Search from over 60,000 research works

Advanced Search

Interaction of convective organisation with monsoon precipitation, atmosphere, surface and sea: the 2016 INCOMPASS field campaign in India

[thumbnail of Turner_et_al-2019-Quarterly_Journal_of_the_Royal_Meteorological_Society.pdf]
Restricted to Repository staff only
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Turner, A. G. orcid id iconORCID: https://orcid.org/0000-0002-0642-6876, Bhat, G. S., Martin, G. M., Parker, D. J., Taylor, C.M., Mitra, A. K., Tripathi, S. N., Milton, S., Rajagopal, E. N., Evans, J. G., Morrison, R., Pattnaik, S., Sekhar, M., Bhattacharya, B. K., Madan, R., Govindankutty, M., Fletcher, J. K., Willetts, P. D., Menon, A. orcid id iconORCID: https://orcid.org/0000-0001-9347-0578, Marsham, J. H., Hunt, K. M. R. orcid id iconORCID: https://orcid.org/0000-0003-1480-3755, Chakraborty, T., George, G., Krishnan, M., Sarangi, C., Belusic, D., Garcia-Carreras, L., Brooks, M., Webster, S., Brooke, J. K., Fox, C., Harlow, R. C., Langridge, J. M., Jayakumar, A., Boeing, S. J., Halliday, O., Bowles, J., Kent, J., O'Sullivan, D., Wilson, A., Woods, C., Rogers, S., Smout-Day, R., Tiddeman, D., Desai, D., Nigam, R., Paleri, S., Sattar, A., Smith, M., Anderson, D., Bauguitte, S., Carling, R., Chan, C., Devereau, S., Gratton, G., MacLeod, D., Nott, G., Pickering, M., Price, H., Rastall, S., Reed, C., Trembath, J., Woolley, A., Volonté, A. orcid id iconORCID: https://orcid.org/0000-0003-0278-952X and New, B. (2020) Interaction of convective organisation with monsoon precipitation, atmosphere, surface and sea: the 2016 INCOMPASS field campaign in India. Quarterly Journal of the Royal Meteorological Society, 146 (731). pp. 2828-2852. ISSN 1477-870X doi: 10.1002/qj.3633

Abstract/Summary

The INCOMPASS field campaign combines airborne and ground measurements of the 2016 Indian monsoon, towards the ultimate goal of better predicting monsoon rainfall. The monsoon supplies the majority of water in South Asia, but forecasting from days to the season ahead is limited by large, rapidly developing errors in model parametrizations. The lack of detailed observations prevents thorough understanding of the monsoon circulation and its interaction with the land surface: a process governed by boundary‐layer and convective‐cloud dynamics. INCOMPASS used the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe‐146 aircraft for the first project of this scale in India, to accrue almost 100 h of observations in June and July 2016. Flights from Lucknow in the northern plains sampled the dramatic contrast in surface and boundary‐layer structures between dry desert air in the west and the humid environment over the northern Bay of Bengal. These flights were repeated in pre‐monsoon and monsoon conditions. Flights from a second base at Bengaluru in southern India measured atmospheric contrasts from the Arabian Sea, over the Western Ghats mountains, to the rain shadow of southeast India and the south Bay of Bengal. Flight planning was aided by forecasts from bespoke 4 km convection‐permitting limited‐area models at the Met Office and India's NCMRWF. On the ground, INCOMPASS installed eddy‐covariance flux towers on a range of surface types, to provide detailed measurements of surface fluxes and their modulation by diurnal and seasonal cycles. These data will be used to better quantify the impacts of the atmosphere on the land surface, and vice versa. INCOMPASS also installed ground instrumentation supersites at Kanpur and Bhubaneswar. Here we motivate and describe the INCOMPASS field campaign. We use examples from two flights to illustrate contrasts in atmospheric structure, in particular the retreating mid‐level dry intrusion during the monsoon onset.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/85697
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Royal Meteorological Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar