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Abstract

Societies in the Maritime Continent depend on monsoon rainfall for their water supply. Large
spatio-temporal variability of the rains has a significant socio-economic impact and affects the
global circulation. However, the Maritime Continent remains a major modelling challenge.

In this thesis, the fidelity of the fifth Coupled Model Intercomparison Project (CMIP5)
models at simulating mean climate and its variability over the Maritime Continent is assessed.
We find that model horizontal resolution is not a good indicator of performance in atmosphere-
only models. Instead, a given model’s local Maritime Continent biases are somewhat related
to biases in the local Hadley circulation and global monsoon. Cluster analysis on Maritime
Continent annual cycle precipitation results in two distinct clusters: Cluster I models are able
to capture both the winter monsoon and summer monsoon shift, whereas Cluster II models
simulate weaker seasonal migration than observed.

A model’s Maritime Continent climatological mean-state precipitation is shown to be
negatively correlated with sea-surface temperature (SST) biases in central tropical Pacific
Ocean (CTPO) and western tropical Indian Ocean (WTIO) regions in coupled CMIP5 models.
On interannual timescales, the El Niño-Southern Oscillation (ENSO) and Indian Ocean
Dipole (IOD) teleconnections to Maritime Continent precipitation are well simulated by both
uncoupled and coupled CMIP5 models. However, the spatial pattern of these teleconnections
is not well captured, especially in coupled models.

Idealized Maritime Continent SST-perturbation experiments are performed using the
HadGEM3-GA6 atmospheric model in the CPTO and WTIO regions. These result in remote
responses of Maritime Continent mean precipitation, somewhat comparable with the signals
related to biases found in the CMIP5 coupled models. This suggests that remote Indo-Pacific
SST biases in the CMIP5 coupled models could plausibly cause the precipitation biases
over the Maritime Continent, and thus highlights the importance of reducing these biases to
improve Maritime Continent mean state and climate variability.
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Chapter 1

Introduction

1.1 Motivation

The Maritime Continent is the largest archipelago on Earth, consisting of thousands of large
and small islands. Literature commonly refers the Maritime Continent to the groups of islands
of Indonesia, Borneo, New Guinea and the surrounding seas. In this thesis, our study area
covers the Maritime Continent domain from 20°S to 20°N and 80°E to 160°E as shown in
Figure 1.1. This includes the islands of Indonesia, Malaysia, Brunei, Singapore, Philippines,
Papua New Guinea and the Solomon islands as well as northern Australia and parts of
mainland Southeast Asia including Thailand, Laos, Cambodia, Vietnam and Myanmar.

Figure 1.1: Location and spatial cover of the Maritime Continent domain in this study.

More than 600 million people live in this region, for which rainfall serves as the primary
water source for agriculture, drinking, and sanitation. The agricultural sector, which relies
heavily on rainfall, is one of the key sectors for countries in this region. Variations in rainfall
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not only have significant implications for agriculture but also on the overall economies of
these countries. The drought events, for example in 1997/98 and 2015/16 in Indonesia, have
resulted in huge losses in the agricultural sector and to the overall economy. Forest fires
induced by dry weather and biomass burning to clear the land for agricultural purposes lead to
haze events during the drought events. Such haze pollution has detrimental effects on human
health. Figure 1.2 shows hot spots (land fires) in Sumatra and widespread smoke haze on
31 August 2015 from the NOAA-18 satellite. The World Bank estimated that 2.6 million
hectares areas are burned in 2015 and resulted in total damages and losses of IDR 221 trillion
(USD 16.1 billion), which is equivalent to 1.9 percent of Indonesia’s 2015 gross domestic
product (GDP) (Glauber et al., 2016).

Figure 1.2: Satellite imagery from NOAA-18 showing the hot spots (land fires) in Sumatra
and smoke haze on 31 August 2015, taken from http://asmc.asean.org/home/

On the other hand, severe flooding events cause frequent loss of human life, damage
infrastructure and cause displacement of people. For example, one of the most severe floods
occurred in Thailand during 2011 (Fig. 1.3), inundating more than 29,000 km2 of land area

2
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Figure 1.3: (a) An aerial view of the flooded area in Nakhon Ratchasima province, Thailand on
October 2011, taken from http://www.chiangraitimes.com (b) Diagram of 2011 flooded
areas in Thailand, taken from http://www.thaiwater.net/web/index.php

and affecting 13.4 million people, while 657 people were killed (HAII, 2011). The World
Bank estimated total damages and losses of THB 1.43 trillion (USD 46.5 billion).

However, General Circulation Models (GCMs) struggle to correctly simulate the mean
climate and its variability over the Maritime Continent. Better understanding of the climate
mean state and its variability in the Maritime Continent region and its representation in GCMs
are crucial from both a socio-economic and climate perspective.

1.2 General climate of the Maritime Continent

The Maritime Continent is characterized by pronounced seasonal variations in precipitation
and wind patterns. To illustrate the variations in the annual cycles of rainfall and low-level
wind over the Maritime Continent region (20°S to 20°N and 80°E to 160°E), we show the
monthly mean precipitation from observational datasets of Global Precipitation Climatology
Project (GPCP) rainfall and 850hPa wind from the ERA-Interim reanalysis datasets in Fig. 1.4.
In general, the Maritime Continent receives abundant rainfall throughout the year. However,
most parts of the region experience a dry season during certain months. For example, the
mainland of Southeast Asia in the northern Maritime Continent receives little rainfall from
December to March, while the southern Maritime Continent, particularly Sulawesi, northern

3
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Australia and Java, receive less rainfall from July to October. For convenience, the areas north
and south of 10°N in the Maritime Continent are called the northern and southern Maritime
Continent respectively, in this thesis. The year is divided into four seasons of 3 months each:
winter (DJF, December-January-February) corresponding to the Australian summer monsoon;
summer (JJA, June-July-August) represents the Asian summer monsoon; while spring (MAM,
March-April-May) and autumn (SON, September-October-November) represent the monsoon
transitions, also known as the intermonsoons.

The annual cycle of rainfall (Fig. 1.4) shows that maximum rainfall is observed over the
southern Maritime Continent in boreal winter and gradually shifts north in boreal summer and
back, as previously discussed by Meehl (1987); Chang et al. (2005); As-Syakur et al. (2016)
and Zhang et al. (2016). Meehl (1987) also showed that the seasonal shift of rainfall is not
only a north-south seesaw pattern, but rainfall also shifts from east to west and back. During
the intermonsoon seasons, the dominant convective activity is located near the equator. There
is a pronounced reversal of the wind direction from northeasterly in winter to southwesterly in
summer over the northern Maritime Continent along with the rainfall migration; whereas, over
the southern Maritime Continent, northwesterly winds in winter change to southeasterlies in
summer. Cross-equatorial flows are observed from winter hemisphere towards the summer
hemisphere in the low-level wind. Cold surges from mid-latitudes also affect convection in
the Maritime Continent, in which cold air is advected from the Siberian High towards the
equator. During boreal winter, the strengthening of the northeasterly wind associated with
cold surges enhances the Hadley cell and precipitation over the Maritime Continent (Ooi et al.,
2011).

Convection in the Maritime Continent is strongly organized in space and time by the
presence of island and their topography, consisting of thousands of kilometres of coastline and
mountains with elevations over 2000m above sea level (Chang et al., 2005). The interactions
across scales, ranging from diurnal to long-term time-scales modulates the precipitation and
wind patterns over the Maritime Continent. Next, we will briefly outline the diurnal and
intraseasonal time scales variability, which have been shown to interact with seasonal and
interannual times scales (Moron et al., 2015; Slingo et al., 2003).

4
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Figure 1.4: Monthly mean precipitation (shading, mm day−1) from GPCP and 850 hPa wind
(vectors, m s−1) from ERA-Interim for (a) January to (l) December for 1979-2008 over the
Maritime Continent region (20°S-20°N, 80°E-160°E).

5



Chapter 1. Introduction

1.3 Diurnal cycle

Figure 1.5: Local time of the maximum precipitation from March 2009 to February 2010 in
(a) Tropical Rainfall Measuring Mission (TRMM) observations and three model simulations:
(b) PARAM (standard Global Atmosphere/Global Land (GA4) MetUM parameterization
schemes), (c) EXPLICIT (explicit convection), and (d) SCUMULUS (switching off only the
deep convective parameterization). Figure taken from Birch et al. (2015).

The diurnal variations of convection the Maritime Continent are associated with land-sea
breezes and complex topography over this region. Precipitation maximums occur in the
early morning over the oceans and in the evening over the land (Yang and Slingo, 2001;
Arakawa and Kitoh, 2005; Ichikawa and Yasunari, 2006; Wu et al., 2009; Birch et al., 2015).
Figure 1.5(a) taken from Birch et al. (2015) illustrates the distinct features of the diurnal
cycle of Maritime Continent precipitation peaking over the land in the evening between 18
to 00 local time, and propagating offshore from 00 to 06 local time towards the ocean in the
morning. The other panels in Fig. 1.5 will be discussed in Section 1.8.2. Wu et al. (2009)
showed that the nighttime precipitation that occurs offshore of Sumatra is caused by the
the mountainous topography of the island and induced local circulations. Qian et al. (2013)
showed that local diurnal cycle of land-sea breeze in the Maritime Continent is also modulated
by the monsoonal wind.
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1.4 Intraseasonal variability

Figure 1.6: Precipitation anomalies (mm day−1) over the Maritime Continent region from
TRMM for the MJO phases, taken from Peatman et al. (2014). The MJO phases move in an
anti-clockwise direction from Phase 1 to Phase 8.

The Madden-Julian Oscillation (MJO) is the dominant mode of tropical intraseasonal
variability and exerts significant influence on the Maritime Continent climate. The MJO
is named after Madden and Julian (1972), who identified a 40-50 day oscillation in time
series of sea-level pressure and upper air data at tropical stations. Most MJO events begin
in the western Indian Ocean and are more active during the boreal winter. The eastward
propagation of the MJO from the Indian Ocean to the Pacific influences rainfall variations
over the Maritime Continent. The westerly anomaly associated with the passage of the MJO
converges with the easterly anomaly over the Maritime Continent and enhances the convection.
On the other hand, topography in the Maritime Continent, the elongated and higher mountains,
in particular, has a blocking effect on the westerly flows, shifting the westerly anomaly and
the convection southward from the path of MJO (Wu and Hsu, 2009). Figure 1.6 shows the
precipitation anomaly from TRMM over the Maritime Continent during the eight phases of
MJO, taken from Peatman et al. (2014). The MJO phases are defined following the Wheeler
and Hendon (2004) definition and move in an anti-clockwise (eastward) direction from Phase
1 to Phase 8. Enhancement of convection is strongest over the Maritime Continent during
phases 3 to 5 (last column of Fig. 1.6). MJO is also linked with the initiation of El Niño
events and we will discuss this in Section 1.7.1.
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1.5 Monsoon

The word “monsoon” comes from the Arabic word “mausim”, meaning season. A monsoon
is a pronounced seasonal change of the prevailing wind direction and precipitation patterns.
Monsoons are driven by land-ocean temperature contrasts in the summer hemisphere. There
are a number of monsoons occurring over different parts of the world such as over Asia,
Australia, South America, the West Africa and East Africa. These various regional monsoons
can be viewed as components of an integrated global monsoon system.

Figure 1.7: Precipitation (shading, mm day−1) and 850 hPa winds (arrows, m s−1) of (a) the
Solsticial mode (JJAS minus DJFM) and (b) the Equinoctial mode (AM minus ON), taken
from Wang and Ding (2008).

Wang and Ding (2008) identified two leading modes from empirical orthogonal function
(EOF) analysis that can represent the global monsoon and annual cycle of tropical precipitation.
The first EOF is in phase with the annual cycle and shows the boreal summer and winter
monsoon rainfall regimes (off-equatorial ITCZ positions) while the second EOF represents
the location of the spring and autumn ITCZ, closer to the equator. They further showed that
the first EOF (solsticial mode) is equivalent to the difference between solsticial seasons (JJAS
minus DJFM) and the second EOF (equinoctial mode) can be depicted by the difference
between equinoctial seasons (AM minus ON). Figure 1.7 shows the global monsoon (solsticial
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and equinoctial modes) calculated based on these seasonal differences of precipitation (Wang
and Ding, 2008).

The differences in land distribution and topography contribute to the asymmetric structure
of winds and precipitation over the two hemispheres. Meehl (1987) suggests that the unequal
distribution of land and sea over the northern and southern hemispheres, and the differential
heating of land and sea creates a stronger monsoon over the northern hemisphere, i.e the
Asian summer monsoon.

A marked seasonal cycle is observed over the Maritime Continent following the transition
from the Asian to the Australian summer monsoons associated with the migration of the
Intertropical Convergence Zone (ITCZ) (Moron et al., 2015).

1.6 Intertropical Convergence Zone (ITCZ)

The ITCZ is the low pressure area near the equator where the Northern Hemisphere trade
winds converge with those from the Southern Hemisphere. The location of the ITCZ varies
throughout the year following the movement of the sun. The ITCZ over the ocean remains
closer to the equator most of the time, while over the land it can move further south and
north. Figure 1.8(a) shows the zonally averaged mean precipitation from the Tropical Rainfall
Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) and surface winds
from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis
over the Pacific Ocean (160°E - 100°W). The surface winds remain easterly throughout the
year and the seasonal shift in the latitudinal position of the ITCZ (red line in Fig. 1.8a) is
less, between 9°N in boreal summer and 2°N in boreal winter (Schneider et al., 2014). On
the other hand, ITCZ in the South Asian monsoon region (65°E - 95°E) has larger seasonal
migration (between 20°N in boreal summer and 8°S in boreal winter) and moves abruptly into
the summer hemisphere, while surface winds turn westerly north of the Equator (Fig. 1.8b).

During boreal summer, the sun heats the Northern Hemisphere more strongly, thus the
ITCZ is located north of the equator and winds blow from the Southern Hemisphere to the
Northern Hemisphere. The reverse happens during boreal winter, although the annual mean
ITCZ is around 6 °N. The position of the annual mean ITCZ is associated with the Atlantic
Ocean’s meridional overturning circulation transporting energy northward across the Equator
and resulting in a warmer northern hemisphere. This ocean energy transport is compensated
by atmospheric energy transported southwards across the equator from the warmer to cooler
hemisphere through meridional Hadley circulation, with the ascending branch and ITCZ
displaced north of the Equator (Schneider et al., 2014).

The ITCZ is collocated with the rising branch of the Hadley Circulation. The Hadley
Circulation is a meridional overturning circulation where the air masses rise over the equatorial
region, diverge at upper levels, descend in the subtropics, and flow back towards the equator.
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Figure 1.8: Latitude-time plot of mean precipitation from TRMM Multisatellite Precipitation
Analysis (shading, mm day−1) and surface winds from the ECMWF interim reanalysis
(vectors, m s−1) zonally averaged over (a) the Pacific (160°E - 100°W) and (b) the South
Asian monsoon sector (65°E - 95°E) during 1998-2012. Red line shows the ITCZ (position of
the maximum precipitation each month). Figure taken from Schneider et al. (2014).

The Hadley Circulation features a seasonally varying distribution associated with seasonal
shift of the ITCZ.

The warm sea surface temperature (SST) in the Maritime Continent Indo-Pacific Warm
Pool (IPWP) region provides ample moisture for convection. The latent heat release from
the precipitation over the Maritime Continent is one of the major heat sources that drive the
weather and climate patterns of the Indo-Pacific and across the globe (Ramage, 1968; Neale
and Slingo, 2003; Zhang et al., 2016). Fig. 1.9 shows the linearised solution of heat induced
tropical circulation, with symmetric heating centred on the equator, proposed by Gill (1980).
The westerly winds from the west (Indian Ocean) flow towards the Maritime Continent as a
result of a Rossby wave response. The easterly winds flow towards the heating source (the
Maritime Continent) as a result of a Kelvin wave response over the Pacific Ocean. These lead
to rising motion over the Maritime Continent and subsidence further east (over the Pacific),
forming the Walker circulation. The excitation of the two cyclonic circulations straddling the
equator, induced by the Rossby wave, with the flow at the suface directed poleward from the
heat source region, corresponds to the Hadley circulation (Gill, 1980).
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Figure 1.9: The Gill (1980) solution of heat induced tropical circulation, with symmetric
heating centred on the equator: (a) contours of vertical velocity and low-level wind velocity
(vectors), (b) contours of perturbation pressure and low-level wind velocity (vectors), (c)
meridional mean of (i) stream-function and (ii) perturbation pressure, taken from Gill (1980).

1.7 Interannual variability

The Maritime Continent rainfall has large interannual variability associated with El Niño-
Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) via modulation of the ascending
branch of Walker circulation.

1.7.1 El Niño-Southern Oscillation (ENSO)

ENSO affects the climate over a large part of the world, beyond the tropical Pacific, and
is one of the most studied modes of variability. El Niño was first discovered by Peruvian
fishermen in the 19th century. They refer to the warm waters off of the South American coast
that appear every few years around Christmas as El Niño, which means the “Christ Child” or
“the little boy” in Spanish. Conversely, La Niña (“the little girl”) is the opposite phase of El
Niño and refers to colder than average sea surface temperatures over the same region, i.e. the
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Figure 1.10: Schematic diagram for ENSO: (a) neutral phase; (b) El Niño phase and (c) La
Niña phase. Figure taken from http://www.bom.gov.au/climate/iod/

east-central Equatorial Pacific.
The Southern Oscillation refers to atmospheric pressure changes between the western

(Darwin, north Australia) and eastern (Tahiti, French Polynesia) tropical Pacific. Sir Gilbert
Walker first identified the east-west components of large-scale circulations, while Bjerknes
(1969) linked the Southern Oscillation and SST variations in the equatorial Pacific Ocean as
ENSO. Bjerknes (1969) showed that ENSO is a coupled ocean and atmosphere phenomenon,
where fluctuations in Pacific SST drive changes in the atmosphere, which in turn impact the
ocean in a positive feedback through the Walker circulation, known as the Bjerknes feedback.

Figure 1.10 shows a schematic diagram of ENSO in neutral, El Niño and La Niña phases.
During neutral conditions (Fig. 1.10a), the easterly trade winds blow from the eastern Pacific
towards the west, driving warm SST towards the west Pacific and allowing for upwelling of
cooler water towards the surface layer in the eastern Pacific. The thermocline is deeper in
the west than the east. This leads to convective heating and upward motion over the warmer
western Pacific, with eastward upper-level return flow across the Pacific and descent over the
eastern Pacific completing the Walker circulation.

El Niño is the warm phase of ENSO events when unusually warm SST anomalies observed
over the central and eastern Equatorial Pacific. El Niño events occur approximately every
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Figure 1.11: Definition of the Niño regions in the equatorial Pacific and Indian Ocean Dipole
eastern (IODE) and western (IODW) poles.

two to seven years and are generally initiated in boreal spring or summer and peak in winter.
During El Niño the trade winds weaken or even reverse direction, initiated by atmospheric
disturbances such as MJO or Westerly Wind Bursts (WWB), which generate an eastward
propagating downwelling oceanic Kelvin wave on the thermocline and result in warmer SST
over the central and eastern Pacific. The warmer SST over the central and eastern Equatorial
Pacific leads to anomalous convective heating, shifting the convection and Walker circulation
ascending branch from western Pacific and Maritime Continent towards the central and eastern
equatorial Pacific. The opposite occurs during La Niña also known as the cold phase of
ENSO.

Figure 1.11 shows the four Niño regions that are used to classify ENSO based on the
area-averaged SST anomalies, computed from a base period over these Niño regions. These
regions are: Niño 1+2 (0°-10°S, 80°W-90°W), Niño 3 (5°S-5°N, 90°W-150°W), Niño 3.4
(5°S-5°N, 120°W-170°W) and Niño 4 (10°S-10°N, 160°E-150°W)(Bamston et al., 1997).

A number of studies (Hendon, 2003; Kubota et al., 2011; As-syakur et al., 2014; McBride
et al., 2003) showed that the Maritime Continent receives below normal rainfall during El
Niño while La Niña enhances the precipitation. However, Hendon (2003) and As-syakur
et al. (2014) also pointed out that the Maritime Continent-Indonesia precipitation is highly
correlated with ENSO in the dry season (JJA and SON) but not during the wet season (DJF and
MAM) when precipitation variations are not spatially coherent (McBride et al., 2003). Kubota
et al. (2011) found that there is spatial and temporal variability of dry conditions over the
Maritime Continent during El Niño years, where dry conditions first occur over the equatorial
region in boreal summer and spread to the off-equatorial region in autumn, and continue
into winter and spring. Qian et al. (2013) showed that the southwestern Borneo experienced
increase of rainfall while the rest of the region experienced reduced rainfall during the El
Niño events in DJF. They then showed that this is related to the inverse relationship between
monsoonal wind speed and diurnal cycle of land-sea breeze. During El Niño, the easterly
wind anomalies weakens monsoonal northwesterly wind and enhance sea breeze convergence,
which increase the rainfall over southwestern Borneo in DJF.
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1.7.2 Indian Ocean Dipole (IOD)

IOD is a coupled ocean-atmosphere phenomenon, similar to ENSO but in the equatorial
Indian Ocean. Saji et al. (1999); Webster et al. (1999) identified this dipole mode in the Indian
Ocean which has a significant influence on precipitation from eastern Africa to Indonesia.

Figure 1.12 shows the schematic diagram of IOD (BOM, 2017) during neutral, positive
and negative phases. During the IOD positive phase, low-level westerly winds weaken over
the equatorial Indian Ocean and easterly anomalies blow from the IODE towards the warmer
IODW, generating upwelling in the IODE. The Indian Ocean Walker circulation weakens
and is in reverse direction (Fig. 1.12b) compared to the IOD neutral phase (Fig. 1.12a).
The ascending branch of the Walker circulation is located over the IODW and precipitation
increases over the IODW and east Africa. Subsidence occurs over the IODE and rainfall
is reduced over the Maritime Continent. Opposite conditions occur during a negative IOD
phase (Fig. 1.12c). Warmer SST conditions are observed over the IODE, accompanied by
strengthening of low-level westerlies and upper level easterlies, bringing more rainfall over
the Maritime Continent.

Figure 1.12: Schematic diagram of the IOD: (a) neutral phase; (b) positive phase and (c)
negative phase. From http://www.bom.gov.au/climate/enso/history/ln-2010-12/

three-phases-of-ENSO.shtml
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This study uses the Dipole Mode Index (DMI) as defined in Saji et al. (1999) to represent
the IOD. DMI is the difference between western Indian Ocean (IODW, 10°S-10°N, 50°E-
70°E) and eastern Indian Ocean (IODE, 0°S-10°S, 90°E-110°E) SST anomalies as shown in
Fig. 1.11. An IOD event usually starts to develop in boreal summer (JJA) and reaches its peak
in boreal autumn (SON). IOD events typically last for several months and there are zero to
three occurrences in a decade.

While previous studies (Saji et al., 1999; Webster et al., 1999) showed that the IOD is
an independent mode of variability in the Indian Ocean, Allan et al. (2001) argued that the
IOD is related to the ENSO. Nur’utami and Hidayat (2016) showed that an individual IOD
event, individual ENSO event and combinations of both ENSO and IOD events have different
impacts on Indonesian rainfall variability. Indonesian rainfall is more significantly increased
when negative IOD and La Niña concurrently occur as both of the ascending branches of
Pacific and Indian Ocean Walker cells are located over the Maritime Continent, than as a result
of a single event of negative IOD or La Niña. Meanwhile, the magnitude of rainfall decrease
when a positive IOD and El Niño occur together is greater than when a single event of either
positive IOD or El Niño occurs. As-syakur et al. (2014) investigate the rainfall relationship
with IOD and ENSO in Indonesia using satellite data. They concluded that both ENSO and
the IOD result in fairly similar temporal patterns of rainfall anomalies in Indonesia, especially
during the dry season. During El Niño and positive IOD events, the Indonesian SST is cooler
than normal. This leads to reduced rainfall over Indonesia. The opposite happens during La
Niña and a negative IOD.

In the following section, we will discuss the climate model characteristic and biases, in
particular on aspects that are important to correctly represent the climate of the Maritime
Continent.

1.8 Modelling the Maritime Continent

With the development of General Circulation Models (GCMs), there has been a lot of
improvement in simulating observed features of global and regional mean climate and its
variability. One noteworthy effort is the establishment of the Coupled Model Intercomparison
Project (CMIP) under the World Climate Research Program (WCRP) to study the GCM
simulations of present climate and projections of future climate change under standardized
boundary conditions (Meehl et al., 2000).

Comparison studies between different phases of the CMIP multi-model ensemble found
that generally there are improvements in the performance of CMIP5 over CMIP3 in the
simulations of monsoon features (Sperber et al., 2013; Jourdain et al., 2013) possibly due to
increased horizontal and vertical resolution in the atmosphere and ocean, parameterization
development and improved representation of various processes in CMIP5 models. However,

15



Chapter 1. Introduction

considerable systematic errors still exist, suggesting that the state-of-art of climate models are
still lacking good representations of the necessary physical mechanisms. Next, we highlight
the climate model characteristic and potential sources of bias that previous literature has
found important for correctly representing the present-day climate of the Maritime Continent.

1.8.1 Model resolution

The Maritime Continent includes large islands with length larger than 1000km (e.g. Sumatra,
Java, Borneo, New Guinea) and small islands with length less than 1km. The complex
topography over the Maritime Continent affects the spatial variability of rainfall over this
region (Chang et al., 2005) and this also impact on the large-scale circulation. However,
current GCMs have typically a too coarse resolution with grid size between 100 to 500 km due
to limitations in computational resources, hence only large islands in the Maritime Continent
are represented in most GCMs. Studies have shown that the inadequate representation of land-
sea breeze circulations associated with insufficient representation of islands and mountains
in coarse-resolution models impacts on the simulation of precipitation in this region (Qian,
2008).

Figure 1.13: Annual mean precipitation bias (mm day−1) from horizontal resolution sensitivity
experiments using the MetUM HadAM3 model: (a) climate resolution (2.5°× 3.75°); (b)
1.5 × climate resolution (1.67°× 2.5°); (c) 2 × climate resolution (1.25°× 1.875°); (d) 3
× climate resolution (0.83°× 1.25°). Contour interval for precipitation anomalies is 2 mm
day−1, shaded below -2 mm day−1 and zero contour omitted. Figure taken from Neale and
Slingo (2003).

In the MetUM, Neale and Slingo (2003) found that a decrease in grid spacing from 350
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Figure 1.14: Annual mean precipitation bias (mm day−1) with respect to GPCP in the (a)
N48 (2.5°× 3.75°) and (b) N144 (0.83°× 1.25°) MetUM HadGAM1 resolution experiments.
(c) N144 minus N48. Stippling indicates grid points where a paired t-test rejects the null
hypothesis of equal means at the 95% confidence level. Black box shows the central part of
the Maritime Continent between 95.625° to 140.625 °E and -8.75° to 3.75 °N. Figure taken
from Schiemann et al. (2014).

to 110 km does not reduce dry biases in the Maritime Continent (Figure 1.13). Instead, they
showed that biases in simulating the diurnal cycle over the islands of Maritime Continent
(related to land-sea breeze circulation) can impact on the simulation of seasonal mean climate.
The errors in land sea breezes resulted in troposheric flow biases that affects the surface fluxes
and convection initiation. Other more recent studies (Schiemann et al., 2014; Johnson et al.,
2015) suggest increasing resolution improves the precipitation simulation in the newer version
of the MetUM. Schiemann et al. (2014) attributed the improvement of the Maritime Continent
precipitation to the better-resolved boundary conditions (land-sea mask, soil and vegetation
parameters) when the grid spacing decreased from approximately 350 to 110 km. They also
highlighted that increasing resolution resulted in an increase of rainfall over most parts of the
Maritime Continent but the model still exhibits dry biases over the central part of the Maritime
Continent (95.625° to 140.625 °E and -8.75° to 3.75 °N, depicted in a black box in Fig. 1.14)
in all resolution. Johnson et al. (2015) showed that better representation of orography over
the Maritime Continent at a finer resolution (approximately 40 km) improved precipitation
over the islands compared to coarse resolution (approximately 200 km). Despite different
conclusions, these studies highlight the Maritime Continent as one of the region where the
simulated mean climate has some sensitivity to resolution. These results also suggest that
models still lack a good representation of the necessary physical mechanisms, which we will
discuss in next section.

1.8.2 Parameterization

Current coupled and atmosphere-only climate models still rely on parameterizations as models
cannot resolve most of the atmospheric processes due to limited resolution. Complex physical
processes such as cloud, land-surface and radiation occur at scales finer than the coarse
model’s grid. They are approximated by the parameterization in order to be represented in the
models.
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Studies have shown that the simulation of tropical precipitation is highly sensitive to the
choice of the convection parameterization scheme (Sherwood et al., 2014; Bush et al., 2015).
Parameterizations allow the inclusion of these important subgrid scale processes in the GCMs.
However, parameterization’s deficiencies can also lead to significant biases in climate models.
Both coupled and uncoupled model simulations fail to reproduce the observed seasonal cycle
of the western Pacific monsoon, suggesting that the representation of convection is likely to
be a key source of error (Brown et al., 2013). Ackerley et al. (2015) suggest precipitation and
circulation biases over Australia to be related to parameterization of convection in the CMIP5
models. They proposed that the inclusion of the prognostic cloud fraction and prognostic
condensate scheme (PC2) scheme in ACCESS1.3 resulted in higher rainfall simulated over
Australia than the ACCESS1.0, which does not use PC2 scheme.

Models using convective parameterization fail to simulate the distinct diurnal cycle over
the Maritime Continent and tend to simulate the maximum precipitation a few hours earlier
than observed (Birch et al., 2015; Yang and Slingo, 2001) possibly due inadequate param-
eterization of physical processes in the convection scheme and land surface scheme. The
interaction between these two schemes and also the radiation scheme may also result in
errors in the diurnal cycle. Recent advancement in computer resources allow us to conduct
high resolution model simulations with the convective parameterization switched off, and
permits the convection to develop explicitly. Figure 1.5 showed the local time of the maxi-
mum precipitation in TRMM observations and three model simulations: PARAM (standard
Global Atmosphere/Global Land (GA4) MetUMs parameterization schemes), EXPLICIT
(explicit convection, switching off deep and convective parameterization), and SCUMULUS
(switching off only the deep convective parameterization) in Birch et al. (2015) study. This
figure indicates that the local time of maximum precipitation simulated by explicit resolved
convection experiment (Fig. 1.5c) is closer to observation than the parameterized convec-
tion experiment. Holloway et al. (2012) showed that Indo-Pacific precipitation distribution
simulated in an limited area experiment of the MetUM with explicit convection is in better
agreement with observations compared to a parameterized convection experiment simulation
which tends to produce relatively too much light rainfall. Biases in diurnal time scales can
impact on seasonal climate simulations over the Maritime Continent (Slingo et al., 2003).

Although explicitly resolving convection leads to a better simulation of precipitation than
the parameterization, current GCMs still have to rely on parameterization due to continued
limitations to computational resources. Improving parameterization schemes is crucial for
better simulated tropical precipitation.
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1.8.3 Impact of ocean-atmosphere coupling

Atmosphere-only models are forced by prescribed SSTs. Atmosphere-only models are lacking
SST biases hence can provide insights into deficiencies of the atmospheric model that are
unaffected by the systematic SST biases present in coupled models. However, atmosphere-
only models are missing the one-way atmosphere to ocean interactions, which may introduce
different biases. Coupled ocean-atmosphere models, on the other hand, are able to simulate
two-way air-sea interactions. However, SST biases and poorly represented air-sea interactions
in the coupled models produce other errors when simulating mean climate and its variability.

Figure 1.15: JJAS precipitation bias (mm day−1) with respect to GPCP for (a) CMIP5 MMM
and (b) CMIP3 MMM, taken from Sperber et al. (2013). CMIP5 MMM consists of 25 models,
while the CMIP3 MMM consists of 22 models.

Most GCMs have difficulty capturing the climate mean state and its variability over the
Maritime Continent. In atmosphere-only models, one common error is the underestimation
of the mean precipitation over the Maritime Continent (Neale and Slingo, 2003; Schiemann
et al., 2014) which is attributed to a poor representation of the diurnal cycle and lack of strong
organized MJO events in the model (Slingo et al., 2003). On the other hand, coupled models
overestimate the mean precipitation in the Maritime Continent, which is associated with cold
SST biases over the Pacific Ocean (Inness and Slingo, 2003; Sperber et al., 2013). Figure 1.15
shows that CMIP5 MMM still exhibits similar spatial pattern and magnitude of biases over
the Maritime Continent to CMIP3 MMM.

The SST biases such as excessive cold tongue biases (in which the equatorial cold tongue
is too cold and extends too far west in the Pacific Ocean) are a major and continuing issue
in the CMIP models (Cai et al., 2009; Li and Xie, 2014), despite some improvement in
the simulation of the equatorial Pacific cold tongue from CMIP3 to CMIP5 (Song et al.,
2014). Li and Xie (2012) found that the dry biases and surface easterly biases over the
Pacific cold tongue are not present in CMIP5 atmosphere-only models, suggesting that these
biases in coupled models arise from misrepresentation of ocean-atmosphere interactions via
the Bjerknes feedback in coupled models. On the other hand, the double ITCZ problem in
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CMIP models which is characterized by two excessive precipitation bands straddling the
equator is associated with local SST biases in the ocean models and a poor representation of
precipitation and large-scale circulation interactions in the atmospheric models (Oueslati and
Bellon, 2015).

Wang et al. (2005) showed that ECMWF (European Centre for Medium-range Weather
Forecast)-Hamburg (ECHAM4) coupled model is able to capture the negative correlation
between rainfall anomalies and SST anomalies in the Asia-Pacific region (5°N - 30°N, 70°E
- 150°E) during the boreal summer. Whereas, the corresponding atmospheric model forced
by prescribed SST failed to simulate this negative relationship due to the lack of air-sea
interactions in the AMIP model that leads to a poor simulation of the Asian-Pacific summer
monsoon rainfall variability.

In terms of ENSO simulation, Jha and Kumar (2009) found that seasonal atmospheric
response to ENSO SST in the National Centers for Environmental Prediction (NCEP) Climate
Forecast System (CFS) atmosphere-only and coupled models are identical despite the extra
degrees of freedom in coupled models. Studies (Cai et al., 2009; Jourdain et al., 2013) showed
that the Pacific cold tongue biases that extend too far west produce a significant positive
correlation with rainfall over Papua in DJF season, opposite to observations, which show a
negative correlation and thus affect the ENSO-rainfall teleconnection simulated by the coupled
CMIP models. Turner et al. (2005) showed that the improved mean state of the tropical Pacific
in heat flux-adjustments experiment in the coupled HadCM3 model, led to improved ENSO
simulation, that in turn also improved the Asian summer monsoon-ENSO teleconnection. The
analysis by Annamalai et al. (2007) in the CMIP3 models arrives at the same conclusion, that
models with better representation of the basic state, accompanied by associated changes in
the Walker circulation, capture the ENSO-Asian summer monsoon teleconnection better. On
the other hand, Langenbrunner and Neelin (2013) showed that an AMIP model with specified
observed SSTs, also struggles to simulate ENSO precipitation teleconnections and there is
only slight improvement of the ENSO-precipitation teleconnection in atmosphere-only runs
of CMIP5 compared to CMIP3.

For the IOD simulation, Saji et al. (2006) showed that most of the CMIP5 models simulate
the IOD spatial pattern and temporal evolution well. However, Weller and Cai (2013) found
that CMIP3 and CMIP5 models tend to simulate IOD amplitude larger than observed and
there are no significant improvements between the two phases of CMIP. Li et al. (2015b)
showed that the weak southwest summer monsoon over the Arabian Sea in coupled CMIP5
models induced warm SST biases over the western equatorial Indian Ocean, which resulted in
an overly large amplitude of interannual IOD variability simulated in CMIP5 models.

This study investigates the Maritime Continent mean state biases and their impact on tele-
connections with the Indian and Pacific Oceans in both uncoupled and coupled CMIP5 models,
and in new experiments using the Met UM HadGEM3-GA6 (Met Office Unified Model,
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Hadley Centre Global Environment Model version 3, Global Atmosphere 6.0) atmosphere-
only model.

1.9 Thesis aims and outline

Chapter 1.1 outlines the motivation behind this study. The remainder of Chapter 1 provides an
overview of the characteristics of the Maritime Continent climate and its variability, focusing
on the annual cycle and monsoon seasonality, followed by the two major modes of interannual
variability affecting this region, i.e ENSO and IOD. Furthermore, this chapter also discusses
the climate model characteristic and biases, in particular on aspects that are important to
correctly represent the climate of the Maritime Continent.

This thesis has three main aims and more specific questions based around the main aims
will be addressed in each of the subsequent chapters. The principal aims of this thesis are:

1. To investigate the fidelity of current state-of-the-art climate models at simulating the
climate mean state and its variability in the Maritime Continent;

2. To explore the impact of model biases in the Maritime Continent on tropical variability
and teleconnections;

3. To determine the relationship between SSTs in the tropics and climate variability within
the Maritime Continent.

Chapter 2 assesses mean state biases in the Atmospheric Model Intercomparison Project
(AMIP) experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5) for the
Maritime Continent region. AMIP experiments that are forced by prescribed SSTs enable
the identification of atmospheric model deficiencies and common features in isolation; these
are unaffected by the systematic SST biases present in coupled models. The results from
Chapter 3 have previously been published in Toh et al. (2018). Adjustment has been made
to the Introduction section in this chapter to avoid redundancy with Chapter 1. Additional
analysis and figures are included in this Chapter compared with the published article. Specific
questions addressed in this chapter are:

• How well do CMIP5 models simulate the mean seasonal climate over the Maritime
Continent?

• What are the model systematic biases in the Maritime Continent?

• What are the possible sources of model systematic biases?

Chapter 3 investigates the impacts of air-sea interactions in the tropical oceans on Maritime
Continent precipitation in CMIP5 models. This chapter will also focus on the relationship
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between the Maritime Continent and ENSO as well as with the IOD in both atmosphere-
only and coupled CMIP5 models. We will use a variety of composite analyses, multimodel
regression and correlation techniques to address the following questions:

• How well do CMIP5 coupled models simulate the tropical ocean SSTs?

• What is the relationship between Maritime Continent mean state precipitation biases
and tropical SST biases?

• How well do CMIP5 atmosphere-only and coupled models simulate teleconnections
between ENSO/IOD and the Maritime Continent?

• Does ocean-atmosphere coupling improve these teleconnections?

• How are these teleconnections influenced by the mean state SST biases?

Chapter 4 describes a suite of sensitivity experiments performed using the MetUM
HadGEM3-GA6 model. These experiments are performed to test causality in the relationships
between SST anomalies and precipitation anomalies by removing the ocean feedbacks and to
better understand the mechanisms underlying these relationships. The Maritime Continent
SST perturbation sensitivity experiments will assess the importance of the Maritime Continent
region SST on the tropical variability and teleconnections. The second series of experiments
will determine the influence of SST perturbations elsewhere in the tropics (i.e. Pacific and
Indian Oceans) on climate variability within the Maritime Continent. Chapter 5 addresses the
following questions:

• What are the systematic biases in HadGEM3-GA6?

• How sensitive is the tropical Indo-Pacific circulation and precipitation in the model to
SST changes in the Maritime Continent, the Pacific Ocean and the Indian Ocean?

• How do these sensitivity experiments alter the atmospheric response to ENSO and
IOD?

• How does the sensitivity of the seasonal mean climate and climate variability in the
tropics to SST perturbations compare to the relationships found in the coupled models
in Chapter 4?

The last chapter presents the conclusions of the thesis, summarizing the key findings in
this study. This includes a discussion on the limitations of this study and suggestions for
future work.
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Chapter 2

Maritime Continent seasonal climate
biases in AMIP experiments of the
CMIP5 multimodel ensemble

Preamble
This chapter has been published in Climate Dynamics in February 2018 with the same

title by Ying Ying Toh, Andrew G. Turner, Stephanie J. Johnson and Christopher E. Holloway.
Adjustment has been made to the Introduction section in this chapter to avoid redundancy
with Chapter 1. Additional analysis and figures are included in this Chapter compared with
the published article (Toh et al., 2018).

2.1 Introduction

The fidelity of 28 CMIP5 models in simulating mean climate over the Maritime Continent in
the AMIP experiment is evaluated in this chapter. The CMIP5 simulations are used in the
IPCC Fifth Assessment Report for future climate projection (Flato et al., 2013). In order
to have confidence in the future projections made by models, the models should be able to
correctly simulate characteristics of the current climate on regional (Maritime Continent) and
global scales. Thus, this thesis focuses only on present-day climate simulations.

Previous studies mentioning the Maritime Continent in CMIP5 are largely focussed on the
topic of nearby monsoon regions. Several studies have evaluated the fidelity of CMIP5 models
in simulating the Australian monsoon (Jourdain et al., 2013; Ackerley et al., 2015), the western
Pacific monsoon (Brown et al., 2013) and the Asian summer monsoon (Sperber et al., 2013).
These studies found that different models show varying ability at each aspect of monsoon
simulation. However, no single model in the CMIP5 ensemble best represents all aspects of
the monsoon, either in an individual subregion or when considering all characteristics of the
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monsoon as a whole. Comparison studies between different phases of the CMIP multi-model
ensemble found that generally there are improvements in the performance of CMIP5 over
CMIP3 (Sperber et al., 2013; Jourdain et al., 2013) possibly due to increased horizontal
and vertical resolution in the atmosphere and ocean, parameterization development and the
improved representation of Earth-system processes in CMIP5 models. However, considerable
systematic errors exist, suggesting that the models are still lacking good representations of
the necessary physical mechanisms involved.

AGCMs have prescribed SST; they therefore lack SST biases and could possibly have
smaller errors in the large-scale circulation when compared to coupled GCMs. AMIP integra-
tions using standardized lower boundary conditions enable the identification of atmospheric
model deficiencies and common features. However, the lack of two-way air-sea coupling in
AGCM experiments may also introduce new systematic biases in some regions, with further
feedbacks on circulation patterns (Wu and Kirtman, 2005; Wang et al., 2005). Wang et al.
(2005) show that ocean-atmosphere coupling is important to the simulation of Asian-Pacific
summer monsoon rainfall variability. The comparison between coupled and atmosphere-only
simulations suggests that AMIP models better simulate the wind pattern in the western Pacific
monsoon (Brown et al., 2013). Li and Xie (2014) suggest that the equatorial Pacific cold
tongue bias in coupled models arises from wind biases resulting from interaction with the
ocean via Bjerknes feedback. However, both coupled and uncoupled model simulations fail
in reproducing observed precipitation over the tropics, suggesting that the representation of
convection is likely to be a key source of error (Brown et al., 2013; Li and Xie, 2014; Ackerley
et al., 2015).

In this chapter, we evaluate the CMIP5 model performance in reproducing the observed
seasonal climate over the Maritime Continent, focusing mainly on the AMIP experiments. We
quantify the model performance using two metrics that measure the magnitude of simulation
errors and the degree of similarity between the observed and simulated field. To determine
what aspects of the models are most important for correctly representing the Maritime
Continent precipitation, our study investigates three potential sources of model systematic
errors: the role of horizontal resolution, the relationship to errors in the mean meridional
circulation and global monsoon, and the impact of air-sea coupling. This reveals a possible
connection between global biases and local Maritime Continent biases. Next, we performed
cluster analysis on the annual cycle of precipitation in the AMIP experiment of CMIP5 in
order to group together models with common systematic errors and to determine if they are
connected to particular features at the large scale.

The remainder of the chapter is organized as follows. We first describe the CMIP5 models
and observational (reanalysis) data used in this study in Section 2.2. In Section 2.3, we assess
the atmosphere-only model simulations of seasonal precipitation and low-level wind in the
Maritime Continent. Section 2.4 investigates the possible sources of model bias. In Section
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2.5, we present clustering analysis on the annual cycle of precipitation. Discussion is given in
Section 2.6, followed by conclusions.

2.2 Data and methods

2.2.1 Models

The 30-year period (1979-2008) of AMIP experiments from 28 CMIP5 models is analysed
in this study. These AMIP experiments are forced by the same prescribed SSTs and sea ice.
The original horizontal resolution of the prescribed SST boundary conditions created by the
Program For Climate Model Diagnosis and Intercomparison (PCMDI) is 1° longitude ×
1° latitude. These underlying SST data are interpolated by individual modelling groups to
a model’s own resolution to perform the AMIP experiments. A general description of the
AMIP boundary condition is presented in Taylor et al. (2012). Only models that submitted
precipitation, zonal (u), meridional (v) and vertical (omega) components of wind to the
database were selected for this study. The Maritime Continent domain in this study is defined
covering ranges of latitude 20°S-20°N and longitude 80°E-160°E.

To determine the impact of SST biases and air-sea coupling on model performance in
the Maritime Continent, we make a comparison between 22 coupled CMIP5 simulations
and their corresponding AMIP simulations in Section 2.4.3. We also examine the fidelity of
all 46 coupled GCMs in CMIP5 in simulating the Maritime Continent mean climate from
1979-2005 (the part of the coupled experiment that overlaps AMIP). These historical runs
(coupled ocean-atmosphere) are forced by observed atmospheric composition changes in both
anthropogenic and natural sources, and also include land use change (Taylor et al., 2012). We
consider only one ensemble member from each CMIP5 model in this study. For brevity, the
coupled simulations in CMIP5 will be denoted as “CMIP5” while the AMIP simulations with
prescribed SST will be denoted as “AMIP5” hereafter.

Table 2.1 lists the model name, modelling centre, experiment type and horizontal resolution
of these models. Detailed documentation of the CMIP5 models and experiments can be
found at http://cmip-pcmdi.llnl.gov/cmip5. The monthly model data were bi-linearly
interpolated to a common 3.75° longitude × 3° latitude grid for comparison with each other
and with respect to observations and to enable computation of error statistics.
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Table 2.1: CMIP5 model name, modelling centre, atmosphere horizontal resolution, experi-
ment type and key references. CMIP5 models analysed later in Chapter 3 are marked with an
asterisk (*).

Modelling
centre

Model name Atmosphere
horizon-
tal resolution
(° lon.× ° lat.)

Experiment References

BCC BCC-CSM1.1 2.8×2.8 AMIP5 & CMIP5* Wu et al. (2010)
BCC BCC-CSM1.1(m) 1.1×1.1 AMIP5 & CMIP5* Wu et al. (2010)
BNU BNU-ESM 2.8×2.8 AMIP5 & CMIP5 Ji et al. (2014)
CCCma CanAM4 2.8×2.8 AMIP5 von Salzen et al. (2013)
CCCma CanESM2 2.8×2.8 CMIP5* von Salzen et al. (2013)
CMCC CMCC-CESM 3.75×3.7 CMIP5* Scoccimarro et al. (2011)
CMCC CMCC-CM 0.75×0.7 AMIP5 & CMIP5* Scoccimarro et al. (2011)
CMCC CMCC-CMS 1.875×1.8 CMIP5* Scoccimarro et al. (2011)
CNRM-
CERFACS

CNRM-CM5 1.4×1.4 AMIP5 & CMIP5 Voldoire et al. (2013)

CNRM-
CERFACS

CNRM-CM5-2 1.4×1.4 CMIP5* Voldoire et al. (2013)

CSIRO-BOM ACCESS1-0 1.875×1.25 AMIP5 & CMIP5* Bi et al. (2013), Dix et al.
(2013)

CSIRO-BOM ACCESS1-3 1.875×1.25 AMIP5 & CMIP5* Bi et al. (2013), Dix et al.
(2013)

CSIRO-QCCCE CSIRO-Mk3-6-0 1.9×1.9 AMIP5 & CMIP5* Gordon et al. (2010), Rot-
stayn et al. (2012)

FIO FIO-ESM 2.8×2.8 CMIP5*
ICHEC EC-EARTH 1.1×1.1 CMIP5* Hazeleger et al. (2010)
INM INM-CM4 2.0×1.5 AMIP5 & CMIP5* Volodin et al. (2010)
IPSL IPSL-CM5A-LR 3.75×1.875 AMIP5 & CMIP5* Dufresne et al. (2013)
IPSL IPSL-CM5A-MR 2.5×1.25 AMIP5 & CMIP5* Dufresne et al. (2013)
IPSL IPSL-CM5B-LR 3.75×1.875 AMIP5 & CMIP5* Dufresne et al. (2013),

Hourdin et al. (2013)
LASG-IAP FGOALS-s2 2.8×1.7 AMIP5 Bao et al. (2013)
LASG-CESS FGOALS-g2 2.8×2.8 AMIP5 & CMIP5* Li et al. (2013)
MIROC MIROC4h 0.56×0.56 CMIP5 Sakamoto et al. (2012)
MIROC MIROC5 1.4×1.4 AMIP5 & CMIP5* Watanabe et al. (2011)
MIROC MIROC-ESM 2.8×2.8 CMIP5 Watanabe et al. (2011)
MIROC MIROC-ESM-

CHEM
2.8×2.8 CMIP5* Watanabe et al. (2011)

MOHC HadCM3 3.7×2.5 CMIP5* Collins et al. (2001)
MOHC HadGEM2-A 1.875×1.25 AMIP5 Collins et al. (2008)
MOHC HadGEM2-ES 1.875×1.25 CMIP5* Collins et al. (2011)
MPI-M MPI-ESM-LR 1.9×1.9 AMIP5 & CMIP5* Stevens et al. (2013),

Raddatz et al. (2007)
MPI-M MPI-ESM-MR 1.9×1.9 AMIP5 & CMIP5* Stevens et al. (2013),

Raddatz et al. (2007)
MPI-M MPI-ESM-P 1.9×1.9 CMIP5* Stevens et al. (2013),

Raddatz et al. (2007)
MRI MRI-AGCM3-2H 0.6×0.6 AMIP5 Mizuta et al. (2012)
MRI MRI-AGCM3-2S 0.2×0.2 AMIP5 Mizuta et al. (2012)
MRI MRI-CGCM3 1.1×1.1 AMIP5 & CMIP5* Yukimoto et al. (2012)
MRI MRI-ESM1 1.1×1.1 CMIP5* Yukimoto et al. (2012)
NASA-GISS GISS-E2-H 2.5×2.0 CMIP5* Schmidt et al. (2006)
NASA-GISS GISS-E2-H-CC 2.5×2.0 CMIP5* Schmidt et al. (2006)
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Table 2.1 (continued)
Modelling
centre

Model name Atmosphere
horizon-
tal resolution
(° lon.× ° lat.)

Experiment References

NASA-GISS GISS-E2-R 2.5×2.0 AMIP5 & CMIP5* Schmidt et al. (2006)
NASA-GISS GISS-E2-R-CC 2.5×2.0 CMIP5* Schmidt et al. (2006)
NCAR CCSM4 1.25×0.9 AMIP5 & CMIP5* Gent et al. (2011)
NCC NorESM1-M 2.5×1.9 AMIP5 & CMIP5* Bentsen et al. (2013)
NCC NorESM1-ME 2.5×1.9 CMIP5* Bentsen et al. (2013)
NIMR-KMA HadGEM2-AO 1.875×1.25 CMIP5* Martin et al. (2011)
NOAA-GFDL GFDL-CM2p1 2.5×2.0 CMIP5* Donner et al. (2011)
NOAA-GFDL GFDL-CM3 2.5×2.0 AMIP5 & CMIP5* Donner et al. (2011)
NOAA-GFDL GFDL-ESM2G 2.5×2.0 CMIP5* Donner et al. (2011)
NOAA-GFDL GFDL-ESM2M 2.5×2.0 CMIP5* Donner et al. (2011)
NOAA-GFDL GFDL-HIRAM-

C180
0.625×0.5 AMIP5 Zhao et al. (2009)

NOAA-GFDL GFDL-HIRAM-
C360

0.3×0.3 AMIP5 Zhao et al. (2009)

NSF-DOE-
NCAR

CESM1-BGC 1.2×0.9 CMIP5* Vertenstein et al. (2013)

NSF-DOE-
NCAR

CESM1-CAM5 1.2×0.9 CMIP5* Vertenstein et al. (2013)

NSF-DOE-
NCAR

CESM1-
FASTCHEM

1.2×0.9 CMIP5* Vertenstein et al. (2013)

NSF-DOE-
NCAR

CESM1-WACCM 2.5×1.9 CMIP5* Vertenstein et al. (2013)

The multi-model mean (MMM) is obtained by taking a simple arithmetic average of
climate variables among the 28 AMIP5 models. We have also calculated the 46 CMIP5 model
MMM as well as the MMM of the 22 overlapping AMIP5 and CMIP5 models respectively
for comparison in Section 2.4.3. The overall performance of AMIP5 and CMIP5 models
is determined based on the MMM skill scores (see Section 2.2.3). In this thesis, we treat
all models equally and use the unweighted multi-model mean approach. Although some
of the models are different versions of the same model or share a common component and
therefore might share some common biases, the interdependency of CMIP5 models is difficult
to characterize and not necessarily dependent on modelling group. Models from different
institutions that share common components have similar biases, while on the other hand
models from the same institution but with different physics settings, for instance, could
have very different model biases (Boé, 2018). Some other choice of weighting models in a
multi-model mean would have to be justified by evidence, and such an exercise is beyond the
scope of this thesis. While not necessarily ideal, an equally weighted multi-model approach
is common in the literature analysing CMIP5 models.
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2.2.2 Observations

Precipitation data from the Global Precipitation Climatology Project (GPCP) of the 30-year
period from 1979 to 2008 are used in this study to validate the models. This dataset consists
of a combination of rain gauges, satellites and sounding observations that have been merged
to estimate monthly rainfall on a 2.5-degree global grid (Adler et al., 2003). Two additional
observational precipitation datasets: 1) monthly precipitation from 1979 to 2008 on a 2.5-
degree global grid from the Climate Prediction Center (CPC) merged analysis of precipitation
(CMAP) dataset (Xie and Arkin, 1997) and 2) tropical rainfall measuring mission (TRMM)
3B43 monthly precipitation from 1997 to 2008 at 0.25°resolution (Huffman et al., 2007) are
used to determine whether there is any sensitivity in our results to the choice of GPCP as the
main observational dataset. The differences between the three precipitation datasets are small.
Our analysis also shows that the results are not dependent on the choice of observational
dataset. Therefore GPCP is chosen as the primary reference dataset in this study.

The zonal, meridional and vertical components of wind data on a 0.7-degree grid for the
same period were obtained from the ERA-Interim reanalysis data produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011) for validation on
various pressure levels.

These monthly precipitation and wind observations (reanalysis) data were bilinearly
interpolated to the common 3.75° longitude × 3° latitude grid for comparison with the model
simulations.

2.2.3 Skill scores and correlation analyses

We have used two metrics to evaluate the model performance in simulating the Maritime
Continent seasonal climate. The pattern correlation coefficient (PCC) is calculated to measure
the degree of similarity in the spatial patterns between the observed and simulated fields. The
root mean square error (RMSE) is used to measure the magnitude of simulation errors.

Correlation analyses are used to assess the relationship between different biases, for
example between local (Maritime Continent) precipitation biases and biases in the global
monsoon and circulation. We computed the Pearson correlation coefficient (r) to measure the
strength of the association and the direction of a linear relationship between the two biases in
the set of models. However, as the Pearson correlation is sensitive to outliers, we have also
calculated the Spearman’s rank correlation coefficient which is more robust. The Spearman’s
rank is the non-parametric version of the Pearson correlation calculated using the ranks of
data. The correlation coefficients from the two methods show some differences. However,
only results from Spearman’s rank correlation are shown except in Fig. 2.3 and 2.17 where
both coefficients are shown.
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2.2.4 Moisture Flux Convergence (MFC)

The precipitation can be expressed as the sum of vertically-integrated MFC and evaporation.
In Section 2.3, the horizontal MFC for observations and AMIP5 is calculated using the
equations below:

MFC =−Vh ·∇q−q∇ ·Vh (2.1)

MFC =−u
∂q
∂x
− v

∂q
∂y︸ ︷︷ ︸

advection term

− q(
∂u
∂x

+
∂v
∂y

)︸ ︷︷ ︸
convergence term

(2.2)

where the advection term represents the horizontal advection of specific humidity (q)
and the convergence term represents the product of specific humidity and horizontal mass
convergence (Banacos and Schultz, 2005). The MFC is vertically integrated over the depth of
the atmosphere from the surface to 100hPa and denoted as VIMFC (vertical-integrated MFC)
in this study. For observations, we use the specific humidity, zonal (u) and meridional (v)
winds from ERA-interim reanalysis data to calculate the MFC.

2.2.5 Global monsoon metric

In Section 2.4.2, we will examine two annual cycle modes of the climatological monthly
mean precipitation using an approach adapted from Wang and Ding (2008) (see Section 1.2.2).
In their study, Wang and Ding (2008) showed that the difference between solsticial seasons
(JJAS minus DJFM) and the difference between equinoctial seasons (AM minus ON) can be
used as simple metrics of the seasonal cycle of global monsoon precipitation. In this study,
for consistency with the seasons used in other aspect of our analyses, the solsticial mode of
the annual cycle is calculated by taking the JJA mean minus DJF mean precipitation and the
equinoctial mode is calculated by taking the MAM mean minus the SON mean precipitation
over the domain 45°S-45°N and 0°-360°E, as in Zhou et al. (2016).

2.2.6 Cluster analysis

Hierarchical clustering analysis of Maritime Continent annual cycle precipitation was per-
formed to characterize the model systematic biases in AMIP5 by grouping together models
that are similar (Section 2.5). From the clustering analysis, we investigate the biases in groups
of models to see if they pertain to common features in the large-scale atmosphere. We used
the Euclidean distance metric (the square root of the sum of square distances) to measure the
similarity between each model using the time-latitude mean precipitation, zonally averaged
between 80°E and 160°E (refer to Fig. 2.9). The Euclidean distance between two models A

29



Chapter 2. Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel
ensemble

and B is defined as:
d(A,B) =

√
∑

i
∑

j
(Ai, j−Bi, j)2 (2.3)

where i and j are the latitude and month respectively (Wilks, 2011).
The two models with closest similarity in Maritime Continent annual cycle precipitation

averaged between 80°E and 160°E are merged to form a new cluster based on a defined
criterion and linkage method. The process is repeated until all models are merged into one
cluster. The optimum number of clusters is chosen based on a cut-off point (threshold value)
when there is a sudden increase in the distance value which reflects that the clusters that were
joined were relatively far apart.

To ensure the robustness of the results, we have tested six linkage methods (not shown) to
cluster the similarity between the 28 models. The six methods are single, complete, average,
centroid, Ward’s and weighted linkage. We chose complete linkage for our analysis in this
study based on the agreement of its results with other methods, and it also produced a better
cluster around the central value with smaller variance. In this method, the distance between
two clusters is defined as the maximum distance between any two models when one model is
chosen from each cluster and all possible pairs are compared (Wilks, 2011).

2.3 AMIP5 model evaluation

In this section, we examine the AMIP5 model performance in reproducing the seasonal
climate, particularly focusing on the winter (DJF) and summer monsoons (JJA).

Seasonal mean GPCP precipitation and ERA-Interim mean 850 hPa wind over the Mar-
itime Continent are shown in Fig. 2.1a and Fig. 2.2a. The Maritime Continent receives an
abundance of rainfall throughout the year. However, there are pronounced seasonal variations
in precipitation and wind patterns. The ITCZ, where the trade winds from the Northern
Hemisphere converge with those from the Southern Hemisphere throughout the year, moves
northward in boreal summer and shifts to the south in boreal winter. The annual cycle of
monsoons are generated as part of the large-scale movement of the ITCZ in its passage from
the Southern to Northern Hemisphere and back. The GPCP observed seasonal precipitation
shows that the central and southern part of the Maritime Continent receives substantial precip-
itation during the (boreal) winter monsoon and less rainfall during the summer monsoon. In
contrast, the Maritime Continent region north of 10°N (Myanmar, Thailand, Laos, Vietnam,
Cambodia and the Philippines) experiences a dry season during the winter monsoon and a
wet season during the summer monsoon. The seasons between the summer monsoon and
winter monsoon are known as intermonsoon seasons (not shown).

In DJF, most models exhibit wet biases over the West Pacific Ocean except for four models:
BCC-CSM1-1 (Fig. 2.1e), BCC-CSM1-1m (Fig. 2.1f), IPSL-CM5B-LR (Fig. 2.1w) and MRI-
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Figure 2.1: DJF precipitation (mm/day) and 850 hPa wind (m s−1) for (a) GPCP and ERA-
interim, (b) MMM biases and (c)-(ad) AMIP5 biases for 1979-2008 over the Maritime
Continent region (20°S-20°N, 80°E-160°E). Third panel shows the Maritime Continent
domain and land-sea mask.
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CGCM3 (Fig. 2.1ac). About two-thirds of the models underestimate the precipitation over the
land. This can be seen from the MMM (Fig. 2.1b) whereby most of the land has dry biases
except for the islands of Sulawesi, New Guinea and the Philippines. The dry biases over
land are associated with easterly wind biases over the region. This easterly wind bias and its
associated dry bias is a common error in the atmosphere-only models. Models are able to
capture the reversal of Australian monsoonal circulation from low-level westerly winds in
DJF (Fig. 2.1) to easterlies in JJA (Fig. 2.2) over northern Australia. However, most of the
models simulate weaker westerlies over northern Australia in DJF, while a few models such
as CCSM4 (Fig. 2.1i), CSIRO-Mk3-6-0 (Fig. 2.1l), GFDL-HIRAM-360 (Fig. 2.1q), MIROC5
(Fig. 2.1x) and NorESM1-M (Fig. 2.1ad)), simulate stronger westerlies and wet biases over
northern Australia.

Biases in JJA aren’t very consistent, i.e. the MMM bias is small compared to individual
model biases. Models are more consistent in DJF, especially over the southern Maritime
Continent. A notable difference between DJF and JJA seasons is the more common presence
of large biases of precipitation over the Maritime Continent north of 10°N in JJA (Fig. 2.2)
as compared to DJF, indicating that the models simulate the monsoonal precipitation poorly.
In JJA, BNU-ESM (Fig. 2.2g), CSIRO-Mk3-6-0 (Fig. 2.2l), IPSL-CM5A-LR (Fig. 2.2u),
IPSL-CM5A-MR (Fig. 2.2v) and NorESM1-m (Fig. 2.2ad) models simulate weaker westerlies
over the Maritime Continent north of 10°N whereas other models simulate overly strong
westerlies that extend too far east into the West Pacific Ocean as shown in Fig. 2.2. These
biases are consistent with precipitation biases, with weak westerlies associated with underesti-
mation of the precipitation while strong westerlies increase the moisture supply and lead to
overestimation of precipitation over the Maritime Continent north of 10°N and West Pacific.
This also implies that stronger westerlies to the north in JJA are also a response to a stronger
monsoon.

Our result agrees with Ackerley et al. (2015), who found that the austral summer pre-
cipitation biases over northern Australia in AMIP5 simulations are linked to the low-level
winds. Models that overestimate the northern Australian precipitation have mean northerly
flow between 120° and 150°E, which transports moisture from the ocean, whereas other
models that underestimate the precipitation have mean southerly flow across the same range
of longitudes. We next use correlation analyses to determine the relationship between the
PCC of precipitation and 850 hPa wind across the suite of models, as well as the RMSE.

The PCC and RMSE are calculated with respect to GPCP precipitation and ERA-Interim
850 hPa winds (zonal and meridional components) over the Maritime Continent domain
(20°S-20°N, 80°E-160°E) in winter and summer seasons and are listed in Table 2.2. The
text in bold highlights the best performing models showing either highest PCC or lowest
RMSE. Three models (MRI-AGCM3-2S, MRI-AGCM3-2H and MRI-CGCM3) from the
same centre capture the spatial pattern of the precipitation in DJF with PCC higher than 0.8
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Figure 2.2: JJA precipitation (mm/day) and 850 hPa wind (m s−1) for (a) GPCP and ERA-
interim, (b) MMM biases and (c)-(ad) AMIP5 biases for 1979-2008 over the Maritime
Continent region (20°S-20°N, 80°E-160°E). Third panel shows the Maritime Continent
domain and land-sea mask.
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Table 2.2: PCC and RMSE skill scores for annual cycle climatologies of precipitation, DJF
and JJA seasonal mean precipitation with respect to GPCP and 850 hPa wind with respect to
ERA-Interim. All PCCs are statistically significant with a p-value less than 0.01. The AMIP5
models are sorted in alphabetical order. The top 5 models with the highest PCC and lowest
RMSE are highlighted in bold. The MMM is highlighted in italic bold and also has higher
PCC and lower RMSE than the individual models. The models are ranked approximately in
terms of horizontal resolution (from highest to lowest) as shown in the first column. PCCs
and RMSEs of CMAP and TRMM with respect to GPCP are listed in the bottom two rows to
indicate observational uncertainty.

Resolution
ranking
number

Model name /
observational
datasets

Annual
cycle

precipitation

DJF
precipitation

DJF
850 hPa

wind

JJA
precipitation

JJA 850 hPa
wind

PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE

11 ACCESS1-0 0.923 1.156 0.678 2.888 0.885 1.705 0.715 3.316 0.914 1.680
12 ACCESS1-3 0.923 1.466 0.764 2.695 0.894 1.869 0.664 3.518 0.903 1.323
25 bcc-csm1-1 0.843 2.147 0.735 3.214 0.848 1.922 0.646 4.707 0.841 1.406

7
bcc-csm1-1-
m

0.930 1.174 0.751 2.646 0.921 1.546 0.686 3.623 0.911 1.496

26 BNU-ESM 0.908 1.209 0.761 2.418 0.875 2.062 0.712 2.480 0.938 1.747
27 CanAM4 0.933 1.097 0.697 2.703 0.941 1.319 0.816 2.130 0.952 1.638
6 CCSM4 0.911 1.305 0.646 3.115 0.886 2.414 0.818 2.042 0.969 1.331
5 CMCC-CM 0.889 2.102 0.677 2.961 0.938 1.069 0.683 5.563 0.947 1.636
9 CNRM-CM5 0.811 1.720 0.487 2.801 0.820 2.168 0.683 2.802 0.938 2.311

16
CSIRO-Mk3-
6-0

0.876 1.417 0.740 2.934 0.907 1.647 0.674 2.738 0.934 1.730

28 FGOALS-g2 0.770 3.231 0.790 2.272 0.928 1.357 0.612 8.062 0.855 3.019
20 FGOALS-s2 0.818 1.952 0.560 3.094 0.888 2.068 0.744 3.306 0.920 1.858
22 GFDL-CM3 0.912 1.532 0.734 2.581 0.877 2.129 0.753 2.721 0.962 1.521

3
GFDL-
HIRAM-
C180

0.937 1.136 0.753 2.294 0.945 1.331 0.736 3.320 0.949 1.128

2
GFDL-
HIRAM-
C360

0.938 1.050 0.727 2.523 0.958 1.195 0.727 2.961 0.970 1.094

21 GISS-E2-R 0.879 1.832 0.540 3.422 0.803 1.874 0.789 3.345 0.952 1.599
13 HadGEM2-A 0.918 1.183 0.660 3.005 0.872 1.819 0.694 3.313 0.902 1.789
14 inmcm4 0.919 2.014 0.696 2.768 0.873 1.825 0.766 3.424 0.941 1.447

23
IPSL-CM5A-
LR

0.897 1.435 0.727 2.585 0.794 2.251 0.642 2.971 0.907 1.921

15
IPSL-CM5A-
MR

0.893 1.349 0.724 2.372 0.846 1.901 0.630 2.933 0.920 1.857

24
IPSL-CM5B-
LR

0.934 1.932 0.730 3.550 0.876 1.612 0.843 2.985 0.912 1.370

10 MIROC5 0.765 2.001 0.516 3.638 0.907 1.626 0.521 3.750 0.918 1.419

17
MPI-ESM-
LR

0.960 1.196 0.715 2.846 0.940 1.073 0.780 3.083 0.971 0.876

18
MPI-ESM-
MR

0.951 1.320 0.698 2.726 0.938 1.052 0.790 3.012 0.966 0.934

4
MRI-
AGCM3-2H

0.953 1.235 0.858 1.792 0.967 0.900 0.862 2.987 0.966 0.857

1
MRI-
AGCM3-2S

0.953 1.191 0.801 2.134 0.958 1.027 0.838 3.400 0.976 0.653

8 MRI-CGCM3 0.931 2.390 0.816 3.251 0.941 1.162 0.824 4.633 0.868 1.649
19 NorESM1-M 0.884 1.575 0.657 3.427 0.859 2.899 0.772 2.243 0.955 1.784

MMM 0.968 0.960 0.845 1.811 0.956 1.051 0.901 1.829 0.973 0.950
CMAP 0.987 0.962 0.934 1.405 0.911 1.872
TRMM 0.988 0.832 0.955 1.048 0.952 1.822
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as shown in Table 2.2. In JJA, five models (CCSM4, IPSL-CM5B-LR, MRI-AGCM3-2S,
MRI-AGCM3-2H and MRI-CGCM3) capture the spatial pattern of the precipitation (PCC
> 0.8). A few models such as CMCC-CM and F-GOALS-g2 have a substantial RMSE of
more than 5 mm/day with particularly large precipitation errors over the region north of 10°N
in JJA. For the 850 hPa wind, most models can adequately simulate the spatial pattern of
low-level winds, with nearly half of the models having PCC scores higher than 0.9 in DJF
and only two models (FGOALS-g2 and MRI-CGCM3) having PCC scores less than 0.9 in
JJA. In terms of magnitude of simulation errors, only the MMM and MRI-AGCM3-2H have
RMSE less than 2 m s−1 in DJF. Most models have higher RMSE in JJA compared to DJF.

The MMMs for precipitation have higher PCC and lower RMSE scores than almost all
individual models for all seasons. The MMMs also have PCC above 0.8 for both precipitation
and low-level wind in all seasons. The better performance of the MMM in reproducing the
observed mean precipitation is in agreement with other CMIP5 studies (Colman et al., 2011;
Jourdain et al., 2013; Sperber et al., 2013; Feng et al., 2014) which found that the MMM
outperforms individual models at reproducing the observed monsoon climate.

To condense the information from the spatial performance skill scores of all the models
and compare them for different fields, we plot scatter diagrams of precipitation PCC and 850
hPa wind PCC in Fig. 2.3a and also the RMSE skill scores for the same fields in Fig. 2.3b
(in other words, we generate scatter plots using pairs of columns from Table 2). The Pearson
correlation coefficients (r) and Spearman’s rank correlation coefficients (sr) in the scatter plot
of precipitation and 850 hPa wind in Fig. 2.3 suggest that the modeled precipitation biases are
somewhat linked to the zonal and meridional circulation at 850 hPa, consistent with Sperber
et al. (2013) for the Asian Monsoon region. The two correlation coefficients are comparable
except for JJA and SON RMSE, as JJA and SON precipitation RMSE scores feature a number
of model outliers with substantial biases of more than 4mm/day and the Pearson correlation is
sensitive to outliers. We will therefore use the Spearman’s rank correlation in the remaining
sections. The PCC values correlate better (>0.45) than the RMSE except for MAM season,
which is low for both. The positive linear relationship reflects the intrinsic moisture transport
link between precipitation and winds in the tropics.

The PCC in Fig. 2.3a also shows that the 850 hPa wind is better simulated than the
precipitation in all four seasons, as found by Brown et al. (2013) over the Western Pacific
monsoon region and by Sperber et al. (2013) over the Asian monsoon region. This makes
sense since one might expect the large-scale flow, which is resolved, to be represented better
than rainfall, which is parameterized.

Both the RMSE and PCC in Fig. 2.3 and Table 2.2 also show that the magnitude and spatial
distribution of the biases vary in each model according to season, i.e, models that perform less
well in one season do not necessarily poorly represent other seasons. For example FGOALS-
g2 captures the DJF precipitation but poorly simulates the JJA precipitation. GISS-E2-R
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Figure 2.3: Scatter plot of the AMIP5 seasonal mean (a) PCC and (b) RMSE of Maritime
Continent (20°S-20°N, 80°E-160°E) precipitation versus 850 hPa winds (u, v) for each season.
The Pearson correlation coefficient (r) and Spearman’s rank correlation coefficient (sr) for
each season are shown in the yellow box on the top left corner. Both correlation coefficients
for PCC and r for RMSE are statistically significant with a p-value less than 0.05 for most
seasons except for MAM. For RMSE Spearman’s rank correlation, only JJA sr is statistically
significant with a p-value less than 0.05.

performs poorly in simulating DJF (PCC 0.540) precipitation over the Maritime Continent but
simulates other seasons well (PCC >0.7). MRI-AGCM3-2S and MRI-AGCM3-2H capture
both the precipitation and low-level winds in all seasons.

Next, we examine the AMIP5 VIMFC biases (Fig. 2.4b-ad, Fig. 2.5b-ad) over the Mar-
itime Continent with respect to observed seasonal mean VIMFC in DJF (Fig. 2.4a) and JJA
(Fig. 2.5a). Positive VIMFC are mainly found over the central and southern parts of the
Maritime Continent in DJF, while during JJA, positive VIMFC are confined to the northern
and central parts of the Maritime Continent, consistent with the area that receives maximum
precipitation during DJF (Fig. 2.1a) and JJA (Fig. 2.2a). The 200 hPa divergent winds show
upper-level divergence over the central Maritime Continent in DJF and over northern parts in
JJA corresponding to the deep convection and heavy precipitation over this region.

In general, the VIMFC biases (Fig. 2.4, Fig. 2.5) over the Maritime Continent are some-
what consistent with the precipitation biases (Fig. 2.1, Fig. 2.2). In DJF, most models such
as ACCESS1-3 (Fig. 2.4d), bcc-csm1-1 (Fig. 2.4e), CNRM-CM5 (Fig. 2.4k) and GISS-
E2-R(Fig. 2.4r) show similar VIMFC spatial patterns with precipitation biases. However,
there are some discrepancies, in particular in regions with near-zero rainfall biases or small
positive precipitation biases: there are sometimes positive VIMFC biases (moisture flux
divergence). For example, FGOALS-g2 (Fig. 2.4m), HadGEM2-A (Fig. 2.4s) and MRI-
AGCM3-2S (Fig. 2.4ab) show positive VIMFC biases over the West Pacific, which have wet
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Figure 2.4: DJF VIMFC (mm/day) and 200 hPa divergent winds (vectors, m s−1) for (a)
observations (ERA-interim), (b) MMM biases and (c)-(ad) AMIP5 biases for 1979-2008 over
the Maritime Continent region (20°S-20°N, 80°E-160°E).
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Figure 2.5: JJA VIMFC (mm/day) and 200 hPa divergent winds (vectors, m s−1) for (a)
observations (ERA-interim), (b) MMM biases and (c)-(ad) AMIP5 biases for 1979-2008 over
the Maritime Continent region (20°S-20°N, 80°E-160°E).
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biases (cf. Fig. 2.1). The divergent circulation also shows upper-level convergence over this
region. This discrepancy may occur because GPCP observations are used for precipitation
and ERA-Interim for calculating VIMFC in this study. We found that VIMFC biases in JJA
also resemble the precipitation biases over the Maritime Continent. Our results suggest that
VIMFC biases largely account for the precipitation biases over the Maritime Continent for
both seasons.

2.4 Investigating potential sources of model biases

In this section, we will analyse how the performance of models over the Maritime Continent
depends on model characteristics, such as resolution, or on the representation of global
monsoon. This may give us insights as to what aspects of the models are most important in
order to correctly represent the climate of the Maritime Continent. We focus on three possible
sources of the Maritime Continent precipitation biases: the role of horizontal resolution, the
relationship to biases in the local Hadley circulation and global monsoon, and the presence or
lack of air-sea coupling.

2.4.1 Sensitivity of simulated mean climate to AMIP5 model resolution

In this section, we will assess the sensitivity of Maritime Continent precipitation to climate
model resolution. Among the 28 AMIP5 models in this study, the highest horizontal resolution
is 0.2°×0.2°, while the lowest resolutions are as coarse as 3.7°×1.9° and 2.8°×2.8° (refer to
Table 2.1). The monthly Maritime Continent precipitation values were bi-linearly interpolated
to a common 3.75°× 3°grid for the calculation of model skill scores.

More than half of the highlighted top 5 models with the highest PCC and lowest RMSE
scores in Table 2.2 are from the higher resolution models, which are models with ranking
number 1-6 in horizontal resolution, sorted from highest to lowest in Table 2.2. This suggests
that the highest resolution models have lower biases on average, although these models may
also have other advantages independent of resolution.

We assess the sensitivity of Maritime Continent precipitation to climate model resolution
by dividing the models into 3 categories, which are the 6 models with the highest resolutions
(blue lines), the 6 models with the lowest resolutions (red lines) and the remaining 16 models
at intermediate resolutions (grey lines), as shown in Fig. 2.6a. The individual model monthly
precipitation PCCs in Fig. 2.6a suggest that not all high resolution models produce better
precipitation simulations and vice versa. The same calculations performed over the land-only
precipitation and sea-only precipitation model skill scores (both PCC and RMSE) also show
no clear relationship between resolution and model performance (not shown). A comparison
between model pairs from the same institution with different resolutions in Fig. 2.6b shows that
only the BCC-CSM1-1m model with higher resolution performs better than its corresponding
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Figure 2.6: Maritime Continent monthly precipitation (a) PCC for all 28 models divided into
high (blue lines), medium (grey lines) and low resolution (red lines) groups and (b) PCC for 8
models, where each pair of models belong to the same institution and solid lines represent the
higher resolution versions while dashed lines represent the lower resolution versions.

lower resolution version, whereas the other lower resolution models perform better than their
corresponding higher resolution versions in most months. This suggests that the cause of
deficiencies is largely unrelated to resolution, although these model pairs may have other
differences in addition to resolution.

To check the impact of the choice of common grid size in the re-gridding procedure,
the main analysis in this section was repeated with models interpolated to a common 2.5°×
2.5°grid (intermediate resolution), consistent with that of the GPCP observational dataset.
Changes to the results were small: the PCC values change by less than 0.05, while analysis of
the simulated mean climate when re-gridded to this intermediate resolution (figure not shown)
also reveals no resolution dependence.

This demonstrates that the choice of precipitation re-gridding is unlikely to contribute
to the absence of sensitivity to the resolution of atmospheric models. If resolution were
having an impact at these climate model scales, then we would expect the improvements
to rectify onto the mean state, even when re-gridded to a lower resolution. For example, a
newly-resolved mountain range or island at higher resolution may help to initiate convection
during the diurnal cycle. Even when the output is upscaled to a coarser resolution, this would
still be measurable in the mean state.

2.4.2 Mean meridional circulation and the global monsoon

Wang et al. (2014) found that ascent in the tropics also influences subsidence over the
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subtropics in the Hadley circulation and suggested that remote biases are linked to regional
biases. To investigate if errors in the local scale over the Maritime Continent are related to
errors in the large-scale movement of the ITCZ, we will assess local Hadley circulation and
the global monsoon biases and their relationship with Maritime Continent precipitation biases.

3.4.2.1 Mean meridional circulation

The ERA-Interim mean meridional circulation over the Maritime Continent in Fig. 2.7a,d
shows seasonal variability in the intensities and locations of the ascending and descending
branches of the local Hadley cell. In winter, the ascending branch is located around 5°S while
during summer, a broader ascending branch is located around 15°N. In general, most of the
models produce a similar structure and location of the local Hadley circulation with respect to
ERA-Interim in all four seasons, as depicted in MMM in Figure 2.7b and 2.7f. The model
with lowest RMSE, MPI-ESM-LR, is able to reproduce the Hadley Circulation with PCC
above 0.9 for winter (Fig. 2.7c) and summer (Fig. 2.7g) monsoons.

Figure 2.7: DJF mean meridional circulation averaged over the Maritime Continent region
(80°E to 160°E) using omega (shading and vectors, Pa s−1) and v (vectors, m s−1) from (a)
ERA-Interim, (b) MMM, (c) the AMIP5 model with lowest RMSE and (d) the AMIP5 model
with highest RMSE. (e)-(h) are as in (a)-(d) but for JJA season. RMSE between observed and
simulated local Hadley Circulation is above each panel.

The location of the ascending branch of the local Hadley circulation is consistent with
the seasonal shift of the ITCZ and maximum precipitation. The reduced ascent over the
Maritime Continent in CNRM-CM5 (Fig. 2.7d) and MMM (Fig. 2.7b is connected with dry
biases over the Maritime Continent in DJF. The overly strong ascent around 15°N simulated
in FGOALS-g2 (Fig. 2.7h) in JJA is associated with strong overestimation of rainfall over the
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region.

Table 2.3: Spearman’s rank correlation between AMIP5 model skill scores at simulating the
local Hadley circulation and skill scores for simulation of Maritime Continent (20°S-20°N,
80°E-160°E) precipitation for the seasons indicated. A choice of PCC and RMSE skill scores
is shown. Bold text indicates a statistically significant correlation with a p-value less than
0.05.

DJF MAM JJA SON

PCC 0.19 -0.1 0.23 0.51
RMSE 0.39 0.24 0.39 0.53

The correlation between RMSE skill scores of local Hadley circulation and precipitation in
Table 2.3 also suggests that the seasonal mean rainfall biases over the Maritime Continent are
linked to the local Hadley Circulation biases. The RMSE correlates better than the PCC except
for the MAM season, which is low for both. The Spearman’s rank correlation coefficients for
RMSE are above 0.35 and statistically significant (p < 0.05) for all seasons except for MAM.
Thus there is some connection between errors at the relatively small scale of the Maritime
Continent and the large scale circulation.

3.4.2.2 Global monsoon

Next, we investigate if the models that have a better representation of the monsoons on the
global scale (solsticial and equinoctial modes using the metrics defined in Section 2.2.5)
have a better representation of the seasonal mean and annual cycle of precipitation over the
Maritime Continent.

Figure 2.8: Comparison of the spatial pattern of the solsticial mode (JJA minus DJF) between
(a) GPCP, (b) the AMIP5 model with the lowest RMSE and (c) the AMIP5 model with the
highest RMSE. (d)-(f) are as in (a)-(c) but for equinoctial mode (MAM minus SON). The PCC
and RMSE calculated between observed and simulated patterns (in the domain 45°S-45°N
and 0°-360°E) are above each panel.

42



Chapter 2. Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel
ensemble

The global solsticial mode (JJA minus DJF) in Fig. 2.8b and equinoctial mode (MAM
minus SON) in Fig. 2.8e for a selected model with the lowest RMSE (MRI-AGCM3-2H) are
in good agreement with observations (Fig. 2.8a,d), but the model generally overestimates
the overall amplitude of the solsticial and equinoctial precipitation signal. The PCCs are
comparable for both solsticial and equinoctial modes but the RMSE scores are slightly larger
for the solsticial mode. The model with the highest RMSE, FGOALs-g2, simulates an overly
strong precipitation amplitude for both solsticial (Fig. 2.8c) and equinoctial (Fig. 2.8f) modes,
especially over the tropical Indian and western Pacific Oceans.

Next we plot the local annual cycle of precipitation in these examples, as a time-latitude
diagram averaged between 80°E and 160°E in Fig. 2.9. We can see that both MRI-AGCM3-2H
and FGOALS-g2 also simulate overly strong monsoon precipitation, especially in summer and
autumn seasons, which is consistent with the solsticial and equinoctial biases in Fig. 2.8. This
suggests that Maritime Continent precipitation biases are related to global monsoon biases.
Zonal-mean precipitation biases are dominated by biases over the Asian sector, particularly
during JJA and SON. This also indicates how closely the seasonal movement of the global-
scale ITCZ is related to local precipitation over the Maritime Continent. The PCC and RMSE
of Maritime Continent annual cycle precipitation with respect to GPCP for all AMIP5 models
are listed in Table 2.2.

Figure 2.9: Latitude-time plot of precipitation zonally averaged between 80°E and 160°E for
(a) GPCP, (b) MRI-AGCM3-2H and (c) FGOALS-g2. White dashed line shows the position of
the maximum precipitation each month. Precipitation biases with respect to GPCP are shown
for this same temporal-spatial averaging for (d) MRI-AGCM3-2H and (e) FGOALS-g2.

To explore this further beyond the two models shown in Fig. 2.9, Table 2.4 shows the
Spearman’s rank correlations of scores representing skill at simulating the solsticial mode or
equinoctial mode with scores at simulating local Hadley circulation and Maritime Continent
precipitation. Most of the correlation coefficient values are above 0.4 (p < 0.05) suggesting
that those models having a better representation of the global monsoons (solsticial and
equinoctial modes) will also have a better representation of the mean meridional circulation
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Table 2.4: Spearman’s rank correlation between skill scores at simulating the global monsoon
(solsticial mode and equinoctial mode) and both the local Hadley circulation and precipitation
over the Maritime Continent respectively. Bold text indicates a statistically significant
correlation with a p-value less than 0.05.

Hadley Circulation
Maritime
Continent
Precipitation

Solsticial DJF JJA DJF JJA

PCC 0.30 0.66 0.34 0.53
RMSE 0.30 0.68 0.55 0.51

Equinoctial MAM SON MAM SON

PCC 0.42 0.56 -0.01 0.30
RMSE 0.18 0.45 0.52 0.60

and precipitation pattern over the Maritime Continent region. Thus our analysis demonstrates
a connection all the way from the skill at simulating the global-scale circulation down to the
regional scale of Maritime Continent precipitation in the AMIP5 models.

2.4.3 Sensitivity of simulated mean climate to ocean-atmosphere cou-
pling

Ocean-atmosphere coupling is important for monsoon simulation. Song and Zhou (2014)
compared the coupled and uncoupled simulations from CMIP5 and found that air-sea coupling
improves the East Asian Summer Monsoon simulation in CMIP5 models. On the other hand,
while many errors arise from cloud and convective parameterizations affecting coupled and
atmosphere-only models alike, other errors arise through coupled feedbacks. Li and Xie (2014)
attributed the double ITCZ problems in CMIP5 to cloud simulation errors in the atmospheric
model, while the equatorial Pacific cold tongue errors were attributed to ocean-atmosphere
feedbacks.

In this section, the analysis in Section 2.3 was first repeated for 46 coupled versions of
CMIP5 models and summarised briefly: we found some similarities between CMIP5 and
AMIP5. For instance, the MMM has better skill at reproducing the observed mean climate
than individual models. The 850 hPa wind is better simulated than the precipitation in all
four seasons in terms of its pattern correlation. The coupled versions of CMIP5 also have a
significant spread in model performance. The good models in one season do not necessarily
represent other seasons well.

To determine the potential impact of SST biases in simulating Maritime Continent pre-
cipitation, we made a comparison between 22 coupled CMIP5 model simulations and their
corresponding AMIP simulations, which are a subset of the 28 models analysed in the previous
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Figure 2.10: Comparison between CMIP5 and AMIP PCC of (a) Maritime Continent annual
cycle precipitation averaged between 80°E and 160°E, (b) solsticial mode and (c) equinoctial
mode in the domain 45°S-45°N and 0°-360°E. MMMs are plotted in black colour.

section. This is because modelling groups often run several different versions of their models,
whereas not all coupled and atmosphere models from a given group are directly equivalent.
The mean-state climate and biases of these 22 CMIP5 models are almost identical to the
46 CMIP5 models (not shown). The same result holds for AMIP5, whereby the 22 models
have similar mean state biases to those of the 28 AMIP5 models. The MMMs shown in the
remainder of this section consist of 22 corresponding CMIP5 and AMIP5 models respectively.

In Fig. 2.10a, the comparison between 22 AMIP5 and CMIP5 models PCCs in reproducing
the annual cycle (time-latitude) precipitation shows that most CMIP5 models from a given
modelling group perform better than their corresponding AMIP5 models. AMIP5 and CMIP5
MMMs have very similar values of PCC with observations (0.969 and 0.970) and RMSE
(0.976 mm/day, Fig. 2.11b and 0.966 mm/day, Fig. 2.11d). However, the PCCs (as well as
RMSE) for individual models from CMIP5 and AMIP5 vary greatly, and 14 of the 22 CMIP5
models have higher PCC scores than their corresponding AMIP5 models. This seems to
suggests that air-sea coupling improves the simulation of the Maritime Continent annual cycle
precipitation despite the inevitable SST biases. However, AMIP5 models generally outperform
CMIP5 models in the simulation of solsticial (Fig. 2.10b) and equinoctial (Fig. 2.10c) modes.
This opposite result suggests that SST biases and ocean-atmosphere feedback errors introduce
larger biases in the coupled models at the large scale. Fig. 2.10 also indicates that there is a
clear lack of correlation between a model’s performance at simulating the annual cycle of
precipitation in atmosphere-only mode and in coupled mode. This is also the case for the
patterns of the equinoctial and solsticial modes.

Comparison between the spatial pattern of AMIP5 (Fig. 2.11b) and CMIP5 (Fig. 2.11d)
MMM annual cycle precipitation biases shows some differences, in particular from January to
March, where AMIP5 models simulate dry biases over the southern Maritime Continent, while
CMIP5 shows wet biases. Four selected models, i.e. MPI-ESM-MR (AMIP5 model with
highest PCC), MIROC5 (AMIP5 model with lowest PCC), CNRM-CM5 (CMIP5 model with
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Table 2.5: Spearman’s rank correlation of skill at simulating Maritime Continent precipitation
with skill at simulating each of the four listed fields for the 22 CMIP5 models. Bold text
indicates a statistically significant correlation with a p-value less than 0.05. Red text indicates
a larger CMIP5 Spearman’s rank correlation coefficient compared to the 28 AMIP5 model
correlation coefficient scores in the previous section.

PCC RMSE

DJF MAM JJA SON DJF MAM JJA SON

Low level wind 0.41 0.44 0.58 0.18 -0.11 0.19 0.39 -0.33
Hadley circulation -0.23 -0.02 0.15 0.07 0.16 0.54 0.20 0.30
Solsticial 0.17 0.60 0.74 0.79
Equinoctial 0.25 0.35 0.71 0.56

highest PCC) and ACCESS1-3 (CMIP5 model with lowest PCC) also show inconsistencies in
the spatial pattern of precipitation biases between the model pairs of AMIP5 and CMIP5.

Although most AMIP5 models simulate the seasonal mean local Hadley circulations
better than CMIP5 for all seasons (figure not shown), we also found mixed results for model
skill at reproducing the seasonal precipitation and 850 hPa wind patterns over the Maritime
Continent. CMIP5 better simulates both JJA and SON precipitation and low-level winds,
whereas AMIP5 shows better simulation of the DJF and MAM seasonal mean climate. This
suggests that air-sea coupling can be important for Maritime Continent climate simulation but
its impact is complex.

CMIP5 (coupled) models show a weaker correlation between skill scores for simulating
Maritime Continent precipitation and skill scores for simulating local Hadley Circulation
than in AMIP5. The correlation coefficients of skill scores for simulating Maritime Continent
precipitation with skill scores for simulating the low-level wind is also lower in CMIP5 than
in AMIP5. However, CMIP5 skill scores for simulating Maritime Continent precipitation has
stronger correlation with skill scores for simulating global monsoon solsticial mode compared
with AMIP5 (see Table 2.5).

Coupling adds extra complexity, which will be a focus of next chapter when we will look
at SST bias.
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Figure 2.11: MMM (a) AMIP5 latitude-time plot of precipitation averaged between 80°E and
160°E, (b) AMIP5 precipitation biases with respect to GPCP, (c) CMIP5 latitude-time plot
of precipitation averaged between 80°E and 160°E and (d) AMIP5 precipitation biases with
respect to GPCP. (e)-(h) are as in (a)-(d) but for the AMIP5 model with highest PCC, (i)-(l)
are for AMIP5 model with lowest PCC, (m)-(p) are for CMIP5 model with highest PCC and
(q)-(t) are for CMIP5 model with lowest PCC. White dashed line shows the position of the
maximum precipitation each month.
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2.5 Clustering of the AMIP5 Maritime Continent annual
cycle precipitation

Cluster analysis is used for classification of homogeneous climate patterns and weather
regimes in climate studies (Unal et al., 2003; Bao and Wallace, 2015). Apart from that,
cluster analysis can be used to group ensemble members for operational forecasting purposes
(Molteni et al., 1996; Legg et al., 2002) and classifying CMIP5 climate change projections
(Masson and Knutti, 2011; Mizuta et al., 2014).

In this study, hierarchical clustering analysis of Maritime Continent annual cycle pre-
cipitation was performed to characterize model systematic biases in the AMIP5 runs and
determine if these biases are related to common factors elsewhere in the tropics. We chose to
perform the clustering analysis on the annual cycle time latitude diagram since it is a single
map which contains spatial and temporal information of precipitation from a range of seasons.
The annual cycle captures the seasonal movement of the ITCZ in the Maritime Continent.

In cluster analysis, the models that are similar are grouped together based on minimizing
the Euclidean distance of the Maritime Continent annual cycle precipitation between each
pair of models or model clusters using the complete linkage method as described in Section
2.2.6. The dendogram in Fig. 2.12a shows that the clustering analysis resulted in five clusters
with 13, 8, 4, 2 and 1 model(s) in each of the clusters.

To ensure that the clustering analysis is robust and models that are similar are grouped
together, we calculated the PCCs between AMIP5 simulations and GPCP observations and
plotted these in a box-and-whisker plot in Fig. 2.12b according to each cluster. Clusters I
and II are quite distinct in terms of their PCC scores. Almost all of the models in Cluster I
perform better than Cluster II models in simulating the annual cycle of precipitation. Cluster
III only consists of four models and has a large spread in PCC values. Clusters IV and V
consist of only two and one model respectively, which are also outliers from the overall
sample. Consequently, for the remainder of the composite analysis in Section 2.5.1, we will
only consider Clusters I and II. Although there is one outlier each in Clusters I and II, we
have also examined the Euclidean distances between each of the AMIP5 simulations and the
GPCP observations as well as the Euclidean distances between each of the models with other
models in all clusters (figure not shown) to ensure that the models that are most similar are
clustered together. We found that all the models have smaller distances between the models
in the same cluster and bigger distances between models of different clusters. This shows that
the clustering analysis is able to successfully group together models that are most similar.

The dendogram in Fig. 2.12a also shows that models from the same institution mostly
belong to the same clusters (Masson and Knutti, 2011; Mizuta et al., 2014). For example,
the models from the same institutions such as MRI (AGCM3.2 models), GFDL (HIRAM
models), CSIRO-BOM (ACCESS models), IPSL (CM5A models) and MPI (ESM models)
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Figure 2.12: (a) Hierarchical clustering dendrogram. The models in the same colours are
in the same clustering group while the distances greater than or equal to the threshold are
coloured black. (b) Box-and-whisker plot of PCC between AMIP5 simulations and GPCP
observations of Maritime Continent annual cycle precipitation averaged between 80°E and
160°E. Green dots are individual model’s PCC; magenta lines indicate the median; red dots
represent the mean and blue boxes indicate the interquartile range (IQR). The plus signs are
the outliers, which are PCC scores smaller than the lower quartile by at least 1.5 times the
IQR.

are in the same cluster. The models that shared the same atmospheric component also tend
to cluster. The ACCESS models are based on the UK Met Office HadGEM atmospheric
component and are in the same cluster with the HadGEM2-A model. The NorESM1-M model
uses the same atmospheric model as CCSM4 (Bentsen et al., 2013), and BNU-ESM also uses
the similar Community Atmospheric Model version 4 (CAM4) atmosphere. Both models
are in the same cluster as CCSM4. On the other hand, MRI-CGCM3 is an Earth System
Model, with its atmosphere component interactively coupled to an aerosol model, and it is in
a different cluster from the less complex MRI-AGCM3.2H and MRI-AGCM3.2S models.

2.5.1 Composites of mean climate simulation biases for the leading two
clusters of the AMIP5 models

In this section, the composites of models in Clusters I and II, obtained by taking the average
of all models in each cluster are analysed. Firstly, we looked at the latitude-time plot of
precipitation averaged between 80°E and 160°E in Fig. 2.13 (first column), the metric on
which the models are clustered, which shows the transitions of precipitation during the course
of the annual cycle. Cluster I simulates a similar seasonal migration of precipitation over

49



Chapter 2. Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel
ensemble

the Maritime Continent (Fig. 2.13a) to GPCP (Fig. 2.9a). Cluster I is also able to capture
both the winter monsoon and summer monsoon shift and also the movement of the ITCZ, but
it overestimates the precipitation, especially during the JJA and SON seasons (Fig. 2.13b).
Cluster II simulates less seasonal migration and the position of maximum rainfall stays closer
to the equator throughout the year (Fig. 2.13e,f). The PCC and RMSE for the composites of
the two clusters show that Cluster I has better skill than Cluster II in simulating the annual
cycle climatology of precipitation.

Figure 2.13: Cluster I (a) latitude-time plot of precipitation averaged between 80°E and
160°E, the white dashed line indicates the maximum precipitation for each month, roughly
illustrating position of the ITCZ. (b) precipitation biases with respect to GPCP. Cluster I
zonal mean meridional circulation omega (shading and arrow, Pa s−1) and v (arrow, m s−1)
biases with respect to ERA-Interim averaged between 80°E and 160°E for (c) DJF and (d)
JJA. (e)-(h) are as in (a)-(d) but for Cluster II. PCC and RMSE are shown above each panel.

To see if these errors in the position of Maritime Continent ITCZ are related to the
overturning circulation, we next investigate the relationship between precipitation biases and
local Hadley circulation biases during DJF and JJA seasons in the two clusters. We can see
from Fig. 2.13b,f that Cluster II has larger precipitation biases than Cluster I in DJF. The
Cluster I dry biases correspond to local Hadley circulation subsidence biases in the southern
Maritime Continent. Cluster II wet biases over the northern Maritime Continent and dry
biases over the southern Maritime Continent are consistent with the ascent and descent biases,
respectively in Fig. 2.13g.

During JJA, the clusters show different biases in precipitation. Cluster I has the correct
pattern but too large magnitude of precipitation in the observed wet regions of the Maritime
Continent. There is a slight discrepancy between the wet biases and ascent biases. Note
that, for regions with near-zero rainfall biases or small positive precipitation biases, there
are sometimes downward motion biases (Fig. 2.13d, ' 7 °N). This discrepancy may occur
because GPCP observations are used for precipitation and ERA-Interim for vertical motion in
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Figure 2.14: ERA-interim 500hPa omega (shaded, Pa/s) and GPCP precipitation (contour,
mm/day) for (a) DJF and (b) JJA seasons, and biases for Cluster I in (c) DJF and (d) JJA
seasons and Cluster II in (e) DJF and (f) JJA seasons. Green contour lines are wet biases
(positive), solid magenta line represents the zero value and dashed magenta lines are dry
biases.

this study. Cluster II has dry biases north of the equator and wet biases to the south, consistent
with the biases in ascent and descent of the local Hadley circulations in Fig. 2.13h. Cluster II
simulates the ascending branch too far south, which results in overestimation of rainfall in the
southern Maritime Continent and underestimation in the northern Maritime Continent. This
shows that the precipitation biases in the Maritime Continent are linked closely to the (local)
Hadley circulation.

Figure 2.14(a) and (b) show the ERA-interim seasonal mean of vertical velocity (omega) at
500hPa in DJF and JJA respectively. The negative (positive) values of omega imply ascending
(descending) motion. DJF and JJA show contrasting features, with negative omega over
the central and southern parts of the Maritime Continent in DJF, while JJA shows strong
upward motion over northern and central parts of the Maritime Continent. The deep ascent
corresponds to locations of maximum precipitation. Likewise, consistent with the precipitation
biases, models also show negative omega anomalies over the regions of wet bias and positive
omega over dry bias regions. This shows that precipitation biases over the Maritime Continent
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are related to the large-scale circulation.

Figure 2.15: Zonal mean precipitation in the global domain (averaged between 0° and 360° E)
for (a) GPCP, (b) Cluster I and (c) Cluster II, the white dashed line indicates the maximum
precipitation for each month, roughly illustrating position of the ITCZ. Biases with respect to
GPCP for (d) Cluster I and (e) Cluster II. PCC and RMSE are shown above each panel.

Examining the tropics-wide characteristics of the clusters, we find that the zonal mean
precipitation averaged over the whole tropics between 0°and 360° E in Fig. 2.15d,e shows
similar biases to the precipitation biases averaged between 80° E and 160° E in Fig. 2.13b,f
when accounting for the tropics-wide mean wet biases of both clusters. This confirms what
we saw earlier for individual model analysis, that Maritime Continent precipitation biases
are closely related to global monsoon biases. The errors in movement of the ITCZ over the
Maritime Continent are thus related to global ITCZ errors. A separation of land-only and
sea-only grid points precipitation biases (figure not shown) shows that the wet biases over
sea-only grid points dominate the tropics-wide errors.

Figure 2.16 shows the DJF and JJA seasonal mean GPCP precipitation and 850 hPa
winds over the tropics along with Cluster I and Cluster II mean biases. Cluster I and Cluster
II have somewhat similar biases over the Indian Ocean in DJF and JJA. In DJF, Cluster I
(Fig. 2.16c) simulates an overly strong South Pacific Convergence Zone (SPCZ) whereas
Cluster II (Fig. 2.16e) underestimates the SPCZ. In JJA, Cluster I (Fig. 2.16d) simulates an
overly wet Western North Pacific (WNP) while Cluster II (Fig. 2.16f) underestimates the
precipitation over the region. Bush et al. (2015) highlighted the WNP as a region with too
much rainfall in the MetUM, a more recent version of the MOHC HadGEM2-A model from
CMIP5, which is evident in Cluster I.

Cluster I shows wet biases over the east-central equatorial Pacific and dry biases in the
Maritime Continent, Australia and northern South America in DJF and JJA (Fig. 2.16c,d).
Cluster I also shows dry biases over India in JJA (Fig. 2.16d). For Cluster II, DJF biases
in Fig. 2.16e are associated with a mean shift in the global monsoon whereby Cluster II
simulates maximum precipitation further north than GPCP.
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Figure 2.16: GPCP precipitation and ERA-Interim 850 hPa wind for (a) DJF and (b) JJA
seasons, and biases for Cluster I in (c) DJF and (d) JJA seasons and Cluster II in (e) DJF and
(f) JJA seasons. PCC and RMSE are shown above each panel.

Figure 2.17 shows scatter plots of AMIP5 Cluster I and Cluster II seasonal mean skill
scores at simulating Maritime Continent precipitation versus skill scores at simulating the
global monsoon solsticial and equinoctial modes. The MMMs in each cluster outperform the
individual models in their cluster for all seasons. Although the individual model skill scores
vary greatly, the Cluster I MMMs perform better than the Cluster II MMMs in simulating
almost all of the local and global properties. This is consistent with our earlier results
suggesting Cluster I simulates a realistic movement of the ITCZ, capturing the rainfall pattern
but overestimating the rainfall, whereas in Cluster II, the ITCZ doesn’t move as observed,
giving an unrealistic pattern of rainfall which impacts both the PCC and RMSE scores. The
only exception is Maritime Continent precipitation RMSE in SON, indicating that Cluster II
has a slightly more realistic representation of the autumn rainfall, when the ITCZ is close to
the equator anyway.

The RMSE of seasonal mean precipitation of both clusters has a strong significant correla-
tion with the RMSE of solsticial (Fig. 2.17b,d) and equinoctial modes (Fig. 2.17f,h), except
for Cluster II JJA RMSE. This indicates that the amplitude of the particular global monsoon
and Maritime Continent biases singled out by these clusters are linked, just as the global
monsoon biases and Maritime Continent biases are linked for all models (Section 2.4.2).

In Fig. 2.17a,c, Cluster I, which is able to capture both the winter monsoon and summer
monsoon patterns, shows a significant positive correlation with the solsticial mode, whereas
Cluster II, which has less similarity in the spatial patterns with GPCP and simulates the
position of maximum rainfall too close to the equator, shows no correlation with the solsticial
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Figure 2.17: Scatter plots of the AMIP5 Cluster I (blue) and Cluster II (red) seasonal mean (a)
DJF PCC, (b) DJF RMSE, (c) JJA PCC and (d) JJA RMSE of Maritime Continent precipitation
versus skill scores at simulating the solsticial mode; and (e) MAM PCC, (f) MAM RMSE,
(g) SON PCC and (h) SON RMSE of Maritime Continent precipitation versus skill scores at
simulating the equinoctial mode. The Maritime Continent domain is 20°S-20°N and 80°E-
160°E, whereas solsticial and equinoctial modes domains are 45°S-45°N and 0°-360°E. The
Pearson correlation coefficient (r) and Spearman’s rank correlation coefficient (sr) for each
season are shown in the yellow box on the top left corner. All correlation coefficients for PCC
and RMSE are statistically significant with a p-value less than 0.05 for most seasons except
for Cluster II DJF PCC, Cluster I MAM PCC, Cluster II JJA PCC and Cluster I SON PCC.

mode (off-equatorial monsoon) PCCs. However, Cluster II Maritime Continent precipitation
shows a stronger correlation with the equinoctial mode (Fig. 2.17e,g), perhaps because the
location of the ITCZ in spring and autumn seasons is closer to the equator.

The results of the cluster analysis are in good agreement with the analysis in the previous
section stating that Maritime Continent precipitation biases are closely related to local Hadley
circulation biases and biases in the global monsoon. These relationship are stronger for the
solsticial mode in Cluster I and the equinoctial mode in Cluster II.

2.6 Discussion

This study evaluates the AMIP5 model performance in simulating the mean climate over the
Maritime Continent and investigates the model characteristics that may be potential sources
of bias.

Our results in Section 2.4.1 agree with Neale and Slingo (2003) that model performance
is largely unrelated to resolution. Although the range of resolutions in AMIP5 is compa-
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rable to the size of several typical Maritime Continent islands, even the higher resolution
AMIP5 models insufficiently resolve some of the smaller islands and steeper orography in the
Maritime Continent. The model performance perhaps does not improve as resolution is in-
creased because these models all still rely on convective parameterizations. Ogata et al. (2017)
showed that increasing resolution of both the MRI-AGCM and MetUM models decreased
the precipitation biases over the western Pacific. However, MRI-AGCM showed no clear
resolution dependency in the simulation of precipitation over the southern Maritime Continent
(0-10S, 90E-160E). They suggested that the different result of the resolution sensitivity over
the Maritime Continent in MetUM and MRI-AGCM is likely due to the differences in the
models physics scheme. On the other hand, the lack of correlation between CMIP5 model
skill and resolution is also evident in the mean climate simulation over other regions such as
East Asian summer monsoon (Song and Zhou, 2014).

Our analysis of the relationship between local Hadley circulation biases and precipitation
biases in the Maritime Continent suggests that the seasonal mean biases in the region are
linked to the local Hadley Circulation biases. The correlations between the global monsoon
(solsticial and equinoctial modes) and the Maritime Continent precipitation show some
connection between errors at the regional scale of the Maritime Continent and errors at the
larger global circulation scale. The same results hold for both Cluster I and Cluster II in
Section 2.5.

On the other hand, the impact of ocean-atmosphere coupling impacts is complex. We
found that CMIP5 performs better than AMIP5 model in the simulation of Maritime Continent
annual cycle precipitation, which suggest that air-sea coupling improves the simulation despite
the inevitable SST biases. However, we also found that CMIP5 perform less well at simulation
of the global monsoon modes which suggest that SST biases and ocean-atmosphere feedback
errors introduce larger biases in the coupled models at larger scales. Hendon (2003) suggests
that the SST changes feed back on the surface winds and thus affect the Walker circulation
and precipitation. The next chapter will look at SST biases over the Maritime Continent and
investigate their relationship with precipitation and circulation biases.

Apart from the three potential sources of bias discussed in Section 2.4, i.e. the role of
horizontal resolution, the relationship to biases in the local Hadley circulation and global
monsoon, and the presence or lack of two way air-sea coupling, there are also other factors.
One possible source of common error between global monsoon biases and local Maritime
Continent biases are errors associated with the parameterization of cumulus convection.
Studies have shown that the simulation of tropical precipitation is highly sensitive to the
convection scheme (Sherwood et al., 2014; Bush et al., 2015). Ackerley et al. (2015) suggested
that wet biases over Australia in summer in the BNU-ESM, NorESM1-M and CCSM4
models might be related to the convection schemes that are used in these models. Here we
briefly examine the relationship between the convection scheme and the model biases. Table
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Table 2.6: AMIP5 models convection scheme and closure.

Cluster Model Convection scheme Closure

I

MRI-AGCM3.2H Yoshimura (Yukimoto et al., 2011); Tiedtke
(1993) CAPEMRI-AGCM3.2S

GFDL-HIRAM-C180 Moorthi and Suarez (1992) CAPEGFDL-HIRAM-C360
BCC-CSM1.1(m) modified Zhang and McFarlane (1995); Zhang

and Mu (2005)
CAPE

ACCESS1.0 Modified Gregory and Rowntree (1990) CAPEACCESS1.3
HadGEM2-A Modified Gregory and Rowntree (1990); Adap-

tive Detrainment (Derbyshire et al., 2011)
CAPE

INM-CM4 Betts (1986) CAPE
MPI-ESM-MR Tiedtke (1989); Nordeng (1994) CAPEMPI-ESM-LR
GISS-E2-R DelGenio and Yao (1993) A cloud base neu-

tral buoyancy
CanAM4 Zhang and McFarlane (1995) CAPE

II

CCSM4 modified Zhang and McFarlane (1995); Richter
and Rasch (2008); Neale et al. (2008)

CAPE

CNRM-CM5 Bougeault (1985) Kuo
IPSL-CM5A-LR Modified Emanuel (1991); Bony and Emanuel

(2001) CAPEIPSL-CM5A-MR
CSIRO-Mk3.6.0 Modified Gregory and Rowntree (1990) Stability-

dependent
mass-flux

NorESM1-M Zhang and McFarlane (1995) CAPE
GFDL-CM3 Donner (1993); Donner et al. (2001); Wilcox

and Donner (2007)
CAPE

BNU-ESM modified Zhang and McFarlane (1995); Zhang
(2002); Zhang and Mu (2005)

Closure scheme
couples con-
vection to the
large-scale forc-
ing in the free
troposphere

III

CMCC-CM Tiedtke (1989); Nordeng (1994) CAPE
MRI-CGCM3 Yoshimura (Yukimoto et al., 2011), Tiedtke

(1993)
CAPE

IPSL-CM5B-LR Modified Emanuel (1991); Bony and Emanuel
(2001); Grandpeix et al. (2004)

Available lifting
power

BCC-CSM1.1(m) modified Zhang and McFarlane (1995); Zhang
and Mu (2005)

CAPE

IV MIROC5 Chikira and Sugiyama (2010) Prognostic con-
vective kinetic
energy

FGOALS-s2 Tiedtke (1989); Nordeng (1994) CAPE

V FGOALS-g2 Zhang and McFarlane (1995); Zhang and Mu
(2005)

CAPE
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2.6 shows the convection scheme and type of convective closure for each of the AMIP5
models, arranged by cluster group. Although the members in the same cluster use different
convection schemes and closures, the models from the same institution that use different
convection schemes do not cluster. This includes GFDL-HIRAM and GFDL-CM3; IPSL-
CM5A and IPSL-CM5B; FGOALS-s2 and FGOALS-g2. The IPSL-5A-LR and IPSL-5A-MR
atmospheric models, which differ only in resolution, are in the same cluster, whereas the
IPSL-CM5B models that involved substantial changes in the atmospheric model including
convection scheme and closure (Dufresne et al., 2013) are in different clusters. On the other
hand, the BCC-CSM models are the only ones which use the same convection scheme, and
differ only in resolution, but are not in the same cluster.

These results suggest that the convection scheme can be important for model simulation of
the annual cycle precipitation in the Maritime Continent, but further work would be necessary
to characterize the biases according to convection scheme, which is beyond the scope of this
thesis.

2.7 Conclusions

This chapter examines the fidelity of CMIP5 models in simulating mean climate over the
Maritime Continent, focusing mainly on the uncoupled versions of the models. The 28 CMIP5
model simulations for the 30-year period (1979-2008) in AMIP configuration with prescribed
SSTs and sea ice (AMIP5) are compared with observational datasets. We quantify the model
performance based on the pattern correlation coefficient (PCC) and root mean square error
(RMSE) skill scores. We find that there is a considerable spread in the performance of the
28 AMIP5 models in reproducing the seasonal mean climate and seasonal cycle over the
Maritime Continent region. Model performance is not necessarily consistent across seasons.
A model with high skill in one season does not necessarily represent other seasons well.
The multi-model mean (MMM) has better skill at reproducing the observed climate than
individual models, in common with other studies of monsoon regions (e.g. Colman et al.,
2011; Jourdain et al., 2013; Sperber et al., 2013; Feng et al., 2014). The PCC comparison also
shows that models have higher skill at simulating the Maritime Continent 850 hPa winds than
precipitation in all four seasons. Our results also suggest that VIMFC biases largely account
for the precipitation biases over the Maritime Continent.

We also investigated the possible sources of the model biases. Our assessment of the
sensitivity of Maritime Continent precipitation to climate model resolution suggests that,
at the resolutions typical of AMIP5, the model performance is largely unrelated to model
horizontal resolution. Instead, our analyses show that the local Maritime Continent biases
are somewhat related to global circulation and global monsoon biases. The models that have
a better representation of the local Hadley Circulation and global monsoons have a better
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representation of the seasonal means of precipitation and winds over the Maritime Continent.
The analysis was repeated for 46 coupled versions of CMIP5 models, which we called

“CMIP5”, and we found similar results as in AMIP5. For instance, the MMM has better skill
at reproducing the observed mean climate than the individual CMIP5 models. The 850 hPa
wind is better simulated than the precipitation in all four seasons. CMIP5 models also showed
significant spread in model performance. The comparison between 22 pairs of CMIP5-AMIP5
simulations shows that most CMIP5 models perform better than their AMIP5 counterpart in
reproducing the annual cycle of Maritime Continent precipitation. However, AMIP5 models
generally outperform CMIP5 models in simulating the global monsoon. Although most
AMIP5 models simulate the seasonal mean local Hadley circulation better for all seasons
compared to CMIP5, we found mixed results for model skill at reproducing the seasonal mean
precipitation and 850 hPa winds over the Maritime Continent. Besides that, CMIP5 models
show weaker correlation between the Maritime Continent precipitation biases and both the
local Hadley Circulation biases and the low-level wind biases but stronger correlation with
the global monsoon solsticial mode biases compared to AMIP5.

Hierarchical clustering analysis of Maritime Continent annual cycle precipitation was
performed to characterize model systematic biases in the AMIP5 runs and determine if these
biases are related to common factors elsewhere in the tropics. Our analysis resulted in two
distinct clusters. Cluster I is able to reproduce the observed seasonal migration of Maritime
Continent precipitation, but it overestimates precipitation amount, especially during the JJA
and SON seasons. On the other hand, in Cluster II the maximum rainfall position too close to
the equator throughout the year. The tropics-wide properties of these clusters also indicate
a connection all the way from the skill of simulating the global properties down to skill at
simulating the regional scale of Maritime Continent precipitation.

This chapter therefore highlights the importance of global monsoon and local Hadley
circulation simulations in AMIP5, which are significantly associated with the mean climate
simulation biases at Maritime Continent. On the other hand, ocean-atmosphere coupling
impacts are more complex, and these will be the focus of next chapter to look at SST
biases over the Maritime Continent and investigate their relationship with precipitation and
circulation biases.
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Chapter 3

Large-scale interactions between
Maritime Continent precipitation and
tropical sea surface temperature in
CMIP5 models

3.1 Introduction

The previous chapter evaluated the fidelity of CMIP5 atmosphere-only models in simulating
the mean climate over the Maritime Continent and the role of model horizontal resolution, in-
clusion of atmosphere-ocean coupling etc. The preliminary comparison with coupled models
showed that air-sea coupling yielded complex impacts on Maritime Continent precipitation
biases that warrants further investigation. This chapter will further examine the relationship
between Maritime Continent mean state precipitation biases and tropical seas surface tem-
perature (SST) biases in coupled CMIP5 models. Furthermore, the behaviour of Maritime
Continent precipitation variability, its teleconnection to the El Niño-Southern Oscillation
(ENSO) and Indian Ocean Dipole (IOD) in atmosphere-only and coupled CMIP5 models will
be assessed.

One of the outstanding problems in the coupled CMIP5 models is the presence of signifi-
cant SST biases in tropical ocean basins, including cold biases in the equatorial Pacific cold
tongue (Li et al., 2015a; Zheng et al., 2012), warm biases over the southeastern Pacific and
Atlantic Oceans (Hourdin et al., 2015; Wang et al., 2014) and seasonally dependent biases
over the western Indian Ocean (Li et al., 2015b). These biases in the Indo-Pacific region affect
the model skill at simulating the mean climate and its variability in this region such as ENSO
and IOD, and their teleconnections.

Models tend to simulate excessively cold SST with inter-model difference up to 3°C
over the Pacific cold tongue that extends too far west into the western Pacific (Li et al.,
2015a; Zheng et al., 2012). Associated with the cold SST biases are dry biases and surface
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easterly biases over the Pacific cold tongue region, arising from misrepresentation of ocean-
atmosphere interactions via Bjerknes feedback (Li and Xie, 2014). Taschetto et al. (2014)
showed that mean state biases in the equatorial Pacific SST induced the ENSO SST anomaly
biases and zonal wind stress anomalies extending too far west across the equatorial Pacific.
The anomalous westward Pacific cold tongue produces a significant positive correlation
with rainfall over Papua in DJF, opposite to observations, and thus affect the ENSO-rainfall
teleconnection simulated by the CMIP models (Cai et al., 2009; Jourdain et al., 2013).

In order to examine the impact of modelled cold tongue cold biases, Inness et al. (2003)
applied heat flux-adjustments in the 20-year coupled HadCM3 model run with the SSTs
between 10°N and 10°S in the Pacific and Indian Ocean being relaxed back to climatology
on a timescale of approximately 14 days. Their study found that the anomalous heat flux
reduced the cold SST biases of up to 3 °C and changed the low-level mean zonal wind from
easterly to westerly in the western Pacific, resulting in a better agreement with observations.
Using the same flux-adjusted integration of HadCM3, Turner et al. (2005) showed that the
improved mean state of the tropical Pacific led to improved ENSO simulation, that in turn
also improved the Asian summer monsoon-ENSO teleconnection. The analysis of Annamalai
et al. (2007) in the CMIP3 models arrives at the same conclusion: models that better represent
the basic state and Walker circulation are able to simulate the ENSO-monsoon teleconnection
better. Achuta Rao and Sperber (2006) showed that the fidelity of CMIP2 and CMIP3 models
at reproducing the ENSO-related precipitation anomaly over the tropics is linked to the model
skill at simulating the climatology of boreal winter precipitation.

On the other hand, Langenbrunner and Neelin (2013) showed that an AMIP model with
specified observed SSTs, also struggles to simulate ENSO precipitation teleconnections, with
only a slight improvement from CMIP3 to CMIP5.

In the Indian Ocean, Levine and Turner (2012) showed that the mean state of Indian
monsoon rainfall in the coupled HadGEM3 model is significantly underestimated due to cold
SST biases in the northern Indian Ocean. Many CMIP5 models also exhibit systematic cold
biases in the northern Arabian Sea and simulate weaker monsoon rainfall (Levine et al., 2013).
Li et al. (2015b) showed that the weak southwest summer monsoon over the Arabian Sea in
coupled CMIP5 models induced warm SST biases over the western equatorial Indian Ocean,
which resulted in an easterly wind bias and precipitation bias that resembles the positive IOD
mode via Bjerknes feedback. Their study showed that these mean state biases result in an
overly large amplitude of interannual IOD variability simulated in CMIP5 models. Cai et al.
(2009) showed that the CMIP3 models that simulate larger IOD amplitude had a stronger
IOD teleconnection to southeast Australia, Sumatra and Java rainfall. However, Jourdain et al.
(2013) found that the Maritime Continent-IOD relationship is weak in the CMIP3 and CMIP5
models.

In this chapter, we investigate the large-scale interactions between Maritime Continent
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precipitation and tropical SSTs in CMIP5 models. We examine the influence of both local
and remote air-sea interactions in the tropical oceans on the simulation of Maritime Continent
precipitation. This chapter is organised as follows. We first describe the CMIP5 models and
observational (reanalysis) datasets used in this chapter in Section 3.2. Section 3.3 build on
the results of the previous chapter to assess the relationship between climatological seasonal
SST biases in the tropical ocean and climatological seasonal precipitation in the Maritime
Continent in CMIP5. Section 3.4 focuses on two dominant modes of variability influencing
the climate of the Maritime Continent on interannual time-scales (i.e. ENSO and IOD in
both AMIP and coupled experiments of CMIP5). In other words, we will assess Pacific
and Indian Ocean teleconnections to the Maritime Continent in experiments using accurate,
observed SSTs, followed by experiments that generated their own SST, with inherent biases.
A comparison is made between AMIP and coupled CMIP5 models to investigate whether
ocean-atmosphere coupling improves these teleconnections. Discussion and conclusions are
given in Section 3.5.

3.2 Datasets and analysis

3.2.1 Models

Historical experiments from 1979 to 2005 of 42 fully coupled ocean-atmosphere CMIP5
are analysed in this chapter. The 42 models are marked with an asterisk (*) in Table 2.1 in
Chapter 2. CMIP5 models’ SST data on a already interpolated to a common 1°× 1° regular
grid spacing is obtained from the Asia-Pacific Data-Research Center (APDRC) at University
of Hawaii (http://apdrc.soest.hawaii.edu/).

The 28 CMIP5 atmosphere-only models (AMIP5) discussed in the previous chapter are
also analysed in this chapter for the simulation of interannual variability from 1979 to 2008.
In addition to making general ensemble-mean comparisons, we also compare directly between
20 pairs of AMIP and coupled simulations to assess the extent and impact of SST biases on
the teleconnections in coupled CMIP5 models.

To compare the models, all the models’ atmospheric data are bi-linearly interpolated to
a common 3.75° longitude × 3° latitude grid. We calculate the interannual anomalies by
removing the long-term seasonal climatology over the entire period, 1979-2008 for AMIP5
and 1979-2005 for CMIP5. The multimodel mean (MMM) in this chapter is the average of
42 CMIP5 models and 28 AMIP5 models, unless otherwise specified.

3.2.2 Observations

The monthly mean SST data at 1°× 1° from AMIP5 (Taylor et al., 2000) based on the monthly
mean Hadley Centre sea ice and SST dataset version 1 (HadISST1) and version 2 of the
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National Oceanic and Atmospheric Administration (NOAA) weekly optimum interpolation
(OI) SST analysis is used for evaluating the CMIP5 model’s ability at simulating the seasonal
mean SST climatology and its interannual variability.

3.2.3 Index definition

To represent the ENSO and IOD in this study, we use the standard SST area-averaged indices.
We select the Niño 3.4 (5°S-5°N, 120°W-170°W) SST anomalies to represent ENSO (Bamston
et al., 1997). We identify an El Niño event when the 3-month running mean SST anomalies in
the Niño 3.4 region are greater than 0.5°C for at least five consecutive months as defined by
the Climate Prediction Center (CPC). A La Niña event is defined when the 3-month running
mean SST anomalies in the Niño 3.4 region are less than -0.5°C for at least five consecutive
months.

We calculate the Dipole Mode Index (DMI) as defined in Saji et al. (1999) to represent
IOD in this study. DMI is the difference between western Indian Ocean (IODW, 10°S-10°N,
50°E -70°E) and eastern Indian Ocean (IODE, 0°-10°S, 90°E-110°E) SST anomalies. Positive
and negative IOD phases are defined when the SON DMI exceeds a threshold of +/- 0.5°C.

The analysis of interannual variability related to ENSO focuses on the DJF season when
ENSO typically peaks and analysis of the IOD focuses on SON, when the IOD signal is
strongest. Since they are forced by the same prescribed SST, all AMIP5 models have the
same Niño 3.4 index and DMI while the CMIP5 models generate their own SST and have
different Niño 3.4 and DMI values.

3.2.4 Statistical analyses

In Section 4.2, we perform linear regression analysis to determine the relationship between
Maritime Continent precipitation and tropical SST. Note that this is not a standard time-series
regression, instead we use different climate models in place of the time dimension, as in Li et al.
(2017). We regress climatological precipitation averaged over the Maritime Continent domain
(20°S-20°N, 80°E-160°E) in 42 models onto the seasonal mean SST climatologies of those
models. In other words, the independent variable is the climatological seasonal mean SST of
each model and the dependent variable is the climatological seasonal mean of precipitation
averaged over Maritime Continent of each model. In this way, we hope to determine how
Maritime Continent precipitation biases will vary in response to SST biases in different
regions. We refer to this regression analysis among the models as multimodel regression.
Analogous correlation analysis using different climate models as the time dimension is refers
to as multimodel correlation.

The correlation method used in this chapter is the Pearson linear correlation. We compute
the Pearson correlation coefficient (r) to measure the strength of the association and the
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direction of a linear relationship between two variables. We refer to the Pearson correlation
coefficients computed according to time series as temporal correlation.

3.3 Relationship between tropical SST biases and the Mar-
itime Continent mean state precipitation biases

Studies have shown that CMIP5 models exhibit significant SST biases. Biases in models’
SSTs have a large impact on the simulation of the atmospheric mean state and other errors
also arise through coupled feedbacks in the coupled GCMs. However, how these SST biases
influence the simulated climate in the Maritime Continent is not well understood.

3.3.1 Seasonal coupled SST biases

In this section, we will first analyse the spatial pattern of SST biases averaged from 1979-2005
in CMIP5 models. The magnitude, sign and spatial pattern of SST biases are somewhat
similar in all four seasons, apart from the western Indian Ocean where the biases change sign
in different seasons. Some models including the MMM simulate colder than observed SST in
DJF and MAM seasons but warmer than observed SST in JJA and SON seasons in the western
Indian Ocean (figure not shown). Li et al. (2015b) showed that these seasonally dependent
biases over the western Indian Ocean are related to the weaker South Asian summer monsoon
simulated over the Arabian Sea in most CMIP5 models. For brevity, we only show the spatial
pattern of CMIP5 climatological SST biases in DJF.

The MMM in Fig. 3.1(b) shows the typical SST biases in CMIP5 models in DJF: a cold
biases over the central and western Pacific Ocean as well as the central and eastern Indian
Ocean; and a warm biases over southeastern Pacific Ocean and equatorial Atlantic Ocean.
These biases are also present in the other seasons (figure not shown). However, Fig. 3.1(c-ar)
show that there are significant inter-model differences in the CMIP5 DJF SST mean state
biases. Although most models simulate colder SSTs than observed over the western and
central Pacific Ocean (e.g. CSIRO Mk3-6-0, MIROC5, HadGEM2-ES), as well as the Indian
Ocean, some models such as bcc-csm1-1-m (Fig. 3.1d), GISS-E2-R-CC (Fig. 3.1af), CCSM4
(Fig. 3.1ag) and CESM1-FASTCHEM (Fig. 3.1aq) simulate warmer SSTs. The excessive
cold bias over the Pacific cold tongue is a persistent bias in CMIP models but there is some
improvement in the cold tongue simulation in CMIP5 compared to CMIP3 (Flato et al., 2013).
Li and Xie (2012) showed that cold biases over the Pacific and Atlantic cold tongue are due
to shallow thermocline biases in ocean models. Fig. 3.1 also shows that most models tend to
simulate warmer SST in the Atlantic Ocean and over the eastern Pacific Ocean, with some
even extending towards the central Pacific. Hourdin et al. (2015) showed that the warm SST
biases over the eastern Pacific and Atlantic Oceans are related to biases in surface humidity
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Figure 3.1: Seasonal climatological mean DJF SST (K) for (a) Observation, (b) MMM biases
and (c)-(ar) individual CMIP5 model biases averaged from 1979 - 2005.
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and underestimation of stratocumulus clouds in the CMIP5 models.

3.3.2 Multimodel regression: relating SST bias and 850 hPa wind bias
to Maritime Continent precipitation

To examine the relationships between these seasonal mean climatological SST biases over the
tropical oceans and Maritime Continent precipitation, we performed multimodel regression
of 42 CMIP5 models’ climatological seasonal mean precipitation averaged over the Maritime
Continent domain (20°S - 20°N, 80°E - 160°E) onto climatological seasonal mean SSTs in
Fig. 3.2 as described in Section 4.2.4. The multimodel regression coefficient represents the
Maritime Continent precipitation rate per Kelvin change of SST (mm day−1 K−1).

Apart from DJF, when the Maritime Continent mean-state precipitation is largely unrelated
to local SSTs, the other seasons (MAM, JJA and SON) show some relationship between
local SST and Maritime Continent precipitation. SON, in particular, shows a strong positive
correlation over the western Pacific and the SPCZ.

For all four seasons, the Maritime Continent precipitation shows a negative association
with central and eastern Pacific Ocean SSTs; the relationship is strongest in DJF (Fig. 3.2a).
This resembles the ENSO pattern: that is, reduced rainfall (dry biases) over the Maritime
Continent are associated with warmer SST over the central and eastern Pacific, while the colder
SST over the central and eastern Pacific are linked to enhancement of rainfall (wet biases)
over the Maritime Continent. To investigate the relationship between low-level circulation
biases and Maritime Continent precipitation biases, we also performed the same multimodel
regression of 38 CMIP5 models climatological seasonal mean precipitation averaged over the
Maritime Continent domain (20°S - 20°N, 80°E - 160°E) onto the climatological seasonal
mean 850hPa wind (zonal and meridional components) in Fig. 3.3. The multimodel regression
shows that the Maritime Continent precipitation increases (wet biases) when model simulates
stronger easterly wind over central and eastern Pacific, and vice versa, resembling the La
Niña pattern. Fig. 3.3 shows that the Maritime Continent precipitation wet biases are also
associated with stronger northerly winds over northwestern Pacific and southern Indian Ocean
and southerly wind over the southeastern Pacific in all seasons.

While the region of large correlations remains relatively stationary in space with the
seasons over the equatorial Pacific, this is not observed over the Indian Ocean. Thus, the
multi-model regression results are seasonally dependent, in particular over the Indian Ocean.
Figure 3.2(d) shows that the regression between Maritime Continent precipitation and SST
over the Indian Ocean resembles an IOD-like pattern in the Indian Ocean in autumn season
(SON) that is not evident in other seasons. The eastern Indian Ocean SSTs show positive
regression coefficients, whereas the western Indian Ocean SSTs show a negative regression
relationship with Maritime Continent mean-state precipitation. This shows that models which
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Figure 3.2: Multimodel regression coefficients (mm day−1 / K, colour shading) of climatolog-
ical seasonal mean precipitation in 42 CMIP5 models averaged over the Maritime Continent
domain (20°S - 20°N, 80°E - 160°E) regressed onto climatological seasonal mean SSTs for
(a) DJF, (b) MAM, (c) JJA and (d) SON. Only regressions that are statistically significant
at the 95% confidence interval are shown. Green contour lines represent the multimodel
correlation coefficients. The period used for computing the climatology is 1979 - 2005.

simulate colder eastern and warmer western Indian Ocean SST will have wet biases over
the Maritime Continent and vice versa. Fig. 3.3(d) shows that wet biases over the Maritime
Continent are associated with strengthened westerlies over the Indian Ocean. Figure 3.2 also
shows that Maritime Continent precipitation has some relationship with Atlantic Ocean SST
in DJF, JJA and SON seasons. However, this will not be further discussed in this study.
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Figure 3.3: Multimodel regression coefficients (mm day−1/m s−1, color shading) of cli-
matological seasonal mean precipitation in 38 CMIP5 models averaged over the Maritime
Continent domain (20°S - 20°N, 80°E - 160°E) regressed onto climatological seasonal mean
850hPa zonal winds (u) for (a) DJF, (b) MAM, (c) JJA and (d) SON. Green contour lines
represent the multimodel correlation coefficients for zonal winds (u). Vectors represent the
multimodel regression coefficients for 850hPa winds (zonal and meridional components).
The period used for computing the climatology is 1979 - 2005. Only regression coefficients
statistically significant at the 95% confidence interval for the zonal and/or meridional wind
components are shown.

3.3.3 Correlations with evaporation

In this section, we examine the relationships between seasonal mean climatological evapora-
tion over the tropical oceans and Maritime Continent precipitation. We performed multimodel
regression of 38 CMIP5 models climatological seasonal mean precipitation averaged over the
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Figure 3.4: Multimodel regression coefficients (colour shading) of climatological seasonal
mean precipitation in 38 CMIP5 models averaged over the Maritime Continent domain (20°S
- 20°N, 80°E - 160°E) regressed onto climatological seasonal mean evaporation for (a) DJF,
(b) MAM, (c) JJA and (d) SON. Regressions that are statistically significant at the 95%
confidence interval are stippled. Green contour lines represent the multimodel correlation
coefficients. The period used for computing the climatology is 1979 - 2005.

Maritime Continent domain (20°S - 20°N, 80°E - 160°E) onto climatological seasonal mean
evaporation in Fig. 3.4. The evaporation and precipitation generally show positive regression
coefficients over the Maritime Continent, suggesting that the precipitation biases are related
to moisture biases through evaporation. The regression between evaporation and Maritime
Continent precipitation has negative coefficients over the central and eastern Pacific, which
is somewhat consistent with the negative regressions between SST and Maritime Continent
precipitation over this region (Fig. 3.4). On the other hand, in the Indian Ocean there is
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generally a positive relationship between evaporation and Maritime Continent precipitation
apart from in SON and DJF, which has negative coefficients over the eastern and central
Indian Ocean (0 to 10°S).

Figure 3.5: Pointwise correlations (colour shading) between climatological seasonal mean
evaporation of 38 CMIP5 models and climatological seasonal mean SST for (a) DJF, (b) MAM,
(c) JJA and (d) SON. Correlations that are statistically significant at the 95% confidence
interval are stippled. The period used for computing the climatology is 1979 - 2005.

Next, we investigate the relationship between local SST and evaporation. Figure 3.5 shows
the pointwise correlation between climatological seasonal mean evaporation of 38 CMIP5
models and climatological seasonal mean SST, for each season. Over the Pacific Ocean, the
region of strong significant correlations remains relatively stationary in space with the seasons,
whereas the correlations are weaker and the coefficients change sign in different season
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over the Indian Ocean and Maritime Continent. The evaporation and SST are strongly and
positively correlated in the Niño 3 and 3.4 regions for all seasons indicating SST influence on
evaporation. Over the Maritime Continent, only DJF shows weak and insignificant correlation,
while the other seasons generally show significant positive correlations.

3.3.4 Composites of wettest models minus driest model: connection to
biases in lower tropospheric winds and the Walker Circulation

The multimodel regression shows that the Maritime Continent mean-state precipitation bias is
strongly related to the SST biases and low-level wind biases in two dominant regions over the
central Pacific and western Indian Oceans. To investigate the wind biases associated with the
precipitation biases in the coupled models and their relationship with SST biases, we show
the seasonal mean Walker circulation, low-level wind and SST difference between the five
wettest and driest models in Fig. 3.6. We calculate the area-averaged precipitation biases
over the Maritime Continent with respect to observations and select five models with the
largest positive (negative) bias to be identified as the wettest (driest) models respectively. For
consistency with the analysis in the next section, we only show the DJF and SON seasons.
The driest and wettest models are listed in Table 3.1.

Table 3.1: Five driest and five wettest models based on the area-averaged precipitation
biases over the Maritime Continent domain in DJF and SON seasons compared to GPCP
observations.

DJF SON
Driest models Wettest models Driest models Wettest models
bcc-csm1-1 CSIRO-Mk3-6-0 bcc-csm1-1-m HadCM3
bcc-csm1-1-m HadCM3 CMCC-CM MPI-ESM-MR
CMCC-CM MPI-ESM-LR IPSL-CM5B-LR MPI-ESM-P
IPSL-CM5A-LR GFDL-CM2p1 MRI-CGCM3 GFDL-CM2p1
IPSL-CM5B-LR GFDL-ESM2G MRI-ESM1 GFDL-ESM2G

The SST difference between the five wettest and driest models in Fig. 3.6 shows a some-
what similar patterns to the multimodel regression. This demonstrates that the multimodel
regression analysis is robust. There are little differences between the SSTs of the wettest and
driest models over the Maritime Continent in DJF season (Fig. 3.6a), whereas the increase of
Maritime Continent precipitation in SON season is related to warmer SSTs over the Maritime
Continent (Fig. 3.6c), consistent with the earlier regression analysis.

Both the winter and autumn seasons are significantly affected by the cold SST biases over
the Pacific and Indian Oceans. The wet conditions over the Maritime Continent are related
to easterly winds over the equatorial Pacific Ocean and westerly winds over the equatorial
Indian Ocean converging towards the Maritime Continent. This is consistent with the findings
of Li and Xie (2014) that the surface easterly biases over the Pacific cold tongue region arise
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Figure 3.6: Difference between the composite of the 5 wettest models and 5 driest models for
(a) SST (K) and 850 hPa wind (m s−1) and (b) mean zonal circulation averaged over 10°N to
10°S using omega (shading and arrow, Pa s−1) and u (arrow, m s−1) for DJF seasons from
1979 - 2005. (c) - (d) are as in (a) - (b) but for SON.

from misrepresentation of ocean-atmosphere interactions via Bjerknes feedback in coupled
models. These zonal wind anomalies indicate the strengthening of the Indo-Pacific Walker
circulation. These wind anomalies can also cause cooling of SSTs in the equatorial Pacific
and Indian Oceans. The SST zonal asymmetry enhances the Walker circulation as shown in
Fig. 3.6. The positive precipitation anomalies in the Maritime Continent are associated with
strong ascent over the Maritime Continent and descent over the Pacific and Indian Oceans.
The descending branch of the Indian Ocean Walker circulation is stronger in SON (Fig. 3.6d)
than in DJF (Fig. 3.6b). The SST anomaly pattern over the Indian Ocean in SON season is
reminiscent of the positive IOD. Just as in the Pacific Ocean, it appears that mean-state model
biases in the Indian Ocean that are reminiscent of an IOD SST pattern yield similar impacts
on the Maritime Continent.

3.3.5 SST gradients and Maritime Continent biases

Based on the findings from the above analysis, we next investigate the impact of climatological
SST biases in the tropical Pacific and Indian Oceans, their combination, and their connections
with the precipitation averaged over the Maritime Continent. We focus on two regions:
the Central Tropical Pacific Ocean (CTPO) region (5°S-5°N, 120°W-170°W) and Western
Tropical Indian Ocean (WTIO) region (10°S-10°N, 50°E-70°E). Note that the CTPO region
is the same as the Niño 3.4 region and the WTIO region is the same as the western Indian
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Figure 3.7: Climatological monthly mean SST from 1979 to 2005 averaged over (a) Maritime
Continent domain (20°S-20°N and 80°E-160°E), (b) CTPO region (5°S-5°N and 120°W-
170°W), and (c) WTIO (10°S-10°N and 50°E-70°E) of individual coupled CMIP5 models
(grey lines). The black dashed line represents the observation while the green line represents
the MMM.

Ocean Dipole region (IODW) defined in the Saji et al. (1999) paper. However, we first look at
climatological mean biases in these boxes, not interannual variability. To avoid confusion,
we use CTPO and WTIO when referring to these two regions on climatological time scales
in this chapter. When later discussing the interannual variability (ENSO and IOD), we refer
these two regions as Niño 3.4 and IODW.

The climatological monthly mean SST simulated by CMIP5 coupled models over the
regions of interest are plotted in Fig. 3.7. Most models generally simulate colder climatological
monthly mean SST than observed in the Maritime Continent and CTPO regions. However,
some models simulate warmer SST than observed in WTIO (Fig. 3.7c) during JJA and SON.
The SST climatological mean biases are between -1.5K to 1K over the Maritime Continent,
between -3K to 2K over the CTPO and between -2K to 1K over the WTIO. Models perform
less well at simulating the annual cycle SSTs over CTPO compared to the other regions
and show a considerable inter-model spread of up to 5K for this region. This motivates us
to understand how these SST biases may interact with the mean state climatology of the
Maritime Continent and its teleconnections, which we will explore in the next section.

To quantify the interaction between SST biases in each of the three oceanic regions
and Maritime Continent precipitation, in Fig. 3.8 shows the scatterplots of seasonal-mean
precipitation in 42 CMIP5 models versus the SST climatology. The SST and precipitation
over the Maritime Continent are weakly correlated (Fig. 3.8a) in all four seasons. However,
Maritime Continent precipitation is strongly negatively correlated with CTPO SST (Fig. 3.8b)
indicating that remote SST has a stronger relationship with the Maritime Continent on
climatological time scales than the local SST. Those models featuring warmer CTPO SST
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Figure 3.8: Scatterplot of CMIP5 Maritime Continent seasonal mean precipitation climatology
versus (a) Maritime Continent seasonal mean SST climatology, (b) CTPO seasonal mean
SST climatology and (c) Maritime Continent seasonal mean SST climatology minus CTPO
seasonal mean SST climatology. The period used for computing the climatology is 1979 -
2008. The Pearson correlation coefficient (r) for each season is shown in the top left corner.
The Pearson correlation coefficients ±0.4 are significant at the 5% level.

in the mean state generally feature reduced precipitation in the Maritime Continent and
vice versa, especially during DJF. Fig. 3.8c shows that the mean-state zonal temperature
gradient between the Maritime Continent and the central Pacific is significantly correlated
with Maritime Continent precipitation, suggesting an association with the mean-state of
Walker Circulation. These correlation coefficients are larger in magnitude than the CTPO
correlation coefficients alone, apart from during DJF when a similar magnitude is found.

We perform the same correlation analysis for SSTs and their zonal gradient in the Indian
Ocean (Fig. 3.9). We find that the Maritime Continent mean-state precipitation is negatively
correlated with model SSTs in the WTIO (Fig. 3.9a), as in the CTPO but with weaker
magnitude for all seasons. The mean-state zonal temperature gradient between the Maritime
Continent and the WTIO is significantly correlated with Maritime Continent precipitation and
the negative correlation is strongest during SON which is the peak phase of IOD (Fig. 3.9b).
In other words, as depicted in Fig. 3.2, a negative-IOD-like mean state is associated with
excess precipitation over the Maritime Continent.

To investigate the Maritime Continent-Pacific Ocean-Indian Ocean interactions in more
detail, we performed the correlation between Maritime Continent mean-state precipitation
and Maritime Continent SST minus the CTPO and WTIO SST as shown in Fig. 3.9c using
the equation:

PMC = 2×TMC−TCTPO−TWTIO (3.1)
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Figure 3.9: Scatterplot of CMIP5 Maritime Continent seasonal mean precipitation climatology
versus (a) WTIO seasonal mean SST climatology and (b) Maritime Continent seasonal
mean SST climatology minus WTIO seasonal mean SST climatology; and (c) two times
Maritime Continent seasonal mean SST climatology minus CTPO and WTIO seasonal mean
SST climatology (PMC = 2× TMC− TCTPO− TWTIO). The period used for computing the
climatology is 1979 - 2008. The Pearson correlation coefficient (r) for each season is shown
in the top left corner. The Pearson correlation coefficients±0.4 are significant at the 5% level.

where P and T represent the precipitation and SST in the specified regions.
This combination of both CTPO and WTIO seasonal mean SST climatology also shows

a significantly strong relationship with Maritime Continent seasonal mean precipitation
climatology. This suggests the combined interactions between the climatological Walker
cells over the Indian and Pacific Oceans with Maritime Continent mean-state precipitation
and circulation. Molteni et al. (2015) showed a tri-polar feature of teleconnection between
Maritime Continent, central Pacific Ocean and western Indian Ocean. They found a positive
correlation between central Pacific Ocean and western Indian Ocean; and SSTs in both of
these regions are negatively correlated with the Maritime Continent on interannual time scales.
Our results show that the SST gradients in coupled GCMs are also tightly coupled to the
Walker circulations in the climatological mean-state. This correlation in Fig. 3.9 is consistent
with the multimodel regression (Fig. 3.2) that showed the Maritime Continent mean-state
precipitation is significantly correlated with central Pacific and western Indian Oceans SSTs.

Having established the clear link between Maritime Continent climatological precipitation
and the representation of the Indian and Pacific Oceans mean states in coupled GCMs, next,
we investigate the interannual variability of Pacific Ocean and Indian Ocean SST and its
teleconnection toward the Maritime Continent, and later determine if mean state biases impact
this teleconnection.
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3.4 Pacific and Indian Ocean teleconnections to the Mar-
itime Continent in AMIP5 and CMIP5 models

This section is divided into two parts. The first part investigates the ENSO teleconnections
to the Maritime Continent while the second part assesses the IOD teleconnections to the
Maritime Continent.

3.4.1 ENSO-Maritime Continent teleconnections

In this section, we first analyse relationship between the Maritime Continent precipitation
and ENSO at interannual scale in AMIP5. We then analyse these relationships in the CMIP5
models. In the coupled model, the biases in simulating ENSO and its teleconnection involves
ocean-atmosphere feedbacks, that can come either from the ocean driving the atmosphere
or the atmosphere forcing the ocean. Before we can understand the impact of SST biases
on teleconnections to Maritime Continent rainfall, we must first analyse how these models
perform in prescribed SST mode.

3.4.1.1 AMIP5

In this section, we analyse the interannual variability of precipitation over the Maritime
Continent during ENSO events simulated in AMIP5 experiments, run with prescribed SSTs.
El Niño events were chosen using the SST anomalies in the Niño-3.4 region (5°S-5°N, 120°W-
170°W) which had an amplitude of greater than 0.5°C for at least five consecutive 3-month
running mean periods. Similarly, values below -0.5°C were used to define La Niña. The El
Niño and La Niña years in the AMIP5 are listed in Table 3.2. The nine El Niño events and
the eight La Niña events are composited and compared to the 1979 - 2008 climatology in
observations (GPCP rainfall and ERA-Interim reanalysis winds).

Table 3.2: The El Niño and La Niña years between 1979 to 2008 in AMIP5 as defined by
SSTs in the Niño 3.4 region and exceeding the ±0.5 °C threshold for at least five consecutive
3-month running mean periods. The 1979 refers to the DJF of 1979/80 winter, i.e. December
of the given year and January and February of the following year.

ENSO Year
El Niño 1982 1986 1987 1991 1994 1997 2002 2004 2006
La Niña 1983 1984 1988 1995 1998 1999 2000 2007
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Figure 3.10: Maritime Continent JJA (in onset phase) (a) composites of El Niño observed
SST anomaly, (c) composites of El Niño observed precipitation and 850 hPa wind anomaly,
(c) AMIP5 MMM composites of El Niño precipitation and 850 hPa wind anomaly, (d) AMIP5
MMM composites of El Niño precipitation and 850 hPa wind biases with respect to observa-
tions, and (e) AMIP5 MMM climatological seasonal mean precipitation and 850 hPa wind
biases with respect to observations. (f)-(j) are the same as (a)-(e) but for SON, (k)-(o) for DJF,
(p)-(l) for MAM and (u)-(x) for JJA (in decay phase). (u)-(ar) are same as (a)-(x) but for the
La Niña phase. The period used for computing the climatology is 1979 - 2008.

An ENSO event usually begins to develop in JJA and SON seasons and reaches its peak in
DJF. It then slowly decays in the MAM and JJA seasons of the following year. First, we look
at the composite of observed El Niño SST anomalies in the first column of Fig. 3.10. The
Maritime Continent SST shows negative anomalies during the onset phase in JJA (Fig. 3.10a)
and SON (Fig. 3.10f) and more positive anomalies over the eastern part of Maritime Continent
in DJF (Fig. 3.10k) and MAM (Fig. 3.10p) and most of Maritime Continent in JJA (Fig. 3.10u).
Maritime Continent observed precipitation generally shows negative anomalies between the
previous summer and the following spring: El Niño onset phase, i.e JJA (Fig. 3.10b) and
SON (Fig. 3.10g); peak phase, i.e DJF (Fig. 3.10l); and decay phase, i.e MAM (Fig. 3.10q).
However, the El Niño decay phase in JJA (Fig. 3.10v), which begins the transition into La
Niña, shows more positive anomalies over the Maritime Continent. The dry conditions are
generally more confined over the equatorial region in JJA (onset phase), and spread towards
the off-equatorial region from autumn to spring season as described by Kubota et al. (2011).
The MMM El Niño shows few differences in precipitation and 850 hPa wind anomalies for
all three phases (Fig. 3.10, third column) compared to observed anomalies (Fig. 3.10, second
column). The MMM simulates slightly stronger winds in JJA (onset phase), SON, DJF and
MAM than observed. The area of simulated dry anomalies is slightly smaller than observed in
all phases. During La Niña the SST and precipitation anomalies are opposite to the El Niño
whereby negative SST anomalies and wetter than normal conditions occur over the Maritime
Continent.

The MMM precipitation and 850 hPa wind biases over the Maritime Continent with
respect to observations are similar for the seasonal climatology (Fig. 3.10e, j, o, t) and El
Niño events (Fig. 3.10d, i, n, s, x). This implies that the MMM is able to capture the El
Niño anomaly. The same result holds for La Niña events (Fig. 3.10ab, af, aj, an, ar). This
suggests that biases in precipitation and circulation during ENSO events result from the
climatological mean state biases. This is consistent with the Achuta Rao and Sperber (2006)
study on CMIP3 and CMIP2 models which showed that the model skill at reproducing the El
Niño precipitation composite over the tropics depends on the model fidelity at simulating the
boreal winter precipitation climatology.

To examine the ability of the AMIP5 models to reproduce the wintertime interannual
variability in the Maritime Continent precipitation, the box-and-whisker plot in Fig. 3.11
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Figure 3.11: Box-and-whisker plot of AMIP5 DJF interannual precipitation anomaly averaged
over the Maritime Continent domain (20°S-20°N and 80°E-160°E) from 1979 to 2007. Black
boxes indicate the interquartile range (IQR), black lines in the boxes indicate the median;
black squares represent the mean. The plus signs are the outliers, which are anomalies smaller
than the lower quartile or larger than the upper quartile by at least 1.5 times the IQR. The dots
are the GPCP DJF precipitation anomaly for El Niño (red), neutral (green) and La Niña (blue)
years. The DJF of 1979 refers to the 1979/80 winter, December of the given year and January
and February of the following year.

shows the spread of AMIP5 DJF precipitation anomalies averaged over the Maritime Continent
domain (refer to Fig. 3.10k, l) from 1979-2008. Without exception, the mean DJF GPCP
precipitation anomalies over the Maritime Continent are negative anomalies for El Niño (red
dots), whereas La Niña (blue dots) shows positive anomalies. The MMM of AMIP5 is able
to capture the anomalies for most years, demonstrating a reasonably consistent relationship
between El Niño (La Niña) and dry (wet) DJF periods. However, there are some inter-model
differences between the precipitation anomalies for certain years. Most models overestimate
the Maritime Continent precipitation for 1982 and 1991 which are both El Niño years.

To further investigate the skill of AMIP5 at simulating the relationship between Maritime
Continent precipitation anomalies and ENSO, we plot another box-and-whisker plot according
to the Niño 3.4 index that classified ENSO events by strength in Fig. 3.12. Forced by
prescribed SST, all the AMIP5 models have the same Niño 3.4 index but with different
atmospheric responses. Consistent with the observations, the models simulate an inverse
relationship between Maritime Continent precipitation anomalies and the Niño 3.4 index. For
strong El Niño events exceeding 1 °C, most models are able to simulate negative precipitation
anomalies over the Maritime Continent. And vice versa for La Niña: models simulate positive
precipitation anomalies over the Maritime Continent.

While the performance shown above for the relationship between ENSO and Maritime
Continent precipitation in AMIP5 models looks good, coupled models feature SST biases that
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Figure 3.12: Box-and-whisker plot of AMIP5 DJF precipitation anomaly averaged over
the Maritime Continent domain (20°S-20°N and 80°E-160°E) according to the Niño 3.4
index. Black boxes indicate the interquartile range (IQR), black lines in the boxes indicate
the median; black squares represent the mean. The plus signs are the outliers, which are
anomalies smaller than the lower quartile or larger than upper quartile by at least 1.5 times
the IQR. The green dots are the GPCP DJF precipitation anomalies from 1979 to 2008.

may affect these teleconnections. Next, we examine these SST biases and their relationship to
precipitation biases on interannual time-scales in CMIP5.

3.4.1.2 CMIP5

To investigate the relationship between Maritime Continent precipitation and local as well as
remote SSTs, we calculate the Pearson correlation coefficient (r) between the DJF interannual
precipitation and SST for observations and CMIP5 models and plot these temporal correla-
tions in Fig. 3.13. The observational datasets suggest an insignificant local SST correlation
(Fig. 3.13a, green bar), whereas certain models such as inmcm4, CCSM4, GFDL-ESM2M
and CESM1-CAM5 suggest a significant relationship. The coupled models show larger
variations of the temporal correlation between local SST and Maritime Continent precipitation
compared to AMIP5, for which all models simulate insignificant temporal correlation (figure
not shown).

Most coupled models are able to capture the observed remote Niño 3.4 SST and Maritime
Continent precipitation relationship (Fig. 3.13b) as well as the east-west SST gradient and
Maritime Continent relationship (Fig. 3.13c). Only three models simulate negative correlation
between SST gradient and Maritime Continent precipitation, opposite from observations,
while six models simulate positive correlation but not statistically significant at 95% level.
The rest of the models are capable of capturing the relationship between zonal SST gradient
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Figure 3.13: Temporal correlation between DJF CMIP5 Maritime Continent precipitation and
(a) Maritime Continent SST, (b) Niño 3.4 SST and (c) Maritime Continent SST minus Niño
3.4 SST. The panels are arranged showing models in order from lowest to highest Pearson
correlation coefficients in (c). The green bars show the observed correlation using GPCP
precipitation.

and Maritime Continent precipitation. This shows that CMIP5 models are in general able
to simulate the zonal SST gradient between Maritime Continent and Pacific Ocean and the
associated precipitation anomalies over the Maritime Continent (i.e. the ENSO teleconnec-
tion). When SSTs over the Maritime Continent (western Pacific) are cooler than normal and
SSTs over the Niño 3.4 region (central Pacific) are warmer than normal, models simulate less
rainfall over the Maritime Continent, and vice versa.

Studies have shown that models with a better representation of the basic state are able
to capture well the ENSO-monsoon teleconnection (Turner et al., 2005; Annamalai et al.,
2007). Here, we show the scatter plot of the 42 CMIP5 models’ DJF temporal correlation

80



Chapter 3. Large-scale interactions between Maritime Continent precipitation and tropical sea surface
temperature in CMIP5 models

Figure 3.14: Scatter plot of the 42 CMIP5 models’ DJF temporal correlation coefficient
between Niño 3.4 SST and the Maritime Continent precipitation versus the CTPO mean bias.
The black dot represents the observed relationship.

coefficient between Niño 3.4 SST and the Maritime Continent precipitation versus the absolute
value of the CTPO mean bias in Fig. 3.14. As depicted in Fig. 3.14, models with smaller
CTPO SST mean bias have a better representation of ENSO-Maritime Continent precipitation
teleconnection. The Pearson correlation for the 42 model points shown in the scatterplot in
Fig. 3.14 is 0.27. This is statistically significant at the 90% level suggesting some relationship
between the CTPO SST mean-state biases and ENSO-Maritime Continent teleconnection.

Apart from ENSO’s temporal evolution, inaccuracies in the representation of ENSO
also include its spatial structure of the variability. As there is some spatial variation of dry
conditions over the Maritime Continent during El Niño years (see Fig. 3.10l), we plot the map
of temporal correlation between gridpoint precipitation and Niño 3.4 index in DJF season for
AMIP5 and CMIP5 models in Fig. 3.15.

The spatial map of observed temporal correlations (Fig. 3.15a) shows that Maritime
Continent precipitation is generally negatively correlated with the Niño 3.4 index, apart from
a small area in southwestern Borneo which is positively correlated with Niño 3.4 index as
described in Qian et al. (2013). The increase of rainfall over southwestern Borneo during El
Niño events in DJF, in contrast to decreases over the rest of the region is related to the inverse
relationship between monsoonal wind speed and the diurnal cycle of land-sea breezes (Qian
et al., 2013).

The PCC of the ENSO teleconnection pattern with respect to observations is depicted at
the top of each panel in Fig. 3.15. The MMM ENSO teleconnection spatial map is obtained
by taking the average of Pearson correlation coefficients among the 20 AMIP5 and CMIP5
models respectively. The AMIP5 MMM is able to simulate the observed ENSO teleconnection
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Figure 3.15: Spatial maps of temporal correlation between gridpoint precipitation and Niño
3.4 index in DJF for (a) Observations, AMIP5 (first and third column) and CMIP5 (second
and fourth column). The PCC calculated between the observed and simulated teleconnection
pattern over the Maritime Continent is in square brackets above each panel.
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pattern over the Maritime Continent (Fig. 3.15b, PCC=0.64) but the correlation is weaker.
On the other hand, the CMIP5 MMM has larger discrepancies compared to observations
(Fig. 3.15c, PCC=0.36), with a positive correlation over Papua opposite to observations and a
much weaker negative correlation over the rest of the Maritime Continent region.

Figure 3.16: Spatial maps of temporal correlation between gridpoint SST and Niño 3.4 index
in DJF for (a) Observations, (b) MMM and (c)-(v) CMIP5 models.

Comparison between AMIP5 and CMIP5 individual model PCCs show that most of the
AMIP5 models perform better than CMIP5 models at simulating the spatial patterns of the
temporal correlation between the Niño 3.4 index and precipitation over the Maritime Continent
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except for three models (IPSL-CM5B-LR, GISS-E2-R and NorESM1-M). Coupled CMIP5
models such as IPSL-CM5A-LR (Fig. 3.15s), MIROC5 (Fig. 3.15aa) and MPI-ESM-LR
(Fig. 3.15ae) simulate positive correlations that are too strong, extending too far westwards
from the central Pacific to Papua compared to observations and AMIP5. This error was also
found in previous versions of CMIP models, for example in CMIP2 (Achuta Rao and Sperber,
2006) and CMIP3 (Annamalai et al., 2007; Cai et al., 2009). This systematic error in ENSO
is related to the mean-state SST cold biases over the Pacific cold tongue that extend too far
westward into the western Pacific. The positive correlation over the Maritime Continent is
opposite to observations which show a negative correlation, i.e. warm anomalies over the
Niño 3.4 region are associated with reduced rainfall over the Maritime Continent and vice
versa. The RMSE of teleconnection pattern of CMIP5 is also larger than AMIP5 suggesting
that SST and coupling biases degraded the ENSO-Maritime Continent teleconnection in
CMIP5.

Figure 3.16 shows the spatial maps of temporal correlation between gridpoint SST over
the Maritime Continent and the Niño 3.4 index in DJF. The observed SST over the western
Pacific is negatively correlated with the Niño 3.4 index while the SSTs in the Indian Ocean
are positively correlated with the Niño 3.4 index. MMM shows weaker correlations and a
positive correlation that extend westward into the western Pacific indicating a mean-sate SST
cold biases over this region. However, IPSL-CM5B-LR (Fig. 3.15w), i.e. the model with
the highest PCC value (0.58) at simulating the spatial patterns of the temporal correlation
between the Niño 3.4 index and precipitation over the Maritime Continent, is able to capture
the correlations between SST and the Niño 3.4 index. Figure 3.16 shows that most CMIP5
models simulate positive correlation over the western Pacific indicating systematic error of
ENSO response extending westward into the west Pacific.

3.4.2 IOD-Maritime Continent teleconnections

SST variability in the tropical Indian Ocean significantly modulates Maritime Continent
climate, in particular through the IOD teleconnection. In this section, we first analyse the IOD
and its relationship with Maritime Continent precipitation in AMIP5, followed by CMIP5 and
then determine if mean state biases impact this teleconnection.

3.4.2.1 AMIP5

First, we calculate the Dipole Mode Index (DMI) based on the difference between IODW
(10°S-10°N, 50°E-70°E) and IODE (0°S-10°S, 90°E-110°E) SST anomalies as defined in Saji
et al. (1999). IOD typically develops in JJA, reaches its peak in SON and then slowly decays
in DJF. The life cycle of the IOD is shorter than ENSO. The five positive IOD events and
four negative IOD events listed in Table 3.3 are composited and compared to the 1979-2008
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climatology in observations (GPCP rainfall and ERA-Interim reanalysis winds). All of the
positive IOD years are also the El Niño years while 1998 is also both a La Niña and negative
IOD year.

Table 3.3: Positive IOD and negative IOD years between 1979 to 2008 as defined by the SON
DMI exceeding the ±0.5 °C threshold.

IOD Year
Negative IOD 1980 1992 1996 1998
Positive IOD 1982 1991 1994 1997 2006

The first column of Figure 3.17 shows the observed SST anomalies while the second
columns show the observed precipitation and wind anomalies over the Maritime Continent
during positive IOD and negative IOD events. During positive IOD events, negative SST
anomalies are generally observed over the Maritime Continent in JJA (Figure 3.17a) and
SON (Figure 3.17f) and over the west Pacific in DJF (Figure 3.17k). On the other hand, the
dry anomalies are generally more confined over the equatorial region in JJA (onset phase),
and spread toward the off-equatorial region from SON to DJF seasons. The negative IOD
composites show opposite condition to positive IOD composites but with weaker magnitude.
The MMM (Fig. 3.17, third column) simulates weaker dry anomalies for all three seasons
than the observations and stronger westerlies over the western Pacific in JJA and SON during
positive IOD events.

The spatial patterns in precipitation and 850 hPa wind biases over the Maritime Continent
during positive IOD events (Fig. 3.17d, i, n) and negative IOD events (Fig. 3.17s, w, aa) are
similar to the seasonal climatological biases (Fig. 3.17e, j, o) for the onset, peak and decay
phases. This suggests that biases in AMIP5 precipitation and circulation over the Maritime
Continent during IOD events result from the climatological mean-state biases.

To investigate the interannual Maritime Continent precipitation simulated by AMIP5, we
plot the box-and-whisker plot as in Fig. 3.11 but using the DMI and SON season in Fig. 3.18.
The SON GPCP precipitation anomalies over the Maritime Continent are negative anomalies
for positive IOD (red dots) and positive anomalies for negative IOD (blue dots) except 1980
and 1992. The MMM of AMIP5 did fairly well at capturing the interannual variations of
SON precipitation anomalies for most years compared to individual models.

Next, we plot the box-and-whisker plot according to DMI in Fig. 3.19 to investigate the
skill of AMIP5 models at simulating the negative relationship between Maritime Continent
precipitation anomalies and the IOD. Consistent with observations, AMIP5 models are able
to simulate the inverse relationship between the Maritime Continent precipitation anomalies
and DMI. During positive IOD events when SSTs over the eastern Indian Ocean are colder
than normal, and SSTs in the western Indian Ocean are warmer than normal, most models
simulate negative precipitation anomalies over the Maritime Continent. Conversely, positive
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Figure 3.17: Maritime Continent JJA composites of (a) positive IOD observed SST anomaly,
(b) positive IOD observed precipitation and 850 hPa wind anomaly, (c) AMIP5 MMM
positive IOD precipitation and 850 hPa wind anomaly, (d) AMIP5 MMM positive IOD
precipitation and 850 hPa wind biases with respect to observations. In (e) we show AMIP5
MMM climatological seasonal mean precipitation and 850 hPa wind biases with respect to
observations. (f)-(j) are same as (a)-(e) but for SON and (k)-(o) for DJF. (p)-(aa) are same as
(a)-(o) but for the composites of negative IOD. The period used for computing the climatology
is 1979 - 2008.

precipitation anomalies are simulated during negative IOD events. Next, we examine the
skill of CMIP5 coupled models at simulating Maritime Continent precipitation on interannual
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Figure 3.18: Box-and-whisker plot of AMIP5 SON precipitation anomaly averaged over
the Maritime Continent domain (20°S-20°N and 80°E-160°E). Black boxes indicate the
interquartile range (IQR), black lines in the boxes indicate the median; black squares represent
the mean. The plus signs are the outliers, which are anomalies smaller than the lower quartile
or larger than the upper quartile by at least 1.5 times the IQR. The dots are the GPCP SON
mean SST anomaly for positive IOD (red), neutral (green) and negative IOD (blue) years.

timescales in CMIP5 during SON.

Figure 3.19: Box-and-whisker plot of AMIP5 SON mean precipitation anomaly averaged
over the Maritime Continent domain (20°S-20°N and 80°E-160°E) according to DMI. Black
boxes indicate the interquartile range (IQR), black lines in the boxes indicate the median;
black squares represent the mean. The plus signs are the outliers, which are anomalies smaller
than the lower quartile or larger than the upper quartile by at least 1.5 times the IQR. The dots
are the GPCP SON precipitation anomaly from 1979 to 2008.
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3.4.2.2 CMIP5

The SST biases in a coupled model may affect the IOD teleconnections in the CMIP5 experi-
ment. To verify the relationship between IODW SST and tropical precipitation, we calculated
the Pearson correlation coefficient (r) between the SON interannual precipitation and SST for
GPCP and CMIP5 models. Although for interannual time-scales, the observed SON local
SST and local precipitation shows a slightly stronger relationship compared to IODW SST,
however, the largest temporal correlation is between Maritime Continent precipitation and
zonal SST gradient of Maritime Continent and IODW (green bars in Fig. 3.20).

Figure 3.20: Temporal correlations between SON CMIP5 Maritime Continent precipitation
and (a) Maritime Continent SST, (b) IODW SST and (c) Maritime Continent SST minus
IODW SST. The panels are arranged showing models in order from lowest to highest Pearson
correlation coefficients in (c). The green bars show the observed correlation using GPCP
precipitation.
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CMIP5 models simulate larger variations of temporal correlation coefficients between
Maritime Continent precipitation and local SST (Fig. 3.20) as well as IODW SST than to
the zonal SST gradient between Maritime Continent and IODW. Most models are able to
capture the significant positive temporal correlation between Maritime Continent precipitation
and the zonal SST gradient between Maritime Continent and IODW except for three models
(FGOALS-g2, IPSL-CM5A-LR and MIROC-ESM-CHEM). This shows that most models are
able to simulate more rainfall over Maritime Continent when SSTs are anomalously colder
over the western Indian Ocean relative to the eastern Indian ocean, and vice versa.

The relationship between the CMIP5 models’ WTIO mean state biases and the IOD-
Maritime Continent teleconnection was also investigated. However, we found no significant
correlation between the WTIO mean state biases and the IOD-Maritime Continent telecon-
nection strength (figure not shown).

To compare the AMIP5 and CMIP5 model performance at reproducing the spatial pattern
of teleconnection between IOD and SON precipitation in the Maritime Continent, we compute
the temporal correlation between gridpoint precipitation and DMI in SON and plot the spatial
maps of temporal correlations in Fig. 3.21. In general, both AMIP5 and CMIP5 models
simulate much weaker Maritime Continent precipitation-IOD teleconnections compared to
observations. Observations show a negative correlation with the DMI apart from certain
areas over the western Pacific and Indian Ocean. However, most models simulate a positive
correlation, in particular spurious positive correlations around Papua are more prominent
in the CMIP5 models, suggesting the influence of SST biases over this region. Most of the
AMIP5 models perform better than CMIP5 models in simulating the IOD-Maritime Continent
teleconnections based on the PCC and RMSE skill scores.
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Figure 3.21: Spatial map of temporal correlation between gridpoint precipitation and DMI in
SON for (a) Observations, AMIP5 (first and third column) and CMIP5 (second and fourth
column) from 1979 - 2008.
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3.5 Discussion and Conclusions

Our analysis suggests that SST plays an important role in modulating the Maritime Continent
precipitation in CMIP5 models, both at the level of the model climatology and on interannual
time scales in a given model. Using multimodel regression, we highlighted the central Pacific
and western Indian Ocean as the key regions which exhibit the most surface temperature
correlation with Maritime Continent mean-state precipitation in the coupled CMIP5 models.
Remote ocean-atmosphere interactions play an important role in affecting the circulation and
precipitation over the Maritime Continent and resultant underlying SST, and forming the
inverse SST-precipitation relationship over the Maritime Continent, especially during the DJF
and SON seasons. On the other hand, local SSTs play an active role in affecting precipitation
and circulation and result in a positive SST-precipitation correlation during JJA and SON
seasons.

On interannual timescales, the MMM of AMIP5 simulates a reasonably consistent rela-
tionship in which El Niño years show below-average Maritime Continent rainfall and La Niña
years show above-average Maritime Continent rainfall. However, there are some inter-model
differences in the precipitation anomalies for certain years in AMIP5. The striking similarity
of precipitation and wind biases for seasonal mean and ENSO events suggests that biases
in precipitation and circulation during ENSO events mainly result from the climatological
mean-state biases.

On the other hand, most of the coupled CMIP5 models are able to capture the relationship
between ENSO and area-averaged Maritime Continent precipitation but are less able to
simulate the spatial pattern of precipitation anomalies over the Maritime Continent. Our
analysis suggests that there is some relationship between SST mean-state biases and the
ENSO-Maritime Continent teleconnection. Comparison between AMIP and coupled CMIP5
models show that AMIP models perform better than coupled CMIP5 models at simulating the
spatial pattern of teleconnection between ENSO and the Maritime Continent precipitation in
DJF. The low PCCs between teleconnection pattern in CMIP5 models and observations are
mainly related to the spurious positive correlations around Papua. Coupled CMIP5 models
which have a positive correlation over Papua (unlike the observations which have a negative
correlation), tend to poorly simulate the ENSO-Maritime Continent teleconnection.

For the IOD-Maritime Continent teleconnections, AMIP5 MMM is able to capture the
drier than normal conditions in precipitation and 850 hPa wind anomalies for the positive
IOD events. Model performance at simulating the teleconnection is related to the mean-state
representation of the Maritime Continent precipitation. Observation shows strong correlation
between Maritime Continent precipitation and local SST compared to correlation with IODW
SST, however, the largest correlation is between Maritime Continent precipitation and the
zonal temperature gradient to the west between the Maritime Continent and the IODW.
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Figure 3.22: Temporal correlation between DJF CMIP5 Maritime Continent land-only precip-
itation and (a) Maritime Continent SST, (b) Niño 3.4 SST and (c) Maritime Continent SST
minus Niño 3.4 SST. The panels are arranged following the order as in Fig. 3.13. The green
bars show the observed correlation using GPCP precipitation.

The area-averaged IOD-Maritime Continent teleconnection is well simulated by both
AMIP and coupled models but not the spatial pattern of the teleconnection. Comparison
between AMIP5 and CMIP5 models showed that AMIP5 models perform better than CMIP5
models at simulating the spatial pattern of temporal correlation between IOD and the Maritime
Continent precipitation in SON. Both AMIP5 and CMIP5 models simulate weaker IOD-
Maritime Continent teleconnections than observed, as found in previous studies (Jourdain
et al., 2013). We found no significant correlation between WTIO mean-state SST biases and
the IOD-Maritime Continent teleconnection.

In this study, we investigated the relationship between tropical ocean SST and Maritime
Continent precipitation over both land and sea. However, this relationship may be different
when considering land-only and sea-only parts of the region. Figure 3.22 shows a similar
temporal correlation figure as Fig. 3.13 but for land-only precipitation over the Maritime
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Continent using the original resolution data. The sea-only correlation dominates (figure
not shown) when considering the Maritime Continent land and sea as a whole. However,
CMIP5 models behave differently when considering only the land precipitation over the
Maritime Continent. Most of the CMIP5 models simulate weaker temporal correlation
between DJF Niño 3.4 SST and Maritime Continent land-only precipitation compared to
the overall Maritime Continent. Further investigation on the Maritime Continent land-only
precipitation teleconnection to ENSO and IOD is recommended for societal benefit, but is
beyond the scope of this study.
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Investigating the role of the Indo-Pacific
on Maritime Continent precipitation
using AGCM sensitivity experiments

4.1 Introduction

In the previous chapter, we investigated large-scale interactions between Maritime Continent
precipitation and tropical sea surface temperature (SST) in CMIP5. Our analysis showed that
central Pacific and western Indian Ocean climatological SSTs are significantly negatively
correlated with Maritime Continent climatological mean state precipitation in the coupled
CMIP5 models, while local SST demonstrates seasonally-dependent correlations. This
motivates us to test causality in the relationships between SST and precipitation anomalies
and better understand the mechanism underlying these relationships.

As one of the principal heat sources driving the global circulation (Ramage, 1968),
Maritime Continent biases affect the tropics and extratropics by perturbing the Walker and
Hadley Circulations and exciting planetary waves (Neale and Slingo, 2003; Zhang et al., 2016).
Previous studies (Qu et al., 2005; Strachan, 2007) showed that adding a 1°C anomaly over
the Maritime Continent SST in their SST sensitivity experiment using the atmosphere-only
MetUM HadGAM1 model resulted in an increase of precipitation over the Maritime Continent
and reduced precipitation over the western Pacific and western Indian Oceans. This reduced
the model’s systematic dry biases over the Maritime Continent and wet biases over the western
Pacific and western Indian Ocean via a response in the Walker Circulation. Strachan (2007)
also performed SST sensitivity experiments over targeted areas in the west Pacific and west
Indian Oceans which produced a localised precipitation response and relatively weak remote
responses across the Indo-Pacific region.

Neale and Slingo (2003) suggested that the surface air temperature cold bias over the
Maritime Continent islands might contribute to the dry biases local in the MetUM HadAM3
model. They replaced land grid points over the Maritime Continent with ocean grid points
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and found that a warmer surface increased the precipitation over the Maritime Continent and
resulted in better representation of precipitation over the equatorial Indian Ocean and the
South Pacific Convergence Zone (SPCZ).

These previous studies (Neale and Slingo, 2003; Qu et al., 2005; Strachan, 2007) mainly
focused on improving the model simulations over the Maritime Continent. Our study instead
considers the effect of Indo-Pacific SST perturbations on the Maritime Continent climate mean
state, interannual variability and teleconnections to El Niño-Southern Oscillation (ENSO) and
the Indian Ocean Dipole (IOD). As it is difficult to separate cause and effect in the coupled
atmosphere-ocean system, we perform SST sensitivity experiments using an atmosphere-only
model to test causality in atmosphere-ocean interactions by removing the ocean feedbacks in
the model simulation.

Dado and Takahashi (2017) performed SST sensitivity experiments using the Advanced
Research Weather Research and Forecasting (WRF) regional climate model to investigate the
relationship between rainfall over the western Philippines and interannual variations in local
SST during the summer monsoon. The rainfall over the northwestern Philippines shows a
positive linear interannual relationship with area-averaged local SST anomalies.

Annamalai et al. (2005), using ECHAM5 AGCM, showed that positive SST anomalies
over the southwest Indian Ocean enhance local precipitation and lead to a reduction of
precipitation over the Maritime Continent and tropical west Pacific through an anomalous
Walker circulation over the Indian Ocean.

Spencer et al. (2004) imposed composite cycles of El Niño and La Niña SST in different
regions (i.e: (1) Pacific Ocean only, (2) Indian and Pacific Oceans, (3) the whole tropical ocean
and (4) global ocean) and climatological SST elsewhere to investigate remote SST influence
on ENSO teleconnections using the MetUM HadAM3 atmospheric model. Their study
found that the Maritime Continent and Indian Ocean SST anomalies induced a tropospheric
circulation response that damped the ENSO teleconnection response.

In this chapter, we present two sets of sensitivity experiments using the UK MetUM
HadGEM3-GA6 atmosphere-only model. The first set of sensitivity experiments examines
the effect of Maritime Continent SST perturbations on the tropical mean state, variability and
teleconnections. The second set of experiments investigates the influence of SST perturbations
elsewhere in the tropics (i.e. the equatorial Pacific and Indian Oceans) on climate mean state
and variability within the Maritime Continent. Our study will also investigate how SST
perturbations over different regions in the Indo-Pacific alter the atmospheric response to
ENSO and the IOD over the Maritime Continent, looking at both local and remote responses
to these drivers.

This chapter is structured as follows. In Section 5.2, we describe the model experimental
design and the observational datasets used for comparison. Section 5.3 presents the mean state
biases in the control experiment compared to observations. Section 5.4 examines the Maritime
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Continent SST perturbation experiments seasonal mean responses, followed by analysis of the
Pacific and Indian Oceans SST perturbation experiments in Section 5.5 and 5.6. The impact
of SST changes on interannual variability, the Maritime Continent-ENSO teleconnection, and
the Maritime Continent-IOD teleconnection will be investigated in Section 5.7. Lastly, the
discussion and conclusions are given in Section 5.8.

4.2 Model and observational datasets

4.2.1 Model description

In this chapter, we performed global atmosphere-only experiments using the MetUM HadGEM3-
GA6 model (Walters et al., 2017). The model simulations were run at horizontal resolution of
N96 (1.875° longitude and 1.25° latitude) with 85 vertical levels. We chose to run the model
at N96 resolution because it is computationally inexpensive and suitable for running multiple
experiments.

HadGEM3-GA6 employs the ENDGame (Even Newer Dynamics for General atmospheric
modelling of the environment) dynamical core. This dynamical core is formulated based on a
semi-implicit semi-Lagrangian method to solve the non-hydrostatic, fully compressible deep-
atmosphere equations of motion. The prognostic fields are discretised on a latitude-longitude
grid with a C-grid staggering in the horizontal and Charney-Phillips staggering in the vertical.

The Edwards and Slingo (1996) radiation scheme, configured based on the Cusack et al.
(1999) correlated-k distribution method, is used to calculate surface fluxes and heating
rates. Convection is parameterized by the Gregory and Rowntree (1990) mass flux convection
scheme. The deep convection scheme employs a convective available potential energy (CAPE)
closure. Adaptive detrainment (Derbyshire et al., 2011) is implemented as an extension to
the Gregory-Rowntree convection scheme. Mixing detrainment rates are based on relative
humidity and forced detrainment rates adapt to the buoyancy of the convective plume. The
configuration of HadGEM3-GA6 is described in detail in Walters et al. (2017).

4.2.2 Experimental set-up

We performed 10 experiments in this study. Each experiment is run for 30 years from 1982 to
2011. This 30-year period allow us to investigate the impact of SST perturbations on mean
climate as well as interannual climate variability and teleconnections.

The control run was forced by prescribed daily varying observed SST used in the AMIP-
type experimental design of CMIP5. The prescribed SST data at a spatial resolution of 1° ×
1° is based on the monthly mean Hadley Centre sea ice and SST dataset version 1 (HadISST1)
and version 2 of the National Oceanic and Atmospheric Administration (NOAA) weekly
optimum interpolation (OI) SST analysis. The AMIP SST boundary conditions are described
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Table 4.1: A list of the sensitivity experiments performed with HadGEM3-GA6 from 1982 to
2011. Perturbations are applied only over sea points.

Simulation abbreviation Perturbation to daily SST
Control None
MC+1K Adding 1K to the Maritime Continent
MC-1K Removing 1K from the Maritime Continent
MC+0.5K Adding 0.5K to the Maritime Continent
CTPO+1K Adding 1K to CTPO
CTPO-1K Removing 1K from CTPO
CTPO+2K Adding 2K to CTPO
WTIO+1K Adding 1K to WTIO
WTIO-1K Removing 1K from WTIO
WTIO+2K Adding 2K to WTIO

in Taylor et al. (2000).
The control experiment is equivalent to the HadGEM2-A AMIP experiment in CMIP5

discussed in Chapter 3, but using a newer version of the MetUM HadGEM model with a
completely new dynamical core for the atmosphere. The changes to the physics and dynamics
from HadGEM2 to HadGEM3 are described in Walters et al. (2017). Our analysis shows that
the HadGEM3-GA6 control run performs better than HadGEM2-A at simulating the Maritime
Continent seasonal mean precipitation and 850 hPa winds compared to HadGEM2-A for all
four seasons. However, the current version of the model still suffers from common systematic
biases, which will be discussed in Section 4.3.

The purpose of performing SST perturbation experiments in this chapter is not to improve
the model, but to test the model sensitivity to SST errors. For the Maritime Continent SST
sensitivity experiments, three runs are performed with SST perturbations to sea points in
the Maritime Continent domain (20°S-20°N and 80°E-160°E). This is the same Maritime
Continent domain that was defined in the previous chapter. For the tropical Indian and
Pacific Oceans SST sensitivity experiments, three runs are performed with perturbations to
the CTPO domain (5°S-5°N and 120°W-170°W) SST and the WTIO domain (10°S-10°N and
50°E-70°E) SST respectively. The CTPO and WTIO domains are the same regions as defined
in Section 4.3 and are chosen based on Fig. 3.2 of the multimodel regression. Note that the
CTPO is also the Niño 3.4 region and the WTIO is the western Indian Ocean Dipole region
(IODW) defined in Saji et al. (1999). However, to distinguish our mean climate analyses from
the interannual time scale associated with ENSO and IOD analyses, we refer to the central
Pacific perturbation region as CTPO and western Indian Ocean perturbation region as WTIO.
The SST sensitivity experiments performed in this study are outlined in Table 4.1 along with
the abbreviations used.

The magnitude of SST anomalies for the sensitivity experiments is chosen based on the
maximum and mean magnitude of biases over each region in the coupled CMIP5 models,
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Figure 4.1: Domains and magnitudes of SST perturbation experiments with Gaussian smooth-
ing over (a) Maritime Continent, (b) CTPO and (c) WTIO. Note that perturbations are applied
only over sea points.

as depicted in Fig. 3.7 in the previous chapter. Note that the perturbations do not vary with
year or season, so for instance, interannual variability of SST still follows AMIP (except
for the effects of the uniform perturbations). A Gaussian spatial filter is applied to smooth
the edges of the perturbation domains in order to avoid potential discontinuities. Gaussian
smoothing uses a kernel that represents the shape of a Gaussian (normal distribution) curve.
The Gaussian equation is as below:

G(x,y) =
1

σ
√

2π
e−(x2+y2)

/
2σ2

(4.1)

In this study, we use σ = 1 for the standard deviation of the Gaussian kernel. Figure 4.1
shows the domain of (a) the Maritime Continent, (b) the CTPO and (c) the WTIO regions in
the plus 1K experiments with Gaussian smoothing.

The SST distribution and magnitude play an important role for convection over the tropics.
The Maritime Continent is located within the Indo-Pacific Warm Pool (IPWP), which is
one of the warmest ocean regions. Relatively small changes to the SST over this warm
region can lead to large impacts on atmospheric convection and circulation as dictated by the
Clausius-Clapeyron relationship:

des

dT
=

Les

RvT 2 (4.2)

where es is the saturation vapour pressure, T is the absolute temperature, L is the latent
heat of vaporisation (2.5×106 J kg−1), and Rv is the gas constant for water vapour (461.5
J kg−1 K −1). The Clausius-Clapeyron equation relates saturation vapour pressure of a
parcel of air to its temperature. Equation 4.2 shows that saturation vapour pressure increases
exponentially with temperature. Increasing the SST over a warm region will result in a large
increase of water vapour in the atmosphere and will provide more moisture for convection
and precipitation. Therefore, the rate of change in precipitation depends on the magnitude of
the SST perturbation as well as the existing temperature over the region. This is one possible
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Figure 4.2: Annual mean SST (°C) from 1982-2012 for each experiment: (a) control,
(b) MC+1K, (c) MC-1K, (d) MC+0.5K, (e) CTPO+1K, (f) CTPO-1K, (g) CTPO+2K,
(h) WTIO+1K, (i) WTIO-1K and (j) WTIO+2K experiments. Grey box shows the domain of
SST perturbation region in each experiment.

reason for non-linear behaviour of precipitation responses. Another possible reason is due to
the weak SST gradient, whereby a small change in relative SST can lead to significant shifts
in rainfall to relatively warmer regions.

To examine the distribution of SST after the anomalies are applied in each experiment,
Fig. 4.2 shows the annual mean SST over the tropics for the control run and the SST pertur-
bation experiments. In the control run (Fig. 4.2a), the Maritime Continent is located within
the warmest ocean region. Meanwhile, for the MC-1K experiment (Fig. 4.2c), the warmest
SSTs are now over the SPCZ and the western and central Indian Ocean regions. We expect
to see reduced rainfall over the Maritime Continent and rainfall increases over the warmer
SST regions in the Indian Ocean and the Pacific Ocean in this MC-1K experiment. In the
CTPO+1K experiment (Fig. 4.2e), the warmest SSTs are still over the Maritime Continent,

99



Chapter 4. Investigating the role of the Indo-Pacific on Maritime Continent precipitation using AGCM
sensitivity experiments

whereas the CTPO+2K experiment (Fig. 4.2g) has extended the warmest region towards
the central Pacific Ocean. The Maritime Continent is the warmest SST region in both the
CTPO-1K and WTIO-1K experiment, while the WTIO is the warmest SST region in the
WTIO+2K and WTIO+1K experiments.

Figure 4.3: DJF climatological mean longitudinal SST (°C) from 1982-2011 meridionally
averaged over: (a) Maritime Continent (20°S - 20°N), (b) CTPO (5°S - 5°N) and (c) WTIO
(10°S - 10°N) in the control experiment (black line) and sensitivity experiments (coloured
lines). The grey shaded area is the interannual standard deviation of DJF seasonal-mean SST
in the control experiment.

Figure 4.3 shows the DJF climatological mean longitudinal distribution of SST (°C)
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from 1982-2011 averaged over the perturbation latitude ranges in the sensitivity experiments.
There are some differences when averaging over different latitude ranges, however the SST is
generally between 27-29°C over the Indian Ocean and Maritime Continent and decreases from
west to east over the Pacific Ocean. The zonal SST gradient is approximately 4°C over the
Pacific Ocean and is the largest gradient compared to the other ocean basins. The perturbation
magnitudes are outside the range of the standard deviation (interannual variability) over all of
the respective perturbation regions except the CTPO. Figure 4.3 also shows the location of
the SST maximum during DJF in each experiment, which corresponds to the location of the
SST maximum in annual mean SST as depicted in Figure 4.2.

From these experiments, we expect the increase in the magnitude of local rainfall over the
perturbed area to be larger in the MC+0.5K, MC+1K, WTIO+1K and WTIO+2K experiments
than in the CTPO+1K and CTPO+2K experiments following the Clausius-Clapeyron relation.
Based on the negative relationship between Maritime Continent precipitation and CTPO as
well as WTIO found in Chapter 3.3.5, the Maritime Continent is expected to show precipitation
responses in opposite sign to the SST perturbations in the CTPO and WTIO.

4.2.3 Observational datasets

Two observational/reanalysis datasets are used for model validation: 1) 2.5°× 2.5° monthly
precipitation data from the GPCP (Adler et al., 2003); and 2) monthly wind data at approxi-
mately 0.7° resolution from the ERA-Interim reanalysis data (Dee et al., 2011) for the period
1982 - 2011. The datasets are interpolated to the N96 grid using bi-linear-interpolation for
comparison with the model.

The seasonal mean, standard deviation and anomaly values in this chapter are calculated
with respect to the 1982 - 2011 baseline period.

4.3 Control Experiment

Before investigating the sensitivity of the simulated climate to SST perturbations, we will first
examine the biases in the HadGEM-GA6 control run and identify systematic biases in the
model simulation.

Fig. 4.4 shows the control run seasonal mean precipitation and 850 hPa winds and its
biases with respect to GPCP and ERA-interim in DJF and JJA. HadGEM3-GA6 exhibits
systematic dry biases over the Maritime Continent and wet biases especially over the Indian
Ocean, Western Pacific and South Pacific Convergence Zone (SPCZ) in DJF. Other studies
also noted dry precipitation biases over the Maritime Continent in different versions of the
HadGEM model (Neale and Slingo, 2003; Schiemann et al., 2014; Johnson et al., 2015). In
JJA, there are significant dry biases over India and wet biases are even more prominent over
the Indian Ocean and Western Pacific Ocean (Fig. 4.4d).
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Figure 4.4: Control experiment seasonal mean precipitation (shading, mm day−1) and 850
hPa wind (vectors, m s−1) for (a) DJF and (b) JJA seasons, and biases with respect to GPCP
and ERA-Interim in (c) DJF and (d) JJA seasons.

In DJF, the precipitation biases are associated with significant easterly wind biases driving
moisture from the Maritime Continent towards the Indian Ocean. The westerly biases over
the equatorial Pacific Ocean show a weakening of the trade winds over this region. Figure 4.5
shows the DJF and JJA seasonal mean omega biases at 500 hPa in the control experiment with
respect to ERA-interim. The model simulates too little ascent over the Maritime Continent
and excessive ascent over the Pacific and Indian Oceans. The omega biases at 500 hPa are
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Figure 4.5: Control experiment seasonal mean omega biases at 500 hPa (shading, Pa s−1)
with respect to ERA-interim for (a) DJF and (b) JJA.

consistent with the dry biases over the Maritime Continent and wet biases over the Pacific
and Indian Ocean. However, the biases are less coherent over the other continents.

4.4 Maritime Continent SST perturbation experiments

In this section, we investigate the impact of SST perturbations over the Maritime Continent
on the tropical Indo-Pacific mean climate. We focus on DJF and JJA seasons which are the
Australian summer monsoon and Asian Summer monsoon seasons.

Figure 4.6a,d shows that the MC+1K experiment produces more precipitation over the
Maritime Continent. The precipitation and circulation of the MC+1K experiment produced a
Matsuno-Gill like response (Matsuno, 1966; Gill, 1980) to diabatic heating over the Maritime
Continent. The increased precipitation over the Maritime Continent is associated with the
strengthening of the easterly trade winds with a Kelvin wave response over the Pacific Ocean,
and a Rossby wave response with twin cyclonic circulation over the Indian Ocean (Gill, 1980).
Warmer SSTs increase convective activity and enhance local precipitation.

However, this experiment also produces even less precipitation over some land areas,
especially over Sumatra and Borneo (Fig. 4.7). This may be because of reduced land-sea
contrast over this region in this experiment. Figure 4.8 shows the surface temperature changes
over the Maritime Continent in the MC+1K experiment with respect to control run. While
the surface temperature increases over the Maritime Continent islands (but not Australia and
mainland Southeast Asia) with respect to the control run, the increase over land is generally
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Figure 4.6: DJF precipitation (shading, mm day−1) and 850 hPa wind (vectors, m s−1)
changes with respect to the control run in (a) MC+1K experiment, (b) MC-1K experiment and
(c) MC+0.5K experiment. (d)-(f) are as in (a)-(c) but for JJA. Changes that are statistically
significant at the 95% confidence level are stippled. Green box shows the domain of the SST
perturbation region.

104



Chapter 4. Investigating the role of the Indo-Pacific on Maritime Continent precipitation using AGCM
sensitivity experiments

Figure 4.7: DJF precipitation (shading, mm day−1) and 850 hPa wind (vectors, m s−1)
changes with respect to the control run in (a) MC+1K experiment, (b) MC-1K experiment
and (c) MC+0.5K experiment. (d)-(f) are as in (a)-(c) but for JJA. This is as in Fig. 4.6 but
zoomed in over the Maritime Continent.

smaller than the increase over the surrounding sea except for Peninsular Malaysia. This
shows that by applying 1K warm anomalies over the Maritime Continent, the thermal land-sea
contrast between the Maritime Continent islands and surrounding seas are reduced, and can
lead to weaker sea breezes and reduced rainfall over the land.

Figure 4.8: The MC+1K experiment surface temperature changes (K) with respect to the
control run for (a) DJF and (b) JJA.

The warmer SST over the Maritime Continent also results in remote responses over the
Pacific and Indian Oceans, with precipitation decreasing over these regions (Fig. 4.6a,d). This
is consistent with findings from previous studies (Neale and Slingo, 2003; Qu et al., 2005;
Strachan, 2007) which showed that the Maritime Continent precipitation biases are linked to
those over the Indo-Pacific region. The remote responses also extend over the Atlantic Ocean.
However, we regard the Atlantic Ocean as outside the scope of this study.

The MC+0.5K experiment shows similar results but with much weaker responses (Fig. 4.6c,
f). The westerlies from the Indian Ocean and easterlies from the Pacific Ocean converge over
the Maritime Continent, corresponding to increased precipitation there.
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On the other hand, the MC-1K experiment shows approximately opposite results to the
MC+1K experiment with precipitation decreasing over the Maritime Continent and increasing
over the Pacific and Indian Oceans (Fig. 4.6b,e). Larger responses of the 850 hPa wind are
simulated during JJA than in DJF, at least over the Pacific. The imposed cold SST anomalies
over the Maritime Continent in the MC-1K experiments produce low-level wind divergence
anomalies over the Maritime Continent. Westerly anomalies blowing towards the Pacific
Ocean suggesting a weakening of the Walker circulation.

Next, we examine Fig. 4.9 which shows the changes in seasonal mean of omega at
500hPa for each of the sensitivity experiment with respect to control experiment. Figure 4.9
a,c,d,f shows that warm anomalies in the Maritime Continent generate stronger anomalous
ascent over the Maritime Continent and anomalous descent over the Indian Ocean and the
central Pacific Ocean. The MC+1K and MC+0.5K experiments increase the intensity of the
Walker Circulation ascending branch over the Maritime Continent as well as the local Hadley
Circulation.

Figure 4.9b,e shows that the MC-1K experiment simulates anomalous descent over the
Maritime Continent and ascent over the Indian Ocean and the central Pacific Ocean, coinciding
with precipitation anomalies that result in an even drier Maritime Continent and wetter Indian
and Pacific Oceans. The displacement of ascending branches of the Walker circulation also
correspond to the locations of the warmest SST in the MC-1K experiment (Fig. 4.2b), which
are now over the Indian and Pacific Oceans and not the Maritime Continent.

Moreover, the strengthening or weakening of ascent over the Maritime Continent is also
associated with corresponding vertical motion changes of opposite sign associated with
changes in the local Hadley circulation over India, China, southern Australia and the southern
Indian Ocean.

4.4.1 Moisture budget analysis

Next, we performed an analysis of the moisture budget to better understand the model’s
precipitation responses to SST changes in the Maritime Continent. The precipitation (P)
has to be balanced by the sum of evaporation (E) and vertically integrated moisture flux
convergence (VIMFC). Figure 4.10a shows that the evaporation in HadGEM3-GA6 generally
exhibits a positive bias except over mainland Southeast Asia, India and central Africa (Fig.
4.10a). The difference between precipitation and evaporation (P-E, Fig. 4.4b) shows the
ITCZ region with positive P-E (i.e. precipitation exceeds evaporation) in DJF as expected.
The VIMFC (Fig. 4.10c) largely resembles the P-E (Fig. 4.10b) but is less coherent over
the land area. The model moisture budget is balanced. The VIMFC biases (Fig. 4.10d)
are somewhat similar to the precipitation biases (cf. Fig. 4.4c) but the spatial pattern is
noisier. However, there is some discrepancy over the Pacific Ocean, whereby HadGEM3-GA6
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Figure 4.9: DJF seasonal mean 500hPa omega changes (shading, Pa s−1) with respect to
control run for: (a) MC+1K experiment, (b) MC-1K experiment and (c) MC+0.5K experiment.
(d)-(f) are as in (a)-(c) but for JJA. Changes that are statistically significant at the 95%
confidence level are stippled. Green box shows the domain of the SST perturbation region.
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generally simulates moisture flux divergence over the regions with near-zero precipitation
biases or small positive precipitation biases.

For brevity, only the moisture budget analysis for the MC+1K experiment in DJF is shown
in Figure 4.10. Imposing SST anomalies over Maritime Continent has resulted in a slight
decrease of evaporation over the Maritime Continent and a small increase of evaporation over
the Pacific Ocean (Fig. 4.10e). The changes in VIMFC (Fig. 4.10f) are similar to changes in
P-E (Fig. 4.10g), as well as to changes in precipitation (Fig. 4.1a).

To further investigate the sensitivity of Maritime Continent precipitation to local SST, we
calculated the area-averaged precipitation difference over the Maritime Continent between
each experiment and the control run. The area-averaged seasonal mean precipitation response
associated with the local SST change is approximately 2 mm day−1 K −1 for both the MC+1K
(Fig. 4.6a, d) and MC-1K experiments (Fig. 4.6b, e). The magnitude of local response
is reduced to half in the MC+0.5K experiment (Fig. 4.6c, f). This suggests that the local
responses of mean precipitation to SST changes over the Maritime Continent are linear.

We also calculated the regression coefficients between Maritime Continent mean-state
precipitation and Maritime Continent mean-state SST in the coupled CMIP5 runs analysed
in Section 3.3.5 (slopes of the regression lines in Fig. 3.8a) and compared them to the local
responses of mean precipitation in this section. DJF shows a negative regression coefficient
(-0.23 mm day−1 K−1) while other seasons show positive regression coefficients between
0.20 to 0.45 mm day−1 K−1. These regression coefficients are ten times smaller than the area-
averaged local precipitation responses in the Maritime Continent perturbation experiments.
The discrepancies between these two fields might be related to the lacking of P-SST feedbacks
in the sensitivity experiments.

Next, we quantify the Indian Ocean and Pacific Ocean responses to SST changes in the
Maritime Continent, respectively. As expected, the remote precipitation responses to SST
perturbations in the Maritime Continent are non-linear over the Pacific Ocean. However, the
seasonal precipitation responses do not vary much across seasons. We found a reduction
of precipitation of up to 6 mm day−1 in the MC+1K experiment and up to 4 mm day−1 in
the MC+0.5K experiment and an increase of rainfall of up to 5mm day−1 in the MC-1K
experiment around the SPCZ region. In the Indian Ocean, a larger response is induced during
the JJA season with the MC+1K experiment producing precipitation increases of up to 10
mm day−1 compared to 5 mm day−1 in other seasons. The larger response during JJA may
be related to the underlying pattern of precipitation bias which is larger over the Indian
Ocean during JJA, leading to amplification of the remote responses. The remote responses
to perturbing Maritime Continent SST are not linear in the Indian Ocean, as expected. For
example in JJA, precipitation over the Indian Ocean (around 5° S - 5° N, 60°- 80° E) increases
up to 6 mm day−1 in the MC+0.5K experiment while the MC-1K experiment reduces Indian
Ocean precipitation by up to 8 mm day−1. The difference between CMIP5 and perturbation
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Figure 4.10: DJF seasonal mean control experiment (a) evaporation biases, (b) P-E,
(c) VIMFC, and (d) VIMFC biases. MC+1K experiment changes with respect to control run
for: (e) evaporation, (f) P-E and (g) VIMFC. Units are in mm/day.
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experiments suggests that P-SST feedbacks are important.
Next, we will investigate the sensitivity of the Maritime Continent climate mean state to

changes in the Pacific Ocean and Indian Ocean SST.

4.5 Pacific Ocean SST perturbation experiments

We next present three sensitivity experiments to SST changes over the CTPO. When an
increase of SST over CTPO is prescribed in HadGEM-GA6 simulations, the CTPO+1K
(Fig. 4.11a, d) and CTPO+2K (Fig. 4.11c, f) experiments produce a localised response over
the central Pacific Ocean. The anomalous westerly flow from the west Pacific and anomalous
easterly flow from the eastern Pacific Ocean converge towards the warm CTPO domain when
the SST is increased, which resembles an El Niño event on interannual time scales. Figure
4.12a,c,d,f) show anomalous ascent over CTPO and anomalous descent over the Maritime
Continent and the regions north of and south of CTPO. This shows that perturbation over
CTPO induces changes in meridional and zonal circulations.

On the other hand, the CTPO-1K experiment, which resembles La Niña conditions,
simulates a decrease of rainfall over the CTPO and an increase of rainfall over the Maritime
Continent as shown in Fig. 4.11b, e. The cold anomalies imposed over the CTPO lead to a
greater zonal SST gradient across the Pacific Ocean, with stronger easterlies blowing towards
the Maritime Continent associated with strengthening of the Walker circulation (Fig. 4.12b, e).
The anomalous ascent over the Maritime Continent correspond to the increase in rainfall.

Localised precipitation responses in the CTPO perturbation experiments are not linear.
In the CTPO+1K experiment, area-averaged precipitation increased by around 2 mm day−1

over the CTPO, whereas in the CTPO+2K experiment, the precipitation increased by around
7 mm day−1. This is more than triple the amount for 1K responses in DJF and JJA. Despite
applying the same magnitude of anomalies, the cold anomalies in the CTPO-1K experiment
produce only half of the magnitude of mean local precipitation response compared to the
CTPO+1K experiment. The nonlinearity of the local rainfall response may be due to the
Clausius-Clapeyron relationship (Section 5.2.2) as well as the shift of precipitation away from,
or towards other tropical regions depending on changes in relative SSTs. In the CTPO+2K
experiment, larger SST induces larger changes in atmospheric moisture and anomalies in
precipitation and surface winds, compared to CTPO+1K and CTPO-1K experiments that have
relatively low SST.

The precipitation remote response over the Maritime Continent in the CTPO experiments
are somewhat comparable to the multimodel regression in Chapter 3.3.5. To quantify the
remote responses, we calculated the regression coefficients (gradient of the best-fit lines, mm
day−1K−1) between the Maritime Continent mean-state rainfall and CTPO mean-state SST in
the coupled CMIP5 models from Fig. 3.8b in Chapter 3.3.5 and area-averaged precipitation
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Figure 4.11: DJF precipitation (shading, mm day−1) and 850 hPa wind (vectors, m s−1)
changes with respect to the control run in (a) CTPO+1K experiment, (b) CTPO-1K experiment
and (c) CTPO+2K experiment. (d)-(f) are as in (a)-(c) but for JJA. Changes that are statistically
significant at the 95% confidence level are stippled. Green box shows the domain of the SST
perturbation region.
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Figure 4.12: DJF seasonal mean 500hPa omega changes (shading, Pa s−1) with respect to
control run for: (a) CTPO+1K experiment, (b) CTPO-1K experiment and (c) CTPO+2K
experiment. (d)-(f) are as in (a)-(c) but for JJA. Changes that are statistically significant at
the 95% confidence level are stippled. Green box shows the domain of the SST perturbation
region.
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response over the Maritime Continent in CTPO perturbation experiments in Fig. 4.11 as
listed in Table 4.2. The mean precipitation response over the Maritime Continent is weaker
in the CTPO-1K than the CTPO+1K experiment. However, the normalised magnitude of
precipitation responses over the Maritime Continent in CTPO+2K is similar to the response in
CTPO+1K. The magnitude of normalised mean rainfall responses over the Maritime Continent
is between -0.1 to -0.3 mm day−1 in CTPO+1K and CTPO+2K experiments. These values
are consistent with the regression coefficients showing the rate of change in the Maritime
Continent precipitation per Kelvin SST change in CTPO (mm day−1K−1) from the analyses
of the coupled CMIP5 runs in Chapter 4.

Table 4.2: The first row shows the regression coefficients (mm day−1K−1) between the
Maritime Continent rainfall and CTPO SST from the coupled CMIP5 run analyses shown in
Fig. 3.8b (gradient of the best-fit lines) in Chapter 3.3.5. The second to fourth rows are the
normalised area-averaged precipitation responses (mm day−1) over the Maritime Continent
in the CTPO perturbation experiments.

Season DJF MAM JJA SON
Regression coefficient -0.32 -0.14 -0.16 -0.25
CTPO-1K 0.12 0.17 0.01 0.01
CTPO+1K -0.21 -0.36 -0.22 -0.14
CTPO+2K -0.20 -0.31 -0.26 -0.14

The results in this section suggest that models featuring a warm SST biases in the central
Pacific will simulate reduced rainfall over the Maritime Continent (and vice versa, to a lesser
extent), in agreement with Chapter 4. The area-averaged precipitation response over the
Maritime Continent in CTPO perturbation experiments shows a similar magnitude to the
regression coefficients between the Maritime Continent rainfall and CTPO SST in Chapter
3.3.5. This indicates that the remote CTPO SST biases in the CMIP5 coupled models
contribute to, and possibly cause, the precipitation biases over the Maritime Continent.

4.6 Indian Ocean SST perturbations experiments

In this section, we present experiments with SST perturbations over the WTIO. Fig. 4.13
shows the DJF and JJA seasonal mean precipitation (mm day−1) and 850 hPa wind (m s−1)
for each WTIO perturbation experiment minus the control run. Compared to the control run,
the precipitation is reduced over the WTIO and increased over the Maritime Continent in
the WTIO-1K experiment. The colder SSTs over the WTIO produce a larger east-west SST
gradient over the Indian Ocean, driving stronger low level westerlies towards the warmer
Maritime Continent and increased precipitation over the Maritime Continent, which resembles
a negative IOD phase. The omega at 500hPa shows anomalous descent over WTIO Fig. 4.14,
coinciding with decreased rainfall over the WTIO.
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Figure 4.13: DJF precipitation (shading, mm day−1) and 850 hPa wind (vectors, m s−1)
changes with respect to the control run in (a) WTIO+1K experiment, (b) WTIO-1K experiment
and (c) WTIO+2K experiment. (d)-(f) are as in (a)-(c) but for JJA. Changes that are statistically
significant at the 95% confidence level are stippled. Green box shows the domain of the SST
perturbation region.
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Figure 4.14: DJF seasonal mean 500hPa omega changes (shading, Pa s−1) with respect to
control run for: (a) WTIO+1K experiment, (b) WTIO-1K experiment and (c) WTIO+2K
experiment. (d)-(f) are as in (a)-(c) but for JJA. Changes that are statistically significant at
the 95% confidence level are stippled. Green box shows the domain of the SST perturbation
region.
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Table 4.3: The first row shows the regression coefficients (mm day−1K−1) between the
Maritime Continent mean rainfall and WTIO SST in coupled CMIP5 models from Fig. 3.9a
(gradient of the best-fit lines) in Chapter 3.3.5. The second to fourth rows are the normalised
area-averaged precipitation responses (mm day−1) over the Maritime Continent in WTIO
perturbation experiments.

Season DJF MAM JJA SON
Regression coefficient -0.36 -0.09 -0.09 -0.29
WTIO-1K 0.40 0.04 0.20 0.22
WTIO+1K -0.37 -0.22 -0.28 -0.29
WTIO+2K -0.30 -0.18 -0.28 -0.32

In contrast, the WTIO+1K and WTIO+2K experiments show an opposite response. The
warm anomalies prescribed over the WTIO mean that the WTIO is warmer than the Mar-
itime Continent (Fig. 4.2h, j in Section 5.2.2). The SST gradient between the western and
eastern Indian Ocean leads to easterly anomalies from the eastern Indian Ocean and westerly
anomalies from Africa converging towards the warmer WTIO at low-levels (Fig. 4.13c, f).
The pattern agrees with the Gill (1980) response to heating. The warm anomalies over WTIO
drive the easterly anomalies over the Indian Ocean through the Kelvin wave and induce twin
cyclonic circulations over Africa through a Rossby wave response.

The vertical velocity (omega at 500hPa) in Fig. 4.14a,c shows anomalous ascent over the
warmer WTIO coinciding with increased rainfall, and anomalous descent over the Maritime
Continent, eastern Indian Ocean, Middle East and southern Indian Ocean, associated with
changes in zonal and meridional overturning circulations.

The WTIO also shows similar results as in CTPO experiments for the local precipitation
responses to the SST perturbation: the precipitation amounts are reduced over the WTIO in the
negative perturbation experiments and increased in the positive perturbation experiments. The
area-averaged precipitation response with respect to the control run over the WTIO shows that
the local response is slightly weaker in the WTIO-1K experiment (∼3mm day−1) compared
to the WTIO+1K experiment (∼4mm day−1), while the area-averaged local precipitation
response in the WTIO+2K experiment is around 8mm day−1, twice that of the WTIO+1K
experiment response.

For the remote responses, seasonal area-averaged precipitation responses over the Mar-
itime Continent in the WTIO perturbation experiments are listed in Table 4.3 and compared
with the regression coefficients (mm day−1K−1) for the corresponding Maritime Continent
rainfall and the WTIO SST mean bias relationship from Fig. 3.9a (gradient of the best-fit lines)
in Chapter 3.3.5. The DJF and SON show comparable magnitudes of remote precipitation
response over the Maritime Continent and the regression coefficients. In addition, our analysis
in Chapter 4 also shows that SON and DJF are the two seasons in which the WTIO shows
a significant relationship with the Maritime Continent mean state precipitation. The remote
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responses are linear in DJF and SON.
The results in this section suggest that models featuring a warm SST bias in the western

Indian Ocean will simulate reduced rainfall over the Maritime Continent while models
featuring a cold SST bias in the western Indian Ocean will simulate excess rainfall over
the Maritime Continent, in agreement with the results of Chapter 3.3.5. The area-averaged
precipitation responses over the Maritime Continent in the WTIO perturbation experiments
in DJF and SON show similar magnitudes to the regression coefficients (mm day−1K−1)
between the Maritime Continent rainfall and WTIO SST from Fig. 3.9a (gradient of the
best-fit lines) in Chapter 3.3.5. This indicates that the remote WTIO SST biases in the CMIP5
coupled models could potentially cause those models’ precipitation biases over the Maritime
Continent.

4.7 Interannual variability of the Maritime Continent pre-
cipitation

In the previous section, we investigated the impact of SST perturbations on seasonal mean
climatology. Our results showed that SST perturbations not only influence local atmospheric
circulation but also have a substantial large-scale impact on the circulation. In this section, we
will investigate the impact of SST perturbations on the interannual variability of the Maritime
Continent precipitation in DJF and SON seasons, which are the peak phases of ENSO and
IOD events respectively.

4.7.1 ENSO teleconnection to the Maritime Continent

All the experiments in this chapter are forced by the same AMIP SST (except for the effects
of the uniform perturbations), hence SST interannual variability in all experiments still
follows the AMIP control run. Figure 4.15(a) shows a time series of DJF precipitation (mm
day−1) averaged over the Maritime Continent from 1982 to 2010 in the observations and
SST perturbation experiments. This figure shows that the control run is able to simulate
the observed interannual variability over the Maritime Continent region with reasonable
skill. The interannual DJF seasonal mean correlation coefficient between GPCP and control
run Maritime Continent precipitation is 0.83, which is statistically significant at the 99.5%
confidence limit as shown in Table 4.4. This indicates that the control run captures the
interannual seasonal variations in precipitation over the Maritime Continent.

Table 4.4 shows that interannual variations of precipitation in the Maritime Continent
region in the CTPO and MC perturbation experiments are less correlated to observations
compared to the control experiment. The MC+0.5K experiment shows the lowest interannual
correlation of Maritime Continent precipitation with observations. Whereas, the Maritime
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Table 4.4: Interannual correlation coefficient between observed and simulated Maritime
Continent precipitation in various experiments during DJF, arranged in descending order.

Experiment control MC-1K CTPO-1K CTPO+2K CTPO+1K MC+1K MC+0.5K
Correlation
coefficient 0.83 0.78 0.76 0.74 0.73 0.73 0.61

Continent precipitation in the MC-1K experiment has higher correlation with the observations
than the MC+0.5K and MC+1K experiments.

To classify the DJF seasons according to the occurrence of ENSO events, we use the Niño
3.4 index as defined in Section 3.2.3. The El Niño events and La Niña events are listed in
Table 4.5 by year of the “December” in DJF.

Table 4.5: The El Niño and La Niña years between 1982 to 2011 as defined by DJF SSTs in
the Niño 3.4 region and exceeding ±0.5 °C threshold. The DJF of 1982 refers to the 1982/83
winter, December of the given year and January and February of the following year.

ENSO Years
El Niño 1982 1986 1987 1991 1994 1997 2002 2004 2006 2009
La Niña 1983 1984 1988 1995 1998 1999 2000 2007 2010

Figure 4.15 shows the DJF precipitation (mm day−1) averaged over the Maritime Continent
from 1982-2011. As anticipated, in the MC+1K and MC+0.5K experiments, the localised
response over the perturbation regions is consistent with the climatological mean shown
in the previous section, whereby an increase in local SST will increase convection. Hence
precipitation increases over the Maritime Continent for all years. The MC-1K experiment
also shows a reduction in rainfall compared to the control run over the perturbation regions
for all years. For the MC+1K and MC+0.5K experiments, El Niño events show the biggest
increment in precipitation with respect to the control run than other years (eg. 1991 and
2002). On the other hand, El Niño years have a smaller reduction in rainfall with respect to
the control run, compared to other years in the MC-1K experiment. During El Niño the SST
is warmer than normal over the Niño 3.4 region and colder than normal over the Maritime
Continent. By adding 1K over the Maritime Continent in the MC+1K experiment, the zonal
temperature gradient between the east and west Pacific is reduced. The small change in SST
can lead to a larger shift in rainfall to the relatively warmer Maritime Continent. Whereas in
the MC-1K experiment, the zonal temperature gradient over the Pacific is increased, hence
less rainfall is induced in this experiment.

On the other hand, the remote responses are more complicated. It is anticipated that
through the area-averaged mean state precipitation responses in Chapter 4.5, an increase of
SST over the CTPO will reduce rainfall over the Maritime Continent, and conversely, reducing
SST over the CTPO will increase rainfall over the Maritime Continent. The CTPO+2K
experiment simulates less precipitation over the Maritime Continent compared to the control
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Figure 4.15: DJF precipitation (mm day−1) averaged over the Maritime Continent from
1982-2011. The yellow vertical lines show the El Niño years and purple vertical lines show
the La Niña years.

run, consistent with Chapter 5.5 results, apart from 3 years (2007, 2008 and 2010). 2007
and 2010 are La Niña years, during which the Maritime Continent generally receives above
normal rainfall. For neutral years preceding El Niño years, all three experiments tend to
simulate less rainfall than the control run (e.g. 1985 and 1990). This suggests that ENSO
variability has a substantial impact on the Maritime Continent precipitation and the SST
perturbation impacts vary according to ENSO phase.

Figure 4.16 shows the SST (shading, K) and precipitation (contour, mm/day) evolution
across the equatorial Pacific during a two-year period of composite La Niña or El Niño events
adapted from Turner et al. (2005). In the control run, the composite evolution of El Niño
events shows that the warmest absolute SSTs extend eastwards towards the central and eastern
Pacific and reach their peak in December, while during La Niña events, the warm SST is
more confined over the western Pacific, as expected. Convection also follows the migration of
the warm SST, with positive anomalies moving eastward to the central Pacific and negative
anomalies forming over the Maritime Continent. The CTPO+1K experiment produces a larger
region of warm SST. The black contour lines in Fig. 4.16 are the precipitation (mm day−1).
Heavier precipitation occurs over the warm SST region, however the maximum precipitation
is not located over the warmest SST. The figure shows that the spatial distribution of rainfall
shows some difference from the SST distribution in the IPWP region, in agreement with Chen
and Houze (1997) that stronger deep convection does not colocate exactly with warmest SST
over the IPWP region.

Next, we investigate the impact of SST perturbations on the spatial distribution of rainfall
and 850 hPa winds during El Niño and La Niña. First, looking at the control experiment pre-
cipitation biases with respect to observations, the composites of both the El Niño (Fig. 4.17a)
and La Niña (Fig. 4.18a) phases have somewhat similar biases, but La Niña features a larger
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Figure 4.16: Evolution of mean equatorial (5°S-5°N) SST (K, shading) and precipitation (mm
day−1, contour) in a composite of ten El Niño events in two-year period for (a) control, (b)
CTPO+1K and (c) CTPO-1K experiments. (d)-(f) are as in (a)-(c) but for La Niña.

area of wet biases over the Pacific Ocean. We also investigate the precipitation and 850 hPa
wind biases in the Maritime Continent during El Niño and La Niña (zoomed figure not shown).
We found a striking similarity between the biases in mean state climatology and biases in
composited El Niño and La Niña events over the Maritime Continent. The PCC values are
above 0.9 and the RMSE is less than 1 mm day−1 between mean state climatology biases
and El Niño biases in Maritime Continent precipitation. This result is in agreement with our
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Figure 4.17: DJF seasonal mean precipitation (shading, mm day−1) and 850 hPa wind (vectors,
m s−1) for El Niño composite of (a) control minus observations (b) MC+1K minus control,
(c) MC-1K minus control, (d) CTPO+1K minus control and (e) CTPO-1K minus control.

finding in Chapter 4 that biases in precipitation and circulation over the Maritime Continent
during ENSO and IOD events mainly result from the climatological mean state biases in the
control AMIP experiment.

In the MC+1K experiment, easterlies from the Pacific Ocean converge towards the warmer
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Figure 4.18: DJF seasonal mean precipitation (shading, mm day−1) and 850 hPa wind (vectors,
m s−1) for La Niña composite of (a) control minus observations (b) MC+1K minus control,
(c) MC-1K minus control, (d) CTPO+1K minus control and (e) CTPO-1K minus control.

SST. A weaker response in wind and precipitation is found in La Niña (Fig. 4.18b) compared
to El Niño (Fig. 4.17b). The area-averaged precipitation over the Maritime Continent in
Fig. 4.15(b) also shows that the changes in El Niño events are larger than La Niña events.
This may be due to the asymmetry of ENSO, where El Niño events are often stronger than La
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Niña events.
In the CTPO perturbation experiments, the local precipitation response shows different

results in La Niña and El Niño events. In the El Niño composite, the CTPO+1K experiment
shows an increase of rainfall over the CTPO (Fig. 4.17d), while the CTPO-1K experiment
simulates a decrease of rainfall in CTPO (Fig. 4.17e) with respect to observations. On the
other hand, CTPO local precipitation and wind patterns responses are small during La Niña
events. This might be because the SST over the CTPO after perturbation is less than the
threshold for convection (Johnson and Xie, 2010), consistent with Fig. 4.16, which shows
that CTPO SST is much colder in the La Niña phase even for the CTPO+1K experiment.

4.7.2 IOD teleconnection to the Maritime Continent

Following on from the previous section, we discuss the impact of mean-state SST perturbation
experiments on the teleconnection of Maritime Continent rainfall to the IOD. Fig. 4.19(a)
shows the SON precipitation (mm day−1) averaged over the Maritime Continent and IODW
regions from 1982 to 2010. In the Maritime Continent region, the control run is able to capture
the interannual variability of precipitation as observed (r=0.83). However, unlike in DJF,
for which the control run has the highest interannual correlation to GPCP, the perturbation
experiments are better correlated to GPCP in SON except for the WTIO-1K experiment.

Table 4.6: Interannual correlation between observed SON precipitation and simulated SON
precipitation over the Maritime Continent in SST perturbation experiments, arranged in
descending order.

Experiment MC+1K WTIO+1K MC-1K WTIO+2K MC+0.5K control WTIO-1K
Correlation
coefficient 0.91 0.86 0.85 0.84 0.84 0.83 0.82

To further investigate how do these sensitivity experiments alter the Maritime Continent
atmospheric response to IOD, we classify the SON seasons according to the occurrence of
IOD events. Table 4.7 lists the positive IOD and negative IOD years between 1982 to 2011.
The IOD events are selected based on the DMI, as defined in Section 3.2.3.

Table 4.7: Positive IOD and negative IOD years between 1982 to 2011 as defined by SON
DMI exceeding the ±0.5 °C threshold.

IOD Years
Negative IOD 1992 1996 1998 2010
Positive IOD 1991 1994 1997 2006

The MC experiment local response shows that adding 1K to the SST here increases the
precipitation, while reducing the SST by 1K decreases the precipitation over the Maritime
Continent (Fig. 4.19), as indicated by the area-averaged mean state precipitation responses in
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Section 4.6. The local responses are mainly linear in the Maritime Continent SST perturbation
experiments, which is consistent with the findings of Section 4.6.

Figure 4.19: SON precipitation (mm day−1) averaged over the Maritime Continent from
1982-2011. The yellow vertical lines show the positive IOD years and purple vertical lines
show the negative IOD years.

The remote responses over the Maritime Continent in the WTIO experiment show that
warmer SST in the WTIO leads to reduced rainfall over the Maritime Continent and colder
SST in the WTIO increases the rainfall over the Maritime Continent in most years (Fig. 4.19a).
In the WTIO-1K experiment, only four years show negative precipitation anomalies and these
four years are IOD-neutral years. Only 1992, which is a negative IOD year, shows an increase
of rainfall in all three WTIO experiments.

Figure 4.20(a) shows the composite of positive IOD for precipitation and 850 hPa winds
in the control experiment and its biases with respect to observation, while Fig. 4.21(a) shows
the composite for the negative IOD. Both positive and negative IOD composites have similar
biases, for example the dry biases in India and the Maritime Continent, the wet biases in the
SPCZ, west Pacific (westerly biases) and Indian Ocean (easterly biases). In the Maritime
Continent, the biases in IOD composites are similar to the climatological biases (figure not
shown), suggesting that biases in the precipitation and 850 hPa wind during the IOD events
mainly result from climatology biases, consistent with the results of Chapter 3.4.

Figure 4.20 also shows the positive IOD SON precipitation and 850 hPa wind anomalies
minus the control in each experiment. In the MC+1K experiment, wet anomalies are observed
over the perturbation region, Maritime Continent and dry anomalies over the western Indian
and Pacific Oceans. Anomalous easterlies from the Pacific Ocean and anomalous westerlies
from the Indian Ocean converge over the Maritime Continent in both positive IOD (Fig. 4.20b)
and negative IOD (Fig. 4.21b) events. The MC-1K experiment shows an opposite response
(Fig. 4.20c, Fig. 4.21c).

In the WTIO+1K and WTIO-1K experiments, the local precipitation response is generally
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Figure 4.20: SON seasonal mean precipitation (shading, mm day−1) and 850 hPa wind
(vectors, m s−1) for positive IOD composite of (a) control minus observations (b) MC+1K
minus control, (c) MC-1K minus control, (d) WTIO+1K minus control and (e) WTIO-1K
minus control.

of the same sign as the SST perturbations, whereas in the Maritime Continent the remote
precipitation response is generally opposite in sign in both phases of IOD. This shows that
in general, the WTIO-1K experiment results in reduced precipitation over the WTIO and
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Figure 4.21: SON seasonal mean precipitation (shading, mm day−1) and 850 hPa wind
(vectors, m s−1) for negative IOD composite of (a) control minus observations (b) MC+1K
minus control, (c) MC-1K minus control, (d) WTIO+1K minus control and (e) WTIO-1K
minus control.

increased precipitation over the Maritime Continent compared to the control run in positive
IOD (Fig. 4.20e) and negative IOD events (Fig. 4.21e). Opposite local and remote precipitation
responses are produced in WTIO+1K experiments (Fig. 4.20d, 4.21d).
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4.8 Discussion and conclusions

In this chapter, we analysed a suite of sensitivity experiments to examine the effect of Maritime
Continent SST perturbations on tropical variability and teleconnections, and to investigate the
influence of SST perturbations elsewhere in the tropics (i.e. the Pacific and Indian Oceans) on
climate variability within the Maritime Continent.

The perturbations to SST produce local and remote responses. For the mean state analysis,
we focused on DJF and JJA. Our results show that when SST is increased over the Maritime
Continent, the increased westerlies from the Indian Ocean and increased easterlies from
the Pacific Ocean converge towards the Maritime Continent, corresponding to increased
precipitation there. The MC-1K experiment shows opposite results with anomalous wind
divergence from the Maritime Continent and weakening of the Walker circulation, leading to
a decrease in Maritime Continent rainfall. The seasonal mean precipitation local responses to
SST changes are linear in the Maritime Continent perturbation experiments.

Seasonal area-averaged mean precipitation responses over the Maritime Continent to
local SST perturbations are of the same sign as the regression coefficient between Maritime
Continent precipitation and Maritime Continent SST in the coupled CMIP5 runs analysed
in Chapter 4 apart from DJF, which had a negative regression coefficient. However, the
magnitude of local precipitation responses is ten-times larger than the regression coefficients.

However, the MC+1K experiment also produces even less precipitation over some land
areas, especially over Sumatra and Borneo. This suggests that warm SST anomalies provide
greater moisture supply over the ocean, however, it also reduces the temperature difference
between the land and the sea which can lead to weaker sea breezes and reduced rainfall over
the land.

The Maritime Continent SST perturbation experiments also affect the circulation and
precipitation over the Pacific and Indian Oceans, in agreement with previous studies showing
that precipitation biases over the Maritime Continent contribute to other systematic biases
over the tropics (Neale and Slingo, 2003; Zhang et al., 2016). The precipitation in the Pacific
and Indian Oceans shows non-linear negative responses to SST changes in the Maritime
Continent. Seasonal precipitation responses are up to 5 to 6 mm day−1 K−1 apart from during
JJA, where SST change in the Maritime Continent can induce remote precipitation responses
over the Indian Ocean of up to 10 mm day−1.

The moisture budget analysis shows that the control experiment VIMFC is similar to the
difference between precipitation and evaporation (P-E). The evaporation biases are modest
over the Maritime Continent (less than 2 mm day−1). Therefore, the VIMFC biases also
largely resemble the precipitation biases in the control run. In the sensitivity experiments, we
found that the changes in VIMFC are again similar to the changes in P-E, as well as to the
changes in precipitation.
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On the other hand, the CTPO+1K and CTPO+2K experiments resulted in anomalous
ascent over CTPO and less rainfall over the Maritime Continent. The CTPO-1K experiment
showed an opposite response, with rainfall increasing over the Maritime Continent. The
localised precipitation responses in the CTPO perturbation experiments are not linear, which
may be explained by the Clausius-Clapeyron relationship. The warmer SST in the CTPO+2K
experiment induces larger changes in atmospheric moisture and anomalies in precipitation
and surface winds, compared to the CTPO+1K and CTPO-1K experiments that have relatively
low SST. Another possible reason for nonlinearity of the local rainfall response over the
CTPO is the shift of precipitation away from other tropical regions. The precipitation remote
responses over the Maritime Continent in the CTPO experiments are somewhat comparable
to the regression coefficients between the Maritime Continent mean-state rainfall and the
CTPO mean-state SST for the CMIP5 coupled models in Chapter 3.3.5. These results show
that models featuring warm SST biases in the central Pacific will simulate reduced rainfall
over the Maritime Continent and vice versa. This suggests that the SST biases over the CTPO
causes precipitation biases over the Maritime Continent for the CMIP5 coupled models in
Chapter 4 as well.

In the WTIO-1K experiment, colder SSTs over the WTIO produce a larger east-west SST
gradient over the Indian Ocean, driving stronger low-level westerlies towards the warmer
Maritime Continent. Precipitation increases over the Maritime Continent and decreases over
WTIO. The positive perturbation of WTIO SST shows an opposite precipitation and circulation
response. The area-averaged precipitation responses with respect to the control run show that
the local precipitation response is slightly weaker in the WTIO-1K experiment compared
to the WTIO+1K experiment, while the WTIO+2K experiment precipitation response to
local SST perturbation is twice that of the WTIO+1K experiment precipitation response. The
area-averaged precipitation responses over the Maritime Continent in the WTIO perturbation
experiments in DJF and SON show similar magnitudes to the regression coefficients between
the Maritime Continent rainfall and WTIO SST for the coupled CMIP5 models in Chapter
3.3.5. This indicates that the remote WTIO SST biases in the CMIP5 coupled model contribute
to, and possibly cause, the precipitation biases over the Maritime Continent.

For the analysis on interannual variability, we focused on the winter season (DJF) when
ENSO events peak for the Pacific Ocean perturbation experiments and autumn (SON) season
for the Indian Ocean experiments, since SON is the peak season for IOD events. The control
run is able to capture the interannual variability of precipitation represented by these modes.
The localised response over the perturbation regions is consistent with the climatological
mean response, whereby an increase in local SST will increase the precipitation here. The
precipitation responses over the Maritime Continent during El Niño events are stronger in the
MC+1K experiment than the MC-1K experiment. The remote responses over the Maritime
Continent are more complicated, particularly those relating to ENSO variability in the CTPO
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experiments.
For the IOD analyses, there are only four positive IOD and negative IOD events from

1982 to 2011, limiting the sample size, hence no significant changes are identified in the
interannual variability of the Maritime Continent precipitation relating to IOD events. On the
other hand, all of the positive IOD years are also the El Niño years, while 1998 is also both a
La Niña and negative IOD year. While previous studies (Saji et al., 1999; Webster et al., 1999)
suggested that the IOD is an independent mode of variability in the Indian Ocean, Allan et al.
(2001) argued that the IOD is related to the ENSO. Nur’utami and Hidayat (2016) showed
that an individual IOD event, individual ENSO event and combinations of both ENSO and
IOD events have different impacts on Indonesian rainfall. Hence it is hard to separate the
variability associated with ENSO and the IOD.

We found that biases in precipitation and circulation over the Maritime Continent during
ENSO and IOD events mainly result from the climatological mean state biases, in agreement
with the results of Chapter 4.

In this study, we have only considered the impact of Indo-Pacific SST biases on Maritime
Continent precipitation and circulation. However, as shown in Fig. 3.1 and Fig. 3.2, there are
also biases in other parts of the ocean basins that may play a role, which are beyond the scope
of this study. Furthermore, the interaction between the Pacific Ocean and Indian Ocean also
warrants further investigation.

Our results highlight the importance of the Maritime Continent on the Indo-Pacific
climate. The perturbation over the Maritime Continent SST induced significant opposite
remote precipitation responses over the Indo-Pacific and the magnitude of remote precipitation
responses are larger compared to the CTPO and WTIO perturbation experiments. This
suggests that the influence of the Maritime Continent on the large-scale circulation and
precipitation across the Indo-Pacific is significant. The CTPO and WTIO experiments produce
area-averaged seasonal mean precipitation remote responses over the Maritime Continent of a
comparable magnitude to the regression coefficients (mm day−1K−1) between the Maritime
Continent rainfall and the CTPO and WTIO SSTs for coupled CMIP5 models shown in
Chapter 3.3.5. Our SST sensitivity experiments suggest that SST biases in the CTPO and
WTIO could possibly be the cause of coupled model precipitation biases over the Maritime
Continent. Further work could extend this experiment by running the MC-KPP type (Multi-
Column K Profile Parameterization ocean) mixed-layer ocean model(MetUM-GOML) or
coupled version of the HadGEM3 model.
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Chapter 5

Conclusions and Future Work

In this chapter, we summarize the key findings of the thesis in Section 5.1. The limitations of
the work are discussed in Section 5.2, and suggestions for future work are given in Section
5.3.

5.1 Summary of key findings

Variations in rainfall have significant implications for societies in the Maritime Continent,
who depend on monsoon rainfall for their water supply and agricultural purposes. This
in turn has an effect on the overall economies of the countries in the Maritime Continent.
Better understanding of the climate mean state and its variability in the Maritime Continent
region and its representation in General Circulation Models (GCMs) is crucial from both a
socio-economic and climate perspective. The Maritime Continent is one of the principal heat
sources that drive the global circulation (Ramage, 1968). Despite its importance in the global
climate system, the ability of General Circulation Models (GCMs) to simulate the mean
climate and climate variability over the Maritime Continent remains a modelling challenge.
In this section, we will revisit the principal aims of this thesis and the specific questions based
around the main aims posed in Chapter 1.

The first aim of this thesis is to investigate the fidelity of current state-of-the-art climate
models at simulating the climate mean state and its variability in the Maritime Continent as
stated in Section 1.9. Chapter 3 focuses mainly on the Atmospheric Model Intercomparison
Project (AMIP) experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5)
and the results are published in Climate Dynamics (Toh et al., 2018). We addressed the
following questions in Chapter 3:

How well do CMIP5 models simulate the mean seasonal climate over the Maritime
Continent?

We find that AMIP models suffer from systematic biases and there is a considerable spread
of skill at simulating the seasonal mean climate over the Maritime Continent region. The
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magnitude and spatial pattern of the biases vary in each model according to season, i.e, a
model with high skill in one season does not necessarily represent other seasons well.

The multimodel mean (MMM) has better skill at reproducing the observed mean climate
than the individual models, in agreement with other CMIP5 studies (Colman et al., 2011;
Jourdain et al., 2013; Sperber et al., 2013; Feng et al., 2014) which found that the MMM
outperforms individual models at reproducing the observed monsoon climate.

The spatial pattern of 850 hPa wind is better simulated than the precipitation over the
Maritime Continent in all four seasons, as found by Brown et al. (2013) over the Western
Pacific monsoon region and Sperber et al. (2013) over the Asian monsoon region.

The comparison with coupled models in CMIP5 shows that AMIP models generally per-
formed better than coupled models in the simulation of the global monsoon and local Hadley
circulation but less well at simulating the Maritime Continent annual cycle of precipitation.
There is a clear lack of correlation between a model’s performance at simulating the annual
cycle of precipitation in atmosphere-only mode and in coupled mode. This is also the case for
the equinoctial and solsticial modes.

What are the model systematic biases in the Maritime Continent?

In DJF, most AMIP models overestimate the precipitation over the West Pacific Ocean and
underestimate the precipitation over the land. The dry biases over land are associated with
easterly wind biases over the region and these precipitation and wind biases are common
errors in the atmosphere-only models. A notable difference between DJF and JJA seasons
is the more common presence of large biases of precipitation over the Maritime Continent
north of 10°N in JJA compared to DJF, indicating that the models simulate the monsoonal
precipitation poorly.

Furthermore, there are systematic discrepancies among the AMIP models in simulating
the annual cycle of precipitation over the Maritime Continent. Cluster analysis performed in
this study to characterize model systematic biases resulted in two clusters with distinct fidelity
at representing the annual cycle of precipitation over the Maritime Continent. Cluster I models
perform better than Cluster II models at simulating the seasonal migration of precipitation
over the Maritime Continent, but they overestimate the precipitation, especially during the
JJA and SON seasons. Cluster II models simulate less seasonal movement of the Intertropical
Convergence Zone (ITCZ) over the Maritime Continent than observed, and the maximum
rainfall position stays closer to the equator throughout the year.

What are the possible sources of model systematic biases?

To better understand the causes of the Maritime Continent precipitation biases and what
aspects of the models are most important for correctly representing the climate of the Maritime
Continent, we focus on three possible sources of bias: the role of horizontal resolution, the
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relationship to biases in the local Hadley circulation and global monsoon, and the impact of
air-sea coupling.

We find that AMIP model performance is largely unrelated to resolution, in agreement
with Neale and Slingo (2003). Instead, our results show that models’ local Maritime Continent
biases are related to their biases in the local Hadley circulation and global monsoon, and
these same results hold for both Cluster I and Cluster II. Models that better represent the
global monsoons and local Hadley circulation will also have a better representation of the
precipitation pattern over the Maritime Continent region. This also indicates that the biases in
seasonal migration of the ITCZ over the Maritime Continent are thus related to the global-scale
ITCZ movement biases.

The comparison between AMIP and coupled models in CMIP5 shows that AMIP models
generally perform better than coupled models at simulating the global monsoon and local
Hadley circulation. However, coupled models better capture the Maritime Continent annual
cycle of precipitation. This opposite result suggests that air-sea coupling improves the
simulation of the Maritime Continent annual cycle precipitation despite the inevitable sea
surface temperature (SST) biases. However, SST biases and ocean-atmosphere feedback
errors introduce larger biases in the coupled models at the large scale. We also found mixed
results for model skill at reproducing the seasonal precipitation and 850 hPa wind patterns
over the Maritime Continent. These comparisons between AMIP-coupled pairs showed that
air-sea coupling yields complex impacts on Maritime Continent precipitation biases. The
relationship between SST and the Maritime Continent precipitation is further investigated in
Chapter 4.

Chapters 4 and 5 address the second and third aims of this thesis: (2) to explore the impact
of model biases in the Maritime Continent on tropical variability and teleconnections; and
(3) to determine the relationship between SST in the tropics and climate variability within
the Maritime Continent. The specific research questions that were raised in the Introduction
chapter of this thesis are addressed below.

How well do CMIP5 coupled models simulate the tropical ocean SST?

The performance of coupled CMIP5 models varies greatly at reproducing the seasonal mean
SST and the annual cycle. In general, most CMIP5 models exhibit cold biases over the
central and western Pacific Ocean as well as the central and eastern Indian Ocean while
simulating warm biases over the southeastern Pacific Ocean and equatorial Atlantic Ocean.
The magnitude, sign and spatial pattern of SST biases are somewhat similar in all four seasons,
apart from the western Indian Ocean where the biases change sign in different seasons. Some
models including the MMM simulate colder than observed SST in DJF and MAM seasons
but warmer than observed SST in JJA and SON seasons in the western Indian Ocean.

Models perform less well at simulating the central tropical Pacific Ocean (CTPO) annual
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cycle SSTs compared to the Maritime Continent and western tropical Indian Ocean (WTIO)
and show a considerable inter-model spread of up to 5 °C for this region.

What is the relationship between Maritime Continent mean-state precipitation biases
and tropical SST biases?

Our analysis shows that Maritime Continent mean-state precipitation biases in coupled models
are largely unrelated to local mean-state SST biases, apart from during SON which shows a
statistically significant positive correlation. On the other hand, remote SSTs are significantly
correlated with the Maritime Continent mean-state precipitation. For all four seasons, the
Maritime Continent mean-state precipitation shows negative association with the central and
eastern Pacific Ocean SSTs. The relationship is strongest in DJF. This shows that those models
featuring warmer central tropical Pacific ocean (CTPO, 5°S-5°N and 120°W-170°W) SST
in the mean state generally feature reduced precipitation in the Maritime Continent and vice
versa. We also found that the mean-state zonal temperature gradient between the Maritime
Continent and the central Pacific is significantly correlated with the Maritime Continent
precipitation, suggesting an association with the mean-state Walker Circulation.

In the Indian Ocean, there is an IOD-like bias pattern in mean-state precipitation, wind
and SST during SON that is not evident in other seasons. The eastern tropical Indian Ocean
SSTs show a positive correlation to the Maritime Continent precipitation in SON. In contrast,
the western tropical Indian Ocean (WTIO, 10°S-10°N and 50°E-70°E) SSTs show a negative
relationship to the Maritime Continent precipitation, as in the central Pacific Ocean but with
weaker magnitude for all seasons. The mean-state zonal temperature gradient between the
Maritime Continent and the western Indian Ocean is significantly correlated with Maritime
Continent precipitation, suggesting an association with the mean-state Indian Ocean Walker
Circulation. The relationship is strongest during SON which is the peak phase of the IOD.

We also found that wet biases in the Maritime Continent are associated with warm
SST biases over the Maritime Continent and cold SST biases over the CTPO and WTIO
concurrently. This suggests the combined interactions between the climatological Walker
cells over the Indian and Pacific Oceans with the Maritime Continent mean-state precipitation
and circulation.

How well do CMIP5 atmosphere-only and coupled models simulate teleconnections be-
tween ENSO/IOD and the Maritime Continent?

The El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are modes of
variability that significantly affect the climate over the Maritime Continent on interannual
timescales. The observed Maritime Continent precipitation generally shows negative pre-
cipitation anomalies during El Niño and positive precipitation anomalies during La Niña in
DJF. Most of the AMIP and coupled CMIP5 models capture the relationship between Niño
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3.4 SST and area-averaged Maritime Continent precipitation but not the spatial pattern of
precipitation anomalies over the Maritime Continent. The AMIP and coupled CMIP5 models
simulate weaker grid-point temporal correlations compared to the observation. The coupled
models tend to have a positive correlation over Papua and surrounding sea (opposite to the
observed correlation), and a much weaker negative correlation over the rest of the Maritime
Continent region.

For the IOD, most of the AMIP models are able to simulate the inverse relationship
between the area-averaged Maritime Continent precipitation anomalies and Dipole Mode
Index (DMI). During positive IOD events (when SSTs over the eastern Indian Ocean are colder
than normal and SSTs in the western Indian Ocean are warmer than normal), most models
simulate negative precipitation anomalies over the Maritime Continent. Likewise, most of
the coupled CMIP5 models are able to simulate the interannual temporal correlation between
area-averaged Maritime Continent precipitation and zonal SST gradient of the Maritime
Continent and western Indian Ocean. However, most of the AMIP and coupled models
perform less well at capturing the spatial pattern of IOD teleconnection with the Maritime
Continent precipitation in SON.

Does ocean-atmosphere coupling improve these teleconnections?

Most of the coupled models have larger discrepancies compared to observations than their
respective AMIP counterpart at simulating the spatial pattern of ENSO-Maritime Continent
teleconnection in DJF.

Comparison between AMIP and coupled CMIP5 models show that AMIP models also
perform better than coupled CMIP5 models at simulating the spatial pattern of teleconnection
between IOD and Maritime Continent in SON. The RMSE of the Maritime Continent-IOD
teleconnection pattern in coupled models is also larger than AMIP models suggesting that
SST and coupling biases degraded the IOD-Maritime Continent teleconnection in CMIP5.

How are these teleconnections influenced by the mean state SST biases?

CMIP5 coupled models with smaller CTPO SST mean bias have a better representation of the
ENSO-Maritime Continent teleconnection, i.e. their temporal correlation coefficients between
Niño3.4 SST and the Maritime Continent precipitation are closer to the observed value. This
suggests some relationship between the CTPO SST mean-state biases and ENSO-Maritime
Continent teleconnection. The poor performance of coupled models at simulating the spatial
pattern of ENSO-Maritime Continent teleconnection is mainly related to a spurious positive
ENSO response that extends westwards into the West Pacific. This systematic error in ENSO
is related to the mean state SST cold biases over the Pacific cold tongue that extend too far
westward into the western Pacific.
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The relationship between the CMIP5 models’ WTIO mean state biases and the IOD-
Maritime Continent teleconnection was also investigated. However, we find no significant
correlation between the WTIO mean state biases and the IOD-Maritime Continent telecon-
nection.

On the other hand, we show that a model’s skill at simulating the ENSO teleconnection
to the Maritime Continent in DJF is related to model fidelity at simulating the Maritime
Continent DJF precipitation climatology. The IOD teleconnection to the Maritime Continent
in SON is dependent on model fidelity at simulating the Maritime Continent SON precipitation
climatology. This highlights the importance of reducing model systematic errors for model
fidelity in simulating the ENSO and IOD teleconnections to the Maritime Continent.

Our analysis of coupled historical runs in Chapter 4 highlights the central Pacific and
western Indian Ocean as key regions that exhibit the most surface temperature correlation with
the Maritime Continent mean state precipitation in the coupled CMIP5 models, while local
SST exhibits seasonally-dependent correlations. To test causality in the relationships between
SST anomalies and precipitation anomalies and better understand the mechanism underlying
these relationships, a suite of sensitivity experiments to perturb the SST over the Maritime
Continent, CTPO and WTIO regions are performed using the MetUM HadGEM3-GA6
atmosphere-only model to address the following questions in Chapter 5.

What are the systematic biases in HadGEM3-GA6?

In the control run, the seasonal mean precipitation biases when compared to GPCP show that
the model exhibits systematic dry biases over the Maritime Continent and wet biases especially
over the Indian Ocean, Western Pacific and South Pacific Convergence Zone (SPCZ). In JJA,
there are significant dry biases over India, and wet biases are even more prominent over
the Indian Ocean and Western Pacific Ocean. Other studies also noted the systematic dry
precipitation biases over the Maritime Continent in different versions of the HadGEM model
(Neale and Slingo, 2003; Schiemann et al., 2014; Johnson et al., 2015).

How sensitive is the tropical Indo-Pacific circulation and precipitation in the model to
SST changes in the Maritime Continent, the Pacific Ocean and the Indian Ocean?

In the Maritime Continent SST perturbation experiments, we find that area-averaged local
precipitation responses are linear for all seasons. In the MC+1K and MC+0.5K experiments,
warmer SST over the Maritime Continent enhance the local precipitation and reduce the
precipitation over the western Pacific and western Indian Oceans, consistent with Walker
Circulation responses. The MC-1K experiments shows opposite local and remote precipitation
responses compared to the MC+1K experiment. The remote precipitation responses to
perturbing Maritime Continent SST are not linear in the Pacific and Indian Ocean. The
seasonal mean remote precipitation responses do not vary much across seasons in the Pacific
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Ocean. Whereas in the Indian Ocean, a perturbation of the Maritime Continent SST results in
a larger remote precipitation response during the JJA season than in other seasons.

On the other hand, the MC+1K experiment also produces even less precipitation over
some land areas in the Maritime Continent, especially over Sumatra and Borneo. This may be
because of reduced land-sea contrast over this region in this experiment.

The CTPO perturbation experiments result in a non-linear local precipitation response. In
terms of remote responses over the Maritime Continent in these experiments, the results show
that warm SST anomalies in the central Pacific resulted in reduced rainfall over the Maritime
Continent (and vice versa, to a lesser extent).

In the WTIO perturbation experiments, local precipitation response is of the same sign as
the SST perturbations, whereas the remote precipitation response in the Maritime Continent is
opposite in sign. This shows that the WTIO-1K experiments results in reduced precipitation
over the WTIO and increased precipitation over the Maritime Continent compared to the
control run.

The local and remote precipitation responses to SST perturbations in these experiments
mainly result via a response in the Walker Circulation. We also find that these experiments
also alter the local Hadley Circulations over the Maritime Continent and the global Hadley
circulation.

The non-linear precipitation responses in the Maritime Continent, CTPO and WTIO per-
turbation experiments may be due to the non-linearity in the Clausius-Clapeyron relationship
as well as the shift of precipitation between different tropical regions depending on changes
in relative SSTs.

How do these sensitivity experiments alter the atmospheric response to ENSO and
IOD?

The interannual localised precipitation response over the perturbation regions is consistent
with the sign of climatological mean precipitation response, whereby an increase in local SST
will increase the local precipitation. For the MC+1K experiment, El Niño years show the
biggest increment in precipitation with respect to the control run, while conversely MC-1K
experiment have a smaller reduction in rainfall with respect to the control run in El Niño
years.

However, the remote precipitation responses over the Maritime Continent in the CTPO
perturbation experiments are more complicated with some years showing opposite-signed
responses compared to the climatological mean precipitation response. The CTPO+2K
experiment simulates less precipitation over the Maritime Continent compared to the control
run, consistent with the climatological mean precipitation response, apart from 3 years (2007,
2008 and 2010). 2007 and 2010 are La Niña years, during which the Maritime Continent
generally receives above normal rainfall. This suggests that ENSO variability has some impact
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on the Maritime Continent precipitation and the SST perturbation impacts vary according to
ENSO phase.

Both positive and negative IOD composites have similar biases, for example the dry biases
in India and the Maritime Continent, and the wet biases in the SPCZ, west Pacific (westerly
biases) and Indian Ocean (easterly biases). In the WTIO+1K and WTIO-1K experiments,
the local precipitation response is of the same sign as the SST perturbations, whereas in the
Maritime Continent the remote precipitation response is of the opposite sign in both phases of
the IOD, consistent with climatological local and remote precipitation responses. In these
experiments, there are only four positive IOD and negative IOD events, limiting the sample
size, hence no significant changes are identified in the interannual variability of the Maritime
Continent precipitation responses relating to IOD events.

How does the sensitivity of the seasonal mean climate and climate variability in the
tropics to SST perturbations compare to the relationships found in the coupled models
in Chapter 4?

The area-averaged precipitation remote responses over the Maritime Continent in the CTPO
and WTIO warm anomalies experiments are somewhat comparable to the regression coef-
ficients between the Maritime Continent mean-state rainfall and CTPO and WTIO SSTs in
Chapter 4. This indicates that the remote CTPO and WTIO SST biases in the CMIP5 coupled
models contribute to, and could plausibly cause, the precipitation biases over the Maritime
Continent.

5.2 Limitations

In Chapter 3, we show that the CMIP5 AMIP model performance at simulating the mean
climate over the Maritime Continent is largely unrelated to the resolution of atmospheric
models. As these 28 AMIP models are diverse GCMs in many ways, we further compare
between model pairs from the same institution with different resolution. The model pairs
comparison shows that three out of four models with lower resolution perform better than
their corresponding higher resolution models in most months. The remaining 20 models lack
a different resolution simulation for comparison which may change the relative percentage
of this comparison result if all models are considered. Running more versions of the same
model with different resolutions in the next CMIP6, for example in High Resolution Model
Intercomparison Project (HighResMIP), will account for this limitation.

We performed hierarchical clustering analysis of the Maritime Continent annual cycle
precipitation to characterize model systematic biases in the AMIP runs. The cluster analysis
is robust when the biases are distinct as found in the AMIP runs, however when performed
on the coupled historical runs, all clusters have a large spread in PCC values and no distinct
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systematic biases are found from the hierarchical clustering analysis (not shown). This may
be due to coupled runs’ Maritime Continent annual cycle precipitation having a more diverse
range of biases. There are also alternative methods to characterize model systematic bias such
as Empirical Orthogonal Functions (EOF) analysis. While cluster analysis only allows models
to be grouped into only one cluster which is advantageous when we want to identify model
characteristics, EOF analysis is efficient in retaining as much as possible of the variation
present in the dataset with the fewest possible degrees of freedom.

We briefly discussed the parameterization of cumulus convection as a possible source
of common error between global monsoon biases and local Maritime Continent biases in
Section 2.6. Our results suggested that the convection scheme can be important for CMIP5
AMIP model simulation of the annual cycle of precipitation in the Maritime Continent.
However, it is difficult to disentangle effects of different convection schemes and the biases
they impose on rainfall; in particular, model systems tend not to be designed to allow easy
swapping of different convection schemes in the model code.

The CMIP5 nominal period for AMIP simulations is 30 years from 1979 to 2008. Although
30-year simulations are sufficient for seasonal climatology analyses, there were only four
negative IOD and five positive IOD events identified from 1979 to 2008. This limitation is
also relevant to the teleconnection study in the SST sensitivity experiments where there were
only four negative IOD and four positive IOD events from 1982 to 2012. Increasing the length
of integration would allow a greater sample of IOD events in positive and negative phases to
test the robustness of our composite analysis.

In exploring the relationship between the Maritime Continent precipitation biases and
remote SST biases, we have considered only the WTIO and CTPO regions as the locations
of the SST biases. However, as shown in Fig. 3.1 and Fig. 3.2, there are also biases in other
parts of the ocean basins that may impact on or be impacted by the precipitation anomalies
over the Maritime Continent. Neale and Slingo (2003) showed that warm anomalies over the
Maritime Continent affects the stationary waves over the Euro-Atlantic region via response of
the global circulation to La Niña.

In Chapter 5, we performed a suite of SST sensitivity experiments using the HadGEM3-
GA6 atmosphere-only model to investigate the impact of SST changes on seasonal mean
climate and interannual variability. For the Maritime Continent perturbation experiments,
we had performed it on the domain from 20°S to 20°N and 80°E to 160°E to be consistent
with the domain of the Maritime Continent defined in previous chapters. A caveat for these
experiments is the Maritime Continent perturbation domain is relatively larger compared to
the WTIO and CTPO region. Apart from that, the Gaussian spatial filter that was applied to
smooth the edges of the perturbation domains needs some modification as the responses are
crude over the sharp edges of the perturbation domains.

For the SST sensitivity experiments, we chose to run these experiments using an atmosphere-
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only framework with prescribed SSTs, because an AMIP experiment is suitable for testing
causality in the relationships between SST anomalies and precipitation anomalies. While
an AMIP experiment is advantageous in this respect, the AMIP experiment design neglects
feedbacks between the atmosphere and ocean. The SST-forced response in the AMIP frame-
work can be different from the coupled response in coupled model simulations. For example
in the coupled model, during cloud free conditions or when there is large scale subsidence,
the solar fluxes will warm the ocean, whereas, precipitation accompanied by cloud cover
reduces shortwave solar radiation and cools the SST. These feedbacks are missing in the
AMIP framework.

5.3 Future work

Cluster analysis performed in Chapter 3 to characterize model systematic biases resulted
in two clusters with distinct fidelity at representing the annual cycle of precipitation over
the Maritime Continent for the AMIP experiment. Although there are limitations to this
method as stated in Section 5.2, this method is also robust and suitable for characterizing the
SST biases in Chapter 4. Cluster analysis of the seasonal mean SST could be performed to
compare if the resulting clusters produce similar precipitation and low-level wind biases as in
Chapter 4.

As stated in Section 5.2, an extension to this work could include expanding the analysis
in this study to other parts of the ocean basins such as the Atlantic Ocean. While we have
assessed the remote responses over the tropical Indo-Pacific to changes over the Maritime
Continent, the assessment on the impact of model biases in the Maritime Continent on
extratropical variability and teleconnections would be a good addition to the current study.

The focus of this study is to investigate the seasonal climate, annual cycle and interannual
variability over the Maritime Continent. The interactions between different time-scales of
variability show that diurnal and intraseasonal timescales affect the seasonal timescale and
vice versa (Moron et al., 2015; Slingo et al., 2003). There is much scope in the future work
for further understanding of the interactions between different timescales of variability over
the Maritime Continent in the CMIP5 and HadGEM3-GA6.

As stated in Section 5.2, the Maritime Continent perturbation domain in this study is
relatively large compared to the CTPO and WTIO regions. The same experiment could
be performed over a smaller region of the Maritime Continent (for example a rectangular
area of 10°S-10°N and 90°E-150°E) to compare if the perturbation over a smaller region
produces similar results to the simulation in this thesis. Gaussian smoothing with σ = 3
could be applied over the Maritime Continent to reduce the crudeness over the edges of the
perturbation domain. In addition to experiments in this thesis, further experimentation to
perturb the CTPO and WTIO simultaneously in HadGEM3-GA6 could provide more insight
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on the influence of SSTs in these different regions on Maritime Continent precipitation.
As noted in Section 5.2, running longer simulations of the control run and SST sensitivity

experiments mean that there will be a larger number of different phases of IOD events as
well as ENSO events. With the increasing number of ENSO events, further analysis of the
ENSO teleconnection to the Maritime Continent could be divided into El Niño Modoki and
the conventional El Niño, since other studies have found that these two types of ENSO have
different impacts on the Maritime Continent (As-Syakur et al., 2016; Salimun et al., 2014;
Feng et al., 2010). We could also divide the IOD and ENSO events to pure IOD and pure
ENSO events and the years where both IOD and ENSO occurred concurrently. Alternatively,
other Niño region indices could be used to classify the ENSO events as a comparison to the
Niño 3.4 indices used in this study. It would also be beneficial to separate the land-only and
sea-only impacts as there are spatial differences over the Maritime Continent and the sea-only
teleconnection dominates the total responses as shown in Section 3.5. These differences in
the land-only and sea-only teleconnections are related to land breezes and sea breezes.

As stated in Section 5.2, performing the same SST perturbation experiment using the
MC-KPP type (Multi-Column K Profile Parameterization ocean) mixed-layer ocean model
(MetUM-GOML) or coupled version of the HadGEM3 model will complement the current
study. The impacts of air-sea coupling could be further investigated by assessing the rela-
tionship between Maritime Continent precipitation biases and tropical SST biases using the
atmosphere-ocean mixed layer coupled model and a fully coupled version of the HadGEM3
model, and compare those experiments to the AMIP experiments. The main advantage of
MetUM-GOML over a fully dynamically coupled ocean model is that it can be run much
faster and has a higher vertical resolution (Hirons et al., 2015). These experiments will shed
greater light into the relationship between Maritime Continent precipitation anomalies and
tropical SST anomalies.

Possible improvement to the climate model simulation of the Maritime Continent

Reflecting on the work done in this thesis, a few recommendations are given to improve model
simulations over the Maritime Continent.

Our analyses on AMIP models in Chapter 3 highlights the importance of global mon-
soon and circulation simulations, which are significantly associated with the mean climate
simulation biases at Maritime Continent. This result shows that models that better capture
the global monsoon and local Hadley circulation will also have a better representation of
the precipitation pattern over the Maritime Continent region. Therefore, we recommend to
focus efforts on improving the simulation of global monsoon and circulation in GCMs to
improve simulation of the Maritime Continent mean climate. As our study also shows that
biases in precipitation and circulation during ENSO and IOD events mainly result from the
climatological mean state biases, better representation of global monsoon and circulation is
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also expected to improve the simulation of ENSO and IOD teleconnections with the Maritime
Continent, in addition to improving the seasonal mean climate.

Furthermore, one possible source of common error between global monsoon biases and
local Maritime Continent biases are errors associated with the parameterization of cumulus
convection. As noted in Section 5.2, it is difficult to disentangle effects of different convection
schemes and the biases they impose on rainfall when examining the multimodel framework.
Therefore, we recommend performing experiments with the control run, and experimenting
with modifying the convection scheme, and switching off convective parameterization, e.g. at
suitably high horizontal resolution using the same model for comparison.

In Chapter 4, we identified the central Pacific and western Indian Ocean as the key regions
that exhibit the most surface temperature correlation with the Maritime Continent mean-state
precipitation in the coupled CMIP5 models. We then performed SST perturbation experiments
in Chapter 5 to test the model sensitivity to SST anomalies in these regions. Although we do
not examine the improvement of simulation over the Maritime Continent in these perturbation
experiments, the results from these experiments suggest that remote SST biases over the
central Pacific and western Indian Ocean in the CMIP5 coupled models could plausibly cause
the precipitation biases over the Maritime Continent. This result shows that cold SST biases
in the central Pacific and western Indian Ocean lead to strengthening of the easterly trade
winds and Walker circulation, resulting in anomalous ascent and thus enhanced rainfall over
the Maritime Continent. Enhanced rainfall over the Maritime Continent will also lead to
stronger low-level convergence. This is consistent with Sperber et al. (2013) study that most
of the CMIP3 and CMIP5 coupled models tend to overestimate the mean precipitation in
the Maritime Continent. Our result suggests that the precipitation bias over the Maritime
Continent is more likely due to SST biases over these remote regions. Thus, reducing SST
biases in coupled models will likely lead to improvement in the simulation of the Maritime
Continent climate.
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