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ISOMETRIC STUDY OF WASSERSTEIN SPACES

– THE REAL LINE

GYÖRGY PÁL GEHÉR, TAMÁS TITKOS, AND DÁNIEL VIROSZTEK

Abstract. Recently Kloeckner described the structure of the isometry group of the quadratic
Wasserstein space W2(Rn). It turned out that the case of the real line is exceptional in the
sense that there exists an exotic isometry flow. Following this line of investigation, we compute
Isom (Wp(R)), the isometry group of the Wasserstein space Wp(R) for all p ∈ [1,∞) \ {2}. We
show that W2(R) is also exceptional regarding the parameter p: Wp(R) is isometrically rigid if
and only if p 6= 2. Regarding the underlying space, we prove that the exceptionality of p = 2
disappears if we replace R by the compact interval [0, 1]. Surprisingly, in that case, Wp([0, 1]) is
isometrically rigid if and only if p 6= 1. Moreover, W1([0, 1]) admits isometries that split mass, and
Isom (W1([0, 1])) cannot be embedded into Isom (W1(R)).

Contents

1. Introduction 1
1.1. Motivation and State of the Art 1
1.2. Main results, content of the paper 2
1.3. Technical preliminaries 3
2. Isometric study of Wp([0, 1]) 4
2.1. p = 1 – Isometries splitting mass 5
2.2. p > 1 – Isometric rigidity 8
3. Isometric study of Wp(R) 11
3.1. p = 1 – Isometric rigidity 11
3.2. p > 1, p 6= 2 – Characterization of isometric embeddings 16
3.3. p = 2 – A functional analytic description of the exotic flow 20
References 22

1. Introduction

1.1. Motivation and State of the Art. Given a complete and separable metric space X, one
defines its Wasserstein space as the collection of sufficiently concentrated Borel probability mea-
sures endowed with a metric which is calculated by means of optimal transport (see the precise
definitions in Subsection 1.3). This notion has strong connections to many flourishing areas in
pure and applied mathematics including probability theory [4, 5], theory of (stochastic) partial
differential equations [10, 11], geometry of metric spaces [16, 19, 21], machine learning [1, 20], and
many more. Besides of these connections, the p-Wasserstein space itself is an interesting object,
being a measure theoretic analogue of Lp spaces [13].
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2 GYÖRGY PÁL GEHÉR, TAMÁS TITKOS, AND DÁNIEL VIROSZTEK

When working in a metric setting, a natural question arises: can we compute the group of
isometries? The answer is known for various concrete metric spaces. However, the problem about
the isometric embedding semigroup is usually incomparably more difficult, hence an answer is
known only for a few cases. Classical examples from functional analysis include the Banach–
Lamperti theorem [15] which describes the semigroup of all linear isometric embeddings of Lp

spaces, or the Banach–Stone theorem which describes the group of all linear isometries of the
Banach space of all continuous functions over a compact Hausdorff space. We now recall some
more recent examples, concentrating on those where the metric space consists of Borel probability
measures. The common theoretical importance of all the forthcoming metrics is that they metrise
the weak convergence of measures. Molnár proved in [18] that the space of all Borel probability
measures over R endowed with the Lévy metric is isometrically rigid, that is, each isometry is
a push-forward map induced by an isometry of the underlying space R. This result has been
generalised for separable real Banach spaces in [8]. For a more detailed overview of similar results
we refer the reader to the survey [25], where the case of the Kolmogorov-Smirnov [6] and the
Kuiper distances [7] are also discussed.

Bertrand and Kloeckner wrote a series of papers [2, 3, 12, 13, 14] about the isometry groups of
quadratic Wasserstein spaces over various metric spaces. Here we only recall one of Kloeckner’s
results [12, Theorem 1.1] in which he described the isometry group of the quadratic Wasserstein
space over R, and showed the surprising fact that this space admits so-called exotic isometries
whose action is wild in a sense.

We would like to point out that in all of the above results about measures the assumption of
bijectivity of the distance preserving maps was crucial in order to obtain these descriptions. In
the present paper we continue our study on the (not necessarily bijective) isometric embeddings
of Wasserstein spaces, which we started in the recent paper [9], where we provided a complete
description for the case of the discrete metric space.

1.2. Main results, content of the paper. Kloeckner proved in [12] that the isometric structure
of W2(R) is exceptional among W2(Rn) spaces. Namely, there exists an exotic isometry flow of
W2(R). Our aim here is to show that W2(R) is exceptional regarding the parameter p as well. It
turns out that exceptionality of p = 2 disappears if we replace R by [0, 1]. Surprisingly, in that
case p = 1 is exceptional. The main result of this paper is to get the full picture in the case of the
real line. That is, we compute Isom (Wp(R)), the isometry group of the Wasserstein space Wp(R)
for all p ∈ [1,∞) \ {2}, see the table below, where C2 denotes the two-element group.

Isom(Wp([0, 1]))
(Isometric rigidity)

Isom(Wp (R))
(Isometric rigidity)

p = 1
C2 × C2

(not rigid)
Isom(R)
(rigid)

p > 1, p 6= 2
C2

(rigid)
Isom(R)
(rigid)

p = 2
C2

(rigid)
Isom(R) n Isom(R)

(not rigid)

In fact, besides describing the isometry group, we are able to answer more challenging questions
regarding the isometric structure. Below we summarize our results, and briefly sketch the method.

Section 2 is devoted to handle the case of the interval. In Subsection 2.1 we characterize all iso-
metric embeddings of W1([0, 1]). Using the Harris inequality, we find an extremal metric property
which is satisfied exactly for those measures that are either Dirac masses, or convex combinations
of two Dirac masses concentrated on {0, 1}. Thus we are able to obtain that isometric embed-
dings are automatically surjective, and that the isometry group is the Klein group. Moreover,
W1([0, 1]) admits isometries that split mass, which is quite unusual for Wasserstein spaces (see the
aforementioned papers of Bertrand and Kloeckner). The case p > 1 is investigated in Subsection
2.2. Using induction and finding some extremal metric properties, we show that the set of all
measures supported on 2N points with equi-distributed weights are left invariant (N ∈ N). As
a consequence, we again have that every isometric embedding is necessarily surjective, and the
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isometry group consists of the push-forward maps induced by the two isometries of the interval.

The case of the real line is investigated in Section 3. The main result of Subsection 3.1 is that
every isometry of W1(R) is implemented by an isometry of R. The main issue here is to find
a metric characterization of Dirac masses which we do by examining when the diameter of the
metric midpoint set of two measures is minimal. This process naturally leads to the notions of
vertical and horizontal bisecting measures, and that of adjacent measures. As a consequence of
our description, we conclude that there are two isometries of W1([0, 1]) that cannot be extended
to an isometry of W1(R), even though W1([0, 1]) embeds naturally into W1(R). Furthermore, the
isometry group of W1(R) does not contain an isomorphic copy of the isometry group of W1([0, 1]).

In Subsection 3.2 we describe the general form of (not necessarily surjective) isometric embed-
dings of Wp(R) for p > 1 and p 6= 2. The key ingredients here are the Banach–Lamperti theorem
and an abstract Mankiewicz-type extension lemma. We show that every isometric embedding is
a composition of a push-forward of an isometry of R and a map which acts as a translation on
quantile functions. In Subsection 3.3 we take a closer look at Kloeckner’s result [12, Theorem
1.1] on Isom (W2(R)), in particular, at its exotic isometry flow. In [12], these exotic isometries
were defined explicitly on measures supported on at most two points, and it was proved that there
exists a unique extension to the whole space. However, the action of the exotic isometry flow was
not given explicitly on general measures. Our contribution here is to provide a functional analytic
description of this action on the whole W2(R) in terms of quantile functions, which involves the
well-known Volterra- and a composition operator.

1.3. Technical preliminaries. The aim of this subsection is to fix the terminology.

Definition 1.1 (Isometric embedding, isometry). Let
(
X, %

)
be a metric space. A self-map

f : X → X is called an isometric embedding if it preserves the distance, that is,

%(f(x), f(y)) = %(x, y) (x, y ∈ X).

Surjective isometric embeddings are termed isometries.

Note that isometric embeddings acting on X form a unital semigroup which we denote by
IsEmb(X). The symbol Isom(X) stands for the group of all isometries. We denote by P(X) the
set of all Borel probability measures on X.

Definition 1.2 (Coupling measure). Let X be a complete and separable metric space and let
µ, ν ∈ P(X). A Borel probability measure π on X ×X is said to be a coupling of µ and ν if the
marginals of π are µ and ν, that is, π (A×X) = µ(A) and π (X ×B) = ν(B) for all Borel sets
A,B ⊆ X. The set of all couplings is denoted by Π(µ, ν).

By means of couplings, in other words transport plans, we can define the p-Wasserstein space and
the corresponding p-Wasserstein distance. For more details we refer the reader to the fundamental
works of Villani [23, 24].

Definition 1.3 (p-Wasserstein space). Let
(
X, %

)
be a complete and separable metric space, and

p ≥ 1 be a parameter. The p-Wasserstein space Wp(X) is the set of all µ ∈ P(X) that satisfy∫
X
%(x, x̂)p dµ(x) <∞

for some (hence all) x̂ ∈ X, endowed with the p-Wasserstein distance

dWp (µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

%(x, y)p dπ(x, y)

) 1
p

.

In words, the p-Wasserstein space Wp(X) is the set of all probability distributions that have
finite moment of order p, endowed with the p-Wasserstein metric dWp . We remark that dWp

metrizes the weak convergence and is sensitive to large distances in X. Clearly, the embedding of
X as Dirac masses

ι : X →Wp(X), ι(x) := δx
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is distance preserving. Moreover, isometries of the underlying space appear in Isom(Wp(X)) by
means of a natural group homomorphism given in (1.1) below. Throughout this paper the set of
all Dirac masses is denoted by ∆(X).

Definition 1.4 (Push-forward). For a measurable map g : X → X the induced push-forward map
g# : P(X)→ P(X) is defined by(

g#(µ)
)
(A) = µ(g−1[A]) (A ⊆ X Borel set, µ ∈ P(X))

where g−1[A] = {x ∈ X | g(x) ∈ A}. We call g#(µ) the push-forward of µ with g. If ψ ∈ Isom(R),
then the push-forward map ψ# is an isometry of Wp(X), and the embedding

(1.1) #: Isom(X)→ Isom (Wp(X)) , ψ 7→ ψ#

is a group homomorphism. Isometries of the form ψ# are called trivial isometries.

A special feature of Wasserstein spaces on the real line is that the Wasserstein distance of
measures can be calculated by means of their cumulative distribution and quantile functions.

Definition 1.5 (Cumulative distribution and quantile functions). In case of
(
X, %

)
=
(
R, | · |

)
, the

cumulative distribution function of a measure µ ∈ P(R) is defined as

Fµ : R→ [0, 1], x 7→ Fµ(x) := µ ((−∞, x]) .

We use the shorthand notation Fµ(x−) := limt↗x Fµ(t) for the limit from the left. The quantile
function of µ (or the right-continuous generalized inverse of Fµ) is denoted by F−1

µ and is defined
as

F−1
µ : (0, 1)→ R, y 7→ F−1

µ (y) := sup {x ∈ R |Fµ(x) ≤ y} .

In case of
(
X, %

)
=
(
[0, 1], | · |

)
we shall handle the cumulative distribution and the quantile

functions of a µ ∈ P([0, 1]) as [0, 1]→ [0, 1] functions. The quantile function in this case is defined
by right-continuity at 0 and it takes the value 1 at 1.

Note that the cumulative distribution function of a µ ∈ P([0, 1]) is monotone increasing, contin-
uous from the right and take the value 1 at the point 1. Conversely, any function F : [0, 1]→ [0, 1]
satisfying the above three conditions is the cumulative distribution function of some Borel prob-
ability measure on [0, 1]. Consequently, for any measure µ ∈ P([0, 1]), the function F−1

µ is a

cumulative distribution function of some measure ν ∈ P([0, 1]), that is, Fν = F−1
µ .

As was mentioned above, in our setting the p-Wasserstein distance can be expressed in terms of
the cumulative distribution and quantile functions. Namely, Vallender proved in [22] that

(1.2) dW1 (µ, ν) =

∫ ∞
−∞
|Fµ(x)− Fν(x)| dx =

∫ 1

0

∣∣F−1
µ (x)− F−1

ν (x)
∣∣ dx

for all µ, ν ∈ W1(R). Moreover, Vallender’s formula can be generalized in the following way:

(1.3) dWp (µ, ν) =

(∫ 1

0

∣∣F−1
µ − F−1

ν

∣∣p dt

) 1
p

(p > 1, µ, ν ∈ Wp(R)) ,

see for instance [24, Remarks 2.19]. These two formulae will play an important role in the sequel.

2. Isometric study of Wp([0, 1])

Knowing Kloeckner’s result on the exotic isometry flow inW2(R), a natural question arises: how
does the isometry group look like when one replaces R by the compact interval [0, 1]. Investigating
this problem we found on the one hand that exceptionality of p = 2 disappears, and instead
the case p = 1 becomes exceptional. On the other hand, it turned out that some observations
regarding W1([0, 1]) can be used when dealing with W1(R), thus we decided to start with the case
of Wp([0, 1]) spaces. The aim of this section is to describe the structure of all (not necessarily
surjective) distance preserving self-maps of Wp([0, 1]). In fact, we will prove that every isometric
embedding is automatically surjective, thus Isom (Wp([0, 1])) = IsEmb (Wp([0, 1])).
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2.1. p = 1 – Isometries splitting mass. We start by naming two maps that arise naturally.

Definition 2.1 (Reflection in W1([0, 1])). The isometry group of [0, 1] is isomorphic to C2, and is
generated by r : [0, 1] → [0, 1], r(x) := 1 − x. According to (1.1), the push-forward map r# is an
isometry of W1([0, 1]) which we call reflection.

Definition 2.2 (Flip operation). The map

j : W1([0, 1])→W1([0, 1]), µ 7→ j (µ) , Fj(µ) = F−1
µ

is called the flip operation. The map j is surjective, and thus we see from (1.2) that j ∈
Isom(W1([0, 1])).

We remark that the flip operation does not send Dirac masses to Dirac masses in general, which
is quite unusual among isometries of Wasserstein spaces. Indeed,

j (δt) = tδ0 + (1− t)δ1 (0 ≤ t ≤ 1).

The essential part of our argument will be to show that the flip operation and reflection
generate the semigroup IsEmb(W1([0, 1])). As these two maps are bijective, it will follow that
IsEmb(W1([0, 1])) = Isom(W1([0, 1])) = C2 × C2, the Klein group.

When describing the form of isometric embeddings, it is a natural idea to identify those subsets
of the space in question that can be characterized by means of certain extremal metric properties.
Our first observation is that

diam(W1([0, 1])) = sup

{∫ 1

0
|Fµ(t)− Fν(t)| dt

∣∣∣µ, ν ∈ W1([0, 1])

}
= 1,

and this supremum is attained if and only if {µ, ν} = {δ0, δ1}. Therefore,

{δ0, δ1} = {ϕ(δ0), ϕ(δ1)} (ϕ ∈ IsEmb(W1([0, 1]))) .

Note also that the triangle inequality dW1 (δ0, δ1) ≤ dW1 (δ0, µ) + dW1 (µ, δ1) is saturated for every
measure µ ∈ W1([0, 1]). Indeed,

dW1 (δ0, µ) + dW1 (µ, δ1) =

∫
[0,1]
|0− y| dµ(y) +

∫
[0,1]
|x− 1| dµ(x) = 1

holds for all µ ∈ W1([0, 1]). Let us define the set

St :=
{
µ ∈ W1([0, 1])

∣∣ dW1 (δ0, µ) = t
}

(t ∈ [0, 1]),

which we call the t-slice. Clearly, if ϕ ∈ IsEmb (W1([0, 1])) with ϕ (δ0) = δ0, then ϕ (St) ⊆ St.
In the next Claim we characterize those elements in St that have maximal distance. The Harris

inequality plays an important role in our argument. We introduce the following notations for
functions F and G:

(F ∧G) (x) := min{F (x), G(x)} and (F ∨G) (x) := max{F (x), G(x)}.

Claim 2.3. Let 0 ≤ t ≤ 1. The t-slice St has diameter 2t(1− t). That is,

dW1 (ρ, σ) ≤ 2t(1− t) (ρ, σ ∈ St)

and

dW1 (ρ, σ) = 2t(1− t) ⇐⇒ {ρ, σ} = {(1− t)δ0 + tδ1, δt}.

Proof. The statement is trivial if t = 0 or t = 1. Let t ∈ (0, 1) and ρ, σ ∈ St be arbitrary but fixed.
By (1.2) we have

(2.1)

∫ 1

0
Fρ(x) dx =

∫ 1

0
Fσ(x) dx = 1− t.

First, we show that
∫ 1

0 (Fρ ∧ Fσ) (x) dx ≥ (1 − t)2 holds. As both Fρ and Fσ are monotone
increasing, we have

(Fρ(x)− Fρ(y)) (Fσ(x)− Fσ(y)) ≥ 0 (x, y ∈ [0, 1]) .
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Consequently,

(2.2)

∫ 1

0

∫ 1

0
(Fρ(x)− Fρ(y)) (Fσ(x)− Fσ(y)) dy dx ≥ 0,

which is equivalent to

(2.3)

∫ 1

0
Fρ(x)Fσ(x) dx ≥

∫ 1

0
Fρ(x) dx ·

∫ 1

0
Fσ(x) dx.

As 0 ≤ Fρ(x) ≤ 1 and 0 ≤ Fσ(x) ≤ 1, we have (Fρ ∧ Fσ) (x) ≥ Fρ(x)Fσ(x) for all x ∈ [0, 1].
Therefore, combining this with (2.1) and (2.3) we obtain

(2.4) (1− t)2 ≤
∫ 1

0
Fρ(x)Fσ(x) dx ≤

∫ 1

0
(Fρ ∧ Fσ) (x) dx.

Second, we prove that inequalities in (2.4) are equalities if and only if

{ρ, σ} = {(1− t)δ0 + tδ1, δt}.

Since both Fρ and Fσ are continuous from the right, so are the functions Fρ · Fσ and Fρ ∧ Fσ.
Therefore, by the equivalence of (2.2) and (2.3), the first inequality in (2.4) is saturated if and
only if we have

(2.5) Fρ(x) = Fρ(y) or Fσ(x) = Fσ(y) ((x, y) ∈ [0, 1)× [0, 1)) .

Moreover, the second inequality in (2.4) is saturated if and only if

Fρ(x)Fσ(x) = (Fρ ∧ Fσ) (x) (x ∈ [0, 1)) ,

which means that we have

(2.6) Fρ(x) ∈ {0, 1} or Fσ(x) ∈ {0, 1} (x ∈ [0, 1)) .

Notice that if any of the distribution functions Fσ and Fρ is constant on [0, 1), then by (2.1) its
value must be 1− t on [0, 1). Observe also that by (2.6) at most one of them is constant on [0, 1),
say Fσ is not. This means that we have Fσ(x) < Fσ(y) for some 0 ≤ x < y < 1. However by (2.5),
this implies Fρ(x̃) = Fρ(ỹ) for all 0 ≤ x̃ ≤ x and y ≤ ỹ < 1, and thus Fρ must be constant 1− t on
[0, 1), or equivalently, ρ = (1− t)δ0 + tδ1. It follows from (2.6) that Fσ(x) ∈ {0, 1} for all x ∈ [0, 1)
which means that σ must be a Dirac measure. By (2.1) we conclude σ = δt.

Now, using (1.2), we get on the one hand that

(2.7) dW1 (ρ, σ) =

∫ 1

0
|Fρ(x)− Fσ(x)| dx =

∫ 1

0
(Fρ ∨ Fσ) (x)− (Fρ ∧ Fσ) (x) dx.

On the other hand, we have

(2.8)

∫ 1

0
(Fρ ∨ Fσ) (x) + (Fρ ∧ Fσ) (x) dx =

∫ 1

0
Fρ(x) + Fσ(x) dx = 2(1− t).

Finally, combining (2.7) and (2.8) with inequality (2.4), we conclude that

dW1 (ρ, σ) = 2(1− t)− 2

∫ 1

0
(Fρ ∧ Fσ) (x) dx ≤ 2(1− t)− 2(1− t)2 = 2t(1− t)

with equality if and only if {ρ, σ} = {(1− t)δ0 + tδ1, δt}. The proof is complete. �

We remark here that Claim 2.3 roughly speaking describes the shape of W1([0, 1]), suggesting

that the action of a ϕ ∈ IsEmb(W1([0, 1])) on
{
δ0, δ 1

2

}
determines ϕ completely. This is indeed

the case and we make this precise as follows.
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δ0

δt

δ 1

2

δ1

(1− t)δ0 + tδ1

1

2
δ0 +

1

2
δ1

St S 1

2

Figure 1. The shape of the Wasserstein space W1([0, 1]).

Claim 2.4. Let ϕ : W1([0, 1]) → W1([0, 1]) be an isometric embedding such that ϕ(δ0) = δ0 and

ϕ
(
δ 1

2

)
= δ 1

2
. Then ϕ(µ) = µ for all µ ∈ W1([0, 1]).

Proof. Using Claim 2.3, we obtain

{ϕ ((1− t)δ0 + tδ1) , ϕ (δt)} = {(1− t)δ0 + tδ1, δt} (t ∈ [0, 1]).

In particular, ϕ (δ1) = δ1. As for all 0 < t < 1 we have

dW1

(
δt, δ 1

2

)
=
∣∣t− 1

2

∣∣ < 1
2 and dW1

(
(1− t)δ0 + tδ1, δ 1

2

)
= 1

2 ,

we get that ϕ (δt) = δt. Therefore it is enough to show that any measure µ ∈ W1([0, 1]) is
completely determined by its distances from Dirac masses. This can be seen in the following way:
by (1.2) we have

(2.9) dW1 (µ, δt) =

∫ t

0
Fµ(x) dx+

∫ 1

t
(1− Fµ(x)) dx (t ∈ [0, 1]),

hence

(2.10) lim
h↘0

dW1 (µ, δt+h)− dW1 (µ, δt)

h
= lim

h↘0

1

h

∫ t+h

t
(2Fµ(x)− 1) dx = 2Fµ(t)− 1

holds for all t ∈ [0, 1). The proof is done. �

Now we are in the position to present the main result of this subsection.

Theorem 2.5. Let ϕ ∈ IsEmb(W1([0, 1])), that is,

dW1 (ϕ(µ), ϕ(ν)) = dW1 (µ, ν) (µ, ν ∈ W1([0, 1])).

Then ϕ ∈ {idW1([0,1]), r#, j, r#j}, where r#j = jr#. Consequently, every isometric embedding is
surjective, that is,

IsEmb(W1([0, 1])) = Isom(W1([0, 1])).

Moreover, this isometry group is isomorphic to the Klein group C2 × C2.

Proof. Clearly, ϕ(δ0) ∈ {δ0, δ1} and it follows from Claim 2.3 that

ϕ
(
δ 1

2

)
∈
{
δ 1

2
, 1

2δ0 + 1
2δ1

}
.

Therefore we have four cases to check. If ϕ (δ0) = δ0 and ϕ
(
δ 1

2

)
= δ 1

2
, then by Claim 2.4

ϕ = idW1([0,1]). Next, if ϕ (δ0) = δ1 and ϕ
(
δ 1

2

)
= δ 1

2
, then the isometric embedding r#ϕ sends

δ0 to δ0 and δ 1
2

to δ 1
2
. Consequently, r#ϕ = idW1([0,1]) and ϕ = r#. Similarly, if ϕ (δ0) = δ1 and

ϕ
(
δ 1

2

)
= 1

2δ0 + 1
2δ1, then jϕ leaves δ0 and δ 1

2
invariant, which implies ϕ = j.
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r#(δ1)

r#(δt)

r#(δ 1

2

)

r#(δ0)

r#((1− t)δ0 + tδ1)

r#(
1
2
δ0 +

1
2
δ1)

r#(St)r#(S 1

2

)

j(δ1)

j((1− t)δ0 + tδ1)

j( 1
2
δ0 +

1

2
δ1)

j(δ0)

j(δt)

j(δ 1

2

)

j(St)j(S 1

2

)

Figure 2. The action of r# and j on W1([0, 1]), cf. Figure 1.

Finally, if ϕ (δ0) = δ0 and ϕ
(
δ 1

2

)
= 1

2δ0 + 1
2δ1, then r#jϕ and jr#ϕ are isometric embeddings

leaving both δ0 and δ 1
2

invariant. Therefore ϕ = jr# = r#j. �

We close this subsection by noting that the metric structure of W1([a, b]) is similar to that of
W1([0, 1]) for all a < b. Consequently, our method works for any compact interval. Consider
the function λa,b : [0, 1] → [a, b], λa,b(t) = a + (b − a)t and the following push-forward bijection:
ξa,b : W1([0, 1]) → W1([a, b]), ξa,b(µ) = λa,b#(µ). Notice that ϕ ∈ IsEmb (W1([a, b])) holds if and

only if (ξa,b)
−1 ◦ ϕ ◦ ξa,b ∈ IsEmb (W1([0, 1])), so

IsEmb (W1([a, b])) = Isom (W1([a, b])) = C2 × C2.

In the next subsection we continue by describing all isometric embeddings of the Wasserstein space
Wp([0, 1]) for parameters p > 1.

2.2. p > 1 – Isometric rigidity. Similarly to the case of p = 1, it turns out that every isometric
embedding is surjective. However, in contrast to the case p = 1, we prove isometric rigidity, that
is, Isom(Wp([0, 1])) is isomorphic to Isom([0, 1]) = C2 for p > 1.

Note that (1.3) and the strict convexity of the Lp-norm for p > 1 implies the following: for any
µ, ν ∈ Wp([0, 1]) and s ∈ [0, 1] there exists a unique measure γµ,ν(s) ∈ Wp([0, 1]) such that

dWp (µ, γµ,ν(s)) = s · dWp (µ, ν) and dWp (γµ,ν(s), ν) = (1− s) · dWp (µ, ν) ,

moreover, γµ,ν(s) is defined by the equation

F−1
γµ,ν(s) = (1− s)F−1

µ + sF−1
ν (s ∈ [0, 1]) .

Consequently, for any isometric embedding ϕ : Wp([0, 1])→Wp([0, 1]) we have the following com-
patibility equation:

ϕ (γµ,ν(s)) = γϕ(µ),ϕ(ν)(s) (µ, ν ∈ Wp([0, 1]), s ∈ [0, 1]) .

In particular, if ϕ leaves µ and ν fixed, then it leaves γµ,ν(s) fixed for all s ∈ [0, 1].
Note that γµ,ν is the unique geodesic parametrized by the unit interval [0, 1] between µ and ν.

We define the convex hull co(S) of a set S ⊆ Wp([0, 1]) as the closure of the set of all measures
with quantile functions of the form

N∑
j=1

αjF
−1
νj ,

N ∈ N, {(νj , αj)}Nj=1 ⊆ S × (0, 1],

N∑
j=1

αj = 1

 .

In other words, co(S) is the set of those measures whose quantile functions belong to the Lp-closed
convex hull of quantile functions of measures in S. Now we can generalize the above remark: if
an isometric embedding leaves every element of S invariant, then it leaves every element of co(S)
fixed, as well.

Similarly to the case p = 1, every ϕ ∈ IsEmb(Wp([0, 1])) satisfies {ϕ(δ0), ϕ(δ1)} = {δ0, δ1}.
Without loss of generality we assume from now on that

ϕ(δ0) = δ0 and ϕ(δ1) = δ1
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(otherwise we can work with r#ϕ). Set M0 := {δ0, δ1} and M1 := co (M0). Obviously, we have
M1 = ∆([0, 1]), and thus

(2.11) ϕ(δt) = δt (t ∈ [0, 1]).

Let us introduce the notation for any measure µ ∈ Wp([0, 1]) and any nonempty set H ⊆ Wp([0, 1])

distWp (µ,H) := inf
{
dWp (µ, ν)

∣∣ ν ∈ H}.
We are searching for elements of Wp([0, 1]) that can be characterized by means of extremal metric
properties. More precisely, in the next Claim we determine the maximizer of distWp(µ,M1).

Claim 2.6. For every measure µ ∈ Wp([0, 1]) we have

(2.12) distWp (µ,M1) ≤ 1
2 .

Moreover, distWp (µ,M1) = 1
2 , if and only if µ = 1

2 (δ0 + δ1).

Proof. The first statement of the claim easily follows from the fact that

(2.13) dpWp

(
µ, δ 1

2

)
=

∫
[0,1]

∣∣x− 1
2

∣∣p dµ(x) ≤
(

1
2

)p
(µ ∈ Wp([0, 1])).

As for the second statement, note that equality in (2.13) implies µ ({0, 1}) = 1. Consequently, if

dWp

(
µ, δ 1

2

)
= 1

2 , then µ = (1− α)δ0 + αδ1 for some α ∈ [0, 1]. Moreover, notice that

dpWp
((1− α)δ0 + αδ1, δ0) = α and dpWp

((1− α)δ0 + αδ1, δ1) = 1− α,

hence equality in (2.12) implies µ = 1
2 (δ0 + δ1). The following easy calculation shows that

distWp

(
1
2 (δ0 + δ1) ,M1

)
is indeed 1

2 :

dpWp
(1

2 (δ0 + δ1) , δt) = 1
2 (tp + (1− t)p)) for all t ∈ [0, 1].

This expression is strictly convex in t ∈ [0, 1] and has a unique minimizer t = 1
2 . The proof is

complete. �

1

F
−1

µ
(x)

t

1

1

1

2

F
−1

µ
(x)

a

b

s

1

Figure 3. Illustration for Claims 2.6 and 2.8.

The following corollary highlights the goal of the previous claim. Namely, if the largest distance
from a pointwise invariant set is attained uniquely, then that unique maximizer must be a fixed
point as well.

Corollary 2.7. If ϕ ∈ IsEmb (Wp([0, 1])) with ϕ (δ0) = δ0, then

ϕ
(

1
2δa + 1

2δb
)

= 1
2δa + 1

2δb (0 ≤ a ≤ b ≤ 1).

Proof. It is easy to see by considering the inverse distribution functions that

M2 := co
(
M1 ∪

{
1
2δ0 + 1

2δ1

})
=
{

1
2δa + 1

2δb

∣∣∣ 0 ≤ a ≤ b ≤ 1
}
.

Using Claim 2.6 and (2.11) we conclude that 1
2δ0 + 1

2δ1 is a fixed point of ϕ. Therefore ϕ acts
identically on M2. �
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As some kind of an induction step, in the following claim we identify the maximizers of the
distance from the set M2.

Claim 2.8. For every measure µ ∈ Wp([0, 1]) we have

dWp (µ,M2) ≤
(

1
2

)1+ 1
p ,

and dWp (µ,M2) =
(

1
2

)1+ 1
p if and only if µ = 3

4δ0 + 1
4δ1 or µ = 1

4δ0 + 3
4δ1.

Proof. By (1.3), we have

(2.14) dpWp

(
µ, 1

2δa + 1
2δb
)

=

∫ 1
2

0

∣∣F−1
µ (x)− a

∣∣p dx+

∫ 1

1
2

∣∣F−1
µ (x)− b

∣∣p dx.

Let us introduce the set

(2.15) Rs :=
{
µ ∈ Wp([0, 1])

∣∣∣F−1
µ

(
1
2

)
= s
}

(s ∈ [0, 1]) ,

A simple rescaling of Claim 2.6 gives that for any µ ∈ Rs we have

inf
a∈[0,1]

∫ 1
2

0

∣∣F−1
µ (x)− a

∣∣p dx = inf
a∈[0,s]

∫ 1
2

0

∣∣F−1
µ (x)− a

∣∣p dx ≤ 1
2

(
s
2

)p
,

and equality holds if and only if

F−1
µ (x) =

{
0 for x ∈

[
0, 1

4

)
s for x ∈

[
1
4 ,

1
2

) ,

in which case the minimizer is a = s
2 (see Figure 3). And similarly,

inf
b∈[0,1]

∫ 1

1
2

∣∣F−1
µ (x)− b

∣∣p dx ≤ 1
2

(
1−s

2

)p
and equality holds if and only if

F−1
µ (x) =

{
s for x ∈

[
1
2 ,

3
4

)
1 for x ∈

[
3
4 , 1
] ,

in which case the minimizer is b = s+1
2 . By (2.14), this means that

(2.16) dpWp
(µ,M2) = inf

0≤a≤b≤1
dpWp

(
µ, 1

2δa + 1
2δb
)
≤ 1

2

(
s
2

)p
+ 1

2

(
1−s

2

)p
(µ ∈ Rs)

with equality if and only if µ = 1
4δ0 + 1

2δs + 1
4δ1. By the strict convexity of x 7→ xp, the right hand

side of (2.16) is maximal if and only if s ∈ {0, 1}, and in both cases, the maximum value is
(

1
2

)p+1
.

The proof is done. �

Corollary 2.9. Let ϕ ∈ IsEmb(Wp([0, 1])) that leaves δ0 invariant. Then all measures of the form

µ = 1
4

∑4
j=1 δaj (where 0 ≤ a1 ≤ · · · ≤ a4 ≤ 1) are invariant under the action of ϕ.

Proof. With the same argument as in the previous corollary, one can see that we have either
ϕ
(

3
4δ0 + 1

4δ1

)
= 3

4δ0 + 1
4δ1 and ϕ

(
1
4δ0 + 3

4δ1

)
= 1

4δ0 + 3
4δ1, or the other way around. However, by

considering the distances from δ0, the latter is easily excluded. Now, set

M3 := co
(
M2 ∪

{
3
4δ0 + 1

4δ1,
1
4δ0 + 3

4δ1

})
,

and observe that

M3 =

1
4

4∑
j=1

δaj

∣∣∣ 0 ≤ a1 ≤ · · · ≤ a4 ≤ 1

 .

Since pointwise invariance of a set forces the pointwise invariance of its convex hull, the proof is
complete. �
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This procedure can be iterated: following this pattern, it can be shown that measures of the
form

µ = 1
2N

2N∑
j=1

δaj (0 ≤ a1 ≤ · · · ≤ a2N )

are left invariant under isometric embeddings fixing δ0. These measures form a dense subset
of Wp([0, 1]), thus every element of Wp([0, 1]) is left invariant by an isometric embedding fixing
δ0. We recall again that if ϕ(δ0) 6= δ0, then r#ϕ(δ0) = δ0, which forces r#ϕ = idWp([0,1]), or
equivalently, ϕ = r#. Now, we summarize the above observations and formulate the main result
of this subsection.

Theorem 2.10. Let p > 1 and let ϕ ∈ IsEmb(Wp([0, 1])), that is,

dWp (ϕ(µ), ϕ(ν)) = dWp (µ, ν) (µ, ν ∈ Wp([0, 1])).

Then we have the following two possibilities: either ϕ = idWp([0,1]), or ϕ = r#. Consequently,
every isometric embedding is surjective, that is,

IsEmb (Wp([0, 1])) = Isom (Wp([0, 1])) = C2.

As at the end of the previous subsection, one can examine the isometric embeddings ofWp([a, b])
using a map defined very similarly as ξa,b. One then obtains that all isometric embeddings are
bijective, and that there are only the two trivial isometries.

3. Isometric study of Wp(R)

We have seen that the structure of Isom (Wp([0, 1])) can be different for different parameters p,
and that IsEmb (Wp([0, 1])) = Isom (Wp([0, 1])) for all p. Our next goal is to examine isometries
and isometric embeddings of Wasserstein spaces over the real line. In contrast to the interval case,
here it will turn out that Isom (Wp(R)) ( IsEmb (Wp(R)). However, we will also see that the
structure of the isometry group can be again different for different parameters p, and that the
same holds for the semigroup IsEmb (Wp(R)). During our investigation, the parameters p = 1 and
p = 2 have to be handled separately.

As for the p = 2 case, we recall that the structure of Isom (W2(R)) has been described by
Kloeckner in [12]. In particular, Kloeckner showed that W2(R) admits non-trivial isometries,
moreover there exists a so-called exotic flow of isometries that does not even preserve the shape of
measures. We will discuss this exotic flow in detail in the last subsection.

3.1. p = 1 – Isometric rigidity. The goal of this subsection is to describe the isometry group of
W1(R). Namely, we prove that it admits only trivial isometries. One important difference between
the p = 1 and p > 1 cases is that the L1 norm is not strictly convex. Consequently, in W1(R)
the optimal transport plan between measures is not unique (let alone the geodesic curve). Thus
Kloeckner’s idea of characterizing Dirac masses by means of geodesics cannot be adapted for p = 1.
Actually, here the main difficulty is to find a metric characterization of Dirac masses. We start
with a definition.

Definition 3.1 (Metric midpoints). For µ, ν ∈ W1(R), µ 6= ν, the following set is called the metric
midpoint set of µ and ν:

M(µ, ν) :=
{
ξ ∈ W1(R)

∣∣∣ dW1(µ, ξ) = dW1(ξ, ν) = 1
2dW1(µ, ν)

}
.

We continue with proving a metric property of the metric midpoint set, during which we will
identify two special elements of M(µ, ν).

Claim 3.2. For µ, ν ∈ W1(R), µ 6= ν we always have

(3.1) 1
2dW1(µ, ν) ≤ diam (M(µ, ν)) ≤ dW1(µ, ν).

Proof. The second inequality is trivial by the triangle inequality, hence we shall only focus on the
first inequality. For the sake of brevity, we introduce the notation D := dW1(µ, ν) 6= 0. By a simple
geometric consideration it is obvious that D is exactly the Lebesgue measure of the Borel set

S :=
{

(x, y) ∈ R× [0, 1]
∣∣Fµ(x) ≤ y ≤ Fν(x) or Fν(x) ≤ y ≤ Fµ(x)

}
.
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Hence, there exist two numbers h ∈ (0, 1) and v ∈ R such that the following four sets have Lebesgue
measure D

2 :

S ∩ ((−∞, v)× [0, 1]) , S ∩ ((v,∞)× [0, 1]) , S ∩ (R× [0, h)) , S ∩ (R× (h, 1]) .

Let us define the sets

S1 := S ∩ ((−∞, v)× [0, h)) , S2 := S ∩ ((v,∞)× [0, h)) ,

S3 := S ∩ ((v,∞)× (h, 1]) , S4 := S ∩ ((−∞, v)× (h, 1]) ,

and denote the Lebesgue measures of these sets by α1, α2, α3 and α4, respectively. By the choice
of v and h we have

α1 = α3, α2 = α4, and α1 + α2 = α3 + α4 = D
2 .

From here we consider two cases. First, assume that α2 = α4 = 0. Suppose for a moment that
we have Fµ(v) < h (the case Fν(v) < h is handled similarly). Then by right-continuity we obtain
easily that Fµ(x) = Fν(x) for all v ≤ x < sup {x ∈ R |Fµ(x) < h}. Therefore by monotonicity of
Fµ, we can choose h to be Fµ(v). By doing so, we may assume without loss of generality from now
on that

Fµ(v) ≥ h and Fν(v) ≥ h.
Notice that since α4 = 0, we must have

(Fµ ∨ Fν) (v−) ≤ (Fµ ∧ Fν) (v).

Hence, the measures ξ and η defined in the following way are clearly in M(µ, ν) and their distance
is obviously D, which proves the inequality for this case:

Fξ(x) :=

{
Fµ(x) if x < v
Fν(x) if x ≥ v and Fη(x) :=

{
Fν(x) if x < v
Fµ(x) if x ≥ v .

Second, assume that α2 = α4 > 0. Notice that we cannot have both h ≤ Fµ(v) and h ≤ Fν(v),
since that would imply S2 = ∅. Similarly, having both Fµ(v−) ≤ h and Fν(v−) ≤ h would imply
S4 = ∅. Hence by symmetry we may assume without loss of generality that

Fµ(v) < h < Fν(v−).

Now, we define two measures ξµ,νv and ξµ,νh with their cumulative distribution functions:

(3.2) Fξµ,νv (x) :=

{
Fµ(x) if x < v
Fν(x) if x ≥ v

1

Fν

Fµ

v

1

Fξ
µ;ν

v

v

Figure 4. Fξµ,νv splits the area between Fµ and Fν vertically.

and

(3.3) Fξµ,νh
(x) :=


Fν(x) if x < F−1

ν (h)
h if F−1

ν (h) ≤ x < F−1
µ (h)

Fµ(x) if x ≥ F−1
µ (h)

.
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1

Fν

Fµ

h

1

F
−1

ν
(h) F

−1

µ
(h)

Fξ
µ;ν

h

h

Figure 5. Fξµ,νh
splits the area between Fµ and Fν horizontally.

It is obvious that F−1
ν (h) < v < F−1

µ (h), ξµ,νv , ξµ,νh ∈ M(µ, ν) and dW1(ξµ,νv , ξµ,νh ) = α1 + α3.
From here we verify that α1 = α3 ≥ α2 = α4 by the following geometric observation. We consider
the auxiliary rectangle

(
F−1
ν (h), F−1

µ (h)
)
× (Fµ(v), Fν(v)), and split it into four parts using the

horizontal and vertical lines corresponding to h and v, respectively, see Figure 6. Denoting the
area of these pieces by βi’s in accordance with αi’s (1 ≤ i ≤ 4), we obtain

(3.4) β1 ≤ α1, β2 ≥ α2, β3 ≤ α3, and β4 ≥ α4.

But obviously, depending on h we have either β4 ≤ β1, or β2 ≤ β3, which combined with the
previous inequalities completes the proof. �

h

v

1

α1

α3α4

Fν

Fµ

h

v

1

F
−1

ν (h) F
−1

µ (h)

Fξ
µ;ν

h

Fξ
µ;ν
v

Fµ(

Fν(v)

Figure 6. Partitioning the area between the graphs with vertical and horizontal
lines, and the auxiliary rectangle.

Definition 3.3 (Vertical and horizontal bisecting measures). If µ, ν ∈ W1(R) are measures such
that α2 = α4 > 0 with the above defined numbers, then the measures ξµ,νv and ξµ,νh defined in
(3.2)–(3.3) are called the vertical and horizontal bisecting measures of µ and ν, respectively.

We proceed with examining when the first inequality in (3.1) becomes an equality.

Definition 3.4 (Adjacent measures). Two different elements µ and ν of W1(R) are said to be
adjacent, in notation µ ∼ ν, if there exists an interval (a, b) ⊆ R such that

(1) µ|R\{a,b} = ν|R\{a,b} and

(2) µ
(
(a, b)

)
= ν

(
(a, b)

)
= 0.

Or equivalently,

(1’) Fµ|R\[a,b) ≡ Fν |R\[a,b) and
(2’) both Fµ|[a,b) and Fν |[a,b) are constant.
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Observe that for adjacent measures we have α2 = α4 > 0, hence the vertical and horizontal
bisecting measures are defined by Definition 3.3.

Claim 3.5. For any µ, ν ∈ W1(R), µ 6= ν the following statements are equivalent

(i) diam (M(µ, ν)) = 1
2dW1(µ, ν),

(ii) µ ∼ ν.

Moreover, if µ ∼ ν, then the diameter is attained only for the pair
{
ξµ,νv , ξµ,νh

}
.

Proof. We continue to use the notations of Claim 3.2. First, we prove the direction (i)=⇒(ii). As
D
2 = diam (M(µ, ν)) ≥ α1 + α3 ≥ α2 + α4, we immediately obtain α1 = α2 = α3 = α4 = D

4 .
Combining this with (3.4) gives

β1 ≤ D
4 , β2 ≥ D

4 , β3 ≤ D
4 and β4 ≥ D

4 ,

from which, by simple geometric considerations, we conclude βi = D
4 = αi for all i = 1, 2, 3, 4. In

particular, µ ∼ ν follows.
As for the reverse direction (ii)=⇒(i), we only need to observe that

Fη|R\[a,b] = Fµ|R\[a,b] = Fν |R\[a,b] (η ∈M(µ, ν)).

Indeed, elements of M(µ, ν) saturate the triangle inequality

dW1(µ, ν) = dW1(µ, η) + dW1(η, ν).

Hence by (1.2) we have Fµ ∧ Fν ≤ Fη ≤ Fµ ∨ Fν . Now, we basically reduced the problem to the
case of the interval, and thus the argument of Claim 2.3 can be applied with a simple rescaling.
In such a way one obtains

dW1(η1, η2) =

∫ b

a
|Fη1(t)− Fη2(t)|dt ≤ 1

2D (η1, η2 ∈M(µ, ν))

with equality if and only if {η1, η2} = {ξµ,νv , ξµ,νh }. �

Now, we are in the position to give a metric characterization of Dirac masses.

Claim 3.6. For a measure η ∈ W1(R) the following statements are equivalent

(i) η ∈ ∆(R),
(ii) for all n ∈ N there are measures µn, νn ∈ W1(R) such that

(a) µn ∼ νn,
(b) dW1(µn, νn) = n,
(c) η ∈ {ξµn,νnv , ξµn,νnh }.

Proof. Assume first that η = δt for some t ∈ R. Then the choices µn := δt− 1
2
n and νn := δt+ 1

2
n

(n ∈ N) obviously satisfy (ii). Therefore what remained to show is that it is impossible to have
η /∈ ∆(R) and (ii) at the same time. We shall prove this indirectly, so from now on we assume
that η /∈ ∆(R) fulfils (ii).

By definition, for all n ∈ N there exists an interval [an, bn) such that

Fµn |R\[an,bn) = Fνn |R\[an,bn) = Fη|R\[an,bn),

and that Fµn |[an,bn) and Fνn |[an,bn) are both constants. Set

αn := (Fµn ∧ Fνn) (an), and βn := (Fµn ∨ Fνn) (an).

Notice that (βn − αn)(bn − an) = n, hence bn − an ≥ n.

If η = ξµn,νnh , then Fη|[an,bn) is also constant with Fη(an) = αn+βn
2 . A simple geometric consid-

eration shows that in this case we have

dW1(η, δ0) ≥
∫ bn

an

|Fη(t)− Fδ0(t)|dt ≥ n
2 .

Therefore there exists a number N ∈ N such that

η = ξµn,νnv (n ≥ N).

Again by definition, for all n ≥ N we have that Fη is constant αn on
[
an,

1
2(an + bn)

)
, and

constant βn on
[

1
2(an + bn), bn

)
. As η is not a Dirac mass, we get that there is a maximal positive
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number sn ≥ bn−an
2 such that Fη is constant on both intervals

[
1
2(an + bn)− sn, 1

2(an + bn)
)

and[
1
2(an + bn), 1

2(an + bn) + sn
)
. Therefore there exists an infinite subset N of positive integers such

that for all j, k ∈ N , j 6= k we have[
aj ,

1
2(aj + bj)

)
∩
[

1
2(ak + bk), bk

)
= ∅

or [
ak,

1
2(ak + bk)

)
∩
[

1
2(aj + bj), bj

)
= ∅.

Keeping in mind that bn − an ≥ n (n ∈ N) gives that
{

1
2(aj + bj) | j ∈ N

}
is a set that clusters at

+∞ or −∞. Suppose it clusters at least at +∞. Then for large enough numbers j ∈ N one easily
concludes that

dW1(η, δ0) ≥
∫ 1

2 (aj+bj)

aj

|Fη(t)− Fδ0(t)| dt ≥ j
2 ,

which is a contradiction. If
{

1
2(aj + bj)

∣∣ j ∈ N} clusters only at −∞, then with a similar method
we conclude a contradiction. �

Now we are in the position to prove the main result of this subsection, which says that W1(R)
is isometrically rigid.

Theorem 3.7. Let ϕ : W1(R)→W1(R) be an isometry, that is, a bijection satisfying

dW1(ϕ(µ), ϕ(ν)) = dW1(µ, ν) (µ, ν ∈ W1(R)).

Then ϕ = ψ# for some ψ ∈ Isom(R). Therefore, we also have

Isom(W1(R)) = Isom(R).

Proof. Since ϕ is an isometry, for every µ, ν, η ∈ W1(R), µ 6= ν we have

η ∈M(µ, ν) ⇐⇒ ϕ(η) ∈M(ϕ(µ), ϕ(ν)),

and hence also diam (M(µ, ν)) = diam (M(ϕ(µ), ϕ(ν))). By the above claims this implies that
ϕ preserves adjacency in both directions, and thus ϕ leaves ∆(R) invariant. Since we have
dW1(δx, δy) = |x− y| (x, y ∈ R), we easily obtain an isometry ψ : R→ R such that

ϕ(δx) = δψ(x) x ∈ R.
If ψ is the identity map on R, then by an argument similar to the one in (2.9)–(2.10) in Claim 2.4
we can conclude that ϕ is the identity on W1(R). If ψ is not the identity, then we can replace ϕ
with ϕψ−1

# , and in this case we obtain ϕ = ψ#. �

We finish this subsection with two short remarks. First, we would like to point out a somewhat
surprising consequence of Theorems 2.5 and 3.7.

Corollary 3.8. Even though we have W1([0, 1]) ⊂ W1(R), not every isometry of W1([0, 1]) can
be extended into an isometry of W1(R). Moreover, no subgroup of Isom (W1(R)) is isomorphic to
Isom (W1([0, 1])).

Proof. For the flip operation j we have j(∆([0, 1])) 6⊆ ∆([0, 1]), however, every isometry of W1(R)
leaves the set of all Dirac masses invariant. As for the second statement, we note that in
Isom (W1(R)) the product of any two different elements of order two is never an element of order
two, in contrast with the Klein group. �

Second, our proof of the above theorem strongly relies on the assumption that ϕ is bijective,
since for a general ϕ ∈ IsEmb (W1(R)) we usually have ϕ (M(µ, ν)) ( M (ϕ(µ), ϕ(ν)). In fact,
one can easily construct non-surjective examples with essentially different properties. We continue
with two such examples. The first one is the translation on the space of quantile functions. These
maps will be crucial in the next section, so we start by a definition for p ≥ 1.

Definition 3.9 (Translation in Wp(R)). Let p ≥ 1 and ν ∈ Wp(R) be arbitrary. Then the map
defined by

ϕ : Wp(R)→Wp(R), F−1
ϕ(µ) = F−1

µ + F−1
ν (µ ∈ Wp(R))

is called a translation by the measure ν. By (1.2), this defines an isometric embedding. Clearly, a
translation is bijective if and only if ν ∈ ∆(R).
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Let us now point out that if ϕ is the translation by 1
2δ−1 + 1

2δ1, then the range of ϕ contains only
such measures whose support is never the whole R, as the quantile function of each ϕ(µ) jumps
at 1

2 . If ϕ is the translation by the uniform measure on [0, 1], then all the slopes of each F−1
ϕ(µ)

are at least 1. Therefore all the slopes of each Fϕ(µ) must be at most 1, hence ϕ only contains
absolutely continuous measures in its range. One could say that such a translation “smoothens
out” measures.

Our second example is special in the sense that its range contains only measures which coincide
on the open interval (−1, 1). Let E : [−1, 1)→ [1

3 ,
2
3 ] be an arbitrary right-continuous and monotone

increasing function. We define ϕ : W1(R)→ P(R) by

Fϕ(µ)(x) =


1
3Fµ(x+1

3 ) if x < −1,
E(x) if − 1 ≤ x < 1,

2
3 + 1

3Fµ(x−1
3 ) if 1 ≤ x.

.

It is easy to see that indeed ϕ maps W1(R) into P(R). Next, notice that the following holds for
all µ, ν ∈ W1(R):∫ ∞
−∞
|Fϕ(µ)(x)− Fϕ(ν)(x)| dx =

∫ −1

−∞

1
3 |Fµ(x+1

3 )− Fµ(x+1
3 )| dx+

∫ ∞
1

1
3 |Fµ(x−1

3 )− Fµ(x−1
3 )| dx

=

∫ ∞
−∞
|Fµ(x)− Fν(x)| dx = dW1(µ, ν).

Therefore, substituting ν = δ0 and noticing that ϕ(δ0) is supported on [−1, 1] shows that ϕ maps
W1(R) into itself. Hence it is an isometric embedding of W1(R).

In contrast to the above examples, one may observe the following fact which shows at least some
kind of a rigidity of the Wasserstein space W1(R).

Proposition 3.10. Let ϕ be an isometric embedding ofW1(R) such that ϕ(∆(R)) ⊆ ∆(R). Then
ϕ is an isometry of W1(R).

We omit the proof, as one can easily do it using the ideas of Theorem 3.7.
We have seen that Isom (W1(R))) and Isom (W2(R))) are essentially different. To get the full

picture, we continue by investigating Isom (Wp(R)) in the case of p > 1, p 6= 2.

3.2. p > 1, p 6= 2 – Characterization of isometric embeddings. Similarly to Section 2,
here we are able to handle the more general case of isometric embeddings. This time, however,
Isom(Wp(R)) and IsEmb(Wp(R)) are different. We will show that isometric embeddings are com-
positions of trivial isometries and translations (see Definition 3.9). In particular, it will turn out
that every isometric embedding that leaves the set of all Dirac masses ∆(R) invariant is a trivial
isometry. In this subsection it is more convenient to consider Wp(R) as a space of quantile func-
tions, hence, as a subset of Lp

(
(0, 1)

)
. In order to achieve our goal first, we prove an abstract

Mankiewicz-type lemma which ensures that every isometric embedding of Wp(R) can be extended
to an isometric embedding of Lp((0, 1)). Then we apply the Banach–Lamperti theorem which
describes all linear isometric embeddings of Lp((0, 1)) for p > 1, p 6= 2, see [15, Theorem 3.1].

We call a convex subset of a real Banach space with non-empty interior a convex body. Also,
when we talk about bijective distance preserving maps between two different metric spaces, then
we will call them simply isometries. When bijectivity is not assumed, then we shall call them
isometric embeddings.

Now, we state Mankiewicz’s theorem.

Theorem 3.11 (Mankiewicz, [17]). Let X and Y be two real Banach spaces and K ⊂ X, M ⊂ Y
be convex bodies. Then every isometry φ : K → M can be extended to an (affine) isometry
Φ: X → Y .

We note that every isometric embedding of a Banach space X into a strictly convex Banach
space Y is automatically affine (linear up to translation). Indeed, in this case the strict triangle
inequality holds in Y , hence the midpoint y of any two points y1, y2 ∈ Y is characterized by

‖y − y1‖ = ‖y − y2‖ = 1
2‖y1 − y2‖.
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Also, the Mazur–Ulam theorem ensures that all isometries between two Banach spaces are affine,
although note that this statement fails for isometric embeddings in general.

The reason why we cannot apply Mankiewicz’s theorem directly is that although Wp(R) is a
convex and closed subset of Lp((0, 1)), its interior is empty. However, since Lp((0, 1)) is a strictly
convex Banach space, we can overcome this obstacle with the forthcoming lemma. The linear span
of a set K ⊆ X will be denoted by linspan(K), and its closure by (linspan(K))−.

Lemma 3.12. Let X be a real, strictly convex Banach space and K ⊂ X be a convex set (with
possibly empty interior) such that 0 ∈ K and (linspan(K))− = X. Then every isometric embedding
ϕ : K → X with ϕ(0) = 0 can be uniquely extended to a (linear) isometric embedding L : X → X.

Proof. We only need to extend ϕ to the dense subspace linspanK, as from there extending to the
whole space is straightforward by a simple continuity and completeness argument. Let us define a
set of finite dimensional subspaces, where Lat(X) denotes the lattice of all subspaces of X:

S := {M ∈ Lat(X) | dimM <∞,M ∩K is a convex body in M}.
Now, we prove that

linspanK = ∪{M |M ∈ S}.
Indeed if x =

∑m
j=1 ajxj , aj ∈ R, xj ∈ K, then

x ∈M := linspan{x1, . . . xm} = linspan{xi1 , . . . xik}
where 1 ≤ i1 < i2 < · · · < ik ≤ m and the system xi1 , . . . xik ∈ K is a base in M . Obviously,
the simplex spanned by 0 and this system is a convex body in M , hence so is K ∩M . Therefore
we obtain linspanK ⊆ ∪{M | M ∈ S}. For the reverse, let M ∈ S with dimM = m, then by
definition there must exist m+ 1 affine independent points x0, x1, . . . , xm in K ∩M . Clearly, then
{xi − x0}mi=1 is a base in M , and hence M ⊆ linspanK.

Next, we show that for every M ∈ S there exists a unique linear extension of ϕ|K∩M to M ,
which also happens to be an isometric embedding. By strict convexity, ϕ is an affine map, which
also fixes 0. Therefore the restriction ϕ|K∩M can be extended to a unique injective linear map

LM : M → linspan(ϕ(K ∩M)).

Clearly, ϕ(K ∩M) is a convex body in linspan(ϕ(K ∩M)), thus by Mankiewicz’s theorem LM
must be an isometry too. Also, note that by construction we have

(3.5) M,N ∈ S,M ⊆ N =⇒ LN |M = LM .

Now, we have an extension for every M ∈ S, and our goal is to show that if M,N ∈ S,
then LM |M∩N = LN |M∩N . (However, we point out that M,N ∈ S does not imply M ∩ N ∈ S
in general.) This will show that the following map is a well-defined, linear, distance-preserving
extension of ϕ:

L : linspanK → X, Lx = LMx where x ∈M ∈ S,
and thus the proof will be complete. For this observe that

M,N ∈ S =⇒ M +N ∈ S.
Indeed, assume indirectly that M + N /∈ S, thus (M + N) ∩K is not a convex body in M + N .
This also means that (M + N) ∩ K spans an affine subspace E of M + N with co-dimension
at least 1. As 0 ∈ K, the affine subspace E is a linear subspace. But, as both M ∩ K and
N ∩K ⊂ (M + N) ∩K ⊂ E and they are convex bodies in M and N , respectively, we get that
M,N ⊂ E and hence M + N ⊆ E, a contradiction. Therefore by (3.5), for every M,N ∈ S we
obtain

LM |M∩N = LM+N |M∩N = LN |M∩N ,
which completes the proof. �

As we mentioned earlier,Wp(R) is a convex and closed subset of Lp((0, 1)), where we regard ele-
ments ofWp(R) as quantile functions. Let us point out that linspan (Wp(R)) is dense in Lp((0, 1)),
since the functions t 7→ tn, n ∈ N, are elements of Wp(R). Therefore, by the above lemma, if
ϕ ∈ IsEmb (Wp(R)) and ϕ fixes δ0, then ϕ can be extended to a linear isometric embedding of
Lp((0, 1)). The latter have been characterized in [15, Theorem 3.1], which we recall now.
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Definition 3.13 (Regular set-isomorphism). Let ((0, 1),L(0,1), λ) be the measure space where
L(0,1) stands for the σ-algebra of all Lebesgue sets of (0, 1) and λ is the normalized Lebesgue
measure. We call a map T : L(0,1) → L(0,1), defined modulo sets of measure zero, a regular set-
isomorphism if the following conditions hold:

(a) T ((0, 1) \A) = T ((0, 1)) \ T (A) for all Lebesgue sets A ⊆ (0, 1),
(b) T (∪∞n=1An) = ∪∞n=1T (An) for disjoint Lebesgue sets An ⊆ (0, 1),
(c) for each Lebesgue set A ⊆ (0, 1), we have λ(T (A)) = 0 if and only if λ(A) = 0.

A regular set-isomorphism induces a linear transformation on the set of all Lebesgue-measurable
functions, which is also denoted by T , and which is characterized by TχA = χT (A) where χA

denotes the characteristic function of a Lebesgue set A (see [15] for more details).

We note that a regular set-isomorphism does not need to be bijective, for instance the map
T (A) := 1

2A =
{

1
2x | x ∈ A

}
defines a non-bijective one. In particular, as can be seen from the

Banach–Lamperti theorem below, a typical linear isometric embedding of Lp((0, 1)) is in fact not
bijective. From now on, we will denote the constant function with value 1 by 1.

Theorem 3.14 (Banach–Lamperti). Let 1 ≤ p < ∞, p 6= 2 be a fixed parameter, and assume
that U : Lp((0, 1)) → Lp((0, 1)) is a linear isometric embedding. Then there exists a regular set-
isomorphism T of the measure space ((0, 1),L(0,1), λ) such that

(Uf)(x) = h(x) · (Tf)(x) (a.e. x ∈ (0, 1)),

where h = Uχ(0,1) = U1 = UF−1
δ1
∈ Lp((0, 1)).

In [15] the reader can find a more general statement that holds for all σ-finite measure spaces,
and which includes a converse statement too. However, we shall only need the above very special
version. Note that even though h = U1 is not explicitly stated in [15, Theorem 3.1], it can be found
in its proof in case when the measure space is finite. Before we can apply the Banach–Lamperti
theorem, we have to show that the study of a general isometric embeddings of Wp(R), 1 < p <∞,
can be reduced to the study of those isometric embeddings of Wp(R) that fix δ0. This is what we
do in the next lemma.

Lemma 3.15. Assume that 1 < p <∞ and ϕ : Wp(R)→Wp(R) is an isometric embedding, that
is, ∥∥∥F−1

ϕ(µ) − F
−1
ϕ(ν)

∥∥∥
p

=
∥∥F−1

µ − F−1
ν

∥∥
p

(µ, ν ∈ Wp(R)).

Then either
F−1
ϕ(δt)

= F−1
ϕ(δ0) + t · 1 (t ∈ R),

or
F−1
ϕ(δt)

= F−1
ϕ(δ0) − t · 1 (t ∈ R).

Moreover, we have

(3.6) F−1
ϕ(µ) − F

−1
ϕ(δ0) ∈ Wp(R) (µ ∈ Wp(R)).

In particular, the mapping ϕ̃ : Wp(R)→Wp(R) defined by

(3.7) F−1
ϕ̃(µ) := F−1

ϕ(µ) − F
−1
ϕ(δ0) (µ ∈ Wp(R))

is a well-defined isometric embedding such that either ϕ̃(δt) = δt for all t ∈ R, or ϕ̃(δt) = δ−t for
all t ∈ R.

Proof. First, we show that F−1
ϕ(δ1) − F

−1
ϕ(δ0) ∈ {−1,1}. By strict convexity of the norm, we have

F−1
ϕ(δx)(t) = (1 − x) · F−1

ϕ(δ0)(t) + x · F−1
ϕ(δ1)(t) for all x ∈ R and 0 < t < 1. Thus for all x ∈ R and

0 < t1 < t2 < 1 we obtain

0 ≤
F−1
ϕ(δx)(t1)− F−1

ϕ(δx)(t2)

t1 − t2
= (1− x) ·

F−1
ϕ(δ0)(t1)− F−1

ϕ(δ0)(t2)

t1 − t2
+ x ·

F−1
ϕ(δ1)(t1)− F−1

ϕ(δ1)(t2)

t1 − t2
.

But notice that this happens if and only if all the slopes
F−1
ϕ(δ0)

(t1)−F−1
ϕ(δ0)

(t2)

t1−t2 and
F−1
ϕ(δ1)

(t1)−F−1
ϕ(δ1)

(t2)

t1−t2
coincide, or in other words, F−1

ϕ(δ1)−F
−1
ϕ(δ0) is constant on (0, 1). Taking into account the distances,
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F−1
ϕ(δ1) − F

−1
ϕ(δ0) ∈ {1,−1} follows. By strict convexity we then easily get the first statement of the

lemma.
Next, let µ, ν ∈ Wp(R) be arbitrary, and let us define the set:

Iµ,ν : =
{
s ∈ R | (1− s) · F−1

µ + s · F−1
ν is monotone increasing

}
=
{
s ∈ R | ∃ η ∈ Wp(R) : (1− s) · F−1

µ + s · F−1
ν = F−1

η

}
.

Clearly, the set Iµ,ν is always a closed interval that contains [0, 1]. Now, we observe that for any
µ, ν ∈ Wp(R) we have [0,∞) ⊆ Iµ,ν if and only if

(3.8)
F−1
µ (t1)− F−1

µ (t2)

t1 − t2
≤ F−1

ν (t1)− F−1
ν (t2)

t1 − t2
(0 < t1 < t2 < 1).

In particular, we always have [0,∞) ⊆ Iδ0,µ, thus also [0,∞) ⊆ Iϕ(δ0),ϕ(µ) for all µ ∈ Wp(R).
Therefore applying (3.8) with ϕ(δ0) and ϕ(µ), we obtain (3.6) and the rest of the statement
follows easily. �

Now, we are in the position to prove our theorem on IsEmb(Wp(R)) for p > 1, p 6= 2, using the
Banach–Lamperti theorem and our Mankiewicz-type extension lemma.

Theorem 3.16. Let 1 < p <∞, p 6= 2 and ϕ ∈ IsEmb(Wp(R)), that is

dWp (ϕ(µ), ϕ(ν)) = dWp (µ, ν) (µ, ν ∈ Wp(R)).

Then ϕ is a composition of a trivial isometry and a translation, that is, there exists a ψ ∈ Isom(R)
and ν ∈ Wp(R) such that

(3.9) F−1
ϕ(µ) = F−1

ψ#(µ) + F−1
ν (µ ∈ Wp(R)).

In particular, if ϕ is also bijective, then it is a trivial isometry, therefore we have

Isom(R) = Isom(Wp(R)) ( IsEmb(Wp(R)).

Proof. Consider the mapping ϕ̃ ∈ IsEmb(Wp(R)) defined in (3.7), which either fixes all Dirac
measures, or ϕ̃(δx) = δ−x for all x ∈ R. Therefore, it is enough to show that if an isometric
embedding ϕ̃ fixes all Dirac measures, then it fixes every measure in Wp(R).

By Lemma 3.12, we conclude that the map ϕ̃ is a restriction of a linear isometric embedding
U : Lp((0, 1)) → Lp((0, 1)), which fixes all constant functions. Hence, in the Banach–Lamperti
theorem we have h(x) = 1 for a.e. x, therefore

(3.10) Uf(x) = Tf(x) (a.e. x ∈ (0, 1))

where T is the linear operator generated by a regular set-isomorphism T (which is defined modulo
null-sets). Substituting

f = χ[a,1) = F−1
aδ0+(1−a)δ1

and f = −χ(0,a) = F−1
aδ−1+(1−a)δ0

into (3.10) gives

χT ([a,1)),−χT ((0,a)) ∈ Wp(R) ⊂ Lp ((0, 1)) (0 < a < 1).

Therefore, by the properties of the regular set-isomorphism T , for every 0 < a < 1 there exists a
0 < ta < 1 such that T ([a, 1)) = [ta, 1) and T ((0, a)) = (0, ta). Hence we obtain

Uχ[a,1) = χ[ta,1) and Uχ(0,a) = χ(0,ta) (0 < a < 1),

but since U preserves the p-norm, the number ta must coincide with a for all 0 < a < 1. Thus we
get that U is the identity operator, and the proof of (3.9) is complete.

Finally, note that if ϕ is also assumed to be bijective, then F−1
ν must be a constant function.

Indeed, otherwise there would exist two points 0 < t1 < t2 < 1 such that

F−1
ϕ(µ)(t1)− F−1

ϕ(µ)(t2)

t1 − t2
≥ F−1

ν (t1)− F−1
ν (t2)

t1 − t2
> 0 (µ ∈ Wp(R)) ,

and therefore Dirac masses would not be in the range of ϕ. �
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3.3. p = 2 – A functional analytic description of the exotic flow. The aim of this subsection
is to take a closer look at Kloeckner’s surprising result on Isom (W2(R)). We introduce the notation
m(µ) for the center of mass of a µ ∈ W1(R):

m(µ) =

∫ 1

0
F−1
µ (x) dx.

The map rc : R→ R, x 7→ 2c− x is called the reflection through c ∈ R.
Kloeckner showed in [12, Theorem 1.1] that the group Isom(W2(R)) is the semidirect product

Isom(R)n Isom(R). Namely, he showed that every isometry of W2(R) is a composition of some of
the of the following maps:

(1) a trivial isometry, that is, ψ# for some ψ ∈ Isom(R);
(2) the map µ 7→ (rm(µ))#

(µ), that is, the isometry that reflects every measure through its

center of mass; and
(3) a so-called exotic isometry Φq for some q ∈ R, which we focus on in this subsection, see

the definition in (3.11) and (3.12).

Note that all of the above types of isometries leave the set of all Dirac measures invariant, more-
over, (2)–(3) fix every Dirac measures. Also, in cases (1)–(2) the support of each measure µ
is isometrically congruent to the support of its image. However, this is not the case for exotic
isometries.

The set of all measures which are supported on at most two points will be denoted by ∆2(R).
As in [12], we parametrize ∆2(R) by x, p ∈ R, σ ≥ 0 as

(3.11) µ(x, σ, p) :=
e−p

ep + e−p
· δx−σep +

ep

ep + e−p
· δx+σe−p .

Let q ∈ R be fixed. Using the above parametrization, Kloeckner defined the exotic isometry Φq on
∆2(R) in the following way:

(3.12) Φq (µ(x, σ, p)) := µ(x, σ, p+ q) (x, σ, p ∈ R, σ ≥ 0).

He proved that this indeed defines an isometry on ∆2(R) and that it extends uniquely to an
isometry of W2(R). He also pointed out that even though the above definition is constructive, it
is not very explicit outside ∆2(R). Moreover, he illustrated that an explicit formula for general
measures supported on three points already seems to be very complicated.

The goal of this subsection is to provide a general explicit formula for the action of exotic
isometries, which we shall do by using functional analytic techniques rather than geometric ones.
Namely, we prove that if we regard elements of W2(R) as quantile functions, then Φq extends to a
real unitary operator Uq : L2((0, 1)) → L2((0, 1)) which can be written in terms of a composition
operator, the Volterra operator, a multiplication operator, and a rank-one projection. First we state
a well-known lemma (see for instance [26, Theorem 11.4]) that will be helpful in our considerations.

Lemma 3.17. Let H be a real Hilbert space and S be a subset such that 0 ∈ S and linspanS is
dense in H. If ϕ : S → H is an isometric embedding such that ϕ(0) = 0, then it can be uniquely
extended to a (linear) isometric embedding L : H → H.

Now our theorem introduced above reads as follows.

Theorem 3.18. Let q be a real number. Then the action of the exotic isometry Φq is given by
the following formula:

F−1
Φq(µ)(x) = (1− eq) ·m(µ) +

{
eq + (e−q − eq)hq(x)

}
· F−1

µ (hq(x))(3.13)

+ (eq − e−q) ·
∫ hq(x)

0
F−1
µ (s) ds (µ ∈ W2(R), 0 < x < 1),

where

(3.14) hq(x) =
xe2q

1 + (e2q − 1)x
(x ∈ (0, 1)).
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Proof. Again, we will regard the Wasserstein space W2(R) as a convex and closed subset of
L2((0, 1)) whose linear span is dense in W2(R). Therefore by Lemma 3.17 and (3.12) the ex-
otic isometry Φq can be extended to a unique linear isometric embedding which we denote by Uq.
Let us point out that since ∆2(R) is such a subset of L2((0, 1)) whose linear span is dense, therefore
Uq is the unique bounded linear operator on L2((0, 1)) which satisfies

(3.15) Uq

(
F−1
µ(x,σ,p)

)
= F−1

µ(x,σ,p+q) (x, σ, p ∈ R, σ ≥ 0).

Therefore, it is enough to find a bounded linear operator (without proving its isometric property)

that satisfies (3.15). Also, observe that (3.15) is equivalent to Uq1 = 1, and Uq

(
F−1
µp

)
= F−1

µp+q

(p ∈ R), where we used the shorthand µp := µ(0, 1, p). Define the operator

Tq : L2((0, 1))→ L2((0, 1)), Tq = Uq − 1⊗ 1,

where (1 ⊗ 1)f =
∫ 1

0 f(s) ds · 1 is the rank-one projection onto the subspace of all constant
functions. Next, we describe how Tq acts on certain characteristic functions. Since for all p ∈ R

F−1
µp = −ep ·χ(

0,
e−p

e−p+ep

) + e−p ·χ[
e−p

e−p+ep
,1

)
holds, we calculate

Tqχ(
0,

e−p

e−p+ep

) = 1
e−p+ep

· Uq
(
e−p · 1− F−1

µp

)
− e−p

e−p+ep
· 1 = −1

e−p+ep
· F−1

µp+q

= ep+q

e−p+ep
·χ(

0,
e−p−q

e−p−q+ep+q

) − e−p−q

e−p+ep
·χ[

e−p−q

e−p−q+ep+q ,1

).
Notice that since Tq1 = 0 · 1, we have

Tqχ[
e−p

e−p+ep
,1

) = − ep+q

e−p+ep
·χ(

0,
e−p−q

e−p−q+ep+q

) + e−p−q

e−p+ep
·χ[

e−p−q

e−p−q+ep+q ,1

).
Now, we define a set and two transformations on it. Let

I :=
{
χ(0,t)

∣∣ 0 < t < 1
}
∪
{
χ[t,1)

∣∣ 0 < t < 1
}
,

T (0)
q : I → L2((0, 1)), T (0)

q

(
χ(

0,
e−p

e−p+ep

)
)

= ep

e−p+ep
·χ(

0,
e−p−q

e−p−q+ep+q

)
T (0)
q

(
χ[t,1)

)
= −T (0)

q

(
χ(0,t)

)
(p ∈ R, 0 < t < 1)

and

T (1)
q : I → L2((0, 1)), T (1)

q

(
χ[

e−p

e−p+ep
,1

)
)

= e−p

e−p+ep
·χ[

e−p−q

e−p−q+ep+q ,1

)
T (1)
q

(
χ(0,t)

)
= −T (1)

q

(
χ[t,1)

)
(p ∈ R, 0 < t < 1).

Observe that Tq|I = eq ·T (0)
q + e−q ·T (1)

q . However, at this point we do not know if T
(0)
q or T

(1)
q can

be extended linearly and continuously to the whole space, thus we cannot treat them as operators.
A calculation gives

T (0)
q

(
χ(0,t)

)
= Cq ◦ T (0)

0

(
χ(0,t)

)
and T (0)

q

(
χ[t,1)

)
= Cq ◦ T (0)

0

(
χ[t,1)

)
for all 0 < t < 1 where

Cq : L2((0, 1))→ L2((0, 1)), (Cqf)(x) = f(hq(x)) (x ∈ (0, 1))

is a composition operator with symbol hq, see (3.14). Notice that Cq is a bounded operator, as
hq maps [0, 1] bijectively onto itself, it is a smooth function on a neighbourhood of [0, 1], and its

derivative is bounded from below by e−2|q| on [0, 1].
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Next, let M1−x stand for the multiplication operator by the function 1− x where x(t) = t, and

V for the Volterra operator: (V f)(t) =
∫ t

0 f(s) ds (t ∈ (0, 1)). We notice that

T
(0)
0

(
χ(0,t)

)
= (1− t) ·χ(0,t) = (M1−x − 1⊗ 1 + V )χ(0,t) (0 < t < 1).

Furthermore, since

(M1−x − 1⊗ 1 + V )
(
χ(0,t) +χ[t,1)

)
= (M1−x − 1⊗ 1 + V )1 = 0 · 1,

we also have T
(0)
0

(
χ[t,1)

)
= (M1−x − 1⊗ 1 + V )χ[t,1) for all 0 < t < 1. Therefore, we obtain that

T
(0)
0 = (M1−x − 1⊗ 1 + V )|I .

As for T
(1)
q , we calculate and notice the following for all 0 < t < 1:

T (1)
q

(
χ(0,t)

)
= Cq ◦ T (1)

0

(
χ(0,t)

)
, T (1)

q

(
χ[t,1)

)
= Cq ◦ T (1)

0

(
χ[t,1)

)
and

T
(1)
0

(
χ(0,t)

)
= −t ·χ[t,1) = −t · 1 + t ·χ(0,t)

=
(
−1⊗ 1 + I − T (0)

0

)
χ(0,t) = (Mx − V )χ(0,t).

As (Mx − V ) 1 = 0 · 1, we conclude that

T
(1)
0 = (Mx − V ) |I .

Therefore, the above observations together imply

Uq|I = (Tq + 1⊗ 1)|I = eq · T (0)
q + e−q · T (1)

q + (1⊗ 1)|I

= eq · Cq ◦ T (0)
0 + e−q · Cq ◦ T (1)

0 + (1⊗ 1)|I
=
(
eq · Cq · (M1−x − 1⊗ 1 + V ) + e−q · Cq · (Mx − V ) + 1⊗ 1

) ∣∣
I .

Thus we eventually conclude

Uq = Cq ·
[
(1− eq) · (1⊗ 1) + eq · I + (e−q − eq) ·Mx + (eq − e−q) · V

]
,

which implies (3.13), at least for almost every x ∈ (0, 1). However, since two right-continuous
functions are equal almost everywhere on (0, 1) if and only if they coincide on (0, 1), we easily
conclude (3.13). �
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