the UK FTSE volatility index 

(VFTSE); UK REIT index, 30 days implied volatility for British Land, Hammerson and Land Securities the 

three REIT companies with traded options.  The Implied volatility data was obtained specifically from 

the Bloomberg Option Monitor (OMON).   

 

While the time series of assets can provide us with information for modelling the market, it is possible 

to use other liquid instruments with quoted prices.  Such instruments and their parameters can be 

calibrated using particular models by making use of a parameter which most closely matches the 

observed prices.  Calibrating models needs great care and all aspects, such as parameter stability or 

robustness, have to be taken into account as the parameters in question may change over time. 

 

Traded options are an example of the instruments used in modelling assets prices.  The price for traded 

options is observable in the market, and the Black-Scholes-Merton model (mentioned earlier) can be 

used to calculate or back-out the volatility resulting from this observed market option price.  As stated 

previously, the backed out volatility is the volatility that is implied by the market; hence the eponymous 

‘implied volatility’.  Implied volatility is said to contain information about the price movement, return 

and future realised volatility of an underlying and could thus be used in the calibration of assets 

performance.  One of the assumptions of the Black-Scholes-Merton model is that volatility is constant, 

but this is not the case because implied volatility is not the same for all options on an underlying with 

different strike prices but the same maturity.  

 

The distribution and descriptive statistics of the VFTSE and implied volatility of the are shown in Exhibit 

4.6 and Table 4.1 respectively.  The data is characterised by positive skew, the high kurtosis and high 

Jarque-Bera statistics suggesting that the data is not normally distributed and has fat tails.  As a 

departure from most of the research associated with implied volatility in REITs, this research takes the 

absolute log of the daily changes in the implied volatility levels for the VFTSE, UK REITs and the 3 UK 

REITs, similar to Siriopoulos and Fasses (2013).  Exhibit 4.7 and Table 4.2 show the plot for implied 

volatility changes and the descriptive statistics for the VFTSE and the 3 UK REITs.  The plot for the 
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changes of the implied volatility and UK REIT prices shows some volatility clustering. The mean for the 

actual log difference the mean is close to zero, and the median is virtually zero for all but Land Securities 

and the UK REIT index, though they are also almost zero.  The changes of the implied volatilities, and 

the UK REIT index prices are stationary, and this is supported by significant Augmented Dickey-Fuller 

(ADF) tests for all the variable which indicates that the data is stationary. The arch test is also significant 

indicating that there are Arch effects in data and therefore Arch family models like GARCH can be used 

with the data, this is despite the Jarque-Bera test not suggesting that the data is non-normal.  
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Exhibit 4.6: Price level for the VFTSE; Implied Volatility  REIT companies and UK REITs 
Note: Price levels of for VTSE; implied volatility for British Land, Hammerson and Land Securities; and UK REIT Index for the 
period 31 October 2013 to 28th February 2018 

 

  VTSE UK_REITS BRITISH LAND HAMMERSON LAND SECURITIES 

Mean 14.5070 789.9283 20.4900 19.3554 20.4483 

Median 13.4115 808.7550 18.2165 17.9850 18.3590 

Maximum 32.4780 921.4100 85.8170 65.7320 77.7220 

Minimum 6.1940 602.0200 9.3730 10.2080 9.1280 

Std. Dev. 4.2958 74.5550 11.1791 8.1973 9.8966 
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Skewness 1.4510 -0.7022 4.5416 3.9104 4.1712 

Kurtosis 5.2962 2.5885 25.6343 21.3874 23.1947 

Jarque-Bera 645 101 28006 18799 22479 

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 

 Observations 1130 1130 1130 1130 1130 

 
Table 4.1: Descriptive statistics of  the VFTSE and Implied Volatility levels British Land, Hammerson and Land 

Securities 
 

 

  VFTSE UK_REITS BRITISH_LAND HAMMERSON LAND_SECURITIES 

 Mean 0.00342 0.00031 0.00132 0.00256 0.00137 

 Median 0.00000 0.00011 0.00000 0.00000 -0.00108 

 Maximum 0.53753 0.05848 0.55573 0.40442 0.36124 

 Minimum -0.36276 -0.14475 -0.30014 -0.30619 -0.22502 

 Std. Dev. 0.08278 0.01100 0.05159 0.06603 0.04933 

 Skewness 0.81381 -2.35678 1.50285 0.73237 1.07981 

 Kurtosis 8.01128 34.35104 23.22272 8.47509 10.73298 

 Jarque-Bera 1306 47282 19663 1511 3032 

 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 

 Observations 1129 1129 1129 1129 1129 

      

ADF 
-

27.13487*** -20.54427*** -20.54427*** -25.70869*** -27.48655*** 

Arch Test 25.96143*** 159.6116*** 30.58385*** 52.13789*** 70.28634*** 
Table 4.2: Descriptive statistics of implied volatility changes 

Note: ADF is the Augmented Dickey-Fuller Test that test for stationarity and the Arch test checks if the data has arch effects 
to determine if the Arch family models can be used. 
*** Represents statistical significance at the 1% level 
  ** Represents statistical significance at the 5% level 
   *  Represents statistical significance at the 10% level 
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Exhibit 4.7: Implied volatility changes  

Note: These are log changes for the VFTSE; UK REITs; and Implied volatility of British Land, Hammerson and Land Securities 
between 1 November 2013 to 28 February 2018 

 

As stated before, this research investigates the volatility spillover in UK REITs through he use of implied 

volatility.  Previous research has shown that implied volatility can be used to predict returns and 

investors can use this in their trading strategies.  Hight levels of implied volatility indices are seen as an 

indicator of an instantaneous increase of the return for the share market (Giot, 2005).  This is important 

for REITs owing to their characteristics.  Chung et al. (2016) argue that unlike other non-REIT companies, 

REITs have a higher exposure to default risk especially in periods of financial turmoil due to their 

relatively high gearing ratios.  The high gearing is more prolonged because of the challenges in paying 

down this debt brought about by one of the critical requirements of paying out most of their earnings 

as dividends.  This, they argue, makes REITs riskier during such periods, therefore, increasing the 

likelihood of a negative correlation between the volatility and future return.  This can be supported by 

Exhibit 4.8 that shows that the gearing was highest around the 2008 global financial crisis due to the 

general fall on share prices and hence market values.  In such instances, REITs are likely to sell at a 

discount.  The general trend for this gearing has been downward for the three REITs though 

Hammerson and British Land have shown some upward trend in some periods.  
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Exhibit 4.8: – Gearing levels for British Land, Hammerson, and Land Securities. Source: FAME (2018) 

 

The notion of implied volatility has risen in importance so much so that it has led to the development 

of dedicated indices.  The most popular is the CBOE volatility index (VIX), normally referred to as the 

fear index, which provides a gauge of the market anticipation of volatility implied by the S&P 500 index 

options.  The VIX, introduced in 1993, was the first volatility index whose two primary purposes was 

first to provide a benchmark of expected short-term market volatility and secondly to provide an index 

upon which futures and options prices could be written (Whaley, 2000).  As the VIX is based on implied 

volatility, its level was implied by the S&P 100 Index option prices.  The VIX level, therefore, denotes 

expected future market volatility over the next 30 calendar days.  Therefore it is forward-looking as it 

measures the volatility that investors expect to see (in 30 days) Emna and Myriam, 2017).  This is unlike 

historical volatility, which looks at realised volatility and is, hence, backwards-looking.  Generally, the 

VIX is high in crisis periods indicating the anxiety of investors with regards to likely drop in the market, 

and it is for this reason why it is referred to as the “investor fear gauge.”  Whaley (2000) argues that 

the increase (decrease) in the expected market volatility leads to investors demanding higher (lower) 

rates of return which in turn results in a fall (rise) in the share prices.  Therefore, this suggests that the 

association between the rate of change in the VIX and the S&P 500 index’s return is positive.  However, 

the relationship is not as straightforward.  In the same way that puts are bought as insurance to price 

drops; there is the same effect to the VIX level as implied volatility, as a change in the VIX should rise 

at a higher absolute rate in a share market fall than in a share market rise (Whaley, 2000).  Beyond 

market prices, the implied volatility index provides a superior way of investigating the relationship 
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between the risk and return of the market.  There is a strong negative relationship between changes in 

the implied volatility index and returns (Chiang, 2012).   

The current VIX is based on the S&P 500, but before 2003 the original VIX was based on the S&P 100 

with the implied volatility calculated using the Black-Scholes-Merton model.  The current VIX however, 

is model-free but based on on the notional of future variance (variance swaps) and arrived at directly 

from market observations.  Other major indices like the NASDAQ, DAX and FTSE 100 also have 

equivalent volatility indices referred to as the VXN, VDAX (Germany) and VFTSE (UK) respectively.  The 

other established exchanges with volatility indices are, Switzerland, Belgium, Paris, Canada, South 

Africa, India, Japan, Greece, Australia, and Korea37. 

 

Research on the European market by Emna and Myriam (2017) confirms that indeed the implied 

volatility indices contain relevant information regarding future share market volatility.  However, they 

argue that this information is still insufficient in predicting the volatility as they do not display all the 

information about the markets.  While implied volatility indices are regarded as forward-looking gauges 

of the volatility of the corresponding markets as well as indicators of investor sentiment, there is no 

consensus on their predictive power of return and volatility by implied volatility.  It is argued that the 

latter, will differ from market to market and also the period of investigation.  Siriopoulos and Fassas 

(2008) however, reveal that though the VFTSE was biased, it is an efficient predictor of realised volatility 

and unlike historical volatility, implied volatility contained all the information concerning the future 

volatility of the market.  Siriopoulos and Fassas (2013) examined the spillover effects in international 

markets concerning implied volatility indices.  They test expectations of market participants through 

implied volatility indices in order to undertake integration analysis of all available volatility indices. 

Their findings suggest that there is significant integration of investor’s expectations regarding future 

uncertainty. Furthermore, their findings reveal a slight increase in conditional correlations for all the 

volatility indices under review over the years supporting the view that conditional correlations across 

implied volatility indices increase in periods financial markets turbulence. 

  

                                                 
37 See Siriopoulos & Fassas. (2013) for an exhaustive list of volatility indices  
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4.4.2. Methodology 

Two methods can examine a variable's behaviour. The first utilises univariate time series where a 

variable’s behaviour is examined by only using the time value and nothing else.  In other words, the 

dynamics of the subject variable examined is only based on how it has performed in the past.  The other 

method uses structural models where the investigation is how the variable (dependent) behaves with 

other variable(s) (independent).  In this instance, the time component is not taken into consideration 

and results in a simple regression where one can examine, for example, how the rate of interest rates 

influence an asset’s returns.  The asset’s return is a dependent variable and rate of interest rates is the 

independent variable.  Where there is more than one independent variable, this becomes a multiple 

regression.  The combination of these two methods results in a multivariate time series, and this 

includes the lag of the time series and the lags of the independent variables or factors. Most research 

on REIT volatility has utilised either univariate models (Davaney, 2001; Stevenson, 2002, Cotter and 

Stevenson, 2004, Cotter and Stevenson, 2007) and structural models (Diavatopoulous et al., 2010 and 

Diavatopoulous et al., 2011).  Others (Cotter and Stevenson, 2006; Case, Yang and Yildirim, 2010; 

Anderson, Bhargava and Dania, 2018) have, however, utilized multivariant GARCH related models on 

both volatility and returns of REITs.  Cotter and Stevenson (2006) consider the return and volatility 

linkages between REIT sub-sectors and further examine the influence of other US equity series.  Case, 

Yang and Yildirim (2010) on the other hand investigate the dynamics in the correlation of returns 

between publicly traded REITs and non-REIT shares.  However, Anderson, Bhargava and Dania (2018) 

take a global view by examining the dynamic relations across REIT markets.   

 

The methodology employed in this study is twofold.  Given that the sample data for this study is 

stationary and also has Arch effects (see Table 4.2), multivariate GARCH modelling is employed.  

Secondly, variance decomposition using generalised vector decomposition as proposed by Diebold and 

Yilmaz (2012) is employed to examine the level of spillover effects.  This research employs two 

multivariate GARCH models, namely; Constant Conditional Correlation (CCC) GARCH by Bollerslev 

(1990) and Engle’s (2002) Dynamic Conditional Correlation (DCC) specification, to examine the 

expectation interdependence of the VFTSE, UK REITs index and implied volatilities of three UK REITs 

with traded options.  This is similar to Siriopoulos and Fassas (2013) who examines the volatility of 

different share indices unlike Case, Yang and Yildirim (2010) who mainly concentrate on returns.  Both 

the CCC and DCC GARCH models are popular specification methods for volatility that is time-varying 
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and dynamic asset correlations respectively.  The dynamic structure of interrelated time series is 

depicted by Sims’ (1980) vector autoregression (VAR).  Share and Watson (2001) define a univariate 

autoregression as a single-equation, single –variable linear model in which its own lagged values explain 

the current value of the variable.  The mathematical form of the VAR system as taken from Siriopoulos 

and Fasses (2013) is: 

 

∆𝐼𝑉𝑡 = 𝛼 +∑𝑏𝑖∆𝐼𝑉𝑡−1 + 𝑢𝑡

𝑝

𝑖=0

                                        (4.4) 

Where ∆𝐼𝑉 represents the endogenous variables in this case a vector of the daily changes of the implied 

volatility of each REIT, 𝑝 is the lag length, 𝛼 and 𝑏𝑖 are matrices of coefficients to be estimated and 𝑢𝑡 

is a vector of innovations that are not serially correlated. Yet these could be contemporaneously 

correlated with each other as well as correlated with the past prices of the endogenous variables 

(Siriopoulos and Fasses, 2013).  The number of lags employed in the module can be deteremined by 

either the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) also called 

Schwarz Information Criterion (SIC) (Sheppard, 2013). 

 

The variance and hence, the volatility of returns are not constant but usually dependent on past 

volatility as can be seen from the clustering of data (Exhibit (9.2).  In order to determine the 

dependence of the variables, it is essential that correlations are estimated similar to the volatilities.  If 

volatility is not constant over time, the correlation as well should not be constant but somewhat 

dependent on past correlation.  In other words, it should be conditional.  Similar to the estimation of 

volatility, various models can be used to estimate this conditional correlation.  One is the simple moving 

average38i.  This is quite simple as all the past observations in the selected sample (for example a 30-

day moving average) are given equal weighting, and those beyond are assigned no weight.  The sample 

will fall off once the 30 days have passed and the resulting correlation will change not because of a 

particular phenomenon happening but simply because some observations have fallen off the sample 

period (30 days) while new ones have been added.  

 

                                                 
38 This is similar to the moving average that covered in chapter 5 
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The exponential weighted moving average (EWMA)39 is another method for estimating the conditional 

correlation. Unlike the moving average, the method employees a parameter 𝜆, which assigns more 

weight to the correlation of the recent observation while the other more past observations decline 

exponentially.  𝜆 is normally choosen abitrarliy however, RiskMetrics have recommended that 0.94 is 

used as 𝜆 for all assets but this has raised some controversy.  In addition, the same 𝜆 must be employed 

for all assets in a multivariate context in order to have a have a correlation matrix that is positive 

definite.  

 

Engle (2002) points out that Orthogonal GARCH40 method or principle component GARCH method 

(proposed by Alexander; 1998, 2001) can be used as an alternative approach in estimating multivariate 

models.  Here, unconditionally uncorrelated linear combinations of a series 𝑟 is contructed.  Thereafter, 

univariate GARCH models are estimated for all of these and the full covariance matrix is constructed by 

assuming the conditional correlations are all zero (Eagle, 2002).  Furthermore, Engle (2002) suggests 

that a slight better method is to run this regression as a GARCH regression, thus getting residuals that 

are orthogonal in a generalised least square (GLS) metric.  

Multivariate GARCH  

Multivariate GARCH (MGARCH) models like Vector GARCH by Bollerslev, Engle & Wooldridge (1988), 

BKK GARCH by Babam, Engle, Kraft and Kroner (1995),  Constant Conditional Correlation (CCC) GARCH 

by Bollerslev (1990), later extended by Jeantheau (1998) and the Dynamic Conditional Correlation 

(DCC) GARCH model by Engle (2002) are natural generalisations that used to study relationships 

between variables.  MGARCH models are mostly applied when studying relationships between 

volatilities and co-volatilities between markets.  Laurent (2018) and Bauwens, Laurent and Rombouts 

(2006) identify the following specific issues relating to markets that MGARCH models are used to 

investigate:  

- whether the volatility of one market leads to the volatility of other markets, 

-  the transmission of the volatility of an asset to another asset - directly or indirectly through 

the conditional variance or conditional covariances respectively. 

- whether the impact is the same for negative and positive shocks of the same amplitude, 

                                                 
39 Please see chapter 3 for more on EWMA. 
40 GARCH stands for generalised autoregressive conditional heteroscedasticity and this is introduced and discussed in chapter 
3  
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- whether correlations between asset returns change over time, are they high during periods of 

high volatility. 

 

Furthermore, they also highlight the application of MGARCH models in the assessment of the impact 

of financial markets' volatility on real variables like exports and output drought rates and their 

respective volatility.  Another use of MGARCH is in the computation of time-varying hedge ratios. 

 

Most of these models have been formulated in a way that the covariances and variances are linear 

functions of the squares and cross products of the data.  In so doing, the aim is to specify the conditional 

variance matrix.  However, the parameters for these matrices increase at a rapid rate as the dimension 

increases (Silvennoinen and Teräsvirta, 2007).  The covariance matrix has to be invertible, but this 

becomes challenging in terms of computation, when the number of assets, 𝑛, exceeds the number of 

the time series, 𝑡41..  It is therefore important that a multivariate GARCH model is parsimonious enough 

but still maintaining flexibility at the same time and the conditional covariance matrix must be positive 

definite. 

 

Silvennoinen and Teräsvirta (2007) divide the different specifications of MGARCH into four groups: 

 

1. Models of the conditional covariance matrix: The VEC-GARCH and the BEKK parametric 

models fall in this group. The VEC-GARCH model is a straightforward generalisation of the 

univariate GARCH model.  Here, every conditional variance and covariance is a function of 

all lagged conditional variance and covariance, including the squared returns and cross –

products of returns.  Even if the model’s generality is an advantage, it presents some 

disadvantages - one of which is that there exists only sufficient, somewhat restrictive 

conditions for the conditional covariance matrix to be positive definite (Silvennoinen and 

Teräsvirta, 2007).  Although Bollerslev, Engle, and Wooldridge (1988) offer a simplified 

version of the model which makes the estimation less complicated than in the original VEC 

model, the parameters seem too restrictive because no interaction is allowed between the 

different conditional variances and covariances.  The main challenge to the VEC model is 

                                                 
41 For more explanation of this please see chapter 3 
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that the estimation of parameters is computationally demanding.  The BEKK model is an 

alternative to the VEC model though it is viewed as a restrictive form of the VEC model.  Its 

restriction ensures that the conditional covariance matrices are positive definite by 

construction. Despite this advantage, like the VEC model, the BEKK model still involves 

somewhat heavy computations because of several matrix inversions (ibid).  

 

2. Factor models: these models emanate from economic theory.  The name factor comes 

from the idea that the return process is assumed to be generated from several unobserved 

heteroscedastic factors.  The number of these factors is small in relation to the return 

vector and therefore leads to reduced dimensionality.  Parsimony is at the centre of 

conditional covariance matrices in the factor models.  Uncorrelated factors are desirable 

in order to represent genuinely different common components driving returns.  So the 

original observed series present in the returns are assumed to be linked to unobserved, 

uncorrelated variables or factors through a linear, invertible transformation (Silvennoinen 

and Teräsvirta, 2007).  An example of a factor model is the Generalised Orthogonal (GO-) 

GARCH by van der Weide (2002). 

 

3. Conditional variances and correlations: These models hinge on the decomposition of the 

conditional covariance matrix into conditional standard deviations and correlations.  

Examples of MGARCH models in this group are the Constant Conditional Correlation (CCC) 

GARCH and the Dynamic Conditional Correlation (DCC) GARCH models. These will be 

examined in more detail below. 

 

4. Nonparametric and semiparametric approaches: These provide an alternative to the 

parametric estimation of the conditional covariance structure.  In contrast to the 

parametric models, the nonparametric and semiparametric models do not impose a 

particular structure on the data.  Silvennoinen and Teräsvirta (2007) note that 

nonparametric models, however, suffer from the ‘curse of dimensionality’ due to the lack 

of data in all directions of the multidimensional space thus the performance of the local 
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smoothing estimator deteriorates quickly as the dimension of the conditioning variable 

increases. 

 

4.4.2.1. Conditional variances and correlations  

This research employs the conditional variance and correlation models i.e. CCC and DCC multivariate 

GARCH models.  CCC GARCH is covered first as DCC GARCH builds on it.  (The following is mainly taken 

from taken from Sheppard (2013) and the references therein).  The conditional variance and correlation 

permit one to specify separately, the individual conditional variances on the one hand, and the 

conditional correlation matrix on the other.  Put differently; the conditional covariance is decomposed 

into k conditional variances and conditional correlations.  Even though theoretical results on 

stationarity, ergodicity and moments may not be that straightforward to obtain compared to the 

models in the other groups, they are parsimonious and therefore much easier to estimate  (Laurent, 

2018).  

The Constant Conditional Correlation (CCC) GARCH model  

The conditional variance matrix for this class of models (CCC and DCC GARCH) is specified hierarchically.  

First, one chooses a GARCH-type model for each conditional variance. Second, the conditional 

correlation matrix is then modelled based on conditional variances.  The CCC GARCH assumes that 

these correlations are constant and hence the conditional covariances are proportional to the product 

of the corresponding standard deviations.  The effect of this restriction highly reduces the number of 

unknown parameters. Therefore 

 

𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡                                                                 (4.5) 

where 𝐷𝑡 is the diagonal matrix of the conditional standard deviation of the 𝑖𝑡ℎ asset in its 𝑖𝑡ℎ diagonal 

position. 

 

𝐷𝑡 =

[
 
 
 
 
𝜎1,𝑡
0
0
 

⋮
0

    

0
𝜎2,𝑡
0
⋮
0

     

0
0
𝜎3,𝑡
⋮
0

     

⋯
⋯
⋯
⋮
⋯

    

0
0
0
⋮
𝜎𝑘,𝑡]
 
 
 
 

                                             (4.6) 

 

Where 𝜎𝑖,𝑡 = √𝜎𝑖𝑖,𝑡. The conditional variances are typically modelled using standard GARCH(1,1). 
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𝜎𝑖𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝜇𝑖,𝑡−1
2 + 𝛽𝑖𝜎𝑖𝑖,𝑡−1                                    (4.7) 

 

Other specifications such as TARCH or GJR GARCH or EGARCH can also be used to take into the 

asymmetric GARCH.  It is also possible to model the conditional variances with different models for 

each asset, a distinct advantage over the VEC and related models (Sheppard, 2013).  

 

The matrix containing the constant conditional correlations is represented by 𝑅. 

 

𝑅 =

[
 
 
 
 
1
𝜌12
𝜌13

 

⋮
𝜌1𝑘

    

𝜌12
1
𝜌23
⋮
𝜌2𝑘

     

𝜌13
𝜌23
1
⋮
𝜌3𝑘

     

⋯
⋯
⋯
⋮
⋯

    

𝜌1𝑘
𝜌2𝑘
𝜌3𝑘
⋮
1 ]
 
 
 
 

                                           (4.8) 

 
The conditional covariance matrix can be computed from the conditional standard deviations and the 

conditional correlations, and so all of the dynamics in the conditional covariance are attributable to 

changes in the conditional variances.  The CCC GARCH model can be estimated in two steps. The first is 

the k conditional variance models (for example, GARCH) which produces the vector of standardised 

residuals 𝜇𝑖,𝑡 = 𝜖𝑖,𝑡/√�̂�𝑖𝑖,𝑡.  The second step estimates the constant conditional correlation using the 

standard correlation estimator on the standardised residauls.  Therefore the covariance in the constant 

conditional correlation GARCH model evolves according to: 

 

𝐻𝑡 =

[
 
 
 
 
𝜎11,𝑡

𝜌12𝜎1,𝑡𝜎2,𝑡
𝜌13𝜎1,𝑡𝜎3,𝑡

 

⋮
𝜌1𝑘𝜎1,𝑡𝜎𝑘,𝑡

    

𝜌12𝜎1,𝑡𝜎2,𝑡
𝜎22,𝑡

𝜌23𝜎2,𝑡𝜎3,𝑡
⋮

𝜌2𝑘𝜎2,𝑡𝜎𝑘,𝑡

     

𝜌13𝜎1,𝑡𝜎3,𝑡
𝜌23𝜎2,𝑡𝜎3,𝑡
𝜎33,𝑡
⋮

𝜌3𝑘𝜎3,𝑡𝜎𝑘,𝑡

     

⋯
⋯
⋯
⋮
⋯

    

𝜌1𝑘𝜎1,𝑡𝜎𝑘,𝑡
𝜌2𝑘𝜎2,𝑡𝜎𝑘,𝑡
𝜌3𝑘𝜎3,𝑡𝜎𝑘,𝑡

⋮
𝜎𝑘𝑘,𝑡 ]

 
 
 
 

            (4.9) 

 
where 𝜎11,𝑡, 𝑖 = 1, 2, … , 𝑘 evolves according to some univariate GARCH process on asset 𝑖, usually a 

GARCH(1,1).  The CCC model contains 𝑁(𝑁 + 5)/2 parameters. 𝐻𝑡 is positive definite if and only if all 

the 𝑁 conditional variances are positive and 𝑅 is positive definite (Bauwen, Laurent and Rombouts, 

2006).  The unconditional variances are easily obtained, as in the univariate case, however, due to 

nonlinearity of 𝐻𝑡, the covariances are difficult to calculate.  The assumption that the conditional 

correlations are constant seems unrealistic in many empirical application and for this reason, Engle 

(2002) and Tse and Tsui (2002) developed a generalisation of the CCC model by making the conditional 
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correlation matrix time dependent and this resulted in the dynamic conditional correlation (DCC) 

model. 

The Dynamic Conditional Correlation (DCC) GARCH model  

The DCC GARCH model, introduced by Engle (2002) and Tse and Tsui (2002), extends the CCC GARCH 

by introducing simple, scalar BEKK-like dynamics to the conditional correlations.  In the DCC model, the 

conditional correlation matrix is time-dependent.  In the DCC, the correlation matrix,𝑅, in the CCC is 

replaced with 𝑅𝑡.  Like the CCC GARCH, the covariance matrix, 𝐻𝑡 (Equation (4.6)), can be decomposed 

into the conditional standard deviations, 𝐷𝑡, and a correlation matrix, 𝑅𝑡 (see Equation (4.10)).  

However, 𝐷𝑡 and 𝑅𝑡 are time varying in contrast with CCC GARCH where 𝑅, is constant.  Therefore, the 

covariance in a DCC GARCH model (Engle, 2002) evolves according to 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                                                 (4.10) 
 

where 
𝑅𝑡 = 𝑄𝑡

∗𝑄𝑡𝑄𝑡
∗                                                                (4.11) 

 

𝑄𝑡 = (1 − 𝑎 − 𝑏)�̅� + 𝑎𝑢𝑡−1𝑢𝑡−1
′ + 𝑏𝑄𝑡−1,                                    (4.12) 

                                    = (1 − 𝑎 − 𝑏)�̅� + 𝑎 (𝑅𝑡−1

1
2 𝑒𝑡−1)(𝑅𝑡−1

1
2 𝑒𝑡−1)

′

+ 𝑏𝑄𝑡−1,                 (4.13) 

 

𝑄𝑡
∗ = (𝑄𝑡⊙ 𝐼𝑘)

−
1
2                                                    (4.14) 

 

𝑢𝑡is the 𝑘 𝑏𝑦 1 vector of standardised returns (𝜇𝑖,𝑡 = 𝜖𝑖,𝑡/√�̂�𝑖𝑖,𝑡 and ⊙denotes Hadamard 

multiplication42 (element by element). {𝑒𝑡} are a sequence of i.i.d. innovations with mean 0 and 

covariance 𝐼𝑘, such as a standard multivariate normal or possibly a heavy tailed distribution. 𝐷𝑡is a 

diagonal matrix with the conditional standard deviation of asset 𝑖 on the 𝑖𝑡ℎdiagonal position.  The 

conditional variance 𝜎11,𝑡, 𝑖 = 1,2, … , 𝑘, evolve according to some univariate GARCH process for asset 

𝑖, usually a GARCH(1,1) and are identical to Equation (4.7).  The specification of the univariate GARCH 

models is not limited to the standard GARCH(p,q), but any GARCH process with normally distributed 

errors that satisfies appropriate stationarity conditions and non-negativity constraints can be included 

(Engle and Sheppard, 2001).  For example to capture asymmetric effects in volatility, TARCH or GJR 

GARCH  could be used. 

 

                                                 
42 The Hadamard product is an operation where two matrices of the dimensions are multiplied together to produce a new 
matrix (i.e. each element i,j in the new matrix is the product elements i,j of the original two matrices. 
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Equation (4.7) and (4.14) are needed to ensure that 𝑅𝑡is a correlation matrix with diagonal elements 

equal to 1.  �̅� is the 𝑁 × 𝑁̅̅ ̅̅ ̅̅ ̅̅  unconditional variance matrix of 𝑢𝑡, and a and b are nonnegative scalar 

parameters satisfying 𝑎 + 𝑏 < 1. The 𝑄𝑡 process is parameterised in a similar manner to the variance 

targeting BEKK which allows for three step estimation. The first two steps are identical to those of the 

CCC GARCH model. The third plugs in the estimate of the correlation into Equation (9.8) to estimate 

the parameters which govern the conditional correlation dynamics, a and b. 

 

Unlike Tse and Tsui (2002), Engle(2002) formulates the conditional correlations as a weighted sum of 

past correlations.  Indeed, the matrix 𝑄𝑡 is written like a GARCH equation, and then transformed to a 

correlation matrix (Laurent, 2018). 

 

A drawback of the DCC model is that a and b are scalars so that all the conditional correlations obey 

the same dynamics.  This is necessary to ensure that 𝑅𝑡 is positive definite ∀t through sufficient 

conditions on the parameters.  If the conditional variance are specfied as GARCH(1,1) models then the 

DCC models contain (N + 1)(N + 4)/2 parameters (Laurent, 2018),. 

 

Both the CCC and DCC models can be estimated consistently in two steps which makes the approach 

feasible when N is high. Of course, when N is large, the restriction of common dynamics gets tighter, 

but for large N the problem of maintaining tractability also gets harder. 

 

The DCC model permits flexible GARCH specifications in the variance part.  Furthermore, because the 

conditional variances, jointly with the conditional correlations can be estimated using N univariate 

models, it makes it possible for the DCC GARCH model to be extended to more complex GARCH type 

models. 

4.4.2.2. Vector autoregressive and variance decomposition  

While the multivariate GARCH (MGARCH) will be used to model the relationship and provide 

information on the risk measures and spillovers among the VFTSE, UK REITs, and the three UK REIT 

companies, the purpose of the of the generalised vector autoregressive (VAR) and the variance 

decomposition as proposed by Diebold and Yilmaz (2012), is to measure the total and directional 

spillovers.  In contrast to their earlier model (Diebold and Yilmaz (2009) that relies on Cholesky factor 
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decomposition but is order dependent Diebold and Yilmaz (2012) build propose a new approach that 

eliminates the possible dependence of the results on ordering.  Based on the generalised VAR 

framework, the new approach computes the forecast error variance decomposition without the 

orthogonalisation of shocks (Katusiime, 2018).  ).  This is achieved by exploiting the generalised VAR 

framework of Koop, Pesaran, and Potter (1996) and Pesaran and Shin (1998) (in Diebold and Yilmaz, 

2012) which they refer to as KPPS.The method by Diebold & Yilmaz (2012) results in the measurement 

of the total spillovers which culminates into a spillover index that can be presented as spillover tables 

and plots and therefore can provide information as to the net contributor and net recipient of the 

spillovers (Batten et al., 2019; Mensi at al.,2018; Diebold and Yilmaz, 2012).   

Variance decomposition 

The own variance shares (or variance decompositions) are defined as the fractions of the 𝐻-step-ahead 

error varcs in forecasting 𝑥𝑖 that come about due to shocks to 𝑥𝑖 for 𝑖 = 1, 2,⋯ ,𝑁, and spillovers (or 

cross variance shares) are the fractions of the 𝐻-step-ahead error varcs in forecasting 𝑥𝑖 due to shocks 

to 𝑥𝑖, for 𝑖, 𝑗 = 1, 2,⋯ ,𝑁, such that 𝑖 ≠ 𝑗.  Utilising the generalised VAR frame, the 𝐻-step-ahead 

generalised forecasts-error variance decomposition is expressed  by Diebold and Yilmax (2012) as:  

𝜃𝑖𝑗
𝑔(𝐻) =

𝜎𝑗𝑗
−1∑ (𝑒𝑖

′𝐴ℎ∑𝑒𝑗)
2𝐻−1

ℎ=𝑜

∑ (𝑒𝑖
′𝐴ℎ∑𝐴ℎ

′ 𝑒𝑗)
𝐻−1
ℎ=𝑜

                                      (4.15) 

Where 𝛴 denotes the covariance matrix for the error vector 𝜀; 𝜎𝑗𝑗 is the standard deviation of the error 

term for the 𝑗𝑡ℎ equation; 𝑒𝑗 is the selection vector, with one of the 𝑗𝑡ℎ element and zero otherwise. 

The sum of the elements in each row of the variance decomposition table is not equal to 1 i.e., 

∑ 𝜃𝑖𝑗
𝑔(𝐻)𝑁

𝑗=1 ≠ 1.  Each entry of the variance decomposition matrix by row sum is normalised as: 

�̃�𝑖𝑗
𝑔(𝐻) =

𝜃𝑖𝑗
𝑔(𝐻)

∑ 𝜃𝑖𝑗
𝑔(𝐻)𝑁

𝑗=1

                                              (4.16) 

Where ∑ 𝜃𝑖𝑗
𝑔(𝐻) = 1𝑁

𝑗=1  and ∑ 𝜃𝑖𝑗
𝑔(𝐻) = 𝑁𝑁

𝑖𝑗=1  by construction. 

Diebold and Yilmaz (2012) construct the total volatility spillover index below, by utilising the volatility 

contributions from the KPPS variance decomposition. The total spillover index measures the 

contribution of spillovers of volatility shocks across all the markets to the total forecast error variance.  
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𝑆𝑃(𝐻) =

∑ �̃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

∑ �̃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1

 𝑥 100 =

∑ �̃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

𝑁
 𝑥 100                               (4.17) 

It is also possible to identify which mark plays the dominant role in volatility spillovers between markets 

by considering directional spillovers (Mensi et al., 2018).  This is done by examining spillovers from one 

market to another, e.g. market 𝑖 to market 𝑗 and vice versa. The two categories of direction volatility 

spillovers are “from” and “to” and are calculated using equation (4.18) and (4.19) respectively. 

𝑆𝑖
𝑔(𝐻) =

∑ �̃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

∑ �̃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1

 𝑥 100 =

∑ �̃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

𝑁
 𝑥 100                              (4.18) 

𝑆𝑖
𝑔(𝐻) =

∑ �̃�𝑗𝑖
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

∑ �̃�𝑗𝑖
𝑔(𝐻)𝑁

𝑖,𝑗=1

 𝑥 100 =

∑ �̃�𝑗𝑖
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

𝑁
 𝑥 100                              (4.19) 

The net spillovers can also be calculated by getting the difference between the gross volatility shocks 

transmitted “to” and those received “from” all the markets, i.e.: 

𝑆𝑖
𝑔(𝐻) = (=

∑ �̃�𝑗𝑖
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

∑ �̃�𝑗𝑖
𝑔(𝐻)𝑁

𝑖,𝑗=1

 𝑥 100) − (

∑ �̃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

∑ �̃�𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1

 𝑥 100)                    (4.20) 

 

The net spillovers can be extended to enable one to calculate the net pairwise volatility spillovers. For 

example, the net pairwise volatility spillover between market 𝑖 and market 𝑗 is the difference between 

the gross volatility shock transmitted from market 𝑖 to market 𝑗 and those from market 𝑗 to market 𝑖.  

This is illustrated in equation (4.21): 

𝑆𝑖
𝑔(𝐻) = (

�̃�𝑗𝑖
𝑔(𝐻)

∑ �̃�𝑖𝑘
𝑔 (𝐻)𝑁

𝑖,𝑗=1

−
�̃�𝑖𝑗
𝑔(𝐻)

∑ �̃�𝑗𝑘
𝑔 (𝐻)𝑁

𝑖,𝑗=1

)𝑥 100 =  −(
�̃�𝑗𝑖
𝑔(𝐻) − �̃�𝑖𝑗

𝑔(𝐻)

𝑁
)𝑥 100    (4.21) 

 

4.4.3. Empirical analysis  

The analysis is divided into two parts.  The first part examines the relationship between the VFTSE, UK 

REITs index and the implied volatility of the REIT companies with traded options using the multivariate 
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GARCH.  The second section of the analysis examines volatility spillover effects by utilising variance 

decomposition as proposed by Diebold and Yilmaz (2012). 

4.4.3.1. Multivariate GARCH  

The first part examines the result and analysis of the constant conditional correlation (CCC)  and 

dynamic conditional correlation (DCC) generalised autoregressive conditional heteroscedasticity 

(GARCH) models.  This empirical analysis was undertaken using Oxmetrics, a specialised statistical and 

econometric software programme.  Table 4.3 shows a summary of the estimated coefficient and p-

values of the two multivariate GARCH models.   Of the two models, the CCC is considered to generate 

the data best as it has low values for both the AIC and BIC compared to the DCC.  While both models 

display conditional correlations that are significantly different from zero, the DCC model consistently 

has lover correlations. Both models show that the highest correlation is between Land Securities and 

British Land.  This implies that there is more interconnection between the implied volatilities of these 

REIT companies.  The lowest correlation for both models is between British Land and the UK REITs index 

suggesting that there is very little spillover between the price of the REIT market and that of the implied 

volatility of British Land meaning that the change in the implied volatility of British Land is affected by 

other factors other than the UK REIT market prices.  While the implied volatility index for the FTSE 

(VFTSE) shows, statistically significant correlation with the three REIT companies, there are little 

spillover effects with the UK REIT market.  Interestingly there is negative correlations between the REIT 

market and the implied volatility of the three REIT companies indicating low volatility spillovers. Both 

models show evidence of interconnectedness between the implied volatility changes of the three REIT 

companies with Land Securities and British Land having the highest correlation while Land Securities 

and Hammerson showed the least connectedness among the three.  

 

Exhibit 4.9 displays the conditional variance plots estimated by both the CCC and DCC GARCH and 

shows that Hammerson experienced marked volatility during the sample period (perhaps that is why it 

was relegated from the FTSE 100 at the beginning of the second quarter of 2018).  The VFTSE has the 

second highest conditional volatility; and, the UK REIT index has the least volatility while the pattern 

for the conditional volatility of British Land and Land Securities is similar.  
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    CCC   DCC 

    Coefficient p-Value   Coefficient p-Value 

Panel A - GARCH Results 

ω VFTSE 0.0015*** 0.0001  0.0015*** 0.00010 

α VFTSE 0.1250*** 0.0063  0.1250*** 0.00630 

β VFTSE 0.6531*** 0.0000  0.6531*** 0.00000 
       

ω UK-REITs 0.0000** 0.02780  0.0000** 0.02780 

α UK-REITs 0.1724*** 0.00120  0.1724*** 0.00120 

β UK-REITs 0.7632*** 0.00000  0.7632*** 0.00000 
       

ω British Land 0.0004** 0.02050  0.0004* 0.06840 

α British Land 0.3193*** 0.00830  0.2696*** 0.00010 

β British Land 0.5470*** 0.00010  0.7042*** 0.00000 
       

ω Hammerson 0.0003* 0.06840  0.0003* 0.06330 

α Hammerson 0.2696*** 0.00010  0.2441*** 0.00580 

β Hammerson 0.7042*** 0.00000  0.6397*** 0.00000 
       

ω Land Securities 0.0001*** 0.00010  0.0001*** 0.00010 

α Land Securities 0.3087** 0.02110  0.3087** 0.02110 

β Land Securities 0.2158 0.16970  0.2158 0.16970 

Panel B - Conditional Correlation Results 

 ρUR_VF -0.4269*** 0.00000  -0.3839*** 0.00000 

 ρBL_VF 0.4314*** 0.00000  0.3884*** 0.00000 

 ρHS_VF 0.2170*** 0.00000  0.1892*** 0.00020 

 ρLS_VF 0.4900*** 0.00000  0.4508*** 0.00000 

 ρBL_UR -0.4876*** 0.00000  -0.4500*** 0.00000 

 ρHS_UR -0.3406*** 0.00000  -0.3185*** 0.00000 

 ρLS_UR -0.4718*** 0.00000  -0.4499*** 0.00000 

 ρHS_BL 0.2717*** 0.00000  0.2275*** 0.00000 

 ρLS_BL 0.5363*** 0.00000  0.4943*** 0.00000 

 ρLS_HS 0.2666*** 0.00000  0.2649*** 0.00000 

Panel C - Diagnostics 

  df 4.5062 0.0000   4.4801 0.0000 

 AIC -20.2299   -20.2921  
  BIC -20.0250     -20.0783   

Table 4.3: estimates for the CCC(1,1) and DCC(1,1) GARCH models 
This table provides the summary for the multivariate models, i.e. the estimated coefficients and p-values for the CCC and DCC 
GARCH models.  The GARCH univariate parameters (ω, α and β) are estimated for the VFTSE, UK REIT index, British Land, 
Hammerson and Land Securities.  The conditional correlations are also provided, and the abbreviations are V F= VFTSE, UR = 
UK REITs, BL = British Land, HS = Hammerson and LS = Land Securities. Df is the degree of freedom, and the AIC and BIC are 
the Akaike Information Criterion and Schwartz Criterion respectively. 
*** Represents statistical significance at the 1% level 
  ** Represents statistical significance at the 5% level 
   *  Represents statistical significance at the 10% level 
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Exhibit 4.9: Conditional Variances 

Note: This shows the conditional variances estimated by the DCC GARCH. Both the CCC and DCC show the same estimates for 
the conditional variances.  

 

Table 4.4 presents the unconditional correlation matrix for the implied volatility changes in VFTSE, UK 

REIT Index British Land, Hammerson, and Land Securities; measured using the Pearson’s correlation 

coefficient.  The null hypothesis of no relationship between the variable is rejected, as the correlation 

coefficients are all not equal to zero. There appears to be a moderate43 positive correlation between 

the UK REIT index with British Land and Land Securities.  Hammerson, on the other hand, has a very 

weak positive correlation with VFTSE; and a weak positive correlation with British Land and Land 

Securities.  Land Securities and British Land have the highest unconditional correlation (though 

moderate) as they deal in the same property sectors namely Retail, offices and mix use while 

Hammerson mainly focuses on the retail sector.  Unlike the conditional correlations which have several 

negative correlations, the unconditional correlations are all positive.  Exhibit 4.10 shows the plots in 

the conditional correlation for the DCC GARCH model. By definition, the CCC results in constant 

conditional correlations which as shown in Table 4.3.  The Dynamic conditional correlations show that 

the correlations vary over time with the biggest range being that between VFTSE and British Land and 

the smallest range is the that of VFTSE and the UK REIT index.  These conditional correlations have 

                                                 
43 Evans (1996) provides a guide that the strength of the correlation is: “very weak” between 0.0 and 0.2; “weak” between 
0.2 and 0.4; “moderate” between 0.4 and 0.6; “strong” between 0.6 and 0.8; and “very strong” between 0.8 and 1.0” 
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varied between -0.26 to 0.71 over the sample period, and this is significantly different from the average 

conditional correlations shown in Table 4.4.  The average conditional correlations are all not equal to 

zero, and hence the null hypothesis that there is no association amongst the changes in implied 

volatilities and price of the UK REIT index is rejected.  This suggests that there is integration or 

transmission or spillovers amongst the implied volatilities of the VFTSE, UK REITs and those of the three 

REITs albeit very little in some instances.  Though there is some integration, this is moderate as the 

highest average conditional correlation is 0.53, i.e., that between Land Securities and British Land as 

shown by the CCC model.  The least integration is between British Land  and the UK REIT index.  As 

shown in Table 4.5, in some periods this conditional correlation is quite high meaning they move 

together in general, there is a positive relationship among the VFTSE, British Land, Hammerson and 

Land securities as suggested by their implied volatilities changes.  

 

A comparison between the conditional correlation and the unconditional correlation reveals 

discrepancies that are almost uniform as all but one conditional correlation i.e. that between 

Hammerson and VFTSE; are marginally higher than the unconditional correlations 

 

  VFTSE UK REITs British Land Hammerson Land Securities 

VFTSE 1     

UK REITs 0.2982 1    

British Land 0.3473 0.4427 1   

Hammerson 0.0373 0.2161 0.1742 1  

Land Securities 0.3942 0.4447 0.4917 0.1059 1 

Table 4.4: Unconditional Correlation matrix VFTSE, British Land, Hammerson and Securities implied volatility changes 
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Exhibit 4.10 Conditional Correlation plots for the changes implied volatility  

 

  ρUR_VF ρBL_VF ρHS_VF ρLS_VF ρBL_UR ρHS_UR ρLS_UR ρHS_BL ρLS_BL ρLS_HS 

max -0.2560 0.6253 0.4333 0.6399 -0.2585 -0.1015 -0.2630 0.4826 0.7148 0.4521 

min -0.5880 0.1625 0.0252 0.2522 -0.6493 -0.4977 -0.6470 0.0885 0.2325 0.0747 

range 0.3319 0.4627 0.4081 0.3876 0.3908 0.3961 0.3839 0.3940 0.4823 0.3774 

Table 4.5: Conditional correlation ranges 

 

While the multivariant GARCH models provide information about the relationship regarding the 

correlation of volatilities across the assets and markets under investigation, further analysis can be 

undertaken by considering the generalised vector autoregressive model and volatility decomposition 

to assess the total and directional volatility spillovers.  The next section, therefore, extends the study 

by considering the above-mentioned models. 

 

4.4.3.2. Volatility decomposition 

This section builds on the volatility spillover analysis by make use of a framework proposed by Diebold 

and Yilmax (2012)44.  The study examines both static spillovers and rolling spillovers by analysing the 

                                                 
44 This was undertaken my utilising R code from https://github.com/ which is free and under a General Public Licence 

https://github.com/
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spillover index, directional spillovers, net and pairwise spillovers. The analysis uses the same data used 

in the preceding MGARCH analysis. 

   VFTSE 
 UK 

REITs 
 British 
Land 

 
Hammerson 

 Land 
Securities 

From 
others Net Conclusion 

VFTSE            58.41 10.61 11.83 2.66 16.49 41.59 -2.56 Net recipient 

UK.REITs         10.15 57.45 13.34 7.47 11.59 42.55 3.21 Net contributor 

British.Land     10.63 13.91 53.52 4.12 17.82 46.48 2.19 Net contributor 

Hammerson        3.41 10.21 5.69 77.45 3.23 22.54 -5.95 Net recipient 

Land.Securities  14.84 11.03 17.81 2.34 53.99 46.02 3.11 Net contributor 

To others 39.03 45.76 48.67 16.59 49.13 199.18   

Including own 97.44 103.21 102.19 94.04 103.12 39.8% Total spillover index 

Table 4.6: Volatility spillovers across VFTSE, UK REITs, British Land, Hammerson and Land Securities 
Note: From others – directional measure of spillovers from all marketsj to marketi 
To others – directional measure of spillovers from all marketsj to marketi 
Including own – directional measure  of spillovers from marketi to all marketsj including from own market 

 

Table 4.6 shows that the total volatility spillover calculated using Equation (4.17) is about 39.8%.  Land 

Securities contributes the most to others and therefore has the highest influence on the volatility 

contributing about 49%.  This is followed very closely by British Land whose contribution to the others 

is roughly the same as Land Securities at 48.7% contribution.  This suggests that the transmission of risk 

to the other markets and companies under investigation is high for Land Securities and British Land and 

the UK REITs is at 45.8%.  The volatility spillover between Land Securities and British Land is the highest 

for all off-diagonal values in the table.  This is consistent with the findings in the MGARCH analysis which 

showed a generally high conditional correlation between these two companies.  The contribution to 

others by the VFTSE and Hammerson is relatively low with Hammerson showing the least volatility 

spillovers to others. The three highest contributors to others all have positive net values and are 

therefore net contributors as more volatility spillover is going “to others” than they are receiving “from 

others”. 

 

Further analysis shows that the total volatility spillover is not constant over time as shown in Exhibit 

4.11.  This is done by taking a 100-day rolling data to analyse the volatility spillovers.  Total volatility 

spillover started at a value of about 25% and peaked close to 70% at the beginning of 2016, before 

starting its descent and reaching its lowest at about 10% toward second quarter of 2017. 
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Exhibit 4.11: Total volatility spillovers Index 
 

While the total spillover provides a pattern of the level of volatility spillovers, it does not show the 

direction of the spillovers.  Exhibits 4.12 and 4.13 display the rolling data for directional “from others” 

and “to others” respectively.  Like the total volatility spillover, the directional “from others” varies over 

though in a similar pattern except Hammerson whose distribution is different. The trend is the same 

also for the directional “to others” with Hammerson again being quite different compared to the VFTSE, 

UK REIT index, British Land and Land Securities.  It is interesting to see both directional rolling volatility 

spillover that all have the highest value around 2016 and after, this could be attributed to the collapse 

in the European stock market (Mensi, 2018) and looming Brexit vote and the after effects of the Brexit 

result.  
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Exhibit 4.12: Directional volatility spillovers – From others 

 
Exhibit 4.13: Directional volatility spillovers – To others 

 
Exhibit 4.14 presents the changes in the net rolling volatility spillover and shows that the UK REIT index, 

Land Securities and British Land are net transmitters or contributors of volatility spillover.  The VFTSE 

and Hammerson are net recipients. This more so before mid-2017 when they display persistent 
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negative net volatility spillovers.  This evolution of the volatility spillovers over time is consistent with 

the results in Table 4.6.  Lastly, the volatility spillover dynamics are examined by making use of the net 

pairwise volatility spillovers displayed in 9.10.  Over time, the net pairwise volatility spillover varies 

greatly.  As in the net volatility spillover, Hammerson and UK REIT index show that they are mainly 

recipients of the volatility spillovers when matched with others.  The VFTSE has shown that it is mainly 

a contributor to the volatility spillovers; this is expected as it represents a much wider market.  

However, what is unexpected is the UK REIT to contribute more to the volatility of the REIT companies. 

 

Overall, the MGARCH and the variance decomposition approaches show similar results in terms of the 

spillover. The CCC and DCC GARCH models revealed that there is volatility transmission markets and 

REIT companies under investigation as they are correlated whichever of the model are used. This 

conditional correlation suggests that there is volatility spillover though quite weak for Hammerson and 

UK REITs.  Diebold and Yilmax (2012) framework also show volatility spillover with Land Securities, 

British Land and UK REITs being the net contributors while VFTSE and Hammerson are net recipients. 

The pattern is the same even for rolling volatility spillovers. 

 
Exhibit 4.14: Net volatility spillovers  
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Exhibit 4.15: Pairwise volatility spillovers 

 

4.5. Conclusion 

The UK REIT market has been growing over the years from a hand full of property companies converting 

to REITs after their introduction in 2007 to about 50 in 2018.  Despite this growth, there only exists 

three companies that implied volatilities could be obtained as they are the only one that trades in 

options.  Implied volatility has been examined in the real estate context by largely investigating its 

predictive power to both return and historical volatility.  This study set to examine whether there is 

transmission or spillover effects between the UK stock market implied volatility index VFTSE and the 

implied volatilities of British Land, Hammerson and Land Securities as well as the UK REIT index. 

Previous studies have been undertaken to examine spillover effects in real estate, and some have 

utilised implied volatility of the UK or US stock exchanges and the influence on the REIT market.  This 

study examines spillover effects in REITs by utilising implied volatility and using a multivariate GARCH 

approach in order to model conditional volatility and also generalised VAR and volatility decomposition 

as proposed by Diebold and Yilmax (2002). 

 

While other researchers have employed the multivariate generalised autoregressive conditional 

heteroscedasticity (MGARCH) approach to index or sector level, this research contributes to the 
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volatility analysis in REITs by utilising the Constant Conditional Correlation (CCC) GARCH by Bollerslev 

(1990) and Engle’s (2002) Dynamic Conditional Correlation (DCC) specification.  This is applied to the 

UK volatility index, VFTSE, UK REIT index and three UK REIT companies with traded options in order to 

determine the volatility transmission among them directly through conditional variances and 

correlations.  Volatility decomposition as proposed by Diebold and Yilmax (2012)is also employed to 

examine the total, directional, net and pairwise volatility spillovers.  

 

The findings are that there is by both MGARCH models reveals that there is transmission as revealed 

by significant conditional correlations.  Despite there being volatility spillovers it weak for Hammerson 

and VFTSE.  While the MGARCH provide information regarding the presence of volatility transmission, 

the models do not show the extent and direction of these spillovers.  The analysis is extended by 

employing volatility decomposition which showed evidence of volatility spillovers with British Land, 

Land Securities and UK REIT index being net contributors to others while Hammerson and VFTSE are 

the net recipients.  This is undertaken by rolling the data, and the pattern is similar. The weak volatility 

spillovers by Hammerson and VFTSE are consistent with the findings of the two MGARCH models. 

The implication of these findings is that general low transmission or spillovers particularly with the 

VFTSE could be good investors trying to diversify between REITs and the other non-REIT companies in 

the UK stock exchange. As British Land and Land Securities have the highest volatility spillovers, one 

can avoid allocating their money in the other if one already has it as an asset or is intending to invest. 

So one should just invest in either but not both at the same time. 

The contribution to the research is the application of both the multivariate GARCH and variance 

decomposition at the same on REITs in order to examine volatility spillovers. 
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CHAPTER 5 

CONCLUSION  

The purpose of the research was to investigate ways that risk can be used in the investment and 

management of real estate. An examination of the asset allocation methods shows that most decisions 

are undertaken based on the returns rather than the volatility.  Risk parity is an allocation method that 

focuses on volatility as opposed to returns.  This allocation method is not free from controversy, 

however, the results of the research revealed that it was a good method in some instance as it solves 

the shortcoming presented by the mean-variance methods. The conventional allocation methods have 

challenges of leading to allocations that have corner solutions thereby going against the spirit of 

diversification. Additionally, return based allocation are prone to estimation errors when forecasting 

returns.  Despite not giving the best performance all the time, risk parity can benefit the real estate 

market due to its diversification benefits, and it can easily be implemented in the public real estate 

perhaps in a multi-asset portfolio of which real estate is part. This said the application of risk parity to 

direct real estate is questionable due to the lumpiness inherent in direct real estate.  

The risk modelling for real estate revealed that REITs had similar characteristics to that of equities. This 

is good because both value at risk (VaR) and Expected Shortfall (ES) can be used to measure risk in 

addition to using the conventional standard deviation. While the expected shortfall has advantages 

over VaR, its backtesting is still a challenge although one can use specialist software such as MATLAB, 

R, and OxMetric in order to undertake this backtesting.  VaR has more tool to help in the backtesting 

because unlike ES were the expectation is not being calculated but rather a value – which is easier to 

compare.  The results in the modelling using ES and VaR were mixed; however, ES was more superior 

in that it was able to account for the performance in the tails as opposed to VaR.  With regards to the 

modelling of dynamic variance and correlations that were covered at the end, the findings for the 

transmission of volatility is consistent with that of Cotter and Stevenson ( 2006,2007), Diavatopolous 

et al. (2013).  The results reject the null hypothesis of independence in the volatility changes of the 

VFTSE, UK REIT index, British Land, Hammerson and Land Securities.  This said a higher average 

conditional correlation was expected between the changes in the implied volatilities of the three UK 

REITs with traded options, particularly Land Securities and British Land. The variance decomposition 
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also showed volatility spillovers with Land Securities, British Land and UK REITs being the net volatility 

contributors or transmitters while Hammerson and VFTSE are net recipients.  

Areas of further research 

 

1. Extending the analysis of risk parity by using VaR and ES as risk measures and also testing it on 

different markets and perhaps also combining this analysis with implied volatility. 

2. Extend the implied volatility analysis by also using stochastic volatility models and also variance 

swaps  
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APPENDIX A: PORTFOLIO ALLOCATIONS 

 

 
(a) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ja
n

-9
2

Se
p

-9
2

M
ay

-9
3

Ja
n

-9
4

Se
p

-9
4

M
ay

-9
5

Ja
n

-9
6

Se
p

-9
6

M
ay

-9
7

Ja
n

-9
8

Se
p

-9
8

M
ay

-9
9

Ja
n

-0
0

Se
p

-0
0

M
ay

-0
1

Ja
n

-0
2

Se
p

-0
2

M
ay

-0
3

Ja
n

-0
4

Se
p

-0
4

M
ay

-0
5

Ja
n

-0
6

Se
p

-0
6

M
ay

-0
7

Ja
n

-0
8

Se
p

-0
8

M
ay

-0
9

Ja
n

-1
0

Se
p

-1
0

M
ay

-1
1

Ja
n

-1
2

Se
p

-1
2

M
ay

-1
3

Ja
n

-1
4

Se
p

-1
4

M
ay

-1
5

Ja
n

-1
6

Se
p

-1
6

M
ay

-1
7

Ja
n

-1
8

1-month rolling Equally Weighted Portfolio Allocations

Australia France UK US



  

241 
 

 
(b) 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Ja

n
-9

2

A
u

g-
9

2

M
ar

-9
3

O
ct

-9
3

M
ay

-9
4

D
ec

-9
4

Ju
l-

9
5

Fe
b

-9
6

Se
p

-9
6

A
p

r-
9

7

N
o

v-
9

7

Ju
n

-9
8

Ja
n

-9
9

A
u

g-
9

9

M
ar

-0
0

O
ct

-0
0

M
ay

-0
1

D
ec

-0
1

Ju
l-

0
2

Fe
b

-0
3

Se
p

-0
3

A
p

r-
0

4

N
o

v-
0

4

Ju
n

-0
5

Ja
n

-0
6

A
u

g-
0

6

M
ar

-0
7

O
ct

-0
7

M
ay

-0
8

D
ec

-0
8

Ju
l-

0
9

Fe
b

-1
0

Se
p

-1
0

A
p

r-
1

1

N
o

v-
1

1

Ju
n

-1
2

Ja
n

-1
3

A
u

g-
1

3

M
ar

-1
4

O
ct

-1
4

M
ay

-1
5

D
ec

-1
5

Ju
l-

1
6

Fe
b

-1
7

Se
p

-1
7

1-month rolling Equally Weighted Portfolio Allocations

Australia France UK US



  

242 
 

 
(c) 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Ja

n
-9

2

A
u

g-
9

2

M
ar

-9
3

O
ct

-9
3

M
ay

-9
4

D
ec

-9
4

Ju
l-

9
5

Fe
b

-9
6

Se
p

-9
6

A
p

r-
9

7

N
o

v-
9

7

Ju
n

-9
8

Ja
n

-9
9

A
u

g-
9

9

M
ar

-0
0

O
ct

-0
0

M
ay

-0
1

D
ec

-0
1

Ju
l-

0
2

Fe
b

-0
3

Se
p

-0
3

A
p

r-
0

4

N
o

v-
0

4

Ju
n

-0
5

Ja
n

-0
6

A
u

g-
0

6

M
ar

-0
7

O
ct

-0
7

M
ay

-0
8

D
ec

-0
8

Ju
l-

0
9

Fe
b

-1
0

Se
p

-1
0

A
p

r-
1

1

N
o

v-
1

1

Ju
n

-1
2

Ja
n

-1
3

A
u

g-
1

3

M
ar

-1
4

O
ct

-1
4

M
ay

-1
5

D
ec

-1
5

Ju
l-

1
6

Fe
b

-1
7

Se
p

-1
7

1-month rolling Minimum Variance Portfolio Allocations

Australia France UK US



  

243 
 

 
(d) 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Ja

n
-9

2

A
u

g-
9

2

M
ar

-9
3

O
ct

-9
3

M
ay

-9
4

D
ec

-9
4

Ju
l-

9
5

Fe
b

-9
6

Se
p

-9
6

A
p

r-
9

7

N
o

v-
9

7

Ju
n

-9
8

Ja
n

-9
9

A
u

g-
9

9

M
ar

-0
0

O
ct

-0
0

M
ay

-0
1

D
ec

-0
1

Ju
l-

0
2

Fe
b

-0
3

Se
p

-0
3

A
p

r-
0

4

N
o

v-
0

4

Ju
n

-0
5

Ja
n

-0
6

A
u

g-
0

6

M
ar

-0
7

O
ct

-0
7

M
ay

-0
8

D
ec

-0
8

Ju
l-

0
9

Fe
b

-1
0

Se
p

-1
0

A
p

r-
1

1

N
o

v-
1

1

Ju
n

-1
2

Ja
n

-1
3

A
u

g-
1

3

M
ar

-1
4

O
ct

-1
4

M
ay

-1
5

D
ec

-1
5

Ju
l-

1
6

Fe
b

-1
7

Se
p

-1
7

1-month rolling Risk Parity Portfolio Allocations 

Australia France UK US



  

244 
 

 
(e) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Ja

n
-9

2

A
u

g-
9

2

M
ar

-9
3

O
ct

-9
3

M
ay

-9
4

D
ec

-9
4

Ju
l-

9
5

Fe
b

-9
6

Se
p

-9
6

A
p

r-
9

7

N
o

v-
9

7

Ju
n

-9
8

Ja
n

-9
9

A
u

g-
9

9

M
ar

-0
0

O
ct

-0
0

M
ay

-0
1

D
ec

-0
1

Ju
l-

0
2

Fe
b

-0
3

Se
p

-0
3

A
p

r-
0

4

N
o

v-
0

4

Ju
n

-0
5

Ja
n

-0
6

A
u

g-
0

6

M
ar

-0
7

O
ct

-0
7

M
ay

-0
8

D
ec

-0
8

Ju
l-

0
9

Fe
b

-1
0

Se
p

-1
0

A
p

r-
1

1

N
o

v-
1

1

Ju
n

-1
2

Ja
n

-1
3

A
u

g-
1

3

M
ar

-1
4

O
ct

-1
4

M
ay

-1
5

D
ec

-1
5

Ju
l-

1
6

Fe
b

-1
7

Se
p

-1
7

1-month rolling Bayes Stein Portfolio Allocations 

Australia France UK US



  

245 
 

 
(f) 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Ja

n
-9

2

A
u

g-
9

2

M
ar

-9
3

O
ct

-9
3

M
ay

-9
4

D
ec

-9
4

Ju
l-

9
5

Fe
b

-9
6

Se
p

-9
6

A
p

r-
9

7

N
o

v-
9

7

Ju
n

-9
8

Ja
n

-9
9

A
u

g-
9

9

M
ar

-0
0

O
ct

-0
0

M
ay

-0
1

D
ec

-0
1

Ju
l-

0
2

Fe
b

-0
3

Se
p

-0
3

A
p

r-
0

4

N
o

v-
0

4

Ju
n

-0
5

Ja
n

-0
6

A
u

g-
0

6

M
ar

-0
7

O
ct

-0
7

M
ay

-0
8

D
ec

-0
8

Ju
l-

0
9

Fe
b

-1
0

Se
p

-1
0

A
p

r-
1

1

N
o

v-
1

1

Ju
n

-1
2

Ja
n

-1
3

A
u

g-
1

3

M
ar

-1
4

O
ct

-1
4

M
ay

-1
5

D
ec

-1
5

Ju
l-

1
6

Fe
b

-1
7

Se
p

-1
7

1-month rolling Ledoit and Wolf Portfolio Allocations 

Australia France UK US



  

246 
 

 
(g) 

 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ja
n

-9
2

A
u

g-
9

2

M
ar

-9
3

O
ct

-9
3

M
ay

-9
4

D
ec

-9
4

Ju
l-

9
5

Fe
b

-9
6

Se
p

-9
6

A
p

r-
9

7

N
o

v-
9

7

Ju
n

-9
8

Ja
n

-9
9

A
u

g-
9

9

M
ar

-0
0

O
ct

-0
0

M
ay

-0
1

D
ec

-0
1

Ju
l-

0
2

Fe
b

-0
3

Se
p

-0
3

A
p

r-
0

4

N
o

v-
0

4

Ju
n

-0
5

Ja
n

-0
6

A
u

g-
0

6

M
ar

-0
7

O
ct

-0
7

M
ay

-0
8

D
ec

-0
8

Ju
l-

0
9

Fe
b

-1
0

Se
p

-1
0

A
p

r-
1

1

N
o

v-
1

1

Ju
n

-1
2

Ja
n

-1
3

A
u

g-
1

3

M
ar

-1
4

O
ct

-1
4

M
ay

-1
5

D
ec

-1
5

Ju
l-

1
6

Fe
b

-1
7

Se
p

-1
7

1-month rolling Resampled Portfolio Allocations

Australia France UK US



  

247 
 

APPENDIX B: PORTFOLIO RISK CONTRIBUTIONS 
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APPENDIX C:  HYPOTHESES TESTING  

1-Month rolling period 

 

 

 

 

 

Jobson -Korkie Test for Comparative Performance In-sample

Equally 

Weighted 

Minimum 

Variance 

Mean 

Variance 

Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling Risk Parity 

Equally Weighted 

Minimum Variance -1.131
Mean Variance -3.723*** -2.556**
Bayes Stein (BS) -1.754* 0.508 3.836***
Ledoit & Wolf (LW ) -4.017*** -2.743*** -0.869 -4.091***
BS + LW -2.643*** 0.088 3.667*** -2.485** 3.981***
Resampling -3.92*** -2.223** 2.223** -4.121*** 2.759*** -3.893***

Risk Parity 0.183 1.711* 3.707*** 1.898* 3.938*** 2.66*** 3.953***

Ledoit and Wolf (2008) Hypothesis testing In-sample
Test stat

Equally 

Weighted 

Minimum 

Variance 

Mean 

Variance 

Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling Risk Parity 

Equally Weighted 

Minimum Variance 0.234
Mean Variance 4.287*** 4.931***
Bayes Stein (BS) 1.148 0.474 5.516***
Ledoit & Wolf (LW ) 1.229 3.135*** 0.181 5.511***
BS + LW 2.841*** 0.167 4.994*** 1.607 0.850
Resampling 3.778*** 5.739*** 4.560*** 5.639*** 4.407*** 0.732

Risk Parity 0.261 0.521 5.294*** 3.716*** 4.987*** 5.795*** 5.365***

Jobson -Korkie Test for Comparative Performance out-of-sample

Equally 

Weighted 

Minimum 

Variance 

Mean 

Variance 

Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling Risk Parity 

Equally Weighted 

Minimum Variance -.1044
Mean Variance .2739 .3674
Bayes Stein (BS) .1111 .2277 -.2943
Ledoit & Wolf (LW ) .4043 .4451 .2099 .392
BS + LW .2132 .318 -.1174 .2698 -.2858
Resampling .4495 .4855 -.0428 .1809 -.2199 .0492

Risk Parity -.0513 .1174 -.297 -.1328 -.4189 -.2401 -.5151

Ledoit and Wolf (2008) Hypothesis testing out-of-sample
Test stat

Equally 

Weighted 

Minimum 

Variance 

Mean 

Variance 

Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling Risk Parity 

Equally Weighted 

Minimum Variance 0.366
Mean Variance 1.181 1.302
Bayes Stein (BS) 0.421 0.653 1.019
Ledoit & Wolf (LW ) 1.590 1.365 0.842 1.724*
BS + LW 0.822 0.776 0.335 0.968 1.328
Resampling 1.666* 1.650* 0.225 0.607 0.741 0.155

Risk Parity 0.148 0.432 1.216 0.468 1.562 0.839 1.991**
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Jobson -Korkie Test for Comparative Performance out-of-sample

with transaction cost
Equally 

Weighted 

Minimum 

Variance 

Mean 

Variance 

Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling Risk Parity 

Equally Weighted 

Minimum Variance .7014
Mean Variance 1.4892 1.0405
Bayes Stein (BS) .9377 .5067 -.5203
Ledoit & Wolf (LW ) 1.6051 1.0155 .0719 .5381
BS + LW 1.1188 .6479 -.3223 .433 -.3613
Resampling 6.2936 2.3886 .8977 1.2807 .9128 1.1089

Risk Parity .6262 -.6825 -1.4105 -.8637 -1.4754 -1.0337 -5.3858

Ledoit and Wolf (2008) Hypothesis testing out-of-sample

Test stat with transaction cost
Equally 

Weighted 

Minimum 

Variance 

Mean 

Variance 

Bayes Stein 

(BS)

Ledoit & Wolf 

(LW )

BS + LW Resampling Risk Parity 

Equally Weighted 

Minimum Variance 1.976**
Mean Variance 5.355*** 4.078***
Bayes Stein (BS) 3.021*** 1.417 1.556
Ledoit & Wolf (LW ) 5.322*** 3.937*** 0.236 1.792*
BS + LW 3.566*** 1.706* 0.789 1.076 1.008
Resampling 7.948*** 4.724*** 2.101** 5.121*** 2.160** 3.691***

Risk Parity 2.122** 1.877* 5.332*** 2.629*** 5.257*** 3.183*** 7.489***
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Appendix D - Backtesting VaR  

  
Observations Expected Failures Observed Level Ratio 

Australia 4435 221.75 235 0.94701 1.0598 

Canada 4435 221.75 204 0.95400 0.9200 

France 4435 221.75 177 0.96009 0.7982 

UK 4435 221.75 256 0.94228 1.1545 

US 4435 221.75 261 0.94115 1.1770 

(a) 

 Binomial Traffic Light Proportion of Failure Time Until First Failure  
Z-score P Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Australia 0.9129 0.1807 0.8286 0.1892 0.8181 0.3657 3.3215 0.0684 2 

Canada -1.2229 0.1107 0.1164 0.8969 1.5350 0.2154 0.8654 0.3522 7 

France -3.0832 0.0010 0.0008 0.9994 10.1820 0.0014 0.6813 0.4092 8 

UK 2.3598 0.0091 0.9906 0.0112 5.3161 0.0211 0.3153 0.5744 11 

US 2.7042 0.0034 0.9963 0.0045 6.9370 0.0084 3.3215 0.0684 2 

(b) 

 Conditional Coverage Conditional Coverage independence  
Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Australia 52.27 0.0000 51.45 0.0000 4006 193 193 42 

Canada 66.69 0.0000 65.16 0.0000 4066 164 164 40 

France 19.44 0.0000 9.26 0.0000 4096 161 161 16 

UK 37.74 0.0000 32.43 0.0000 3961 217 217 39 

US 60.38 0.0000 53.45 0.0000 3960 213 213 48 

(c) 
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 TL Bin POF TUFF CC CCI 

Australia  Green accept accept accept reject reject 

Canada  Green accept accept accept reject reject 

France  Green reject reject accept reject reject 

UK  Yellow reject reject accept reject reject 

US  Yellow reject reject accept reject reject 

(d) 
Backtesting results for Normal 95% VaR   

Observations Expected Failures Observed Level Ratio 

Australia 4435 221.75 249 0.9439 1.1229 

Canada 4435 221.75 239 0.9461 1.0778 

France 4435 221.75 199 0.9551 0.8974 

UK 4435 221.75 275 0.9380 1.2401 

US 4435 221.75 304 0.9315 1.3709 

(a) 

 Binomial Traffic Light Proportion of Failure Time Until First Failure 

 Z-score P Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Australia 1.8775 0.0302 0.9704 0.0344 3.3960 0.0654 3.3215 0.0684 2 

Canada 1.1885 0.1173 0.8884 0.1249 1.3791 0.2403 0.8654 0.3522 7 

France -1.5674 0.0585 0.0608 0.9473 2.5408 0.1109 5.9915 0.0144 1 

UK 3.6688 0.0001 0.9998 0.0002 12.5470 0.0004 0.3153 0.5744 11 

US 5.6669 0.0000 1.0000 0.0000 28.9260 0.0000 3.3215 0.0684 2 

(b) 
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Conditional Coverage Conditional Coverage independence 

 

 
Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Australia 58.32 2.164E-13 54.93 1.251E-13 3982 203 203 46 

Canada 83.04 9.303E-19 81.66 1.618E-19 4008 187 187 52 

France 12.31 2.118E-03 9.77 1.770E-03 4056 180 179 19 

UK 41.32 1.067E-09 28.77 8.155E-08 3925 234 234 41 

US 78.74 7.963E-18 49.82 1.688E-12 3882 248 248 56 

(c) 
 

 TL Bin POF TUFF CC CCI 

Australia yellow accept accept accept reject reject 

Canada green accept accept accept reject reject 

France green accept accept reject reject reject 

UK yellow reject reject accept reject reject 

US red reject reject accept reject reject 

(d) 
Backtesting results for Historical Simulation 95% VaR 

 Observations Expected Failures Observed Level Ratio 

Australia 4435 221.75 226 0.9490 1.0192 

Canada 4435 221.75 226 0.9490 1.0192 

France 4435 221.75 244 0.9450 1.1003 

UK 4435 221.75 247 0.9443 1.1139 

US 4435 221.75 235 0.9470 1.0598 

(a) 
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 Binomial Traffic Light Proportion of Failure Time Until First Failure  
Zscore P Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Australia 0.2928 0.3848 0.6317 0.3944 0.0852 0.7703 3.3215 0.0684 2 

Canada 0.2928 0.3848 0.6317 0.3944 0.0852 0.7703 0.8654 0.3522 7 

France 1.5330 0.0626 0.9398 0.0686 2.2791 0.1311 0.6813 0.4092 8 

UK 1.7397 0.0410 0.9602 0.0458 2.9235 0.0873 1.0977 0.2948 6 

US 0.9129 0.1807 0.8286 0.1892 0.8181 0.3657 0.1978 0.6565 30 

(b)  
Conditional Coverage Conditional Coverage independence  

Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Australia 10.216 0.0060  10.13  0.0015 4005 203 203 23 

Canada 17.473 0.0002  17.39  0.0000 4009 199 199 27 

France 10.024 0.0067  7.74  0.0054 3970 220 220 24 

UK 6.6674 0.0357  3.74  0.0530 3961 226 226 21 

US 10.466 0.0053  9.65  0.0019 3988 211 211 24 

(c) 

 TL Bin POF TUFF CC CCI 

Australia green accept accept accept reject reject 

Canada green accept accept accept reject reject 

France green accept accept accept reject reject 

UK yellow accept accept accept reject accept 

US green accept accept accept reject reject 

(d) 
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Backtesting results for EWMA 95% VaR   

Observations Expected Failures Observed Level Ratio 

Australia 4435 221.75 200 0.9549 0.9019 

Canada 4435 221.75 203 0.9542 0.9155 

France 4435 221.75 204 0.9540 0.9200 

UK 4435 221.75 228 0.9486 1.0282 

US 4435 221.75 226 0.9490 1.0192 

(a) 

 Binomial Traffic Light Proportion of Failure Time Until First Failure 

 Z-score P Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Australia -1.4985 0.0670 0.0699 0.9392 2.3188 0.1278 3.3215 0.0684 2 

Canada -1.2918 0.0982 0.1032 0.9090 1.7154 0.1903 0.8654 0.3522 7 

France -1.2229 0.1107 0.1164 0.8969 1.5350 0.2154 5.9915 0.0144 1 

UK 0.4306 0.3334 0.6819 0.3428 0.1838 0.6681 1.0977 0.2948 6 

US 0.2928 0.3848 0.6317 0.3944 0.0852 0.7703 3.3215 0.0684 2 

(b)  
Conditional Coverage Conditional Coverage independence  

Likelihood Ratio P-Value Likelihood Ratio P-Value3 N00 N10 N01 N11 

Australia 13.52 0.0012 11.21 0.0008 4054 180 180 20 

Canada 18.02 0.0001 16.30 0.0001 4051 180 180 23 

France 5.91 0.0520 4.38 0.0364 4043 188 187 16 

UK 5.65 0.0592 5.47 0.0193 3998 208 208 20 

US 2.65 0.2663 2.56 0.1095 3999 209 209 17 

(c) 
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 TL Bin POF TUFF CC CCI 

Australia green accept accept accept reject reject 

Canada green accept accept accept reject reject 

France green accept accept reject accept reject 

UK green accept accept accept accept reject 

US green accept accept accept accept accept 

(d) 
Backtesting results for GARCH 95% VaR   

Observations Expected Failures Observed Level Ratio 
 

Australia 4435 44.35 110 0.9752 2.4803  

Canada 4435 44.35 93 0.9790 2.0970  

France 4435 44.35 80 0.9820 1.8038  

UK 4435 44.35 106 0.9761 2.3901  

US 4435 44.35 121 0.9727 2.7283  

(a) 

 Binomial Traffic Light Proportion of Failure Time Until First Failure  
Z-score P Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Australia 9.9076 0.0000 1.0000 0.0000 69.5270 0.0000 6.4579 0.0110 2 

Canada 7.3421 0.0000 1.0000 0.0000 40.9720 0.0000 3.8944 0.0484 442 

France 5.3802 0.0000 1.0000 0.0000 23.3760 0.0000 0.2831 0.5947 56 

UK 9.3040 0.0000 1.0000 0.0000 62.2910 0.0000 0.1528 0.6959 66 

US 11.5680 0.0000 1.0000 0.0000 90.9360 0.0000 0.0760 0.7828 130 

(b) 
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 Conditional Coverage Conditional Coverage independence  
Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Australia 99.07 0.0000 29.54 0.0000 4229 95 95 15 

Canada 75.43 0.0000 34.46 0.0000 4262 79 79 14 

France 31.90 0.0000 8.53 0.0035 4280 74 74 6 

UK 70.35 0.0000 8.06 0.0045 4230 98 98 8 

US 112.02 0.0000 21.09 0.0000 4206 107 107 14 

(c) 

 TL Bin POF TUFF CC CCI 

Australia red Reject reject reject reject reject 

Canada red Reject reject reject reject reject 

France red Reject reject accept reject reject 

UK red Reject reject accept reject reject 

US red Reject reject accept reject reject 

(d) 
Backtesting results for Normal 99% VaR   

Observations Expected Failures Observed Level Ratio 

Australia 4435 44.35 73 0.9835 1.6460 

Canada 4435 44.35 56 0.9874 1.2627 

France 4435 44.35 36 0.9919 0.8117 

UK 4435 44.35 70 0.9842 1.5784 

US 4435 44.35 72 0.9838 1.6234 

(a) 
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 Binomial Traffic Light Proportion of Failure Time Until First Failure  
Z-score P Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Australia 4.3237 0.0000 1.0000 0.0000 15.6460 0.0001 0.5038 0.4778 45 

Canada 1.7582 0.0394 0.9627 0.0502 2.8537 0.0912 3.8944 0.0484 442 

France -1.2601 0.1038 0.1157 0.9128 1.6971 0.1927 0.2831 0.5947 56 

UK 3.8710 0.0001 0.9999 0.0002 12.7440 0.0004 0.1528 0.6959 66 

US 4.1728 0.0000 1.0000 0.0001 14.6500 0.0001 0.0760 0.7828 130 

(b) 

 Conditional Coverage Conditional Coverage independence  
Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Australia 26.01 0.0000 10.36 0.0013 4294 67 67 6 

Canada 18.98 0.0001 16.13 0.0001 4328 50 50 6 

France 6.14 0.0464 4.44 0.0350 4364 34 34 2 

UK 17.49 0.0002 4.75 0.0293 4298 66 66 4 

US 33.13 0.0000 18.48 0.0000 4298 64 64 8 

(c) 

 TL Bin POF TUFF CC CCI 

Australia red Reject reject accept reject reject 

Canada yellow Accept accept reject reject reject 

France green Accept accept accept reject reject 

UK yellow Reject reject accept reject reject 

US red Reject reject accept reject reject 

(d) 
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Backtesting results for Historical Simulation 99% VaR   

Observations Expected Failures Observed Level Ratio 

Australia 4435 44.35 74 0.98331 1.66850 

Canada 4435 44.35 81 0.98174 1.82640 

France 4435 44.35 96 0.97835 2.16460 

UK 4435 44.35 77 0.98264 1.73620 

US 4435 44.35 79 0.98219 1.78130 

(a) 

 Binomial Traffic Light Proportion of Failure Time Until First Failure  
Z-score P Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Australia 4.4747 0.0000 1.0000 0.0000 16.6700 0.0000 6.4579 0.0110 2 

Canada 5.5311 0.0000 1.0000 0.0000 24.5850 0.0000 3.5893 0.0582 7 

France 7.7948 0.0000 1.0000 0.0000 45.5790 0.0000 0.2831 0.5947 56 

UK 4.9274 0.0000 1.0000 0.0000 19.9040 0.0000 0.0061 0.9376 108 

US 5.2292 0.0000 1.0000 0.0000 22.1930 0.0000 0.0760 0.7828 130 

(b) 

 Conditional Coverage Conditional Coverage independence  
Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Australia 18.55 0.0001 1.8823 0.1701 4289 71 71 3 

Canada 30.04 0.0000 5.4547 0.0195 4277 76 76 5 

France 47.05 0.0000 1.4742 0.2247 4246 92 92 4 

UK 23.54 0.0000 3.6316 0.0567 4284 73 73 4 

US 28.03 0.0000 5.8320 0.0157 4281 74 74 5 

(c) 
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 TL Bin POF TUFF CC CCI 

Australia red reject reject reject reject accept 

Canada red reject reject accept reject reject 

France red reject reject accept reject accept 

UK red reject reject accept reject accept 

US red reject reject accept reject reject 

(d) 
Backtesting results for EWMA 99% VaR   

Observations Expected Failures Observed Level Ratio First Failure 

Australia 4435 44.35 59 0.9867 1.3303 2 

Canada 4435 44.35 76 0.9829 1.7136 7 

France 4435 44.35 81 0.9817 1.8264 56 

UK 4435 44.35 71 0.9840 1.6009 108 

US 4435 44.35 83 0.9813 1.8715 30 

(a) 

 Binomial Traffic Light Proportion of Failure Time Until First Failure 

 Z-score P Value Probability Type I Error Likelihood Ratio P-Value Likelihood Ratio P-Value First Failure 

Australia 2.2109 0.0135 0.9860 0.0197 4.4291 0.0353 6.4579 0.0110 2 

Canada 4.7765 0.0000 1.0000 0.0000 18.7990 0.0000 3.5893 0.0582 7 

France 5.5311 0.0000 1.0000 0.0000 24.5850 0.0000 0.2831 0.5947 56 

UK 4.0219 0.0000 1.0000 0.0000 13.6830 0.0002 0.0061 0.9376 108 

US 5.8329 0.0000 1.0000 0.0000 27.0780 0.0000 1.0246 0.3114 30 

(b) 
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Conditional Coverage Conditional Coverage independence  

Likelihood Ratio P-Value Likelihood Ratio P-Value N00 N10 N01 N11 

Australia 4.48 0.1062 0.0557 0.8134 4317 58 58 1 

Canada 19.13 0.0001 0.3335 0.5636 4284 74 74 2 

France 24.76 0.0000 0.1715 0.6788 4274 79 79 2 

UK 18.26 0.0001 4.5776 0.0324 4296 67 67 4 

US 29.90 0.0000 2.8226 0.0929 4272 79 79 4 

(c) 

 TL Bin POF TUFF CC CCI 

Australia yellow reject reject reject accept accept 

Canada red reject reject accept reject accept 

France red reject reject accept reject accept 

UK red reject reject accept reject reject 

US red Reject reject accept reject accept 

(d) 
Backtesting results for GARCH 99% VaR  

 

 

 

 

                                                 


