

A novel role for the glutamate decarboxylase system in Listeria monocytogenes; protection against oxidative stress

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Boura, M., Brensone, D. and Karatzas, K.-A. G. (2020) A novel role for the glutamate decarboxylase system in Listeria monocytogenes; protection against oxidative stress. Food Microbiology, 85. 103284. ISSN 0740-0020 doi: https://doi.org/10.1016/j.fm.2019.103284 Available at https://centaur.reading.ac.uk/85402/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1016/j.fm.2019.103284

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading Reading's research outputs online

A novel role for the glutamate decarboxylase system in *Listeria monocytogenes*; protection against oxidative stress

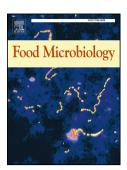
Marcia Boura, Dace Brensone, Kimon A.G. Karatzas

PII: S0740-0020(19)30666-5

DOI: https://doi.org/10.1016/j.fm.2019.103284

Reference: YFMIC 103284

To appear in: Food Microbiology


Received Date: 28 June 2019

Accepted Date: 30 July 2019

Please cite this article as: Boura, M., Brensone, D., Karatzas, K.A.G., A novel role for the glutamate decarboxylase system in *Listeria monocytogenes*; protection against oxidative stress, *Food Microbiology* (2019), doi: https://doi.org/10.1016/j.fm.2019.103284.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

A novel role for the glutamate decarboxylase system in Listeria monocytogenes; protection against oxidative stress Marcia Boura¹, Dace Brensone¹, Kimon A.G. Karatzas^{1*} 1. Department of Food & Nutritional Sciences, University of Reading, Reading, United Kingdom * Authors for correspondence Dr. Kimon Andreas G. Karatzas Department of Food & Nutritional Sciences University of Reading, Whiteknights, PO Box 226 Reading RG6 6AD UK Room 3-38 Tel. +44 118 378 6678 Fax. +44 118 931 0080 Email: k.karatzas@reading.ac.uk

Abstract	t
Abstract	İ

The GAD system is widely present in several types of organisms and is known to play an important role in bacterial acid tolerance. There is only one account of this system playing a role in oxidative stress in bacteria and one in yeasts. Here we show for first time that it affects the oxidative stress resistance of a Gram-positive bacterium, (L. monocytogenes, tested in three strains; 10403S, EGD-e, and LO28). We found a statistically significant reduction in survival after H_2O_2 exposure in $\Delta gadD3$ and $\Delta gadD2$ of EGD-e and in $\Delta gadD1$ of LO28. Furthermore, we observed a lag phase prolongation in $\Delta gadD3$ of 10403S and EGD-e and a larger inhibition zone in disk diffusion assay for $\Delta gadD1$ and $\Delta gadD3$ of EGD-e upon H_2O_2 exposure. All GAD genes playing a role in oxidative stress resistance are part of GAD_i system while this occurs partly through catalase activity, while the most potent GADe system plays no role. The latter effects could occur through the GABA shunt, but we show here that mutants in succinate semialdehyde dehydrogenase do not show a phenotype suggesting that either effects are through the GABA transaminase or, this pathway is not involved. Our study highlights for first time the role of the GAD system in oxidative stress resistance of a Gram-positive bacterium, which could be used in Food Hurdle Technology to eliminate pathogens such as L. monocytogenes, while it gives an insight on the general mechanism.

1. Introduction

59

60

63

64

65

72

73

75

76

79

80

83

84

85

Listeria monocytogenes is the causative agent of listeriosis, a life-threatening food borne 61 disease, with a mortality rate reaching the 30% in some outbreaks (Allerberger and Wagner, 2010; Mead et al., 1999). Its success is often attributed to the ability to survive in a large range 62 of adverse conditions, including acidic environments (Cole et al., 1990; Mcclure et al., 1989). Such feature is especially important for foodborne pathogens, in order to withstand the acidic pH encountered both during food disinfection and during the infectious process, in the human 66 stomach (Feehily and Karatzas, 2013). In order to cope with acid challenge, bacteria employ a 67 variety of strategies. One of best characterized acid resistance mechanisms is the glutamate 68 decarboxylase (GAD) system (Cotter et al., 2001; Feehily and Karatzas, 2013), which is present in all kingdoms of life (Paudyal and Karatzas, 2016), and presents a wide variety of functions in 69 different organisms (Feehily and Karatzas, 2013). Although the system is a major part of the 70 nervous system of animals, and a defence mechanism to stress such as anoxic conditions in 71 plants, in a wide variety of microorganisms including fungi and bacteria such as L. monocytogenes, Escherichia coli, Francisella tularensis, it is a major acid resistance mechanism 74 (Karatzas et al., 2012; Ramond et al., 2014; Smith et al., 1992). Despite the architecture of the system showing variability in different species, generally, in L. monocytogenes, the system comprises three glutamate decarboxylase enzymes (GadD1, GadD2 and GadD3), and two 77 glutamate/GABA antiporters (GadT1 and T2; Paul D. Cotter et al., 2005; Karatzas et al., 2012). 78 There is, however, a high variability in the architecture of the GAD system, even between different strains of the same species. For instance, L. monocytogenes stains belonging to serotype 4, which is the serotype more often associated with foodborne outbreaks, lack the 81 gadD1T1 operon (P. D. Cotter et al., 2005). The system works in a cycle that initiates with the 82 import of extracellular glutamate (Glt_e) by the antiporters, which is decarboxylated by the decarboxylase enzymes through replacement of the α -carboxyl group with a proton, resulting in γ-aminobutyric acid (GABA) formation. The GABA produced is subsequently exported back by the antiporter, while simultaneously more glutamate is imported, hence continuing the cycle 86 (O'Byrne and Karatzas, 2008). The consumption of one proton during glutamate

87	decarboxylation is responsible for an increase of the intracellular pH, attenuating the acid stress
88	(Cotter et al., 2001). Furthermore, the GAD enzymes can utilize intracellular glutamate (Glt _i) in
89	order to increase the intracellular pH (Karatzas et al., 2012). In L. monocytogenes, a GAD
90	enzyme, generally the GadD3, is not associated with any antiporter and it is believed to be
91	responsible for processing Glt _i (Karatzas et al., 2012). The GABA produced via the intracellular
92	GAD system (GAD _i) is catabolised to succinate via the GABA shunt pathway, which is a two-
93	step enzymatic pathway catalysed by the enzymes GABA amino-transferase (GABA-AT) and
94	succinate semialdheyde dehydrogenase (SSADH; Zhu et al., 2010). The contribution of GAD _i in
95	acid tolerance is dependent on the strain. In L. monocytogenes EGD-e the GAD _i system plays
96	crucial role for acid resistance, since this strain has a defective extracellular GAD (GADe)
97	system and is unable to export GABA (Karatzas et al., 2012).
98	In other organisms, the GAD system is known to play other roles aside from conferring acid
99	resistance. For instance, in plants the production of GABA has been associated with several
100	types of stress such as mechanical, draught, salt, heat and cold stresses (Kinnersley et al., 2000).
101	Aside from stress-related functions, the GAD system is known to play an important role in the
102	mammalian brain where GABA functions as the major inhibitory neuro-transmitter (Petroff,
103	2002). Interestingly, in several organisms, ranging from F. tularensis (Ramond et al., 2014) to
104	Saccharomyces cerevisiae (Coleman et al., 2001) and astrocytes (Bellier et al., 2000; Lamigeon
105	et al., 2001), the presence of a functional GAD system has been associated with an adequate
106	response to oxidative stress. The exact mechanism is not well understood, however most studies
107	suggest that a deficient GAD system leads to a reduction of intermediates of the tricarboxylic
108	acid (TCA) cycle and other molecules, such as NADPH and glutathione, which have potent
109	anti-oxidant capacity (Bellier et al., 2000; Coleman et al., 2001; Lamigeon et al., 2001; Ramos
110	et al., 1985; Smirnova and Oktyabrsky, 2017; Vogel et al., 1999).
111	In L. monocytogenes, possibly due to the well-known role for acid resistance, to date, it has not
112	been assessed if the GAD system mediates the response to other types of stress apart from
113	resistance to nisin mediated by GadD1 in LO28 (Begley et al., 2010). This is important since the
114	role of GadD1 in acid resistance is not clear. There is limited evidence involving GAD system

115	and GABA metabolism in oxidative tolerance. This is especially relevant, since oxidative stress
116	is one of the most common stresses L. monocytogenes has to cope with. It occurs not only in the
117	environment, as a consequence of aerobiosis but also during the infectious process, inside the
118	phagolysosome, or during disinfection, as oxidants are often used, and in the processing of
119	foods with technologies such as plasma and ozone (Cabiscol et al., 2000; Imlay, 2003; Jaksch et
120	al., 2004; O'Byrne and Karatzas, 2008; O'Donnell et al., 2012). The utilization of oxidising
121	agents is highly appealing for the food industry since it reduces the microbial activity
122	significantly and without the inconvenient traces of toxic residues and by-products (Jaksch et
123	al., 2004; O'Donnell et al., 2012).
124	In the current study, we aimed to elucidate the role of different components of the GAD system
125	in three L. monocytogenes strains (10403S, EGD-e and LO28) in oxidative stress tolerance. We
126	show, for the first time in L. monocytogenes, a secondary role of protection against oxidative
127	stress for the GAD system. This effect is only seen with components of the GAD _i system, which
128	lead us to hypothesise that the GAD _i in L. monocytogenes contributes to the maintenance of
129	intracellular antioxidant molecules key for bacterial tolerance to oxidative stress. Our study
130	highlights for first time the important role of the GAD system in oxidative stress in a Gram-
131	positive bacterium. Our observations have great impact on the understanding of this
132	phenomenon in all organisms from all kingdoms of life and most importantly in bacteria. More
133	specifically in L. monocytogenes this phenomenon is important for the wider understanding of
134	its complex behaviour when it encounters different types of stress. This work could be
135	considered in Hurdle Technology and thus help us in the easier elimination of this pathogen
136	from foods and food preparation environments.

2. Materials and Methods

2.1 Bacterial strains and growth

L. monocytogenes WT strains of EGD-e, 10403S and LO28 and their isogenic mutants in different genes of the GAD system (Table 1) were used in this study. Stock cultures were stored at -80°C in 15% (v/v) dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Dorset, United Kingdom).

143	Prior to experiments, stock cultures were streaked onto brain heart infusion (BHI) agar (LAB M,
144	Lancashire, United Kingdom) and incubated at 37°C overnight.
145	A single colony was transferred to 3 ml of either sterile BHI broth (LAB M) for EGD-e and
146	10403S or tryptone soy broth (Lab M) supplemented with 0.6% (w/v) of yeast extract (TSBY)
147	for LO28 and incubated at 37°C with shaking (160 rpm). Bacteria were allowed to grow until
148	stationary phase and used to inoculate the experimental culture with a 1% inoculum (v/v). These
149	cultures were prepared in 250 ml conical flasks containing 20 ml of the same medium as used
150	for the inoculum and incubated overnight at 37°C with shaking (120 rpm).
151	
152	2.2. Growth in the presence of sub-lethal doses of H ₂ O ₂
153	L. monocytogenes was grown overnight in the appropriate broth containing a sub-lethal
154	concentration of H_2O_2 (0.01%). The cultures were incubated at $37^{\circ}C$ and the optical density at
155	620 nm was measured every 20 minutes in a Sunrise plate reader (Tecan, Austria). The Baranyi
156	and Roberts model was used to estimate the growth parameters (length of lag phase, growth rate
157	and maximum OD; Baranyi et al., 1996; Baranyi and Roberts, 1994), taking advantage of
158	the embedded analysis tool of Microsoft Excel 2013, Solver, as previously described
159	(Walsh and Diamond, 1995).
160	
161	2.3. Hydrogen Peroxide Disk Diffusion Assay
162	Overnight liquid cultures grown either in BHI (EGD-e and 10403S) or TSBY (LO28) were
163	diluted to an OD_{600nm} of 0.2, and 100 μ l was spread onto Mueller-Hinton agar (MHA; Oxoid,
164	Basingstoke, United Kingdom). Then, 10 μl of 30% (v/v) H ₂ O ₂ was pipetted onto Whatman
165	3MM paper disks (0.7-cm diameter), and these disks were placed on top of the agar and
166	incubated for 18 h at 37°C. The zones of inhibition (in mm) denoting H ₂ O ₂ sensitivity were
167	measured in three dimensions, and the mean values and standard deviations were calculated. All
168	experiments were performed on three independent biological replicates.

1/0	2.4. Survival against H_2U_2
171	Stationary phase aerobic cultures, grown as described for 18 h, were challenged with 4%
172	(10403S and LO28) or 4.5% (EGD-e) of H ₂ O ₂ . The survival pattern was assessed by plating
173	serial dilutions in either BHI or TSBY agar before and after (20, 40 and 60 min) the H ₂ O ₂
174	challenge. The agar plates were incubated at 37°C for 24 h and colony forming units (CFU)
175	were enumerated to assess the concentration of bacteria in each time point.
176	
177	2.5. Catalase activity assay
178	The catalase activity was assessed using the methodology described by Iwase et al. (2013), with
179	minor modifications. Briefly, 10 mg of bacterial culture pellet was re-suspended in 100 μl
180	phosphate buffer (K ₂ HPO ₄ /KH ₂ PO ₄ ; pH 7) and transferred to a test-tube containing 100 μl of
181	1% (v/v) Triton X-100 (Sigma-Aldrich, Dorset, UK). One hundred μl of H ₂ O ₂ were then added
182	to each test tube. The formation of oxygen bubbles, as a result of the enzymatic degradation of
183	H ₂ O ₂ , was visualised in the form of foam. After 5 min the height of the foam was measured and
184	photographic images were taken as well. All experiments were performed on six independent
185	biological replicates.
186	
187	2.6. Statistical analysis
188	In all cases, experiments were run at least in triplicate, and results were assessed with a paired
189	Student T -test. A p value lower than 0.05 was considered statistically significant.
190	
191	
192	3. Results
193	3.1. Survival against hydrogen peroxide
194	L. monocytogenes strains (10403S, EGD-e and LO28) WT and the respective deletion mutants
195	in the different genes of the GAD system, were challenged with H ₂ O ₂ . In L. monocytogenes
196	10403S, the WT strain showed approximately 3 log reduction of CFU/ml after being challenged
197	with H ₂ O ₂ (Fig. 1A) which did not show any statistically significant difference compared to any

198	of its isogenic mutants ($\Delta gadD1$, $\Delta gadD2$, $\Delta gadD3$, $\Delta lmrg_02013$) despite $\Delta gadD3$ showing a
199	4.6 log reduction of CFU/ml.
200	In L. monocytogenes EGD-e, all GAD mutants showed lower survival than the WT against an
201	oxidative stress (Fig. 1B) but only $\Delta gadD2$ and $\Delta gadD3$ showed statistical significance. Sixty
202	min after being challenged with H ₂ O ₂ , the WT strain showed 0.5 log reduction of CFU/ml,
203	while the GAD mutants $\Delta gadD1$, $\Delta gadD2$, $\Delta gadD3$ and $\Delta lmo0913$ showed a reduction of 2.4,
204	3.5, 4.8 and 2 log CFU/ ml respectively. However, despite the major differences relatively to the
205	WT, only these for $\Delta gadD2$ and $\Delta gadD3$ were statistically significant.
206	In L. monocytogenes LO28, only the $\Delta gadD1$ showed a significant reduction of 5.67 log
207	CFU/ml (p=0.01) after exposure to H ₂ O ₂ in comparison to a reduction of 1.05 log CFU/ml for
208	the WT (Fig. 1C). Interestingly, both $\Delta gadD2$ and the double mutant that lacks both glutamate
209	decarboxylases, $\Delta gadD1/D2$, showed negligible difference relatively to the WT.
210	
211	3.2. Hydrogen Peroxide Disk Diffusion Assay
212	Disk diffusion assays were performed in all three WT strains and their respective isogenic
213	mutants missing GAD system genes. L. monocytogenes EGD-e $\Delta gadD1$ and $\Delta gadD3$ showed
214	larger inhibition zones relatively to the WT (p=0.04 and p=0.001 respectively; Fig. 2). All the
215	remaining GAD mutants, both in 10403S and LO28, showed no significantly different growth
216	inhibition in comparison with the WT.
217	
218	3.3. Catalase Assay
219	The catalase activity was assessed in L. monocytogenes 10403S, EGD-e and LO28 WT and their
220	respective isogenic mutants missing GAD system genes (Fig. 3), using a visual approach.
221	Briefly, the degradation of H ₂ O ₂ by catalase produces water and molecular oxygen that is
222	released and forms a foam. It has been demonstrated previously that the height of the foam is
223	directly proportional to the catalase activity (Iwase et al., 2013). The activity of catalase in
224	EGD-e $\Delta gadD3$ was significantly reduced comparatively to the WT (p=0.01). No statistically
225	significant difference in catalase activity was found in the GAD mutants in L. monocytogenes

	Journal 110-proof
226	10403S and LO28 or in the remaining mutants in EGD-e. However, in LO28 the $\Delta gadD2$ and
227	$\Delta gadD1/2$ seemed to have slightly higher catalase activity than the WT.
228	
229	3.4. Effect of H ₂ O ₂ on growth
230	The effect H ₂ O ₂ on the growth of <i>L. monocytogenes</i> WT and the respective GAD mutants was
231	assessed by inoculating the bacterial cultures in the presence of 0.01% of H ₂ O ₂ and monitoring
232	the absorbance at $620 \text{ nm } (\text{OD}_{620})$.
233	As expected, growth in the presence of H ₂ O ₂ caused a significant extension in the lag phase of
234	all WT strains and mutants in study (comparison with and without H2O2; Table 2). The
235	maximum growth (max OD_{620}) was only significantly decreased in LO28 WT and the
236	corresponding $\Delta gadD2$ (Table 3).
237	In the absence of H ₂ O ₂ , none of the mutants showed a significant difference in the growth
238	parameters in comparison to the WT. However, in the presence of H ₂ O ₂ some of the GAD
239	mutants showed alterations of the growth parameters, in comparison with the parental WT
240	strain. In both 10403S (Fig. 4) and EGD-e (Fig. 5), the $\Delta gadD3$ had a significant delay in the
241	lag phase (Table 2), while in LO28 (Fig. 6) the $\Delta gadD1$ and $\Delta gadD1/2$ showed a significant
242	decrease of the max OD ₆₂₀ (Table 3).
243	
244	4. Discussion
245	Oxidative stress resistance is very important for survival of L. monocytogenes in foods, food
246	preparation environments and finally in its ability to cause disease. Various disinfectants, ozone
247	treatments, cold plasma or sonication are used or investigated to eliminate microbes and
248	pathogens such as L. monocytogenes through the application of oxidative stress in foods or food
249	preparation environments (Cabiscol et al., 2000; Imlay, 2003; Jaksch et al., 2004; O'Byrne and
250	Karatzas, 2008; O'Donnell et al., 2012). Understanding the behaviour of this pathogen in

oxidative environments is important for our ability to design effective treatments, especially as

some of these novel techniques such as cold plasma and sonication have not yet found their way

252

253 in the food industry. 254 Furthermore, oxidative stress resistance plays a role in the pathogenesis of intracellular 255 pathogens as oxidative stress occurs in the phagocytic lysosome. However, up to now, there is 256 no evidence showing that in L. monocytogenes. In contrast, our work suggests the opposite, as 257 hypersensitive to oxidative stress L. monocytogenes $\Delta sigB$ mutants, have similar intracellular 258 proliferation to their corresponding WT (Boura et al., 2016). In the latter work we also demonstrated that SigB, the main stress gene regulator in L. monocytogenes, affects oxidative 259 260 stress resistance in a different fashion to other stresses (Boura et al., 2016). Although upregulation of sigB enhances general resistance to multiple stresses, it results in 261 262 hypersensitivity to oxidative stress and this occurs through lower catalase activity. It is not known how SigB affects catalase (Boura et al., 2016). It is possible that SigB negatively affects 263 264 oxidative stress resistance through regulation of another mechanism, which in turn affects 265 catalase and possibly other oxidative stress mechanisms. The L. monocytogenes GAD system is 266 under the control of SigB (Wemekamp-Kamphuis et al., 2004) while in the Gram-negative 267 bacterium, Francisella tularensis (Ramond et al., 2014), the yeast Saccharomyces cerevisiae 268 (Coleman et al., 2001) and the animal cells astrocytes (Bellier et al., 2000; Lamigeon et al., 269 2001) it has been implicated in oxidative stress resistance. We thought of the possibility that the GAD system could mediate the effect of SigB to catalase and oxidative stress in L. 270 271 monocytogenes. However, this theory is problematic because in L. monocytogenes, SigB 272 upregulates the GAD system (Wemekamp-Kamphuis et al., 2004), and based on the results obtained in these three aforementioned organisms, it should be expected that SigB-mediated 273 274 GAD system upregulation results in the opposite effect (enhancement of oxidative stress 275 resistance) from what is actually observed (hypersensitivity to oxidative stress). In addition, 276 none of the above organisms except L. monocytogenes possesses a sigB gene, while the GAD 277 system effects on oxidative stress have been only observed in three organisms so far and only 278 once in a bacterium which is Gram-negative.

279	Despite the above, we decided to assess for first time the role of the <i>Listeria monocytogenes</i>
280	GAD system in oxidative stress. We looked first at the role of the different GAD system genes
281	in oxidative stress tolerance, in three common reference L. monocytogenes strains namely,
282	10403S, LO28, EGD-e which reflect the major differences between different strains of L .
283	monocytogenes in terms of GAD system activity which significantly affects acid resistance. L.
284	monocytogenes 10403S possesses one of the most active GAD systems resulting in one of the
285	most acid resistant phenotypes described in the literature, LO28 has a normal GAD activity and
286	acid resistance, while EGD-e has a defective GAD _e system unable to export GABA and it is one
287	of the most acid sensitive strains described in the literature (Karatzas et al., 2012).
288	The GAD system is the major determinant of acid resistance in L. monocytogenes and many
289	other organisms (Cotter et al., 2001; Ryan et al., 2008) with mutants in GAD genes showing
290	severe impairment in acid resistance (Paudyal et al., 2018). The GAD system comprises two
291	distinctive subsystems, which are defined by the original location of glutamate utilised by the
292	GAD system. Our group has previously described the extracellular GAD system (GAD _e), which
293	is the one investigated in vast majority of publications, utilising extracellular glutamate
294	imported by the GAD glutamate/GABA antiporter and the intracellular GAD system (GAD _i),
295	which utilises glutamate transported by glutamate transporter(s) or that produced by metabolic
296	pathways (Karatzas et al. 2012).
297	In the present study we show for first time that the GAD system affects oxidative stress in a
298	Gram-positive bacterium (L. monocytogenes) and this is the second account in any bacterium.
299	We found that gadD3 deletion resulted in a decrease in survival against oxidative stress in
300	EGD-e (Fig. 1B) and growth inhibition (lag phase extension) in both EGD-e and 10403S (Table
301	2) and larger inhibition zone in EGD-e (Fig. 2). Unfortunately, it was impossible for other
302	workers and for us to obtain a $\Delta gadD3$ mutant in the LO28 background (Cotter et al. 2005).
303	Results clearly highlight the role of GadD3 in oxidative cell defence. GadD3 only contributes to
304	the GAD _i system (Karatzas et al., 2012) but not to the GAD _e system as it is not associated with
305	any antiporter and it does not affect the GABA export. The GAD _i plays an important role in
306	acid tolerance and in EGD-e it is the only functional GAD system component, while it

307	contributes in acid resistance in other strains that use the GAD _e (e.g. 10403S; Karatzas et al.,
308	2012).
309	Another GAD gene that affected oxidative stress resistance was gadD1. Deletion of this gene
310	resulted in lower survival in LO28 (Fig. 1C) and larger inhibition zone in EGD-e (Fig. 2)
311	underpinning its role in oxidative stress defence. It has been suggested previously that GadD1
312	plays a role in growth under mildly acidic conditions, as strains that belong to serotype 4 lack
313	gadD1 and grow poorly at pH 5.1 (Cotter et al., 2005). This however, might not be solely the
314	result of the lack of $gadD1$ but the result of other genetic differences in this serotype. In
315	addition, following various attempts we have never detected GABA being exported by
316	GadD1T1, while a mutant lacking gadD1 has a comparable survival to its corresponding WT
317	under acidic conditions (Karatzas et al., 2012; Cotter et al., 2005). All these suggest that the role
318	of gadD1 in acid resistance is debatable however, it has a clear role in tolerance of LO28 against
319	nisin, which has been suggested to stem from its contribution to ATP production as its absence
320	resulted in 60% reduction of ATP pools (Begley et al., 2010). ATP levels in L. monocytogenes
321	are critical for survival against nisin (Bonnet et al., 2006). Interestingly, a study in astrocytes
322	found that GAD-expressing cells not only produced more ATP (Bellier et al., 2000) but also had
323	increased ability to cope with oxidative stress (Lamigeon et al., 2001). We expected that also the
324	double LO28 mutant lacking both $gadD1$ and $gadD2$ ($\Delta gadD1/D2$) should demonstrate a
325	similar phenotype since $\Delta gadD2$ showed no phenotype to $\Delta gadD1$ in this background.
326	However, this was not the case with $\Delta gadD1/D2$ which showed a similar phenotype to WT and
327	$\Delta gadD2$ (Fig. 1C). It has been commented previously for acid resistance that $\Delta gadD1/D2$ could
328	result in an unknown response which could counteract the double deletion (Feehily et al., 2014)
329	and possibly explain the lack of phenotype in this mutant.
330	We also assessed the role of gadD2 gene in oxidative stress and we found that its deletion
331	affected survival in EGD-e (Fig. 1B). GadD2 is the main component of the GADe system,
332	which however, is inactive in EGD-e resulting in a highly acid sensitive phenotype in this strain
333	(Karatzas et al. 2012). It is not known if the absence in GAD _e activity in EGD-e stems from a

334 defect in the decarboxylase GadD2 or the antiporter GadT2. Since our results show a phenotype 335 for $\Delta gadD2$, this could suggest that GadD2 is active in EGD-e utilising only intracellular 336 glutamate as part of the GAD_i system and a possible defect in the GadT2 antiporter prevents 337 glutamate/GABA antiport activity. Although GadD2 is highly active especially in 10403S and 338 in LO28 we did not see any phenotype, which might be related with the fact that these strains are not highly resistant to oxidative stress and changes in oxidative stress resistant mechanisms 339 340 might not bring major changes in the phenotypes. This might also explain why all GAD mutants in EGD-e, which is the most resistant strain to oxidative stress (Boura et al., 2016), showed 341 342 lower survival than the WT, with only in $\Delta gadD3$ and $\Delta gadD2$ however, showing statistical significance. Furthermore, our results show that the GAD genes that might play a role in 343 344 survival against H₂O₂ in one strain, might be different from the ones playing a role in growth in broth or agar in the presence of H₂O₂. This might be due to the fact that survival assays assessed 345 346 oxidative defences at a different growth stage from disk diffusion and growth experiments, 347 while the latter two were also performed in different media phases (liquid or solid agar) 348 resulting in different responses (Boura et al., 2016). 349 Furthermore, it should be mentioned that all phenotypes seem to be associated with glutamate 350 decarboxylases working on intracellular glutamate and therefore, contributing only to the GAD_i 351 but not to the GADe system. 352 The GAD_i system results in the production of intracellular GABA which is metabolised through 353 the GABA shunt (Fig. 7). The latter pathway contributes to the maintenance of the intracellular 354 pools of NADPH and other anti-oxidant molecules (Bellier et al., 2000; Feehily et al., 2013; 355 Lamigeon et al., 2001; Ramond et al., 2014) which could be involved in the oxidative stress 356 resistance and maybe explain the observed phenotypes. In Francisella tularensis, oxidative 357 stress resistance is important for replication in the cytosol of infected cells and the GadC 358 antiporter is crucial for this process and the escape from the phagosome compartment (Ramond 359 et al., 2014). The authors suggest that a decrease of glutamate acquisition results in a reduction 360 of tricarboxylic acid (TCA) cycle intermediates with potent anti-oxidant effect, such as 361 oxoglutarate and NADPH, produced by the conversion of glutamate into oxoglutarate (Ramond

362 et al., 2014). Reduced NADPH pools could also result in the reduction of glutathione, a potent 363 antioxidant tripeptide with a well-known role in oxidative stress tolerance, since NADPH 364 functions as a co-factor of the glutathione reductase (Smirnova and Oktyabrsky, 2017; Vogel et 365 al., 1999). A similar hypothesis was postulated to explain the increased resistance of GAD-366 expressing astrocyte cells (Lamigeon et al., 2001) which was the result of a 10-fold increase in 367 the levels of released glutathione (Lamigeon et al., 2001), and of increased NADPH and ATP 368 levels (Bellier et al., 2000). Furthermore, a study in Saccharomyces cerevisiae, showed that the presence of a functional GAD system and GABA shunt pathway, are essential for oxidative 369 370 stress resistance (Coleman et al., 2001) which is expected as GABA shunt contributes in 371 NADPH pools (Ramos et al., 1985). 372 To investigate the above hypothesis that the GABA shunt plays a role in oxidative stress and 373 can explain the above phenotypes in L. monocytogenes, we employed mutants lacking succinate 374 semialdehyde dehydrogenase (SSDH), the second step of the GABA shunt, in two different backgrounds; EGD-e ($\Delta lmo0913$) and 10403S ($\Delta lmrg_02013$). Deletion of SSDH resulted in no 375 376 phenotype in 10403S and a slight effect in the EGD-e background (2 log cycles of CFU/ml further reduction compared to WT) without any statistical significance. We have previously 377 shown that Lmo0913 and Lmrg_02013 are the only SSDH proteins in EGD-e and 10403S L. 378 379 monocytogenes backgrounds respectively, as both mutants were defective in SSDH activity 380 (Feehily et al., 2013). Given that the SSDH reaction results in NADPH production that contributes in oxidative stress resistance, the absence of a strong phenotype from both SSDH 381 382 mutants is surprising (Fig. 7). Furthermore, since this oxidative stress resistance is directly 383 associated with the GAD, which directly feeds GABA into the GABA shunt it should be 384 expected that its disruption would result in a phenotype which is not the case. We can not 385 exclude the possibility that GABA shunt plays a role in oxidative stress resistance, but this might happen through the GABA transaminase, the first step of the GABA shunt pathway, 386 387 which affects the TCA cycle by removing a-ketoglutaric acid that is converted to glutamate 388 (Fig. 7). Furthermore, it should be considered that the GABA shunt in L. monocytogenes and 389 various other bacteria (e.g. several lactic acid bacteria) plays an important role as it bypasses

390	two missing steps of the TCA cycle while other organisms have a complete TCA cycle (Fig. 7).
391	Further work is required to identify the actual link between the GAD system - GABA shunt and
392	oxidative stress possibly focusing on GABA transaminase.
393	We further looked at the mechanism resulting in these phenotypes by investigating the catalase
394	activity of these mutants. We found a statistically significant decrease in catalase activity of
395	$\Delta gadD3$ in EGD-e, which correlated with the lower survival of this strain under oxidative stress
396	(Fig. 3). However, the same was not observed in LO28 ΔgadD1, which also showed a marked
397	reduction in survival. Despite catalase being the main pathway of H ₂ O ₂ degradation, there are
398	other antioxidant molecules, such as NADPH and NADH pools, ascorbic acid etc. that help to
399	maintain an intracellular reducing environment (Cabiscol et al., 2000).
400	It should also be mentioned that experiments in this study were performed in native pH (6.4 for
401	L. monocytogenes in stationary phase), where the GAD system is not in its maximum activity
402	level, which occurs between pH 4 and 5 (Karatzas et al., 2012). It is possible that at lower pH
403	these phenotypes might be more enhanced. However, we did not use these conditions to avoid
404	the application of an additional stress to the bacteria, as it is known that the mutants of the GAD
405	system are sensitive to acidic conditions, and this additional stress could have a significant
406	impact in understanding their role in oxidative stress response (Paudyal et al., 2018).
407	It should be mentioned that this work could have major implications for applications of
408	oxidative stress in the food industry and hurdle technology. Modern hurdle technology design
409	could be based on knowledge of the molecular bacterial mechanisms to predict bacterial
410	behaviour, instead of randomly looking at combinations of stresses. We have exemplified this in
411	our previous work where we demonstrated that the use of a GAD system inhibitor such as
412	maleic acid, could render L. monocytogenes cells highly sensitive to acidic stress and eliminate
413	them in disinfection regimes (Paudyal et al., 2018). Our work here shows that the GAD system,
414	the main acid resistance mechanism in L. monocytogenes, protects against oxidative stress,
415	suggesting that downregulation or inhibition through a signal could make cells highly sensitive
416	to oxidative stress processes and further work should demonstrate that in various oxidative
417	stress food applications. In addition, further work also needs to look if this this involvement of

418	the GAD system in oxidative stress is a common characteristic among other bacteria and other
419	organisms and identify the molecular mechanisms involved in this phenomenon further to the
420	ones described in this manuscript.
421	
422	5. Conclusions
423	Overall, our results suggest that the GAD _i in L. monocytogenes plays a role in survival and
424	growth under oxidative stress. This is concluded since, all GAD genes affecting oxidative stress
425	resistance (gadD3 and gadD2 in EGD-e, gadD1 in LO28) or tolerance during growth (gadD3 in
426	10403S, gadD1 and gadD3 in EGD-e) are all part of the GAD _i system. Furthermore, in an
427	attempt to assess if these effects are through the GABA shunt we show that, if this is the case, it
428	rather occurs through the GABA-AT step and not through SSDH step as disruption of the latter
429	step did not result in a phenotype linked with oxidative stress resistance.
430	The targeted inhibition of the GAD system, as a way to make L. monocytogenes more sensitive
431	to acid stress has been recently exploited as a promising tool to eliminate this pathogen (Paudyal
432	et al., 2018; Paudyal and Karatzas, 2016) and similar steps could be taken in hurdle technology
433	using oxidative stress. Furthermore, additional work should be carried out in other
434	microorganisms that possess the GAD system, to identify if GAD system affects oxidative
435	stress resistance.
436	
437	
438	Acknowledgments
439	The authors would like to thank all colleagues at the Microbiology research team and the
440	Department of Food and Nutritional Sciences, University of Reading. The work was supported
441	by a Marie Curie European Reintegration Grant (ERG 265154), awarded to Dr. K.A.G. Karatzas
442	and funds from the University of Reading.
443	
444	References

Allerberger, F., Wagner, M., 2010. Listeriosis: A resurgent foodborne infection. Clin.

445

- 446 Microbiol. Infect. 16, 16–23. https://doi.org/10.1111/j.1469-0691.2009.03109.x
- Baranyi, J., Roberts, T.A., 1994. A dynamic approach to predicting bacterial growth in food. Int.
- 448 J. Food Microbiol. 23, 277–294. https://doi.org/https://doi.org/10.1016/0168-
- 449 1605(94)90157-0
- Baranyi, J., Ross, T., McMeekin, T.A., Roberts, T.A., 1996. Effects of parameterization on the
- performance of empirical models used in "predictive microbiology." Food Microbiol. 13,
- 452 83–91. https://doi.org/https://doi.org/10.1006/fmic.1996.0011
- Begley, M., Cotter, P.D., Hill, C., Ross, R.P., 2010. Glutamate decarboxylase-mediated nisin
- resistance in *Listeria monocytogenes*. Appl. Environ. Microbiol. 76, 6541–6546.
- 455 https://doi.org/10.1128/AEM.00203-10
- Bellier, J.P., Sacchettoni, S., Prod'hon, C., Perret-Liaudet, A., Belin, M.F., Jacquemont, B.,
- 457 2000. Glutamic acid decarboxylase-expressing astrocytes exhibit enhanced energetic
- metabolism and increase PC12 cell survival under glucose deprivation. J. Neurochem. 75,
- 459 56–64.
- Bonnet, M., Rafi, M.M., Chikindas, M.L., Montville, T.J., 2006. Bioenergetic mechanism for
- nisin resistance, induced by the acid tolerance response of *Listeria monocytogenes*. Appl.
- 462 Environ. Microbiol. 72, 2556–2563. https://doi.org/10.1128/AEM.72.4.2556-2563.2006
- Boura, M., Keating, C., Royet, K., Paudyal, R., O'Donoghue, B., O'Byrne, C.P., Karatzas,
- 464 K.A.G., 2016. The presence of SigB in *Listeria monocytogenes* strains EGD-e and 10403S
- leads to hypersensitivity to hydrogen peroxide in stationary phase under aerobic
- 466 conditions. Appl. Environ. Microbiol. 82, AEM.00709-16.
- 467 https://doi.org/10.1128/AEM.00709-16
- 468 Cabiscol, E., Tamarit, J., Ros, J., 2000. Oxidative stress in bacteria and protein damage by
- reactive oxygen species. Int. Microbiol. 3, 3–8.
- 470 Cole, M.B., Jones, M. V. Holyoak, C., 1990. The effect of pH, salt concentration and
- temperature on the survival and growth of *Listeria monocytogenes*. J. Appl. Bacteriol. 69,
- 472 63–72.
- 473 Coleman, S.T., Fang, T.K., Rovinsky, S. a., Turano, F.J., Moye-Rowley, W.S., 2001.

- Expression of a glutamate decarboxylase homologue is required for normal oxidative
- stress tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 276, 244–250.
- 476 https://doi.org/10.1074/jbc.M007103200
- 477 Cotter, P.D., Gahan, C.G.M., Hill, C., 2001. A glutamate decarboxylase system protects Listeria
- 478 monocytogenes in gastric fluid. Mol Microbiol. 40(2), 465-75.
- 479 https://doi.org/10.1046/j.1365-2958.2001.02398.x
- 480 Cotter, P.D., Ryan, S., Gahan, C.G.M., Hill, C., 2005. Presence of GadD1 glutamate
- decarboxylase in selected *Listeria monocytogenes* strains is associated with an ability to
- grow at low pH. Appl. Environ. Microbiol. 71, 2832–2839.
- 483 https://doi.org/10.1128/AEM.71.6.2832-2839.2005
- Feehily, C., 2014. Elucidation of the role of the glutamate decarboxylase system and the γ -
- aminobutyric acid shunt pathway in the stress response of Listeria monocytogenes. NUI
- 486 Galway Theses. https://aran.library.nuigalway.ie/handle/10379/4628
- 487 Feehily, C., Finnerty, A., Casey, P.G., Hill, C., Gahan, C.G.M., O'Byrne, C.P., Karatzas,
- 488 K.A.G., 2014. Divergent evolution of the activity and regulation of the glutamate
- decarboxylase systems in *Listeria monocytogenes* EGD-e and 10403S: Roles in virulence
- and acid tolerance. PLoS One 9, e112649. https://doi.org/10.1371/journal.pone.0112649
- 491 Feehily, C., Karatzas, K. A G., 2013. Role of glutamate metabolism in bacterial responses
- towards acid and other stresses. J. Appl. Microbiol. 114, 11-24.
- 493 https://doi.org/10.1111/j.1365-2672.2012.05434.x
- 494 Feehily, C., O'Byrne, C.P., Karatzas, K.A.G., 2013. Functional γ-aminobutyrate shunt in
- 495 *Listeria monocytogenes*: role in acid tolerance and succinate biosynthesis. Appl. Environ.
- 496 Microbiol. 79, 74–80. https://doi.org/10.1128/AEM.02184-12
- 497 Imlay, J.A., 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395-418.
- 498 https://doi.org/10.1146/annurev.micro.57.030502.090938
- 499 Iwase, T., Tajima, A., Sugimoto, S., Okuda, K., Hironaka, I., Kamata, Y., Takada, K., Mizunoe,
- Y., 2013. A simple assay for measuring catalase activity: A visual approach. Sci. Rep. 3,
- 501 3081. https://doi.org/10.1038/srep03081

- Jaksch, D., Margesin, R., Mikoviny, T., Skalny, J.D., Hartungen, E., Schinner, F., Mason, N.J.,
- Märk, T.D., 2004. The effect of ozone treatment on the microbial contamination of pork
- meat measured by detecting the emissions using PTR-MS and by enumeration of
- microorganisms. Int. J. Mass Spectrom. 239, 209–214.
- Karatzas, K.A.G., Suur, L., O'Byrne, C.P., 2012. Characterization of the intracellular glutamate
- 507 decarboxylase system: Analysis of its function, transcription, and role in the acid
- resistance of various strains of *Listeria monocytogenes*. Appl. Environ. Microbiol. 78,
- 509 3571–3579. https://doi.org/10.1128/AEM.00227-12
- Karatzas, K.A.G., Brennan, O., Heavin, S., Morrissey, J., O'Byrne, C.P., 2010. Intracellular
- accumulation of high levels of gamma-aminobutyrate by *Listeria monocytogenes* 10403S
- in response to low pH uncoupling of gamma-aminobutyrate synthesis from efflux in a
- 513 chemically defined medium. Appl. Environ. Microbiol. 76, 3529–3537.
- 514 https://doi.org/10.1128/AEM.03063-09
- 515 Kinnersley, A.M., Turano, F.J., 2000. γ-aminobutyric acid (GABA) and plant responses to
- stress, Crit. Rev. Plant Sci. 19:6, 479-509. doi: 10.1080/07352680091139277
- Lamigeon, C., Bellier, J.P., Sacchettoni, S., Rujano, M., Jacquemont, B., 2001. Enhanced
- neuronal protection from oxidative stress by coculture with glutamic acid decarboxylase-
- 519 expressing astrocytes. J. Neurochem. 77, 598–606. https://doi.org/10.1046/j.1471-
- 520 4159.2001.00278.x
- Mcclure, P.J., Roberts, T.A., Oguru, P.O., 1989. Comparison of the effects of sodium chloride,
- 522 pH and temperature on the growth of *Listeria monocytogenes* on gradient plates and in
- 523 liquid medium. Lett. Appl. Microbiol. 9, 95–99. https://doi.org/10.1111/j.1472-
- 524 765X.1989.tb00299.x
- Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M.,
- Tauxe, R. V., 1999. Food-related illness and death in the United States. Emerg. Infect. Dis.
- 5, 607–625. https://doi.org/10.3201/eid0505.990502
- 528 Murray, E.G.D., Webb, R.A., Swann, M.B.R., 1926. A disease of rabbits characterised by a
- large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium

- 530 monocytogenes (n.sp.). J. Pathol. Bacteriol. 29, 407–439.
- 531 https://doi.org/10.1002/path.1700290409
- O'Byrne, C.P., Karatzas, K.A.G., 2008. The role of Sigma B (σ^{B}) in the stress adaptations of
- Listeria monocytogenes: overlaps between stress adaptation and virulence, Adv. Appl.
- 534 Microbiol. Elsevier Masson SAS.
- O'Donnell, C., Tiwari, B.K., Cullen, P.J., Rice, R.G., 2012. Ozone in Food Processing. Wiley-
- 536 Blackwell.
- Paudyal, R., Barnes, R.H., Karatzas, K.A.G., 2018. A novel approach in acidic disinfection
- through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of
- glutamate decarboxylase activity enhances acid sensitivity of *Listeria monocytogenes*.
- Food Microbiol. 69, 96–104. https://doi.org/10.1016/j.fm.2017.07.013
- Paudyal, R., Karatzas, K.A., 2016. Stress adaptation of Listeria monocytogenes in acidic ready-
- 542 to-eat products, Food Hygiene and Toxicology in Ready-to-Eat Foods. Elsevier Inc.
- 543 https://doi.org/10.1016/B978-0-12-801916-0.00010-8
- Petroff, O.A.C., 2002. Book Review: GABA and Glutamate in the Human Brain. Neurosci. 8,
- 545 562–573. https://doi.org/10.1177/1073858402238515
- Ramond, E., Gesbert, G., Rigard, M., Dairou, J., Dupuis, M., Dubail, I., Meibom, K., Henry, T.,
- Barel, M., Charbit, A., 2014. Glutamate utilization couples oxidative stress defense and the
- 548 tricarboxylic acid cycle in *Francisella* phagosomal escape. PLoS Pathog. 10.
- 549 https://doi.org/10.1371/journal.ppat.1003893
- Ramos, F., el Guezzar, M., Grenson, M., Wiame, J.M., 1985. Mutations affecting the enzymes
- involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast
- 552 Saccharomyces cerevisiae. Eur. J. Biochem. 149, 401–4.
- Ryan, S., Hill, C., Gahan, C.G.M., 2008. Acid Stress Responses in *Listeria monocytogenes*, in:
- 554 Adv. Appl. Microbiol. pp. 67–91. https://doi.org/10.1016/S0065-2164(08)00603-5
- 555 Smirnova, G. V, Oktyabrsky, O.N., 2017. Glutathione in bacteria.
- 556 https://doi.org/10.1007/s10541-005-0248-3
- 557 Smith, D.K., Kassam, T., Singh, B., Elliott, J.F., 1992. Escherichia coli has two homologous

558	glutamate decarboxylase genes that map to distinct loci. J. Bacteriol. 174, 5820-6.
559	Vogel, R., Wiesinger, H., Hamprecht, B., Dringen, R., 1999. The regeneration of reduced
560	glutathione in rat forebrain mitochondria identifies metabolic pathways providing the
561	NADPH required. Neurosci. Lett. 275, 97–100.
562	Walsh, S., Diamond, D., 1995. Non-linear curve fitting using Microsoft Excel solver. Talanta
563	42, 561–572. https://doi.org/https://doi.org/10.1016/0039-9140(95)01446-I
564	Wemekamp-Kamphuis, H.H., Wouters, J.A., de Leeuw, P.P., Hain, T., Chakraborty, T., Abee,
565	T. 2004. Identification of sigma factor sigma B-controlled genes and their impact on acid
566	stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e.
567	Appl Environ Microbiol. https://doi.org/10.1128/AEM.70.6.3457-3466.2004.
568	Zhu, L., Peng, Q., Song, F., Jiang, Y., Sun, C., Zhang, J., Huang, D., 2010. Structure and
569	regulation of the gab gene cluster, involved in the γ -aminobutyric acid shunt, are
570	controlled by a sigma54 factor in Bacillus thuringiensis. J. Bacteriol. 192, 346-55.
571	https://doi.org/10.1128/JB.01038-09
572	
573	
574	Legends to the Figures
575	
576	Fig. 1. Survival of Listeria monocytogenes 10403S (A), EGD-e (B) and LO28 (C) WT and
577	respective GAD mutants, after being challenged with 4 % (A and C) or 4.5 % (B) H ₂ O ₂ . DL
578	denotes the detection limit of the assay. The error bars represent standard deviations of triplicate
579	observations (biological replicates) and asterisks denote statistically significance relatively to
580	the WT.
581	
582	Fig. 2. Catalase activity of Listeria monocytogenes 10403S, EGD-e and LO28 WT and
583	respective GAD mutants. Asterisks denote statistically significance and the error bars represent
584	standard deviations.

586	Fig. 3. Growth inhibition zone (diameter, mm) of <i>L. monocytogenes</i> 10403S, EGD-e and LO28
587	WT and respective isogenic mutants of the GAD, in diffusion assay using 30% H ₂ O ₂ . Asterisks
588	denote statistically significance and the error bars represent standard deviations.
589	
590	Fig. 4. Effect of sub-lethal concentration of H ₂ O ₂ on L. monocytogenes 10403S WT (A),
591	ΔgadD1 (B), ΔgadD2 (C), ΔgadD3 (D), Δlmrg_02013 (E) growth (squared symbols, red line).
592	As a control 10403s cells grown with no H_2O_2 were used (round symbols, black lines). Symbols
593	represent individual data points of three independent experiments and lines the respective fit
594	curve.
595	
596	Fig. 5. Effect of sub-lethal concentration of H ₂ O ₂ on L. monocytogenes EGD-e WT (A),
597	$\Delta gadD1$ (B), $\Delta gadD2$ (C), $\Delta gadD3$ (D), $\Delta lmo0913$ (E) growth (squared symbols, red line). As a
598	control EGD-e cells grown with no H ₂ O ₂ were used (round symbols, black lines). Symbols
599	represent individual data points of three independent experiments and lines the respective fit
600	curve.
601	
602	Fig. 6. Effect of sub-lethal concentration of H_2O_2 on L. monocytogenes LO28 WT (A), $\Delta gadD1$
603	(B), $\Delta gadD2$ (C), $\Delta gadD1/D2$ (D) growth (squared symbols, red line). As a control LO28 cells
604	grown with no H ₂ O ₂ were used (round symbols, black lines). Symbols represent individual data
605	points of three independent experiments and lines the respective fit curve.
606	
607	Fig. 7. Overview of chemical reactions carried out by the extracellular and intracellular GAD
608	system (GAD _e and GAD _i respectively) the GABA shunt and the TCA cycle. GABA-AT is
609	GABA aminotransferase and SSDH is succinate semialdehyde dehydrogenase.
610	

Tables

Table 1. Strains used in this study

Strains	Relevant properties	Reference/	
		Source	
10403S	Serotype ½ a, wild type	(Karatzas et al., 2010)	
$10403S \Delta gadD1$	10403S with an in-frame deletion of gadD1	(Feehily et al., 2014)	
$10403S \Delta gadD2$	10403S with an in-frame deletion of gadD2	(Feehily et al., 2014)	
10403S $\Delta gadD3$	10403S with an in-frame deletion of gadD3	(Feehily et al., 2014)	
10403S Δlmrg_02013	10403S with an in-frame deletion of	(Feehily, 2014)	
	lmrg_02013		
EGD-e	Serotype ½ a, wild type	(Feehily, 2014; Murray et	
	<i>`</i> Q''	al., 1926)	
EGD-e $\Delta gadD1$	EGD-e with an in-frame deletion of gadD1	(Feehily, 2014)	
EGD-e $\Delta gadD2$	EGD-e with an in-frame deletion of gadD2	(Feehily, 2014)	
EGD-e $\Delta gadD3$	EGD-e with an in-frame deletion of gadD3	(Feehily, 2014)	
EGD-e $\Delta lmo0913$	EGD-e with an in-frame deletion of <i>lmo0913</i>	(Feehily et al., 2013)	
LO28	Serotype ½ c, wild type	(Cotter et al., 2001)	
LO28 $\Delta gadD1$	LO28 with an in-frame deletion of gadD1	(Cotter et al., 2001)	
LO28 $\Delta gadD2$	LO28 with an in-frame deletion of gadD2	(Cotter et al., 2001)	
LO28 ΔgadD1/D2	LO28 with an in-frame deletion of gadD1 and	(Cotter et al., 2001)	
	gadD2		

^{*} All above genes encode glutamate decarboxylases except for *lmo0913 and lmrg_02013* which encode a succinate semialdehyde dehydrogenase in EGD-e and 10403S strains respectively.

Table 2. Duration of lag phase (in hours) of *L. monocytogenes* strains grown in the presence (+) or absence (-) of H_2O_2 .

Lag phase	10403S		EGD-e		LO28	
	$H_2O_2(+)$	$H_2O_2(-)$	$H_2O_2(+)$	H ₂ O ₂ (-)	$H_2O_2(+)$	H ₂ O ₂ (-)
WT	5.11	2.66 (†)	4.49	2.92 (†)	6.60	3.71 (†)
**1	(± 0.52)	(± 0.20)	(±0.11)	(± 0.01)	(±0.32)	(±0.95)
ΔgadD1	5.83	2.92 (†)	3.93	2.86 (†)	5.26	3.83 (†)
AgaaD1	(±0.81)	(± 0.02)	(± 0.34)	(±0.05)	(±0.37)	(±0.14)
ΔgadD2	6.77	3.01 (†)	3.78	2.85 (†)	6.22	3.66 (†)
AgaaD2	(±1.09)	(± 0.04)	(± 0.36)	(±0.01)	(± 0.45)	(±1.06)
ΔgadD3	6.63 (*)	2.97 (†)	5.26 (*)	3.09 (†)		
ДзииДЗ	(± 0.78)	(± 0.002)	(± 0.23)	(±0.05)		
Δlmo0913	6.59	2.90 (†)	5.61	3.13 (†)		
or	(± 0.82)	(± 0.01)	(± 0.79)	(± 0.07)		
Δlmrg_02013			~ 4	3		
ΔgadD1/D2					5.99	4.19 (†)
Дзии Д1/1/1/2					(±0.64)	(±0.31)

^(*) denotes statistically significant difference relatively to the WT strain, under the same condition.

 $^{(\}dagger)$ denotes statistically significance between (+) and (-) $H_2O_{2,}$ in each strain.

Table 3. Maximum optical density (620 nm) of *L. monocytogenes* strains grown in the presence (+) or absence (-) of H_2O_2 .

Max growth	10403S		EGD-e		LO28	
	$H_2O_2(+)$	H ₂ O ₂ (-)	H ₂ O ₂ (+)	H ₂ O ₂ (-)	H ₂ O ₂ (+)	H ₂ O ₂ (-)
WT	0.625	0.676	0.680	0.705	0.563	0.723 (†)
VV 1	(± 0.045)	(0.057)	(± 0.015)	(± 0.013)	(± 0.068)	(± 0.040)
AcadD1	0.636	0.623	0.661	0.675	0.81 (*)	0.822
∆gadD1	(± 0.030)	(± 0.005)	(±0.023)	(±0.012)	(± 0.023)	(±0.01)
A and D2	0.691	0.621	0.652	0.661	0.588	0.737 (†)
∆gadD2	(± 0.075)	(± 0.025)	(±0.018)	(± 0.008)	(± 0.040)	(±0.040)
∆gadD3	0.660	0.633	0.643	0.666		
ΔgaaD3	(± 0.08)	(± 0.02)	(± 0.02)	(± 0.005)		L
Δlmo0913	0.642	0.600	0.711	0.702		
or						
Δlmrg_02013	(± 0.040)	(±0.024)	(±0.005)	(±0.02)		
ΔgadD1/D2					0.797 (*)	0.797
AgaaD1/D2					(±0.01)	(±0.003)

^(*) denotes statistically significant difference relatively to the WT strain, under the same condition.

 $^{(\}dagger)$ denotes statistically significance between (+) and (-) H_2O_2 , in each strain.

Fig. 1

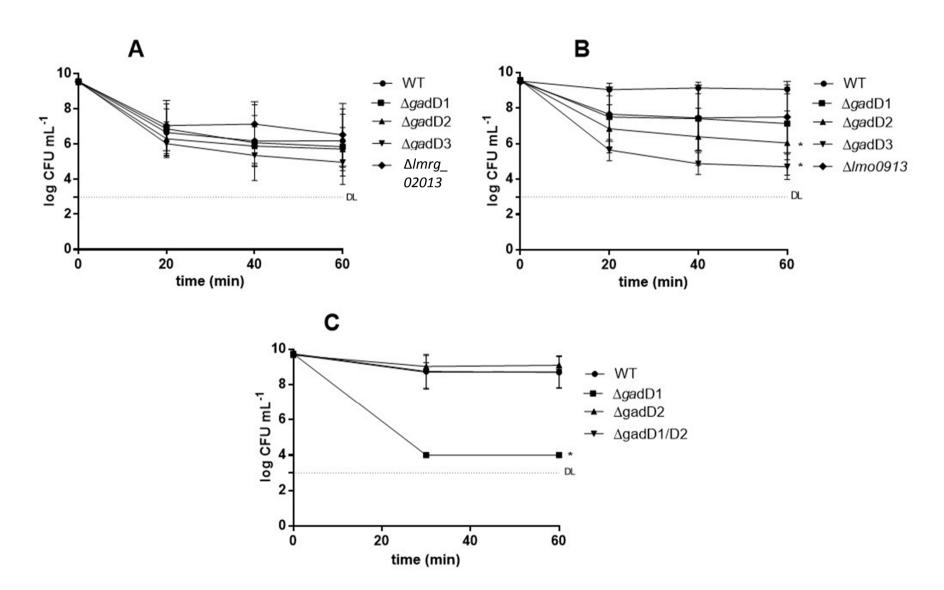


Fig. 2

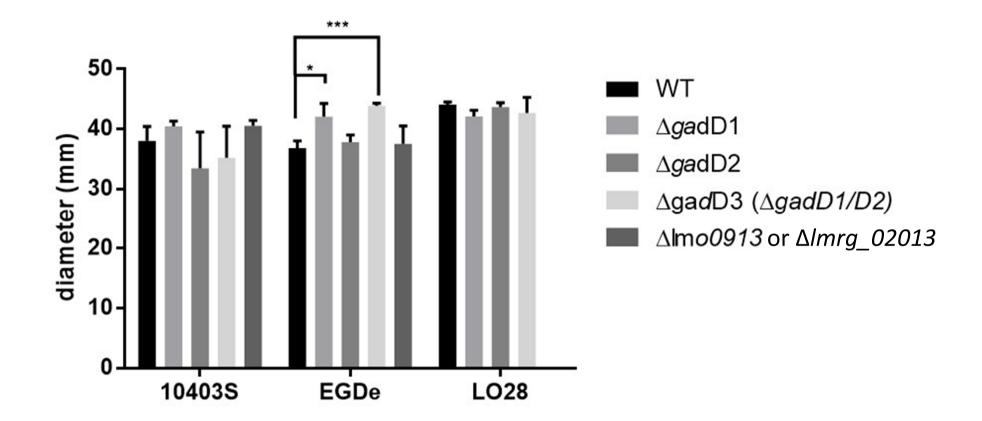


Fig. 3

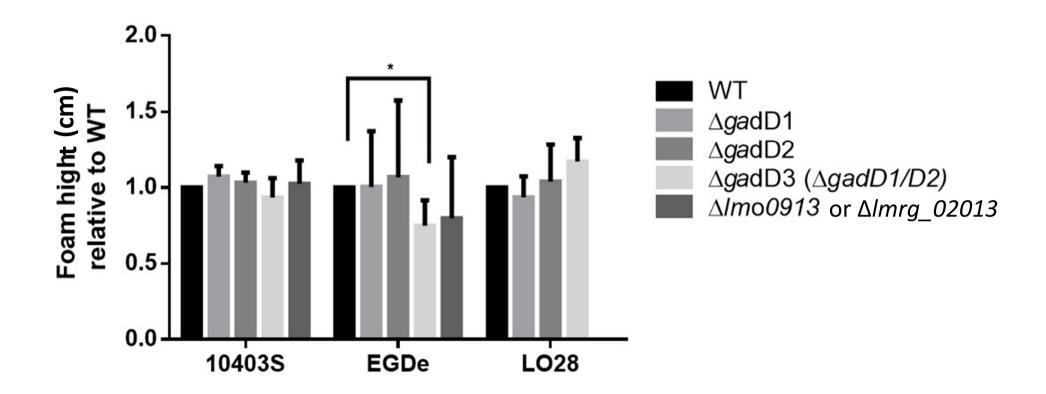


Fig4

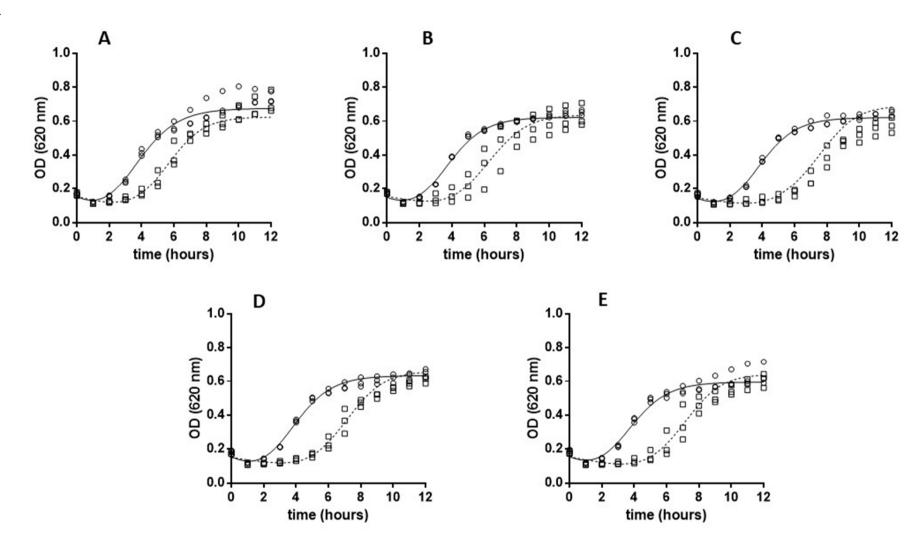


Fig5

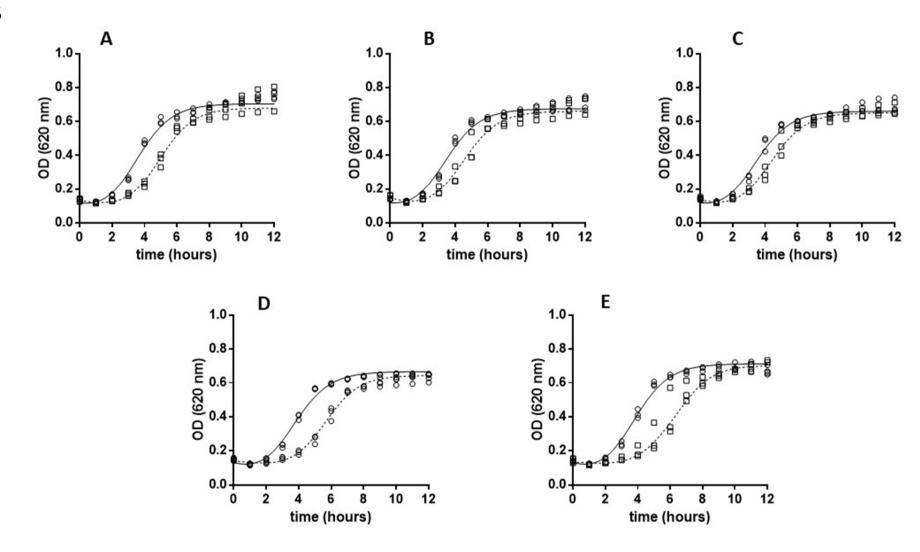


Fig. 6

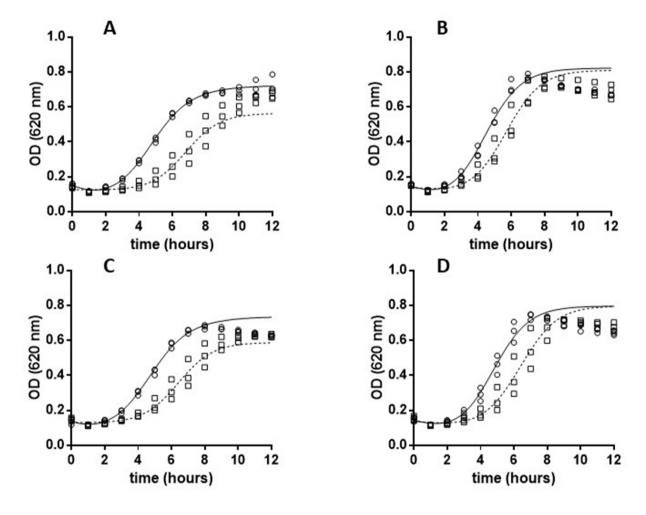
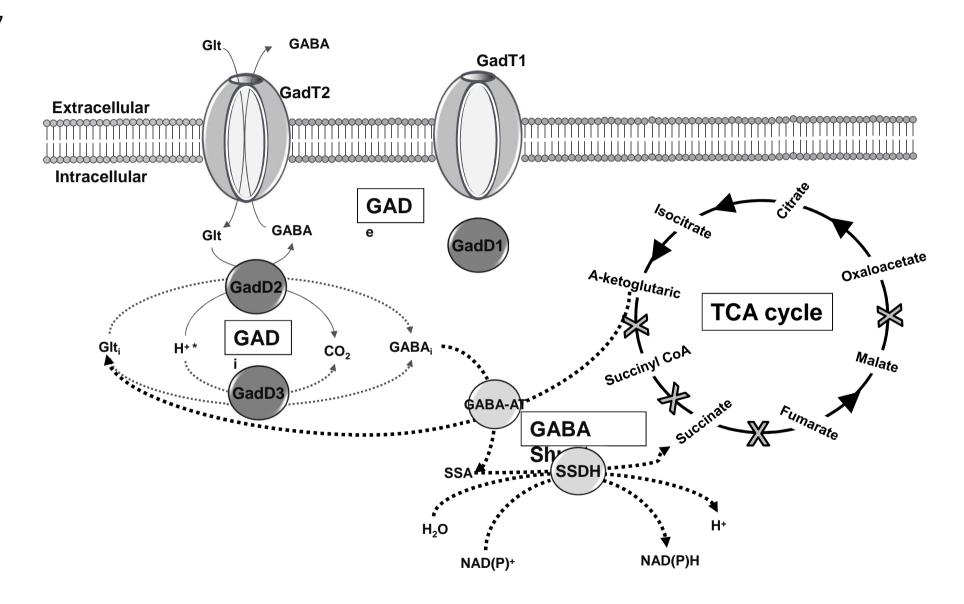



Fig.7

Highlights

- The GAD system affects oxidative stress resistance in a Gram-positive bacterium (*L. monocytogenes*)
- The GAD_i and mainly GadD3 affects oxidative stress resistance in L. monocytogenes
- The GAD_e system does not affect oxidative stress resistance in L. monocytogenes
- GadD1in LO28 has a novel role in oxidative stress resistance
- SSDH of GABA shunt does not affect oxidative stress in *L. monocytogenes*.

Declarations of interest: none

