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Abstract 

Atherosclerosis leading to coronary heart disease and thrombotic stroke is the leading cause of 

death worldwide. Oxidised low density protein is considered important by many in this disease. 

Our laboratory has shown that LDL can be oxidised by iron in the lysosomes of macrophages. 

Others have demonstrated the presence of oxidised products similar to those formed in vitro 

by catalytically active iron in advanced atherosclerotic lesions.  Ferritin is the body’s main iron 

storing protein. The role of ferritin in lysosomal LDL oxidation and explored the possible 

consequences for atherosclerosis were investigated. Ferritin oxidised LDL effectively at 

lysosomal pH (pH 4.5), much faster than at pH 7.4, as shown by increased formation of 

oxidised lipids (HPLC and tri-iodide assay) and conjugated dienes (automated 

spectrophotometry). Ferritin spontaneously released iron at lysosomal pH and iron chelators 

supressed the oxidation of LDL by ferritin. 

 

The degradation of apolipoproteinB-100 and cholesteryl esters of LDL speeded up the 

oxidation of LDL by ferritin. The lysosomotropic antioxidant cysteamine was shown to be a 

more appropriate antioxidant to effectively inhibit LDL oxidation by ferritin compared to 

ascorbate, α-tocopherol and 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) and N, 

N′- diphenyl 1,4-phenylenediamine (DPPD).  

 

The role of ferritin in lysosomal LDL oxidation within macrophages and macrophage function 

were accessed. Incubation with ferritin and LDL led to increased intracellular lipid, ceroid and 

lipid peroxidation in lysosomes. Ferritin and LDL treatment increased glycolysis and THP-1 

macrophage-like cells became metabolically activated, as shown by a Seahorse analyser. 

Ferritin-oxidised LDL induced reactive oxygen species formation and apoptosis in 

macrophages, suggesting LDL oxidation by ferritin in lysosomes might be atherogenic. 
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1.1 Importance of Subject Area 

Cardiovascular diseases (CVD) which arise from disorders of the heart, arteries and other blood 

vessels remain one of the leading causes of death worldwide, despite scientific advances. In 

the year 2012, the global burden of CVD had increased to 17.9 million from a previous value 

of 14.4 million in 1990 (WHO, 2015). Atherosclerosis, characterised by the pathological 

transformation of the arteries is the underlying cause of the majority of the deaths arising from 

CVD (Stone, 2012). It is a complex chronic disease in which there is an accumulation of 

fibrofatty deposits made up of lipids and fibrous element mainly in the inner lining (intima) of 

arteries (Lusis, 2000, Wang and Bennett, 2012). Atherosclerosis is a multifactorial disease; 

studies conducted over the past five decades have revealed different genetic and environmental 

factors associated with the disease (Goldbourt and Neufeld, 1988, Assmann et al., 1999, 

Gerhard and Duell, 1999). Until recently, CVD has been overshadowed by infectious diseases 

such as HIV/AIDS. This is evident by its omission in the United Nations Millennium 

Development Goals in 2000.   

 

CVD in the UK has declined since the early 1970s but despite the reduction, it remains 

relatively high when compared to other western European countries. CVD still remains the 

biggest killer in the UK with about 180,000 deaths in 2010 (Townsend et al., 2012). It has been 

predicted that by the year 2030, non-communicable diseases will be responsible for three-

quarters of death occurring worldwide (Fuster and Kelly, 2010). In low and middle-income 

countries, CVD alone will be responsible for more deaths compared to other diseases 

(Beaglehole and Bonita, 2008). Due to the high mortality rate and incidence of heart diseases, 

the EU economy is estimated to spend almost 196 billion Euros a year on CVD (Nichols et al., 

2012). Over the last decades, there has been a significant rise in cardiovascular diseases mainly 
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in developing countries. These changes have been attributed to lifestyle changes and nutritional 

transition (Herrington et al., 2016). The clinical consequence of atherosclerosis, heart attack 

and thrombotic strokes continues to be a huge burden. In spite of the progress made in 

decreasing mortality rate in the UK, the National Health Service in England incurred a cost of 

about 6.8 billion pounds from spending on CVD between the year 2012 and 2013 (Bhatnagar 

et al., 2015). CVD continues to be a burden on the country, in terms of cost and health. 

 

Despite the lifestyle modification initiatives and development of effective drugs that can 

effectively reduce some of the risk associated with the disease such as high plasma cholesterol 

and blood pressure (Olsen et al., 2016, Cesena et al., 2017), atherosclerosis and its clinical 

consequence, still remains a global burden (Herrington et al., 2016). The global burden of 

atherosclerotic cardiovascular disease in people living with HIV have been recently been 

suggested to be double that of the healthy population, as they are twice at risk of developing 

cardiovascular disease (Shah Anoop et al., 2018). Hence the scenario of atherosclerotic 

cardiovascular disease is of global concern. The key issues to be addressed include systemic 

inflammation, clotting factors, hyperlipidaemia and the oxidation of low density lipoprotein 

(LDL) (Sharma et al., 2013). LDL is believed to be a major contributor to the pathogenesis of 

atherosclerosis (Lewington et al., 2007).  

1.2 Overview of Atherosclerosis 

1.2.1 Histology of human artery 

The large artery is made up of three distinct layers surrounding the arterial lumen. Each of 

these layers is made up of different cells and extracellular matrix (ECM). The innermost 

layer adjacent to the lumen is called the intima and is bound by a single layer of endothelial 

cells (ECs) on the side of the lumen and bordered on the peripheral side by the internal 
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elastic lamina, a sheet of elastic fibres. The intima is made up of proteoglycans and collagen 

as the main connective tissue matrix (Lusis, 2000). ECs are the main cellular component of 

this layer, although smooth muscle cells (SMCs) are sometimes found in this layer. The EC 

regulate a number of events including vascular tone (Sandoo et al., 2010) and leukocyte 

movement (Muller, 2014), among others. After the internal elastic lamina is the second 

layer, the media (the middle layer) which consist of layers of SMCs and elastic lamellae. 

The number of layers present is dependent on the size of the artery. The ECM, which binds 

the SMCs to each other, contains mainly collagen and elastic fibres with a lesser amount of 

proteoglycans. The outermost layer, the adventitia contains a loose matrix of SMCs, 

fibroblast, and collagen (Lusis, 2000, Stocker and Keaney, 2004). 

1.2.2 Pathogenesis of Atherosclerosis 

1.2.2.1 Features of atherosclerotic lesion 

Atherosclerosis is characterised by hardening of the arteries which arises from the 

accumulation of fibrofatty deposits (made up of lipids and fibrous element) in the inner lining 

and the middle lining of the arteries (Lusis, 2000). These abnormalities in the arteries 

(atherosclerotic lesions) are classified based on their histological features and composition. The 

lesion is classified into six types and designated with roman figures according to their stage 

and sequential progression. 

 

The first observable change is the type I lesion which contains enough lipids to trigger the 

formation of scattered foam cells (lipid-laden macrophages). These changes are seen more in 

areas that are susceptible to the lesion and capable of adaptive thickenings, (the thickening are 

common in everyone at birth but are only formed in response to mechanical force) (Stary et 

al., 1995). The accumulation of the scattered foam cells leads to progression to type II lesions, 
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fatty streaks (which are accumulated lipid-filled macrophages) which are formed at this stage. 

Continuous formation of lipid-laden cells (foam cells) and macrophages death leads to the 

formation of Type III lesions which contain extracellular droplets of lipids in addition to the 

foam cells. These early stage lesions can be observed within the first decade of life (Stary, 

1983, Stary et al., 1995). The extracellular lipids in type III form the basis for the larger lipid 

core that characterises the type IV lesion. The core lipid is separated from the lumen by the 

thin tissue layer, which advances and becomes thickened to form a fibrous connective tissue 

(the lesion cap). They mature into the more advanced lesion (Type VI lesion) characterised by 

calcification of the fibrous region and appearance of ulcerations that are often visible (Stary et 

al., 1995). 

1.2.2.2 Aetiology 

The aetiology of atherosclerosis is often complex. In the last fifteen decades, there have been 

concerted efforts by researchers to explain the series of complex events that are associated with 

the onset of the disease. To explain these events several hypotheses have emerged over the 

years. Early studies proposed passive deposition of cellular components. The early hypothesis 

of atherosclerosis ‘̒ incrustation hypothesis ̓ ̓  by Rokitansky suggest that an atherosclerotic 

event arises as a result of deposition of fibrin in the arterial intima (Rokitansky, 1849). Virchow 

in 1856 proposed the ‘̒ lipid infiltration hypothesis’’ which suggests the deposition of lipids 

in the arterial wall is responsible for the disease. The deposited lipid is taken up by 

macrophages and SMCs resulting in the formation of foam cells (Virchow, 1989). 

 

Ross and Glomset in 1973, proposed the ‘̒ response to injury hypothesis’’. They suggested 

that the early event in atherosclerosis is due to endothelial damage which has a negative impact 

on normal endothelial function (Ross and Glomset, 1973). The injury increases the adhesion 



6 

 

of leukocytes and platelets to the endothelium. The recruited leukocytes bring about an 

inflammatory response by releasing a number of cytokines and growth factors. The 

inflammatory area is often associated with smooth muscle cells proliferation and migration 

from the media giving rise to an intermediate lesion. The macrophages and T lymphocytes 

recruited are the principal mediators of the early inflammatory response (Jonasson et al., 1986, 

Keaney Jr, 2000). The hallmark of atherosclerosis involves the uptake of LDL by macrophages 

and to some extent SMC to form foam cells (lipid-laden macrophages). The accumulation of 

foam cells leads to the continuation of the inflammatory response and formation of a localised 

lesion. Cellular apoptosis or necrosis occurs as a result of the continued inflammatory process. 

The associated release of growth factor, cytokines and proteolytic enzymes bring about the 

enlargement of the lesion. Blood flow can be impaired at some point when the artery is unable 

to compensate for the encroachment of the lumen.  

 

 The response-to-injury hypothesis previously believed the key initiating event in 

atherosclerosis is as a result of the endothelium desquamation (Stocker and Keaney, 2004). 

Later on, there was evidence that when atherosclerotic lesions develop, they are covered by an 

endothelial cell layer that is intact. This led to the refinement of this hypothesis. In 1999, Ross 

proposed that endothelial dysfunction can initiate atherosclerosis through enhanced 

permeability of the endothelium to LDL (Ross, 1999). This hypothesis was challenged by the 

fact that more LDL entered the normal artery than the amount that accumulated there (Carew 

et al., 1984). The rate of entry was similar but areas with a large accumulation of lipoproteins 

are prone to developing lesions due to their ability to retain apoB-containing lipoproteins which 

are atherogenic in nature (Schwenke and Carew, 1989, Schwenke and Zilversmit, 1989). These 

observations lead to the development of an alternative hypothesis, the ‘̒ response to retention 

hypothesis’’ which suggests that the inciting event for atherosclerosis is the retention of 
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lipoprotein with the recognition that endothelial permeability may have a role in the initiation 

of the disease if a portion of the infiltrated material is retained. Other functional modification 

of the endothelial layer which has been documented often appear later. For example, in rabbits, 

the expression of the vascular cell adhesion molecule-1 (VCAM-1) by endothelial cells on 

lesions appeared after four days of severe hypercholesterolaemia and foam cell formation (Li 

et al., 1993). On the other hand, aggregation and retention of lipoproteins were observed within 

hours of the onset of hypercholesterolaemia. This lead to the conclusion the endothelial 

changes during atherosclerosis such as expression of cellular adhesion molecules (CAM) is 

likely to be a consequence of the lipoprotein retained initially within the arterial wall (Williams 

and Tabas, 1998).  

 

The link between blood flow and atherogenesis in the response-to- injury hypothesis prompted 

the studies on the effect of shear stress on cultured endothelial cells. Many alterations have 

been reported in vitro (Williams and Tabas, 1998), such as increased endothelial cell division, 

production of growth factors and adhesion molecules. Findings from in vitro studies support 

the contribution of shear stress to alterations observed in the endothelium in atherogenesis. In 

vivo studies, however, demonstrated that endothelial alterations induced by shear stress are not 

enough by themselves for the initiation of atherosclerosis. Possibly, stress-induced endothelial 

changes can contribute to the pathogenic process of atherosclerosis. The most relevant changes 

identified at pre-lesional sites are altered proteoglycan structure and retention of lipoprotein 

(Keaney Jr, 2000). The retention of lipoprotein appears to be closely associated with the 

constituents of the extracellular matrix. The apolipoprotein B-100 (apoB-100) component of 

LDL is retained within the arterial wall with tight linkage to proteoglycans that promote 

lipoprotein retention (Williams and Tabas, 1998). 
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Lipoprotein oxidation has also been proposed to be central to atherogenesis. The discoveries 

that modified LDL was toxic to endothelial cells (Hessler et al., 1983) and that ox-LDL is taken 

up faster by macrophages (Steinbrecher et al., 1984) lead to “the oxidative modification 

hypothesis’’, which proposed that LDL enters the intima, becomes oxidised and can cause 

endothelial dysfunction, inflammation and foam cell formation (Steinberg et al., 1989). The 

hypothesis is discussed in detail in (section 1.4.1). All the hypotheses have attempted to explain 

the complex nature of the cause of atherosclerosis focusing on a critical initiating event. A 

common feature is the deposition of lipids, particularly LDL. The oxidative hypothesis, in 

addition, showed the importance of oxidative events in the genesis of the disease. 

1.2.3.2 Lesion initiation, inflammatory response and foam cell formation. 

Studies with the cultured cells have suggested the ways in which the disease process begins 

and progresses. The major cause of atherosclerosis is believed to be the accumulation of 

lipoprotein in the subendothelial intima (Tabas et al., 2007). The accumulation of LDL, 

oxLDL, and other forms of modified LDL is believed to be the primary event of initiation. The 

build-up of oxLDL contributes to the infiltration of macrophages and formation of foam cells 

in the intima. Lipoprotein with an additional apolipoprotein (a) namely lipoprotein (a) (Lp(a)) 

has also been confirmed to be atherogenic (Morrisett, 2000). Studies with cultured cells have 

also suggested the initiating role of endothelial cells in mediating inflammation. oxLDL is toxic 

to the cells and hence induce endothelial damage. 

 

The toxicity of oxLDL elicits a compensatory response from the immune system. The 

endothelial cells (ECs) subsequently become pro-inflammatory cells, thereby increasing the 

endothelial adherence of leukocytes and platelets through cell adhesion molecules (CAM), 
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such as selectins, and the production of growth factors, such as cytokines. The signalling 

proteins (cytokines and chemokines) trigger the movement of lymphocytes and monocytes to 

the site of activation on the surface of ECs.  Chemokines play a major role in movement into 

the subendothelial region after binding to CAM on the surface. Vascular cell adhesion molecule 

1 (VCAM-1) is specific for binding monocytes and T lymphocytes found in the newly 

developing lesion. Chemokines such as interferon (IFN γ), macrophage colony-stimulating 

factor (M-CSF), and monocyte chemoattractant protein-1 (MCP-1) are commonly found in the 

atherosclerotic lesion (Libby, 2002, McLaren et al., 2011, Ilhan and Kalkanli, 2015). The role 

of CAM and growth factors in atherosclerosis has been shown by studies mice lacking selectins 

(Dong, 1998, Collins, 2000) and MCP-1 (Gu, 1998, Gosling et al., 1999, Ohman et al., 2010). 

There was a reduction in atherosclerotic lesions of apoE deficient mice lacking both 

intercellular adhesion molecule (ICAM)-1 and P-selectin (Collins, 2000). 

 

Macrophages do not take up native LDL enough to generate foam cells but oxLDL (Goldstein 

et al., 1979a). Foam cells are formed from the uptake of massive amount of oxLDL. The 

mechanisms of oxidation of LDL and its relation to atherosclerosis is discussed in detail in 

section 1.4. In the event of atherosclerosis, lymphocytes and monocytes are recruited to the 

arterial wall. The importance of inflammation in atherosclerosis has been confirmed clinically 

and experimentally. Many lines of evidence support the important role of the inflammatory 

cells especially monocyte derived macrophage (Lusis, 2000, Wang et al., 2012, Ilhan and 

Kalkanli, 2015) due to the fact that cholesterol-enriched macrophages are a major indication of 

the early atherosclerotic lesion. The link between atherosclerosis and inflammation was 

recently reaffirmed by a large human trial (CANTOS trial) by Ridker et al which demonstrated 

that anti-inflammatory therapy, canakinumab significantly reduced incidents of cardiovascular 

disease without any influence on the level of lipids compared to placebo (Ridker et al., 2017). 



10 

 

However, the role of oxidised LDL as a mediator of inflammation in macrophages hence 

promoting atherosclerotic events (Schwarz et al., 2017, Lara-Guzmán et al., 2018) has 

remained of interest to researchers. 

1.2.3.4 Atherosclerotic lesion macrophages 

As described above, under atherosclerotic conditions, monocytes are recruited into the arterial 

wall. They differentiate into macrophages in a process regulated by specific cytokines with M-

CSF as the most common growth factor involved (Waldo et al., 2008). Macrophages are 

phagocytic cells found in nearly all tissues, which function in the removal of cellular debris, 

clearance of necrotic cells and apoptotic cells. They originate from myeloid progenitor cells 

that produce the neutrophils (another phagocytic cell) and dendritic cells involved in antigen 

presentation (Mosser and Edwards, 2008). Macrophages play a key role in all the stages of 

lesion development and progression. They are the major type of cells present in early lesions, 

contribute to the progression of the lesion through the rapid uptake of oxidised or modified 

LDL and the remnants of lipoproteins leading to the formation of foam cells (Lusis, 2000, 

Mosser and Edwards, 2008).  

 

Modified LDL is taken up through receptors that recognize a wide range of ligand (scavenger 

receptors). The scavenger receptors are regulated by cytokines such as tumour necrosis factor 

(TNF-α) and interferon (IFN-ϒ) and region for oxidised fatty acids. The peroxisome-

proliferator activated receptor (PPAR), a transcription factor containing a binding discovery of 

scavenger receptors confirmed the cells as the starting point for the formation of fatty streak, 

an indication of the onset of the disease and the centre for development of plaque (Libby, 2002, 

McLaren et al., 2011). The emergence of atherosclerotic lesion is largely dependent on 

monocyte-derived macrophages, with macrophages as the most abundant type of cells present 
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in atherosclerotic plaque, they possess the ability to contribute to the progression of 

atherosclerosis (Ilhan and Kalkanli, 2015). Due to the great influence they have on 

inflammation, cholesterol accumulation and transformation into lipid-laden foam cells, 

formation of necrotic core and degradation of the ECM. 

1.2.3.5 Formation of fibrous plaques. 

Vascular smooth muscle cells (VSMCs) contribute to the development of the fatty streaks into 

a more advanced form (fibrous plaques), this is usually covered with a fibrous cap. The core 

of the fibrous cap is made up of mainly cholesterol and its esters (Lusis, 2000), modified LDL 

and cells that are prone to apoptosis and necrosis due to their inability to obtain enough nutrient 

for their survival (McLaren et al., 2011).  The SMCs contribute to the growth of the plaque 

through the formation of the fibrous cap and the production of extracellular matrix (ECM) 

(Wang et al., 2012). SMCs facilitate the migration of lymphocytes and monocytes by 

producing adhesion molecule (VCAM-1). Growth factors and cytokines such as platelet-

derived growth factor (PDGF), MCP-1, transforming growth factor-β (TGF-β) produced by T 

cells and macrophages are important in the activation of leukocytes, the production of ECM, 

promotion of endothelial dysfunction and enhancing the proliferation of SMCs (Libby, 2002)  

 

Recent studies have demonstrated the important role of CD40 (protein present on antigen 

presenting cells) expressed by T cells and macrophages in promoting advanced lesions. The 

CD40 interacts with its ligand to promote the production of proteases, which can degrade the 

matrix, adhesion molecules and inflammatory cytokine (Lusis, 2000, McLaren et al., 2011, 

Wang et al., 2012). Although the interaction was first seen in T and B cells, it has also been 

demonstrated in ECs and SMCs (Lusis, 2000). The formation of the fibrous cap is highly 
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dependent on the migration and proliferation of SMCs, which is in turn regulated by factors 

that are produced by T cells, endothelial cells and resident macrophages. 

1.2.3.6 Plaque progression and vulnerability 

It has been known for about four decades that plaque rupture is not only a determinant of 

clinical events but also a factor for the progression of the plaque. The association of angina and 

MI with plaque rupture in arteries with reduced blood flow was demonstrated by Davies and 

Thomas; the studies showed that the clinical manifestation was not only due to the narrowing 

of the lumen but also the change in morphology of the plaque. Pathological studies revealed 

that clinical events are triggered mainly by the vulnerability of the plague and its composition 

rather than the event of stenosis (narrowing of the blood vessel) (Davies and Thomas, 1985, 

Libby, 2002).  

 

Advanced atherosclerotic plaques are classified as stable or vulnerable. As the plaque continues 

to build up, sudden rupture or break off can occur and the plaque becomes unstable. The 

plaques that are likely to become unstable and prone to present symptoms are termed 

vulnerable plaques. The progression of atherosclerosis later present symptoms which occur 

when the coronary blood flow is decreased to the point that the metabolic needs of the organs 

cannot be met. Restriction of blood flow to the heart or the brain may be due to blood thrombus 

formation (thrombosis) that can obstruct blood follow. The disturbance of blood flow initially 

presents as angina (pain from the heart) described as pressure, pain or squeezing arising from 

the heart. This can be stable for several years but the sudden rupture of the plaque brings about 

acute coronary clinical events of unstable angina, heart attack or myocardial infarction(MI) 

meaning (death of the heart muscle) (Arroyo and Lee, 1999). An acute event, such as 

thrombotic stroke, can occur when there is reduced blood flow to the brain.  
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Stable plaque consists of a thick fibrous cap, a small lipid core with few inflammatory cells, as 

opposed to the vulnerable plaques that are characterised with a thin fibrous cap, considerably 

large lipid core and numerous macrophages and T cells (Arroyo and Lee, 1999, Wang and 

Bennett, 2012). The stability of the plaque is dependent on the thickness of the fibrous cap, 

whose structure is maintained by matrix synthesis and degradation. Low synthesis and 

increased degradation of the matrix lead to a weakening of the fibrous cap, both of these 

processes are likely to be influenced by inflammatory cells (Arroyo and Lee, 1999).  For 

example, macrophages are the main cells in lesions that produce matrix metalloproteinase 

(MMP). The MMPs are zinc dependent enzymes that degrade the ECM. T cells produce 

interferon γ (IFN-γ) which inhibits the synthesis of matrix by SMCs. ECM components are 

mainly produced by SMCs, hence the migration and proliferation of SMCs influence the 

stability of the plaque (Lusis, 2000, McLaren et al., 2011).  

 

The intima of advanced atherosclerotic lesions becomes mineralized as their complexity 

increases. Mineralization of the lipid core is regulated by enzymes involved in regulation of 

calcification and bone tissue formation (ossification) (Wang et al., 2012). Calcification and 

neovascularisation (formation of new blood cells), can also influence the stability of 

atherosclerotic lesion (Lusis, 2000). The clinical consequence such as heart attack and stroke 

that occur in atherosclerosis are not usually due to the blockage of the lumen by the build-up 

of the advanced plaque but a manifestation of an event arising from plaque rupture or 

endothelial erosion and the initiation of thrombosis. The progression of atherosclerotic lesions 

from onset to well-advanced form is depicted in Fig. 1.1.  Maintaining the stability of advanced 

plaques, hence preventing rupture seems a plausible way of preventing the occurrence of acute 

clinical events (Lusis, 2000, Halvorsen et al., 2008). The many factors involved in the 

destabilisation of the plaque makes this challenging.   
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Figure 1.1: Schematic representation of the progression of atherosclerotic lesion.  

The normal human coronary artery is characterised by three layers. The development of fatty 

streak arises from the deposition of lipids (Apo B-LP) mainly oxLDL which incites the 

recruitment of inflammatory cells. The accumulation of the lipids and the inflammatory cells 

(mainly lipid-laden macrophages) leads to a formation of a lipid core. As the lesion progresses, 

SMCs and T-cells infiltrate the intima leading to the formation of established lesions. The 

SMCs migration and proliferation leads to the formation of a fibrous cap. The vulnerable 

plaques (with thinning fibrous cap) results in a formation of necrotic core from the accumulated 

apoptotic cells. The thinning of the fibrous cap leads to the formation of unstable plaques 

susceptible to rupture, hence the development of a thrombus, which eventually brings about 

the acute coronary clinical event such as unstable angina, heart attack. Adapted from (Moore 

and Tabas, 2011). 

 

1.2.4 Cell death in atherosclerosis 

Apoptotic cell death has been well demonstrated in atherosclerotic plaque. The consequence 

of apoptosis is however dependent on the cells involved, where the cells are located within the 

plaque and stage of progression on the atherosclerotic lesions. Apoptosis of macrophages might 

possibly be beneficial in early lesions, but not in advanced lesions if the apoptotic bodies cannot 

be phagocytosed and cause inflammation (Tabas, 2005). Smooth muscle cells and macrophages 

have been shown to go through apoptosis in plaques (Boyle, 1999, Akishima et al., 2005).  
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Over the years several studies have emphasised the importance of apoptosis in contributing to 

plaque stability and the progression of atherosclerosis (Kockx and Herman, 2000, Tabas, 2005, 

Martinet et al., 2011). Factors such as hypoxia, oxidative stress, cholesterol overload and IFN-

γ have been implicated in instigating apoptosis in atherosclerosis (Mallat and Tedgui, 2000, 

Van Vre et al., 2012). The increased turnover of EC in atherosclerotic plaque is linked to 

enhanced apoptosis. Loss of SMC can contribute to the weakening of fibrous cap and the 

disappearance of SMCs in plaque has been attributed to apoptosis. Apoptotic macrophages are 

mainly present in cellular regions which are rich in macrophages which synthesise DNA 

(Kockx and Herman, 2000). Macrophages represent a greater number of cell deaths occurring 

in atherosclerotic lesions compared to leukocytes, SMCs and ECs, making up over forty 

percent of cell deaths (Kolodgie et al., 2000). 

1.2.5 Epidemiology and risk factors 

Atherosclerosis affects people with certain risk factors more than others. Over the years, 

many risk factors have been identified as a predictive factor for the development of 

atherosclerotic cardiovascular disease (Homma, 2004). Epidemiological studies over five 

decades have focused on the associated risk factors, largely grouped as genetic and 

environmental factors. Genetic predisposition to the disease can commonly be associated 

with the family history of CVD. The importance of genetic factors has been emphasised 

over the years. Asides the impact of genetic variations involved in lipid metabolism, other 

genes that  

 

 

predispose to other risks factors of atherosclerosis are equally considered of importance 

(Indolfi, 2002). The heritability of coronary disease and the importance of genetic factors 

have been suggested by studies in twins (Marenberg et al., 1994, Zdravkovic et al., 2002). 
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Some of the factors that are strongly correlated to atherosclerosis are non-modifiable. Non-

modifiable factors such as age and genetic factors e.g. familial hypercholesterolaemia 

cannot be changed. Modifiable factors such as diabetes, smoking, hyperlipidaemia and 

hypertension can change depending on certain lifestyle changes. It is compelling to note 

that most risk factors for atherosclerosis are risk factors for heart failure. The involvement 

of some of the risk factors as predictive factors for the development of CVD is described 

below: 

1.2.5.1 Smoking 

 The risk of developing CVD from smoking is dependent on the level of smoking in terms 

of the number of cigarettes smoked per day and the age at which the person began smoking. 

The link between smoking and heart diseases dates as far back as studies which clearly 

linked smoking to the incidence of heart attack (Doll and Hill, 1956, Hammond and Horn, 

1958). Evidence from in vivo and in vitro studies demonstrated the ability of cigarette 

smoke to induce LDL oxidation (Yokode et al., 1996, Yamaguchi et al., 2001). Cessation 

of smoking leads to a reduction of risk of a heart attack in smokers, in two years the risk 

status of ex-smokers was near that of nonsmokers(Gaziano, 1996). Mons et al showed 

increased association of cardiovascular mortality in current smokers compared to former 

smokers and never smokers with smoking cessation having a beneficial effect in reducing 

the risk of cardiovascular mortality (Mons et al., 2015).  Smoking is often classified as an 

important risk factor for

1.2.5.2 Dyslipidaemia and Hyperlipidaemia 

The term hyperlipidaemia or hyperlipoproteinaemia is described as the presence of 

abnormal elevated concentration of lipids or lipoprotein in blood and is the most common 

form of dyslipidaemia (abnormal level of lipids in the blood). The abundance of lipoprotein 
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in plasma is of importance in atherosclerosis, as high level of atherogenic lipoprotein serves 

as a precursor in most form of the disease. Individuals with an elevated level of LDL due to 

genetic inheritance or lifestyle have been confirmed to be a high risk of myocardial 

infarction(Goldstein and Brown, 1986).  

 

The relationship between LDL-cholesterol and atherosclerosis is well established, lowering 

blood cholesterol leads to decrease incident of cardiovascular deaths in men with 

hypercholesterolemia (Shepherd et al., 1995). Human studies on the lipid lowering drugs 

statins demonstrate a reduction in the incidence of CVD due to decreased LDL-cholesterol 

(Baigent et al., 2010, Mihaylova et al., 2012). A  meta-analysis of large longitudinal cohort 

study showed the link between lipids and the risk of ischaemic heart disease (IHD) with 

LDL cholesterol having a direct association to IHD whereas HDL cholesterol was inversely 

related (Lewington et al., 2007, Di Angelantonio et al., 2009). LDL is clearly causal, but it 

is not clear if HDL is causally protective. 

1.2.5.3 Diabetes 

Diabetic patients are three to five times more at risk of coronary atherosclerosis in spite of 

controlling other confounding factors (Mazzone et al., 2008). The oxidation and glycation 

of LDL in diabetic patients can lead to the formation of modified LDL that is taken up by 

macrophages and generates foam cells which are associated with the onset of atherosclerosis 

(Knott et al., 2003). Other risks such as abnormal lipids and hypertension are commonly 

found in diabetic patients (Bierman, 1992). There is an increased lipid peroxides level and 

increased serum cholesterol in diabetics patients (Suryawanshi et al., 2006), which might 

predispose them to more cardiovascular disease. Both type 1 and type 2 diabetes promotes 

atherosclerosis with the level of blood glucose as the causal factor (Chait and Bornfeldt, 



18 

 

2009). Hence, diabetes is a major contributor to atherosclerosis with most deaths of diabetic 

patients arising from atherosclerosis. 

1.2.5.4 Hypertension 

Hypertension is defined as diastolic and systolic blood pressure above 90mmHg and 

140mmHg, respectively. It is a risk factor for CHD, stroke and other CVD (WHO, 1996). 

Reduction of blood pressure (systolic blood pressure (SBP) below 140mmHg and diastolic 

blood pressure (DBP) below 90mmHg) has been seen to reduce the onset of CVD (Turnbul, 

2003). In 2002 a longitudinal cohort study demonstrated a direct association between DPB 

and SBP and both IHD and stroke (Lewington et al., 2002).  Hypertension might lead to 

thickening of the arterial wall or lesion fissuring.  The benefit of treating hypertension was 

seen in both mild and severe cases at all ages within five years of treatment, the incidence 

of CHD and stroke was reduced to 14% and 40% respectively. The hypertension optimal 

treatment study demonstrated that aggressive antihypertensive therapy reduced the 

occurrence of a cardiovascular event in high-risk patients (Hansson et al., 1998).  

1.2.5.5 Age 

The risk of CVD has been proven to increase with age, atherosclerosis is often regarded as 

a very good example of age-related disease. Atherosclerosis progresses with age, becomes 

more severe and universally observed more in older humans (Stout, 1987). The link is best 

observed when comparing the average risk of developing CVD at a certain age compared 

to increased age perhaps monitored over a period over ten years. Comparing the average 

risk of men at the age of 30-34years in the US to men at the age of 60-64years showed a 

seven fold increase (Wilson et al., 1998).  Examination of the aorta of elderly with magnetic 

resonance imaging (MRI) demonstrated that age might promote atherosclerosis (Chen et 

al., 2013). Age is an important non-modifiable factor, as atherosclerosis is often regarded 



19 

 

as part of the process of aging. Other factors such as diabetes and hypertension also increase 

with age. 

1.2.5.6 Gender 

Data from observational studies showed that males are at higher risk when compared to females 

of the same age. Both human and animal studies have documented the gender difference in the 

predisposition to CVD. The Framingham study by Kannel et al. showed that the rate at which 

males below the age of 60years developed CVD doubled that of women (Kannel et al., 1976). 

Hayashi et al showed that the formation of atherosclerotic lesions in male rabbits was greater 

than that of female rabbits fed the same high cholesterol diet (Hayashi et al., 1995). The 

incidence is seen to accelerate in postmenopausal women, supported by the work of Kannel et 

al. which showed that the event of CVD was almost twice that of premenopausal women 

(Kannel et al., 1976). It is controversial if sex hormones play a role in the development of CHD 

in women, as hormone replacement therapy did not protect against CVD in postmenopausal 

women (Manson et al., 2003), although there is ample of evidence that oestrogen prevents 

atherosclerosis in animal models (Williams et al., 1995). It is also evident that the deficiency 

of testosterone predisposes to atherosclerotic events (Oskui et al., 2013). Over the last decade 

there is greater emphasis laid on the crucial role, gender might have on the occurrence of CVD 

(Spence and Pilote, 2015). 

1.2.5.7 Obesity  

 Obesity is a term used to describe excess body weight. Humans are classified as obese based 

on their body mass index (BMI), A range between 18.5-24.9 kg/m2 is considered healthy or 

normal while values above 30 kg/m2 are considered obese (Kopelman, 2000). Obesity is 

regarded as the starting point for some other risk factors such as dyslipidaemia, hypertension, 

insulin resistance and glucose intolerance (Wilson et al., 1999).  A Study by McGill et al 

demonstrated that obesity is linked to increased atherosclerosis in young adult men (McGill et 
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al., 2002). The link between obesity and CVD is of growing concern due to the increase in the 

prevalence of obesity in developed society. Other studies have shown that depletion of visceral 

fat reduces risk factors associated with obesity such as impaired glucose metabolism, 

hypertension and dyslipidaemia hence preventing CVD (Shimano, 2009).  Other factors such 

as endothelial dysfunction, inflammation, inflammasome activation, and adipokine imbalance 

have been proposed to link obesity to atherosclerosis (Lovren et al., 2015).  

1.2.5.8 Sedentary lifestyle and lack of exercise 

Lack of physical exercise is a predisposing factor to CHD, aerobic exercise is associated with 

a lower risk of CVD. It has been revealed that individuals who expend more energy weekly are 

less likely to develop CHD (Thompson et al., 2003). Exercising regularly promotes anti-

atherosclerotic properties such as increased HDL cholesterol concentration, less body fat, lower 

level of blood pressure and glucose, decreased LDL cholesterol and higher sensitivity to insulin 

(Assmann et al., 1999). Large population studies showed that physical inactivity doubles the 

risk of CVD compared to physically active individuals (Powell et al., 1987, Wannamethee et 

al., 1998). Increased level of physical fitness is inversely correlated with CHD and starting an 

exercise regimen has been suggested to reduce the risk of CVD. (Paffenbarger et al., 1993, 

Wannamethee et al., 1998, Schroeder et al., 2007).The possible mechanistic events that might 

enhance reduced susceptibility to CVD was suggested to include but not limited to the release 

of less inflammatory mediators from adipose tissue, decreased thrombotic events, stabilised 

vulnerable plaques and enhancement of the endothelial function (Bowles and Laughlin, 2011). 

1.2.5.9 Other factors  

Small dense LDL, which is one of the phenotypes of LDL known as pattern B with a high 

proportion of small dense LDL particles, has been demonstrated to be linked with increased 

CAD (Austin et al., 1988, Krauss, 2010, Arai et al., 2013). In vitro studies have shown that 

dense LDL had increased susceptibility to oxidation hence promotes increased atherogenic 
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effects (de Graaf et al., 1991). There is evidence on the possible link between accumulation 

Lp(a), the variant form of LDL (which contains additional apo (a) attached to apoB-100) and 

the level of fibrinogen with increased events of CHD (Thompson et al., 1995). The similarity 

in the sequence of its protein and that of plasminogen and relation to fibrinolysis suggest its 

important role in thrombosis (Gerald and Daphne, 2012). The evidence that Lp(a) is a cause of 

CAD was strengthened by Clarke et al., who discovered an association between isoforms of 

Lp(a) and the development of CAD (Clarke et al., 2009). Atherogenic properties of Lp(a) may 

be due to its similarity to LDL and the transport of cholesterol to areas with vessel injury and 

its high propensity to aggregate (Hajjar and Nachman, 1996).  

 

Homocysteine produced as an intermediate product in the metabolism of sulphur containing 

proteins. Elevation of plasma homocysteine caused by homocystinuria is associated with 

atherosclerosis and premature thrombosis. Gerhard and Duell showed that an elevated 

homocysteine level is an independent risk factor for atherosclerosis. However, the contribution 

of homocysteine to the disease is still under investigation (Gerhard and Duell, 1999). 

Hyperhomocysteinaemia has been linked to endothelial dysfunction in humans (Tawakol et al., 

1997, Woo et al., 1997). The clinical trial of homocysteine lowering showed no effect 

(Armitage et al., 2010).  Other studies have found high levels of homocysteine mediating 

vascular damage such as promoting mitogenesis of vascular smooth muscle cells (Tsai et al., 

1996), causing damage to endothelial cells (Starkebaum and Harlan, 1986), increased platelet 

aggregation (Durand et al., 1997). 

 

C-reactive protein (CRP) and fibrinogen have also been identified as a novel risk factor for 

atherosclerosis (Ridker et al., 2001). Inflammation which regulates the acute phase proteins 
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such as serum amyloid A, fibrinogen, and CRP, have a vital role in atherosclerosis (Gabay and 

Kushner, 1999, Libby et al., 2002). Some population and clinical studies have demonstrated 

the association between these inflammatory mediators and increased cardiovascular events 

(Ridker et al., 1998, Koenig et al., 1999).  The relevance of the functional effects of CRP as a 

possible causal factor in atherosclerosis was discussed by Paffen and deMatt (Paffen and 

deMaat, 2006) 

These factors can work independently or together to increase susceptibility to the risk of 

atherosclerosis. The interactions between the associated risk factors make an investigation into 

causal factors difficult, hence most common forms of CHD occur as a result of genetic 

susceptibility, aging, and environmental factors. Of note is the important link between LDL 

and most forms of the disease. 

 

1.3 Lipoproteins and Atherosclerosis 

1.3.1 Introduction to lipoproteins 

Lipoproteins are formed from the combination of lipids and protein. Lipids are insoluble in 

aqueous solution. The combination with protein is necessary for the transportation of lipid 

through the blood stream to tissues. In general, lipoproteins are spherical particles in which the 

outer component is made up of polar proteins, phospholipids and non-esterified cholesterol 

(free cholesterol). This surrounds nonpolar molecules triacylglycerols (TG), free cholesterol 

and cholesteryl esters. The protein parts are often called apolipoproteins, which aside from 

their structural roles facilitate the cellular uptake of lipoproteins by serving as ligands for the 

lipoprotein receptors. 
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Lipoproteins differ in their composition, size, electrophoretic mobility and density. They are 

classified into chylomicrons, very low density lipoproteins (VLDL), low density lipoprotein 

(LDL) and high density lipoproteins (HDL).  VLDL is synthesized in the liver and transport 

TG produced endogenously in the liver to peripheral tissues for energy needs, they contain 

apoB, apoC-II and apoE (apoC-II and apoE are acquired after secretion). LDL is mostly derived 

from delipidated VLDL when it forms VLDL remnants that can be degraded further to form 

LDL, but a small portion is directly released from the liver. It transfers cholesterol from the 

liver to peripheral tissues. It contains only ApoB-100 proteins. HDL is the main transport form 

of cholesterol from peripheral tissues to the liver. They contain apoA1 with apoA2, apoC and 

apoE (Goldstein and Brown, 1977, Gerald and Daphne, 2012). 

 

The function of HDL and LDL in cholesterol transport gives them clinical significance in 

atherosclerosis, the major component of arterial lesion is cholesterol-enriched cells.  

Elevated level of serum HDL is negatively correlated with incidence of CVD. The HDL is 

said to be protective and anti-atherogenic in nature, although this has not been proven. 

However, LDL is positively correlated with the incidence of CVD and pro atherogenic in 

nature (Gerald and Daphne, 2012). 

1.3.2 Lipid Metabolism  

1.3.2.1 Endogenous lipid pathway 

Lipoproteins can be synthesised from triglycerides and cholesterol in the hepatocytes. In the 

liver triglycerides and cholesterol are attached to apo B to form VLDL. It is formed through 

lipidation of ApoB-100, these VLDL rich in triglyceride enters the plasma to deliver 

triacylglycerol to muscle and adipose tissue through lipoprotein lipase activity (Feingold 

and Grunfeld, 2000). VLDL is degraded by lipoprotein lipase found on endothelial cells to 

form VLDL remnants or intermediate density lipoprotein (IDL)  leading to the detachment 
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of Apo C while ApoE remains attached to the IDL particle (Murdoch and Breckenridge, 

1996). The IDL in circulation can be taken up by the liver through the interaction of 

ApoE/ApoB-100 with the IDL receptor (Mahley and Ji, 1999) or can be further degraded to 

form triglycerides and fatty acids by hepatic lipase (Zambon et al., 2003) leaving the IDL 

remnant known as LDL behind. The metabolism of LDL is discussed in section 1.3.4. 

1.3.2.2 Exogenous lipid pathway 

The exogenous lipid pathway begins in the intestine where lipase hydrolyses dietary 

triglycerides into monoacylglycerol and free fatty acids emulsified with cholesterol, fat soluble 

vitamins, plant sterol and bile acids to form micelles which are then transported into the 

intestinal cells. The uptake of plant sterol and cholesterol is mediated by Niemann-Pick C1-

like protein (Feingold and Grunfeld, 2000). The enterocytes convert the fatty acids and 

monoacylglycerol back to triglycerides. ApoB-48 and triglycerides are incorporated into 

chylomicrons through microsomal transfer protein (MTP) (Hussain, 2014). Chylomicrons 

bypass the liver circulation entering the blood stream via the lymph where they acquire Apo 

C’s and Apo E from HDL(Ramasamy, 2013). ApoC2 activates lipoprotein lipase present in the 

endothelium of capillaries, which removes triglycerides from the core to produce a 

chylomicron remnant. The chylomicron remnant releases its surface material to HDL leading 

to the formation of a smaller size chylomicron which passes through the capillary endothelium 

in the liver and then taken up through the binding of ApoE to the LDL receptor family. 

1.3.2.3 Reverse cholesterol transport 

HDL mediates the transportation of cholesterol from extrahepatic tissues back to the liver for 

it to be excreted in bile, this process is known as reverse cholesterol transport. The formation 

of nascent HDL occurs in the hepatocytes and enterocytes through the addition of free 

cholesterol and phospholipids to ApoA1 by the ATP-binding cassette transporter A1 (ABCA1) 

(Kiss et al., 2003, Hussain, 2014). The phospholipid transfer protein transfers phospholipid to 
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HDL from chylomicrons when they become hydrolysed to chylomicron remnants (Huuskonen 

et al., 2001). The phospholipid-rich HDL becomes matured by ABCA1 adding free cholesterol 

to them (Ge et al., 2013). Most of the cholesterol is then converted to cholesteryl ester by 

lecithin-cholesterol acyltransferase (LCAT) bound to HDL and the esterification causes them 

to relocate to the core of the HDL particle. The cholesteryl ester transfer protein (CETP) 

exchanges the esters with triglycerides derived from other classes of lipoprotein (Chajek and 

Fielding, 1978). Alternatively, the cholesteryl esters and cholesterol can be released in the liver 

by binding scavenger receptor class B1 (SR-B1) (Leiva et al., 2011). 

1.3.3 Low density lipoprotein (LDL) 

LDL is a small particle, which may vary in diameter in diameter between 20-25 nm and 

molecular weight of about 2 to 3.5 million Daltons. The density ranges between 1.019 g/ml – 

1.063 g/ml, the variation in size is due to the extent of metabolism by hepatic lipase (Goldstein, 

1977). Generally, the LDL particle (Fig 1.2) is made up of 75% lipids, mainly cholesteryl esters 

and 25% protein. It has an outer monolayer made up of phospholipid, free cholesterol and 

ApoB-100 protein (Steinberg, 2002). It contains one molecule of Apo B and on average about 

185 molecules of TG,  700 molecules of phospholipids (PL), mainly phosphatidylcholine,  

1600 molecules of cholesteryl esters and 600 molecules of non-esterified cholesterol (free 

cholesterol) (Steinberg, 1997b). It also contains a certain amount of antioxidants, such as α- 

and γ-tocopherol, β-carotene and lycopene (Jessup et al., 2004, Siess, 2006). LDL has long 

been identified as a causal factor in atherosclerosis. Elevated LDL level in plasma was first 

recognised to be strongly associated with atherosclerosis by Gofman and colleagues in 1950 

(Gofman et al., 1950). 
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Figure 1.2 Structure of LDL 

Source:(Rausch and Kortleever, 2011) 

1.3.4 LDL metabolism 

The uptake of LDL is dependent on LDL receptor-mediated endocytosis. The LDL receptor 

was discovered by Brown et al. in 1973 from the study on cultured human cells (Brown et al., 

1973). The most abundant LDL receptors are present in the hepatic cells, but they are present 

in most other cells as well. The receptors are located in clathrin-coated pits in specialized 

regions. The binding of LDL to its receptor is through the apoB-100 region of the molecule. 

The process by which LDL binds its receptor and LDL cholesterol uptake in cells is a highly 

regulated event. The apo-B-100 protein binds to the receptor, the LDL receptor complex is 

internalized via endocytosis. The endocytotic vesicle formed fuses with a lysosome. The 

content of LDL along with its apoB-100 content are hydrolyzed by enzymes present in 
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lysosomes (hydrolases), to form free cholesterol and amino acids. The LDL receptor is recycled 

back to the surface of the cell where it can bind more LDL particles (Brown et al., 1973, 

Goldstein and Brown, 1977, Goldstein and Brown, 1979). 

1.3.5 Role of LDL in atherosclerosis 

Lipoproteins, particularly LDL are a common feature of the hypothesis on atherogenesis. 

Individuals with high concentrations of LDL due to genetic inheritance or lifestyle are more 

susceptible to heart attack. Genetic, epidemiological and clinical studies have provided some 

evidence in support of the association between LDL and atherosclerosis. The most convincing 

link of LDL to was seen in familial hypercholesterolaemia (FH). This is a genetic disease and 

if homozygous and untreated,  the patient’s death from coronary atherosclerosis occurs in the 

second decade of life due to the accumulation of LDL arising from the absence of the LDL 

receptor (Goldstein and Brown, 1973). 

 

 Autosomal dominant hypercholesterolaemia (ADH) is also a genetic disease associated with 

increased levels of LDL cholesterol and CVD. The mutation of three genes (ApoB, LDL 

receptor and proprotein convertase subtilisin-kexin type 9 (PCSK9)) is associated with ADH 

(Marduel et al., 2010).  PCSK9 is important in the regulation of LDL-cholesterol, it interacts 

with LDL receptors in the liver and targets the LDL receptors for degradation in lysosomes and 

regulates LDL concentration in plasma. Inactivation of PCSK9 extends the life span of the 

LDL receptors and leads to decreased LDL cholesterol plasma concentration and reduced CHD 

(Farnier, 2014, Tavori et al., 2015, Shapiro and Fazio, 2017). The effect of PCSK9 on LDL 

receptor led to the development of active drugs to lower plasma LDL cholesterol thereby 

reducing CVD. 
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Several epidemiological studies have supported the proatherogenic role of the Apo B-100 

containing lipoprotein (Kannel et al., 1984) and  the fact that  clinical studies have shown that 

lipid-lowering drugs, such as statin therapy, decrease the risk of CVD is an important indication 

of the association between LDL and CVD (Serruys et al., 2002, Baigent et al., 2010). It was 

anticipated that LDL will show an atherogenic effect in vitro because of its role as a major 

cholesterol transporter to tissues and the fact that early lesion of atherosclerosis is characterised 

by cholesterol-laden macrophages. This was opposed by the failure of LDL to increase 

cholesterol accumulation in macrophages despite the high concentration of LDL incubated with 

the cells (Goldstein et al., 1979b, Fogelman et al., 1980).  In vitro studies demonstrated that 

macrophage uptake of LDL is too low to cause the sufficient accumulation found in vivo and 

these led to the suggestion that LDL may be modified in vivo to a form that is rapidly taken up 

through a different receptor (Goldstein and Brown, 1979). The down regulation of the LDL 

receptor by the increased intracellular amount of cholesterol via the sterol regulatory element 

binding protein 2 (SREBP2) might be the reason to the inability to increase the cholesterol 

level of macrophages by way of LDL receptor (Steinberg et al., 1989, Steinberg, 1997a). The 

LDL is likely to undergo changes that can affect its usual pathways to cells and alter their 

interaction with surface receptors on the cells (Chait, 1987).  

 

1.4 Oxidative Modification of LDL and Atherosclerosis 

1.4.1 LDL modification hypothesis  

The hypothesis originated in 1979 when Goldstein and Brown discovered that patients with 

homologous FH  who lack functional LDL receptors were still able to accumulate foam cells 

like hypercholesterolaemic patients that possess normal LDL receptor (Goldstein et al., 1979b). 

They hypothesized that LDL might be altered prior to the uptake. To test the hypothesis, they 
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tried modifying LDL to identify the forms of LDL that will lead to accumulation of cholesterol 

in macrophages. Acetylated LDL (acetyl-LDL) provided higher uptake of LDL and the uptake 

was mediated by receptors identified and characterised as scavenger receptor A (SRA) in 

macrophages (Brown and Goldstein, 1983). Henriksen et al., discovered that incubation of 

endothelial cells with LDL for 24 hours led to modification of LDL (Henriksen et al., 1981) to 

a form that was recognized  by peritoneal macrophages via the acetylated receptor similar to 

that which was previously described by Goldstein and colleagues (Goldstein et al., 1979b).  

Later studies showed that LDL was oxidatively modified by endothelial cells and other cell 

types (Steinbrecher et al., 1984, Witztum, 1993) and these findings led to the proposal of the 

LDL modification hypothesis.  

 

The LDL oxidation hypothesis proposed that oxidative modification is involved in the onset of 

atherosclerosis and also contributes to the progression of the disease. The presence of oxLDL 

in circulation is a known marker of atherosclerosis, hence a risk factor for the development of 

CVD (Stocker and Keaney, 2004). There is compelling evidence that atherosclerotic lesions of 

both animal models and humans contain oxLDL. Small amounts of oxidised LDL can be 

observed immunologically in plasma, using specific monoclonal antibodies such as 

FOH1a/DLH3 that can bind to the epitopes of oxidised lipids bound to apo B-100 (Itabe et al., 

1994). The amount of detectable oxLDL was significantly elevated in diabetes, renal and 

coronary heart disease (Itabe, 2003, Tsimikas, 2006, Maiolino et al., 2013).  The use of 

antibodies staining against oxLDL has demonstrated the presence of oxLDL in atherosclerotic 

lesions and not in the arterial wall in hypercholesterolaemic rabbits (Boyd et al., 1989), humans 

(Ylä-Herttuala et al., 1989).  
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Evidence of oxLDL as the main culprit in atherogenesis, rather than native LDL has been well 

demonstrated in several studies which showed that modified forms of LDL such as oxidised 

and acetylated form are insatiably taken up by macrophages through the scavenger receptors. 

The principal receptors responsible for the binding and uptake of oxLDL are the scavenger 

receptor class A and CD36 (Collot-Teixeira et al., 2007). Unlike the LDL receptor, the 

scavenger receptors are not downregulated by the presence of oxLDL hence the substantial 

accumulation of cholesterol in macrophages leading to the formation of foam cells (Witztum 

and Steinberg, 1991, Yoshida et al., 1998). There are very strong line of evidence, that the in 

vivo modification of LDL increases its  ability to induce inflammatory response and promote 

atherosclerosis, this is supported by the accumulation of oxidised LDL (oxLDL) in animal 

models with atherosclerosis (Steinberg et al., 1989, Harats et al., 2000) and the presence of  

oxidised lipids in both chemical and immunological analysis of atherosclerotic plaques in 

humans (Kritharides et al., 1998). LDL oxidation leads to the particles of LDL having 

immunogenic epitopes promoting the formation of antibodies against them, these antibodies 

have been found in many advanced atherosclerotic lesions of patients (Erkkila et al., 2000, 

Inoue et al., 2001). The main indication of this hypothesis is peroxidation of LDL promotes 

atherosclerosis.  

1.4.2 Proatherogenic effects of oxidised LDL  

Many lines of evidence support the role of oxLDL in foam cell formation and lesion 

advancement. There are strong indications, that the in vivo modification of LDL increases its  

ability to induce inflammatory response and promote atherosclerosis, this is supported by the 

accumulation of oxidised LDL (oxLDL) in animal models with atherosclerosis (Ylä-Herttuala 

et al., 1989) and the presence of oxLDL oxidised lipids in both chemical and immunological 

analysis of atherosclerotic plaques in humans (Kritharides et al., 1998). They induce 
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inflammatory responses by activating genes for the synthesis of cellular adhesion molecules 

and chemotactic proteins (Boullier et al., 2001). Extensively oxidised LDL can also inhibit the 

outward movement of macrophages from the arteries (Quinn et al., 1987), hence they remain 

in the arteries and further accumulate or undergo apoptosis in them (Tabas, 2005).  

 

OxLDLs are cytotoxic to many cells, Chisolm et al. revealed that oxidised LDL was cytotoxic 

to the cells of the arterial wall, and thereby proposed that oxidised LDL may be significant for 

atherogenesis (Hessler et al., 1979). The ECs are susceptible to LDL toxicity, the accumulation 

of oxLDL can thus lead to endothelial dysfunction (Pech et al., 1992) and promote a further 

inflammatory response. The ability of LDL to cause cell death or injure cells is a general result 

of oxidation irrespective of the mode of oxidation. The potency of OxLDL to kill cells is often 

attributed to the degree of oxidation, although moderately oxidised LDL can also kill cells 

(Morel et al., 1983, Hessler et al., 1983, Siow et al., 1999b). Two decades later Chisolm and 

colleagues identified the oxidised cholesterol content (mainly cholesterol hydroperoxides) as a 

major factor responsible for the injurious nature of oxidised LDL (Colles et al., 2001b). 

Katouah et al recently showed that oxidised LDL triggered cell death in human macrophages 

via upregulation of intracellular production of reactive oxygen species (ROS) and inhibition of 

the major catabolic enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 

aconitase (Katouah et al., 2015).  Berliner and others reported that minimally oxidised LDL 

increased the binding of monocytes to endothelial cells through the upregulation of production 

of the differentiating factor macrophage-colony stimulating factor (M-CSF) and the chemokine 

monocyte chemotactic factor (MCP-1) (Cushing et al., 1990, Berliner et al., 1990). OxLDL 

upregulates the production of metalloproteinases,  major factors in thrombosis due to their 

contribution to destabilising fibrous cap in advanced lesions (Rajavashisth et al., 1999). The 

association of oxLDL with peripheral, coronary, preclinical atherosclerosis and vulnerable 
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plaques has been demonstrated in humans (Ylä-Herttuala et al., 1989). All this evidence put 

together signifies the potential importance of oxLDL as a biomarker for atherosclerosis and its 

contribution to atherogenesis. 

 

Despite the presence of small amounts of oxidatively modified LDL in plasma and its isolation 

from the atherosclerotic lesion of animals and man and its proatherogenic nature, the 

mechanism by which LDL is oxidatively modified in vivo is still largely debated. Most studies 

on the process are done in vitro. Understanding how LDL is oxidised is critical in inhibiting 

the process and its contribution to the onset and progression of the disease. 

1.4.3 Oxidation of LDL  

Oxidised LDL has been broadly classified into minimally oxidised LDL (MM-LDL) and fully 

or extensively modified LDL (oxLDL). The MM-LDL is less modified and can still be 

recognized by the LDL receptor. However, it is capable of increasing M-CSF and MCP-1 

release by endothelial cells (Liao et al., 1991). The extensively oxidised OxLDL has lost its 

recognition by the LDL receptor but can be recognized by scavenger receptors such as SRAI/II 

and CD36 on vascular cells (Levitan et al., 2010). MM-LDL and OxLDL differ from each 

other in terms of what they contain and their effect in the body, both types differ from native 

LDL. Modification of LDL includes aggregation, lipolysis, proteolysis and oxidation. LDL is 

readily denatured, aggregated and easily prone to oxidation. LDL can be extensively 

aggregated by vortexing for few seconds (Khoo et al., 1988) 

 

The oxidation of LDL is often complex as both the protein and the lipid component can be 

modified. It was originally described as LDL containing modified protein product. Evidence 
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from previous research suggested the formation of hydroperoxides of proteins prior to the 

formation of lipid hydroperoxides and the modified protein might play a role in the oxidation 

of lipids (Gebicki et al., 2000, Gieseg et al., 2000). However, the evidence implicating oxLDL 

in atherosclerosis has been attributed mainly to the lipid component. LDL with oxidised protein 

without changes to its lipid component is yet to be identified whereas oxidation of LDL can 

occur with little or no change to the apoB-100 (Parthasarathy et al., 2010). Hence oxLDL has 

been defined as LDL containing the products of lipid oxidation such as the peroxides and their 

catabolic products (Levitan et al., 2010). A recent review by Davies, however, suggests that 

depending on the concentration and reactivity protein is the main target for biological oxidants 

although this has been linked to the pathology of some human diseases the link to causality of 

the diseases is yet to be confirmed (Davies, 2016).  

A number of lipid peroxidation products arise from the peroxidation of lipids (Esterbauer et 

al., 1992). Lipid peroxidation is the process whereby initiators of oxidation or radicals abstract 

an electron from lipids. Radicals are highly reactive chemical species that can exist 

independently and possess one or more lone pair electron (Aruoma, 1999, Sparrow et al., 

1992). The lipid peroxidation reaction occurs in three major overlapping steps: initiation, 

propagation, and termination steps. In the first step, a lipid radical is produced. At the 

propagation stage, the unstable lipid radical produced readily reacts with molecular oxygen to 

create a peroxyl-lipid radical, another unstable species that reacts with another lipid to yield a 

lipid radical and lipid-peroxide. The reaction proceeds as the next lipid radical reacts in a 

similar manner. The reaction of the radical with a non-radical continues to yield another radical 

(chain reaction mechanism). The termination reaction occurs when radicals react with each 

other to form a non-radical (Schafer et al., 2000). 

L-H + oxidant.               L. + oxidant-H (initiation) 
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L. + O2       LOO.  

LOO. + LH             LOOH + L. (propagation) 

L. + L.              Non radical products (NRPs) (termination) 

L. + LOO.                   NRPs  

Equation adopted from Schafer et al, (Schafer et al., 2000) L-H = lipids, L. = lipid radical, 

LOOH=hydroperoxide, LOO. = peroxyl radical 
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Fig 1.3: Schematic representation of peroxidation reaction in polyunsaturated fatty acid 

Diagram created with ChemSketch software. Modified from (Young and McEneny, 2001)  
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The major component susceptible to oxidation is the polyunsaturated fatty acids (PUFA) of the 

lipids present in LDL (the mechanism involved is illustrated in figure 1.3).  PUFAs are more 

susceptible to oxidation because they possess multiple bonds. The autoxidation of PUFA leads 

to the rearrangements of double bonds and the formation of conjugated dienes (a product 

containing two conjugated carbon double bonds) and their products. The carbon centred 

conjugated radicals have very short lifetimes. The rearrangement of bonds and reaction with 

molecular oxygen give rise to hydroperoxides the first stable products that are likely to be 

conjugated dienes. For example, the oxidation of linoleic acid leads to formation of well-known 

conjugated hydroperoxides, hydroxyoctadecanoic acids (HPODE) such as 9-HPODE and 13-

HPODE which can further be transformed by isomerisation or chain cleavage to for further 

oxidation products or reacts with a lipid radical to promote the propagation step (Schneider, 

2009). The chain reactions lead to formation of different products of oxidation. 

 

Products of lipid modification include oxidised free fatty acids (FA), sphingolipid, and 

phospholipid products, oxysterols, cholesteryl ester oxidised on the fatty acyl moiety and short 

chain aldehydes. Further oxidation gives rise to hydroxenonenal (HNE) one of the most 

abundant aldehydes found in oxLDL (Levitan et al., 2010). The amino acids present in 

lipoproteins can react with aldehydes to form adducts. HNE can readily react with cysteine and 

histidine residues (Uchida and Stadtman, 1992). Malondialdehyde (MDA) is also an important 

aldehyde product of lipid peroxidation and are able to react with lysine residues of apoB. MDA-

modiodified LDL correlated with LDL-cholesterol in plasma of patients with CHD (Viigimaa 

et al., 2010).   

 



37 

 

The oxidation of the core of rich in cholesteryl esters leads to formation of more lipid 

hydroperoxides which are further degraded into aldehydes (Leitinger, 2003). Cholesteryl ester 

hydroperoxides components have been suggested to enhance pro-inflammatory response in 

macrophages and identified as major constituents of LDL that are moderately oxidised 

(Harkewicz et al., 2008). Phospholipids within LDL are targets of lipid peroxidation from 

attack by oxidant or free radicals. The oxidation of phospholipids and the derived oxidation 

products depends on the type of oxidant involved in the initiation process, the length of fatty 

acyl group attached and the link that is present between the glycerol backbone and the fatty 

acyl group (Spickett et al., 2011, Reis and Spickett, 2012). Phosphatidylcholine derivative 1-

palmitoyl-2-(5-oxo-pentanoyl)-3-glycero-PC (POVPC) and other derivatives similar in 

structure were found in atherosclerotic plaques and minimally oxidised LDL (Watson, 1997, 

Hoff et al., 2003). The role of oxidised phospholipids products in atherosclerosis was reviewed 

by Lee and colleagues (Lee et al., 2012), they suggested that the effects of oxidised 

phospholipid could be attributed to different signalling pathways and gene regulation among 

other things. Oxidised phospholipid products obtained from phospholipid oxidation mediated 

by HOCL was shown to have anti proliferative effects, cytotoxic and increased levels of 

reactive oxygen species in endothelial cells (Robaszkiewicz et al., 2014). The oxidised 

phospholipids products can be detected by electrospray mass spectrometry which can detect 

oxidation products using the fragmentation patterns and can detect the phospholipid head 

groups, the chlorine and hydroperoxide contents of the oxidised phospholipids (Reis and 

Spickett, 2012). Ceroid is also a product of LDL oxidation that has been found in 

atherosclerotic lesion as a product of LDL oxidation. It contains complexes of protein and 

polymerized insoluble lipid (Mitchinson, 1982). 
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1.4.4 Reactive oxygen species and atherosclerosis 

The possible role of reactive oxygen species (ROS) in atherogenesis has been examined over 

the last three or four decades and this has often been linked to the LDL oxidation theory. There  

is also evidence which suggests that certain risk factors of atherosclerosis, such as aging, 

smoking diabetes mellitus and arterial hypertension, leads to increased production of ROS from 

endothelial cells, adventitial cells and smooth muscle cells (Ohara et al., 1993, Gozin et al., 

1998, Vogiatzi et al., 2009). The main origin of ROS and oxidants in atherosclerotic vessels 

are macrophages and smooth muscle cells.  Several studies have demonstrated that oxLDL 

stimulates the production of ROS in macrophages, VSMCs and endothelial cells (Hsieh et al., 

2001, van Aalst et al., 2004). It has also been suggested that ROS derived from macrophages 

are possible regulators of matrix metalloproteinase which can then lead to plaque instability 

(Rajagopalan et al., 1996). The role of oxidative stress has been evident in humans with 

observed significantly lower levels of malondialdehyde in healthy patients as compared to 

patients with myocardial infarction and unstable angina (Dubois-rande et al., 1994).  

Superoxide anion was suggested to participate in LDL oxidation in human monocytes and 

enhanced formation of cytotoxic modified LDL (Cathcart et al., 1989). High levels of 

extracellular and intracellular reactive nitrogen and oxygen species might play a vital role in 

development of atherosclerosis through vascular homeostasis. 

1.4.5 Potential Mechanisms of LDL modification 

Several mechanisms have been proposed for the oxidation of LDL. Most of the oxidative 

enzymes have been implicated in the oxidation by cells and also the non-enzymatic oxidation 

by transition metals and other catalysts.  In vitro oxidations of LDL have been studied 

extensively using peroxidative enzymes and redox active transition metals (Yoshida and 

Kisugi, 2010). 
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1.4.5.1 Myeloperoxidase  

Myeloperoxidase (MPO), an enzyme linked to oxidative stress and inflammation can generate 

hypochlorous acid (HOCl) and other chlorinated biological molecules from hydrogen peroxide 

and chloride. 3-Chlorotyrosine a product of MPO-catalysed reaction was shown to be 

significantly increased in LDL that was extracted from atherosclerotic lesions (Himmelfarb et 

al., 2001). The previous study by Carr et al suggests that MPO may contribute to modification 

of LDL due to its ability to bind to LDL in the presence of robust antioxidants such as albumin, 

urate, and ascorbate (Carr et al., 2000a). The modification of LDL by MPO mainly transforms 

the apolipoprotein moiety through tyrosines (nitrotyrosine, chlorotyrosine, and dityrosine).  

The study by Spickett and colleagues, however, suggested that the modification of the lipid 

component is largely determined by pre-existing hydroperoxides and pH (Spickett et al., 2000, 

Zouaoui Boudjeltia et al., 2004). The fact that macrophages and neutrophils can express MPO, 

generates H2O2 suggest that MPO mediated system might be involved in physiological 

oxidation of LDL (Schindhelm et al., 2009). MPO-oxidised LDL can trigger an inflammatory 

response in endothelial cells and macrophages by inducing TNF-α and IL-8 hence promoting 

atherosclerosis (Delporte et al., 2013).   

1.4.5.2 Lipoxygenase  

Lipooxygenase (LOX), is one of the oxidative enzymes in cells that directly oxidises PUFA. 

In vitro, LOX has been shown to oxidize LDL, through direct oxidation and indirect oxidation 

(non-enzymatically) by the production of reaction products that can further promote the 

peroxidation of the lipids (Heydeck et al., 2001). The mRNA of the protein and the protein 

itself has been found to be present in the human atherosclerotic tissues. A slight increase in the 

expression of the protein in rabbit resulted in an increased level of antigenic determinants for 

oxidation products (Yla-Herttuala et al., 1990, Yla-Herttuala et al., 1995). LOX with the 

antigenic determinant of oxLDL has also been identified in human atherosclerotic lesion. All 
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these suggest that the enzyme might have a role in the physiological oxidation of LDL and the 

onset of atherosclerosis. 

 

 The relevance of LOX was supported when Cyrus et al., showed that apoE deficient mice 

lacking the genes for 12/15 LPO enzyme showed decreased lipid peroxidation product in 

plasma and the urinary concentration of isoprostanes had a positive correlation with the extent 

of the disease and enzyme activity (Cyrus, 1999). Lipoxygenase might be able to contribute to 

LDL oxidation by reacting with its lipid component directly or stimulating the production of 

ROS which can oxidise LDL (Delporte et al., 2013). In contrast, overexpression of LOX in 

both Watanabe-heritable hyperlipidaemia (WHHL) and cholesterol-fed rabbits were protected 

against atherosclerosis (Shen et al., 1996). Also, the knockout of LOX in apoE deficient mice 

did not reduce atherosclerosis (Merched et al., 2008). This contradictory evidence suggests that 

LOX can protect or promote atherosclerosis. The dual role of LOX makes its role in the 

oxidation of LDL in vivo controversial. 

1.4.4.3 Reactive nitrogen species  

Reactive nitrogen species (RNS) have also been implicated in the oxidative modification 

process. Nitric oxide (NO) produced by ECs of the artery is a potent antioxidant possessing a 

number of anti-atherogenic properties such as reducing the vascular pressure and preventing 

the adherence of platelets and leukocyte to the endothelium (Heinecke, 1998). However, in the 

presence of superoxide anion (O2
.-), NO can be pro-atherogenic. It generates peroxynitrite 

(ONOO-). 

NO + O2 
.-               ONOO- 

ONOO-  + H+   ONOOH  
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ONOOH                 NO2 + OH. 

Peroxynitrite is a strong oxidant that can nitrate the protein and lipid component of LDL to a 

form that is not recognised by the LDL receptor but can be recognized by the scavenger 

receptor (Darley et al., 1992, Graham et al., 1993). 3-Nitrotyrosine a product of the protein 

nitrating effect of ONOO- has been shown to be present in atherosclerosis (Graham et al., 1993, 

Beckman et al., 1994). Hence, peroxynitrite may have a role in the in vivo oxidation of LDL. 

1.4.5.4 Glycation of LDL 

The non-enzymatic addition of carbohydrate molecules to LDL can produce a pro-atherogenic 

form of LDL. Lysine, a  major amino acid component of the apoB-100 component of LDL, 

can undergo glycation leading to the formation of glycated lysine-LDL (Younis et al., 2008). 

There is a higher proportion of glucose bound lysine in apoB-100 in diabetics (Tames et al., 

1992). Chronic hyperglycaemia has been implicated in increased lipoprotein oxidation. 

Glucose contribution to peroxidation of lipids in LDL is mediated through a superoxide radical 

pathway (Kawamura et al., 1994). Moreover, LDL isolated from diabetics patients has been 

proven to be more susceptible to oxidation (Colas et al., 2010). Glycated LDL has been proven 

to be more susceptible to oxidation than native LDL (Sobal et al., 2000). A recent study by 

Younis et al suggests that THP-1 derived macrophages incubated with glycated LDL had more 

cholesterol accumulation compared to control cells incubated with non-glycated LDL (Younis 

et al., 2009). This evidence put together suggest that glycation of LDL speeds up its oxidation 

and promotes its atherogenicity and therefore may be important in atherosclerosis. 

1.4.5.5 Transition metals 

LDL has been found to undergo oxidative modification when incubated with vascular cells 

(smooth muscle cells (Heinecke et al., 1984), endothelial cells(Steinbrecher et al., 1984) and 

macrophages (Leake and Rankin, 1990), but this often than not occurs in the presence of 
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transition metals in the medium. Copper or iron is required in cell-mediated oxidation and 

contributes to oxidation even when present in micromolar concentration. Iron has been 

demonstrated to catalyse the oxidation of LDL by smooth muscle cells (Heinecke et al., 1986), 

macrophages (Henriksen et al., 1983) and endothelial cells (Morel et al., 1983). The ability of 

metal chelating agents in the medium to stop the oxidation of LDL suggests the presence of 

metal ion might be necessary for the process of  LDL oxidation within cells (Steinbrecher al 

et., 1984). Free metal ions can oxidize LDL even in the absence of cells when present in high 

concentrations. Oxidation of LDL initiated by copper and iron are the most studied models in 

vitro. Copper-mediated LDL oxidation is, however, the most widely used method for oxidation 

of LDL in vitro. The oxidation of LDL by copper often with the incubation of 2 to 25 µM 

concentrations of copper in the culture medium or phosphate Saline buffer or MOPS buffer 

with LDL concentrations between 50 g protein/ml and 2 mg protein/ml. The Kinetics of 

oxidation of LDL by metal ions is often measured by the continuous change in diene adsorption 

at 234 nm (Esterbauer et al., 1989b).  Our Laboratory has previously described a rapid method 

to generate copper-oxidised LDL rich in hydroperoxides or oxysterols (Gerry et al., 2008). The 

products of oxidation by copper at pH 7.4 is well characterised (Esterbauer et al., 1990b, Brown 

et al., 1996). 

 

Presence of free iron in the body is hazardous due to its ability to transport electrons and 

interconvert from iron (II) to iron (III).  Iron has a deleterious effect in lipid peroxidation as it 

has the capacity to both initiate and increases LPO. It can mediate this effect in several ways. 

Iron can initiate lipid peroxidation by the formation of hydroxyl radicals or directly 

decomposing lipid hydroperoxides. 

Fe2+ + LOOH  → Fe3+ + OH- + LO. 
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Fe3+ + LOOH  → Fe2+ + LOO. + H+ 

Ferrous Iron can react with hydrogen peroxide (H2O2) to form a hydroxyl ion and hydroxyl 

radical.  

Fe2+ + H2O2  →  Fe3+ + OH- + OH. 

The hydroxyl radical is a powerful oxidant, highly reactive and reacts directly where it is 

formed. Iron can also react directly with molecular oxygen (O2) to form superoxide anion.  

Fe2+ + O2  → Fe3+ + O2
.-       

The superoxide itself, is a less reactive and powerful oxidant which has the capacity of 

generating more of ferrous iron (Fe2+) by acting as a reducing agent for ferric iron (Fe3+), hence, 

more of the OH. radical is generated from the Fe2+ produced (Schafer et al., 2000). The role of 

iron in initiating lipid peroxidation in liposomes has been explored (Tang et al., 2000, 

Mozuraityte et al., 2008).  The characterisation of iron-mediated oxidation and the role of iron 

in mediating lipid peroxidation within lysosome is now generating attention within our 

laboratory. 

 

1.5 Lysosomal oxidation of LDL 

1.5.1 General structure and function of lysosomes 

Lysosomes are single membrane bounded spherical organelles discovered by Christian de 

Duve in 1955 (De Duve et al., 1955). The lysosomes are important constituents found in nearly 

all eukaryotic cells, where they are present in the cytosol as dense bodies. They in shape and 

size depending on the type of cells, they appear spherical in shape or sometimes tubular. Their 

size in most cells exceeds 1 µm, although in cells such as macrophages their diameter can be 
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more than several microns. The size increase in macrophages is likely to be due to the 

accumulation of materials that are undigested. The lysosomes are separated from the cytosolic 

environment by a phospholipid- bilayer 7-8 nm in diameter (Saftig and Klumperman, 2009, 

Appelqvist et al., 2013). 

 

The lysosomes are made up of many hydrolytic enzymes that can digest damaged or unwanted 

materials. The enzymes present in lysosomes possess the ability to degrade polysaccharides, 

lipids, proteins, RNA, and DNA. Genetic mutation of the genes encoding the lysosomal 

enzymes which are responsible for a different genetic disease in humans which are classified 

as lysosomal storage disorders (Pu et al., 2016).   The inside of lysosomes is acidic in nature 

(about pH 4.5) (Mindell, 2012). ATP- dependent proton pumps on the membrane of the 

organelle, the vacuolar H+- ATPase, maintain the pH of this compartment. The H+- ATPase 

pump creates and preserves the acidity of the lumen of lysosomes by utilising free energy 

derived from the hydrolysis of ATP to pump protons into the lumen and the “counterion flux” 

made up secondary ion movements is used to prevent the creation of membrane potential that 

could arise from proton accumulation. The maintenance of its characteristic acidic pH is 

important for the activities of lysosomal enzymes most of which are active at pH of about 4.5-

5.0 but no the cytosolic neutral pH of about 7.2 (Ohkuma et al., 1982, Mindell, 2012, Ishida et 

al., 2013). Lysosome was initially identified as mere waste bags in cells. Advances in science 

have over time allowed them to be classified as important organelles that are associated with a 

large number of cellular events. Lysosomes play a major role in the digestion of extracellular 

materials taken up by endocytosis, lysosomes are also involved in the degradation of cellular 

contents through autophagy. In addition to endocytosis and autophagy, lysosomes are also 

utilised by a phagocytic cell such as macrophages to degrade materials that are phagocytosed 

including cellular debris, long lived cells, and pathogens such as bacteria. They are believed to 
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be vital regulators of cellular homeostasis, they are involved in cholesterol homeostasis as 

proteins required for cholesterol efflux from endolysosomes. Niemann-Pick disease type C 1 

(NPC1) and NPC 2 are located in lysosomes. NPC1 is found in lysosomes and endosomes while 

NPC 2  is found in the lumen of lysosomes (Appelqvist et al., 2013). Lysosomes also play avital 

role in mediating cell death, although this has been suggested to be induced under certain 

pathological conditions (Kreuzaler et al., 2011). The role of lysosomes in the pathogenesis of 

disorders such as lysosomal storage disorders, neurodegenerative disorders (Bellettato and 

Scarpa, 2010) and cardiovascular diseases (Lutgens et al., 2007) is becoming more evident. 

These findings might create new therapeutic approaches to these diseases.  

 

Pictorial representation of the lysosome depicting various lysosomal enzymes, biomolecules 

such as lipids and proteins, warn out organelles such as mitochondrial and other materials 

targetted for degradation. 

 Figure 1.4: Lysosome structure 
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1.5.2 Lysosomes as a source of redox active iron 

 Some studies have demonstrated the presence of redox active iron in lysosomes (Yuan et al., 

1996, Yu et al., 2003, Zhang and Lemasters, 2013). Lysosomes and endosomes are major sites 

for accumulation of chelatable iron (Zhang and Lemasters, 2013).  Petrat et al. detected higher 

amount of redox active iron was present in lysosomes compared other organelles. The study 

showed that lysosomes contained as much as 16 µM iron compared to 9.2 µM and 7.3 µM 

concentrations of iron found in mitochondria and cytosol, respectively (Petrat et al., 2001). 

 

 The presence of redox-active iron ferrous/ferric stored in nonheme form of resident 

macrophages in different tissue was demonstrated by Meguro et al (2005). They suggested that 

most ferrous mediated reactions were localised in the phagolysosomes(pH 5.3) of iron-loaded 

and normal rats which implies that the acidic pH may facilitate the release of ferrous iron from 

hemosiderin and the insolvent of lysosomes (Meguro et al., 2005). The lysosome is the site for 

intracellular recycling of damaged, worn-out or old proteins and organelles through autophagy 

(Kurz et al., 2007).   Autophagocytosed iron-rich proteins deliver iron to lysosomes (Yu et al., 

2003). Degradation of ferritin in lysosomes could also account for some of this iron (Radisky 

and Kaplan, 1998, Yu et al., 2003, Kidane et al., 2006).  The lysosomal compartment is 

important in macrophages as they are scavenger cells. The use of ESR combined with increased 

lysosomal pH to prevent proteolysis in lysosomes or lysosomotropic iron chelators showed that 

most intracellular labile iron is derived from lysosomes (Persson et al., 2003, Yu et al., 2003). 

The presence of this redox-active iron makes the lysosomes susceptible to Fenton type reaction, 

promotes the associated peroxidative process of materials as they are degraded and when 

exposed to oxidative stress the resultant iron centred radicals or  hydroxyl radicals could 

destabilise the lysosomal membrane (Öllinger and Brunk, 1995, Persson et al., 2001b, Persson 

et al., 2001a). 
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1.5.3 Lysosomal storage disorder and atherosclerosis 

The lysosomes of macrophages are crucial to the onset and progression of atherosclerosis due 

to the role they play in the degradation of lipids and the regulation of signalling pathways. A 

defective lysosomal function has been identified as a characteristic of atherosclerotic plaque 

development (Sergin et al., 2015). Lysosomal storage disorders are caused by defects in 

lysosomal membrane protein and lysosomal enzymes which cause impaired functions in 

lysosomes and accumulation of undigested materials in the lysosomes (Schultz et al., 2011). 

The majority of the excess cholesterol contained in atherosclerotic foam cell macrophages are 

found in lysosomes that are swollen as a result of accumulating the cholesterol (Jerome, 2010). 

The study by Bobryshev et al confirms that changes in lysosomal function have a role in the 

onset of atherosclerosis with consequential changes in CD68 antigen in lysosomes in fatty 

streak present in the lesion (Bobryshev et al., 2013). Accumulation of cholesterol in lysosomes 

has recently been linked to coronary atherosclerosis in mice (Xu et al., 2016). 

1.5.4 Evidence for LDL oxidation by iron in lysosomes  

LDL was previously generally believed to be oxidised within the interstitial fluid of the arterial 

wall and then bound to the scavenger receptors on macrophages, but this belief is challenged 

by the robust presence of antioxidants, such as ascorbate, urate, and albumin, in the 

extracellular fluid (Levitan et al., 2010). The fact that serum or interstitial fluid at low level 

have been shown to be protective against LDL oxidation mediated by copper or iron in vitro 

(Dabbagh and Frei, 1995, Patterson and Leake, 1998, Namazi, 2009, Rodriguez et al., 2009). 

Wen and Leake were the first to demonstrate the oxidation of LDL within the lysosomes of 

macrophages. They showed that LDL aggregated by vortexing was rapidly taken up by both 

mouse macrophage–like cell lines (J774) and human monocyte-derived macrophages 

(HMDM), then oxidised within the cells. Droplets of lipid were absent in control macrophages 

while large amount of lipid droplets were found in the cells incubated with aggregated LDL. 
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Co-incubation with fluorescent dextran revealed the dextran-labelled lysosomes as the main 

site for the lipids with the presence of cholesteryl linoleate and arachidonate, which were absent 

in control cells. About a 40% rise in free cholesterol was observed compared to control cells. 

Ceroid was formed in the lysosomes of both HMDM and J774 cells.  Confirmatory experiments 

with acetylated LDL internalized into lysosomes of cells and incubated without access to LDL 

in the extracellular space still produced increased levels of oxysterols, which implies that they 

were mainly oxidised intracellularly (Wen and Leake, 2007).  

 

Wen and Leake also demonstrated the importance of iron in the lysosomal oxidation, as LDL 

oxidation was inhibited in cells by desferrioxamine (an iron chelator). In a cell free system, 

ferrous sulphate extensively oxidised LDL at pH 4.5 (similar to the pH of lysosomes) but not 

at the pH of plasma (pH 7.4), although pH exerted the opposite effect with copper sulphate 

(Wen and Leake, 2007). In 2012, the group further demonstrated the implication of extensive 

oxidation of LDL by iron at lysosomal pH in atherosclerosis. Satchel and Leake again showed 

the effects of iron in the two oxidation states (Fe2+ and Fe3+), iron chelating agents, antioxidants 

on the oxidation of LDL and the chemical changes mediated by iron at lysosomal pH. To check 

if the oxidation was dependent on the presence of iron, iron chelating agent was added at 

different phases during oxidation and it was suggested that iron was involved in the three 

phases of oxidation (Satchell and Leake, 2012).  

 

The oxidation of LDL was described by Esterbauer in 1989. LDL is said to undergo three 

phases of oxidation the lag phase (during which there is little or no increase in formation of 

dienes), the propagation phase (which involves a rapid increase in the formation of dienes) and 

the decomposition phase when lipid hydroperoxides breaks down  to form other oxidation 
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products (Esterbauer et al., 1989a). In 2012, Satchel and Leake demonstrated four phases 

involved in oxidation mediated by iron at lysosomal pH (lag, rapid oxidation, slow oxidation, 

aggregation and sedimentation). This is because at acidic pH oxidised LDL undergoes 

extensive aggregation and the aggregates then sediment towards the bottom of the cuvettes.  

The characterisation of the product of oxidation by iron at lysosomal pH revealed increased 

amounts of cholesteryl ester hydroperoxides and 7-ketocholesterol confirming that LDL 

oxidised at this pH might be atherogenic in nature (Satchell and Leake, 2012). 

1.5.5 LDL aggregation and lysosomal LDL oxidation 

Maor et al. demonstrated that inhibition of both LDL aggregation and oxidation is important 

in reducing aortic lesion in apoE deficient mice (Maor et al., 1997). There is evidence 

supporting the involvement of aggregated LDL in the pathogenesis of atherosclerosis and their 

existence of LDL aggregates in arterial (Hoff and Morton, 1985, Hoff and O'Neil, 1991, 

Steinbrecher and Lougheed, 1992) atherosclerotic lesions (Lu and Gursky, 2013). The core of 

LDL containing non-polar lipids and hydrophobic in nature surrounded by a monolayer 

containing apoB, free cholesterol (unesterified). Hence, understanding the involvement of the 

different constituents of the LDL particle in aggregation is important. Changes in the structure 

of the apoB component and the lipid component of LDL leads to its aggregation and enhanced 

lipid droplet formation. These lead to increased uptake by macrophages and promotes an 

inflammatory response with subsequent formation of the atherosclerotic lesion. LDL 

aggregation is considered to begin with, the rearrangement of the surface components (Lu and 

Gursky, 2013).   

 

Modification of LDL by the enzymatic or non-enzymatic process can lead to aggregation and 

fusion of LDL (Oorni et al., 2000). Treatment of LDL with hydrolytic enzymes and substances 
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that are pro-oxidative can promote LDL aggregation (Oorni et al., 2000), lipolysis, proteolysis, 

glycation, oxidation, prolonged storage and other biochemical modification such as acetylation 

can mediate LDL aggregation. Proteolytic modification of the surface ApoB can cause 

conformational changes in the functional groups of lipid and protein component which can 

influence the interaction between different LDL particles and cause them to aggregate  (Lu and 

Gursky, 2013). The oxidation of LDL induces different conformational changes of the lipid 

and protein component of LDL and these changes often leads to the aggregation of LDL (Maor 

et al., 1997, Xu and Lin, 2001). The lipid peroxides products such as aldehydes can form 

adducts with protein. The reactions between aldehydes and proteins have been demonstrated 

to induce LDL aggregation (Hoff and O'Neil, 1991). The degradation of the hydrophobic part 

of ApoB and its redistribution to the surface can lead to instability in the structure of LDL 

which can result in aggregation of LDL(Oorni et al., 2000).   Lipoprotein lipase and/or 

sphingomyelinase (SMase) can mediate aggregation of LDL (Tabas, 1999). Phospholipase C 

(PLC) hydrolysis of phospholipids causes the rearrangement of non-polar diacylglycerol from 

LDL surface to the core and the release of phosphocholine and these can rearrangement of the 

hydrophobic content can promote LDL aggregation (Lu and Gursky, 2013).  Aggregation of 

LDL is mostly found in electronegative LDL, phospholipase A2 (PLA2) and PLC has been 

linked to the observation of electronegative LDL in human plasma (Bancells et al., 2010, 

Sanchez-Quesada et al., 2012).  

 

Pentikainem and colleagues showed that copper ion induced LDL oxidation, vortexing and 

treatment with SMase produced aggregated LDL (Pentikainen et al., 1996). Sphingomyelinase 

enzyme can promote LDL aggregation in vivo, up to 50 times increase in ceramide, the product 

SMase hydrolysis of sphingomyelin was observe in LDL derived from atherosclerotic lesion 

compared to LDL isolated from plasm of healthy individuals (Schissel et al., 1996). Ceramide 
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induced LDL aggregation might be as a result of its non-polar nature which can cause the 

disruption of existing balance between the polar surface and the hydrophobic core (Lu and 

Gursky, 2013). 

 

Recent work in our laboratory demonstrated the lysosomal oxidation of sphingomyelinase-

aggregated LDL (SMase-LDL) (Ahmad and Leake, 2018). Sphingomyelinase-aggregated LDL 

is a better candidate of modified LDL likely to be present in disease state compared vortexed 

or acetylated LDL. Findings from our laboratory have demonstrated that SMase-LDL can be 

oxidised to a great extent in in the lysosomes, as the presence of a large amount of ceroid was 

observed in the lysosomes after seven days of incubation with SMase-LDL. The recent HPLC 

analysis of in vitro SMase-LDL oxidised by iron at also revealed its ability to generate 

atherogenic products such as oxysterol and lipid hydroperoxides. Modification of LDL by 

sphingomyelinase also contributed to increased lipid peroxidation in lysosomes (Wen et al., 

2015, Ahmad, 2016, Ahmad and Leake, 2019) 

 

1.6 Iron and atherosclerosis 

Iron was first linked to heart diseases by Sullivan in 1981. The iron hypothesis proposed that 

sustained deficiency of iron protected against ischaemic heart disease while iron overload, on 

the other hand, promoted CVD. The theory was based on the gender difference in the risk of 

CVD, higher risk observed in males and the fact that post-menopausal women showed reduced 

protection. Based on the Framingham study (Kannel et al., 1976), Sullivan argued that the 

lower risk observed in pre-menopausal women was not the effect of oestrogen but rather due 

to regular loss of iron due to menstrual bleeding (Sullivan, 1981, Sullivan, 1989). The 
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hypothesis was supported by the failure of oestrogen replacement therapy to protect against 

coronary events in post-menopausal women (Hulley et al., 1998).  

 

After over 30years of its proposal, the iron hypothesis remains a subject of debate. While some 

epidemiological studies have found an association between iron and CVD, others have found 

no association (Moore et al., 1995, Eichner et al., 1998). Depletion of iron has been shown to 

reduce the risk of MI, and other events associated with CVD, as this was demonstrated by 

Facchini and Saylor with the use of phlebotomy bimonthly or monthly to achieve the depleted 

iron state (Facchini and Saylor, 2002). There may be no consistent relationship between plasma 

iron and human atherosclerosis because in an inflammatory state, iron sequestered in 

macrophages and the plasma concentration falls (Ganz, 2005). The most common measure of 

iron status is ferritin, the main iron storing protein which is directly proportional to tissue iron 

stores (You and Wang, 2005). Kiechl et al. assessed the relationship between body iron stores 

and carotid atherosclerosis and identified the plasma concentration of the iron storing protein 

ferritin as the major indication of CAD. They found that increased levels of ferritin correlated 

with increased CAD and hypercholesterolemia (Kiechl et al., 1994).  Salonen et al reported the 

correlation between the level of ferritin in serum and risk of MI, men with higher ferritin levels 

had a two-fold increased risk compare to other men (Salonen et al., 1995).  

 

The link between iron and atherosclerosis was demonstrated in animal studies. Lee et al 

confirmed the association between the deposition of iron and the progression of atherosclerotic 

lesion in ApoE deficient mice (Lee et al., 1999). Other studies have reported no correlation 

between iron and CVD. Sempos and colleagues argued that there was no correlation between 

the marker of iron and the onset of CAD (Sempos et al., 1994), although this study did not 
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measure the level of serum ferritin.  More et al found no association between the thickening of 

the intima and serum ferritin (Moore et al., 1995). The role of iron in atherosclerosis continues 

to be a controversial topic, hence there is a need for more researchers to focus on this 

relationship. 

1.6.1 Iron in atherosclerotic plaques 

The atherosclerotic lesion environment has been demonstrated to contain copper and iron 

which can mediate lipid peroxidation and free radical reactions (Smith et al., 1992, Lamb et 

al., 1995). A study by Pang et al demonstrated deposition of iron is important in the formation 

of advanced atherosclerotic lesion (Pang et al., 1996). Lee et al. discovered the presence of 

both iron and ceroid in foam cells present in atherosclerotic lesion (Lee et al., 1998), their 

results demonstrated a close association between deposition of iron in human aortic wall and 

progression of atherosclerosis. The deposits of ceroid and iron were more prominent in 

advanced atherosclerotic lesion suggesting iron can mediate oxidative reactions in 

atherosclerosis  (Lee et al., 1998). 

 

 Another study by Lee et al in 1999 used an animal model, apoE deficient mice, to investigate 

the role of iron deposition in atherosclerosis. Iron deposition was observed in intermediate 

lesions and the deposition increased as the lesions became advanced lesions. They also 

demonstrated that iron restriction in the diet reduced the susceptibility of LDL to in vitro 

oxidation and decreased oxidative stress (Lee et al., 1999). Yuan et al. previously showed the 

occurrence of iron in early atherosclerotic lesions using Perl’s method and the more sensitive 

modified sulphide silver method. The sulphide silver method showed that the majority of the 

foam cells contained iron, while few were found to contain iron with Perl’s method. More iron 

was seen for macrophages that had engulfed erythrocytes with both methods (Yuan et al., 
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1996). Stadler and his colleagues’ quantified copper and iron in carotid lesions compared with 

normal controls using electron paramagnetic resonance (EPR) and inductively coupled mass 

spectroscopy (ICPMS). The results showed elevated iron and copper in carotid lesions 

compared to the controls (Stadler et al., 2004). This further confirms the presence of transition 

metals, particularly iron and copper, in atherosclerotic plaques. 

1.6.2 Iron metabolism 

Iron is an important element as it forms a crucial part of many redox enzymes utilised in 

metabolic processes. It serves as a component of haemoglobin and myoglobin (oxygen 

transport proteins). Iron is an important cofactor to many enzymes required for DNA repair 

and synthesis (Puig et al., 2017). The majority of iron is contained in the haemoglobin of 

erythrocytes and developing erythroid cells. Notable amounts are contained in macrophages 

and myoglobin while excess iron in the body is stored in the liver. The body loses iron through 

general bleeding, menstruation, sloughing of epithelial cells of the intestine, and desquamation 

of the skin. (Nemeth and Ganz, 2006, Schmidt, 2015). 

Since humans do not have an effective iron excreting mechanism, body iron must be closely 

regulated. Iron is absorbed in the small intestine by enterocytes and then transported into cells 

in need of supply (Munoz et al., 2009). Following the release to the bloodstream, iron binds to 

transferrin (a plasma glycoprotein that has the capacity to bind two atoms of iron). The iron-

transferrin complex binds to the transferrin receptor and it is then endocytosed. In the acidic 

compartment of the late endosomes, iron is released from the complex and transported into the 

cytoplasmic pool of labile iron by divalent metal transporter 1 (DMT1). Iron is then transported 

to ferritin ( an iron binding protein) for storage or to sites where macromolecules containing 

iron are synthesized mainly mitochondria (Kurz et al., 2011).  
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Transferrin-iron in plasma and extracellular fluid are kept at a stable concentration by systemic 

iron regulation. The systemic iron regulation maintains the flow of iron into plasma by 

controlling major iron sources such as iron released from hepatocytes. Macrophage and 

hepatocytes iron are stored in intracellularly in ferritin and can be mobilised in situations where 

there is high demand for iron. Excess iron and deficiency of iron can lead to damages to cells 

and dysfunctional organs. Hence regulation of iron is essential.    Hepcidin is a major regulator 

of iron homeostasis in the whole body; it is predominantly synthesised in the liver before been 

released into circulation (Collins et al., 2008). It can also be synthesised in other tissue such as 

kidney (Kulaksiz et al., 2005), adipose tissue (Bekri et al., 2006) and the heart (Qian et al., 

2007, Merle et al., 2007).  Although hepcidin is mainly secreted by hepatocytes (De Domenico 

et al., 2008), other cells such as myeloid cells (Peyssonnaux et al., 2006), alveolar and splenic 

macrophages (Liu et al., 2005), monocytes (Theurl et al., 2008) and adipocytes (Bekri et al., 

2006) also synthesise hepcidin but at very low rate compared to hepatocytes. Hepcidin has the 

ability to regulate the systemic metabolism of iron. The synthesis of hepcidin is directly linked 

to inflammation and increased level of iron but inversely related to erythropoiesis. It regulates 

plasma iron by binding to ferroportin, the iron exporter which is highly expressed on 

macrophages and duodenal enterocytes. Hepcidin has been demonstrated to inhibit iron efflux 

into plasma from hepatocytes, enterocytes and macrophages by binding ferroportin and leads 

to conformational changes that cause both molecules to be endocytosed and targeted for 

degradation.  Hepcidin is therefore considered to regulate iron absorption and recycling 

(Nemeth et al., 2004b, Knutson et al., 2005, Collins et al., 2008).  

1.6.3 Iron binding proteins and LDL oxidation 

The iron binding proteins may have a role to play in the availability of iron under certain 

conditions.  Studies have suggested the release of iron from ferritin (Minotti and Aust, 1987), 

and transferrin (Lamb and Leake, 1994c) and the iron released from transferrin oxidised LDL 
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in vitro. Moreover, iron containing proteins such as myoglobin (Rodriguez-Malaver et al., 

1997) and haemoglobin (Paganga et al., 1992) and copper containing protein such as 

caeruloplasmin (Lamb and Leake, 1994a) have also oxidised LDL in vitro (Yoshida and 

Kisugi, 2010). Ferryl myoglobin oxidised LDL as shown by increased electrophoretic mobility 

of LDL (Rice-Evans et al., 1993).  Since the proposal of the iron hypothesis by Sullivan, the 

relationship between the iron storing proteins and atherosclerosis continues to be a topic largely 

debated in the literature.  Hence, the role of ferritin as the major iron store should be further 

evaluated. 

 

1.7 Ferritin 

Ferritin (Fig.1.5) is the main protein for the intracellular storage of iron found in almost all 

organisms. It is a protein of molecular weight of about 500 kDa with an inside diameter of   7-

8 nm and 12-13 nm on the outside.  

 

Figure 1.5: Three-dimensional representation of ferritin 

(Casiday and Frey, online) 
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Ferritin is made up of 24 polypeptide chains with light (L) subunits and heavy (H) subunits 

with a molecular weight of 19 kDa and 21 kDa, respectively (Theil, 1987, Zarjou et al., 2010). 

It is considered the main iron storage protein because of its large cavity for iron storage. The 

H subunit plays a major role in the binding and release of intracellular iron, iron transport and 

sequestration because of its ease in the binding and release of iron as compared to L subunit. It 

possesses a ferroxidase activity which converts Fe (II) to Fe (III) for storage while the Light 

subunit is involved in mineralization storage for a long term and the nucleation using iron atoms 

(Rucker et al., 1996, Arosio et al., 2017). 

 

Ferritin is found mainly in organs that store iron, such as the spleen and liver. It is also found 

in organs that have low iron levels such as pancreas and heart (Kohgo et al., 1980, Bomford et 

al., 1981). Ferritin is mainly located in the cytosol but has also been seen in animal 

mitochondria, plant plastids, nucleus, insect endoplasmic reticulum and circulating plasma 

(Arosio et al., 2017). Ferritin synthesis is regulated by iron (decreased synthesis in the presence 

of low iron and vice versa) and oxidative stress. Cytokines regulate ferritin at the transcriptional 

and translational level particular TNFα and interleukin 1α have been demonstrated to stimulate 

the synthesis of the heavy chain of ferritin in human muscle cells, mouse adipocytes and other 

types of cells (Wei et al., 1990, Tsuji et al., 1991). This suggests that the level of ferritin may 

be upregulated in inflammation. 

 

Since the proposal of the iron hypothesis, many studies have measured the relationship between 

ferritin as an iron store and atherosclerosis. The evidence remains controversial, however, 

recent molecular studies in humans and rabbits revealed elevated mRNA for both L and H 

chains in atherosclerotic lesion compared to normal arteries(Pang et al., 1996). Direct evidence 
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obtained with proteomics by measuring the level of ferritin in CAD, found higher level of 

ferritin in diseased arteries (You et al., 2003). The role of ferritin in lysosomal oxidation is still 

in its infancy and can be further explored for its implication in the onset and progression of 

atherosclerosis. 

1.7.1 Iron incorporation into ferritin 

The ability of iron to induce oxidative damage is prevented by storing it in a form that reduces 

the concentrations of redox-active iron and at the same time ensure its availability for 

biochemical reactions when needed (Bouton et al., 1996, Rudeck et al., 2000). Ferritin binds 

iron to inhibit its catalytical activity and protect cells from iron-mediated damage. However, 

damage to ferritin can lead to ferritin losing its physiological role hence (Grune et al., 1997, 

Rudeck et al., 2000), malfunction and releasing iron-to mediate toxic reactions.   

 Incubation with iron chelators and reducing agent can remove iron from ferritin while the 

addition of iron in the presence of oxygen can reform the core. This event may be similar to 

what happens in vivo. Fe (II) is delivered through the hydrophilic channel to the centre where 

it forms a diferric-peroxo complex after an encounter with O2 or H2O2. This complex rapidly 

forms two ferric ions and H2O2, which is used locally for iron oxidation and hence no free 

radical is formed. The oxidised iron then relocates into the cavity where hydrolysis and 

nucleation occur (Theil et al., 2013, Honarmand Ebrahimi et al., 2015). 

1.7.2 Control of cellular iron availability by ferritin  

Evidence suggests that cellular activities are affected by cellular iron availability controlled by 

the ferroxidase activity of ferritin. Accumulation of iron through ferritin activity has been 

shown to be important in atherosclerosis. Four types of cells are involved in plaque formation 

which includes macrophages, lymphocytes, smooth muscle cells and endothelial cells. The 

main cause of plaque formation is the alteration of endothelial cell function. Endothelial 
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dysfunction has been linked with the uptake of iron by endothelial cells (Rooyakkers et al., 

2002). Accumulation of iron leads to alteration of ECs structurally and activates the recruitment 

of monocytes (Kamanna et al., 2012). Iron overload in macrophages causes polarisation of 

macrophages to pro inflammatory M1 macrophages which expresses higher amounts of ferritin 

and reduced iron turn-over (Cairo et al., 2011).  

 

1.8 The use of Antioxidants in atherosclerosis 

Generally, antioxidants delay or inhibit LDL oxidation in vitro and in cultured cells. They 

exert varying effects depending on the means of LDL oxidation and the properties of the 

antioxidant. The risk of atherosclerosis might be alleviated by inhibiting the process of 

oxidation of LDL independently of lowering blood cholesterol level. Nutritional and 

pharmacologic antioxidants have been suggested to play a role in the prevention of 

atherosclerosis. Studies on animals as well as cultured cells showed that probucol, a drug 

with antioxidant and cholesterol lowering properties, prevented the oxidative modification 

of LDL (Parthasarathy et al., 1986). The results from probucol experiments remain 

controversial: Bird and colleagues showed that probucol did not decrease atherosclerosis 

but rather increased atherosclerosis even in the presence of vitamin E in LDL receptor 

deficient mice.   Another study by Choy et al. demonstrated a positive effect of probucol in 

decreasing apoE-deficient mice, which was attributed to the anti-inflammatory properties 

of probucol (Choy et al., 2005).  However, results from the human clinical trial suggest that 

probucol did not significantly reduce atherosclerosis (Walldius et al., 1994). The use of 

probucol in western countries was withdrawn, as its efficacy in atherosclerotic 

cardiovascular diseases is challenged by the failure of the clinical trial in humans and the 

arrival of more potent lipid lowering drugs such as statins. However, Yamashita and others 
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have designed a prospective study yet to be concluded to examine the efficacy and safety of 

probucol in preventing secondary cardiovascular diseases (Yamashita et al., 2016).  Recent 

evidence from our laboratory has shown that probucol offered no protection for initial 

oxidation of LDL by iron ions at lysosomal pH (Ahmad and Leake, 2018), which might be 

the reason for the failure in human trials.  

 

Antioxidants such as β-Carotene, ascorbate, and α-tocopherol are important antioxidants, as 

their levels can be considerably increased without causing side effects in the system. β-

Carotene is a hydrocarbon carotenoid derived from plants with the capacity to trap free 

radicals (Burton and Ingold, 1984, Krinsky, 1989). β-Carotene has been demonstrated to 

inhibit LDL oxidation mediated by human monocyte macrophages and copper ions (Jialal 

et al., 1991). The role of β-carotene in inhibiting LDL oxidation is controversial. A study 

by Gaziano and colleagues demonstrated that in vitro and in vivo supplementation with β-

carotene was not protective against LDL oxidation (Gaziano et al., 1995). 

 

Vitamin C has been established as a cofactor for enzymes and antioxidants, but the 

mechanisms by which this vitamin can improve chronic disease state is less understood. 

Vitamin C has been demonstrated to reduce the adhesion of monocytes to the endothelium 

(Weber et al., 1996) and also improve the production of nitric oxide by endothelium 

(Kashiba-Iwatsuki et al., 1996), these effects may in turn decrease atherosclerosis. Previous 

work by Horsley et al showed that the oxidised product of vitamin C, dehydroascorbate 

switches from antioxidant to pro-oxidant during oxidation of LDL by copper (Horsley et 

al., 2007). Clinical trials result showed no protective effect of vitamin C against CVD (Cook 

et al., 2007, Sesso et al., 2008). The trials by cook and Sesso et al. also included vitamin E 

but showed no effect. 
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α-Tocopherol is considered the main antioxidant contained in LDL particles with each LDL 

particle containing about five to nine molecules of vitamin (Esterbauer et al., 1990a). The 

α-tocopherol are believed to protect LDL from oxidants (Meydani, 2001) as it is considered 

as the most important and most active antioxidant extracted in LDL (Esterbauer et al., 

1990a), which can break the chain reactions of free radical. It can exert this effect by 

scavenging alkoxyl radicals and peroxyl radicals formed from LDL lipids (Sies et al., 1992, 

Liebler, 1993) and prevent them from promoting the chain reactions of lipid peroxidation. 

Supplementation with vitamin E has been shown to decrease atherosclerotic lesions in 

apolipoprotein E-deficient mice (Peluzio et al., 2001) and prevented diet induced 

atherosclerosis in rabbits (Schwenke et al., 2002). In vitro studies have demonstrated a 

complex role for α-tocopherol in the oxidation of LDL. Some studies have shown that 

increased α-tocopherol content in LDL made them less susceptible to oxidation by copper 

ions (Esterbauer et al., 1991b) and macrophages (Jessup et al., 1990). Other studies have 

shown that Vitamin E could be a pro-oxidant and mediate LDL peroxidation, which can be 

caused by α-tocopherol radical (α-Toc.) reacting with a lipid group (LH) in LDL (Bowry 

and Stocker, 1993, Kontush et al., 1996). Evidence from some small clinical trials showed 

that vitamin E could protect against CVD (Stephens et al., 1996, Boaz et al., 2000). The 

beneficial role of vitamin E in preventing CVD is often challenged by the lack of protection 

seen in large clinical trials against CVD, such as the HOPE (Yusuf et al., 2000, 

Investigators, 2005) and GISSI (Jialal et al., 1999, Collins et al., 2002).  Additional negative 

evidence was equally obtained from a randomised trial with a low dose of aspirin in 

combination with vitamin E (de Gaetano, 2001). 
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Prevention and management of cardiovascular diseases have focussed largely on lifestyle 

changes and reducing risk factors. Drugs that can effectively lower high blood pressure and 

cholesterol concentration have emerged. Despite the better understanding of the pathogenesis 

of atherosclerosis, many challenges remain in the treatment of the disease. The recent 

lysosomal oxidation hypothesis raises further questions on the mechanisms of the lysosomal 

oxidation in vivo, the key players in the oxidation and the possibility of a novel therapy for 

atherosclerosis from antioxidants that can accumulate in the lysosomes. 

1.9 Thesis hypothesis and aims 

LDL oxidation by ferritin in the lysosomes of macrophages is important in the pathogenesis of 

atherosclerosis. The overall hypothesis of this study was that ferritin as the major iron-storing 

protein can mediate LDL oxidation at lysosomal pH and within cells to contribute to the 

progression of atherosclerosis and some antioxidants can ameliorate this effect. The concept of 

lysosomal LDL oxidation by catalytically active iron was recently proposed and there is a need 

to explore the relevant sources of iron for this oxidation in vivo. The iron binding proteins may 

serve as a source of iron under certain conditions.  Some studies have demonstrated the release 

of iron from ferritin and transferrin. Iron released from transferrin has contributed to oxidising 

LDL in vitro. Moreover, iron-containing proteins such as myoglobin and haemoglobin and 

copper-containing protein such as caeruloplasmin have also oxidised LDL in vitro. Since the 

proposal of the iron hypothesis of atherosclerosis by Sullivan, the relationship between the 

iron-storing proteins and atherosclerosis continues to be a topic actively debated in the 

literature.  Hence the role of ferritin as the major iron store can be further evaluated. This thesis 

addressed the following aims: 

Aim 1: The first aim of this thesis was to investigate the role of ferritin on LDL oxidation at 

lysosomal pH by exploring the mechanisms by which ferritin can catalyse LDL oxidation in 
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the lysosomes. monitoring its effect on the formation of lipid peroxidation products (conjugated 

dienes, cholesteryl ester hydroperoxides and 7-ketocholesterol) at lysosomal pH in vitro. The 

ability of ferritin to release catalytically active iron during the oxidation of LDL was monitored.  

The levels of these oxidised lipids formed in the presence ferritin might enable us to predict 

the potential atherogenicity of LDL oxidised by ferritin.  

 

Aim 2: The degradation of many intracellular and extracellular proteins occurs in the 

lysosomes. Autophagocytosed ferritin would be degraded in lysosomes. There is evidence 

suggesting the release of iron from ferritin after different treatment such as proteases.  The 

effects of degradation of ferritin or LDL on the oxidation of LDL by ferritin under the 

lysosomal pH condition in vitro were assessed. This was important to explore in the lysosomal 

oxidation theory, as both LDL and ferritin are targeted for degradation in lysosomes. It is 

possible that degradation of ferritin, apoB and lipid component (mainly cholesterol esters) 

component and of LDL by lysosomal enzymes will affect the rate of oxidation of LDL by 

ferritin at lysosomal pH 

Aim 3: It was relevant to explore the role of antioxidants in inhibiting lysosomal LDL oxidation 

mediated by ferritin as the oxidative modification theory of atherogenesis is constantly been 

challenged by failure of some previously used antioxidants to protect against CVD in large 

clinical trials. Antioxidants which can accumulate in lysosomes might be a more potent 

candidate in inhibiting LDL oxidation. The ability of antioxidants in to protect LDL  against 

oxidation by ferritin in vitro was assessed using the water-soluble antioxidants cysteamine (a 

lysosomotropic antioxidant) and vitamin C,  the lipophilic antioxidants α-tocopherol and N, 

N’-diphenyl-p-phenylenediamine (DPPD) and the amphipathic compound, Tempol (4-

hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl).  
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Aim 4: Some evidence supports the role of oxLDL in foam cell formation in atherosclerotic 

lesion advancement. There were strong indications that the in vivo modification of LDL 

increases its ability to induce an inflammatory response and promote atherosclerosis. In 

addition, there is ample evidence in support of the proatherogenic effects of oxLDL and its 

ability to induce cellular damage. Lysosomes possess the ability to process ferritin by 

autophagy.  Understanding the role of ferritin in lysosomal oxidation is still in its infancy and 

can be further explored for its implication in the onset and progression of atherosclerosis.  It 

was important to understand the effects ferritin-oxidised LDL will have at the intracellular 

level. Our final aim was to investigate the effects of oxidation of LDL by ferritin in lysosomes 

on macrophage function. The link between upregulation of iron in macrophages by hepcidin 

and lysosomal LDL oxidation was explored. We tested the ability of ferritin to increase lipid 

peroxidation in lysosomes. The relevance of ferritin-oxidised LDL on the intracellular 

generation of reactive oxygen species and induction of apoptosis was explored.  We assessed 

the effect of lysosomal LDL oxidation by ferritin on cellular respiration in cultured human 

macrophages.  
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Chapter 2 - General materials and methods 
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2.0 Materials and Methods 

2.1 Chemicals  

All laboratory reagents obtained were of analytical grade. Ferritin and all antioxidants used 

were prepared in the appropriate buffer for the particular experiment just before use. General 

laboratory reagents and the companies that supplied them are listed in appendix 1, the 

lysosomal lipid peroxidation probe (Foam-LPO) was a gift from Dr Yi Xiao, Dalian University 

of Technology, China.  

2.1.1 Solutions 

Cryopreservation medium 

The medium was prepared with Dimethyl sulphoxide (DMSO), foetal calf serum and RPMI-

1640 (10/40/50, v/v/v). 

 Lipid hydroperoxide assay (colour reagent) 

Colour reagent was prepared with sodium azide NaN3 (150 µM), potassium phosphate 

monobasic KH2PO4 (163 mM), dipotassium hydrogen orthophosphate K2HPO4 (37 mM), 

potassium iodide KI (120 mM), ammonium molybdate (NH4)2MoO4 (10 µM), Trition X-100 

(2g/L) and Benzakonium chloride C6H5CH2N(CH3)2RCl (0.1g/L). The pH was then adjusted 

to pH 6.0. 

DAPI 

Ultrapure water (2 ml) was added to 10 mg/ml stock to give 5 mg/ml. 1 µg/ml solution was 

prepared in fluorescence mounting medium (DAKO S3023).   

Buffer for dialysing LDL 

10 Litres of dialysis buffer (140mM NaCl, 8.1 mM Na2HPO4, 1.9 mM NaH2PO4 and 100 µM 

EDTA) were prepared by addition of 81.83 g NaCl, 14.42g Na2HPO4.2H2O, 2.964 

NaH2PO4.2H2O and 372.2 mg EDTA. It was made up to 10 litres and the pH adjusted to 7.4. 
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Dihydroethidium (DHE) 

DHE (10 mg) was dissolved in 1585 µL Dimethyl sulphoxide (DMSO) to make 20 mM stock 

solution.  

Flow cytometer buffer  

5mM EDTA with 0.6% BSA in PBS. 

High-density solution (HDS). 

1L of HDS (2.97 M KBr, 2.62 M NaCl and 297 µM EDTA) was prepared by the addition of 

354 g KBR, NaCl 153g, EDTA.Na2.2H2O 110.5mg and then made up with distilled water to 1 

litre and pH was adjusted to pH 7.4. 

1.063 g/ml NaCl/KBr/EDTA solution 

VHDS = VLDS (DREQ -DCURR)/ DHDS -DREQ) 

Vol of HDS = 0.057 x 2,000 ml of LDS 

                         The density of HDS – 1.063 

The volume of HDS obtained was added to 2 litre LDS and the pH was adjusted to pH 7.4 and 

the density was checked with calibrated 100ml flask at 4 oC to ensure it was 1.063 g/ml. 

Adjustment where made where necessary. 

HPLC oxidation mobile phase 

HPLC grade acetonitrile, isopropanol and water at 44/54/2 % by volume. To make 1 litre 440 

ml acetonitrile, 540 ml isopropanol and 20 ml water were mixed. 

Stabilising buffer for incubating LDL with sphingomyelinase 

100 ml of stabilising buffer was prepared with HEPES 8 0ml of 150 mM/L NaCl, 10 ml of 50 

mM HEPES and 10 ml of 100 mM MgCl2 and then pH to 7.4.  
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Low density solution (LDS) 

10 litres of LDS with density 1.006 g/ml (150mM NaCl and 297 µM EDTA) was prepared by 

adding 87.68 g NaCl, 110.5 mg EDTA and then made up to 10 litres. The pH was adjusted to 

pH 7.4. 

1.019 g/ml NaCl/KBr/EDTA solution  

VHDS = VLDS (DREQ -DCURR)/ DHDS -DREQ 

Vol of HDS = 0.013 x 2,000 ml of LDS                                        

                           The density of HDS – 1.019 

The volume of HDS obtained was added to 2 litre LDS and the pH was adjusted to pH 7.4 and 

the density was checked with a calibrated 100 ml flask at 4 oC to ensure it was 1.019 g/ml. 

Lowry A 

Lowry A solution (0.2 M Na2CO3, 0.1 M NaOH, 5.7 mM sodium tartrate and 35 mM SDS) 

was prepared with 5 g Na2CO3, 1 g NaOH, 0.328 g sodium tartrate and 2.523 g SDS made up 

to final volume (250 ml) with water. 

Lowry B 

To make 250 ml, 0.16 M CuSO4, 6.384 g was dissolved in ultra-pure water and made up to 250 

ml. 

MOPS buffer pH7.4 

NaCl, 8.8 g (150 mM) and 2.09 g 3-N-[Morpholinopropane] sulphonic acid (MOPS) (10 mM) 

with pre-washed Chelex-100 (1 g) was made up to 1 litre and adjusted to pH 7.4, mixed 

overnight with stirring. The Chelex was removed by filtration and the pH was readjusted. 

Chelex-100 is used to remove transition metals that might be present. 

Oil Red O stain 

500mg of Oil Red O powder was dissolved in 100 ml of 99% Isopropanol solution and placed 

in a warm water bath to dissolve. To prepare working solution from this stock solution, 3 parts 

of Oil red O stock was mixed with 2 parts ultra-pure water (depending on volume needed for 
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each experiment). This was then incubated at room temperature for 10 minutes and filtered 

using a 0.45 µm Minisart filter. The working solution was used within two hours of preparation. 

Paraformaldehyde cell fixation solution (4%) 

4g of paraformaldehyde was dissolved in 60ml PBS and kept in a warm water bath at 37 oC in 

a fume hood overnight. The pH was then adjusted to pH 7.4 and the volume was made up to 

100 ml. 

PBS (Phosphate buffer saline) 1X 

NaCl, 8.0 g (137 mM), 0.20 g KCl (2.7 mM), 0.23 g NaH2PO4 (1.9 mM), 0.12 g Na2HPO4 (0.8 

mM) was dissolve in 1 litre and the pH was adjusted to pH 7.4 

Reducing sample treatment buffer 6X RSTB 

SDS (12%), 30% B mercaptoethanol, 30 % stacking gel buffer, 30% glycerol) 50 ml was 

prepared with 6 g SDS, 15 ml B mercaptoethanol, 15 ml stacking gel buffer, 15 ml glycerol 

and 5 ml ultra-pure water. A trace of bromophenol was added.  

Resolving gel buffer 

1.5M Tris-HCl (500 ml) pH 8.8 was prepared with 181.5 g of Tris and made up with ultra-pure 

water and pH was adjusted with only HCl to pH 8.8. 

RIPA lysis buffer 

Lysis buffer was prepared with 150 mM NaCl, 1 mM EDTA, 50 mM Tris pH 8.0, 1.0 % Triton 

X-100, 0.5 % Sodium deoxycholate and SDS (0.1 %). 

Sodium chloride/sodium acetate buffer pH 4.5 

NaCl, 8.8 g (150 mM) and 0.82g (10 mM) Sodium acetate with pre-washed Chelex-100 (1g) 

was made up to 1L and adjusted to pH4.5 and mixed overnight with stirring. The Chelex was 

removed by filtration and the pH was readjusted. 
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Stacking gel buffer 

500 ml 0.5 M Tris-HCl pH 6.8 was prepared with 30g of Tris and made up with ultra-pure 

water and pH was adjusted with only HCl to pH 6.8. 

 

 

2.1.2 Laboratory equipment 

Name Manufacturer 

A1 inverted epifluorescent microscope Carl Zeiss 

Axioscope epifluorescent microscope Carl Zeiss 

Atomic absorption spectrophotometer (AAS) Analytik Jena 

BD AccuriTM C6 flow cytometer BD Biosciences 

Countess II FL automated cell counter 

Evos XL cell imaging system 

Invitrogen 

ThermoFisher 

Inductively coupled plasma mass spectrophotometer (ICP-MS) ThermoFisher  

Lambda-2 6-cell spectrophotometer PerkinElmer 

Lambda Bio 40 8-cell spectrophotometer PerkinElmer 

Lambda 35 8-cell spectrophotometer PerkinElmer 

Libra S22 UV/Vis Spectrophotometer Biochrom 

Optima TM XPN ultracentrifuge Beckman Coulter 

 PerkinElmer 200 HPLC system PerkinElmer 

Agilent 1200 HPLC Agilent 

Speed Vac ThermoFisher  

U genius image capturing machine Syngene 

Seahorse XFp Analyzer Agilent 
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2.2  Preparation of LDL 

2.2.1 Ethics and blood collection 

Permission was received from the University of Reading Research Ethics Committee to take 

blood from volunteers on 2 February 2012 (Project number 12/7; Isolating low density 

lipoprotein and monocytes from human blood for studies of atherosclerosis). Blood was usually 

taken from one to three healthy volunteers. Blood (250 ml) was collected from each donor into 

50ml syringes containing (3 mM EDTA at pH 7.4 to inhibit the oxidation of LDL and prevent 

blood clotting). 

  

2.2.2 Isolation of LDL 

Native LDL (d=1.019-1.063g/ml) was isolated from normal human blood (after an overnight 

fast) according to the method previously used in our laboratory (Wilkins and Leake, 1994). 

LDL isolated by sequential ultracentrifugation of the plasma.   Blood collected as described in 

section 2.2.1 were transferred into 50 ml tubes, the tubes were inverted to mix and placed on 

ice. The blood samples were centrifuged at 1500 g for 30 min at 4 ̊ C. The plasma was removed 

from the upper layer and its volume measured. The density was adjusted to 1.019g/ml by 

adding HDS (prepared from 297 µM EDTA, 2.62 M NaCl and 2.97 M KBr). The volume of 

HDS to be added was calculated as follows: 

VHDS = Vplasma (DREQ -DCURR)/ DADD -DREQ) where VHDS =Volume of high density solution 

HDS to be added to the pooled plasma, Vplasma =Volume of plasma obtained from blood 

collected, DREQ = final density required which is 1.019 mg/l, DCURR = the current density of 

pooled plasma which is 1.006 mg/l and DADD = the density of the HDS solution prepared. 

Vol of HDS =   0.013 x volume of plasma  

                                The density of HDS- 1.019  

The calculated volume of HDS was added to the plasma transferred into the dialysis tubing and 

then placed in 2 litres of 1.019 g/ml NaCl/KBR/EDTA solution (prepared as described in 



72 

 

section 2.1.1), dialysed for 2 hours at 4 oC with stirring.  The plasma was transferred into 35 

ml ultracentrifuge tubes and centrifuged at 115,000 x g (40,000 rpm) at 4oC   for 18 hours.   

The tubes were sliced at the upper region to obtain a coloured solution at the bottom. The clear 

solution in the upper region containing VLDL and IDL was discarded. The bottom fraction 

containing HDL, LDL and other plasma proteins was collected, the gelatinous material at the 

bottom was drawn with a Pasteur pipette and all gelatinous material were re-suspended. The 

volume was measured and the density was adjusted to approximately 1.063 g/ml by addition 

of HDS using the following equation to determine the amount required: 

Vol of HDS =   0.044 x volume of plasma  

                                The density of HDS - 1.063 

To adjust the density to exactly 1.063g/ml the fraction was transferred into dialysis tubing and 

dialysed against 1 litre of 1.063 g/ml solution (prepared as described in section 2.1.1), for 

2hours at 4o C with stirring.  After dialysis, the plasma was transferred to ultracentrifuge tubes 

and centrifuged for 18 hours at 115,000 x g (40,000rpm) at 4oC. After 18 hours of 

centrifugation, the tubes where sliced below the upper golden layer containing the LDL, the 

bottom fraction containing HDL was discarded.  The LDL fraction was transferred to a dialysis 

tube and dialysed for 2 hours against 1 litre of 1.063g/ml solution at 4oC with stirring. The 

solution was then centrifuged for another 18 hours at 115,000 x g (40,000rpm) at 4oC. After 18 

hours the ultracentrifuge tubes were sliced below the LDL fraction at the upper layer and the 

lower layer was discarded.  

The obtained LDL fraction was dialysed against NaCl/phosphate/EDTA (40 mM NaCl, 8.1 

mM Na2HPO4, 1.9 mM NaH2PO4 and 100 µM EDTA) (pH 7.4) overnight with several changes. 

The LDL was filter sterilised using a Millipore filter of pore size (0.45 µm) and stored in the 

dark at 4 oC.   The LDL protein was then assayed to determine the concentration.  The LDL 
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was stored at 4 oC in the dark room in the presence of 100 µM EDTA and used within one 

month of isolation.   

2.2.2 Enrichment of LDL with α-tocopherol 

The α-tocopherol content of native LDL was increased as described by Esterbauer et al  

(Esterbauer et al., 1991a). The plasma of blood collected from healthy volunteers was obtained 

by centrifugation at 1500 g for 30 min at 4 oC.  The pooled plasma was then incubated for 3 h 

at 37 oC with 1% (v/v) DMSO containing 100 mM α-tocopherol (final concentration 1mM), to 

allow the α-tocopherol to diffuse into the LDL particles or 1% (v/v) DMSO as a control. LDL 

was then isolated by ultracentrifugation as described in section 2.2.1.                                   

2.2.3 Lowry protein assay 

The concentration of LDL protein was determined by a modified Lowry assay for protein 

determination previously described by Markwell et al (Markwell et al., 1978). Standard masses 

(0, 20, 40, 60, 80, 100 µg) of bovine serum albumin (BSA) were prepared from a stock solution 

of BSA (400 µg/ml) in triplicates and made up to 500 µl with ultra-pure water. Sample (125 

µl) was added to assay tubes in triplicates and also made up to 500 µl with ultra-pure water. 

Freshly prepared Lowry A solution (1.5ml) was added to each assay tubes and placed at room 

temperature for ten minutes. Lowry B reagent (150 µl) was added to each assay tube and 

incubated at 55oC for 5mins. The assay tubes were then allowed to cool to room temperature, 

the absorbance at 650nm was measured. The assay is based on the ability of the peptide bonds 

present in both BSA and apoB-100 of LDL to form a complex with copper ions in Lowry A 

reagent. The complex formed then reduces the Lowry B (phosphomolybdic-phosphotungstic 

Folin reagent) to a blue chromophore that absorbs light at 650nm. The LDL protein contained 

in the sample was then determined against the standards (BSA). Usually about 2.5mg to 4mg 

of LDL protein/ml was obtained. 
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2.2.4 Preparation of sphingomyelinase aggregated LDL 

Native LDL was diluted to 2 mg protein/ml with LDL stabilising buffer containing (NaCl 150 

mM, MgCl2 100 mM and HEPES 50 mM, pH 7.4). Sphingomyelinase from Bacillus cereus 

(Sigma-S9396-50UN) was added at 10 mU/ml and incubation at 37 oC was started in a water 

bath (Yabu et al., 2008, Walters and Wrenn, 2010). The attenuance (absorbance plus light 

scattering) was measured at 430 nm as well as 680 nm was measured at 0 h and every hour 

afterwards. At each time point LDL diluted to 100 µg protein/ml was measured in cuvettes 

containing PBS. Using PBS as reference the sample was read at 430 and 680 nm 

simultaneously. The process was stopped when the absorbance at 430 and 680 nm reached 

about 0.09 and 0.013 respectively. From previous confirmatory experiments using dynamic 

light scattering (Wen et al., submitted).  It was indicated that the average LDL particle size at 

this stage would have increased from about 25 nm to about 200 nm. After suitable aggregation 

was achieved the incubation was stopped and sphingomyelinase aggregated LDL (SMase-

LDL) was dialysed against 2 L of the buffer used for dialysing LDL (40 mM NaCl, 8.1 mM 

Na2HPO4, 1.9 mM NaH2PO4 and 100 µM EDTA) (pH 7.4) overnight in a cold room with 

stirring. The SMase-LDL was collected and sterilised with a 0.45 µm Minisart filter and 

SMase-LDL protein concentration was assessed by the Lowry method described in section 

2.2.3. The aggregation was confirmed by comparing light scattering at 680 nm by comparing 

SMase-LDL to control LDL (Fig 2.1). 
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Figure 2.1 Measurement of aggregation in SMase-LDL compared to native LDL 

The attenuance at 680 nm of native LDL and SMase-LDL (100 µg protein /ml) out of 2 mg 

LDL protein/ml incubated with or without sphingomyelinase (10 mU/ml) at 37 oC was 

compared at different time intervals for up to 6 h. 

 

2.2.4 Preparation of lipoprotein-deficient Serum (LPDS) 

To prepare lipoprotein-deficient serum 1 ml was assayed for protein. To every 120 ml of serum 

47.71 g potassium bromide was added to adjust the density to 1.25 g/ml stirred by hand then 

transferred to 35ml ultra clear centrifuge tubes and centrifuged at 40,000 rpm at 10 oC for 48 

h. After 48 h the tubes were sliced at the upper layer to remove lipoproteins at the top. The 

remaining serum was then dialysed against 10 litres of dialysis buffer at 4 oC, the buffer was 

changed several times overnight. It was then dialysed against 10 litres of PBS containing 

calcium and magnesium with two changes for 3 h. The protein was assayed again and 

readjusted to the original protein concentration by adding PBS then filtered through a 0.22 µM 

filter. 
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2.3 Spectrophotometric measurement of LDL oxidation by ferritin at 

lysosomal pH 

Native LDL (50 µg protein/ml) was oxidised with freshly prepared ferritin (0.05µM, 0.1µM 

and 0.2µM) in Chelex-100 treated NaCl/ sodium acetate buffer (150 mM NaCl, 10 mM acetic 

acid) (pH 4.5) at 37 ˚C.  The Chelex-100, pre-washed in ultra-pure water was added to 

NaCl/sodium acetate buffer at 0.1% (w/v, 1 g/l), to remove soluble transition metal binding 

activity (Van Reyk et al., 1995). The Chelex-100 treated NaCl/ sodium acetate buffer pH 4.5 

left at 4 oC overnight with stirring. The Chelex-100 was then removed by filtration prior to re-

adjusting pH to 4.5.  The formation of conjugated diene was measured according to the method 

previously used by Esterbauer to continuously monitor LDL oxidation (Esterbauer et al., 

1989b). Freshly dissolved LDL (50 µg protein/ml) and the different concentrations of freshly 

diluted ferritin was placed in 10 mm path length quartz cuvette in duplicates against reference 

cuvettes that lacked LDL. Ferritin was added last in all experiments. To measure the formation 

of conjugated dienes, the attenuance (absorbance plus UV scattering) at 234nm was measured 

at 37oC for 1200 minutes at a one-minute interval in a dual Lambda Bio 40 8-cell 

spectrophotometer with UV software.  The attenuance at zero was subtracted from all time 

points. 

2.3.1 Comparison of oxidation of LDL by ferritin at pH 4.5 and pH 7.4  

The effect of changes in pH on the oxidation of LDL by ferritin was assessed. Native LDL (50 

μg protein/ml) was oxidised with 0.1 µM or 0.2 µM ferritin at 37˚C using NaCl/ sodium acetate 

buffer (pH 4.5) and MOPS buffer (pH 7.4) both pre-treated with Chelex - 100. The formation 

of conjugated dienes was monitored. 

2.3.2 Measurement of LDL aggregation in the presence of ferritin 

Native LDL (50 µg protein/ml) was oxidised with freshly prepared ferritin (0.1µM) in Chelex 

- 100 treated NaCl/ sodium acetate buffer (pH 4.5) at 37˚C in capped quartz cuvettes. The 
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method previously used by Khoo et al was adopted (Khoo et al., 1988). Light scattering by 

LDL oxidised with freshly prepared ferritin was compared to LDL or ferritin by itself. The 

change in attenuance at 680 nm was monitored every minute at 37˚C against reference cuvettes 

that lacked LDL. The attenuance was measured for 1200 minutes. 

2.3.3  Atomic absorption spectrophotometric quantification of iron in ferritin and 

apoferritin 

The amount of iron in horse spleen ferritin was determined using flame atomic absorption 

spectrophotometry (F-AAS). To digest the sample, 1 ml of 5 M nitric acid was added to ferritin 

(15 µl of 53 mg/ml protein) or apoferritin (35 µl of 25mg/ml) was prepared in triplicate in test 

tubes and heated for 2 h at 75o C. The samples were dissolved in 50 ml and 10 ml of water, 

respectively. Standard concentrations of iron (0, 1, 2, 3, 4, 5 mg/l) were prepared from a stock 

solution of iron (Fe3+) (10 mg/l) and treated the same way as the sample. Samples of the nitric 

acid digest were assayed directly in an atomic absorbance spectrophotometer (AAS) (Analytik 

JENA AAS NovAA) using an air/acetylene flame. Absorbance was measured at 248.3nm.  

2.3.4 Comparison of iron released from ferritin at pH 4.5 and 7.4 using iron chelator 

To determine the amount of iron released from ferritin at pH 4.5 and 7.4. Native LDL (50 µg 

protein/ml) was oxidised with freshly prepared ferritin (0.1 µM) in Chelex-treated NaCl/ 

sodium acetate buffer (pH 4.5) or MOPS buffer (pH 7.4) in 15ml tubes, in triplicate. These 

were incubated at 37˚C. Aliquots of 1ml were taken at intervals up to 24 hours. 

Bathophenanthroline (BP) (30 µl of 10mM) was added at different time points and absorbance 

was measured immediately at 535nm using the Biochrom Libra S22 spectrophotometer. 

2.3.5 Comparison of iron released from ferritin by the ultrafiltration method  

All solutions were prepared prior to use. Ferritin was incubated in triplicate at 0.1 µM in 

Chelex-treated NaCl/ sodium acetate buffer (pH 4.5) in 15ml tubes at 37˚C for 24 h, then 
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filtered with 30,000 Mr cut off microcentrifuge filter tubes at 9000g for 25 min. The quantity 

of iron in the filtrate was determined using AAS.   

2.3.6 The effect of DTPA and EDTA on LDL oxidation by ferritin 

The effect of iron chelators on LDL oxidation by ferritin was tested. Native LDL (50 µg protein 

/ml) was oxidised with 0.1 µM ferritin in the absence or presence of 100 µM EDTA or DTPA. 

The formation of conjugated dienes was continuously monitored by measuring attenuance at 

234nm for 1200 minutes at one minute interval.   

2.3.7 Effect of antioxidants on LDL oxidation by ferritin 

The effect of antioxidants (tempol, α-tocopherol, ascorbate, DPPD and cysteamine) on 

oxidation of LDL by ferritin was tested.  Native LDL (50 µg protein/ml) was oxidised with 

0.1µM of ferritin without or with enrichment with α-tocopherol or in the presence of tempol 

(10 µM) or different concentrations of ascorbate (10-100 µM), DPPD (5-10 µM) or cysteamine 

(5µM-10mM) in Chelex - 100 treated NaCl/sodium acetate buffer (pH 4.5) at 37˚C. The 

samples were placed against appropriate reference cuvette that lacked LDL. The formation of 

conjugated dienes was monitored by measuring attenuance at 234nm for 1200 minutes at one-

minute intervals.  

2.3.8 Effect of cysteamine on iron released by ferritin  

Iron released from ferritin in the presence of cysteamine was assessed. Native LDL 50µg 

protein/ml) was oxidised with freshly prepared ferritin (0.1 µM) in Chelex-treated NaCl/acetate 

buffer (pH 4.5) in the presence or absence of cysteamine in 15ml tubes. A fraction of 1ml was 

taken at intervals up to 24 h. BP (30 µl of 10mM) was added at different time points, absorbance 

was measured immediately at 535nm using the Biochrom Libra S22 spectrophotometer. 
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 2.4 Measurement of LDL oxidation by reverse-phase HPLC analysis of 

lipid species 

Reverse phase HPLC was used to analyse LDL oxidised by ferritin following a method 

previously used by Kritharides et al. (Kritharides et al., 1993). The method of preparation of 

samples and analysis is described below. PerkinElmer 200 and Agilent 1200 system were used, 

data analysis was done using Totalchrom workstation and Chemstation software, respectively. 

The column used on both machines was a C18 reverse phase column, 250 mm x 4.6 mm, 5 μm 

particle size with 5 μm guard column. Reverse phase HPLC uses Stationary phase that is 

hydrophobic (non–polar) and an aqueous mobile phase (polar). The oxidised Lipid products 

were detected at 234 nm. 

2.4.1 LDL oxidation with ferritin for HPLC analysis 

Native LDL was incubated with or without freshly dissolved ferritin (0.1µM) at 37˚C using 

NaCl/Na acetate buffer (pH 4.5) in 15ml polypropylene tubes. At different time points for up 

to 48 h, the oxidation was stopped at each time point by adding BHT in ethanol stock 

concentration at 2 mM (final concentration of 80 µM) and EDTA (final concentration 4mM). 

The lipids were then extracted as described in the next section. 

2.4.2 Extraction of lipids from the oxidised sample for HPLC analysis 

Methanol (1ml) was added to each oxidised sample (80 µg LDL protein) and then vortexed for 

10 seconds. Hexane (3ml) was added and the samples were vortexed for 30 seconds in order to 

transfer the hydrophobic fraction into hexane. The sample was then centrifuged at 1500 x g at 

room temperature for 15 min, 2ml of the upper hexane layer was then transferred to a 5 ml 

propylene tube and dried in SpeedVac (ThermoFisher). The dried samples were dissolved in 

200µl of a relevant mobile phase and analysed. 
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2.4.3 HPLC Measurement  

Each sample (20 µl) was injected into a reverse-phase HPLC and C18 column (described in 

section 2.4). The Oxidised products 7-keto cholesterol (7-Keto) and cholesteryl linoleate 

hydroperoxide (CLOOH) were detected at 234 nm using a mobile phase as described in section 

2.4.3.1. Example chromatograms are shown in figures 2.2 & 2.3. Oxidised products were 

quantified by comparing the peak area with those of known concentrations of commercially 

available standards. 

2.4.3.1 Conditions for analysis of targeted lipid species 

The targeted lipid species were 7-ketocholesterol and cholesteryl linoleate hydroperoxide. 

Mobile phase was prepared with 2% water, 44% acetonitrile, 54% isopropanol (by vol.) and 

oxidised lipids were detected at a wavelength of 234 nm at a flow rate of 1ml/min for 15 

minutes.  
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Figure 2.3: Example chromatogram showing cholesteryl linoleate 

hydroperoxide 

 

Mobile phase as described in section 2.4.3.1 was used with a flow rate of 1 ml/min 

and detected at a wavelength of 234 nm in the cholesteryl linoleate hydroperoxide 

standard. 

 

 

Figure 2.2: Example chromatogram showing 7-ketocholesterol  

 

Mobile phase as described in section 2.4.3.1 was used with a flow rate of 1 ml/min 

and detected at a wavelength of 234 nm in 7-ketocholesterol standard. 
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2.5 Measurement of LDL oxidation by determination of total lipid 

hydroperoxide content by the tri-iodide assay 

The method previously described by El-Saadani et al(el-Saadani et al., 1989) was adapted to 

measure the total lipid hydroperoxides in LDL oxidised by ferritin at lysosomal pH. The 

samples of LDL used for assay had a final mass of 25 µg LDL protein per tube. Standard 

masses of H2O2 (0, 5, 10, 15, 20, 25, 50 nmol) was prepared from a stock solution of H2O2 (100 

µM). LDL samples oxidised with ferritin as described in section 2.4.1 were made up in 15 ml 

polypropylene tubes (25 µg protein/ml). Colour reagent (composition described in section 

2.1.1) was then added (1 ml) to standards of H2O2 and LDL samples and vortexed. The samples 

were then placed in the dark for 1 hour at room temperature. The samples were read in a 

spectrophotometer at 365 nm. The total lipid hydroperoxides were determined in nmol/mg LDL 

protein. This assay is based on the ability of peroxides in standards and sample to oxidise iodide 

ions in the colour reagent to form molecular iodine which then reacts with excess iodide ions 

present in the colour reagent to form the tri-iodide chromophore (I3
-) which absorbs ultraviolet 

radiation at 365 nm. 

 

2.6 Proteolytic degradation of ferritin 

2.6.1 Enzyme digestions 

2.6.1.1 Incubation of ferritin with cathepsin D 

Enzyme digestions were carried out at 37oC, the protein solution was placed in NaCl/sodium 

acetate buffer (pH 4.5). Ferritin (2mg/ml) was incubated with or without 6.2 µg/ml cathepsin 

D and incubated for 24 h.  
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2.6.1.2  Incubation of ferritin with cathepsin D and B 

Ferritin (500 µg protein/ml) was incubated with or without 5 µg/ml cathepsin D and 5 µg/ml 

cathepsin B in Nacl/sodium acetate buffer pH 4.5 at 37oC for 24 h. 

2.6.1.3 Incubation of LDL with cathepsin D 

The intact LDL (500 µg protein/ml) was incubated in the presence or absence of cathepsin D 

(5 μg/ml) in NaCl/sodium acetate buffer (pH 4.4) at 37˚C for 24 h. 

2.6.1.3 Co-Incubation of LDL with cholesteryl esterase. 

LDL (50 µg protein /ml) was co-incubated with 0.0625 unit/ml of cholesterol esterase from 

Pseudomonas sp which is active at pH 4.5. In another experiment, LDL (50 µg protein /ml) 

was co-incubated with 1.25 µg/ml cathepsin D, 1.25 µg/ml cathepsin B and 0.0625 unit of 

cholesteryl esterase/ml. 

2.6.2 Electrophoresis 

The intact ferritin, LDL and digested proteins were evaluated by gel electrophoresis under 

reducing condition using 6X RSTB. The treatment with SDS and β-mercaptoethanol contained 

in the RSTB was used to produce a linear structure of the proteins. The SDS denatures the 

secondary and tertiary structures while the β-mercaptoethanol reduces and breaks the 

disulphide bonds. The SDS confers a uniform negative charge on the proteins by masking the 

native charge of the protein, hence enable them to migrate based on size. Ferritin contains 

heavy and light chains (21 kDa and 19 kDa).  Samples (15 µg) were loaded per well in 15% 

polyacrylamide gels for ferritin and 5% polyacrylamide gel for LDL along with molecular 

weight markers and the gel was left to run at 150 volts for 1 h. The protein bands were located 

by staining with Coomassie blue for 1 h and then de-stained for several hours.  

2.6.3 Effect of proteases and cholesterol esterase on LDL oxidation by ferritin  

The effect of enzyme digestion on the oxidation of LDL by ferritin was tested.  Native LDL 

(50 µg protein/ml) was oxidised with 0.1 µM ferritin only or ferritin that was pre-incubated 
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with cathepsin D only or with the addition of cathepsin B or co-incubated with cholesterol 

esterase from Pseudomonas sp. Oxidation of LDL degraded with cathepsin D by ferritin was 

also compared to intact LDL in Chelex - 100 treated NaCl/sodium acetate buffer (pH 4.5) at 

37˚C. Control samples not treated with enzymes were compared to samples treated with 

enzymes. The samples were placed against appropriate reference cuvettes that lacked LDL. 

The formation of conjugated dienes was monitored by measuring attenuance at 234nm for 1200 

minutes at one-minute intervals.  

 

2.7 Cell culture 

THP-1 cells originally obtained from the blood of a one-year-old leukaemic patient were 

bought from European Collection of Authenticated Cell Cultures (EACC). They are monocytic 

cell line which can be differentiated into macrophages with phorbol 12-myristate 12-acetate 

(PMA). The THP-1 monocyte was maintained in RPMI 1640 medium modified with L-

glutamine, phenol red, HEPES, sodium pyruvate with low sodium bicarbonate and high 

glucose. The medium obtained from Life Technologies, UK was supplemented with 10% (v/v) 

heat-inactivated foetal calf serum (FCS), antibiotics (50 UI penicillin, 50 µg streptomycin and 

0.95 µg amphotericin/ml). Cells were cultured in T75 flasks with filter caps using 20 ml media. 

Cells were cultured under humidified air (95%) / 5% CO2 at 37oC until confluent.  Cells were 

subcultured usually every three to four days. The cell suspension was drawn out of a T75 flask 

into 50ml tubes and centrifuged at 500 x g for 5 min at room temperature. The supernatant was 

discarded and cells re-suspended in 5 to 7ml media, counted and re-seeded at 3 x 105/ml in 

20ml culture medium in the new flasks. 

NB: All media used in the experimental procedures were supplemented with 10% FCS and 

antibiotics (50UI penicillin, 50 µg streptomycin and 0.95 µg amphotericin/ml), except stated 

otherwise. 
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2.7.1 Cryopreservation of THP-1 monocytes. 

Cells were collected as described above and centrifuged at 500 x g for 5 min at room 

temperature. The supernatant was removed, and the pellet was re-suspended in an ice-cold 

cryopreservation medium containing RPMI/FCS/DMSO (5/4/1 by vol.) using 1 ml for each 

confluent T75 flask. The cells were then kept in cryovials packed in polystyrene containers to 

ensure slow cooling then transferred to a -80 oC freezer overnight. Vials were moved to liquid 

nitrogen to store for a longer period. When needed vials were taken out, rapidly thawed in a 

water bath at 37 oC. Each 1 ml content was transferred to 50 ml tubes and washed with RPMI 

by centrifuging twice at room temperature, then seeded in T75 flask with medium containing 

20% FCS (volume in flask was 20 ml) then transferred to an incubator left in standing position 

for about 3 hours then placed in a normal position for five days after which they are split into 

media containing 10% FBS at 3 X 105 cells/ml in 20ml culture medium.  

2.7.2 Conversion of THP-1 cells to THP-1 derived macrophages 

 The THP-1 cells were cultured inT75 flask at 3 x 105 cells per ml and allowed to reach the 

density of 8 x 105 cells per ml before changing media. The viability of cells was maintained by 

not allowing the density to exceed 1 x 106 cells per ml. Depending on the experiment to be 

carried out, THP-1 cells were differentiated in tissue culture plates (6-, 12-, 24- or 96-well or ) 

using phorbol 12-myristate 12-acetate (PMA) (25ng/ml). After 72 h cells were washed with 

sterile PBS and re-suspended in fresh media. Cells were then rested for 48 h before experiments 

were carried out. 

 

2.8 Isolation of human monocyte-derived macrophages 

 Human monocytes were isolated from blood collected of healthy volunteers(as described in 

section2.2.1) by density gradient centrifugation with a LymphoprepTM solution (AXIS-

SHIELD PoC AS, Oslo, Norway) (Firth et al., 2007). Erythrocytes and granulocytes have a 
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density greater than 1.077g/ml, while monocytes have a density of less than 1.077g/ml.  

LymphoprepTM has a density of around 1.077g/ml and it, therefore, allows monocytes to be 

maintained at the interface between LymphoprepTM and the buffer in which the cells were 

suspended while erythrocytes and granulocytes sediments. 

 

The blood collected from donors were transferred to 50ml centrifuge tubes and centrifuged at 

1500g for 30 minutes at 4 oC. The plasma was carefully removed leaving about 1 cm of plasma 

above the buffy coat. Using a sterile Pasteur pipette the buffy coat was removed into new 50ml 

Falcon tubes. About 15ml buffy coat was obtained (containing red blood cells which were 

removed in the next step). Then 20 ml of PBS (at room temperature was added. The mixture 

of buffy coat and PBS was gently underlaid with 15 ml of LymphoprepTM. The solution was 

then centrifuged at 1000g at room temperature for 20 minutes with the brake off and soft start. 

The red blood cells were visible at the bottom and the white monocyte/lymphocyte floating 

half way down the tube was collected (approximately 15 ml per tube). PBS (at room 

temperature) was added to each tube to a final volume of 45 ml and tubes were inverted to mix 

and then centrifuged at 500g at room temperature for 15 minutes (with the break on at the end). 

The supernatant was taken off and the pellet re-suspended in 50 ml PBS and then centrifuged 

at 500g for 10 minutes. This process was repeated 3 times to ensure cells were fully washed. 

The cells concentration was adjusted to 5 x 106 / ml in serum-free RPMI (containing antibiotics) 

and then plated at 6 ml in 6 well suspension plates. Heat-inactivated human serum was added 

at 5 µl /ml to each well and plates were incubated at 37 oC / 5 % CO2 for 40 hours to allow T 

cell death and platelet adhesion while monocytes remain in suspension and viable.  
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The cell suspension from each well was collected into tubes pipetting thoroughly within the 

wells to collect resting monocytes whilst avoiding detachment of platelets. The cell suspension 

was centrifuged at 500 g for 15 minutes at room temperature. The supernatant was removed 

and re-suspended in RPMI media containing 10% heat-inactivated foetal calf serum and 

antibiotics (50 UI, 50 µg streptomycin and 0.95 µg amphotericin/ml). The cells were seeded at 

3 x 106 / ml in 12 well adherent plates and GM-CSF (25 ng/ml) was added to the 1ml of 

suspension in each well (to differentiate them into M1 (pro-inflammatory) macrophages) and 

then transferred to an incubator at 37 oC / 5 % CO2. The cells’ gross morphology was examined 

with a microscope to confirm they were monocytes. The media was changed every 3 days and 

monocytes were allowed to differentiate into macrophages after 7 days. The cells were plated 

according to the requirements of the particular experiments.  

 

2.9 Determination of the effect of hepcidin on intracellular iron in 

macrophages 

2.9.1 Treatment of THP-1 derived macrophage cells with hepcidin. 

THP-1 derived macrophages (1.2 x 105) differentiated with PMA (25ng/ml) and rested for 48 

h were plated in 24 well tissue culture plates using three media to vary the media concentration 

of iron (RPMI-1640, DMEM and F10 supplemented with 10% FCS and antibiotics). For each 

media cells were treated with or without hepcidin (1000 nM) and media was replaced after 24 

h with media containing 10% LPDS with or without hepcidin (100nM) every 2 days. The 

protein content and iron concentration were measured after seven days.  
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2.9.2 Determination of intracellular protein concentrations 

2.9.2.1 Preparation of cell lysate 

The medium was removed, the plates were then kept on ice. Cells were then washed with cold 

PBS. 500 µl RIPA lysis buffer with protease inhibitors was added to each well and then swirled 

to distribute buffer. The cells were gently scraped and transferred into tubes. The cells were 

then incubated on ice for 15 minutes. The lysate was then sonicated and centrifuged at 13,000 

g for  5 minutes and the supernatant collected. 

2.9.2.2.Determination of protein content with Bio-Rad DCTM protein assay kit. 

 BSA standards (0, 5, 25, 50,  100 µg) was prepared and the protein concentration in samples 

was measured using a Bio-Rad DCTM protein assay kit. This assay is based on a similar 

principle with Lowry assay in which the protein content of the sample reacts with copper 

tartrate and then the copper treated protein subsequently reduces the Folin reagent. This 

reduction produces reduced species with chararteristic blue colour which absorbs maximally 

at 750 nm. Reagent A was added to the reagent S ratio (200 µl: 4 µl). Reagent A (5000 µl)  and 

100 µl of reagent S. This mixture (200 μl) was then added to each standard and samples. 

Reagent B (800 µl) was then added, each tube was vortexed and left for 15 minutes at room 

temperature. The absorbance was measured at 750 nm. The protein contained in the cell lysates 

were then determined in comparison with the BSA standards. 

2.9.3 Inductively coupled plasma mass spectrometry (ICP-MS) for measuring total iron 

in macrophages 

THP-1 macrophage-like cells treated with or without hepcidin as described in section 2.9.1 

were transferred to 15ml tubes and centrifuged at 500 g for 10 min. Cell pellets were washed 

with PBS. The cell pellets were then digested with nitric acid, equivalent to 2% of the final 

volume, and incubated at 75oC for 2 h. It was then diluted to 10ml with ultra-pure water. The 

concentration of iron in samples were measured with ICP-MS (Flores et al., 2015). The use of 
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ICP-MS is an established method for the analysis of multiple elements, very sensitive and able 

to detect as low as the ultra-trace concentration of varying elements. The sample is introduced 

to the system true the liquid-phase nebulizer. The major analytical feature of the system is the 

production of ions in the inductively coupled plasma (ICP) section of the machine. The ICP 

mass spectra show the amount of ions measured in every second.   

 

2.10 Measurement of lysosomal lipid peroxidation in THP-1 cells and 

human monocyte-derived macrophages. 

The local lipid peroxidation (LPO) in lysosomes of macrophages was measured with the novel 

lysosome-targeted probe Foam-LPO which was recently synthesised by Zhang and colleagues 

(Zhang et al., 2015). The Foam-LPO is a fluorescent probe, which possesses an alkaline tertiary 

amino group which enables it to localise in the acidic environment of lysosomes (becomes 

protonated and accumulates in the lysosome).  Its fluorophore structure acts as a signal of lipid 

peroxidation and the conjugated diene group present in the BODIPY fluorophore are degraded 

in response to lipid peroxidation leading to a fluorescence shift from 586 nm to 512 nm which 

can be measured by two-way flow cytometry.  

 

 

THP-1 macrophages prepared as described in section 2.7.2 were plated at 5 x 105 cells per well 

were treated with pre-warmed RPMI–1640 with 10% human serum (2ml per well) alone or 

with ferritin (100 µg/ml) for 24 h in an incubator at 37 oC / 5 % CO2. The cells were then treated 

with or without LDL (200 µg protein/ml) for 24 h to have the following four conditions: no 

LDL, LDL only, and LDL with ferritin and ferritin only. After the total 48 h treatment for 

ferritin and LDL treatment, the cells were washed three times with PBS (pre-warmed to 37 oC) 

and then added fresh media. The adhered macrophages were scraped into a clear 96 well round 
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bottom microplate (Greiner CellStar®) and centrifuged at 500 g at room temperature for 5 min.  

The cells were then re-suspended in 200 µl media (no serum) containing 2 µM Foam-LPO (a 

kind gift from Dr Xiao, Dalian University China) for 15 min at room temperature in the dark. 

The cells were then centrifuged at 500 g for 5 min at 4 oC and the supernatant was discarded 

and the cells re-suspended in PBS and centrifuged at 500 g for 5 min at 4 oC. Washing with 

PBS was repeated once and then the cells were re-suspended in flow cytometer buffer.  

 

The cells were analysed with a Becton Dickinson flow cytometer (BD Biosciences C6 flow 

cytometer). FlowJo software was used to determine the mean fluorescence intensity of the two 

channels and the ratio of green channel (FL1) to the red channel (FL2) was used as a measure 

of LPO in lysosomes. 

 

The experiment was also carried out using the same procedure with sphingomyelinase- 

aggregated LDL with THP-1 cells or human monocytes-derived macrophages (HMDM) 

isolated as described in section 2.8.  

 

2.11 Measurement of intracellular lipid and ceroid levels after treatment 

with ferritin 

2.11.1 Preparation of sterilised coverslips  

Prior to the start of experiments sterile coverslips (18 x 18 mm) were cleaned in acid (65% 

nitric acid left overnight on a rocker at low rpm overnight well labelled. Coverslips were then 

washed in ultra-pure water several times. The coverslips were then dried in the safety cabinet 

to dry and then placed in a container and autoclaved. Prior to each experiment requiring 

coverslips, the cover slips were exposed to UV light to further sterilise. 
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2.11.2 Measurement of intracellular lipids and intralysosomal ceroid 

THP-1 cells differentiated with PMA (25ng/ml) were plated at 45,000 on sterilised coverslips 

in two 6-well tissue cultured plates. In each plate, three wells were pre-treated with 100 µg 

ferritin for 24 h. Cells were washed with PBS and RPMI-1640 media (2ml) was added to two 

wells (RPMI only and RPMI + preloaded ferritin),  native LDL (200 µg protein/ml) was added 

to next two wells (native LDL only and native LDL + preloaded ferritin), the last two wells 

received  200 µg protein/ml SMase-LDL ( SMase-LDL only and SMase-LDL + preloaded 

ferritin) and the treatment was left for 24 h. The cells were then washed with PBS and 2ml of 

RPMI-1640 containing 10% (v/v) lipoprotein deficient serum and antibiotics (50UI, 50 µg 

streptomycin and 0.95 µg amphotericin/ml). This was replaced every two days for each well 

for seven d the cells in one plate were stained for intracellular lipids and the other for ceroid. 

2.11.3 Oil Red O Staining for intracellular lipids 

The tissue culture plate was transferred to the fume hood, the media was then replaced with 

2ml of PBS. The PBS was then replaced with 2ml of 4% (w/v) paraformaldehyde and then 

incubated for 15 minutes. Paraformaldehyde was removed into a waste container. Cells were 

gently rinsed with distilled water. Cells were washed with PBS and after washing, 1.5 ml Oil 

Red O (0.5% w/v) working solution was added to each well and then incubated for 10 minutes. 

After 10 minutes. Oil Red O was removed and cells were gently rinsed with water until the 

distilled water rinsed clear.  Coverslips were then mounted on glass slides with cells facing 

downwards on a drop of mounting media. The intracellular lipids were visualised using light 

microscopy with Axiovision software and analysed with Image J software.  
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2.11.4 Oil Red O Staining for Ceroid 

At the end of treatment, cells were washed two times with PBS and then fixed by adding 2ml 

4% paraformaldehyde for 15 minutes. The cells were gently rinsed with 2ml water and then 

washed with twice with 2ml PBS. The cells on coverslips were transferred to a glass staining 

rack and 2ml of xylene was added to each well and incubated for 5 minutes. Each well was 

then rinsed with 60% (v/v) isopropanol. 2ml ethanol was then added and incubated for another 

5 minutes. Oil Red O (1.5 ml) was added and incubated for 15 minutes. The Oil Red O was 

removed and then rinsed with distilled water several times until it appeared clear. The ceroid 

content was then visualised with light microscopy (Axioscop 2, Carl Zeiss Ltd) and images 

were captured with Axiovision software and analysed with Image J software. 

 

2.12 Determination of intracellular reactive oxygen species formation 

induced by ferritin-oxidised LDL  

THP-1 cells (1.5 x 105/ml) was added to PMA (25 ng/ml) with pre-warmed RPMI– 640 media 

containing 10% (v/v) heat-inactivated foetal calf serum and antibiotics (50UI, 50 µg 

streptomycin and 0.95 µg amphotericin/ml). The cell suspension (300 µl) (4.5 x 104)  of THP-

1 cells was placed in tissue culture-treated coverslips in 6-well tissue culture plates for 72 h 

with humidified air (95%) / 5% CO2 at 37oC After 72 h the cells were washed with PBS and 

rested in pre-warmed RPMI – 1640 for 48 h.  (coverslips were prepared as described in section 

2.11.1)  

 

Prior to treating cells, oxidised LDL was prepared by incubating (500 µg LDL protein/ml) with 

1 µM ferritin at 37˚C for 24 h NaCl/sodium acetate buffer (pH 4.5). LDL (500 µg protein/ml), 
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ferritin (1 µM) and buffer (equivalent volume), each in separate tubes were also incubated at 

37˚C for 24 h. 

 

The THP-1 cells on coverslips were then incubated with pre-warmed RPMI–1640 media alone 

(2 ml per well) or containing either NaCl/ sodium acetate buffer or LDL (50 µg protein/ml) or 

ferritin (0.2 µM) or oxidised LDL (50 µg protein/ml). After incubation for 24 h with humidified 

air (95%) / 5% CO2. The cells were washed twice with PBS and incubated with 10 µM 

dihydroethidium (DHE) in PBS (this working solution was prepared on the day of the 

experiment from 20mM (10 mg in 1585 µl DMSO). Placed in a non-CO2 incubator in the dark 

for 30 min. The cells were then washed twice with PBS and the cells were mounted with 

fluorescence mounting media containing DAPI. Images were captured using Axioimager. The 

intensity of the DHE stain was determined using ImageJ software 

 

2.13 Determination of the effect of oxidation of LDL by ferritin on cellular 

respiration/metabolism using a Seahorse analyser. 

The Seahorse XF analyser is an important tool in the measurement of cellular energy 

metabolism. The Seahorse can be used to determine the energy metabolism in live cells by 

monitoring the oxygen uptake and the pH in real time. 

 

THP-1 cells were differentiated in T25 flasks using PMA (25ng/ml) at 3 x 105 cells/ ml for 72 

h with humidified air (95%) / 5% CO2 at 37oC with pre-warmed RPMI – 1640 media containing 

10% (v/v) heat-inactivated foetal calf serum and antibiotics (50UI, 50 µg streptomycin and 

0.95 µg amphotericin/ml). After 72 h the cells were washed and rested in pre-warmed RPMI-
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1640 for 48 h prior to treatment with LDL. After a 24 h rest period, the cells were detached 

from the flask using Accutase and transferred to an Agilent Seahorse XFp cell culture mini 

plate to rest for another 24 h. The mini-plate has 8 wells labelled A to H. The wells A and H 

always served as blanks with no cells, just media, while wells 6 x 104 cells were plated in 200 

µl for wells B to G. 

 

On the day before the assay, the Agilent cartridge was hydrated with calibrant by adding 200 

µl calibrant in the wells A-H and 400 µl PBS into the moat on the side. The sensor cartridge 

was then placed on to the plate submerging the sensors in the calibrant and then incubated in a 

non CO2 incubator at 37˚C for 24 h. The cells in Agilent plate was treated as follow, 3 wells E, 

F and G were pre-treated with ferritin (0.2µM) for 24 h. After treatment with ferritin, the cells 

in position B got RPMI media only, C and D got native LDL (100 µg protein/ml), position E 

got only the pre-incubated ferritin while F and G got native LDL (100 µg protein/ml) in 

addition to pre-incubated ferritin. 

On the day of the assay, 10 ml of XF base media was prepared, glucose (10 mM), pyruvate (1 

mM) and Glutamine (2 mM) were added. The pH of the media was then adjusted to pH 7.4 and 

warmed up to 37˚C and filtered with a 0.2 µm Minisart filter. The cells in the Agilent mini 

plates were washed with XF base media freshly prepared by taking 180 µl of the RPMI-1640 

from treated cells and replacing it with180 µl XF base media. This step was repeated 2 times 

using XF base media and wells A to H were then made up to a final volume of 180 µl. The 

cells in the Agilent plate was then placed in the non-CO2 incubator at 37˚C for 1 hour.   
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The Agilent Seahorse XFp analyser was turned on to allow it warm up to 37˚C. A stressor mix 

was immediately prepared. This was prepared in accordance with Agilent Seahorse XFp cell 

energy phenotype kit. XF base media (120 µl) was added to 60 µl oligomycin (2 µM/well) and 

120 µl FCCP (2 µM/well). The calibrated cartridge was brought out of the incubator after 24 

h, 20 µl of the stressor mix was added to ports A of all the 8 positions of the hydrated cartridge 

(given 10 µM oligomycin and 20 µM FCCP in each of the port A).   The energy phenotype test 

was selected on the Seahorse XFp analyser. The number of cycles for base line and after 

oligomycin injection was set at five cycles each.  The cartridge plate already loaded with the 

stressor mix in each port A was then placed in the instrument for calibration. The calibration 

process takes approximately 20 minutes. The bottom plate of the cartridge was then replaced 

with the cells in the Agilent tissue culture plate that had stayed in the non CO2 incubator for 1 

h. The plate was placed without the lid. The energy phenotype test was then carried measuring 

the oxygen consumption rate (OCR) and the extracellular acid Rate (ECAR). 

 

2.14 Determination of apoptosis in macrophages treated with ferritin-

oxidised LDL 

Phosphatidylserine in healthy cells is mainly located on the cytosolic side of the plasma 

membrane. The externalisation of phosphatidylserine in cells to the surface of the cells is an 

early indication of apoptosis (Martin et al., 1995). Annexin V binds to externalised 

phosphatidylserine and fluorescent annexin V can be used to detect apoptotic cells. Apoptosis 

was measured using the commercially available kit (FITC Annexin V Apoptosis Detection Kit 

with PI, BioLegend, San Diego, CA, USA) and flow cytometry. The kit contains fluorescein 

isothiocyanate (FITC) - annexin V conjugate which can be used to identify apoptotic cells. 

Propidium Iodide (PI) was added to separate the necrotic cells from apoptotic cells. PI has the 
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capacity to enter cells and stain the DNA of cells undergoing necrosis. Cells that possess 

increased levels of PI labelling are necrotic, cells with increased levels of fluorescent annexin 

V labelling are apoptotic and cells having high levels of both annexin V and PI are going 

through secondary necrosis. 

 

Prior to treating cells, oxidised  LDL was prepared by incubating (1 mg LDL protein/ml) with 

2 µM ferritin at 37˚C for 24 h in NaCl/sodium acetate buffer (pH 4.5). LDL (1 mg protein/ml), 

ferritin (2 µM) and buffer (equivalent volume), each in separate tubes were also incubated at 

37˚C for 24 h.  

 

THP-1 cells were differentiated in 12-well tissue culture plates at 5 x 105 cells per well using 

PMA (25ng/ml) as described in section 2.7.1. After 72 h the cells were washed and rested in 

pre-warmed RPMI – 1640 for 48 h prior to treatment with LDL. The cells were then incubated 

with pre-warmed RPMI – 1640 media alone (2 ml per well) or containing either NaCl/sodium 

acetate buffer or LDL (100 µg protein/ml) or ferritin (0.2 µM) or oxidised LDL (100 µg 

protein/ml). After incubation for 48 h with humidified air (95%) / 5% CO2 at 37 oC, the medium 

was removed from the cells and kept for each well. To detach cells, Accutase (750 µl) was 

added and then placed in an incubator for 10 min. The removed media was then added 

accordingly to each well (750 µl). Each well was then collected into an Eppendorf tube and 

centrifuged at 100g for 5min. The pellet was washed twice with cell staining buffer. The cells 

were re-suspended in annexin V binding buffer (800 µl), then 250 µl was transferred to brown 

Eppendorf tube for protection from light. PI (2.5 µg) and (FITC)-annexin V (0.5 µg) was added 

and then incubated for 15 min at room temperature in the dark. The volume was made up to 

500 µl and analysed immediately using a Becton Dickinson FACScan flow cytometer (BD 

Biosciences C6 flow cytometer). The percentage of healthy cells, necrotic, apoptotic and 
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secondary necrotic cells was determined using the BD Biosciences C6 flow cytometer 

software. 

 

2.15 Statistical analysis 

The data are presented as the mean plus or minus standard error of the mean (SEM) of the 

number of independent experiments indicated. Data were statistically analysed using a 

Student’s paired t test, one way analysis of variance (ANOVA) followed by  Tukey’s post hoc 

test but when comparing multiple parameters, we made use of two-way ANOVA and a  

Bonferroni post hoc test to determine the significance of the criterion tested. GraphPad prism 

5 software was used for all statistical analysis carried out. For all hypothesis we tested, 0.05 

was considered as the significance level. Hence, a P value < 0.05 was considered a statistical 

significance. 
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Chapter 3 - Mechanisms of oxidation of LDL by ferritin at lysosomal pH 
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3.0 Background and rational 

Research over the last few decades has proposed oxidised LDL to be an important marker in 

the onset and progression of atherosclerosis. The Oxidised LDL hypothesis emphasised the 

fact that oxidative modification of LDL promotes its atherogenic nature.  Oxidised LDL 

instigates many pro-atherogenic effects ranging from induction of formation of lipid-laden 

macrophages (foam cells) to the promotion of inflammatory responses hence activating 

endothelial cells and promoting smooth cells proliferation. The mechanism by which LDL is 

oxidised in vivo, the site of oxidation and when LDL is oxidised is continuously deliberated 

amongst researchers (Itabe et al., 2011).  

Many mechanisms have been proposed for oxidation of LDL ranging from oxidation by cells, 

which are dependent on the availability of free metal ions to free metal ion–independent 

oxidation mediated by enzymes such as lipoxygenase and myeloperoxidase (Yoshida and 

Kisugi, 2010). The oxidation of LDL by free metal ions is the most studied model of LDL 

oxidation in vitro and the oxidation of LDL by cells of the arterial walls indeed requires the 

presence of certain concentrations of copper or iron (Leake and Rankin, 1990, Leeuwenburgh 

et al., 1997). Transition metal ions have been confirmed to catalyse the oxidation of DNA, 

protein, and lipids. Increased levels of transition metals have also been found in animal models 

and human atherosclerotic plaques (Stadler et al., 2004, Stanley et al., 2006). Hence, this 

supports the suggestion that metal ions contribute to the onset and progression of 

atherosclerosis.  

The iron hypothesis of atherosclerosis proposed that men and post-menopausal women are 

more susceptible to heart diseases due to elevated levels of body iron compared to 

premenopausal women with lower levels of stored iron as a result of monthly bleeding 

(Sullivan, 1981). Over the last three decades, several researchers have measured the correlation 



100 

 

between iron levels in the body and atherosclerosis. Despite the continuous research in this 

field, this hypothesis is continuously debated and remains controversial (Munoz-Bravo et al., 

2013, Aursulesei et al., 2014). Sullivan, however, subsequently argued that this gender 

difference in the incidence of heart diseases is linked to body iron stores and not the oestrogen 

levels (Sullivan, 1989, Sullivan, 1992, Sullivan, 2003, sullivan, 2005, Sullivan, 2007). Further 

to this other studies have demonstrated an association between iron deposition and the 

progression of atherosclerosis (Lee et al., 1998, Stadler et al., 2004). 

Iron is important in maintaining the integrity of cells and its function by mediating various 

metabolic systems through enzymes that are dependent on iron. Approximately all iron in the 

human body is bound to molecules. The existence of iron in bound form is highly advantageous 

to the body, as iron is capable of participating in redox reactions that are harmful to the body. 

It has the ability to exist in several oxidation states ranging from Fe2+ to Fe6+. However, the 

transfer of one electron between ferric ion (Fe3+) and ferrous iron (Fe2+) has been implicated in 

iron–dependent free radical reactions, which have been linked to cell injury and several 

pathophysiological reactions (Ramakrishna et al., 2003, Yuan and Li, 2008). 

The redox-active iron pool, also referred to as labile iron pool (LIP), is present in small amounts 

in cells but it is an important part of certain metabolic pathways and Fenton reaction which 

may contribute to lipid peroxidation and pathological process.  The LIP is not only found in 

the cytosol but also present in the nucleus, mitochondria and lysosomes (Kruszewski, 2003, Lv 

and Shang, 2018). Lysosomes possess a higher concentration of the LIP, as it was discovered 

to be about 16 µM in endothelial cells of rat liver (Petrat et al., 2001). LIP has been connected 

to atherogenesis in several studies.  The iron storing and regulatory proteins such as transferrin, 

ferritin and hepcidin have been associated with atherosclerosis (Yuan and Li, 2008).   
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Human atherosclerotic lesions have been shown to contain ferritin and lysosomal iron in the 

lipid laden cells present at this site (Yuan et al., 1996, Lee et al., 1998, Yuan, 1999). Lysosomes 

are one of the few sites in the body where redox-active iron is present; the source of iron in 

lysosomes could be from the decomposition of endocytosed or autophagocytosed iron 

containing proteins such as ferritin or mitochondrial metalloproteins. The iron present in these 

molecules can be released by the iron transporter DMT1 (Kurz et al., 2007, Lv and Shang, 

2018). Ferritin as a protein plays a key role in the storage of iron in the body. In recent times 

ferritin is now becoming an evidently important factor in the development of iron storage and 

transport diseases, cancer, diabetes, neuropsychiatric disorders and atherosclerosis (Goswami 

et al., 2008).  

The ferritin molecule is the main protein for the intracellular storage of iron present in almost 

all organisms. The hollow protein weighs about 500 kDa and contains 24 polypeptide chains 

made up of the light (L) subunits and heavy (H) subunits with molecular weights of 19kDa and 

21kDa, respectively, with capacity for storing up to 4500 iron atoms. The ratio of these two 

species varies in different tissues, however, ferritin rich in L subunits is mainly found in 

pancreas, the heart, the liver and spleen (Bomford et al., 1981, Rucker et al., 1996, Goswami 

et al., 2008, Arosio et al., 2017). Although there are conflicting data from epidemiological 

studies on the role of ferritin in CVD, some studies have ascertained the association between 

serum ferritin levels and increased susceptibility to myocardial infarction and coronary artery 

diseases (Salonen et al., 1992, Kiechl et al., 1994, Olesnevich et al., 2012). 

Iron regulatory/binding proteins such as ferritin and hepcidin have been linked to the 

inflammatory response induced pathogenesis of atherosclerosis (Yuan and Li, 2008).  Deposits 

of cholesterol crystals derived from LDL oxidation in lysosomes have been demonstrated to 

activate NLRP3 inflammasome and lead to these organelles rupturing in macrophages, hence 
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contributing to the destabilisation of lysosomes and promoting atherosclerosis (Duewell et al., 

2010). Our laboratory demonstrated and identified lysosomes in macrophages as a site for the 

oxidation of LDL and this is mainly mediated by iron (Wen and Leake, 2007). Oxidation of 

polyunsaturated fatty acids and cholesterol in low density lipoprotein gives rise to fatty acid 

hydroperoxides and derivatives of oxidised cholesterol. Cholesteryl esters and cholesterol are 

the major lipids in LDL particle. The core containing cholesteryl esters is fluid while the outer 

monolayer containing cholesterol is more rigid and this might help to explain why the 

formation of cholesteryl ester hydroperoxide is more rapid compared to phospholipid 

hydroperoxide in the outer monolayer (Noguchi et al., 1998).  

 Decomposition of the hydroperoxides leads to the formation of aldehydes, apart from PUFA 

and cholesterol content of LDL the apoB content can also be chemically modified (Thomas et 

al., 1994).  The oxidation products and quantity obtained depends on the conditions used for 

oxidation. Oxidation by copper leads to fragmentation of apoB, loss of amino acids from apoB, 

generation of lipid hydroperoxides and aldehydes (Steinberg et al., 1989, Esterbauer et al., 

1992). Oxidation by iron at lysosomal pH leads to formation of the oxidised product of 

cholesterol and hydroperoxides (Satchell and Leake, 2012, Ahmad, 2016) and loss of 

tryptophan from apoB (Ahmad, 2016, Ahmad and Leake, 2018). In vitro oxidation of LDL can 

be catalysed by iron and this oxidation has been proven to be much faster at acidic pH similar 

to the pH of lysosomes. The mechanisms by which iron contributes to LDL oxidation in 

lysosomes and at lysosomal pH has been previously explored in our laboratory (Morgan and 

Leake, 1993, Morgan and Leake, 1995, Wen and Leake, 2007, Satchell and Leake, 2012, 

Ahmad and Leake, 2018) 
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We have now postulated that ferritin could substitute for iron and oxidise LDL at lysosomal 

pH. This chapter aims to explore the mechanisms of LDL oxidation by ferritin at lysosomal pH 

while addressing the following objectives. 

 

3.1 Objectives 

 i) To investigate the effect of ferritin on LDL oxidation at lysosomal pH (pH 4.5), compare 

the oxidation of LDL at pH 4.5 to pH 7.4 and to evaluate the effect of pH changes on LDL 

oxidation by ferritin. 

ii) To investigate the possibility of ferritin as a source redox- iron at lysosomal pH 4.5 

iii) To determine the effects of iron released from ferritin on oxidation of LDL by ferritin by 

testing the effects of iron chelators on this oxidation. 

v) To explore the effect of apoferritin, the protein component of ferritin, on LDL oxidation at 

lysosomal pH. 

Vii) To characterise the oxidised products of LDL oxidation by ferritin at lysosomal pH. 

 

3.2 Methods 

LDL was isolated as described in sections 2.2.1 and 2.2. Formation of conjugated dienes, 

kinetics of oxidation of LDL oxidation by ferritin and aggregation of LDL by ferritin was 

measured as described in (sections 2.3, 2.3.1, and 2.3.2). The amount of iron in ferritin and 

apoferritin was measured by AAS (section 2.3.2). Iron released from ferritin at varying pH was 

measured using the iron chelator bathophenanthroline disulphonic acid and by ultrafiltration 

followed by AAS (sections 2.3.4 and 2.3.5, respectively). Effect of iron chelators was also 

determined spectrometrically, as described in section 2.3.6. The formation of oxidised lipids, 
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mainly 7-ketocholesterol and cholesteryl linoleate hydroperoxide, in LDL oxidised by ferritin 

was measured by HPLC as described in sections 2.4,  2.4.1, 2.4.2, 2.4.3 and 2.4.3.1. The total 

hydroperoxides in the oxidised LDL were also measured colourimetrically using the tri-iodide 

assay (section 2.5). 

3.3 Results 

3.3.1 Spectrophotometric measurement of LDL oxidation by ferritin at lysosomal pH  

In order to confirm the ability of ferritin to oxidize LDL at lysosomal pH, LDL (50µg 

protein/ml) was oxidised in NaCl/sodium acetate buffer (pH 4.5) at 37 oC with varying 

concentrations of ferritin (0.05 µM, 0.1 µM and 0.2 µM). We monitored the kinetics of 

oxidation by measuring the formation of conjugated dienes at 234 nm. 

 

All concentrations of ferritin (0.05 µM - 0.2 µM), used in this experiment oxidised LDL 

effectively (Fig 3.1A). The kinetics of oxidation was somewhat similar to what was previously 

observed for ferrous iron at pH 4.5 (lag, rapid, slow oxidation, aggregation and sedimentation 

phases) (Satchell, 2008). The lag phase of oxidation was not as pronounced in LDL oxidised 

by ferritin and was sometimes not present. The conjugated diene formation began at an almost 

constant rate for the three concentrations of ferritin. The slow phase was observed at the three 

concentrations, but this was observed more at 0.1µM and very little or no slow phase was seen 

at 0.2 µM. At the highest concentration of ferritin, (0.2 µM) aggregation (when the aggregated 

LDL scatters UV radiation) began as early as the first 300 minutes and the LDL began to 

sediment below the beam of UV in the spectrophotometer at about 580 minutes, while the 

presence of 0.1 µM and 0.05 µM caused aggregation later.  

 

The attenuance at 200 min was compared with the control and to each other (Figure 3.1B). 

Statistical analysis showed the control (LDL only) was significantly different (p<0.001) as 



105 

 

compared to the addition of the three concentrations of ferritin (0.05 µM, 0.1 µM, and 0.2 µM). 

The attenuance at 200 min was used for statistical analysis because at this time the LDL is in 

the middle of the oxidation phase and not yet in the aggregation phase. This time point should 

be accurate because there is quite a lot of attenuance but this is a long way from the aggregation 

phase as shown by fig. 3.2 and by previous research (Satchell and Leake, 2012). The maximum 

attenuance in experiments was not measured because at the stage there would be a “race” 

between aggregation and sedimentation of the LDL particles. The lag phases were also not 

considered, as this would be shortened by storage of the stock LDL at 4 oC. This present study 

was focused on the events at the oxidation phase, however, measuring for a longer time gives 

a picture of the events in the aggregation phase as this might provide evidence for further 

research.  
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Figure 3.1:  The oxidation of LDL by different concentrations of ferritin                              

 

LDL (50µg protein/ml) in NaCl/ sodium acetate buffer (pH 4.5) was incubated in the absence (red 

line) or presence of varying concentrations of ferritin, 0.05 µM (yellow line), 0.1 µM (green line) 

and 0.2 µM (black line) at 37oC in capped cuvettes. The formation of conjugated dienes was 

monitored by measuring attenuance at 234 nm against appropriate reference cuvettes that lacked 

LDL (A). This is a representative of three independent experiments. The increase in attenuance 

at 200 min in the presence or absence of ferritin in four independent experiments.  Mean 

and SEM were obtained for each concentration and compared to control (n=4).  The 

means were compared with one-way ANOVA followed by a post hoc Tukey test (P < 

0.001) (B).  

 

B 

A 
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3.3.2 Measurement of LDL aggregation during oxidation by ferritin  

 Aggregation of LDL has been shown to occur alongside its oxidation and also enhance its 

formation of lipid-laden macrophages (Maor et al., 1997). It was of interest to investigate 

whether the oxidation of LDL by ferritin leads to its aggregation. To test the effect of ferritin 

on LDL aggregation. LDL (50µg protein/ml) and ferritin (0.1 µM) was incubated in 

NaCl/sodium acetate buffer (pH 4.5) at 37oC in the presence or absence of each other. The 

aggregation was then continuously measured at 680 nm. The extent of LDL oxidation by 

ferritin was directly correlated with its rate of aggregation while the LDL and ferritin on their 

own were not aggregated 

 

The increase in attenuance at 800 min, a time at which LDL was expected to have been fully 

oxidised, was compared and there was a significant difference when LDL was incubated with 

ferritin (P<0.001). There was very little aggregation during the oxidation phases. 
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Figure 3.2: Effect of LDL oxidation by ferritin on LDL aggregation 

Native LDL (50µg protein/ml), ferritin only (0.1 µM) and LDL (50µg protein/ml) 

plus ferritin (0.1 µM) was incubated in NaCl/sodium acetate buffer (pH 4.5) at 37
o
C 

in capped cuvettes (A), the aggregation of samples was monitored by measuring 

attenuance at 680 nm against appropriate reference. This is a representative of three 

independent experiments. The means were compared with one-way ANOVA 

followed by a post hoc Tukey test (P < 0.0001). Attenuance at 800 min was 

significantly higher at in oxidised LDL compared to control (B). 

 

 

 

 

A 
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3.3.3 Comparison of oxidation of LDL by Ferritin at pH 4.5 and pH 7.4 

The effect of pH on the ability of ferritin to oxidise LDL was tested. LDL (50µg protein/ml) 

was incubated with 0.1 and 0.2 µM ferritin at pH 7.4 (MOPS buffer) was compared to pH 4.5 

(NaCl/sodium acetate buffer) (Fig 3. 3). The formation of conjugated dienes was monitored 

continuously. The result showed that the oxidation of LDL by ferritin is slower at pH 7.4 for 

both concentrations as compared to pH 4.5 where LDL was effectively oxidised. The rate of 

oxidation observed at both pH values was similar to that of the oxidation of LDL by ferrous 

sulphate described  by Satchell and Leake (Satchell and Leake, 2012): unlike the rapid 

oxidation observed at pH 4.5, the oxidation at pH 7.4 only rose to attenuance of about 0.2 

throughout the course of the experiment.  The increase in attenuance at 200 min was compared 

for each concentration (0.1 and 0.2 µM) at the different pH (4.5 and 7.4) (Fig 3.3B). The 

statistical analysis of both concentrations showed a significant difference between incubation 

with ferritin at pH 4.5 and pH 7.4. The attenuance was higher at 0.2 µM showing that the effect 

was also concentration dependent. 
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Figure 3.3:  Comparison of oxidation of LDL by ferritin at pH 4.5 and pH 7.4  

LDL (50µg protein/ml) was incubated with 0.1 µM or 0.2µM in NaCl/sodium acetate buffer 

(pH 4.5) and MOPS buffer (pH 7.4) at 37
o
C in capped cuvettes (A), the formation of 

conjugated diene was monitored by measuring attenuance at 234 nm against appropriate 

reference cuvettes that lacked LDL. This is a representative of three independent 

experiments. The means were compared with two-way ANOVA followed by Bonferroni 

post-tests (P < 0.0001). Attenuance at 200 min at pH 4.5 was compared to pH 7.4 (B). 
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3.3.4 Determination of the quantity of iron contained in ferritin. 

Ferritin has the capacity to bind up to 4500 atoms of iron per particle. In order to determine the 

level of saturation of the horse spleen ferritin used, the amount of iron present was estimated 

using FAAS at 248.3nm. The concentration of iron was obtained in comparison with known 

standards of iron (Fe3+). Iron concentration in ferritin was estimated from the linear trendline 

of the standard plot (Fig 3.4). Ferritin particles were estimated to contain 1001 atoms of Fe 

/particles. (The molecular weight of ferritin obtained from Sigma is 440kDa.) The amount of 

iron contained in ferritin concentrations (0.05, 0.1, and 0.2 µM) added was estimated to be 50 

µM, 100 µM and 200 µM (see appendix 2 for calculation of iron concentration).  
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Figure 3.4: Standard plot of iron determination in ferritin assay by atomic absorption 

spectroscopy   

The blue line represents the standard plots obtained from the standards 0-5mg/L. The black 

line represents the trendline for the equation used to extrapolate the quantity of ferritin. 
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3.3.5 Measurement of iron released from ferritin at pH 4.5 versus pH 7.4 using the iron 

chelator bathophenanthroline (BP)  

To examine whether more iron released from ferritin at acidic pH was responsible for the faster 

oxidation observed at pH 4.5 compared to pH 7.4, we measured the amount of iron released at 

lysosomal pH was compared to what was released at interstitial or plasma. Ferritin (0.1 µM) 

was incubated at 37 ˚C in NaCl/sodium acetate buffer (pH 4.5) or MOPS buffer (pH 7.4) in 15 

ml tubes, in triplicate. Bathophenanthroline (BP) (30 µl of 10 mM) was added at different time 

points (up to 24 h). Absorbance was measured at 535 nm (Figure 3.5). The amount of ferrous 

complex released was higher at pH 4.5 compared to pH 7.4 at all the time points that are taken. 

At 0 hr, more ferrous complex was detected at pH 4.5 (5.49 ± 0.17µM) compared to 0.68 ± 

0.07 µM at pH 7.4.  The initial rapid release is either due to iron that had already come out of 

ferritin during its storage or to iron still inside the ferritin which BP was able to bind. Over 

time, the concentration increased to about 15.1 ± 0.1 µM and 1.32 ± 0.1 µ M respectively.  
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Figure 3.5: Ferrous complex formation at pH 7.4 and pH 4.5 

Ferritin (0.1 µM) was incubated at 37˚C in NaCl/Na acetate buffer (pH 4.5) or 

MOPS buffer (pH 7.4) in 15ml tubes, in triplicate. One millilitre was taken out and 

BP was added at different time points (0, 1.5, 3, 6, and 24hrs), left for 5mins and 

absorbance was measured at 535nm. Mean ± SEM of iron concentration released at 

pH4.5 was compared to pH 7.4 with two-way ANOVA followed by Bonferroni post 

tests. *** indicates P <0.001.  
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3.3.6 Ultrafiltration method for determination of iron released 

In order to confirm the iron released from ferritin was not due to the effect of the iron chelator 

BP, a confirmatory experiment was carried out by the method previously used to determine the 

amount of iron released from transferrin (Lamb and Leake, 1994). Ferritin (0.1 µM) was 

incubated at 37 ˚C in NaCl/sodium acetate buffer (pH 4.5) or MOPS buffer (pH 7.4) for 24hrs, 

then filtered with 30,000Mr cut off microcentrifuge filter tubes and then assayed for iron using 

AAS. The amount of iron was determined from the standard plot of iron was 12. ± 2.3 µM at 

pH 4.5 as compared to 3.29 ± 0.67 µM released at pH7.4 (Fig 3.6).  

 

Although the AAS measured total iron concentration while the iron chelator measured ferrous 

iron, it was suspected that the lower concentration observed with AAS might be as a result of 

some of the iron retained in the microcentrifuge. The iron released, as measured AAS after 24 

h incubation and ultrafiltration were also significantly higher at pH 4.5 (P < 0.05). 
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Figure 3.6: Iron released from ferritin at pH 4.5 measured by ultrafiltration 

and AAS 

 

Iron released from 0.1 µM ferritin incubated in pH 4.5 and pH 7.4 is shown.  Mean 

and SEM were obtained for each pH. A paired student’s t-test comparism (n=3) 

showed there was a significant difference (P< 0.05). 

 

 



117 

 

3.3.6 Effect of iron chelators on LDL oxidation by ferritin at pH 4.5 

In order to assess whether iron released by ferritin contributed to LDL oxidation by ferritin, we 

tested the effects of the iron chelators DTPA and EDTA on the formation of lipid peroxidation 

products (conjugated dienes).  LDL (50µg LDL protein/ml) was oxidised with 0.1µM ferritin 

in NaCl/sodium acetate buffer (pH 4.5) in the presence or absence of EDTA or DTPA (100 

µM) (Fig.  3.6). Formation of conjugated dienes was monitored. It was expected that the 

presence of iron chelators would inhibit entirely the oxidation of LDL at all time points as it 

did with ferrous iron (Satchell and Leake, 2012). The presence of iron chelators did not 

completely inhibit the initial oxidation of LDL by ferritin but only appeared to reduce the 

formation of conjugated dienes at a later stage.  

  

The attenuance at 200 min was compared for control oxidised LDL and LDL oxidised by 

ferritin in the presence of EDTA and DTPA using one-way ANOVA followed by Tukey post 

hoc test. The oxidation of LDL by ferritin in the presence of iron chelators were statistically 

different from the control. 
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Figure 3.6: Effects of EDTA and DTPA on oxidation of LDL by ferritin at 

lysosomal pH 

LDL (50µg protein/ml) was oxidized with ferritin (0.1µM) in NaCl/sodium acetate buffer 

(pH 4.5) at 37 oC in the absence (red line) or presence of iron chelators, 100 µM EDTA 

(black line) and 100 µM DTPA (green line). The formation of conjugated dienes was 

monitored by measuring attenuance at 234 nm against appropriate reference cuvettes that 

lacked LDL. This is a representative of three independent experiments (A).  Mean and 

SEM of increase in attenuance at 200 min in the presence or absence of iron chelators 

were obtained for each concentration and compared to control with one-way ANOVA 

(n=3) followed by a post hoc Tukey test. *** indicates P < 0.001 (B).  
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3.3.7 Oxidation of LDL in the presence of apoferritin at lysosomal pH 

The effect of Apoferritin, the protein component of the iron storage protein ferritin, on LDL 

oxidation at lysosomal pH was explored. LDL (50µg protein/ml) was oxidised in NaCl/sodium 

acetate buffer (pH 4.5) at 37oC with varying concentrations of apoferritin (0.05 µM, 0.1 µM 

and 0.2 µM). The course of oxidation was monitored by measuring the formation of conjugated 

dienes at 234 nm (Fig 3.7). There was little or no oxidation of LDL in the presence of 0.05 µM 

apoferritin. At 0.1 µM, there was a slow increase of attenuance, but the kinetics of oxidation 

were somewhat different from what was observed with ferritin. At 0.2 µM, the kinetics were 

somewhat similar to what was described for FeS04 at pH 4.5 (lag, rapid, slow oxidation and 

aggregation phases). 

 

The increase in attenuance at 200 min was compared (Fig 3.7B). Statistical analysis showed 

the control (LDL only) was not significantly different as compared to 0.05 µM and 0.1 µM but 

significantly different from 0.2 µM apoferritin. Due to the effect observed at higher 

concentrations of apoferritin we thought it would be necessary to quantify the amount of 

residual iron present in apoferritin. The amount of iron was determined by AAS (assuming a 

Mr of 443,000) and was 17 atoms of Fe per apoferritin particle which is only 1.7% of the total 

Fe per ferritin particle. 
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Figure 3.7: Oxidation of LDL by apoferritin at lysosomal pH 

LDL (50µg protein/ml) in NaCl/sodium acetate buffer (pH 4.5) was incubated in the 

absence (red line) or presence of varying concentrations of apoferritin, 0.05 µM ( green 

line), 0.1 µM (blue line) and 0.2 µM (orange line) at 37 oC in capped cuvettes. The 

formation of conjugated diene was monitored by measuring attenuance at 234 nm against 

appropriate reference cuvettes that lacked LDL. This is a representative of three 

independent experiments (A). The mean and SEM of attenuance at 200 min were obtained 

for each concentration and compared (n=3) by one-way ANOVA followed by a Tukey post 

hoc test. Increase in attenuance for 0.2 µM was compared control. ** indicates P<0.01(B). 
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3.3.8 Formation of oxidised lipids by LDL oxidised by ferritin at lysosomal pH 

In order to confirm the atherogenic nature of LDL oxidised by ferritin, it was necessary to 

determine the formation of oxidised lipid products after LDL (50µg protein/ml) has been 

incubated in the presence or absence of ferritin (0.1µM) in NaCl/sodium acetate buffer (pH 

4.5) at 37oC. The oxidised lipids present mainly 7-ketocholesterol and cholesteryl linoleate 

hydroperoxides were measured by reverse HPLC. The total hydroperoxides formed were 

measured by a tri-iodide assay. These parameters were measured after the reaction was stopped 

at varying time points up to 48 h using EDTA and BHT. Longer time points were taken for 

measurement of oxidised lipids due to the much slower formation of 7-ketocholesterol 

compared to hydroperoxides formed as shown by this present study and other previous research 

from our group (Satchell, 2012, Ahmad, 2018).  

  

The levels of 7-ketocholesterol and cholesteryl linoleate hydroperoxide (CLOOH) increased in 

the presence of ferritin while very little or none was formed in the control LDL. After 48 h of 

incubation, 7-ketocholesterol increased from 0 to 3.9 ± 1.0 nmol/mg of LDL protein; however, 

the 7-ketocholesterol formed was highest at 12 h with the value 4.0 ± 2.2 nmol/mg of LDL 

protein. The level of CLOOH formed in LDL oxidised by ferritin increased to 237 ± 118 

nmol/mg of LDL protein and none was observed in control LDL at all time points. Total 

hydroperoxide formed increased with time in the presence of ferritin up to 1513 ± 204 nmol/mg 

of LDL protein. The comparison between native LDL only and LDL plus ferritin were 

determined by two-way ANOVA followed by Bonferroni’s post-test. 
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Figure 3.8: Oxidised lipids formed from oxidation of LDL by ferritin at pH 4.5 

LDL (50 µg protein/ml) was incubated in the presence or absence of ferritin (0.1 µM) in sodium acetate 

buffer (pH 4.5) at 37 oC. At varying time points up to 48 h, the oxidation was stopped by addition of 

EDTA (4 mM) and BHT (80 µM). The samples were analysed for (A) 7-ketocholesterol or (B) 

cholesteryl linoleate hydroperoxide (CLOOH) by reverse-phase HPLC. Graphs are representative of 

three independent experiments. Difference between control LDL and LDL oxidised by ferritin at each 

time point were determined by two-way ANOVA followed by Bonferroni’s post-test ( * indicates p < 

0.05. ** indicates P < 0.01. 
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Figure 3.9: Total hydroperoxides formed by LDL oxidised by ferritin at pH 4.5  

LDL (50µg protein/ml) was incubated in the presence or absence of ferritin (0.1µM) in sodium acetate 

buffer (pH 4.5) at 37oC. At varying time points up to 48 h, the oxidation was stopped by addition of 

EDTA (4mM) and BHT (80 µM). The samples were then analysed for total hydroperoxides by a tri-

iodide assay. The graph represents three independent experiments. Differences between control LDL 

and LDL oxidised by ferritin at each time point were determined by two-way ANOVA followed by 

Bonferroni post-tests. ** indicates P<0.01,*** indicates p<0.001. 
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3.4  Discussion  

The mechanisms by which LDL is oxidised by iron in the lysosomes is still in its infancy (Wen 

and Leake, 2007). Upregulation of synthesis of the H and L subunits of ferritin was found in 

macrophages and endothelial cells of atherosclerotic lesions (Pang et al., 1996, You et al., 

2003). The presence of redox-active iron in lysosomes has been previously demonstrated in 

some studies (Yuan et al., 1996, Petrat et al., 2001) and this has been associated with ferritin 

degradation (Sibille et al., 1989, Radisky and Kaplan, 1998, Yu et al., 2003, Lv and Shang, 

2018). Increased levels of iron (Casey et al., 1988) and cytokines (Miller et al., 1991) are 

present in atherosclerotic lesions and both of this can upregulate the synthesis of ferritin.  There 

are however suggestions that iron containing proteins might have a role to play as a source of 

iron in lysosomal oxidation (Leake, 1997, Satchell, 2008).  

 

In this present study, it was demonstrated that ferritin can catalyse the oxidation of LDL at pH 

4.5 which is an approximate pH of lysosomes. All concentrations of ferritin used (0.05 µM, 0.1 

µM and 0.2 µM) were effective in oxidising LDL. The kinetics of oxidation by ferritin, 

however, differs from that of ferrous sulphate or ferric chloride earlier described (Satchell and 

Leake, 2012) as the lag phase was often times not observed at the early stage of oxidation by 

ferritin.  However, the aggregation and sedimentation phases were also observed. As earlier 

discussed by Satchell and Leake, aggregation of LDL at acidic pH might occur as a result of 

the presence of net positive charge and repels each other at pH4.5, oxidation of LDL might 

reduce the net positive charge and leads to aggregation of LDL particles (Satchell and Leake, 

2012).   

 

Aggregation of LDL occurring alongside its oxidation and often times promotes its pro-

atherogenic effects (Maor et al., 1997, Jayaraman et al., 2011). Our data in the present study 
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show that LDL oxidised by ferritin aggregates at lysosomal pH, which further implies that LDL 

oxidation by ferritin may promote fusion or binding together of these particles and enhance its 

atherogenic effects.  

 

 A previous study by Kidane and his colleagues has demonstrated that the acidity of lysosomes 

and the activity of proteases are necessary for the release of iron from ferritin (Kidane et al., 

2006). Although proteases would not have been present in our system, the increased oxidation 

by ferritin at lysosomal pH might be due to this pH enhancing the release of iron from the core 

of ferritin. Previous work from our laboratory has shown the release of iron from other iron 

binding proteins such as transferrin increased oxidation of LDL (Lamb and Leake, 1994c). It 

was thought that iron released from ferritin at this pH might be responsible for the higher 

oxidative effect observed at lysosomal pH (pH 4.5) compared to normal interstitial fluid or 

plasma (pH 7.4). 

 

 In this present study the oxidation of LDL in the presence of 0.1 µM and 0.2 µM ferritin was 

faster at the pH approximately similar to that of lysosomes pH 4.5, Fully saturated ferritin has 

the capacity to store up to 4500 atoms of iron. The determination of the amount of iron showed 

that ferritin from equine spleen used in this experiment contained about 1001 atoms of iron 

hence (0.05 µM, 0.1 µM and 0.2 µM) used in this present study contained 50 µM, 100 µM and 

200 µM of iron respectively (Section 3.3.4). The presence of 5 µM ferrous sulphate has been 

shown to catalyse the oxidation of LDL and oxidation of LDL by iron was previously 

demonstrated to be much slower at pH 7.4, the pH of normal interstitial fluid or plasma 

compared to acidic pH (Wen and Leake, 2007, Satchell and Leake, 2012). The link between 

rapid oxidation at lysosomal pH and the release of iron at this pH was investigated by 

measuring the amount of ferrous iron (Fe2+) that could be released at lysosomal pH (pH 4.5) 
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compared to normal interstitial fluid or plasma (pH 7.4). The levels of ferrous complex formed 

were significantly higher at lysosomal pH at all-time points as measured using the iron chelator 

bathophenathroline (BP). This iron chelator does not detect ferric iron (Fe3+), but only measures 

ferrous iron (Fe2+) (Lynch and Frei, 1995).   It should be noted that ferritin was incubated in 

the absence of BP and samples were taken at various times and BP added to them and the 

absorbance quickly measured. The iron chelator was therefore not binding iron and 

sequestering it out of the ferritin during the 24 h incubation. About 5% of the iron contained in 

ferritin was released at lysosomal pH at 0 h compared to 0.7% released at pH 7.4. The 

immediate formation of ferrous complex may be due to loosely bound iron present in the 

ferritin core which had been released during the storage of the ferritin or iron still associated 

with the ferritin particles but loosely bound which the iron chelator BP might be able to quickly 

complex with. It is unclear why more iron is released at acidic pH, but it might be speculated 

that this is due to the solubility of iron at acidic pH and the fact that acidic pH might enhance 

the opening of the pores of ferritin through which iron can be released (Jin et al., 2001). The 

amino acids present in the pores of ferritin are highly conserved to tightly regulate the opening 

and closing of the pores. The localised unfolding of these sites can increase the amount of iron 

that exits the pores (Takagi et al., 1998). 

 

An iron chelator independent technique (ultrafiltration followed by AAS) also revealed that 

more iron was released from ferritin at lysosomal pH as this was significantly higher compared 

to pH 7.4. The form of the oxidation state of iron in lysosomes has been previously debated 

(Collins et al., 1991) and some researchers have argued that both forms ferric  (Fe3+)  and 

ferrous  (Fe2+) might be present (Meguro et al., 2005). However,  a study by Terman and Kurz 

(Terman and Kurz, 2013) suggested that the ferrous form (Fe2+) might be favoured in lysosomal 
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conditions.  We have shown in this present study that ferrous iron is spontaneously released 

from ferritin at acidic pH, a similar condition to lysosomal conditions. 

 

 EDTA has a good chelating capacity for iron (Rizvi et al., 2011). DTPA has the capacity to 

bind all the coordination sites of both ferric and ferrous iron and has a much higher binding 

affinity for iron than does EDTA (Tang et al., 1997), hence it might be able to inhibit iron-

mediated lipid peroxidation. The deleterious effect of lysosomal iron can be prevented by iron 

chelators present within lysosomes or entering the lysosomes through endocytosis, autophagy 

or permeating the membrane (Terman and Kurz, 2013). Wen and Leake also demonstrated the 

importance of iron in the lysosomal oxidation in macrophages, as LDL oxidation was inhibited 

in cells by desferrioxamine (an iron chelator) (Wen and Leake, 2007). Addition of iron 

chelators EDTA and DTPA showed inhibition of LDL oxidation by ferritin. It was expected 

that DTPA would prevent the formation of conjugated dienes completely as previously 

observed with ferrous iron (Satchell and Leake, 2012) but this was not the case for either DTPA 

or EDTA.  It is proposed that, as well as iron release from the ferritin core, there might be 

formation of reactive oxygen species in the ferritin particles which can contribute to oxidation 

of LDL by ferritin. The nature of these reactive oxygen species and the mechanism of their 

formation requires a lot more research. 

 

Ferrous iron released from ferritin might generate superoxide radical (O2
.-) (eqn 1) by reacting 

with molecular oxygen. The superoxide radical (O2
.-) produced can be protonated at acidic pH 

to form the hydroperoxyl radical (HO2
.) (eqn 2). Hydroperoxyl radicals are much more reactive 

than superoxide radicals in oxidising LDL (Bedwell et al., 1989). They are also less hydrophilic 

and might enter the LDL particles and abstract hydrogen atoms from bisallylic methylene 

groups in lipids of LDL (eqn 3 and 4). 
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Fe2+ + O2  → Fe3+ + O2
.-        eqn 1  

O2
.- + H+

  → HO2
.        pKa  4.8 eqn 2 

HO2
. + LH → H2O2 + L.   eqn 3 

L. + O2 → LOO.    eqn 4 

Apoferritin, the protein component of ferritin, oxidised LDL at a concentration of 0.2 µM but 

there was no significant difference at 0.1µM and 0.05 µM.  The kinetics of oxidation were 

different from what was observed with ferritin. The formation of conjugated dienes was 

prolonged at the highest concentration. It is unclear what was responsible for this observation. 

A lag phase characteristic of FeSO4 oxidation was observed although the kinetics of oxidation 

was not what was observed with FeSO4. Quantification of residual iron contained in apoferritin 

revealed the presence of  3.4 µM iron in 0.2 µM. Ferrous or ferric iron at 3.4 µM would give 

faster oxidation of LDL (Satchell and Leake, 2012) than that shown by apoferritin (0.2 μM), 

suggesting that not all iron present in apoferritin was catalytically active. 

 

Cholesterol oxidation products oxysterols (27-carbon products) have been demonstrated to 

possess several biological activities that can lead to initiation and progression of atherosclerosis 

(Brown and Jessup, 1999). 7-keto cholesterol is the main oxysterol found in atherosclerotic 

lesion (Lyons and Brown, 1999).  The animal study by Lyons and Brown (1999) reported that 

7-ketocholesterol is more atherogenic compared to cholesterol. It is cytotoxic and can induce 

apoptotic vascular cells (Lyons and Brown, 1999).  Cholesteryl linoleate is found in abundance 

in LDL and quantification of its hydroperoxide is a good indicator of LDL oxidation. This 

present study indicated that 7-keto cholesterol, cholesteryl linoleate and total hydroperoxides 

were generated in LDL oxidised by ferritin. The high levels of these products may promote 

atherogenic properties to the oxidised LDL. Previously reported levels of lipid hydroperoxides 

formed by ferrous iron oxidised tend to decrease slowly between 24 h and 48 (Satchell and 
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Leake, 2012) but this was not the case for LDL oxidised by ferritin. The reason for this 

difference is unclear. Total lipid hydroperoxides continued to increase after 24 h, whereas 

CLOOH did not either because phospholipids oxidised later than CL or because CLOOH 

became oxidised further and eluted from the HPLC column at a different time and were not 

detected. 

 

Work presented in this chapter indicates that ferritin could oxidise LDL at lysosomal pH. This 

oxidation was mediated mainly by redox-active iron, as iron was released from ferritin at acidic 

pH and iron chelators slowed down this oxidation. The fact that LDL oxidised by ferritin 

aggregates suggest that it may enhance lipid accumulation in macrophage lysosomes and 

promote lysosomal engorgement which may lead to lysosomal dysfunction. The atherogenicity 

of LDL oxidised in this manner was also suggested by its ability to form oxidised lipids 

products which have been shown to confer atherogenic properties on LDL. Further research 

into the role of lysosomal LDL oxidation by ferritin in atherosclerosis is required and the work 

presented here might form the basis for further research in this area. 
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Chapter 4: Degradation of ferritin and LDL in lysosomes: implications for 

lysosomal LDL oxidation by ferritin. 
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4.0 Background and rational 

The majority of extracellular and intracellular proteins are degraded partly or fully in the 

lysosomes (Jackson and Hewitt, 2016). The classification of lysosomes as the main location 

for intracellular proteolysis has been established as far back as the early 1960s (De Duve, 

1963).  Autophagy is the main process through which long lived or damaged proteins and 

organelles are turned over and reutilised. Proteasomes (multicatalytic proteinases), which also 

play a key role in protein turnover, are also degraded through autophagy. Many long lived 

ferruginous proteins are turned over by autophagy which makes lysosome a source of low mass 

redox-active iron (Kurz et al., 2008). 

 

The most effective way to prevent the deleterious effects of increased labile iron cations is 

through storage in ferritin (Bou-Abdallah, 2010). Evidence of decrease in lysosomal 

degradation of intracellular ferritin and iron release has been found in cells after treatments 

with compounds that inhibit lysosomal activity but not with compounds that inhibit proteasome 

(Kidane et al., 2006, Arosio et al., 2009). This implies that lysosomal autophagy and 

degradation by proteases play a key role in the degradation of ferritin. Radisky and Kaplan 

demonstrated that degradation of ferritin in lysosomes is a means of mobilising iron from the 

core of ferritin (Radisky and Kaplan, 1998). However, De Domenico and colleagues have 

suggested that mobilisation of iron is not dependent on the degradation of ferritin as iron can 

be mobilized in the absence of degradation (De Domenico et al., 2006). Other studies have 

shown the degradation of ferritin via the proteasomal degradation pathway (Cozzi et al., 2006). 

Prior to their degradation low saturated ferritin with iron-binding capacity may temporarily 

protect against iron-mediated oxidative stress. Saturated ferritin, on the other hand, can be auto 

phagocytosed and degraded in the lysosomes leading to the presence of more redox active iron 

and susceptibility to oxidative stress (Kurz et al., 2011).   
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The lysosomal compartment contains a wide range of hydrolytic enzymes which are very 

important mediators of recycling of biomolecules such as proteins, phospholipids and 

polysaccharides. Endopeptidases are mainly believed to initialise the cleavage of proteins and 

they act in synergy with exopeptidases to break down the resulting peptides to amino acids 

(van der Westhuyzen et al., 1980). The cathepsins are evidently the main categories of the 

hydrolytic enzymes. They are classified as aspartic proteases (e.g. cathepsins D and E), cysteine 

proteases (e.g. cathepsins B and C) and serine carboxypeptidases (e.g. cathepsin G) with an 

optimum pH of around 5 (Turk et al., 2002, Kuester et al., 2008, Kurz et al., 2011). However, 

the participation of cathepsin D (Dean, 1975) and cathepsin B (Hopgood et al., 1977, Libby 

and Goldberg, 1978) in general degradation of intracellular proteins has been shown 

previously, using inhibitors that are specific to these enzymes, such as pepstatin and leupeptin, 

respectively. 

 

Low density lipoprotein is internalized by receptor-mediated endocytosis, after which it is 

delivered to the lysosomes. The apoB-100 component of LDL is degraded in lysosomes and 

inhibitors of lysosomal function, such as chloroquine, have been demonstrated to prevent the 

degradation of apoB-100 (Stein et al., 1977). Van der Westhuyzen and colleagues 

demonstrated that the degradation of apoB-100 component of LDL in cells cultured from 

arterial smooth muscle cells or human fibroblast and adult bovine aortic smooth muscle cells 

was initiated by cathepsin D. The enzyme then acted in synergy with other enzymes which 

included cathepsin B to complete the degradation process (van der Westhuyzen et al., 1980). 

This was supported by work by Leake and Peters which also suggested that the synergistic 

action of both cathepsins D and B might have degraded the apoB-100 component of LDL, but 

the majority of the degradation of LDL protein smooth muscle cells cultured from aorta of was 

carried out by cathepsin D (Leake and Peters, 1981).  Recent in vitro study by Linke and others 
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have shown that cathepsins V, S, L, K, F and B degraded the protein component of LDL under 

acidic pH condition (pH 5.5) with cathepsin S having activity at pH 7.4. (Linke et al., 2006).  

The core of LDL consists mostly of cholesteryl esters and cholesteryl esterase has the capacity 

to hydrolyse cholesteryl esters. Chao and colleagues hydrolysed the cholesteryl ester 

component of LDL using cholesteryl esterase and also suggested that the particle derived from 

this hydrolysis were chemically similar to the unesterified cholesterol-rich LDL found in 

atherosclerotic lesions (Chao et al., 1992). Many forms of enzymatic modification of LDL such 

as apoB-100 proteolysis, lipolysis, which includes phospholipid hydrolysis, hydrolysis of 

cholesteryl esters and hydrolysis of sphingomyelin,  can lead to aggregation and fusion of LDL 

into lipid droplets which have been linked to the development of atherosclerosis (Lu and 

Gursky, 2013).  

 

Although the autophagic process is rapid and effective, it can still give room for some 

peroxidation catalysed by redox active iron to occur within the lysosomes. These can lead to 

oxidative modification of some materials autophagocytosed (Brunk and Terman, 2002). In 

view of the recent emergence of the lysosomal oxidation theory, it was hypothesised that during 

the process of degradation of both LDL and ferritin in lysosomes there might be conformational 

changes in ferritin and/or LDL that could enhance ferritin mediated LDL oxidation. The overall 

aim of this chapter was to modify ferritin and LDL with enzymes that possess activity at 

lysosomal pH and explore the effects of these modifications might have on oxidation of LDL 

by ferritin at lysosomal pH. The effects of major lysosomal endoproteases cathepsin D, 

cathepsin B and the lipolytic enzyme cholesteryl esterase were explored.  

4.1 Objectives 

i) To proteolytically modify ferritin with cathepsins at lysosomal pH 

ii) To proteolytically modify of LDL with cathepsins at lysosomal pH 
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iii) To compare the oxidation of LDL by intact ferritin and enzyme-treated ferritin 

iv) To test the effects of modification of apoB content of LDL by cathepsins on oxidation of 

LDL by ferritin at lysosomal pH. 

v) To investigate the effect of cholesteryl esters degradation by cholesteryl esterase on LDL 

oxidation by ferritin.  

 

4.2 Methods:  

The method for this session is described in section 2.6. The digestion of ferritin and LDL with 

cathepsin D was described in section 2.6.1.1 and digestion of ferritin with cathepsins B and D 

was described in section 2.6.1.2. The co-incubation with cholesteryl esterase and proteases 

(cathepsins B and D) was described in section 2.6.1.3. The method for evaluation by SDS-

PAGE after digestion was described in section 2.6.2 while the effects of the proteases and 

cholesteryl esterase on LDL oxidation was described in section 2.6.3. 

 

4.3 Results 

4.3.1 Proteolytic degradation of ferritin by cathepsins in vitro (pH 4.5) 

As mentioned earlier, there is evidence from previous researchers suggesting the degradation 

of ferritin occurs in lysosomes. To test the impact of the major lysosomal endoprotease on 

degradation of ferritin at lysosomal pH, intact ferritin (2 mg/ml) was treated with or without 

cathepsin D (6.2 µg/ml) and incubated in Chelex - 100 treated NaCl/sodium acetate buffer (pH 

4.5) at 37 ˚C for 24 h. After incubation, the ferritin samples were evaluated by polyacrylamide 

gel electrophoresis under reducing conditions. Figure 4.1A shows the pattern obtained with or 

without treatment of ferritin protein with cathepsin D.  The heavy and light chains of 21 kDa 

and 19 kDa were observed without treatment, but a less intense band was observed for the light 
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chain. No lower Mr degradation products were observed after treatment with cathepsin D. 

Analysis of the density of the heavy chain bands was carried out using image J software to 

compare the band intensity with or without enzymes. The result showed band intensity of 96.5 

± 17.0 in untreated ferritin to 136.9 ± 14.9 band intensity of ferritin pre-treated with cathepsin 

D, there was no significant different between the ferritin treated with cathepsin and the control 

(P > 0.05). Ferritin modification in the presence of cathepsin B, another main endoprotease 

present in lysosome was tested with increased the enzymes to protein ratio. Ferritin (500 µg) 

was treated with or without both cathepsin D (5 µg) and cathepsin B (5 µg) and incubated in 

Chelex-100 treated NaCl/sodium acetate buffer (pH 4.5) at 37˚C for 24 h. After incubation the 

ferritin samples were evaluated by polyacrylamide gel electrophoresis under reducing 

condition (Figure 4.1B). No lower molecular weight products were again observed. 
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Figure 4.1:   SDS-PAGE of ferritin treated with cathepsins 

Ferritin (2 mg/ml) incubated with or without cathepsin D (6.2 µg/ml) at 37 oC for 24 h, lane 

1 contains molecular weight markers, lane 2 contains ferritin only, lane 3 contains ferritin 

plus cathepsin D (A). Ferritin incubated with or without cathepsin B and D at 37 oC for 24 

h, lane 1 contains molecular weight markers, lane 2 contains ferritin only, lane 3 contains 

ferritin pre-incubated with cathepsin B and cathepsin D at weight ratio 100:1:1 (Ferritin 

(500 µg/ml), Cathepsin D (5 µg/ml) and cathepsin B (5 µg/ml) and lane 5 contains cathepsin 

B only (B). All samples were treated with reducing sample treatment buffer (RSTB) and 

about 15 µg in terms of ferritin protein was loaded onto gels with stacking gel of 4% and 

resolving gel gradient ratio of 15%. It was run for one hour at 150 V before staining with 

Coomassie blue to detect bands and de-stained. The pictures of the gels were captured using 

a U Genius image capturing machine. 

 

 

  1 2      3 
k

D
a
 

k
D

a
 

11    2     3 

 

   4     5 



137 

 

4.3.2 Effects of treatment of ferritin with proteases on LDL oxidation by ferritin at 

lysosomal pH 

Previous work with caeruloplasmin which contains the majority of copper ions in the plasma 

has shown that proteolytically modified caeruloplasmin was not able to enhance oxidation of 

LDL by SMC compared to the intact caeruloplasmin molecule (Mukhopadhyay et al., 1996). 

It was of interest to test whether proteolytic modification of ferritin affects its ability to oxidise 

LDL at lysosomal pH (Figure 4.2).    Ferritin (2 mg/ml) was incubated with or without cathepsin 

D (6.2 µg/ml) for 24 h in NaCl/sodium acetate buffer (pH 4.5) at 37 ̊ C and then used the ferritin 

(0.1 µM) to oxidise native LDL (50 µg protein/ml). The formation of conjugated dienes every 

minute interval at 234 nm for up to 1200 minutes were measured. The results show that 

treatment of ferritin with cathepsin D, did not affect its ability to catalyse LDL oxidation. The 

oxidation followed a similar pattern at the early phase of oxidation. In ferritin pre-incubated 

with cathepsin D, the aggregation phase began later and the peak attenuance was higher 

compared to untreated ferritin. The attenuance at 200 min was compared to control. The 

statistical analysis using Student’s paired t test showed there was no statistically significant 

difference to control (P > 0.05).   

 

Following up with this result, the effects of a decreased protein enzyme ratio and addition of 

cathepsin B, another lysosomal protease to the system were tested. We incubated ferritin (500 

µg) with or without cathepsin D (5 µg) and cathepsin B (5 µg) for 24 h in NaCl/sodium acetate 

buffer (pH 4.5) at 37˚C. After incubation, the ferritin (0.1 µM) with or without enzymes were 

used to oxidise native LDL (50 µg protein/ml) in capped cuvettes. Cathepsin D ad B (0.44 

µg/ml each) were added to freshly prepared to ferritin   (0.1 µM) and native LDL (50 µg 

protein/ml, as an additional control (Fig. 4.3A).  The attenuance at 200 min was compared 
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using one way ANOVA followed by Tukey post hoc test. The attenuance of the control at this 

time was 0.070 ± 0.021 compared to 0.100 ± 0.038 observed in ferritin pre-treated with 

cathepsin D and B (Fig. 4.3B). However, the treatments were not statistically significantly 

different when compared to control or each other (P > 0.05), but results suggest that ferritin is 

able to catalyse LDL oxidation even after treatment with enzymes.  
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Figure 4.2: Effects of pre-treatment of ferritin with cathepsin D on LDL oxidation 

by ferritin 

Native LDL (50 µg protein/ml) was oxidised with ferritin (pre-incubated alone or with 

cathepsin D) (0.1 µM), in NaCl/ sodium acetate buffer (pH 4.5) at 37 
o

C in capped 

cuvettes. The formation of conjugated dienes was monitored by attenuance at 234 nm 

against appropriate reference cuvettes that lacked LDL (A). This is a representative of 

three independent experiments. The increase in attenuance at 200 min compared with the 

controls using Student’s paired t test (n=3) (P > 0.05). ns indicates not significant (A). 
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Figure 4.3: Effect of treatment of ferritin with cathepsin D and B on LDL oxidation by 

ferritin 

Native LDL (50 µg protein/ml) was oxidised with ferritin pre-incubated alone or with 

cathepsin D and B (0.1 µM), and freshly prepared cathepsin D and B (0.44 µg) and ferritin 

(0.1 µM) in NaCl/ sodium acetate buffer (pH 4.5) at 37 
o

C in capped cuvettes. The formation 

of conjugated dienes was monitored at attenuance of 234 nm against appropriate reference 

cuvettes that lacked LDL (A). This is a representative of three independent experiments. Mean 

± SEM increase in attenuance at 200 min was compared with one way ANOVA (n = 3) 

followed by Tukey post hoc test (P > 0.05). ns indicates not significant (B).  
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4.3.3 Proteolytic degradation of LDL by cathepsin D 

The intact LDL (500 µg protein/ml) was incubated in Chelex - 100 treated NaCl/sodium acetate 

buffer (pH 4.4) at 37˚C for 24 h  in the presence or absence of cathepsin D (5 μg/ml). After 

incubation, the extent of degradation of the samples was evaluated using polyacrylamide gel 

electrophoresis under reducing condition. Figure 4.4 shows the pattern obtained with or without 

treatment of LDL with cathepsin D.  The Mr weight of around 250 kDa was observed in LDL 

without cathepsin D, whereas the Mr of apoB-100 is 513 kDa. This discrepancy might be 

explained by the migration of very large proteins into SDS-PAGE gels might not always be 

consistent.  There were many degradation products in the presence of cathepsin D. This in vitro 

result was as expected,  as previous work has shown the importance of cathepsin D in LDL 

degradation by arterial smooth muscle cells (Leake and Peters, 1981). 
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Figure 4.4:  SDS-PAGE of LDL treated with cathepsin D 

LDL (500 µg/ml) incubated with or without cathepsin D 5 µg /ml) at 37 oC for 24hrs, 

lane 1 contains molecular weight marker, lane 2 and 3 contains LDL only, lane 4 and 

5 contains LDL plus cathepsin D. All samples were diluted to 15 µg, treated with 

reducing sample treatment buffer (RSTB) and loaded onto gels with stacking gel of 

4% to resolving gel of 5%. The gel was run for one hour at 150 V before staining 

with Coomassie blue to detect bands and de-stained. The picture of the gel was 

captured using a U Genius image capturing machine. 

 

 

 

        1           2         3          4         5     

k
D

a
 



143 

 

4.3.4 Effect of treatment of LDL with proteases on LDL oxidation by ferritin at lysosomal 

pH 

It was of interest to test whether proteolytic modification of LDL can affect its oxidation by 

ferritin at lysosomal pH, as LDL will be degraded in lysosomes at the same time as it is being 

oxidised (Figure 4.5).  LDL (500 µg protein/ml) was incubated with or without cathepsin D 

and B (5 µg/ml each) for 24 h in NaCl/sodium acetate buffer (pH 4.5) at 37˚C. The pre-treated 

LDL (50 µg protein/ml) was oxidised with ferritin (0.1 µM). LDL not pre-treated with enzymes 

(50 µg protein/ml) was also oxidised with ferritin (0.1 µM) in the presence or absence of freshly 

added cathepsin D and B (0.5 µg/ml each) to the cuvettes; this was equivalent to the 

concentration of enzymes that would have present in the pre incubated LDL.  This was done 

because the cathepsins would have been active in the cuvettes at pH 4.5. The formation of 

conjugated dienes was measured at every one minute interval at 234 nm for 1200 minutes. The 

result shows that proteolytic degradation of LDL increased the attenuance at 234 nm compared 

to the control. The rise in attenuance was more prominent in proteolysed LDL with the 

aggregation phase observed earlier compared to the untreated LDL and the LDL freshly treated 

with the enzymes in the test cuvettes. 

 

The increase in attenuance at 200 min was compared with one-way ANOVA followed by a 

Tukey post hoc test (n = 4) (Fig 4.5B). Oxidation of previously proteolysed LDL was 

significantly different from control LDL (P < 0.01). However, the freshly treated LDL was not 

statistically different from control. 
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Figure 4.5:   Effects of treatment of LDL with cathepsin D and B on LDL oxidation 

by ferritin 

LDL (500 µg protein/ml) was incubated with or without cathepsin D and B (5 µg/ml 

each) for 24 h in NaCl/sodium acetate buffer (pH 4.5) at 37˚C.  LDL pre-treated with 

cathepsin D and B (50 µg protein/ml) was then oxidised with ferritin (0.1 µM), in NaCl/ 

sodium acetate buffer (pH 4.5) at 37 oC. LDL with freshly added cathepsin D and B to 

the cuvettes (0.5 μg/ml), the concentrations they would have been present in the cuvettes 

due to carry over, was also included. The formation of conjugated dienes was monitored 

at attenuance of 234 nm against appropriate reference cuvettes that lacked LDL. This is 

a representative of four independent experiments (A). The increase in attenuance at 200 

min compared with one-way ANOVA followed by Tukey post hoc test (n = 4). ** 

indicates P < 0.01 and ns indicates not significant (B).  
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4.3.5 Effect of co-incubation with cholesteryl esterase on LDL oxidation by ferritin at 

lysosomal pH. 

It was of interest to test the effect of modifying the lipid component of LDL with a lipolytic 

enzyme on its oxidation by ferritin at lysosomal pH, as this will mimic what might happen in 

lysosomes. Previous work by Kyger et al. has demonstrated that bovine and human pancreatic 

cholesteryl esterase had optimum catalytic pH from pH 5.5 to 6.5 in the presence of 

taurocholate. Their data also showed some taurocholate independent activity of the enzyme in 

the synthetic activities (Kyger et al., 1990). Work by Chao et al. revealed the dependence of 

hydrolysis of lipoprotein cholesteryl esters by cholesteryl esterase from Candida cylindracea 

on the treatment of LDL with trypsin as the cholesteryl ester hydrolysis was only possible after 

treatment with trypsin (Chao et al., 1992).  In this present study, cholesteryl esterase from 

Pseudomonas sp was used as the lipolytic enzyme. Preliminary data showed increased 

cholesterol content in LDL from the degradation of cholesteryl esters into fatty acids and 

cholesterol, in the presence of cholesteryl esterase with or without trypsin.  LDL (50 µg 

protein/ml) treated with cholesteryl esterase (0.0625 unit/ml) in the presence or absence of 

trypsin (1.25 µg/ml) was incubated in NaCl/sodium acetate buffer (pH 4.5) at 37˚C for 2 h.  

The cholesterol content was measured by reverse phase HPLC at 210 nm. The data showed 

increased cholesterol content from 775 ± 91.5 nmol/mg LDL protein to 1454 ± 65.0 nmol/mg 

LDL protein in LDL plus cholesteryl esterase and 2360 ± 220.5 nmol/mg LDL protein in LDL 

plus cholesteryl esterase and trypsin. The result showed that cholesteryl esterase from 

Pseudomonas sp can hydrolyse cholesteryl esters in the presence or absence of trypsin 

(unpublished data). 

 

To test the effect of hydrolysis with cholesteryl esterase on LDL oxidation by ferritin at 

lysosomal pH, we incubated LDL (50 µg protein/ml) with or without cholesteryl esterase (CE) 
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from Pseudomonas sp (0.0625 unit/ml) in NaCl/sodium acetate buffer (pH 4.5) at 37˚C with 

ferritin (0.1 µM). The results show that co-incubation with cholesteryl esterase increased the 

formation of conjugated dienes by LDL compared to control (Fig 4.6B). The early phase of 

oxidation was increased, and the aggregation phase occurred earlier compared to the control. 

The increase in attenuance at 200 min was compared with a paired Student’s t test (n = 3). The 

oxidation of LDL was significantly increased (P<0.001) (Fig. 4.6B) 
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Figure 4.6:   Effects co-incubation with cholesteryl esterase on LDL oxidation by 

ferritin 

LDL (50 µg protein/ml) was incubated with or without cholesteryl esterase (0.0625 

unit/ml) and was oxidised with ferritin (0.1 µM) in NaCl/ sodium acetate buffer (pH 

4.5) at 37 oC. The formation of conjugated dienes was monitored at attenuance of 234 

nm against appropriate reference cuvettes that lacked LDL (A). This is a representative 

of three independent experiments. The increase in attenuance at 200 min compared 

with paired Student’s t test (n = 3). *** indicates P < 0.001 (B).  
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4.3.6 Effects of co-incubation with cholesteryl esterase and proteases on LDL oxidation 

by ferritin at lysosomal pH. 

The lysosomal compartment contains both proteolytic and lipolytic enzymes along with other 

hydrolases. The multienzynme composition of the lysosomal compartment allows its rapid, 

efficient and coordinated degradation of targetted substrates. Degradation of macromolecules 

often involves multiple enzymes working together in a stepwise manner (Bonten et al., 2014).  

It was of interest to test the effect of modifying a part of lipid component (cholesteryl esters)  

and the protein component (apoB-100) of LDL concurrently on its oxidation by ferritin at 

lysosomal pH (Figure 4.7). LDL (50 µg protein/ml)  was co-incubated with or without 

cholesteryl esterase (0.0625 unit/ml) and cathepsin D and B (1.25 µg/ml)  in NaCl/sodium 

acetate buffer (pH 4.5) at 37˚C, with ferritin (0.1 µM). The formation of conjugated dienes was 

measured for every one minute interval at 234 nm for up to 1200 minutes. The results show 

that co-incubation with cholesteryl esterase and proteases cathepsin D and B  increased the 

formation of conjugated dienes by LDL compared to control. 

The increase in attenuance at 200 min was compared with a paired Student’s t test (n = 3). The 

oxidation of LDL was significantly increased by the presence of cholesteryl esterase and the 

proteases P < 0.01 (Fig. 4.7B).  
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Figure 4.7:   Effects of co-incubation with cholesteryl esterase and proteases on LDL 

oxidation by ferritin 

 

LDL (50 µg protein/ml) was incubated with or without cholesteryl esterase (0.0625 unit/ml), 

cathepsin D and B (1.25 µg/ml each) with ferritin (0.1 µM) in NaCl/ sodium acetate buffer 

(pH 4.5) at 37
o

C. The formation of conjugated dienes was monitored by measuring attenuance 

of 234 nm against appropriate reference cuvettes that lacked LDL (A). This is a representative 

of three independent experiments. Figure 4.7B shows the increase in attenuance at 200 min 

compared with paired Student’s t test (n = 3). ** indicates P < 0.01 (B).  
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4.4 Discussion 

Existing evidence regarding the mechanisms for degradation of ferritin and the link to iron 

mobilisation is controversial. However, some have suggested that lysosomal enrichment with 

ferritin stabilise cells after autophagocytosis by binding low mass iron in the lysosomes (Garner 

et al., 1997, Persson et al., 2001a). Others have argued that there is possibility for the release 

of iron from ferritin in lysosomes during ferritin degradation (Roberts and Bomford, 1988, 

Radisky and Kaplan, 1998, Zhang et al., 2010). Lysosomal proteases such as cathepsins D and 

B, have been demonstrated to be involved in the degradation of the  apoB-100 component of 

LDL (van der Westhuyzen et al., 1980, Leake and Peters, 1981, Linke et al., 2006) and ferritin 

(Richter, 1986, Kidane  et al., 2006, Laskar et al., 2012). This evidence put together suggests 

the degradation of ferritin and LDL under lysosomal conditions using enzymes in vitro and 

within lysosomes in cells. The recent lysosomal LDL oxidation theory has provided data 

suggesting the lysosomal oxidation of LDL mediated by iron in macrophages in vitro to the 

onset and progression of atherosclerosis (Wen and Leake, 2007, Satchell and Leake, 2012, 

Ahmad and Leake, 2018, Ahmad and Leake, 2019). Work from the previous chapter of this 

thesis demonstrated that ferritin can catalyse LDL oxidation at lysosomal pH and also showed 

that there is enhanced release of iron from ferritin under the lysosomal acidic condition in the 

absence of proteases. This study explored the effects of proteases and lipolytic enzymes on the 

oxidation of LDL by ferritin at lysosomal pH.  

 

The present study showed that intact ferritin and ferritin pre-treated with cathepsin D can 

catalyse the oxidation of LDL in a similar manner, not surprisingly. However, pre-incubation 

of ferritin with cathepsin had no effect on the rate of oxidation compared to control.  It was 

tested whether pre-incubating ferritin with more proteolytic enzyme (with lower protein to 

enzyme ratio) would catalyse the oxidation of LDL by ferritin more effectively, but there was 
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no significant effect. The results of SDS-PAGE analysis of ferritin after incubation with 

proteolytic enzymes showed that ferritin is somewhat resistant to degradation by cathepsin D 

and B at pH 4.5, although exposure of apoB-100 in LDL to similar condition with ferritin 

caused extensive degradation of apoB-100. Chrichton has previously demonstrated the 

synergistic digestion of ferritin and apoferritin using cathepsin D and pepsin at pH 3.0 

(Crichton, 1971), which is a more acidic pH compared to what was used in this study. However, 

their findings indicated that ferritin was less susceptible to digestion compared to apoferritin. 

The capacity of lysosomes to degrade endogenous and extracellular biomolecules is of great 

importance in handling the excess lipid and cytotoxic materials that are present in 

atherosclerotic plaque. The paramount role of lysosomes in degradation has been well 

acknowledged  (Sergin et al., 2015). From our results, it is suspected that ferritin degradation 

may take a longer time and require synergistic actions of several proteolytic enzymes which 

were not included in this present study but can be explored in the future.  

 

These experiments have shown that ferritin showed no observable degradation products after 

treatment with cathepsins D and B but it catalysed LDL oxidation after treatment with enzymes. 

This implies that it may stay longer in the lysosomes to oxidise LDL. The fact that ferritin was 

still able to catalyse LDL oxidation without complete degradation supports the spontaneous 

release of iron at lysosomal pH which catalyses LDL (demonstrated in chapter 3). The question 

of introducing more lysosomal enzymes is, however, relevant because autophagocytosed 

ferritin would be eventually be degraded in lysosomes. It would be of interest to know if it 

would be more or less effective in oxidising LDL during its life time in lysosomes before it is 

degraded entirely. 
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Enzymatically modified LDL has been produced in vitro with the use of both proteases and 

cholesteryl ester hydrolase (Bhakdi et al., 1995, Chellan et al., 2016). Preliminary data from 

our laboratory showed that LDL pre-incubated at pH 7.4 and 4.5 was degraded by trypsin and 

cathepsin D, respectively (unpublished data). The proteolytic modification of LDL in this 

present study was carried out with cathepsin D at lysosomal pH (pH 4.5). The enzyme cathepsin 

D has been identified as the key player in proteolytic degradation of LDL (Leake and Peters, 

1981). The result from this present in vitro experiment was consistent with our previous work 

(unpublished data) and the result from others which showed that lysosomal proteases degraded 

apoB-100 at pH 5.5 (Linke et al., 2006). Although cathepsin D is not a cysteine protease and 

was not among the cathepsins used by Link et al., however, low molecular weight fragments 

were observed in LDL pre-treated with cathepsin D at pH 4.5. Previous studies have 

demonstrated the importance of cathepsin D and B in the degradation of LDL in arterial smooth 

muscle cells (van der Westhuyzen et al., 1980, Leake and Peters, 1981).  

 

Enzymatically modified LDL has been demonstrated to be present in atherosclerotic lesions 

(Torzewski et al., 1998, Hakala et al., 2003) and cathepsins are highly synthesised in 

atherosclerotic plaques (Hakala et al., 2003, Sukhova et al., 2003, Oorni et al., 2004) which 

could act on LDL in lysosomes. Cathepsin B, D and X has been suggested to play a key role 

in the development of atherosclerosis (Zhao and Herrington, 2016). It was reported here that 

treatment of LDL with cathepsin D and B prior to oxidising with ferritin, increased 

modification of LDL at lysosomal pH but also its aggregation.  Further work will be required 

to see if this increased modification is due to lipid peroxidation forming conjugated dienes or 

it is aggregation causing UV scattering. Measuring oxidised lipids by HPLC should clarify this 

question. Previous studies suggest that degrading apoB-100 in LDL leads to aggregation and 

fusion of lipoprotein in complex lipid aggregates that increase as the atherosclerotic lesions 
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progress (Piha et al., 1995, Camejo, 2003).  This present finding might imply that pre-treatment 

with cathepsins promote the formation of aggregated lipids and enhance atherogenicity in 

lysosomal LDL oxidised by ferritin. The important role of cathepsins, mainly the cysteine 

proteases, in atherosclerosis was earlier suggested by Liu et al. (Liu et al., 2004). This was later 

supported with evidence from reviews by Lutgens and others, whose work suggested that 

potential inhibitors of cathepsins might be beneficial in the treatment of atherosclerosis 

(Lutgens et al., 2007, Sjöberg and Shi, 2011).  

 

High concentrations of cholesteryl ester hydrolase have been detected in atherosclerotic lesions 

by immunostaining (Sakurada et al., 1976, Hakala et al., 2003). The purified enzyme had an 

optimum pH of 4.5 -5.0 and 7.0 -7.5 (Sakurada et al., 1976) which includes the pH of lysosomes 

and that of plasma, respectively. The co-incubation of LDL with cholesteryl esterase from 

Pseudomonas sp and ferritin (Figure 4.6) showed a significant (P < 0.001) increase in the 

formation of conjugated dienes compared to incubation with ferritin alone. This breakdown of 

cholesteryl esters may contribute to more lipid peroxidation in lysosomal LDL oxidation, 

possibly by giving ferritin iron more access to the PUFA formed than to cholesteryl esters.  

Hydrolysing cholesteryl esters and degrading the apoB-100 component of LDL at the same 

time produced LDL that had a similar chemical structure and biological activity to LDL derived 

from atherosclerotic lesions (Bhakdi et al., 1995). The lysosomal compartment is highly 

dynamic with multiple enzymes acting in synergy to degrade biomolecules. These enzymes 

working together may have positive and negative consequence in relation to disease 

development (Bonten et al., 2014). The effect of the joint action of proteases (cathepsins B and 

D) and cholesteryl esterase (figure 4.7) on LDL oxidation by ferritin showed increased 

formation of conjugated dienes (P < 0.01). This suggests that the oxidation of LDL in 

lysosomes might speed up as the LDL is degraded in these organelles. 



154 

 

 

The findings in this chapter put together show that LDL oxidation by ferritin can proceed in 

the presence of lysosomal enzymes and might actually be increased by them. The degradation 

of the protein and lipid component of LDL particles enhanced its oxidation by ferritin at 

lysosomal pH. The results suggest that, as LDL is degraded in lysosomes its oxidation by 

ferritin might be speeded up. The results also show the remarkable resistance of ferritin (unlike 

apoB-100 in LDL) to proteolysis by major lysosomal endoproteases cathepsin B and D.  The 

next chapter explores the role of antioxidants in the prevention of LDL oxidation by ferritin at 

lysosomal pH. 
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Chapter 5: The role of antioxidants in preventing LDL oxidation by 

ferritin 
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5.0 Background and rational 

Atherosclerosis is a complex disease involving many factors. The oxidative modification of 

LDL and a chronic inflammatory response has been suggested as key events in the development 

of atherosclerotic lesions. LDL oxidation is believed by many to be closely linked with 

atherosclerosis with relevance in all stages of atherosclerosis (Nilsson et al., 1992, Itabe et al., 

2011). The fact that low concentrations of antioxidant compounds can delay or inhibit the 

oxidation of oxidisable substrates (Halliwell, 1990) makes antioxidants one of the promising 

candidates for prevention and treatment of atherosclerosis. Nutrients, such as and phenolic 

component of red wine (Teissedre et al., 1996),  vitamins C (Retsky et al., 1993)  and E (Jessup 

et al., 1990) can reduce the susceptibility of LDL to oxidation in vitro. Plasma thiols such as 

homocysteine, cysteine and reduced glutathione have been demonstrated to inhibit LDL 

oxidation in vitro  (Lynch et al., 2000). 

 

The LDL isolated from humans contains a number of lipid-soluble antioxidants which includes 

several carotenoids and oxycarotenoids, ubiquinol-10, γ-tocopherol and α-tocopherol 

(Esterbauer et al., 1992). Out of these antioxidants, α-tocopherol (Figure 5.1A) is believed to 

be the most important and abundant antioxidant present in human LDL (Esterbauer et al., 

1990a, Meydani, 2001).  It possesses the ability to limit the production of lipid peroxidation 

products via its chain breaking action by scavenging alkoxyl and peroxyl radicals (Sies et al., 

1992, Liebler, 1993). The α-tocopherol radical produced is stabilised by delocalisation of 

unpaired electron around its ring. LDL isolated from people who had previously received 

vitamin E as  a supplement was less susceptible to oxidation induced by macrophages or copper 

(Jessup et al., 1990, Dieber-Rotheneder et al., 1991) and lipid peroxidation increases after α-

tocopherol consumed during LDL oxidation (Esterbauer et al., 1987, Jessup et al., 1990). 
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However, this was contradicted by arguments from other researchers who reported that the 

decrease in susceptibility of LDL to oxidation does not correspond to the α-tocopherol content 

of LDL (Stocker et al., 1991, Bowry et al., 1992)  and the  pro-oxidant activity of vitamin E in 

vivo and in vitro especially in conditions of low oxidative stress, was demonstrated by Bowry 

and others (Bowry and Stocker, 1993, Neuzil et al., 1997).  Other studies have suggested that 

the activity of α-tocopherol as an antioxidant in vivo can be upheld by activities of other 

antioxidants, such as ascorbate, found within atherosclerotic lesion  (Suarna et al., 1995) and 

ubiquinol-10 which can both convert the pro-oxidant radical form of α-tocopherol back to the 

antioxidant α-tocopherol (Stocker et al., 1991, Neuzil et al., 1997, Stocker, 1999). Ubiquinol-

10 and vitamin C (Retsky et al., 1993) prevents the formation of lipid peroxidation products in 

LDL containing vitamin E (Bowry et al., 1992). 

 

Figure 5.1: The structures of α-tocopherol, ascorbate and dehydroascorbate 

Vitamin C (ascorbate) (Figure 5.1B) is considered to be a main water-soluble antioxidant which 

also possesses a chain breaking activity like the lipid-soluble vitamin E. Ascorbic acid possess 

a strong reducing ability and has been demonstrated to act as antioxidant in vitro and in vivo 

(Bendich et al., 1986, Vinson and Jang, 2001). Vitamin C preserved LDL and human plasma 

lipids from oxidant-induced peroxidative damage and was suggested to be more potent in 

preventing peroxidative events than endogenous antioxidants present in LDL and plasma (Frei 
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et al., 1989, Frei, 1991) and Jialal et al. previously reported that vitamin C is a more potent 

antioxidant than vitamin E, in terms of inhibition of oxidative modification of LDL (Jialal et 

al., 1990). Vitamin C protected against homocysteine and ferric iron induced LDL oxidation 

(Alul et al., 2003). Horsley et al reported the pro-oxidant and antioxidant behaviour of oxidised 

form of vitamin C, dehydroascorbate (Fig. 5.1C) (Horsley et al., 2007). They showed that 

dehydroascorbate can act as an antioxidant with fresh LDL or a pro-oxidant with mildly-

oxidised LDL in the presence of copper. This finding corroborates previous findings by Stait 

and Leake that dehydroascorbate and ascorbate increase the oxidation of partially oxidised 

LDL and enhance its uptake by macrophages (Stait and Leake, 1994, Stait and Leake, 1996).  

 

The role of vitamin E and C in protecting LDL against oxidation remains controversial. The 

role of antioxidants in preventing atherosclerosis is continuously challenged by the lack of 

protection against CVD in large human clinical trials with vitamin E, vitamin C or β-carotene 

(Jialal et al., 1999, Yusuf et al., 2000, de Gaetano, 2001, Lonn et al., 2002, Collins et al., 2002) 

and (Lee et al., 2004, Cook et al., 2007, Sesso et al., 2008). Although some small trials with 

vitamin E  (Stephens et al., 1996, Boaz et al., 2000) and vitamin C (Khaw et al., 2001, Osganian 

et al., 2003) showed protection against CVD but there are no substantial data to support a 

protective role for vitamin E and C from human trials. A recent review by Al-Khudairy and 

colleagues suggested that there is no evidence for the reduction of risk of CVD by vitamin C 

in healthy subjects (Al-Khudairy et al., 2017). The lack of strong evidence of protection from 

the clinical trials and the usually positive evidence on protection of fresh LDL against oxidation 

makes the role of vitamin E and C in lysosomal LDL oxidation a subject of interest in this 

present study. 
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Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) (Fig 5.2) is a potent antioxidant 

with super oxide (O2
-) radical scavenging, superoxide dismutase mimetic property and has the 

ability to scavenge other reactive oxygen species (Wilcox and Pearlman, 2008). Tempol has 

been previously reported to reduce lipid peroxidation and blood pressure in animal models 

(Schnackenberg et al., 1998, Schnackenberg and Wilcox, 1999) with the antihypertensive 

effect been related to its in vitro ability to dismutate superoxide (Patel et al., 2006). Tempol is 

considered to have the most powerful effects amongst nitroxides in preserving cells from the 

deleterious effects of reactive oxygen species (Krishna et al., 1998, Li et al., 2006). The 

superoxide mimetic property and the free radical scavenging capacity might be of value in 

protecting LDL from oxidation by ferritin. 

 

 

Figure 5.2: Structure of tempol 

N, N′- Diphenyl 1, 4-phenylenediamine (DPPD) (Figure 5.3A) is an orally active compound 

with antioxidant properties. Previous studies have revealed that DPPD reduced the progression 

of atherosclerosis in rabbits (Sparrow et al., 1992) and apoE deficient mice (Tangirala et al., 

1995) fed high cholesterol diets without affecting the cholesterol concentration in plasma. 
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DPPD has previously been shown to protect LDL from oxidation by endothelial cells (Sparrow 

et al., 1992) and copper-mediated oxidation (Tangirala et al., 1995).  

 

Chloroquine a weak base with the ability to increase the pH of lysosome and concentrate in 

lysosomes inhibited the oxidation of LDL (Wen and Leake, 2007). Antioxidants that possess 

the ability to concentrate in the lysosomes might be protective against lysosomal LDL 

oxidation. Cysteamine (Figure 5.3B) is present normally in low concentrations in plasma 

because it is produced endogenously from the degradation of coenzyme A. It can upregulate 

the synthesis of glutathione, protecting cells from oxidative damage (Wilmer et al., 2011).  

Cysteamine is currently used in the treatment of cystinosis, a disease characterised by the 

accumulation of cystine in lysosomes due to mutation in the genes for the lysosomal cystine 

transporter (cystinosin). The disease leads to progressive dysfunction of multiple organs due to 

accumulation of cystine in all the cells in the body. Cysteamine exports cysteine out of the 

lysosome via the lysine transport system by the formation of the mixed disulphide of 

cysteamine and cysteine. Cysteamine, which was introduced in 1976, remains the only drug 

for the treatment of cystinosis (Gahl et al., 2002, Napolitano et al., 2015).  

 

 

 

    Figure 5.3: Structures of DPPD and cysteamine 
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The usual view of the oxidative modification process of LDL is challenged by the mostly 

negative effects seen with large clinical trials against CVD (Steinberg and Witztum, 2002)  and 

the fact that low concentrations of serum or interstitial fluid inhibit LDL oxidation  (Leake and 

Rankin, 1990, Dabbagh and Frei, 1995). These challenges can be accounted for by the recently 

proposed lysosomal theory which suggests that non-oxidatively modified LDL can be rapidly 

taken up by macrophages and then extensively oxidised within the lysosomes (Wen and Leake, 

2007). A recent study from our laboratory showed the ability of DPPD and cysteamine to 

inhibit LDL oxidation mediated by iron at lysosomal pH  (Ahmad and Leake, 2018). 

 

In view of all the controversy surrounding the use of antioxidants in prevention and treatment 

of atherosclerotic cardiovascular disease, the identification of lysosomal LDL oxidation is a 

candidate for reinvigorating the LDL oxidation hypothesis. There is a need for identification 

of appropriate antioxidants that can be beneficial for the treatment of atherosclerosis. Chapter 

three and four of this thesis have shown that ferritin can mediate LDL oxidation at lysosomal 

pH. It was hypothesised that antioxidants might play a role in protecting LDL from oxidation 

by ferritin. Hence, this chapter explores the role of antioxidants in preventing LDL oxidation 

by ferritin using the major physiological lipid and water soluble vitamins (vitamin E and C) 

with antioxidant properties, the amphipathic compound tempol, the hydrophobic compound 

DPPD and the water soluble lysosomotropic compound cysteamine.    

5.1 Objectives 

i) To investigate the role of vitamin E (α-tocopherol) and vitamin C(ascorbate and 

dehydroascorbate)  in LDL oxidation mediated by ferritin at lysosomal pH. 

ii) To evaluate the effects of existing lipid hydroperoxides and pH on antioxidant effects of 

ascorbate 
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iii) To explore the ability of tempol to scavenge superoxide radical during LDL oxidation by 

ferritin and prevent oxidation. 

iv) To evaluate the effects of DPPD and cysteamine on LDL oxidation by ferritin at lysosomal 

pH. 

5.2 Methods 

LDL was isolated as described in sections 2.2.1 and 2.2. Formation of conjugated dienes, 

kinetics of oxidation of LDL oxidation by ferritin in the presence or absence of antioxidants 

was monitored as described in section 2.3.7. The release of iron from ferritin in the presence 

of cysteamine at varying time points was measured using the iron chelator bathophenanthroline 

disulphonic acid (sections 2.3.8).  

 

5.3 Results 

5.3.1 Effect of α-tocopherol in LDL oxidation mediated by ferritin  

The enrichment of LDL with α-tocopherol inhibited LDL oxidation by copper sulphate (5 µM) 

at pH 7.4 (Dieber-Rotheneder et al., 1991, Satchell and Leake, 2012, Alboaklah, 2018b).  In 

order to test the effect of vitamin E on LDL oxidation by ferritin, we enriched LDL with α-

tocopherol by incubating human plasma with α-tocopherol dissolved in DMSO for 3 h and then 

isolating LDL by ultracentrifugation. The α-tocopherol content was measured as previously 

described by Satchell (Satchell and Leake, 2012). The α-tocopherol content in LDL increased 

from 15 ± 0.4 to 26 ± 0.8 nmol/mg protein (Alboaklah, 2018b), increasing the average number 

of α-tocopherol molecules per LDL particle from about 8 to 13. Control LDL or α-tocopherol 

enriched LDL (50 µg protein/ml) was oxidised with ferritin (0.1 µM) at pH 7.4 (MOPS buffer) 

and pH 4.5 (NaCl/sodium acetate buffer) (Figure 5.4) at 37 0C. The formation of conjugated 
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dienes was monitored continuously at 234 nm.  The mean attenuance at 200 min at acidic pH 

was slightly increased from 0.204 ± 0.12 in control compared to 0.260 ± 0.12 in α-tocopherol 

enriched LDL. The increase in formation of conjugated dienes by α-tocopherol was not 

statistically significant compared to control LDL at either pH 4.5 or pH 7.4.  
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Figure 5.4. The effect of α-tocopherol on LDL oxidation by ferritin at pH 7.4 and pH 

4.5 

Control LDL or LDL enriched with α-tocopherol (50 µg protein/ml) was incubated with 

ferritin (0.1 µM) at pH 4.5 or pH 7.4 and the formation of conjugated dienes was monitored 

at 234 nm against appropriate reference cuvettes that lacked LDL. This is a representative 

of three independent experiments (A). The mean and SEM of attenuance at 200 min were 

obtained for each concentration and compared by one-way ANOVA followed by a Tukey 

post hoc test.  (n=4) (p>0.05), ns indicates not significant (B). 

 

A 

B 
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5.3.2 Effects of vitamin C (ascorbate and dehydroascorbate) on LDL oxidation by ferritin 

at lysosomal pH. 

According to a 2015 study, the recommended vitamin C intake is an amount that can make up 

for the metabolic loss of vitamin C and guarantees a fasting plasma level of 50 µM of ascorbate 

(German Nutrition, 2015). The effect of varying concentrations of vitamin C (ascorbate and 

the oxidised form dehydroascorbate) on LDL oxidation mediated by ferritin were evaluated. 

LDL (50 µg protein/ml) was incubated with ferritin (0.1 µM) in the presence or absence of 

varying concentrations (10 - 100 µM) of ascorbate or dehydroascorbate in NaCl/sodium acetate 

buffer at 37 oC. The formation of conjugated dienes was monitored at 234 nm at one minute 

intervals for about 1200 minutes. Ascorbate inhibited the initial phase of oxidation of LDL in 

a concentration-dependent manner, however, ascorbate exhibited a pro-oxidant effect at a later 

stage (Fig 5.5). The oxidised form (dehydroascorbate) does not offer any protection towards 

LDL oxidised by ferritin; it rather acted as a pro-oxidant increasing the oxidation of LDL by 

ferritin in a concentration-dependent manner. The pro-oxidant effect was seen from early phase 

with rapid oxidation and early observation of aggregation and sedimentation phase (Fig. 5.6)     

 

Statistical analysis of the increase in attenuance at 200 min with one way ANOVA (n = 4) 

followed by Tukey post hoc test showed that the two higher concentrations (30 µM and 100 

µM ) of ascorbate was significantly different from control with 100 µM exhibiting a stronger 

statistical effect (Figure 5.5). The pro-oxidant effects of higher concentrations of 

dehydroascorbate were significantly different from control (p < 0.001) (Fig. 5.5). The effects 

of varying concentrations dehydroascorbate on the early oxidation of LDL was the opposite of 

that for ascorbate. 
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Figure 5.5: The effect of ascorbate on LDL oxidation by ferritin at lysosomal pH 

LDL (50µg protein/ml) in NaCl/sodium acetate buffer (pH 4.5) was incubated with ferritin(0.1 

µM) in the absence (red line) or presence of varying concentrations of ascorbate 10 µM ( grey 

line), 30 µM (blue line) and 100 µM (green line) at 37
o
C in capped cuvettes. The formation of 

conjugated diene was monitored by measuring attenuance at 234 nm against appropriate 

reference cuvettes that lacked LDL. This is a representative of four independent experiments 

(Fig. 5.5A). The mean and SEM of attenuance at 200 min were obtained for each concentration 

and compared (n=4) by one-way ANOVA followed by a Tukey post hoc test. * indicates P < 

0.05 and ** indicates P < 0.01 (Fig. 5.5B). 
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Figure 5.6: The effect of dehydroascorbate on LDL oxidation by ferritin at lysosomal 

pH 

LDL (50µg protein/ml) in NaCl/sodium acetate buffer (pH 4.5) was incubated with ferritin 

(0.1 µM) in the absence (red line) or presence of varying concentrations of 

dehydroascorbate 10 µM (black line), 30 µM (green line) and 100 µM (blue line) at 37
o
C 

in capped cuvettes. The formation of conjugated diene was monitored by measuring 

attenuance at 234 nm against appropriate reference cuvettes that lacked LDL. This is a 

representative of four independent experiments (A). The mean and SEM of attenuance at 

200 min were obtained for each concentration and compared to the control by one-way 

ANOVA (n = 4) followed by a Tukey post hoc test. *** indicates P < 0.001 (B). 

 

A 

B 
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5.3.3 Effects of existing oxidised lipids and pH on antioxidant effects of ascorbate 

 

A Previous study has demonstrated that the antioxidant activity of ascorbate and 

dehydroascorbate on copper-mediated oxidation of LDL was lost when LDL is partially 

oxidised (Stait and Leake, 1996). The effects of the presence of existing oxidised lipids on 

antioxidant/pro-oxidant activities of ascorbate on LDL oxidised by ferritin was tested. LDL 

(50 µg protein/ml) was incubated with ferritin (0.1 µM) in the presence or absence of 30 µM 

ascorbate added at three different time points (0, 100 and 200 minutes) in NaCl/sodium acetate 

buffer at 37 0C. The formation of conjugated dienes was monitored continuously at 234 nm at 

one minute intervals for about 1200 minutes (Figure 5.7A). The results showed that the 

presence of lipid hydroperoxides or other products of oxidation led to ascorbate exhibiting an 

immediate and rapid pro-oxidant effect on LDL. The increase in attenuance at 200 min were 

compared with one way ANOVA (n = 3) followed by Tukey post hoc test showed that 

ascorbate significantly decreased the attenuance at pH 7.4 compared to control (p< 0.001) (Fig 

5.7B). 

 

Ascorbate has been shown to inhibit oxidation of fresh LDL by macrophages (Stait and Leake, 

1994) and copper (Stait and Leake, 1996). The effect of pH on the antioxidant activity of 

ascorbate towards fresh LDL oxidised by 5 µM CuSO4 was tested. LDL (50 µg protein/ml) was 

incubated with CuSO4 (5 µM) in in NaCl/sodium acetate buffer (pH4.5) or MOPS buffer (pH 

7.4) in the presence or absence of 30 µM ascorbate at 37 0C. The formation of conjugated dienes 

was monitored at 234 nm at one minute intervals for about 1200 minutes (Figure 5.8A). 

Ascorbate effectively delayed the formation of conjugated dienes in LDL oxidised with CuSO4 

at pH 7.4, but after a lag time of about 100 min increased the rate of oxidation of  LDL oxidised 

with CuSO4 at  pH 4.5. Statistical analysis of the increase in attenuance at 200 min with one 
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way ANOVA (n = 3) followed by Tukey post hoc test showed that ascorbate significantly 

decreased the attenuance at pH 7.4 compared to control (p< 0.001) (Fig 5.8B). 
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Figure 5.7. The effect of existing oxidised lipids on the effect of ascorbate on LDL 

oxidation by ferritin at lysosomal pH 

LDL (50µg protein/ml) in NaCl/sodium acetate buffer (pH 4.5) was incubated with ferritin 

(0.1 µM) in the absence (red line) or presence of 30 µM ascorbate added at different time 

points, namely 0 min ( black line), 100 min (green line) and 200min (blue line) at 37
o
C in 

capped cuvettes. The formation of conjugated diene was monitored by measuring 

attenuance at 234 nm against appropriate reference cuvettes that lacked LDL. This is a 

representative of three independent experiments (A). The mean and SEM of attenuance at 

200 min were obtained for each concentration and compared by one-way ANOVA (n = 3) 

followed by a Tukey post hoc test. *** indicates P < 0.001. ≠≠≠ indicates P< 0.001 to shown 

comparison (B). 
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Figure 5.8. The effect pH on ascorbate protecting LDL from copper-mediated LDL 

oxidation  

LDL (50µg protein/ml) in NaCl/sodium acetate buffer (pH 4.5) or MOPS buffer (pH 7.4) 

was incubated with 5 µM CuSO4 in the absence or presence 30 µM ascorbate at 37
o
C in 

capped cuvettes. The formation of conjugated diene was monitored by measuring attenuance 

at 234 nm against appropriate reference cuvettes that lacked LDL. This is a representative 

of three independent experiments (A). The mean and SEM of attenuance at 200 min were 

obtained for each experiment and compared by one-way ANOVA (n = 3) followed by a 

Tukey post hoc test. *** indicates P < 0.001, ns indicates not significant (B).  

 

A 
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5.3.4 Effects of tempol on LDL oxidation by ferritin at lysosomal pH. 

Work from chapter three of this thesis suggested that oxidation of LDL by ferritin might be 

mediated by highly reactive hydroperoxyl radicals which are formed by protonation of 

superoxide radicals and this reaction is highly favoured at acidic pH. Hence, the superoxide 

dismutase mimetic property of tempol is of interest as this could prevent the formation of 

hydroperoxyl radicals and prevent LDL oxidation by ferritin. Previous work from our 

laboratory (unpublished data) demonstrated that tempol inhibited all phases of oxidation 

completely in LDL oxidised by 5 µM FeSO4 but not the lag phase. This effect was 

concentration dependent with concentration as low as 10 µM exhibiting this effect. 

 

LDL (50 µg protein/ml) was incubated with ferritin (0.1 µM) in the presence or absence of 10 

µM tempol in NaCl/sodium acetate buffer (pH 4.5) at 37
o
C. The formation of conjugated dienes 

was monitored at 234 nm at one minute intervals for about 1200 minutes (Figure 5.9A). The 

reactive oxygen species scavenging compound, tempol (10 μM) exhibited no effect on the early 

stage of oxidation of LDL by ferritin but inhibited the formation of conjugated dienes later on 

(Fig 5.9). The inhibition observed at later times was sometimes a partial inhibition, as shown 

in Fig. 5.9A, or sometimes more pronounced as shown in Fig 5.9B. Statistical analysis of mean 

± SEM increase in attenuance at 200 min with student t test (n = 6) showed the effect of tempol 

on LDL oxidation by ferritin was not statistically significant (P > 0.05) (Figure 5.9C). 
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Fig. 5.9: The effect of tempol on LDL oxidation by ferritin at lysosomal pH  

LDL (50µg protein/ml) in NaCl/sodium acetate buffer (pH 4.5) was incubated with ferritin 

(0.1 µM) at 37 0C in the absence or presence of tempol (10 μM). These results are representative 

of six independent experiments (A and B). The mean and SEM of attenuance at 200 min were 

obtained for each experiment and compared by paired Students t test (n = 6). ns indicates 

not significant (C). 
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5.3.5 Effects of DPPD on LDL oxidation by ferritin at lysosomal pH. 

DPPD has been shown to promote LDL resistance to copper-mediated oxidation (Tangirala et 

al., 1995). We tested the effect of DPPD on LDL oxidised by ferritin at lysosomal pH. Native 

LDL (50µg protein/ml) was oxidised with 0.1µM ferritin in NaCl/sodium acetate buffer (pH 

4.5) in the presence or absence of DPPD (5 µM or 10 µM). DPPD was dissolved in ethanol 

hence ethanol was added (1% v/v) in the absence of DPPD to check if it can influence LDL 

oxidation. Formation of conjugated dienes was monitored (Fig. 5.10). The presence of DPPD 

greatly inhibited the formation of conjugated dienes. Ethanol had little effect on the oxidation 

of LDL by ferritin.  

The rise in attenuance at 200 min for three independent experiments were compared using one-

way ANOVA followed by Tukey post hoc test (Fig. 5.10B). The oxidation of LDL by ferritin 

in the presence of 5 µM and 10 µM are statistically different from the control (P<0.001). 

However, the addition of 1% (v/v) ethanol exhibited a little effect on LDL oxidation. 
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Figure 5.10: The effect of DPPD on LDL oxidation by ferritin  

LDL (50µg protein/ml) was oxidized with ferritin 0.1µM in NaCl/sodium acetate buffer (pH 

4.5) at 37oC in the absence or presence of DPPD 5 µM, 10 µM and ethanol (1% v/v). The 

formation of conjugated diene was monitored by measuring attenuance at 234 nm against 

appropriate reference that lacked LDL. This is a representative of three independent 

experiments (A). The rise in attenuance at 200 min in the presence or absence of cysteamine 

(5, 10µM) and ethanol (1% v/v) in three independent experiments was determined.  Mean 

and SEM were obtained for each concentration and compared with one-way ANOVA (n=3) 

followed by Tukey’s post hoc test. *** indicates P <0.001 and * indicates P <0.05 (B). 

 

 



176 

 

5.3.6 Effect of cysteamine on LDL oxidation mediated by ferritin at lysosomal pH 

5.3.6.1 Effect of lower concentrations of cysteamine on LDL oxidation by ferritin at 

lysosomal pH  

It has been proposed that the ability of cysteamine to concentrate in the lysosomes might be of 

benefit in inhibition of LDL oxidation. It was of interest to see if cysteamine will exert on 

inhibitory effect on the oxidation of LDL by ferritin. 

LDL (50µg LDL protein/ml) was oxidised with 0.1µM ferritin in NaCl/sodium acetate buffer 

(pH 4.5) in the presence or absence of cysteamine using varying concentrations of cysteamine 

(5 µM – 1000 µM). Formation of conjugated dienes was monitored.  Cysteamine had a 

complex, but consistent, the effect on the rate of LDL oxidation. The presence of cysteamine 

slowed down the early oxidation by ferritin in a concentration-dependent manner (Fig. 5.11A). 

At later time points, cysteamine increased the rate of oxidation of LDL compared to the control 

LDL with the greatest effect seen with 25-100 µM cysteamine. All cysteamine concentrations 

decreased the time to maximum aggregation, except 1,000 µM. The rise in attenuance at 200 

min for three independent experiments were compared using one-way ANOVA followed by 

Tukey post hoc test.  The oxidation of LDL by ferritin in the presence of 250 µM and 1000 µM 

were statistically different from the control (Fig. 5.11B). 
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Fig 5.11: The effect of cysteamine on LDL oxidation by ferritin. 

LDL (50µg protein/ml) was oxidised with ferritin (0.1µM) in NaCl/sodium acetate 

buffer (pH 4.5) at 37oC in the absence or presence of cysteamine (at various 

concentration (5 - 1000 µM). The formation of conjugated dienes was monitored by 

measuring attenuance at 234 nm against appropriate references that lacked LDL. This 

is representative of three independent experiments (A). The rise in attenuance at 200 

min in the presence or absence of cysteamine (5 - 1000 µM) in three independent 

experiments was determined.  Mean and SEM were obtained for each concentration 

and compared (n=3) ANOVA followed by Tukey’s post hoc test. * indicates P <0.05 

compared to control. ≠≠ indicates P <0.01 to shown comparison (B). 
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5.3.6.2 Effect of higher concentrations of cysteamine on LDL oxidation by ferritin at 

lysosomal pH   

Up to 1.1.95g/m2/day of cysteamine is recommended to patients with nephropathic cystinosis 

over the age of 12 and weight above 50kg divided over a period of four times (Besouw et al., 

2011, Besouw and Levtchenko, 2014). The concentration of cysteamine in plasma was 

estimated to be about 40 µM. It should accumulate up in several orders of magnitude in 

lysosomes (Pisoni et al., 1995), hence millimolar concentrations would be expected to 

accumulate in the lysosomes.  

LDL (50µg LDL protein/ml) was oxidised with 0.1µM ferritin in NaCl/sodium acetate buffer 

(pH 4.5) in the presence or absence of cysteamine (1, 3 and 10mM). Formation of conjugated 

dienes was monitored (Fig. 5.12). The presence of higher concentration of cysteamine inhibited 

the formation of conjugated dienes to a large extent. The rise in attenuance at 200 min for three 

independent experiments were compared using one-way ANOVA followed by Tukey post hoc 

test. The oxidation of LDL by ferritin in the presence of 1mM, 3mM and 10 mM are statistically 

different from the control (Fig. 5.11B). However, there was no significant different between 

the two higher concentrations as compared to each. 
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Fig 5.12: The effect of higher concentrations of cysteamine on LDL oxidation by 

ferritin at lysosomal pH.  

LDL (50µg protein/ml) was oxidised with ferritin 0.1µM in NaCl/sodium acetate 

buffer (pH 4.5) at 37oC in the absence, 0 µM (red line) or presence of cysteamine 1mM 

(black line), 3mM (orange line) and 10 mM (green line). The formation of conjugated 

dienes was monitored by measuring attenuance at 234nm against appropriate reference 

that lacked LDL. This is a representative of three independent experiments (A). The 

rise in attenuance at 200 min in the presence or absence of cysteamine (1, 3 and 10mM) 

in three independent experiments was determined.  Mean and SEM were obtained for 

each concentration and compared by ANOVA followed by Tukeys post hoc test. *** 

indicates P <0.001 (B).  
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5.3.7 Effect of cysteamine on ferrous complex formation by ferritin 

 

Iron released from ferritin in the presence of cysteamine was assessed to explore the pro-

oxidant mechanism of cysteamine. Ferritin (0.1 µM) was incubated in Falcon tubes (15ml) in 

Chelex-treated NaCl/sodium acetate buffer (pH 4.5) at 37 oC in the presence or absence of 25 

µM or 1mM cysteamine. A fraction of 1ml was taken at intervals up to 24 h. BP (30 µl of 

10mM) was added at different time points and absorbance was measured at 535nm. More 

ferrous complex was formed in the presence of cysteamine (Fig. 5.13). 

The ferrous complex formed were compared for each time point, using two-way ANOVA 

followed by Bonferoni post-test. The mean ferrous complex formed by ferritin in the presence 

of cysteamine 25 µM and 1 mM (A and B) were significantly higher over time when compared 

to the controls.  
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Fig. 5.13:  The effect of cysteamine on ferrous complex formation by ferritin at pH 

4.5. 

 Ferritin (0.1 µM) was incubated at 37 ˚C in NaCl/Na acetate buffer (pH 4.5) in the absence or 

presence of cysteamine (25 µM) (A) or 1 mM (B). At different times, a sample (1 ml) was taken 

and the ferrous chelator bathophenanthroline was added, left for 5 min and the absorbance was 

measured at 535 nm. These results were obtained from mean ± SEM of three independent 

experiments. The means were compared with two-way ANOVA followed by Bonferoni 

post-test. *** indicates P <0.001 and * indicates P <0.05. 

 

 (* indicates p<0.05, *** indicates p<0.001).  
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5.4 Discussion 

 

The Oxidative modification hypothesis argues that oxidised LDL is an early event in 

atherosclerosis and oxidised LDL promotes progression of atherosclerosis. Oxidised LDL 

incites many atherogenic events (Steinberg et al., 1989). This hypothesis was supported by the  

protective effects observed with some antioxidants in animal models reviewed by Steinberg in 

2009 (Steinberg, 2009). However,  the relevence of this hypothesis is continually questioned 

due to emerging evidence of lack of antioxidant protection against CVD in human trials 

(Steinberg and Witztum, 2002). These suggest that there is a need for more understanding of 

the mechanism of LDL oxidation, identification of more appropriate antioxidants. Our 

laboratory has shown that lysosomal oxidation of LDL might account for this challenge (Wen 

and Leake, 2007) and demonstrated that some antioxidants inhibit the oxidation of LDL by 

FeSO4 less at lysosomal pH (Ahmad and Leake, 2018) than they do at interstitial fluid or 

plasma pH. This present study examined the effects of antioxidants on LDL oxidation by 

ferritin.  

 

Our laboratory has shown previously that α-tocopherol enrichment of LDL inhibits LDL 

oxidation by copper ions at pH 7.4, but it did not effectively inhibit LDL oxidation by ferrous 

iron at lysosomal pH and had an initial pro-oxidative effect (Satchell, 2008, Satchell and Leake, 

2012, Alboaklah, 2018a). In this present study, enrichment of LDL with α-tocopherol did not 

decrease the rate of oxidation of LDL by ferritin at pH  4.5 or pH 7.4. There was a tendency of 

α-tocopherol enrichment of  LDL to increase the oxidation of LDL by ferritin at pH 4.5, but 

this was not statistically significant.  The lack of antioxidant effect might be due to ferric ions 

released from ferritin (or ferrous ions released from ferritin subsequently oxidised to ferric 

ions) converting α-tocopherol to α-tocopheroxyl radicals, which are not entirely stable and can 
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abstract a hydrogen atom from the bisallylic  groups of polyunsaturated fatty acids present in 

lipids in LDL increasing lipid peroxidation (equation 1 and 2 (Bowry et al., 1992).  

  α-toc OH + Fe3+ → α-toc O. + H+ + Fe2+   eqn 1 

  α-toc O. + LH → α-toc OH + L.   eqn 2 

This pro-oxidant effect of α-tocopherol might negate the antioxidant effect of α-tocopherol 

(equation 3) leading to little net effect of this compound.  

α-toc OH + LOO. → α-toc OH + LOOH eqn 3 

This increased oxidation effects observed in ferritin oxidation of LDL enriched with α-

tocopherol supports previous evidence from our laboratory that vitamin E loses its antioxidant 

potential against Cu2+ and Fe3+ at lysosomal pH (Alboaklah, 2018a). 

The role of ascorbate in atherosclerosis remains controversial, whilst some studies have 

demonstrated an anti-atherogenic effect for ascorbate supplementation in cholesterol fed-

animals (Verlangieri et al., 1977, Beetens et al., 1984, Lynch et al., 1996). Some other studies 

have found no beneficial effect against atherosclerosis in animal models (Morel et al., 1994). 

Antioxidant and pro-oxidant effects of ascorbate against cell-mediated and cell-free LDL 

oxidation systems has been previously demonstrated (Stait and Leake, 1994, Stait and Leake, 

1996). It was demonstrated that ascorbate exhibited a concentration-dependent antioxidant and 

pro-oxidant effects on LDL oxidation by ferritin at pH 4.5.  It can be proposed that the 

antioxidant effect observed may be due to ascorbate regenerating α-tocopherol from α-

tocopheroxyl radicals (equation 4). The ascorbyl radical formed during this process can be 

converted back to its stable form by dismutation, hence ascorbate may be acting as a co-

antioxidant for α-tocopherol (Carr et al., 2000b).  Ascorbate might possibly be binding the 

ferrous iron released from ferritin and preventing it from mediating lipid peroxidation reaction. 

α-toc O. + ASC H2 → α-toc OH + ASCH.    eqn 4  
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However, antioxidants that regenerate α-tocopherol may not be the most appropriate 

antioxidants for preventing lysosomal LDL oxidation. They may not be efficient in protecting 

LDL as their antioxidant capacity might be slowed down or be lost completely when 

endogenous α-tocopherol in LDL is depleted. 

 

 The antioxidant activity of ascorbate was lost over time or in the presence of midly oxidised 

LDL. It can be suggested that the pro-oxidant effect of ascorbate may be due to (1) reduction 

of ferric iron to ferrous iron, the ferrous iron may then mediate the formation of hydroperoxyl 

radical as discussed in chapter 3. (2) The pro-oxidant effect in the presence of midly oxidised 

LDL  may be due to the released ferrous iron rapidly reacting with the pre-existing lipid 

hydroperoxides (ferric iron reacts slowly with lipid hydroperoxides equation 5 to 7).  

Ferritin-Fe3+ + ASC H2 → Ferrritin- Fe2+  + ASCH. + H+  eqn 5 

Fe2+ + LOOH → LO. + OH- + Fe3+  fast eqn 6 

Fe3+ + LOOH → LOO. + OH- + Fe2+  slow eqn 7 

Dehydroascorbate did not inhibit LDL oxidation by ferritin at lysosomal pH. A previous study 

has demonstrated that dehydroascorbate increased the oxidation of copper mediated LDL 

oxidation in fresh LDL and midly oxidly oxidisded LDL in a concentration-dependent manner 

(Stait and Leake, 1996). Similarly, in this present study dehydroascorbate promotes the 

oxidation of LDL by ferritin in a concentration-depentent manner. Varying plasma 

concentration of dehydroascorbate has been reported with 29 µM siting at the top of the list 

(Sinclair et al., 1991). Dehydroascorbate at 30 µM concentration significantly increased LDL 

oxidation by ferritin at pH 4.5 ( P<0.001). As previously discussed by Horsley et al, this pro-

oxidative effect of dehydroascorbate might be as a result of an indirect effect of its irreversible 

delactonisation product (2,3-diketo-L-gulonic acid) and reversible reduction products (ascorbic 

acid and erythroascorbate) (Horsley et al., 2007). Dehydroascorbate is capable of producing a 
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wide range of degradation product which may, in turn, produce free radicals that can mediate 

lipid peroxidation in the lipids of LDL (Takagi et al., 1988, Deutsch et al., 1994). As expected, 

ascorbate effectively inhibited LDL oxidation by  5 µM CuSO4 at pH 7.4 but had no antioxidant 

effect on oxidation of copper at lysosomal pH. The effect of ascorbate on fresh LDL oxidation 

by CuSO4 at pH 7.4 was similar to a previous observation by  Jialal et al. and others (Jialal et 

al., 1990, Stait and Leake, 1996). Similarly to result observed with α-tocoperol, ascorbate loses 

its antioxidant activity at lysosomal pH and this might be as a result of reducton of Cu2+ to Cu+ 

by ascorbate (equation 7 and 8). The Cu+ formed can rapidly react with lipid hydroperoxides 

(Stait and Leake, 1996). 

 ASC H2 + Cu2+ → ASCH. + Cu+ + H+  eqn 8 

Cu+ + LOOH → LO. + OH- + Cu2+  eqn 9 

The balance between the antioxidant and pro-oxidant effects of ascorbate (and 

dehydroascorbate) appears to be altered as the pH changes. These findings put together may 

account for the failure of vitamin E and C to decrease cardiovascular disease in large human 

clinical trials (Yusuf et al., 2000, Collins et al., 2002, Sesso et al., 2008).  

 

Tempol is suggested to be the most potent nitroxide compound in scavenging reactive oxygen 

species and possesses superoxide dismutase activity (Li et al., 2006, Wilcox and Pearlman, 

2008). Tempol completely decreases the later phases of LDL oxidation by ferrous and ferric 

iron in a concentration-dependent manner but could not inhibit the core oxidation of the 

cholesteryl ester rich core during the lag phase of ferrous/ferric oxidation of LDL (unpublished 

data). Surprisingly, tempol did not prevent the initial phase of LDL oxidation by ferritin at 

lysosomal pH but inhibited the later phase of oxidation partially and sometimes totally.  

The amphipathic property of tempol might enhance its accumulation in the outer monolayer of 

LDL containing phospholipid, rather than in the core of LDL containing mainly cholesteryl 
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ester. It was suspected that LDL oxidation by iron at lysosomal pH begins in the core of LDL 

and then later proceeds in its monolayer (Ahmad and Leake, 2018). Tempol might lack the 

capacity to quickly scavenge highly reactive hydroperoxyl radicals effectively enough to 

prevent them from mediating oxidation of the hydrophobic core of LDL, but it might be able 

to prevent the oxidation of the phospholipids surface monolayer by scavenging alkoxyl or 

peroxyl radicals formed by the phospholipids in the monolayer.  Recent work from our 

laboratory demonstrated that tempol completely inhibited LDL oxidation by copper at pH 7.4 

but loses its antioxidant capacity on the initial phase of LDL oxidation in the presence of iron 

at pH 4.5 (Alboaklah, 2018a). 

 

DPPD has been demonstrated to effectively scavenge the peroxyl radical (Tangirala et al., 

1995). In this present study, DPPD concentrations as low as 5µM and 10 µM were able to 

reduce the formation of conjugated dienes in LDL oxidised by ferritin to a large extent 

(P<0.05). Others have shown DPPD to effectively inhibit oxidation of LDL by copper and 

endothelial cells (Sparrow et al., 1992). Its hydrophobic nature is of advantage, as it can 

possibly scavenge radicals formed within the core of LDL. The ability of DPPD to inhibit LDL 

oxidation mediated by ferrous iron (Ahmad and Leake, 2018) and ferritin at lysosomal pH, 

might explain while it protected animal models against atherosclerosis. The use of DPPD in 

humans is, however, prevented by its mutagenic nature (Sofuni et al., 1990).  

A recent study from our laboratory has shown that cysteamine effectively inhibited LDL 

oxidation by ferrous iron at pH 4.5 (Ahmad and Leake, 2018). This present study showed that 

5 µM -1000 µM cysteamine protected LDL oxidation but not completely, as a later pro-oxidant 

effect was observed.  All concentrations slowed down the oxidation for about 200 min. The 
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antioxidant effect increased with the concentration of cysteamine, the two upper concentrations 

were significantly different from others and each other (P<0.05).  

 

Cysteamine contains a thiol group and thiols have previously been seen to act as promoters 

(Heinecke et al., 1993) and inhibitors of LDL oxidation (Patterson et al., 2003b). Pro-oxidant 

and antioxidant effects might depend on cysteamine concentrations in differing ways and this 

may explain the complex kinetics. From low to moderate concentrations of cysteamine, the 

pro-oxidant effect observed at later times increased, but with higher concentrations (3 mM and 

over) an antioxidant effect was seen at all times. The complexity of the effect of cysteamine 

was concentration and time dependent. The antioxidant effect observed in the presence of 

cysteamine might be due to the lower availability of iron, as cysteamine might possibly be able 

to bind to and inactivate released iron. It might also be scavenging the peroxyl radical (HO2
.) 

and superoxide radical (O2
.-) formed as oxidation products (equation 10 and 11 below).   

Proposed mechanisms for antioxidants effects of cysteamine: 

HO2
. + NH2CH2CH2SH → H2O2

 + NH2CH2CH2S.      eqn 10 

             O2
.- + NH2CH2CH2SH + H+ → H2O2

 + NH2CH2CH2S.   eqn 11 

The pro-oxidant effect observed might be due to cysteamine removing iron from ferritin, as it 

might reduce ferric ion (Fe3+) in ferritin to ferrous ion (Fe2+) which might diffuse out of the 

pores in the surface of the ferritin particle. The Fe2+ might mediate the generation of lipid 

peroxides, peroxyl radicals (HO2
.) and superoxide radicals (O2

.-) (as described in chapter 3, 

section 3.4). 
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Proposed mechanisms for prooxidants effects of cysteamine:   

NH2CH2CH2SH + Fe3+→ NH2CH2CH2S. + H+ + Fe2+   eqn 12 

It was thought that the concentration-dependent inhibition observed might mean further 

increases in cysteamine concentration will exert a near complete inhibitory effect. Plasma 

concentration of about 40µM are found in cystinosis patients (Dohil et al., 2006). Cysteamine 

is expected to accumulate up to two or three order of magnitude in lysosomes due to proton 

trapping and so lysosomal concentration might be at least several millimolar. Higher 

concentration of cysteamine (1 mM, 3 mM and 10 mM) inhibited the oxidation of LDL to a 

large extent (P<0.05).  Both low and high concentrations of cysteamine were confirmed to 

release iron from ferritin at lysosomal pH.  The antioxidant capacity of cysteamine is more 

pronounced as more cysteamine is available to scavenge free radicals or possibly bind and 

inactivate released iron. The concentrations at which cysteamine inhibited LDL oxidation by 

ferritin is consistent with the concentrations already used in the treatment of the rare lysosomal 

storage disorder cystinosis. It is interesting to note that there was an inverse correlation between 

the years of cysteamine intake by patients with cystinosis and arterial calcification (Ueda et al., 

2006). The potency of cysteamine to reduce atherosclerosis might be supported by the ability 

of cysteamine to reduce ceroid formation within lysosomes (Ahmad and Leake, 2018, Wen et 

al., submitted) and significantly reduced atherosclerotic lesions in mice (Wen et al., submitted). 

 

Work presented in this chapter suggests that the failure of some antioxidants to show protection 

against cardiovascular disease in human trials does not disprove the LDL oxidation hypothesis 

of atherosclerosis. The study, however, implies that the lysosomotropic antioxidant, 

cysteamine might be a more appropriate antioxidant in inhibiting LDL and reducing events of 

atherosclerosis. The role of ferritin and antioxidants in lysosomal oxidation has been explored 
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so far at lysosomal pH, there is however need to further explore the impact of LDL oxidised 

by ferritin within lysosomes on macrophages and atherosclerosis. This is addressed in the next 

chapter of this thesis.  
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Chapter 6: The effects of lysosomal oxidation of LDL by ferritin in 

macrophages 

 

 

 

 

 

 

 

 

 

 

 



191 

 

6.0 Background and rational 

Macrophages play a key role in the onset and progression of atherosclerosis and they regulate 

cellular immune response and metabolism of lipids (Ross, 1999, Lusis, 2000). As one of the 

major types of cells found in atherosclerotic plaque, they have great influence on inflammation, 

accumulation of lipids, formation of the necrotic core and degradation of extracellular matrix 

(Legein et al., 2013). The accumulation of lipid-laden macrophages in the walls of the artery 

is considered an early indication of an atherosclerotic lesion. Lipid-loaded macrophages (foam 

cells) triggers the mediators of inflammation such as cytokines and are able to recruit other cell 

types to contribute to the advancement of the lesions (Shibata and Glass, 2009).  

 

The uptake of VLDL, LDL and oxidised LDL by macrophages occur through phagocytosis, 

micropinocytosis, receptor-mediated endocytosis and pathways mediated by scavenger 

receptors. Lipids ingested by macrophages are digested in lysosomes (Tabas and Bornfeldt, 

2016, Remmerie and Scott, 2018). The prevailing concept of oxidative modification is that 

LDL is modified in the arterial wall and then recognised by pattern recognition receptors on 

immune cells. The type of pattern recognition receptors on macrophages are scavenger 

receptors, they were suggested to recognise and take up modified LDL. Different family 

members of this receptor have been identified, such as scavenger receptor A (SRA), scavenger 

receptor class B member 1(SRB1), CD36, lectin-type oxidised LDL receptor 1 (LOX1) and 

others which can all bind oxidised LDL and promote foam cell formation (Moore and Freeman, 

2006). However, SRA and CD36 have been identified as the major receptors responsible for 

mediating uptake and degradation of acetylated and oxidised LDL in macrophages (Kunjathoor 

et al., 2002). The foam cell formation in apoE knockout mice deficient in CD36 and SRA was 

reduced, but not completely prevented which suggests there are other mechanisms for the 

formation of foam cells in vivo (Manning-Tobin et al., 2009), suggesting there might be an 
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additional mechanism for macrophage transformation to foam cells. The in vivo relevance of 

this oxidation paradigm is challenged by the failure of antioxidants to be effective against CVD 

in large clinical trials (Steinberg and Witztum, 2002). Many types of LDL oxidation strongly 

inhibited by serum or interstitial fluid (Leake and Rankin, 1990, Dabbagh and Frei, 1995, 

Patterson et al., 2003a). These findings have led to the consideration of alternate hypotheses 

for foam cell formation. 

 

Modification of LDL by various proteases and lipases present in the arterial intima can promote 

its uptake by macrophages. Phospholipase A2 (Oorni and Kovanen, 2009) and 

sphingomyelinases (Xu and Tabas, 1991) have been shown to modify LDL to enhance its 

uptake. These events may contribute to foam cell formation, initiation and progression of 

atherosclerosis. Our laboratory proposed an alternate mechanism for oxidation of LDL, 

demonstrated that LDL is oxidised within lysosomes of macrophages (Wen and Leake, 2007) 

and suggested that LDL is aggregated by sphingomyelinase (SMase) or other means and 

rapidly taken up by macrophages and oxidised within lysosomes (Wen et al., 2015). 

Sphingomyelinase has been shown to be present extracellularly in atherosclerotic lesion 

(Marathe et al., 1999). Lysosomal oxidation of SMase-LDL mediated by iron has been shown 

to increase secretion of pro-inflammatory cytokines (Ahmad and Leake, 2019). The pro-

inflammatory cytokines produced by foam cells lead to vascular inflammation and lipoprotein 

accumulation  (Libby, 2002). The link between inflammation and plaque formation has been 

supported by numerous studies (Libby, 2002, Libby et al., 2009, Libby, 2012). Inflammation 

promotes atherosclerosis and eventually causes complications linked to thrombosis, which 

eventually leads to the clinical events, thrombotic stroke, myocardial infarction (MI) and death 

arising from CVD (Libby, 2002, Libby et al., 2009). 
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Hepcidin, the systemic iron regulatory hormone, has been demonstrated to be elevated during 

inflammation (Nemeth et al., 2004a, Wrighting and Andrews, 2006). Following up on the iron 

hypothesis of atherosclerosis discussed in chapter one of this thesis, hepcidin has been 

proposed to be linked to increased risk of atherosclerotic cardiovascular disease by reducing 

the exit of iron from macrophages and increasing their transformation to foam cells (Sullivan, 

2007). Hepcidin levels and hepcidin/ferritin ratio has been shown to be associated with 

increased atherosclerosis in post-menopausal women (Galesloot et al., 2014). The intracellular 

amount of ferritin is controlled by the intracellular labile iron pool and chelatable iron-induced 

translation of heavy and light chain mRNAs (Hentze et al., 1987, Casey et al., 1988, Gray et 

al., 1993). The pathways of ferritin regulation have been linked with inflammation, as the 

heavy chain is transcriptionally induced by cytokines.  Interleukin ( IL-1), IL-6 and TNF-α 

upregulate the post-transcriptional synthesis of ferritin (Muntane-Relat et al., 1995, Tran et al., 

1997). Thus, during the inflammatory process and when iron is trapped in macrophages by 

hepcidin, ferritin levels might also be increased. It will be interesting to understand how this is 

linked to lysosomal LDL oxidation by ferritin. 

 

Lipid peroxidation has been proposed to be a major contributor to the pathogenesis of 

atherosclerosis.  Lipid peroxidation, a free radical-mediated chain reaction propagation of 

oxidation of unsaturated fatty acids, might promote atherosclerosis by inducing transformation 

of macrophages into foam cells (Esterbauer et al., 1993, Chisolm and Steinberg, 2000, Young 

and McEneny, 2001). Ferritin has been demonstrated in a previous chapter to oxidise LDL at 

lysosomal pH, hence it is relevant to explore the effect of ferritin on lipid peroxidation within 

lysosomes of macrophages. Reactive oxygen species (ROS) have been shown to contribute to 

oxidation of LDL. ROS mediation of lipid oxidation is highly dependent on superoxide anion 

formation which can form other reactive species such as hydroperoxyl radicals, lipid peroxides 
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and peroxynitrites that can further contribute to the pathogenesis of atherosclerosis 

(Madamanchi et al., 2005, Leopold and Loscalzo, 2008). Oxidative stress has been proposed 

to be important in the onset of atherosclerosis (Witztum and Berliner, 1998) and ROS derived 

from macrophages are capable of regulating matrix metalloproteinases and might contribute to 

plaque instability (Rajagopalan et al., 1996).  

 

Macrophages undergo strong metabolic changes after activation which can, in turn, control the 

inflammatory responses. In atherosclerosis alterations in macrophage metabolism is an 

important factor that can dictate the function of macrophages and the progression of the disease. 

The mechanism of metabolism in macrophages can be modified to meet immediate cellular 

demands, such as proliferation, production of cytokines and phagocytosis (Liu et al., 2016, 

Lachmandas et al., 2016). The transformation of macrophages to classically activated 

phenotypes or the alternatively activated phenotypes requires a change in metabolic processes 

from anabolic to the catabolic mechanism, respectively. The inflammatory phenotype M1 

macrophages, which are classically activated, utilises anabolic metabolism to make up for the 

higher rate of glycolysis and the increased need for macromolecular building blocks. The ATP 

quickly generated from glycolysis serves as a source of main intermediates utilised in pentose 

phosphate pathway (PPP), which is essential for nucleotide and NADPH synthesis and other 

events. The change in metabolic pathways continues to promote ongoing and future 

inflammatory responses (Koelwyn et al., 2018). Understanding the immunometabolic 

pathways in atherosclerosis and how they can be regulated might represent a novel therapeutic 

target in treating atherosclerosis. It was of interest to understand the effect oxidation of LDL 

by ferritin within macrophages can have on their energy phenotype.  
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Macrophages that accumulate in atherosclerotic plaques become less able to migrate, which 

further contributes to inflammation and progression to a more advanced plaque. In the complex 

plaque, macrophages continue the production of proteases that can degrade the matrix and the 

macrophages eventually die by necrosis or apoptosis (Randolph, 2008, Moore et al., 2013). 

Apoptotic cell death occurs in all stages of atherosclerotic lesion development, however, 

apoptosis might have a negative impact on atherosclerotic plaque stability (Kockx, 1998, 

Kockx et al., 1998). LDL oxidised by copper at pH 7.4 has been shown to induce apoptosis in 

HMDM (Wintergerst et al., 2000). Oxidised LDL has also been shown to induce apoptosis in 

cultured cardiomyocytes from neonatal rats (Wang et al., 2016). Apoptosis mainly occurs in 

the region of the lesion where the large lipid core is found and the majority of cells that die by 

apoptosis are macrophages (Hegyi et al., 2001). The cytotoxicity of oxidised LDL towards 

HMDM has been attributed to its ability to induce apoptosis in these cells (Hardwick et al., 

1996).  Necrotic cells are characterised by loss of integrity of the cell membrane that allows an 

influx of water, Ca2+ and Na2+, which leads to swelling of cytoplasm followed by the release 

of the cellular content to extracellular space and result in inflammation (Roos et al., 2004, 

Tabas, 2005).  

 

Studies by Jerome and others have previously shown that different forms of modified lipids 

can disrupt the function of lysosomes and result in intralysosomal accumulation of lipids 

(Griffin et al., 2005, Cox et al., 2007, Jerome, 2010). Following up on this Emanuel et al. later 

demonstrated that exposure of macrophages to cholesterol crystals and oxLDL led to lysosomal 

dysfunction which is characterised by increased pH, decreased function of lysosomal enzymes 

and loss of lysosomal membrane integrity (Emanuel et al., 2014). The oxidised LDL used 

previously to demonstrate pro-atherogenic effects of oxidised LDL has mostly been produced 

by incubating with copper ions at pH 7.4. Work presented in this thesis and previously from 
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our laboratory have demonstrated that iron is important in mediating LDL oxidation within 

macrophage lysosomes (Wen and Leake, 2007, Satchell and Leake, 2012, Ahmad and Leake, 

2018), lysosomal LDL oxidation promotes formation of ceroid in lysosomes of macrophages 

(Wen and Leake, 2007, Ahmad and Leake, 2018), promote cellular senescence and disrupts 

lysosomal function by altering their pH (Ahmad and Leake, 2019).  If lysosomal dysfunction 

occurs in macrophages, the lysosomes might release their content into the cytosol, which might 

induce apoptosis and once cells die it contents might be released extracellularly to affect 

neighbouring macrophages. Further elucidation of the role of ferritin in oxidising LDL within 

lysosomes of macrophage might provide a novel insight into the role of ferritin-oxidised LDL 

in atherosclerosis. It was hypothesised that lysosomal oxidation of LDL in macrophages can 

modulate macrophage function and promote atherosclerosis. Hence, possible effects of 

lysosomal oxidation of LDL by ferritin on macrophage function as regards atherosclerosis was 

explored. 

 

6.1 Objectives 

i) To examine the role of hepcidin in influencing iron/ferritin levels in macrophages might play 

a role in lysosomal LDL oxidation. 

ii) To Test the effects of ferritin on lysosomal lipid peroxidation in macrophages.  

iii) To evaluate the effect of lysosomal ferritin-oxidised LDL on intracellular lipids levels and 

ceroid formation macrophages. 

iv) To test if ferritin-oxidised LDL can mediate oxidative stress by upregulation of intracellular 

levels of reactive oxygen species  

v) To examine the effects of ferritin-oxidised LDL on macrophages cellular respiration/ 

metabolism. 

vi) To test the effects of ferritin-oxidised LDL on apoptotic cell death of macrophages. 
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6.2 Methods 

The methods used for culturing THP-1 cells was described in section 2.7 and the isolation of 

HMDM was described in section 2.8. The effect of hepcidin on intracellular iron levels was 

tested as described in section 2.9. Lysosomal lipid peroxidation was measured with the novel 

lysosomal targettable probe (Foam-LPO) as described in section 2.10. The intracellular lipids 

and ceroid were measured using Oil Red O staining, as described in section 2.11.  Intracellular 

reactive oxygen species were measured with the fluorescent probe dihydroethidium (DHE), as 

described in section 2.12.   The effect of LDL oxidised by ferritin on respiration/metabolism 

was determined with Seahorse analyser, as described in section 2.13. The induction of 

apoptosis in macrophages was measured using propidium iodide and annexin V, as described 

in section 2.14. 

 

6.3 Results 

6.3.1 Effect of hepcidin on intracellular iron in macrophages 

Hepcidin has been associated with decreasing body iron stores and promoting iron 

sequestration in macrophages during inflammation and infection (Ganz and Nemeth, 2009). 

The link between inflammation and sequestration in macrophages of iron on oxidation of LDL 

in macrophages was therefore explored. THP-1 macrophage-like cells (1.2 x 105) derived from 

THP-1 monocytes (Fig 6.1) were treated for 24 h with or without hepcidin (1000 nM) with 

RPMI-1640 (which does not contain added iron), DMEM (which contains 2.5 µM ferric iron) 

and F10 (which contains 3 µM added ferrous iron) supplemented with 10% (v/v) FCS. The 

media was replaced after 24 h with media supplemented with 10% (v/v) LPDS containing 

hepcidin (100 nM) or media only. This was added every 2 days. The protein content per well 

and iron concentration was measured after seven days.  
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The protein content of cells treated with hepcidin was not significantly different from control 

cells for all media treatments (Fig. 6.2). Surprisingly, the iron content of THP-1 macrophages 

was not increased by hepcidin treatment (Fig. 6.3). Work by Agoro and Mura (Agoro and Mura, 

2016) suggested that the link between inflammation and hepcidin is dependent on macrophage 

polarization. Hence polarisation of THP-1 cells might make a difference in the experiments 

designed to increase macrophage iron levels by hepcidin.  It would be interesting to address 

this in future work. 
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Figure 6.1: Untreated THP1 monocytes and macrophages 

Thp1 monocytic cell line (A) and THP1 converted to macrophages after treatment 

with 25ng/ml PMA for 72 h (B). The images were captured with an Evos XL cell 

imaging system using a 20x objective. 

A 
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THP1 macrophages 

THP-1 monocytes 
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Figure 6.2: Intracellular protein content of THP1 macrophages treated with 

hepcidin 

THP-1 cells (1.2 x 105) were treated with or without hepcidin (1000 nM) in RPMI-

1640 (A), DMEM (B) or F10 (C) with 10% (v/v) FCS. The media was replaced after 

24 h with media containing 10% (v/v) LPDS with or without hepcidin (100 nM), 

added every 2 days. The protein content of cells per well was measured with a Bio-

Rad DCTM protein assay kit. The protein content of cells treated with hepcidin was 

not different compared to control cells  using paired Student’s t test (n=3). ns 

indicates not significant. 
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Figure 6.3: Intracellular iron content of THP-1 macrophages treated with hepcidin 

THP-1 cells (1.2 x 105) were treated with or without hepcidin (1000 nM) in RPMI-1640 

(A), DMEM (B) and F10 (C) with 10% (v/v) FCS. The media was replaced after 24 h with 

media containing 10% (v/v) LPDS with or without hepcidin (100 nM), added every 2 

days. The iron content of cells was measured with ICP-MS. There was no significant 

different between iron levels in  cells treated with hepcidin compared to control cells, as 

compared with paired Student’s t test (n=3). ns indicates not significant. 
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6.3.2 Effects of ferritin on lipid peroxidation within lysosomes of macrophages 

Lipid peroxidation mediated by free radicals has been linked to in vivo oxidative stress and 

associated with the lipid modification hypothesis of atherosclerosis (Niki et al., 2005).  In a 

previous chapter, it was demonstrated that ferritin increased the formation of conjugated dienes 

and total lipid hydroperoxides, both of which are products of lipid peroxidation in LDL, at 

lysosomal pH. It was of interest to test the effect of ferritin on lipid peroxidation within the 

lysosomes of cultured macrophages in order to determine if ferritin contributes to increasing 

lysosomal LDL oxidation. 

 

THP-1 macrophages (5 x 105 cells/well) treated RPMI–1640 with 10% human serum (2ml per 

well) alone or with ferritin (100 µg protein/ml in terms of total protein and this is equivalent to 

0.2 µM) for 24 h. The cells were then treated with or without LDL (200 µg protein/ml) for 24 

h to give the following condition (no LDL, native LDL only, LDL with ferritin and ferritin 

only). After the 48 h treatment with ferritin and LDL, the intralysosomal lipid peroxidation was 

measured by two-way flow cytometry (using the green (FL1) and the red (FL2 channel), 

following treatment with Foam-LPO (2 µM) for 15 min in the dark. The lysosomal targettable 

probe is flexibly linked to a diene-fluorophore, the Foam-LPO is intercalated in the lipid 

accumulation and can detect the local lipid peroxidation within lysosomes. Foam-LPO detects 

the peroxidation by spectral shifting. Hence, lysosomal lipid peroxidation was quantified by 

the ratio of the intensity of the fluorescent green channel to that of the red channel (FL1/FL2). 

The analysis was carried using flow Jo software version 10.   

 

The results showed that ferritin with or without native LDL significantly increased lipid 

peroxidation (P <0.001) (Figs. 6.4 & 6.5). A significant difference was seen with ferritin alone 

as well as ferritin plus LDL. Ferritin plus LDL was significantly different (P< 0.001) from 
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native LDL only and control (p <0.05). While treatment with LDL only was not significantly 

different compared to control. 

 

LDL aggregated with sphingomyelinase has been demonstrated to be present in atherosclerotic 

lesions (Marathe et al., 1999) and rapidly taken up by macrophages and oxidised in lysosomes 

(Wen et al., 2015, Ahmad and Leake, 2019). The mechanism of SMase aggregation of LDL 

was described in detail in section 1.5.5 and measured in fig. 2.1. THP1- cells and HMDM cells 

were treated with or without ferritin (0.2 µM) for 24 h. We then incubated with or without 

SMase-LDL (200 µg protein/ml), respectively. We analysed for lipid peroxidation using the 

lysosomal targeted probe. The results showed that lysosomal lipid peroxidation increased in 

the presence of ferritin in THP-1 macrophages (P < 0.001) and HMDM (P<0.01) (Fig. 6.6).  

The results show that ferritin with or without SMase-LDL can mediate lysosomal lipid 

peroxidation in macrophages.  
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Figure 6.4: Two-way flow cytometry analysis of lipid peroxidation in THP-1 

macrophages 

THP1-cells were treated with or without ferritin (0.2 µM)  for 24 h and then incubated in 

the presence or absence of native LDL (200 µg protein/ml) for 24 h. THP1-cells were 

harvested and incubated with the lysosomal lipid peroxidation probe, Foam-LPO (2 µM) 

for 15 min and assayed by flow cytometry. The ratio of FL1/FL2 corresponds to the level 

of lipid peroxidation as detected by the Foam-LPO (A) Flow cytometry results for untreated 

macrophages (control cells) and macrophages treated with native LDL. (B) Flow cytometry 

results for control cells and macrophages pre-treated with ferritin and then treated with 

native LDL. (C) Flow cytometry results for control cells and macrophages pre-treated with 

ferritin. The image shown is a representative of three independent experiments. 
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Figure 6.5: Measurement of lipid peroxiation in THP-1 macrophages in the 

presence of native LDL and ferritin. 

THP1-cells were treated  with or without ferritin for 24 h and then treated with or 

without native LDL (200 µg protein/ml) for 24 h. THP1-cells were then incubated with 

the lysosomal lipid perorixidation probe, Foam-LPO (2 µM) for 15 min. The lysosomal 

lipid peroxidation was determined by two-way flow cytometry and quantified by the 

ratio of intensity of fluorescence of  the green channel compared to that of  the red 

channel (FL1/FL2) using Flow Jo software. The ratio of intensity was compared for 

the treated cells and control cells using one-way ANOVA followed by a Tukey’s post 

hoc test (n=3). * indicates  P < 0.05 and *** indicates P<0.001 compared to control 

cells. ≠≠≠ indicates P < 0.001 for the indicated comparison.  
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Figure 6.6: Measurement of lipid peroxiation in THP-1 macrophages and HMDM in 

the presence of SMase-LDL and ferritin. 

THP1-cells (A) or HMDM cells (B) were treated  with or without ferritin for 24 h and then 

treated with or without SMase-LDL (200 µg protein/ml) 24 h. THP1-cells were then 

incubated with the lysosomal lipid perorixidation probe, Foam-LPO (2 µM) for 15 min. 

The lysosomal lipid peroxidation was determined with a two-way flow cytometry and 

quantified by the ratio of intensity of fluorescence of green channel to that of red channel 

(FL1/FL2) using Flow Jo software. The ratio of intensity was compared for the treated cells 

and control cells using one-way ANOVA followed by a Tukey’s post hoc test (n=3). * 

indicates  P < 0.05 and *** indicates P<0.001 compared to control cells. ≠≠ indicates P < 

0.01 and ≠≠≠ indicates P < 0.001 for the shown comparison.  

 

 

A 

B 



207 

 

6.3.3 Effects of ferritin on intracellular lipids and ceroid 

Ceroid is an advanced product of oxidation of lipids which consists of complex polymerised 

insoluble lipids and proteins and has been demonstrated to be present both intracellularly and 

extracellularly in atherosclerotic lesions (Mitchinson et al., 1985, Haka et al., 2011). Both 

intracellular lipids and ceroid can be detected using Oil Red O, however, detection of ceroid 

requires removal of other lipids using organic solvents using ethanol and xylene as previously 

described by Ball et al. (Ball et al., 1988). Wen and Leake (2007) have previously demonstrated 

ceroid formation in lysosomes of HMDM and J774 cells treated with aggregated LDL (Wen 

and Leake, 2007). Having established that ferritin might upregulate lipid peroxidation in 

lysosomes of human THP1 macrophages and HMDM, it was of interest to examine the effects 

of ferritin on intracellular lipids and the formation of the advanced product of oxidation, ceroid.  

 

THP-1 cells (45,000) were plated on sterilised coverslips in two 6-well tissue cultured plates. 

In each plate, three wells were pre-treated with 100 µg protein/ml (0.2 µM) ferritin for 24 h. 

Cells were washed with PBS and incubated for 24 h with RPMI only (2 ml), native LDL (200 

µg protein/ml) or SMase-LDL (200 µg protein/ml). After the 24 h treatment, the cells were 

then washed with PBS and the medium was replaced with medium containing 10% (v/v) 

lipoprotein deficient serum. This was replaced every two days for each plate for seven days 

and the cells in one plate were stained for intracellular lipids and the other for ceroid. The 

intracellular lipids and ceroid were measured by calculating the mean integrated density of at 

least 50 cells expressed as the percentage decrease compared to the cells treated with SMase-

LDL and ferritin.   

 

The levels of intracellular lipids with native LDL or SMase-LDL were significantly increased 

in the presence of ferritin (Fig. 6.7 & 6.8). The intracellular lipid significantly increased with 
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native LDL to 80 ± 5 % (of that with SMase-LDL and ferritin) in the presence of ferritin 

compared 63 ± 3% with native LDL only. The intracellular lipid levels with SMase-LDL 

addition was also increased in the presence of ferritin compared to when cells were treated with 

SMase-LDL only (P < 0.001).  Similarly, the levels of ceroid in the cells were significantly 

higher in the presence of ferritin (Fig. 6.9 & 6.10). SMase-LDL treatment alone showed 

significantly lower amount of ceroid compared to SMase-LDL with ferritin (P < 0.001). The 

ceroid levels in cells treated with SMase-LDL was significantly greater compared to native 

LDL (P< 0.05). The percentage of ceroid in cells treated with or without native LDL was also 

increased with the presence of ferritin (P < 0.05). The increase in the ceroid compared to the 

controls (no LDL) was much greater than the increase in the intracellular lipids compared to 

controls (no LDL). Overall these results show that ferritin can be a source of iron in lysosomal 

LDL oxidation in macrophages and might contribute to the significant increase in the advance 

lipid oxidation product ceroid found in atherosclerotic lesions. Experiments were normalised 

with cell numbers. 
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Figure 6.7: Detection of intracellular lipids in THP-1 macrophages  

 

THP-1 cells (4.5 X 104) cultured on sterilised coverslips were incubated with or without 

100 µg protein /ml   (0.2 µM) ferritin for 24 h. Cells were washed with PBS and treated 

with RPMI only (2 ml) or with native LDL (200 µg protein/ml) or with or without 

SMase-LDL (200 µg protein/ml) and the treatment was left for another 24 h. After seven 

days incubation in RPMI medium containing LPDS, the treated cells were stained for 

intracellular lipids using Oil Red O and images was taken with light microscopy. Scale 

bar is 100 µm. This is a representative of three independent experiment. 
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Figure 6.8: Measurement of percentage intracellular lipids in THP-1 macrophages  

THP-1 cells (4.5 X 104) cultured on sterilised coverslips were incubated with or without  100 

µg protein /ml   (0.2 µM) ferritin for 24 h. Cells were washed with PBS and treated with RPMI 

only (2 ml) or with native LDL (200 µg protein/ml) or with SMase-LDL (200 µg protein/ml) 

and the treatment was left for another 24 h. After seven days incubation in RPMI medium 

containing LPDS, the treated cells were stained for intracellular lipids using Oil Red O. The 

levels of intracellular lipids was quantified with ImageJ by measuring the mean intensity of 

at least 50 cells for each treatment and presented as percentage intracellular lipids in relation 

to cells treated with ferritin and SMase-LDL. Treated cell were compared by one way 

ANOVA (n=3 independent experiments). ** indicates P < 0.01) and *** indicates P<0.001 

compared to SMase-LDL plus ferritin. ≠ indicates P < 0.05 for the indicated comparison.  
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Figure 6.9: Detection of  ceroid in lysosomes of THP-1 macrophages  

THP-1 cells (4.5 X 104) cultured on sterilised coverslips were incubated with or without 

100 µg protein /ml   (0.2 µM) ferritin for 24 h. Cells were washed with PBS and treated 

with RPMI only (2 ml) or with native LDL (200 µg protein/ml) or with SMase-LDL (200 

µg protein/ml) and the treatment was left for another 24 h. After seven days incubation in 

RPMI medium containing LPDS, soluble lipids were removed with organic solvents 

(ethanol and xylene) and the treated cells were stained for ceroid using Oil Red O and 

images were taken by light microscopy. Scale bar is 100 µm. This is representative of three 

independent experiments. 
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Figure 6.10: Measurement of percentage ceroid in THP-1 macrophages  

THP-1 cells (4.5 X 104) cultured on sterilised coverslips were pre-treated with or without 

100 µg protein /ml   (0.2 µM) ferritin for 24 h. Cells were washed with PBS and treated 

with RPMI only (2 ml) or with native LDL (200 µg protein/ml) or with SMase-LDL (200 

µg protein/ml) and the treatment was left for another 24 h. After seven days incubation in 

RPMI medium containing LPDS, soluble lipids were removed with organic solvents and 

the treated cells were stained for ceroid using Oil Red O. The levels of ceroid was quantified 

with ImageJ by measuring the mean intensity of at least 50 cells for each treatment and 

presented as percentage ceroid in relation to cells treated with ferritin and SMase-LDL. 

Treated cell were compared by one way ANOVA (n=3 independent experiments). * 

indicates P < 0.05) and *** indicates P<0.001. ≠ indicates P < 0.05 and ≠≠ indicates P < 

0.01 for the shown comparison.  
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6.3.4 Effects of ferritin-oxidised LDL on intracellular ROS in macrophages 

Intracellular reactive oxygen species generated in macrophages have been suggested to play a 

key role in atherogenesis by mediating signalling pathways that can contribute to the onset and 

progression of atherosclerotic lesion (Singh and Jialal, 2006). We measured the intracellular 

levels of reactive oxygen species in macrophages using the fluorescent probe, DHE which has 

been frequently used as the probe to measure the levels of intracellular superoxide (Wardman, 

2007).  THP-1 cells were incubated with pre-warmed RPMI – 1640 media alone (2 ml per well) 

or containing either NaCl/sodium acetate buffer (10% as a vehicle control for the oxidised 

LDL) or ferritin (0.2 µM) or LDL (50 µg protein/ml) or ferritin-oxidised LDL (50 µg 

protein/ml). The cells were also treated with these conditions in the presence or absence of 

cysteamine (40 µM). The cells were then washed twice with PBS and mounted with 

fluorescence mounting media containing DAPI. Images were captured using fluorescent 

microscopy and intensity of DHE staining was quantified using ImageJ software and compared 

with one-way ANOVA (n=3) followed by Tukey post hoc test. 

 

The results showed that the intracellular level of reactive oxygen species was increased 

significantly in cells treated with oxidised LDL (Fig. 6.11), the cells treated with LDL only and 

ferritin only was not significantly different from the controls. This indicates that ferritin-

oxidised LDL can promote the generation of reactive oxygen species in macrophages. The 

effect of the antioxidant cysteamine on intracellular reactive oxygen species was tested. 

Cysteamine (40 µM) significantly reduced intracellular levels of ROS in cells (Fig. 6.12). Cells 

treated with cysteamine had significantly less amount of reactive oxygen species compared to 

the controls. 
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Figure 6.11: Effect of ferritin-oxidised LDL on THP-1 cells intracellular ROS 

THP-1 macrophages (4.5 x104) were plated on cover slips in 6 well sterile tissue culture 

plates. The cells were incubated in RPMI medium (containing 10% (v/v) FCS) (A), with 

sodium acetate buffer pH4.5 (10% (v/v) as a vehicle control) (B), with native LDL (50 μg 

protein/ml) (C), ferritin (0.1 μM) (D) or ferritin-oxidised LDL (50 μg protein /ml) for 24 h 

(E). The cells were then washed with PBS and incubated with 10 μM DHE for 30 min in the 

dark at 37 oC in a non CO2 incubator, washed with PBS and mounted using fluorescence 

mounting medium containing DAPI. The images were captured using an Axioimager 

epifluorescent microscope using a 20x objective. (F) Shows the increase in fluorescence 

intensity of DHE after treatments (n=3 independent experiments). *** indicates P<0.001 

compared to the control cells. ≠≠≠ indicates P < 0.001 for the shown comparison 
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Figure 6.12: Effect of cysteamine on ROS formation induced by ferritin-oxidised LDL 

 

THP-1 macrophages (4.5 x104) were plated on cover slips in 6 well sterile tissue culture 

plates. The cells were incubated in RPMI medium (containing 10% (v/v) FCS), with sodium 

acetate buffer pH 4.5 (10% (v/v) as a vehicle control), with native LDL (50 μg protein/ml), 

ferritin (0.1 μM) or ferritin-oxidised LDL (50 μg protein/ml) for 24 h. All conditions were 

incubated with or without cysteamine (40 μM). The cells were then washed with PBS and 

incubated with 10 μM DHE for 30 min in the dark at 37 oC in a non CO2 incubator, washed 

with PBS and mounted using fluorescence mounting medium containing DAPI. The images 

were captured using an Axioimager epifluorescent microscope using a 20x objective. The 

fluorescence intensity of DHE was compared by one way ANOVA (n=3 independent 

experiments). ** indicates P < 0.01) and *** indicates P<0.001 compared to the cells 

without cysteamine. 
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6.3.5 Effect of ferritin oxidation of LDL on cellular respiration/metabolism in THP1-cells 

The metabolic energy phenotype was measured using Agilent Seahorse XF technology. 

Glycolysis has been suggested to be important in fuelling inflammation and the progression of 

atherosclerosis (Groh et al., 2018). The effects of LDL oxidation by ferritin on the metabolic 

pathways in macrophages were tested. THP-1 cells (6 x104) in Seahorse tissue culture wells 

were incubated with or without ferritin (0.2 µM) for 24 h.  They were then incubated for 24 h 

in RPMI medium alone or with native LDL (100 µg protein/ml). The metabolic and energy 

phenotype was then determined by measuring the oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR). Difference between control and treated cells were 

determined by two-way ANOVA followed by Bonferroni’s post-test. 

 

The oxygen consumption rate in cells treated with LDL and ferritin showed a significant 

increase (P <0.001), but no significant increase was observed with LDL only (Fig. 6.13). The 

treatment with LDL and ferritin caused significant increase in the OCR (P < 0.001) in all 

measurements made after the addition of the stressor mix oligomycin and FCCP compared to 

control cells and a decreased oxygen uptake over time. The ECAR followed a similar pattern, 

the extracellular acidification rate significantly increased in the presence of ferritin and LDL. 

The results suggest that the cells were more energetic and metabolically activated after 

treatment hence becoming more glycolytic (Fig. 6.14).  
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Figure 6.13: Time course of effect of ferritin and LDL on metabolism of macrophages 

 

THP-1 macrophages (6 x104 per well) were cultured in sterile Seahorse tissue culture plates 

with ferritin (0.2 μM) for 24 h. They were then incubated in RPMI medium alone or native 

LDL (100 μg protein/ml) for 24 h. The cells were then washed with XF base media 

containing glucose, glutamine and pyruvate as fuels and analysed to determine the 

metabolic phenotype measuring the OCR and ECAR. The OCR and ECAR over time were 

compared for the treated cells and control using two-way ANOVA followed by a 

Bonferroni’s post-test (n=4).  *** indicates P < 0.001.  
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Figure 6.14: Effects of LDL and ferritin on metabolism of macrophages  

 

THP-1 macrophages (6 x104 per well) were grown in 8 well Seahorse sterile tissue culture 

plates. The control cells were incubated with or without ferritin (0.2 μM) for 24 h. The cells 

were the incubated in RPMI medium or with native LDL (100 μg protein/ml) for 24 h. The 

cells were then washed and incubated with XF base media containing glucose, glutamine 

and pyruvate as fuels. The cells were then analysed to determine their metabolic phenotype. 

The cells were stressed with oligomycin, FCCP, and the energy phenotype before (unfilled 

squares) and after (filled in squares) the stressor mix were measured. The result was 

analysed with Seahorse bioscience Wave software. This is a representative of four 

independent experiments. OCR is oxygen consumption rate and ECAR is extracellular 

acidification rate. 
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6.3.6 Effect of ferritin-oxidised LDL on macrophages cell death 

 The ability of LDL oxidised by ferritin to induce cell death in THP-1 macrophages was tested. 

 THP-1 cells (5 x 105 cells per well) were cultured in RPMI-1640 containing 10% FCS (v/v) 

either alone or in the presence of NaCl/sodium acetate buffer (pH 4.5) (10%) or native LDL 

(100 µg protein/ml) or ferritin alone (0.2 µM) or ferritin-oxidised LDL (100 µg protein/ml). 

After 48 hours of incubation the proportion of cells that were live or undergoing apoptosis, 

necrosis or secondary necrosis were assayed using flow cytometry.  

 

The externalisation of phosphatidylserine, which is a measure of apoptosis, was determined by 

the binding of FITC-labelled annexin V. The permeability of the plasma membrane to 

propidium iodide was used as a measure of necrosis. Significantly lower levels of live cells 

were detected in cells treated with ferritin and ferritin-oxidised LDL.  The percentage of cells 

that were alive, apoptotic, necrotic or secondary necrotic was determined by the measurement 

of the levels of annexin V and PI they contained (Figures 6.15 & 6.16) using flow cytometer. 

Higher levels of apoptotic cells were observed in cells treated with ferritin and oxidised LDL. 

The levels of apoptotic cells present in ferritin and ferritin-oxidised LDL treated cells were 

significantly higher compared to control cells and cells treated with LDL (P <0.001). However, 

the level of necrotic cells observed was very low in all treatments and there was no statistically 

significant difference compared to control cells. The levels of secondary necrotic cells 

(apoptosis followed by permeabilisation of the plasma membrane) was significantly higher in 

cells treated with ferritin-oxidised LDL compared to control (P < 0.01) and cells treated with 

LDL alone (P < 0.01). A proportion of the toxic effects observed was due to the presence of 

ferritin itself. However, the toxic effect was enhanced in the presence of ferritin-oxidised LDL 

(which would have contained ferritin).        
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Figure 6.15: Flow cytometry analysis of ThP1 macrophages cell death 

Ferritin-oxidised  LDL prepared by incubating (1 mg LDL protein/ml) with 2 µM ferritin 

at 37˚C for 24 h in NaCl/sodium acetate buffer (pH 4.5). THP-1 cells (5 x 105 cells per 

well) were then cultured in RPMI-1640 containing 10% FCS (v/v) either alone or in the 

presence of NaCl/sodium acetate buffer (pH 4.5) (10%) or native LDL (100 μg 

protein/ml) or ferritin (0.2 μM) alone or ferritin-oxidised LDL (100 μg protein/ml). After 

incubation for 48 h the cells were harvested and assayed by flow cytometry. The results 

were analysed using the BD Biosciences C6 flow cytometer software. The abscissa 

shows annexin V binding and the ordinate shows the PI content. The data shown is a 

representative of three independent experiments. 
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Figure 6.16: Effects of ferritin-oxidised LDL on apoptosis in THP-1 macrophages 

Ferritin-oxidised  LDL prepared by incubating (1 mg LDL protein/ml) with 2 µM ferritin at 

37˚C for 24 h in NaCl/sodium acetate buffer (pH 4.5). THP-1 ells (5 x 105 cells per well) 

were then cultured in RPMI-1640 containing 10% FCS (v/v) either alone or in the presence 

of NaCl/sodium acetate buffer (pH 4.5) (10%) or native LDL (100 μg protein/ml) or ferritin 

(0.2 μM) alone or ferritin-oxidised LDL (100 μg protein/ml). After incubation for 48 h the 

cells were harvested and assayed by flow cytometry. The apoptotc cells were measured by 

externalisation of phosphatidyl serine determined by the FITC-labelled annexin V binding 

and necrosis was measured by membrane permeability to propidium iodide (PI). The 

percentage of live cells (A), necrotic cells (B), apoptotic cells (C) and secondary necrotic 

cells (D) was compared by a one-way ANOVA followed by a Tukey’s post hoc test (n=3). 

* indicates P < 0.05, ** indicates P < 0.01 and *** indicates P < 0.001. ≠≠ indicates P < 

0.01 and ≠≠≠ indicates P < 0.001 for the shown comparison.  
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6.4 Discussion 

Macrophages are well recognised to play an important role in all stages of atherosclerosis, as 

they constitute major cellular components of early and advanced atherosclerotic lesions (Glass 

and Witztum, 2001). The sustained recruitment of macrophages and continuous pro-

inflammatory mediators in the lesion supports the growth of the lesion and instability of the 

plaque. The balance between macrophages maintaining their function, survival,  apoptosis and 

clerance from the lesion environment is a major determining factor of the progression and the 

fate of atherosclerotic lesions (Tano et al., 2012). This thesis reported in previous chapters of 

that ferritin is a possible candidate for lysosomal LDL oxidation at lysosomal pH. In this 

present chapter, we investigated the role of ferritin in promoting the oxidation of LDL in the 

lysosomes of macrophages and the possible effects of this oxidation on macrophage function 

and atherosclerosis. 

 

Studies investigating the role of body iron stores in CVD have remained inconclusive (Moore 

et al., 1995, Meyers et al., 2002, Ganz, 2005, Peffer et al., 2013). This inconclusive evidence 

might because the association is not driven by plasma iron levels but driven by the distribution 

of iron in macrophages, hepatocytes and enterocytes, as determined by serum hepcidin levels 

(Galesloot et al., 2015). An attempt was made to upregulate intracellular iron levels and ferritin 

levels through the addition of hepcidin up to 1000 nM. The result showed that hepcidin did not 

significantly increase the iron levels in THP-1 macrophages. The reason for this observation is 

unclear, as hepcidin has been previously demonstrated to decrease iron concentration in blood 

but increase intracellullar levels of iron in macrophages by binding to and downregulating the 

iron transporter ferroportin 1 (FPN1). FPN1 is known as the sole iron transporter responsible 

for the outflow of iron from cells. The decrease in the quantity of FPN1 in hepatic and splenic 
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macrophages by hepcidin decreases the ability of macrophage iron efflux (Zhao et al., 2013). 

Contrary to our result, a previous study by Chung et al. showed that exposure of THP-1 

macrophages to 300 and 1000 nM hepcidin decreased FPN1 expression and caused a decrease 

in duodenal iron and serum iron. However, they did not measure the intracellular iron levels in 

THP-1 macrophages. They reported that the efflux of iron from Caco-2 cells was significantly 

reduced by addition of hepcidin, although in addition to hepcidin the Caco-2 cells received 10 

μM iron in form of FeCl3 and the  THP-1 macrophages used was transformed with twice the 

amount of PMA used in our experiment (Chung et al., 2009).  RPMI 1640 (which does not 

contain added iron) was used, but also F10 and DMEM media (which contain iron) could not 

increase the iron levels inside the macrophages. Work by Agoro and Mura also suggested that 

macrophage polarisation plays a role in the relationship between hepcidin and intracellular 

macrophage iron levels (Agoro and Mura, 2016). Hence in the future experiment, the 

introduction of an external source of iron and tranformation of THP-1 macrophages to the M1 

phenotype would be considered. 

 

Macrophages treated with SMase-LDL have recently been demonstrated to exhibit increased 

lysosomal lipid peroxidation (Ahmad and Leake, 2019). Lipid peroxidation in LDL increases 

the atherogenicity of LDL (Steinbrecher, 1991), hence the role of ferritin in lysosomal lipid 

peroxidation were determined. The cells were pre-incubated with ferritin to allow it to be be 

endocytosed and delivered to the lysosomes and then followed up with treatment with either 

native LDL or SMase-LDL. Cells that were pretreated with ferritin had a significant increase 

in levels of lysosomal lipid peroxidation, as shown by the lysosomally targetted lipid 

peroxidation probe Foam-LPO. The increase in lysosomal lipid peroxdation suggests that 

ferritin has the potential to promote the oxidation of LDL  inside the inflammatory cells, 

macrophages. Our laboratory has shown that SMase-LDL is rapidly endocytosed by 
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macrophages and it was mainly deposted in the lysosomes where it was oxidised by iron  (Wen 

et al., 2015, Wen et al., submitted). Aggregated forms of LDL are notable features of 

atherosclerotic lesions and they are powerful inducers of foam cell formation in atherosclerotic 

lesions (Hoff and Morton, 1985, Guyton and Klemp, 1996, Tabas, 1999). LDL aggregated by 

sphingomyelinase is one of the most feasible mechanisms for LDL aggregation in vivo 

(Pentikiiinen et al., 1996). The addition of SMase-LDL and ferritin also promoted increased 

lipid peroxidation in the same pattern in both THP-1 macrophages and HMDM. The Foam-

LPO itself consists of a conjugated diene group which can undergo oxidation in lysosomes and 

can cause spectral shifting (Zhang et al., 2015). The increased green to red ratio also signifies 

more potential for lipid peroxidation in the presence of ferritin with or without SMase-LDL. 

The competition between the probe and Smase-LDL for oxidation by ferritin might be 

responsible for the slightly lower peroxidation when SMase-LDL was present. These 

experiments support the possibility that ferritin might catalyse lipid peroxidation in lysosomes.  

 

Our laboratory has previously shown that cultured THP-1 (Ahmad and Leake, 2019)  J774 cells 

and HMDM (Wen and Leake, 2007) treated with aggregated LDL formed increased ceroid in 

their lysosomes and this can be attributed to iron-catalysed oxidation. In this present study, our 

results showed that ceroid was increased considerably in the presence of ferritin and and was 

increased further when SMase-LDL was added, much more than the intracellular lipids were 

increased. Potentially importantly, this suggests that ferritin may be a key factor in releasing 

catalytically active iron that can mediate LDL oxidation in lysosomes of macrophages.  

 

Studies have shown that oxLDL stimulates the intracellular production of ROS in 

macrophages, VSMCs and endothelial cells (Hsieh et al., 2001, van Aalst et al., 2004, 
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Zmijewski et al., 2005). The superoxide radical is one of the major reactive oxygen species, 

and work presented in chapters three and five of this thesis suggested that the superoxide radical 

and its protonated form, hydroperoxyl radicals, might be involved in lysososomal LDL 

oxidation by ferritin. Here it was shown that ferritin-oxidised LDL can induce increased 

formation of reactive oxygen species in THP-1 macrophages. Increased levels of reactive 

oxygen species can be prevented by antioxidants that can scavenge free radicals. Cysteamine 

demonstrated strong ability to reduce the formation of conjugated dienes in LDL oxidised with 

ferritin. Cysteamine significantly reduced the formation of reactive oxygen species in THP-1 

cells treated with ferritin-oxidised LDL. In this context, it is interesting that  Vendrov et al 

showed that limiting the production of superoxide in macrophages/monocytes or other cells of 

the vessel wall caused decreased atherogenesis (Vendrov et al., 2007).  

 

Oxidised LDL has been demonstrated to induce an inflammatory response in macrophages (Li 

et al., 2010, Lara-Guzmán et al., 2018). Induction of a pro-inflammatory reasponse in 

macrophages is characterised by a shift in metabolic pathways to glycolysis leading to 

decreased uptake of oxygen (Fukuzumi et al., 1996, Rodriguez-Prados et al., 2010) and 

reduction in oxidative phosphorylation (Haschemi et al., 2012, Freemerman et al., 2014). 

Metabolic pathways have a central role in the function of immune cells and many studies have 

utilised lipolysaccharide (LPS) to understand the effects of inflammation on metabolic 

pathways in macrophages. Shirai et al. explored the effects of stimulating monocytes on their 

metabolic pathways. LPS and IFNγ-stimulated monocytes from healthy individuals had a lower 

oxygen consumption rate (OCR) and extracellular acidificaion rate (ECAR) compared to 

monocytes isolated from atherosclerotic patients which demonstrated increased glycolytic flux, 

(Shirai et al., 2016). Treatment of macrophages with LPS and IFNγ is well known to produce 

the pro- inflammatory macrophages (M1 macrophages) and treatment of bone marrow-derived 
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macrophages with LPS and IFNγ significantly upregulated glycolytic pathways significantly 

(Liu et al., 2016). This present study showed that treatment of THP-1 macrophages with 

ferittin, especially in combination with LDL, which can promote lysosomal oxidation of LDL, 

significantly increased their oxygen uptake (P <0.001) and  also the ECAR was signifuicantly 

increased (P <0.001) Overall  these results showed that there was increased glycolysis and 

aerobic capacity in the macrophages and the macrophages became more metabolically 

activated. This might enhance the macrophages’ pro-inflammatory response. In addition, it 

might acidify the extracellular space and further promote atherosclerosis (Leake, 1997). 

 

Cell death caused by oxidised lipoprotein is believed to be important in lesion progression. 

Different oxidised lipid products of LDL have been demonstrated to be cytotoxic to cells, lipid 

hydroperoxides (Siow et al., 1999a) as well as oxysterols (Colles et al., 2001a),  have been 

demonstrated to be cytotoxic to cells. Pevious work by Gerry and Leake (Gerry and Leake, 

2008) has demonstrated that oxysterol-rich LDL was more cytotoxic to macrophages than LDL 

with high levels of lipid hydroperoxides. The most potent cytotoxic substance out of these two 

products of LDL oxidation remains controversial as previous work by Siow et al showed that 

lipid hydroperoxide-rich LDL was more toxic than hydroperoxide-rich LDL to smooth muscle 

cells (Siow et al., 1999a). Other products of LDL oxidation, such as aldehydes, have also been 

shown to be cytotoxic (Esterbauer et al., 1991c). Oxidised phospholipids have also been shown 

to be cytotoxic to macrophages (Stemmer et al., 2012) and fibroblasts (Colles and Chisolm, 

2000). Work presented in this chapter has demostrated that ferritin–oxidised LDL can induce 

apoptosis, but not primary necrosis, in cultered THP-1 macrophages.  The toxicity of ferritin-

oxidised LDL was not unexpected. Ferritin oxidation of LDL promoted the formation of 7-

ketocholesterol, CLOOH and total hydroperoxides and all these oxidised lipid products have 

been demostrated to be cytotoxic. Ferritin-oxidised LDL also increased the level of ROS in 
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cells and this might possibly mediate induction of apoptosis in cells. The role of ROS in 

prommoting apoptosis was previously reviewed by  Simon et al. (Simon et al., 2000). 

 

Data presented in this chapter demonstrated that ferritin can also mediate some of the effects 

observed with ferritin-oxidised LDL, such as apoptosis and lipid peroxidation.  It was 

speculated that the iron-rich protein, ferritin, can be endocytosed by macrophages and delivered 

to the lysosomes where it can release its iron to catalyse redox reactions and mediate lysosomal 

lipid peroxidation. The continuous oxidation process in the lysosomes mediated by iron 

released from ferritin might lead to destabilisation of these organnelles and cell death. Recent 

work from our laboratory has demonstrated that lysosomal LDL oxidation mediated by iron 

can lead to increased lysosomal pH (Ahmad and Leake, 2019), which might cause loss of 

lysosomal function (Ohkuma and Poole, 1978). There is also evidence that lysosomal 

destabilisation and loss of funtion mediated by iron-catalysed redox reactions less can cause 

enzymes to leak and trigger apoptotic cell death (Guicciardi et al., 2004, Aits and Jäättelä, 

2013). 

 

Work presented in this chapter lends support to the ability of ferritin to oxidise  LDL within 

the lysosomes of macrophages and possible promotion of atherogenesis. Further experiments 

are required to further explore the upregulation of iron and ferritin by hepcidin within 

macrophages in relation to lysosomal LDL oxidation. However, there is evidence that ferritin 

promotes lysosomal lipid peroxidation, causes increased formation of the advanced lipid 

oxidation products ceroid and activates macrophages making them more metabolically active 

and glycolytic. Ferritin-oxidised LDL was also shown to increase the intracellular generation 



228 

 

of reactive oxygen species in macropohages and promote apototic cell death. Overall, all these 

events have pro-atherogenic consequences. 
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7.0 General Discussion 

Modification of LDL is important in the onset and advancement of atherosclerotic lesions 

(Jialal and Devaraj, 1996). Oxidised LDL exerts effects on many in vitro activities of vascular 

cells, which includes proliferation, inflammatory response, migration and cell death. The 

majority of these effects are consistent with its enhanced pro-atherogenic nature (Berliner and 

Heinecke, 1996, Steinberg, 1997b, Mehta and Li, 2005). Several mechanisms have been 

postulated for the oxidation of LDL in vivo (Yoshida and Kisugi, 2010, Maiolino et al., 2013). 

The precise mechanisms and site of modification of LDL in vivo remain debatable. Jerome 

suggested that accumulation of lipids in the lysosomes is an important component in 

atherosclerosis (Jerome, 2006). Some studies have suggested a link between interference of 

autophagy and increased atherosclerosis (Ouimet et al., 2011, Razani et al., 2012) and the 

enhancement of autophagic-lysosomal biogenesis has been suggested as a plausible mechanism 

for reducing atherosclerotic cardiovascular diseases (Sergin et al., 2017). The lysosomes are 

indispensable intracellular organelles responsible for the degradation of both intracellular and 

extracellular cargo including lipoproteins (Sergin et al., 2015). The lysosomal compartment is 

suggested to be rich in redox active iron since many macromolecules derived from heterophagy 

or autophagy might be degraded to release iron into lysosomes, hence it is suggested to have 

the highest amount of redox active iron (Petrat et al., 2001, Kurz et al., 2007, Lv and Shang, 

2018). These events make lysosomes a possible site for LDL oxidation.  

 

As mentioned earlier in this thesis, our laboratory (Wen and Leake, 2007) was first to identify 

lysosomes as a site for LDL oxidation and proposed iron as the possible mediator of the 

oxidation LDL in lysosomes.  Studies have suggested the presence of transition metals (Lamb 

et al., 1995) and iron in particular in atherosclerotic lesions (Yuan et al., 1996, Lee et al., 1998, 

Stadler et al., 2004).  Since most of the transition metals in vivo are tightly bound to prosthetic 
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groups or sequestered by proteins, the question of how the free copper or iron ions can be 

available in significant enough amounts to mediate LDL oxidation is a debated topic (Halliwell 

and Gutteridge, 1990, Mukhopadhyay and Fox, 1998).  Our laboratory (Satchell and Leake, 

2012, Ahmad and Leake, 2018) later explored the mechanisms by which Fe2+ and Fe3+ can 

mediate lysosomal LDL oxidation with respect to the possible treatment of the disease with 

antioxidants. Previous work from Balla et al. and others (Balla et al., 1991, Abdalla et al., 

1993, Lamb and Leake, 1994c, Lamb and Leake, 1994b, Mukhopadhyay et al., 1996, 

Rodriguez-Malaver et al., 1997, Grinshtein et al., 2003) have identified some metal-ion binding 

proteins that can possibly contribute to oxidation of LDL. However, the exact role of iron 

binding proteins in lysosomal LDL oxidation is yet to be explored in great detail and if there is 

a pathophysiological role for the main iron storage protein ferritin in lysosomal LDL oxidation 

in vivo.   

 

Work presented in this thesis has demonstrated that ferritin is a candidate for oxidation of LDL. 

It was shown for the first time the novel contributions ferritin might have as a major iron-

storage protein to the oxidation of LDL at lysosomal pH and within lysosomes of macrophages. 

The present study utilised different independent methods to assess the ability of ferritin to 

promote formation of products of oxidation in human LDL. The method for continuously 

measuring conjugated dienes formation in LDL established by Esterbauer and colleagues three 

decades ago (Esterbauer et al., 1989b), is still widely accepted and applied in the research 

community to access the kinetics of LDL oxidation. The experiments were conducted with 

LDL were incubated with 0.1 µM ferritin in terms of total protein content (which was measured 

to contain iron centration of 100 µM). The rate of oxidation as measured by the formation of 

conjugated dienes over time was different from the FeSO4-induced oxidation, in the sense that 

there were less distinctive rapid and slow phases of oxidation. There was extensive oxidation 
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of LDL by ferritin at pH 4.5, but very little or no oxidation was observed at normal interstitial 

fluid or plasma pH (pH 7.4). It was expected that ferritin oxidation may progress more in the 

lysosomes rather than interstitial fluid or plasma because of substantial antioxidant protection 

that is present in arterial intima (Leake and Rankin, 1990, Dabbagh and Frei, 1995). Our data 

showed that ferritin spontaneously released iron at lysosomal pH without requiring the activity 

of lysosomal protease, in contrast to what was earlier suggested by Kidane and colleagues 

(Kidane et al., 2006).  As much as 15 µM iron was demonstrated to be released form ferritin 

over 24 h  which is similar to the 16 µM concentration that Petrat et al found in lysosomes of 

endothelial cells from rat Liver (Petrat et al., 2001). The iron chelators EDTA and DTPA 

slowed down the oxidation of LDL by ferritin at lysosomal pH significantly, thus the ferritin-

mediated LDL oxidation is mainly due to the iron released from ferritin at pH 4.5. 

 

The data obtained from HPLC and tri-iodide assays lend support to the ability of ferritin to 

oxidise LDL at lysosomal pH. It revealed that ferritin promotes formation of oxidised lipids in 

LDL (7-ketocholesterol and cholesteryl linoleate hydroperoxide). Elevated levels of 7-

ketocholesterol were observed in patients with CAD was compared to patients with normal 

arteries. The increase in 7-ketocholesterol correlated with the events of myocardial infarction 

and increased C-reactive proteins providing a link between 7-ketocholesterol levels and 

inflammation (Hitsumoto et al., 2009) and increased atherosclerotic cardiovascular events 

(Hitsumoto et al., 2009, Song et al., 2017).  Walter et al., also showed that elevated lipid 

hydroperoxides were a predictive factor for cardiovascular events and this prediction was 

independent of inflammatory markers and other risk factors of CVD (Walter et al., 2008). 

Hence oxidised products from LDL oxidation by ferritin at lysosomal could potentially 

promote atherosclerotic cardiovascular events. 
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Lysosomes with a pH between 4.5 and 5.0 (Mindell, 2012) consist of over sixty types of 

hydrolytic enzymes (Xu and Ren, 2015) and lysosomal enzymes such as cathepsins might 

possibly influence the progression of CVD by contributing to inflammation and apoptosis 

(Lutgens et al., 2007). The effects certain lysosomal proteases might have on lysosomal LDL 

oxidation by ferritin were demonstrated. The results obtained showed that oxidation of LDL 

by ferritin occurred in the presence of the proteolytic enzymes cathepsins B and D. However, 

there was no significant difference between oxidation mediated by ferritin pre-treated with 

cathepsins. This observation might be attributed to the lack of degradation products observed 

in ferritin after treatments with cathepsins B and D when analysed with SDS-PAGE. The 

ApoB-100 component of LDL was evidently susceptible to degradation by cathepsin D, 

showing that the cathepsin D was active. Ferritin is highly resistant to proteolysis by the major 

endoproteases cathepsins D and B and thus might survive in lysosomes for long periods of 

time.  Treatment with cathepsins B and D increased LDL oxidation by ferritin, which suggests 

that the lysosomal oxidation of LDL by ferritin might accelerate during the lysosomal 

degradation of LDL.  

 

We described the impact of treating LDL with a lipolytic enzyme on its rate of oxidation. Co-

incubation of LDL with cholesteryl esterase from Pseudomonas sp increased the rate of the 

initial phase of oxidation. Cholesteryl esterase might degrade the core cholesteryl esters into 

fatty acids and cholesterol allowing free radicals generated from ferritin-iron more access to 

PUFA such as Linoleic acid and arachidonic acid and hence increased conjugated diene 

formation.  Lysosomal enzymes released by human macrophages modified LDL in vitro 

(Hakala et al., 2003). The modification of LDL by processes such as proteolysis, lipolysis and 

oxidation carried out in vitro has helped in producing LDL particles similar to those found in 

atherosclerotic lesions and thus contributed to more understanding of the disease. The results 
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presented here demonstrated that ferritin might continually oxidise LDL even after 

modification by enzymes in lysosomes. 

 

Due to the novel suggested lysosomal LDL oxidation mechanisms involving redox active iron 

and ferritin-iron, there is a need to reconsider the choice of appropriate antioxidants in the 

treatment of atherosclerosis. Antioxidants that can be targeted to the lysosomes and able to 

prevent the oxidation in the core of LDL appear to be more appropriate. The failure of human 

antioxidant clinical trials that mainly used α-tocopherol (Yusuf et al., 2000, de Gaetano, 2001, 

Collins et al., 2002, Cook et al., 2007, Sesso et al., 2008) did not mean that modified LDL 

lacks pro-atherogenic properties. It rather suggests the need for a better understanding of the 

mechanisms involved and a better approach with selection of appropriate antioxidants to reduce 

atherogenic events caused by oxidised LDL.  Work presented in this thesis and previously 

(Ahmad and Leake, 2018) suggested that the free radicals superoxide and its protonated form, 

HO2
 
̇ are involved in ferritin and FeSO4 oxidation of LDL. Hence the antioxidant of choice 

must also possess strong ability to scavenge superoxide and the highly reactive HO2
 
̇. The 

question of why the antioxidants used have failed in large clinical trials of CVD persists. It 

should be noted that we showed the inability of enrichment of LDL with α-tocopherol to 

prevent LDL oxidation by ferritin at lysosomal pH. This supported previous findings from our 

laboratory have shown that α-tocopherol has both pro-oxidant and antioxidant effects on LDL 

oxidation by FeSO4 (Satchell and Leake, 2012, Alboaklah, 2018b). This might help to explain 

why the large antioxidant trials using α-tocopherol did not succeed. It was also shown that 

vitamin C did not effectively inhibit the oxidation of LDL by ferritin at lysosomal pH. The data 

showed that the antioxidant properties of ascorbate were lost over time in the presence of lipid 

hydroperoxides. Ascorbate was not a strong inhibitor of oxidation at pH 4.5 compared to pH 

7.4, where it completely inhibited oxidation by CuSO4. We found that the reduced form of 
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vitamin C, dehydroascorbate was a pro-oxidant and increased oxidation of LDL by ferritin. 

Hence these vitamins might not be the most efficient choice of antioxidants in preventing 

lysosomal LDL oxidation by ferritin.  

 

Tempol has superoxide dismutase mimetic properties (Luo et al., 2009)  and reduced the later 

oxidation phase of LDL, but notably had no effect on the early phase of LDL oxidation.  HO2
 
̇ 

is a strong oxidant which can initiate lipid peroxidation even in the esterified cholesterol core 

of LDL, due to its ability to pass through the phospholipid monolayer of LDL. The amphipathic 

nature of tempol might prevent it from entering the hydrophobic core of LDL. This might allow 

the initial oxidation of the esterified cholesterol rich core of LDL by hydroperoxyl radicals to 

proceed uninhibited.  Tempol, being amphiphilic, might enter the phospholipid monolayer of 

LDL and inhibit the later oxidation of LDL here. Like ascorbate, tempol was able to completely 

inhibit LDL oxidation mediated by copper at pH 7.4 but loses this ability at lysosomal pH 

(Alboaklah, 2018a). Hence antioxidants that are able to maintain their activities at lysosomal 

pH might be important in reducing the development of atherosclerosis. 

 

DPPD and cysteamine showed more potential in preventing LDL oxidation. However, the use 

of DPPD in humans is prevented due to its mutagenic nature (Sofuni et al., 1990). But drugs 

with analogous antioxidant properties to DPPD and not mutagenic can be synthesised, which 

might be a plausible treatment for atherosclerosis. Antioxidants that can concentrate in 

reasonable concentrations in lysosomes would, however, be more beneficial. Cysteamine is 

drug well tolerated by humans and it is currently in use for treatment of cystinosis (Gahl et al., 

2002). Although cysteamine had complex effects on LDL oxidation by ferritin at lower 

concentrations, the concentrations equivalent to what would be present in lysosomes were 

highly effective in inhibiting LDL oxidation by ferritin at lysosomal pH. Cysteamine has the 
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ability to scavenge superoxide radical (Sunman et al., 1993). Cysteamine has now been 

demonstrated as a possible treatment for atherosclerosis. The study revealed the inhibitory 

effects of cysteamine on LDL oxidation in the lysosomal environment. Cysteamine also 

reduced atherosclerotic lesions in mice lacking LDL receptors fed a high fat diet by 33% (Wen 

et al., submitted). Recent work from our laboratory showed that cysteamine decreased ceroid 

formation in macrophages incubated with sphingomyelinase-aggregated LDL (Ahmad and 

Leake, 2018).  

 

It is noteworthy that lysosomes are of significant importance in biomedicine as lysosomal 

enzymes and lysosomal alterations are linked to a number of human diseases (Lübke et al., 

2009). The overexpression of lysosomal proteins and lysosomal acid lipase was demonstrated 

to promote atherosclerosis (Zschenker et al., 2006). The animal models and human 

atherosclerotic lesions contain many macrophage foam cells with lipid-engorged lysosomes 

(Jerome and Yancey, 2003, Jerome et al., 2008). It was important to answer the question of the 

role lysosomal ferritin-mediated LDL oxidation might play in the lysosomes of macrophages 

and the progression of atherosclerosis. We attempted to investigate how existing inflammation 

can increase the iron and ferritin levels in macrophages can influence lysosomal LDL 

oxidation. Nevertheless, this investigation was unsuccessful, as surprisingly we were unable to 

upregulate intracellular iron with hepcidin treatment.  

 

 Atherosclerosis is a direct example of a disease amplified by a lipid peroxidation process and 

the transformation of macrophages to lipid-laden cells is well acknowledged as the starting 

phase of atherosclerosis (Esterbauer et al., 1993). Elevated lipid peroxides were found in 

atherosclerotic tissue compared to the normal human aorta (Piotrowski et al., 1990). It was 

established that the presence of ferritin increased intracellular lipid levels, lysosomal lipid 
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peroxidation and percentage ceroid formation in lysosomes of macrophages. These three events 

have major implications for the onset and progression of atherosclerotic lesions. Our laboratory 

has previously demonstrated that J774 mouse macrophages and HMDM treated with additional 

iron or ferritin generated more 7-ketocholesterol (Wen and Leake, 2007). Sphingomyelinase 

aggregation of LDL produces ceramide, which has been suggested to enhance uptake through 

endocytosis by causing invagination of the cellular membrane (Holopainen et al., 2000). 

SMase-LDL is increasingly taken up rapidly by macrophages (Wen et al., 2015).  Wen and 

Leake treated macrophages with acetylated LDL and ferritin.  It is interesting, to see ferritin 

also promotes lipid oxidation and ceroid in human THP-1 macrophages treated with the more 

pathophysiological SMase-LDL and native LDL. 

 

White et al earlier suggested that development of atherosclerosis involves peroxynitrite 

formation from nitric oxide and superoxide (White et al., 1994). Superoxide or its protonated 

form the hydroperoxyl radical is proposed to oxidise LDL in lysosomes (Ahmad and Leake, 

2019).  Measuring intracellular levels of superoxide was therefore relevant to atherosclerosis. 

We used the fluorescent probe DHE, as it has high affinity for superoxide (Wardman, 2007) 

(but also has a non-specific affinity for peroxynitrite and hydroxyl radicals)  (Gomes et al., 

2005, Kalyanaraman et al., 2012). We reported that LDL oxidised by ferritin at lysosomal pH 

enhances the formation of reactive oxygen species in THP1- macrophages. The potency of 

cysteamine in protecting the cells from increased reactive oxygen species was demonstrated, 

as there was significant reduction of ROS in the presence of cysteamine. 

 

 It was also reported here that ferritin and ferritin-oxidised LDL produced in vitro induced 

apoptosis and secondary necrosis in cultured macrophages. These findings imply that, if cells 

have extensively oxidised LDL in lysosomes and the oxidised LDL is released, possibly due to 
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lysosomal destabilisation or cell death, the released oxidised LDL might increase oxidative 

stress or apoptosis in those cells or neighbouring cells. There is evidence that intralysosomal 

redox reactions can cause leakage from lysosomes and trigger apoptosis and necrosis of cells 

(Brunk et al., 2001, Guicciardi et al., 2004). Hence, it would be appropriate to suggest that 

ferritin-mediated oxidation of LDL is a possible redox-iron driven reaction that can occur in 

lysosomes and trigger apoptosis. 

 

The role of apoptosis in atherosclerosis depends on the disease stage. The occurrence of 

apoptosis in early lesions is likely to be beneficial, as phagocytic events may still occur 

efficiently to clear foam cells before they induce an inflammatory response. However in 

advanced lesions, the clearing of apoptotic cells is less efficient and they might contribute to 

inflammation and necrotic core formation (Tabas, 2005, Schrijvers et al., 2005). Cells might 

release their content, such as prothrombotic molecules and matrix metalloproteinases, which 

can cause thrombogenic events and degradation of ECM (Mallat et al., 1999, Mallat and 

Tedgui, 2000, Kenagy et al., 2011). Consequently, they can promote plaque vulnerability and 

make them more prone to rupture (Tabas, 2005).  Thus, apoptosis induced by ferritin-oxidised 

LDL might be detrimental to atherosclerosis. It was suspected that the lysosomal oxidation of 

LDL partly by ferritin might contribute to atherosclerosis and in advanced lesions to apoptosis 

would contribute to plaque instability. 

  

Previous studies have shown that activated macrophages show enhanced glycolysis along with 

decreased oxygen uptake. Monocytes stimulated with LPS switched towards a more glycolytic 

pathway which was suggested to be due to an increase in hypoxia inducible factor (HIF- 1α) 

enhanced by NF-κB. HIF-1α causes an increase in uptake of glucose by upregulating the 

synthesis of GLUT-1 glucose transporter (Tawakol et al., 2015, Groh et al., 2018). The study 
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reports that the extracellular acidification rate and oxygen consumption rate were significantly 

increased in cells treated with ferritin and LDL.  The treatment of THP1- macrophages with 

LDL and ferritin appears to be driving cells towards a more energetic state (with greater rather 

than less oxygen consumption).  This metabolic switch is attributed to the pro-inflammatory 

phenotype (Koelwyn et al., 2018).  It would be relevant in the future to observe the effects 

lipopolysaccharide (LPS) might have on the effects observed. Ahmad and Leake (Ahmad and 

Leake, 2019) have recently shown that native LDL and SMase-aggregated LDL increased  

LPS-induced secretion of pro-inflammatory cytokines. Hence LDL oxidation by ferritin in 

lysosomes of macrophages might also elicit a pro-inflammatory effect and contribute to 

acidifying the extracellular space.  Inflammation (Libby, 2012)  can promote atherogenesis and 

acidification might also do so (Leake, 1997). Figure 7.1 shows a schematic diagram of the 

possible events involving lysosomal LDL oxidation by ferritin can contribute to atherogenesis. 
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Figure 7.1: The role of Lysosomal LDL oxidation by ferritin in macrophages and 

atherosclerosis. 

Lysosomal LDL oxidation induced by iron released from ferritin might play an important 

role in atherosclerosis. LDL or aggregated LDL (such as SMase-LDL) are taken up by 

macrophages and targetted to lysosomes for degradation. Extracellular and intracellular 

ferritin is also delivered to the cells through endocytosis and autophagy. The acidic 

environment of lysosomes can enhance the release of redox active iron, which can oxidise 

LDL. This process leads to increased intracellular lipids, increased lysosomal lipid 

peroxidation and lysosomal ceroid accumulation that transforms the macrophages to foam 

cells. The accumulation of lipids in the lysosomes can cause lysosomal dysfunction and 

cause the contents to leak, which can then release oxidised LDL into the extracellular space. 

The lysosomal LDL oxidation can promote release of pro-inflammatory cytokines such as 

TNF-α, IL-6 and MCP-1 causing more macrophages to be recruited which can take up 

oxidised LDL. The oxidised LDL can promote ROS generation and increased macrophage 

cell death. The lysosomal dysfunction can also lead to the inability cells to clear dead cells 

by phagocytosis and promote the activation of the inflammasome upregulating IL-1β; these 

can contribute to the pro inflammatory response. All these events might promote 

atherogenesis.  
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7.1 Critical evaluation of the present study 

7.1.1 Summary of main findings 

Atherosclerosis is a multifactorial disease, with complex events involved in the pathogenesis. 

This thesis provides answers to some important questions in relation to the onset, progression 

and considerations for treatment of atherosclerosis. The main findings of the present research 

work can be summarised as follows:  

• Ferritin effectively promotes LDL oxidation at lysosomal pH as shown by increased 

conjugated diene formation and higher amount of oxidised lipids in the presence of 

ferritin. 

 

• The oxidation was much faster at lysosomal compared to interstitial fluid or plasma pH, 

which was demonstrated to be as a result of more iron release from ferritin at lysosomal 

pH. The contribution of ferritin-iron to the oxidation of LDL was further demonstrated 

by the ability of the iron chelators EDTA and DTPA to inhibit this oxidation. 

 

• Oxidation of LDL by ferritin proceeded in the presence of lysosomal cathepsins B and 

D. The proteolysis and lipolysis of LDL enhanced its susceptibility to oxidation by 

ferritin. Ferritin showed remarkable resistance to proteolytic degradation by cathepsin 

B and D, hence it may take longer to be degraded in the lysosome and have a longer 

time to oxidise LDL. 

 

• LDL oxidation by ferritin was not inhibited by α–tocopherol enrichment of LDL or 

dehydroascorbate.  Ascorbate or had both pro-oxidant and antioxidant effects on LDL 

oxidation by ferritin.   
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• Tempol slowed down the later, but not the early phase of oxidation of LDL by ferritin, 

possibly by scavenging lipid radicals in the phospholipid monolayer of LDL. The 

lysosomotropic antioxidant, cysteamine was shown to be the most appropriate 

antioxidant in preventing oxidative modifications of LDL by ferritin at lysosomal pH. 

 

• Incubation of macrophages with ferritin promoted intralysosomal lipid peroxidation in 

human macrophages. The presence of ferritin increased intracellular lipids and 

intralysosomal ceroid formation in human THP-1 macrophages. 

 

• Ferritin-oxidised LDL induced increased intracellular formation of reactive oxygen 

species that might further contribute to the pathogenesis of atherosclerosis and 

cysteamine significantly reduced the generation of reactive oxygen species in human 

THP-1 macrophages. 

 

• Macrophages treated with ferritin and LDL became activated and glycolytic compared 

to untreated THP1-macrophages. Ferritin–oxidised LDL induced apoptosis in human 

THP1-macrophages. 

 

7.1.2 Limitations of the study 

Although it was established that ferritin caused increased lipid peroxidation in THP-1 

macrophages and human monocytes derived macrophages in a similar way, it would be of 

advantage to also conduct all other experiments in HMDM as well. However, this could not be 

achieved due to time and financial constraints. We could not increase iron and ferritin levels in 

macrophages to try to increase lysosomal LDL oxidation and did not do in vivo work (there is 

no mouse knockout model for ferritin, as it is embryonically lethal if homozygous). 
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7.2 Possible future work 

Building on previous research from our Laboratory, the findings presented in this thesis offers 

some new insights into the lysosomal LDL oxidation theory. The role of ferritin in human 

diseases is currently generating interest within the cardiovascular research community.  This 

presents the opportunity to undertake further work within this topical area, which would add 

more value to this field of research.  Further investigation could include: 

 

• Characterise phospholipid oxidation products in LDL oxidised by ferritin by liquid 

chromatography-electrospray ionisation mass spectrometry. 

• Characterise the oxidised lipids in LDL pre-treated with enzymes (cathepsin D and B) 

prior to oxidation by ferritin and test the possible effects of LDL oxidation by ferritin 

on LDL degradation and explore the effects of other lysosomal proteases on oxidation 

of LDL by ferritin. 

• LPS and IFN-γ stimulated macrophages could be treated with hepcidin in the presence 

or absence of iron. The upregulation of iron could be measured using ICP-MS and 

increase in ferritin levels determined with western blot for ferritin heavy and light 

chains. The effect of these on lysosomal LDL oxidation could be monitored by ceroid 

detection.  

• As part of another study, the plasma concentrations of ferritin and iron could be 

compared to those in macrophages of the LDL receptor knock out mice and also stain 

for ferritin in the atherosclerotic lesions with or without the novel anti-atherosclerotic 

drug cysteamine.  

The results of these studies might further demonstrate the link between ferritin and CVD 

and provide evidence for increased ferritin levels as a well-defined biomarker in the 

incidence of atherosclerosis and development of CVD. 
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Appendices  

Appendix 1: List of chemicals and suppliers 

 

Chemicals Supplier 

Acetic Acid Sigma-Aldrich Ltd 

Acetonitrile (HPLC grade) Sigma-Aldrich Ltd 

Apoferritin from equine spleen (443kDa) Sigma-Aldrich Ltd 

Ammonium molybdate Sigma-Aldrich Ltd 

Ammonium persulphate Fisher Scientific Ltd 

Amphotericin B Sigma-Aldrich Ltd 

Apoptosis Kit Biolegend 

Bathophenanthrolinedisulfonic acid Sigma-Aldrich Ltd 

Bio-Rad DCTM protein assay Bio-Rad 

Bovine serum albumin (BSA) Invitrogen Ltd 

Benzalkonium chloride Sigma-Aldrich Ltd 

Beta-hydroxytoluene Sigma-Aldrich Ltd 

Beta-Mercaptoethanol Fisher Scientific Ltd 

Butanol Sigma-Aldrich Ltd 

Cathepsin B (43 kDa) (Native human cathepsin B) Abcam 

Cathepsin D (45 kDa)(from human liver) Sigma-Aldrich Ltd 

Cell staining buffer Biolegend 

Chelex-100 Sigma-Aldrich Ltd 

Cholesterol esterase from Pseudomonas sp. Sigma-Aldrich Ltd 

Cholesterol linoleate hydroperoxide Cayman chemicals 
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Coomassie brilliant blue R BDH Chemicals Ltd 

Copper sulphate Fisher Scientific Ltd 

Cysteamine hydrochloride Sigma-Aldrich Ltd 

DAPI  (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Fisher Scientific Ltd 

Diethylenetriaminepentaacetate (DTPA) Sigma-Aldrich Ltd 

Dihydroethidium Sigma-Aldrich Ltd 

Dipotassium hydrogen orthophosphate Fisher Scientific Ltd 

Disodium hydrogen orthophosphate Fisher Scientific Ltd 

Dulbecco’s modified Eagle’s medium Invitrogen Ltd 

Ethanol Sigma-Aldrich Ltd 

Ethylenediaminetetraacetic acid disodium salt (EDTA) Sigma-Aldrich Ltd 

F10 medium Invitrogen Ltd 

Ferric chloride Sigma-Aldrich Ltd 

Ferrous sulphate Sigma-Aldrich Ltd 

Ferritin from equine spleen (440kDa) Sigma-Aldrich Ltd 

Fetal calf serum (FCS) Sigma-Aldrich Ltd 

Fluorescence mounting medium Global Science 

Folin and Ciocalteu phenol reagents Fisher Scientific Ltd 

Glycerol Fisher Scientific Ltd 

Glycine Fisher Scientific Ltd 

GM-CSF Sigma-Aldrich Ltd 

Hexane (HPLC grade) Sigma-Aldrich Ltd 

Human Hepcidin-25 peptide Abcam 

Human serum Sigma-Aldrich Ltd 

Hydrochloric acid Fisher Scientific Ltd 

Hydrogen peroxide Fisher Scientific Ltd 

Isopropanol (HPLC grade) Fisher Scientific Ltd 
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7-Ketocholesterol Sigma-Aldrich Ltd 

Magnesium chloride Sigma-Aldrich Ltd 

Methanol (HPLC grade) Sigma-Aldrich Ltd 

3-N-[Morpholinopropane] sulphonic acid Fisher Scientific Ltd 

N,N′-Diphenyl,1,4-phenylenediamine (DPPD) Sigma-Aldrich Ltd 

N, N,N,N’-tetraacetylenediamine Sigma-Aldrich Ltd 

Paraformaldehyde Sigma-Aldrich Ltd 

Penicillin/streptomycin Sigma-Aldrich Ltd 

Potassium acetate Sigma-Aldrich Ltd 

Potassium bromide Fisher Scientific Ltd 

Potassium chloride Fisher Scientific Ltd 

Potassium dihydrogen orthophosphate Fisher Scientific Ltd 

Potassium hydroxide Fisher Scientific Ltd 

Potassium iodide Sigma-Aldrich Ltd 

Potassium sodium tartrate Fisher Scientific Ltd 

RPMI Invitrogen Ltd 

Sodium acetate Sigma-Aldrich Ltd 

Sodium azide Sigma-Aldrich Ltd 

Sodium carbonate Fisher Scientific Ltd 

Sodium chloride Fisher Scientific Ltd 

Sodium deoxycholate Sigma-Aldrich Ltd 

Sodium dihydrogen orthophosphate Fisher Scientific Ltd 

Sodium hydrogen carbonate Fisher Scientific Ltd 

Sodium hydroxide Fisher Scientific Ltd 

Sodium dodecyl sulphate Sigma-Aldrich Ltd 

Sphingomyelinase from Bacillus cereus Sigma-Aldrich Ltd  

Tris-HCl Fisher Scientific Ltd 
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Triton X-100 Sigma-Aldrich Ltd 

 

Appendix 2: Quantity of iron contained in ferritin. 

Ferritin 15 µl of 53 mg protein/ml obtained from Sigma digested in 1ml nitric acid (5M) and 

made up to 50 ml was analysed using AAS. 

Atomic weight of Fe is 55.84  

1M Fe is 55.84 g/l 

Top standard (5 mg/l) = 89.54 µM 

Linear trend line equation is Y= 0.0358x - 0.0004 

0.0358x - 0.0004 = Y 

0.0358x = Y + 0.0004 

x = (Y + 0.0004) / 0.0358 

Where Y=0.07186 (mean absorbance of sample) 

x = (0.07186 + 0.0004) / 0.0358 = 2.018mg/l 

5 mg/l = 89.54 µM 

2.018 mg/l = 36.14 µM 

36.14 µM = 36.14 µmol/l 

1 l contains 36.14 µmol 

50 ml of ferritin contains 1.807 µmol Fe 

15 µl of ferritin solution has 1.807 µmol Fe 

1 ml of ferritin solution = (1000 x 1.807) /15 = 120.5 µmol Fe 

1 ml of ferritin has 120.5 µmol 

The ferritin concentration obtained from Sigma is 53mg protein/ml 

53mg has 120.5 µmol Fe 

1 g protein = 120.5 x 1000 / 53 =2,274 µmol Fe 
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= 2.274 mmol  

 Molecular weight of ferritin obtained from Sigma is 440kDA 

440,000g protein has 440,000 x 2.274 mmol Fe =1,000,560 mmol Fe = 1,001 mol Fe 

Therefore 1,001 atoms of Fe per ferritin particle. 

Concentration of iron in ferritin in the spectrophotometer 

1 M ferritin = 1001 M Fe 

1 µM ferritin = 1001 µM Fe 

0.05 µM ferritin contains 50.05 µM Fe 

0.1 µM ferritin contains 100.1 µM Fe 

0.2 µM ferritin contains 200.2 µM Fe 
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Appendix 3: Quantity of iron contained in Apoferritin. 

Apoferritin 35.5 µl of 25 mg protein/ml obtained from Sigma digested in 1ml nitric acid (5M) 

and made up to 10 ml mark was analysed using AAS. 

Atomic weight of Fe is 55.84  

Top standard (5 mg/l) = 89.54 µM 

Linear trend line equation is Y= 0.0509x - 0.0031 

0.0509x - 0.0031 = Y 

0.0509x = Y + 0.0031 

x = (Y + 0.0031)/ 0.0509 

Where Y=0.00646 (mean absorbance of sample) 

x = 0.00646 + 0.0031 / 0.0509= 0.188mg/l 

5 mg/l = 89.54 µM 

0.188 mg/l = 3.36µM 

3.36 µM = 3.36µmol/l 

1 l contains 3.36 µmol 

10 ml of apoferritin nitric digest contains 0.0336 µmol 

35.5 µl of apoferritin has 0.0336 µmol 

1 ml of apoferritin = 1000 x 0.0336 /35.5 = 0.9465µmol 

1 ml of apoferritin has 0.9465 µmol 

The apoferritin concentration obtained from Sigma is 25mg protein/ml 

25mg apoferritin has 0.9465 µmol Fe 

1 g protein = contains 0.9465 x 1000 / 25 = 37.86µmol Fe 

= 0.03786mmol Fe 

1g of protein has 0.03786 mmol of Fe 
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M Wt of apoferritin= 443kDA 

443,000g =443,000 x 0.03786 mmol Fe =16,772 mmol Fe = 17 mol Fe 

Therefore 17 atoms of Fe per apoferritin particle 

1 M apoferritin = 17 M Fe 

1 µM apoferritin = 17 µM Fe 

0.2 µM apoferritin contains 3.4 µM Fe                                                                                                                     

0.1 µM apoferritin contains 1.7 µM Fe 

0.05 µM apoferritin contains 0.85 µM Fe 

 


