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Abstract 

My PhD project aims to develop novel chitosan derivatives (with superior 

mucoadhesiveness) for transmucosal application. The intravesical route was chosen as the 

exemplar transmucosal mode of drug delivery due to the limited therapeutic efficiency of 

conventional bladder cancer formulations. Drug carriers with improved mucoadhesive 

properties may prolong drug residence in the bladder. First, three chitosan grades were 

used to prepare chitosan/β-glycerophosphate in situ gelling mixtures and from these 

grades, the high molecular weight graded chitosan (HCHI) was chosen for chemical 

derivatisation based on its superior gelation, mucoadhesive and drug release potential. 

HCHI was conjugated with varying amounts of methacrylate or phenylboronate groups in 

order to evaluate the influence of the type and amount of conjugated hydrophobic pendant 

group on their physicochemical and mucoadhesive properties. The boronated and 

methacrylated chitosans were characterised using 1H NMR and FT- IR. There was good 

correlation in the extent of hydrophobic modification for methacrylated and boronated 

chitosans using 1H NMR and ninhydrin test. Methacrylated and boronated chitosan 

exhibited comparable resistance to pH influence on their solubility. The degree of 

methacrylate or boronate conjugation had a significant influence on the mucoadhesiveness 

of the drug carriers studied using a urine flow-through technique/fluorescent microscopy 

as well as a texture analyser, on porcine bladder in vitro. Boronate groups conferred 

superior mucoadhesive behaviour on chitosan relative to methacrylate groups. 

Methacrylated chitosan displayed a similar safety profile to the parent chitosan based on 

MTT assay on UMUC3 bladder cancer cells. The biocompatibility studies of boronated 

chitosan will be carried out in future studies using bladder cell lines despite the fact that 

several in vitro and in vivo studies have established the safety of phenylboronic molecules. 

Methacrylation and boronation of chitosan has been identified as efficient strategies to 

generate more mucoadhesive drug carriers which could prolong drug residence time in the 

bladder thereby improving therapeutic outcomes of bladder cancer patients. These novel 

polymers were easily synthesised requiring minimal equipment suitable for industrial scale-

up. These excipients could be used to formulate affordable transmucosal dosage forms 

with superior mucoadhesiveness for a variety of biomedical applications.  
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1. Introduction: Advances in intravesical drug delivery 

systems to treat bladder cancer 

 

 This chapter describes the pathophysiology, prevalence and staging of bladder cancer, and 

discusses several formulation strategies used to improve drug residence within the bladder. 

Various in vitro and in vivo models recently employed for intravesical drug delivery studies 

were discussed. Some of the challenges that have prevented the clinical use of some 

promising formulations are identified. 

 

This chapter was published as: 

Oluwadamilola M. Kolawole, Wing Man Lau, Hugh Mostafid, Vitaliy V. Khutoryanskiy, 

Advances in intravesical drug delivery systems to treat bladder cancer (a review), Int. J. Pharm. 

532 (2017), 105-117.  
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1.1. Introduction 

Bladder cancer (BC) is the most predominant malignancy affecting the urinary tract, 

characterised by proliferation of abnormal cells in the urothelial lining of the urinary bladder. 

It is commonly divided into non-muscle invasive bladder cancer (NMIBC) which make up 80% 

of cases at presentation and muscle invasive bladder cancer (MIBC) where the cancer extends 

into the underlying smooth muscles. The latter makes up 15% of cases at presentation with 

the remaining 5% presenting with metastases [1]. Intravesical therapy is only effective in 

NMIBC and is never used in MIBC. Haematuria is the commonest symptom in 85% patients but 

other clinical presentations may include urinary urgency and painful urination [2].  

Bladder cancer is ranked 7th and 9th in terms of cancer incidence in the United Kingdom and 

worldwide, respectively [1,3] as well as being ranked fifth based on prevalent cancer types 

among European men [4]. Bladder cancer is more likely to recur than other forms of cancer 

including those of the breast, prostate, lung and bowel [1,4]. In 2015 in the UK, 6169 new 

cases were diagnosed in men versus 2331 new cases in women [5] and it is projected that by 

2035 there will be 7771 BC related deaths per year out of 10386 cases of bladder cancer [6]. 

Also, bladder cancer annual diagnosis in the UK is about 10000 and 50% of such patients die 

eventually due to disease progression and/or treatment failure [7]. Bladder cancer is 

statistically twice as prevalent in the white population than in the black population [8]; 

however in terms of mortality, with five-year survival rate, it is considerably higher in the 

white community (80%) in comparison with the black community (64%) [3]. The greatest risk 

factor for bladder cancer is smoking and the risk is 2 to 6 folds higher for smokers than non-

smokers, and smoking is responsible for almost 31% and 14% of bladder cancer deaths in 

males and females, respectively [3]. In Africa, 50% of bladder cancer patients have a previous 

history of infection with the water-borne parasite, Schistosoma haematobium, whereas the 

incidence of such bladder cancer cases worldwide is only 3% [9]. 

Non-muscle invasive bladder cancer, also called superficial bladder cancer is the most 

prevalent form of bladder cancer at first diagnosis. It progresses to non-muscle invasive 

bladder cancer in about 15% of patients with a poor prognosis despite transurethral resection 

of the bladder tumour and Bacillus Calmette-Guérin (BCG) immunotherapy [10] and therefore 

frequent cystoscopic surveillance of the bladder is necessary following initial therapy [3]. 

Bladder cancer has the highest cost of therapy of any cancer over the lifetime of the affected 

individual due to the associated cost of surveillance and treatment [9,11,12]. Therefore 

improved bladder cancer therapeutic delivery systems have been investigated over the last 



3 

 

two decades (Fig. 1.1) in an attempt to reduce the clinical and economic burden of this 

disease. 

 

 

Fig. 1.1. Number of publications reporting bladder cancer therapeutic delivery systems (1996-2018).  

Source: Web of Knowledge, now Web of Science (search terms: bladder cancer, delivery systems). 

 

Bladder cancer drug delivery systems are typically presented as liquid formulations and they 

are administered orally, systemically or locally. The degradative hepatic enzymes and gastric 

acid lowers oral bioavailability of bladder cancer therapeutic formulations while systemic 

therapy is less efficient due to the poorly vascularised urothelium [13,14]. Increasing systemic 

drug dose with the aim of improving local drug concentration within the bladder leads to 

elevated adverse drug reactions and non-selective toxic effects on healthy tissues [14]. 

 Intravesical drug delivery (IDD) is the instillation of one or multiple therapeutic agents through 

a catheter, directly into the bladder. IDD provides site-specific drug delivery with minimal 

toxicity [14]; and this local drug delivery could reduce tumour recurrence and progression [15] 

because localised therapy improves therapeutic drug concentrations in the bladder which 

destroys residual urothelial cancerous cells [2,16,17]. Due to cellular and physiological 

limitations posed by the urothelium as well as the presence of urine, it is not sufficient to 

simply administer cytotoxic formulations intravesically; there is a need for careful design of 

drug delivery systems that would be able to circumvent these barriers. 
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Some good reviews have been published that considered a variety of nanoparticles and 

nanotechnology for bladder cancer therapy and/or diagnosis [14,18,19] but some of the 

nanoparticulate systems discussed were developed over a decade ago and recent studies were 

not discussed fully in some of the articles. Also, formulation strategies that require adjunct 

equipment such as electromotive device assisted therapy and hyperthermia has not been 

widely embraced by urologists because of their complex delivery modalities [11]. Thus they 

were not covered within the scope of this chapter. 

This chapter, therefore, will discuss briefly the pathophysiology, prevalence and staging of 

bladder cancer and will focus on advanced formulations investigated for bladder cancer 

management that have not been covered previously. Also, in vitro and in vivo models that are 

currently used for intravesical drug delivery studies will be discussed. The reviewed advanced 

drug carriers are categorised into four groups based on non-particulate, particulate, composite 

systems of hydrogels and particles and liposomal drug carriers. 

1.2.  Bladder Physiology 

1.2.1. Structure of the bladder 

In order to carry out its urine storage and voiding functions, the bladder (Fig. 1.2) can change 

volume although it remains almost spherical in shape [14]. The bladder wall is comprised of 

four layers: the urothelium, lamina propria, detrusor muscle, and serous (adventitia) layers, 

with a rich supply of blood vessels, sensory/motor neurons and lymph vessels embedded in 

these layers [17]. The urothelium acts as the bladder permeability barrier and comprises of 

intermediate, germinal basal and superficial cell layers, with the latest cell layer comprising of 

umbrella cells knitted together by tight junctions and enveloped by uroplakin plaques and 

mucin. These components prevent diffusion of pathogenic and toxic substances into the 

systemic circulation; their detailed functions have been discussed in a previously published 

research article [14]. The urothelium, which covers the entire interior surface area of the 

bladder, prevents the influx of the waste materials present in the urine, into the systemic 

circulation. The mucin layer adhered to the luminal side of the urothelial layer, comprises of 

hydrophilic glycosaminoglycans which covers the umbrella cells which limits the adherence of 

foreign particles or potential chemotherapeutic solutions from penetrating into underlying 

tight junctions or cell membranes [20]. This also means that, systemic therapeutic agents for 

NMIBC treatment cannot diffuse efficiently into the bladder [20]. In addition, regulatory 

information emanating from the bladder lumen is transmitted by the urothelium to the 
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surrounding tissues (myofibroblasts and musculature) via different neurotransmitters 

including adenosine triphosphate, adenosine and acetylcholine [21].  

 

 

Fig. 1.2. Schematic diagram showing various segments of the bladder. This image was designed and 

kindly provided by Ms Stephanie Bull.  

1.2.2. Urine volume and composition 

Urine is a hypertonic solution with its concentration of electrolytes and pH remarkably 

different from that of the blood. It exhibits a tonicity of about 600 mOsm/L but this value may 

vary depending on fluid intake of an individual which concentrates or dilutes the urine. Its pH 

ranges from 4.5 to 8 depending on metabolic conditions and dietary preferences [22].The 

volume of urine in a human bladder is dependent on the sex, race and ethnicity of an 

individual but in the adult it averages around 350-450 mL when full [23] although the first 

sensation of urination occurs at around 150 to 200 mL of urine [14]. Urine voiding activity is 

regulated by the myovesical plexus (made up of interstitial cells and nerve ganglia) within the 

bladder wall which determines the functional behaviour of the bladder wall, producing a 

specific sensation when sufficient urine is present in the bladder and sends a voiding signal to 
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the detrusor muscle which relaxes or contracts appropriately in order to regulate the extent 

and frequency of voiding [21]. 

1.3. Bladder Cancer 

1.3.1. Genetic / molecular expressions in bladder cancer 

Some of the genetic materials that are expressed in bladder cancer can be used as molecular 

targets to design effective therapies. For example, survivin which is detectable in the urine of 

bladder cancer patients [24] has been implicated in bladder cancer as it improves the survival 

rate of cancerous cells by preventing cell death [25]. Bladder cancer patients also are known to 

express particular membrane glycoproteins, mucins (MUC1 and MUC3) associated with 

bladder malignancies which promotes cancer cell mobility and survival [26]. 

The natural immune system of the bladder is achieved through uroplakins, a group of proteins 

found at the apex of the umbrella cell membrane, namely UPIa, UPIb, UPII, and UPIII. They 

induce bacterial death when infected. They also perform barrier functions along with tight 

junctions, where they prevent drug diffusion across the urine/bladder tissue interface as a 

result of their high density packing [27–29]. Changes in the glycosylation of uroplakins 

especially UPIII may depict advanced stages of bladder cancer, in addition to clinical conditions 

such as urinary tract infections and interstitial cystitis [30]. 

Lewis X glycoantygen, sialyl-Tn (carbohydrate) and its degrading enzyme (sialyltransferase) are 

expressed on the urothelium and are markers for bladder cancer [30]. Metabolomics of urine 

samples from bladder cancer and non-bladder cancer subjects’ revealed that biomarkers 

(lipid-metabolic products) such as arachidonite, palmitoyl sphingomyelin, lactate, adenosine 

and succinate are found in bladder cancer patients only [31]. Chemokine ligand 1 (CXCL1), 

which modulates interaction between stroma and urothelium, in order to accelerate tumour 

progression and metastasis, is also expressed in urine samples of bladder cancer patients [32]. 
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1.3.2. Stages of bladder cancer 

About 90% of bladder cancer cases are transitional cell carcinomas while squamous cell 

carcinomas occur in 3-7% patients and around 2% have adenocarcinomas [33]. Usually, the 

urothelial layer of the bladder is initially affected by most bladder cancer types. The nearby 

lamina propria and muscular layer becomes involved as the tumour progresses. Afterwards, 

the lymph nodes or pelvic organs are also affected. The metastatic stage arises when 

cancerous cells divide and spread to distant organs such as lungs, liver and bone marrow [33]. 

Table 1.1 

Bladder cancer stages. Information taken from [34] 

Category Stage Description, including tumor coverage 

Ta, N0, M0 Stage 0a Non-invasive papillary carcinoma – hollow centre of the bladder 

Tis, N0, M0 Stage 0is Flat, non-invasive carcinoma (carcinoma in situ) – inner bladder 

lining 

T1,N0, M0 Stage I Invasive – connective tissues beyond the urothelial lining 

T2a or T2b, N0, 

M0 

Stage II Invasive – inner half (T2a); outer half (T2b) of the muscular region 

T3a, T3b, T4a, 

N0, M0 

Stage III Invasive – fatty tissue region visible with microscope (T3a); readily 

visible (T3b); spread to prostate, uterus and/or vagina (T4a) 

T4b, N0, M0, 

N1-N3, M1 

Stage IV Invasive / metastatic – Pelvic or abdominal wall (T4b); single pelvic 

lymph node (N1); ≥ 2 lymph nodes (N2); iliac arterial lymph nodes 

(N3); beyond the bladder to distant sites like bones, liver or lungs 

Note: N0 and M0 denotes that lymph nodes and distant sites (metastatic tumours) were not affected, respectively. 
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The tumour stage defines the extent of disease progression [35]; and the tumour node 

metastasis staging system developed by International Society of Urological Pathology in 1997 

for bladder cancer classification is still being used by World Health Organisation [36]. The 

American Joint Committee on Cancer TNM tumour grading system categorises bladder cancer 

based on their growth into the bladder wall (T), spread to neighbouring lymph nodes (N) and 

metastases (M). Information from these categories is then used to evaluate the overall stage 

of the disease from stage 0 to IV (Table 1.1). 

Eble et al. graded bladder cancers based on cell morphology into tumour grade G1, G2 and G3, 

with G1 being the most well differentiated, while G3 is the least differentiated bladder cancer 

having the greatest risk of progression [37]. Recently, WHO proposed a new grading 

classification for bladder cancer based on improved knowledge of its pathology and genetics 

(Fig. 1.3), where “urothelial dysplasia” and “urothelial proliferation of uncertain malignant 

potential” were included as well defined forms of non-invasive urothelial lesions [36]. 

 

Fig. 1.3. The 2016 WHO Classification of Bladder Cancer (details extracted and presented in a different 

format) [36] 
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1.4. Management of bladder cancer 

Bladder cancer treatment is dependent on the stage and severity of disease [33]. The UK 

National Institute for Health and Care Excellence (NICE) has produced guidelines regarding the 

diagnosis and treatment of bladder cancer. It recommends that both cystoscopy and urine 

cytology is needed in order to diagnose bladder cancer as cystoscopy alone may miss some 

tumours such as carcinoma in situ [38]. The extent of bladder cancer progression is identified 

using computer tomography or magnetic resonance imaging techniques. NMIBC is initially 

treated with transurethral resection of bladder tumours followed by a single dose of 

intravesical chemotherapy such as Mitomycin-C, doxorubicin, epirubicin and thiotepa to 

reduce recurrence rate [38,39]. Patients with a low risk of disease recurrence post-surgery 

may be followed up with cystoscopic surveillance alone, whilst those in the intermediate and 

high risk categories are treated with induction intravesical chemotherapy (mitomycin-C) or 

Bacillus Calmette Guérin (BCG) immunotherapy for at least 6 weeks, in addition to the 

perioperative chemotherapy to ensure recurrence-free survival [39]. The BCG therapy triggers 

an immune response that ensures future recognition of bladder cancer cells, and this 

treatment has been proven to prevent cancer progression in about 85% of bladder cancer 

cases [39]. 

1.5. Drugs and drug carriers for Intravesical drug delivery 

Currently, the chemotherapeutic agents used for bladder cancer treatment are doxorubicin, 

gemcitabine, epirubicin [40], mitomycin-C, thiotepa, paclitaxel and cisplatin [2], BCG and 

interferon-α [41,42]. The effectiveness of bladder cancer therapeutic dosage forms depends 

on their ability to overcome the urothelium as well as the loaded drug having suitable 

physicochemical properties such as molecular weight (≥ 200 Da), water or lipid solubility, 

organic/aqueous phase partition coefficient (log P) of -0.4 to -0.2 or -7.5 to -8.0, and minimal 

ionisation between pH 6 and 7 [14]. Drugs intended for intravesical bladder cancer treatment 

should have molecular weight above 200 Da to promote permeation into underlying malignant 

urothelial tissues and avoid systemic uptake; soluble enough in water since the bladder 

environment is aqueous in nature but they must have some degree of lipophilicity which 

enhances drug transport across urothelial malignant tissues. Drugs exhibiting a negative 

logarithm of organic phase to aqueous phase partition coefficient (logP) implies that the drugs 

are more hydrophilic in nature, which is critical for their solubilisation in the aqueous bladder 

environment; and such drugs should not be ionised readily between pH 6 and 7, which is the 
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typical pH in the bladder environment to prevent drug degradation before availability at the 

target sites [42].  

The surface charge of drug carriers influences their cellular uptake, for example, positively 

charged nanoparticles are taken up by cells and readily absorbed into tissues in preference to 

anionic or neutral nanoparticles due to electrostatic interaction between oppositely charged 

dosage form and cell membranes [43–45]. Possibly, the uptake of such drug cargos may be 

prevented by poor interaction with biorecognitive moieties on cell surfaces such as wheat 

germ agglutinin (WGA) that facilitate cellular internalisation [21] as well as electrostatic 

repulsion between negatively charged carriers and bladder mucosa. 

1.5.1. Conventional formulations 

The primary function of the bladder is to store and void urine. This physiological role leads to 

the dilution and wash-out of conventional dosage forms for bladder cancer treatment, which 

are made of simple solutions to aid syringeability through the cathether during intravesical 

therapy. For instance, the  commercial dosage form of mitomycin-C (Kyowa®, Galashiels), a 

choice drug for the intravesical treatment of superficial bladder cancer, is presented as 2 mg, 

10 mg, 20 mg and 40 mg powder for solution, formulated with sodium chloride to improve the 

aqueous solubility of the drug [46]. The current formulation lack polymeric excipients, making 

it less resistant to urine dilution and wash-out, resulting in less than optimal effectiveness of 

treatment, contributing to high disease recurrence rate and treatment costs [47]. As a result, 

the National Health Service in England spends £65 million yearly for bladder cancer 

management and treatment [48]. 

Mucoadhesive gels could potentially extend the residence time of drug formulations in the 

bladder. The surgical implantation of drug loaded gels into bladder cancer patients is 

expensive and inconvenient to them [49]. Therefore, local drug delivery by drug instillation via 

a catheter was adopted which permits easy bladder accessibility and avoids surgery [42]. The 

usual volume of drug formulation instilled intravesically is approximately 50 mL [50] and 

micturition is prevented for at least 1-2 h post intravesical drug administration, for effective 

drug transport into the underlying cancerous tissues [51]. Nevertheless, the instilled drug 

becomes diluted due to residual urine which is often present in the human urinary bladder 

and/or is washed out prematurely [52]. These limitations mean frequent catheter insertion, 

decreased dosing interval, eventual irritation of the urethral lining and possible urinary tract 

infection are possible complications of intravesical drug delivery [53]. In addition, conventional 
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drug carriers such as microspheres [54,55] and gelatin nanoparticles [56] display poor drug 

loading and uncontrolled drug release profiles. 

1.5.2. Advanced formulations 

Hydrophilic drugs are readily soluble in the aqueous urine medium of the bladder but their 

permeability and cellular uptake is limited due to the lipophilic nature of the urothelial tissues. 

Thus, chemical enhancers such as dimethyl sulfoxide have been used to improve the cellular 

uptake of bladder cancer chemotherapeutics such as doxorubicin and cisplatin into malignant 

bladder tissues [57]. However, their use is now less favourable because of unwanted side-

effects such as frequent and painful urination [14]. Hydrophobic drugs such as paclitaxel 

formulated with dimethyl sulfoxide for improved solubility and urothelial permeability are 

associated with painful sensation after intravesical instillation [58]. 

Therefore, novel drug carriers were developed to improve the aqueous solubility of lipophilic 

drugs, urothelial permeability of hydrophilic drugs, urothelial adhesion of drug carriers as well 

as drug uptake/permeation into malignant tissues for prolonged periods of time. They include 

amphiphilic copolymer based solubilised systems [59], surface modified particulate systems 

[53,60–66], composite particulate and hydrogel systems [50,67–69] and liposomal systems 

[70,71] (Table 1.2). 

1.5.2.1. Amphiphilic copolymer based solubilised systems 

Solubilised systems are isotropic solutions of a substance in a state of thermodynamic stability 

generated by dispersing the sparingly soluble substance in an amphiphilic material [72]. 

Cremophor is conventionally used to improve the solubility of paclitaxel in the physiological 

fluid but its use is limited by adverse effects as well as reduced drug permeation across the 

mucosal lining due to drug entrapment in polymeric micelles, preventing their release and 

bioavailability [73]. On the other hand, the amphiphilic copolymeric delivery system, poly (2-

methacryloyloxyethyl phosphorylcholine-co-n-butyl) methacrylate (PMB30W) has been 

proven to be non-toxic with improved paclitaxel solubility and uptake into mammalian cell 

lines during in vitro studies [74,75].  

PTX-MBA (novel drug carrier) was formulated by solubilising paclitaxel in PMB30W in order to 

improve its aqueous solubility, safety and antitumour activity [59]. In vitro studies using MBT-2 

bladder cancer cells to compare cytotoxicity of PMB30W (1% w/v) and ethanolic cremophor 

(1:1; v/v) to bladder cancer cells showed that PMB30W displayed no toxic effect to the cells 
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while dose associated toxicity was reported with ethanolic cremophor after 72 h of instillation. 

This was confirmed by the lactate dehydrogenase (LDH) activity assay, detecting 0% and 65% 

LDH release for PMB30W and ethanolic cremophor, respectively, in the same study [59].
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Table 1.2. Overview of intravesical formulations explored for bladder cancer therapy 

 

Class Agent Material Dosage form Ref. 
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Amphiphilic copolymer based 

solubilised systems 

Paclitaxel Poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butylmethacrylate) diblock copolymer 

(30 mol% methacryloyloxyethyl phosphorylcholine hydrophilic unit: 70 mol% hydrophobic 

butyl methacrylic anhydride unit) 

Ionotropic solution [59] 

Surface modified particulate systems Belinostat PGON, PLGA Nanoparticles [61] 

Doxorubicin Β-cyclodextrin, mesoporous silica Nanoparticles [64] 

Mitomycin-C Poly (L-lysine)-coated and chitosan coated poly(Ɛ)caprolactone Nanoparticles [60,63] 

Survivin SiRNA Chitosan, PLGA Nanoparticles [53] 

Stearoyl Gemcitabine Wheat Germ Agglutinin, PLGA Microparticles [62] 

Doxorubicin Copolymer of 2-(acetylthio)ethylacrylate and 2-hydroxyethylmethacrylate Thiolated Microgels [65] 

Docetaxel Amine-functionalised polyacrylamide Nanogels [66] 

10-

hydroxycamptothecin 

Poly (L-lysine)-poly (L-phenylalanine-co-L-cysteine) Nanogels [76] 

Composite particulate and hydrogel 

systems 

Adriamycin Poloxamer 407 (triblock copolymer), sodium hydrogen carbonate, HPMC, Human Serum 

Albumin 

Floating hydrogel-

nanoparticulate 

system 

[69] 

Bacillus Calmette-

Guérin 

Chitosan, β-glycerophosphate, magnetite Mucoadhesive 

nanoparticle-in situ 

gelling system 

[68] 

Deguelin DOTAP, monomethoxy poly (ethylene glycol)-poly (Ɛ-caprolactone) NP + Pluronic F127 

hydrogel 

Mucoadhesive 

nanoparticle-in situ 

gelling system 

[67] 

Gemcitabine HCl Chitosan-thioglycolic acid conjugate based NPs + chitosan gel / Poloxamer gel Thiolated 

Mucoadhesive 

nanoparticle-in situ 

gelling system 

[50] 

Liposomal systems Paclitaxel Soya phosphatidylcholine, gellan gum Liposomes/ion-

triggered gelling 

system 

[70] 

Fluorescein sodium Soybean L-alpha-phosphatidylcholine, MPEG2000-DSPE, PEG2000-DSPE-Mal PEG- & Maleimide-

liposomes  

[71] 
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The ability of an orthotopic bladder cancer mouse model (mouse implanted with MBT-2 

bladder cancer cells) to mimic the human bladder cancer environment has been confirmed in 

some studies [77,78]. During ex vivo studies, orthotopic model of bladder cancer was 

established through transurethral implantation of MBT-2 BC cells into mice. Then, these mice 

were treated with various formulations (50 µL of 2 mg/mL PBS, PTX-MBA and PTX-CrEL) at 

predetermined time intervals and killed after 22 days to determine the degree of tumour 

growth or regression. It was shown that PTX-MBA (novel formulation) improved tumour 

regression (more than 2 folds) in comparison with PTX-CrEL (conventional drug carrier) [59]. 

Some of the mice were sacrificed 30 min post intravesical drug instillation and the degree of 

drug uptake into tumour tissues quantified using liquid chromatography/tandem mass 

spectrometer, was shown to be remarkably lower in PTX-CrEL than in the PTX-MBA group of 

mice (4.905 ± 2.412 µg/g vs 7.719 ± 3.274 µg/g). This revealed improved selectivity of the 

novel paclitaxel carrier for malignant tissues [59]. However, studies related to the resistance of 

the delivery system to urine dilution or wash-out were not evaluated and periodic urine 

voiding and residual urine in the bladder may have affected product performance. Drug 

release studies were not carried out, thus the pattern of drug release is unknown. This makes 

it difficult to ascertain that the drug will be released in a controlled manner, which is a critical 

parameter for improved bladder cancer formulations that would reduce dosing frequency. 

1.5.2.2. Surface modified particulate systems 

1.5.2.2.1. Lectin modified particulate systems 

Glycans and lectins are biological entities that are sensitive and responsive to bacterial and 

malignant invasion by destroying them through endocytosis, where they interact and adhere 

onto mannose receptors on cell surfaces [79–81]. It is anticipated that lectins will be useful for 

malignant conditions associated with the bladder because they attach to the distal portion of 

Escherichia coli (E. coli) pili and destroy the E. coli in bacteria urinary infections [82]. The 

urothelial cellular uptake of plant lectins, like wheat germ agglutinin (36 kDa), in pigs and 

humans, suggested that biologics may be delivered intravesically, as lectins are readily 

recognised by the glycol-proteins and lipids of the urothelium and facilitate cellular uptake of a 

bioconjugate [83].  

Neutsch and co-workers surface-functionalised fluorescently labelled bovine serum albumin 

with wheat germ agglutinin (WGA) units and this modification influenced the urothelial cell 

(SV-HUC-1) adhesive and invasive potential of the fluorescent WGA conjugated bovine serum 

albumin bioconjugate (fBSA/WGA) [84]. Their cytoadhesive features were greatest when the 
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total number of targeting ligands was three and such features did not increase further for 

bioconjugates with 4-6 WGA units [84]. This lectin-modulated interaction was critical for 

internalisation of the drug carrier (> 175 kDa) within less than 60 min, with more than 40% of 

drug taken up via endocytosis. The unchanged extent of cell adhesive properties with 

increased WGA units (≥ 3) may be due to some of their recognitive domains being sterically 

hindered from binding to glycosylated urothelial cell membranes [84]. Neutsch’s group have 

also suggested the mechanism of WGA metabolism after fluorescently labelled bovine serum 

albumin  release, to have taken place via lysosome degradation [84]. 

Nanoparticles are structures in the nanometer scale and these nanocarriers can be formulated 

from lipids, synthetic and biopolymeric polymers, proteins, metals, inorganic and 

organometallic compounds [85]. Nanoparticles generated from biopolymers, lipids, proteins 

and some synthetic polymers such as polyesters (PLGA) are biodegradable and drug release 

from them can be modulated while those prepared using inorganic compounds such as 

polystyrene are non-biodegradable [86]. 

Poly(lactic-co-glycolic acid) (PLGA) is a FDA approved copolymer widely used for the delivery of 

drugs, proteins, DNA, RNA and peptides due to its biodegradability and biocompatibility  [87]. 

Stearoyl gemcitabine loaded PLGA microparticles surface modified with wheat germ agglutinin 

or human serum albumin, WGA-GEM-C18-PLGA MPs or HSA-GEM-C18-PLGA MPs, were 

explored for intravesical drug delivery [62]. In vitro studies using cancerous and non-malignant 

cell monolayers showed that the WGA-GEM-C18-PLGA microparticles had better cellular 

uptake, internalisation and cytostatic action than HSA-GEM-C18-PLGA and unmodified 

microparticles within 3 min of instillation due to the biorecognitive properties of wheat germ 

agglutinin, which enables wheat germ agglutinin conjugated drug carriers to be readily taken 

up into the urothelial tissues via endocytosis. The wheat germ agglutinin modified PLGA 

microparticles also had a two-fold greater affinity towards malignant cell lines than healthy 

cells. The fluorescently labelled drug loaded WGA and HSA modified microparticles required a 

contact time of 30 min and 120 min, respectively, to impart cytotoxic activity on low grade 

cancerous cell lines using fluorescence microscopy [62]. WGA-GEM-C18-PLGA microparticles 

were more resistant to wash-off by artificial urine, which allowed for superior retention of 

cytostatic effect (78 ± 12%) compared to free prodrug but the degree of cell inhibitory 

potential of the free drug in the presence of urine was not defined [62]. There was no 

significant difference in the sustained release effect (after 120 min) for the three formulations 
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(WGA-, HSA- modified and unmodified PLGA microparticles), which could be attributed to the 

inability of the study design to simulate wash out features of the urinary bladder.  

The WGA-modified microparticles also had low drug release of 13.2 ± 1.8% after 5 days with 

most of the drug retained within the particle matrix. Nevertheless, studies of 

bromodeoxyuridine antimetabolic activity suggested that wheat germ agglutinin based 

particles require a lower dose than free drug for achieving a particular degree of prolonged 

action [62]. Also, a cell proliferation assay suggested better antiproliferative properties for 

drug loaded surface modified particles than free drug [62]. Overall, the optimisation and 

translation of this formulation strategy to the clinic may be limited by the relatively high cost 

of manufacturing in terms of time and materials required for isolation and purification of the 

bioconjugate of interest. The bioconjugate size may be heterogenous resulting in 

immunogenic and adverse reactions. However, Neutsch’s group did not envisage such 

formulation constraint. 

Recently, Apfelthaler et al. evaluated a bioconjugate, wheat germ agglutinin conjugated to 

fluorescein cadaverine labelled poly (L) glutamic acid (WGA/FC-PGA), for a bladder cancer 

theranostic application [88]. Poly (glutamic acid) may improve the solubility of the 

hydrophobic agents while wheat germ agglutinin favours the selective uptake of bioconjugate 

into malignant bladder tissues by interacting selectively with the glycocalyx components (N-

acetyl-D-glucosamine and sialic acid) of bladder cancer cells [89]. Flourescein cadaverine helps 

to track transport of the drug carrier into the cancerous cell endosome and/or lysosome. They 

confirmed earlier findings by Neutsch’s group [62] that the presence of biorecognitive 

moieties such as wheat germ agglutinin  was critical for improved cellular uptake and 

internalisation of bioconjugates into BC cells. Flow cytometry was used to evaluate the cell-

binding ability of the delivery system, WGA/FC-PGA. Size exclusion chromatography was used 

to purify the synthesised bioconjugate and isolate biorecognitive fractions. Conjugate A (160 

kDa) fraction, obtained with 60 to 80 mL eluent, displayed superior cell binding efficiency 

relative to conjugates B-D due to the presence of more WGA units conjugated to the 

fluorescein cadaverine labelled poly (L) glutamic acid system. Five fluorescein cadaverine 

molecules per poly (L) glutamic acid were critical for adequate traceability of the bioconjugate 

as it exhibited greater cell-induced relative fluorescence intensity than bioconjugate with 30 

fluorescein cadaverine per poly (L) glutamic acid. Conjugate A was found to be cytoadhesive at 

4oC but become cytoinvasive at 37oC via active transport. On the other hand, conjugates C and 

D eluted around 90 mL and lacked both cell adhesive and uptake properties [88].  
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There was no hydrophobic agent delivered within the scope of this study, though the authors 

acknowledged that their future studies will explore optimal drug loading that will not 

compromise the cell binding and uptake features of the bioconjugate. They noted that there is 

a need for conjugate A (the most promising bioconjugate) to replicate similar cytoadhesive 

and cytoinvasive profile when hydrophobic theradiagnostic agents are loaded. 

1.5.2.2.2. Mucoadhesive delivery systems 

There are various theories that govern the adhesion of drug delivery systems onto the mucosal 

surfaces (Figure 1.4), namely wetting, electronic, adsorption, diffusion, fracture, and 

mechanical [90,91]: (1) The wetting theory relates to the liquid polymer’s ability to spread 

onto the mucus layer of mucosal tissues; (2) electronic mode relies on electron transfer 

between the mucoadhesive polymer and the mucosal mucus, resulting in electrostatic 

attraction between surfaces of opposite charges; (3) with adsorption theory, polymers and 

mucus interact via hydrogen bonds and van der waals forces, hydrophobic effects (amphiphilic 

polymers) and chemisorption (covalent bond between polymer and mucin); (4) diffusion 

theory exploits  the penetration of the polymer into the mucus gel while the mucin diffuses 

into the dosage form generating interpenetrating layers; (5) fracture theory relates to the 

difficulty of separation of the drug carrier from the mucosal surface, which is used to calculate 

the fracture strength of adhesive bonds involving solid and rigid mucoadhesives; and (5) the 

mechanical theory pertains to surface roughness of rough and porous delivery systems where 

increased contact area with mucosal surfaces results in improved mucoadhesiveness [91]. 

 

Fig. 1.4. Schematic representation of the interrelationship between various mucoadhesion theories. 
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Since these theories cannot explain the mechanism of mucoadhesion in isolation, some 

researchers have described the mechanism of mucoadhesion occurring through two main 

stages, first is the contact stage where the polymeric liquid dosage form is wetted and swells. 

The second stage is the consolidation stage where the polymeric material interacts with the 

mucosal mucus via electronic or adsorption (non-covalent) interaction. Then, interpenetrating 

layers are formed between the polymer chains and the mucosal membrane dictated by the 

molecular weight, hydrodynamic size and mobility of the mucoadhesive material. The 

mucoadhesiveness of the material is sustained via non-covalent or covalent bond formation 

between the entangled polymer chains and the mucosal membrane [90,91].  

A mucoadhesive formulation is an attractive drug delivery system for bladder cancer 

treatment because the interaction and retention of the dosage form on the bladder mucosal 

surfaces is critical for drug penetration into malignant tissues and resultant therapeutic action. 

They are preferred to lectin functionalised PLGA microparticles because their use is less 

associated with immunogenic reaction resulting from the inefficient purification of some 

bioconjugates such as wheat germ agglutinin functionalised PLGA microparticles. 

 

Over the last decade, researchers have intensified efforts towards investigating materials with 

ability to adhere readily to mucosal surfaces because they can prolong the contact time 

between dosage form and diseased site, which is desirable for intravesical formulations 

[50,56,65,91]. Examples of such mucoadhesive polymers are presented as Appendix 1 and 

they differ in terms of their source as well as biodegradability. Due to their successful 

applications for other transmucosal routes of administration such as buccal, ocular and vaginal 

[92], mucoadhesive systems have also been explored for intravesical delivery to enhance drug 

bioavailability and duration of action [64,65,67,68,93]. 

1.5.2.2.2.1. Cationic particulate systems 

Cationic drug carriers adhere onto negatively charged bladder mucosa via electrostatic 

interaction. Poly (L-lactide-co-glycolide) nanoparticles have been widely used for biomedical 

applications because of their biocompatibility, biodegradability, ease of modification with 

polymers and peptides [94,95], ability to protect encapsulated biologics or therapeutics from 

degradation during transit, as well as possibility for controlled release of loaded drugs [96–98]. 

Poly (guanidinium oxanorbornene) (PGON) is a non-toxic synthetic polymer which is 

comprised of cationic guanidinium groups and acts similarly like a peptide based cell 

permeation enhancer [99]. Martin et al. explored surface functionalisation of PLGA 
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nanoparticles with a urothelial cell penetrating polymer such as poly (guanidinium 

oxanorbornene)  to improve aqueous solubility, urothelial cellular uptake, internalisation, 

cytotoxic effect, and duration of action of lipophilic drugs such as belinostat, an histone 

deacetylase inhibitor [61]. Belinostat promotes hyperacetylation with intrinsic IC50 in bladder 

and prostate cancer cells within the range of 1 to 10 µM; and inhibits bladder cancer 

progression to its metastatic and aggressive forms [100,101].  

All PLGA nanoparticles were 14-160 nm but PGON-modified PLGA nanoparticles had superior 

drug loading relative to the unmodified and biotinylated chitosan conjugated nanoparticles by 

3.3- and 6.8-folds, respectively [61]. Ex vivo studies of fluorescently labelled NP-Belinostat-

PGON using human ureter as well as in vivo studies with mouse bladder suggested that the 

uptake of belinostat loaded PGON modified PLGA nanoparticles was ten times greater than 

that of the unmodified nanoparticles [61]. PGON, the cell permeation enhancer, improved 

urothelial uptake of nanoparticles by interaction with a negatively charged urothelial surface 

coated with glycosaminoglycan, or opening tight junctions of the urothelium. This facilitated 

drug transport across the urothelial membrane into underlying tissues [61].  

The in vivo cytotoxic effect of PGON-modified PLGA nanoparticles was tested using a xenograft 

murine model generated from the UM-UC-3R human bladder cancer cell line. Tumour growth 

was not significant after 11 days of treatment for belinostat loaded PGON modified PLGA 

nanoparticles, whereas the volume of tumours treated with unmodified PLGA nanoparticles 

and drug-free PGON-modified PLGA nanoparticles increased by at least two folds relative to 

tumours treated with belinostat loaded PGON modified PLGA nanoparticles. After 21 days, the 

volume of tumours treated with unmodified drug loaded PLGA nanoparticles and blank PGON 

modified PLGA nanoparticles had increased by 77% and 71%, respectively, relative to 

belinostat loaded PGON modified PLGA nanoparticles  treated tumours [61]. The burst release 

profile of the novel drug carrier was evident by Histone H4 hyperacetylation occurring in RT-4 

(less-invasive) and T-24 (highly invasive with metastatic tendency) cell lines within 30 min 

following the instillation of NP-Belinostat-PGON, and the protein expression was sustained for 

3 days [61]. Thus, a lower dose of the belinostat loaded PGON modified PLGA nanoparticles 

may be used to achieve the same therapeutic index observed with free belinostat [61]. Though 

the degree of tumour regression by the PGON surface decorated PLGA nanoparticles may 

correlate with their extent of cellular uptake and drug release, the authors have not quantified 

the amount of belinostat that was taken up for the modified and unmodified nanoparticles. 
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This information would be useful for determining dosage regimen for bladder cancer 

treatment using this drug carrier. 

In a later study, Martin et al. showed that PLGA nanoparticles functionalised with low 

molecular weight chitosan 2.5 or 20 kDa (CHI2.5-PLGA or CHI20-PLGA) were able to adhere 

onto urothelial surface and enhance the uptake of larger therapeutic agents like survivin siRNA 

[53]. Survivin siRNA expression within urothelial cancerous cells enhanced destruction of 

survivin mRNA responsible for preventing death of cancerous cells. In vitro release studies 

showed the encapsulation efficiency of the nanoparticles modified with chitosan was superior 

compared to unmodified nanoparticles (70 vs 60%). CHI2.5-PLGA nanoparticles demonstrated 

a superior burst release profile relative to CHI20-PLGA nanoparticles. Also the CHI20 

decorated carrier displayed 10-fold lower siRNA release than CHI2.5-PLGA nanoparticles over 

13 days, inferring that delivery systems conjugated with chitosan of greater molecular weight 

(20 kDa) could be less beneficial if a fast onset of siRNA release and antitumour activity is 

desirable. During ex vivo studies, CHI20-PLGA and CHI2.5-PLGA nanoparticles displayed 

improved cellular uptake into UM-UC-3 BC cells in comparison with control PLGA 

nanoparticles, in the magnitude of 5-10 fold and 4-9 fold, respectively, within 120 min of 

incubation [53]. During in vivo mice studies, bladder uptake was up to 14-fold and 9-fold 

greater for CHI20-PLGA and CHI2.5-PLGA nanoparticles, respectively, compared to the control 

formulations [53]. Though siRNA was readily taken up into urothelial malignant cells and 

tissues for PLGA nanoparticles conjugated with chitosan (20 kDa), the CHI20-PLGA 

nanoparticles entrapped greater amounts of siRNA, in addition to forming bulkier surface 

groups, which prevented their release and bioactivity [53]. Thus CHI2.5-PLGA NPs may be 

desirable for therapy where fast onset of action is needed followed by a sustained release 

profile over a period of time. Moreover, the amount of drug taken up into bladder tissues was 

sufficient to reduce mRNA expression and promote tumour regression. The varied 

physicochemical interaction between the surface of carriers and the urothelial membrane is 

responsible for the different degree of tumor regression, sustained release, and duration of 

action observed. Their findings indicated that chitosan chain length used for surface 

modification of PLGA nanoparticles influenced the carrier’s drug loading, release and cellular 

uptake behaviour. 

Poly-Ɛ-caprolactone (PCL) nanoparticles have been explored for intravesical drug delivery 

because of their biocompatibility, hydrophobicity (to support passive drug uptake) and cost-

effectiveness  [102]. Erdogar’s group investigated the physicochemical and in vitro drug 
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release properties of chitosan (CHI-PCL) and poly-L-lysine (PLL-PCL) coated poly-Ɛ-

caprolactone  nanoparticles in comparison with uncoated chitosan nanoparticles [60]. The 

three types of nanoparticles had a mean diameter less than 400 nm before and after coating 

with chitosan or poly-L-lysine and a zeta potential of 10-35 mV. The extent of mitomycin-C 

release in pH 6.0 phosphate buffer release medium over 6 h for chitosan nanoparticles, PLL- 

coated and chitosan-coated poly-Ɛ-caprolactone nanoparticles was 89%, 92% and 91% after 15 

min, respectively, suggesting that all the nanoparticulate formulations exhibited similar burst 

drug release profiles. The drug release pattern of the cationic nanoparticles at 6 h time point 

was not evaluated as the drug was prone to degradation after 6h, moreover, there is little 

additional information that may be obtained at that time point. The bladder retention of 

mitomycin-C loaded chitosan, chitosan and poly-L-lysine coated poly-Ɛ-caprolactone 

nanoparticles as well as a commercial product containing mitomycin-C was investigated in rats 

by instilling formulations (500 µL) and urine samples were collected 2, 4 and 6 h post 

instillation of the drug formulations, centrifuged and drug eliminated into urine quantified 

using HPLC. All the cationic nanoparticulate mitomycin-C formulations were retained in the 

bladder for longer period of time relative to the commercial dosage form, with the chitosan 

coated poly-Ɛ-caprolactone nanoparticles exhibiting the longest residence time in the bladder 

followed by chitosan nanoparticles while the poly-L-lysine coated nanoparticles were the least 

retained in the bladder. The amount of drug excreted into the urine after 6 h: 29.8 µg (CHI-PCL 

nanoparticles) versus 41.5 µg (chitosan nanoparticles) versus 42.3 µg (PLL-PCL nanoparticles). 

The antitumour properties of the drug carriers were evaluated in a later study in tumour-

induced rat model, with the largest number of rats alive in the groups treated with drug 

loaded chitosan coated poly-Ɛ-caprolactone nanoparticles relative to that of chitosan 

nanoparticles and poly-L-lysine-coated poly-Ɛ-caprolactone nanoparticles, inferring that the 

bladder retention of the cationic nanoparticles facilitated their antitumour efficacy. In 

addition, there was no systemic uptake of all the studied mitomycin-C solution and 

nanoparticulate formulations based on HPLC analysis of the blood samples collected from rats 

after they had received intravesical instillation of drug formulations [63], inferring that 

mitomycin-C based dosage forms may pose minimal side effects. 

1.5.2.2.2.2. Thiolated particulate systems 

Some hydrophilic polymers such as chitosan are intrinsically mucoadhesive due to its cationic 

amino-groups which promotes interaction with mucin [103–105]. Nevertheless, functional 

groups such as thiols [106,107], acrylates [108,109], maleimide [110] and catechols [111] have 

been explored to chemically modify polymers in order to improve their mucoadhesion. 
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Irmukhametova et al. reported the synthesis of thiolated nanoparticles using self-

condensation of 3-mercaptopropyltrimethoxysilane [112], which were subsequently used by 

Mun et al. to study retention on porcine bladder surface [113]. Thiol-ene click chemistry 

involving interactions between pentaerythritol tetraacrylate and tetrakis (3-mercapto-

propionate) were employed by Štorha and co-workers to produce thiolated nanoparticles 

[114] that were shown to be adhesive to porcine bladder mucosa. However, these 

nanoparticles [112,114] have not been explored for formulation of anticancer agents for 

intravesical bladder cancer therapy. 

Zhang and co-workers generated thiol-functionalised cyclodextrin based mesoporous silica 

nanoparticles (NPs) for potential bladder cancer treatment and reported that they possess 

superior mucoadhesion compared to hydroxyl and amino-functionalised nanoparticles during 

mucin-nanoparticles interaction studies [64]. In vitro MTT cytotoxic testing on UMUC3 bladder 

cancer cells showed that the IC50 for doxorubicin loaded thiolated nanoparticles and free 

doxorubicin were 3.92 ± 1.06 µg mL-1 and 0.45 ± 0.05 µg mL-1, respectively [64]. The gradual 

release of doxorubicin from the nanoparticulate formulation into the endosomes/lysosomes 

of the BC cells may be responsible for the IC50 of about 3.92 ± 1.06 µg mL-1 reported for 

doxorubicin loaded thiol-functionalised cyclodextrin based mesoporous silica nanoparticles 

(Dox-MSNPs-CD-NH2-SH). However, IC50 values for doxorubicin loaded hydroxyl-functionalised 

cyclodextrin based mesoporous silica nanoparticles, [Dox-MSNPs-CD-(OH)] and doxorubicin 

loaded amine-functionalised cyclodextrin based mesoporous silica nanoparticles [Dox-MSNPs-

CD-(NH2)] also evaluated in the study, were not provided. Thus there were no means of 

establishing the cytotoxic superiority of doxorubicin loaded thiolated drug carriers over amino- 

and hydroxylated nanoparticles. In vitro drug release studies revealed that doxorubicin was 

released faster (63%) from thiolated nanoparticles deposited onto porcine bladder tissues 

incubated in simulated urine conditions (pH 6.1) than PBS based release medium (pH 7.4), 

with drug release of 13% after 48 h due to the relatively acidic pH of the simulated urine (pH 

6.1) favourable for the protonation of the unreacted amino groups of the β-cyclodextrin –

(NH2)7 on the nanoparticles to ammonium groups; coulombic repulsion between the positively 

charged amine-derivatised β-cyclodextrin rings around the mesopores of the nanoparticles, 

which cause them to open up and release the encapsulated doxorubicin [64]. This finding was 

valuable as the drug carrier will facilitate drug release within the physiological environment of 

the bladder. 
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Cook et al. co-polymerised a thiol-bearing monomer, 2-(acetylthio) ethylacrylate with 2-

hydroxyethylmethacrylate using ethylene glycol dimethacrylate as a cross-linker (Fig. 1.5) to 

generate 635-977 nm thiolated microgels [65]. These microgels were found to exhibit high 

doxorubicin encapsulation efficiency (75-86%), good colloidal stability, excellent bladder 

mucoadhesion as well as sustained drug release over 300 min. Doxorubicin was released from 

the insoluble matrix through Fickian diffusion established from the Higuchi drug release 

model. 

 

Fig. 1.5. Synthesis of thiolated microgels: (a) Synthetic route to ATEA, a protected thiomonomer. (b) 

Polymerisation to form ATEA: HEMA copolymer microgels, displaying the pendant functionalities 

present. (c) Deprotection of ATEA using sodium thiomethoxide to yield thiol-bearing microgels. (i) 

Potassium thioacetate, acetone, 24 h. (ii) Acryloyl chloride, trimethylamine, DCM, reflux, 24 h. (iii) 

Ammonium persulfate, ethylene glycol dimethacrylate, water, 70
o
C, 6 h. (iv) Sodium thiomethoxide, 

methanol, 30 min. This figure is reproduced from [65]. Reproduced with permission from the Royal 

Society of Chemistry. 

Furthermore, the retention of doxorubicin loaded microgels on the bladder tissues was 

modulated by variation of the molar proportions of both monomers (ATEA & HEMA) to 
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generate microgels with desirable thiol content. For example, microgels with the greatest and 

least degree of thiolation were achieved by 80 mol% and 30 mol% ATEA, respectively [65]. The 

former resisted wash off by artificial urine during ex vivo porcine bladder mucoadhesion 

studies compared with the latter. This may be associated with the greater amount of thiol 

groups forming covalent disulphide bridges with the cysteine-rich regions of urothelial mucins 

as mucosal adherence was independent of surface charge or polarity of carrier. The 30 mol% 

and 80 mol% ATEA/HEMA based microgels had capacity for loading up to 2.5 mg mL-1 and 2.7 

mg mL-1 doxorubicin, respectively [65], which was greater than the therapeutic doses of 

doxorubicin (1-2 mg mL-1; 25-100 mL solution) [115,116]. However, future in vivo studies are 

desirable to facilitate further development of these drug carriers. 

Cationic amine-functionalised polyacrylamide based nanogels were investigated for 

intravesical delivery of docetaxel [66] due to their safety, mucoadhesive properties and 

sustained release potential. They were prepared as a lyophilised solid readily dispersible in 

water or phosphate buffered saline. These materials had high drug loading (> 90%) with an 

initial burst release within 9 h and a sustained release over 9 days when formulations were put 

in a dialysis membrane and drug release evaluated in artificial urine over predetermined time 

intervals [66]. Docetaxel loaded functionalised carrier displayed superior inhibition towards 

UMUC3 cells relative to T24 cells, with IC50 of 5.6 ng/mL vs 535.6 ng/mL over 4 h and the 

difference became more pronounced with an exposure time of 72 h, with a calculated IC50 of 

1.6 ng/mL and 11.6 ng/mL, respectively. Also, the cellular uptake of fluorescently labelled DTX-

Pam-NH2 nanogels into UMUC3 cells at 37oC was more pronounced than into T24 cells in a 

concentration dependent manner. This finding was also confirmed in ex vivo studies using 

porcine bladder tissues, where persistent green fluorescence on bladder tissues suggested the 

adhesion of the fluorescent carrier onto bladder urothelium. The treatment of intact bladder 

urothelium with the novel formulation also confirmed its safety when analysed using scanning 

electron microscopy as it induced only mild disruption of the urothelial tissues [66]. However, 

the preparation of nanogels was time-consuming as the preparation took about a week. Also, 

the amine functionalised surface may not have superior mucoadhesive features because its 

mode of interaction with the bladder mucosa would be via electrostatic attraction rather than 

covalent bonding which is stronger [106]. 

Recently, Mun et al. developed a new method for evaluating the retention of thiolated and 

PEGylated silica nanoparticles on porcine bladder epithelium during ex vivo studies as drug 

containing or blank formulations are being washed off using artificial urine [113]. The 
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parameter “Wash Out50” represented the volume of biological fluid (such as artificial urine) 

required to detach 50% of the adhered particulate carrier from mucosal tissues. The in vitro 

studies also identified chitosan with superior WO50 value and mucoadhesive property relative 

to thiolated nanoparticles and dextran (89 mL vs 36 mL vs 7 mL). The mucoadhesiveness of 

thiolated silica nanoparticles was decreased with surface decoration with poly(ethylene glycol) 

(PEG) and porcine bladder mucoadhesion reduced with increase in PEG molecular weight 

(5000 vs 750 Da) resulting in WO50 of 8 mL and 29 mL, respectively [113]. 

Nanogels are nanoparticles composed of a hydrogel network. Guo et al. studied 10-

hydroxycamptothecin loaded cationic cross-linked polypeptide (poly (L-lysine)-poly (L-

phenylalanine-co-L-cysteine) nanogels (HCPT/NG) for intravesical delivery [117]. The poly (L-

lysine) segment of the peptide is positively charged and interacts favourably with negatively-

charged bladder mucosa while the poly (L-phenylalanine-co-L-cysteine) mimics cell 

penetrating peptides by promoting drug uptake into bladder cancer cells [117]. The drug 

carrier had a particle size in a nano-range (≈ 65 nm); was positively charged (16.3 ± 1.4 mV) as 

well as displayed good drug loading capacity and efficiency of 30.6 and 88.2% (w/w), 

respectively. Based on confocal laser scanning microscopic and microplate reading method of 

analysis, the novel drug carrier, HCPT/NG was taken up into bladder cancer cells via 

endocytosis and drug was efficiently delivered into T24 cell nuclei within 6 h, while the free 

drug formulation remained in the cytoplasmic region [76]. During in vitro studies, T24 bladder 

cancer cells were treated with free drug, HCPT and drug loaded nanogel formulation, 

HCPT/NG for 24 h and the cytotoxic effect of the formulations was investigated using MTT 

assay. The drug loaded nanogels showed greater cytotoxic effect than the free drug (IC50 

values of 2.7 mg/L vs 7.9 mg/L) [76].  

With the in vivo studies using orthotopic bladder cancer model, the drug loaded novel 

formulation, HCPT/NG demonstrated remarkably improved antitumour activity using flow 

cytometric cell analysis, with cell death occurring predominantly in the nanogel treated 

regions relative to that treated with free drug. In addition, the drug loaded nanogel exhibited 

superior tumour necrotic region (46.3 ± 2.2%) relative to the cells exposed to free drug, up to 

3.8-fold increase. The in vivo biodistribution of the drug carriers was studied: six hours post 

treatment with drug loaded nanogel or free drug solution, the mice were sacrificed and their 

bladder and other major organs were excised, homogenised and evaluated by HPLC. The drug 

loaded nanogel, HCPT/NG was preferentially retained in the bladder and rarely in other 

organs, displaying 3.2-fold greater drug concentration in the bladder than that of the free 
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drug-treated mice. This finding also correlates with the improved safety of the drug carrier due 

to targeted drug delivery, further confirmed by the insignificant changes in body weight of the 

mice throughout the studies [76]. This drug carrier appears promising for the treatment of 

superficial bladder cancer. However, in vitro drug release and in vivo mucoadhesive profile of 

the free drug HCPT or drug loaded nanogel, HCPT/NG were evaluated using phosphate 

buffered saline. It will be more physiologically relevant if artificial urine was used. 

1.5.2.3. Composite system of nanoparticles and hydrogels 

Composite systems of nanoparticles and hydrogels were explored to combine the benefits of 

both formulations including improved drug loading, release, mucoadhesion and urothelial 

uptake. Hydrogels are three-dimensional hydrophilic or amphiphilic polymer networks, 

prepared by physical or chemical crosslinking of polymers. These materials exhibit excellent 

ability to retain water or biological fluids [118,119]. They are soft, flexible and biocompatible; 

this makes them readily fabricated as building blocks for soft tissues [120–122]. The physically 

cross-linked hydrogels are more readily eliminated after drug release and uptake into the 

urothelial tissues, than hydrogels prepared using covalently bonded polymers. However, a 

balance is required between prolonged duration of action and biodegradability so that 

covalently linked hydrogels do not cause any harm to the body. 

In situ gelling systems are liquid formulations with flowing tendency at room temperature and 

forms gels at physiological environment in response to various stimuli such as pH, enzymes or 

temperature. In recent years, temperature has become the commonly explored stimuli for 

such formulations where sol-gel transition takes place at 37oC (within the body) because 

temperature is the easiest stimulus to manipulate in order to generate environmentally 

responsive hydrogels [123–125]. It is desirable that dosage forms intended for mucosal 

delivery (including the intravesical route) have gelation temperature within the range of 30oC 

to 36oC [126]. Over the last decade, biomedical researchers have explored these systems for 

drug/biomolecule delivery [127–129] and tissue engineering [130] because they are readily 

manufactured, exclude use of organic solvents, administered in a minimally invasive mode, 

and provide sustained release [131]. In addition, their liquid consistency also allows their easy 

mixing with therapeutic agents before administration to a patient [132]. Thus, they have been 

employed for intravesical drug delivery, serving as drug reservoir, from where drug is released 

steadily over extended period of time. 
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1.5.2.3.1. Floating composite systems of NPs and hydrogels 

Adriamycin, an anthracycline antibiotic, is useful for reducing bladder cancer recurrence [133] 

when administered intravesically after transurethral resection of the bladder tumour but its 

application was limited because it causes irritation and scarring of the bladder; additional 

problem with this drug is its rapid release [134]. Floating strategies were used for oral 

formulations to improve residence time of drugs in the gastrointestinal tract [135–137]. Thus 

composite nanoparticle-hydrogel delivery system, with in situ gelling and floating potential 

within the bladder, was designed to serve as a drug depot to release adriamycin gradually and 

prevent urinary obstruction associated with the high viscosity of conventional non-floatable 

mucoadhesive poloxamer based hydrogels [69]. The safety of adriamycin has also been 

improved by formulating it as human serum albumin based nanoparticles (103 nm) that are 

loaded into Poloxamer 407 (P407) and hydroxypropyl methyl cellulose (HPMC) based 

thermosensitive gel [69]. The P407 facilitated gelation through micellar packing and 

entanglements [138,139] while HPMC enabled attachment of the nanoparticles to the bladder 

wall and prolonged erosion of the gel which ensured sustained drug release. One of the 

components of this formulation (sodium hydrogen carbonate) enables the drug carrier to float 

in urine environment. It produces carbon dioxide microbubbles in acidic medium which 

enables the hydrogel system to float, thereby preventing urinary obstruction [69]. 

Nanoparticles with adriamycin formulated using P407 and HPMC were reported to undergo 

sol-gel transition within the shortest time possible, achieving gelation temperature of 10oC and 

gelation time of 2 min when evaluated at 37oC, in comparison with other evaluated carriers 

(nanoparticles-adriamycin or non-floating hydrogel), with gelation temperature of 12 to 18oC 

and gelation time of 2-5 min at 37oC. Nevertheless, all these formulations may be 

refridgerated to improve syringeability during intravesical drug administration as they will 

form gel at room temperature. 

The amount of drug released into the urine of rats as well as the amount retained in their 

bladder following intravesical administration of a suspension of adriamycin nanoparticles and 

adriamycin loaded composite nanoparticles-hydrogel system facilitated a controlled drug 

release with 81.87% drug released over 10 h compared to the adriamycin nanoparticles, with 

loaded drug released instantly [69]. The in vitro and in vivo drug release studies did not 

correlate well due to the disparity in the volume of the evaluation medium as well as hydrogel 

volume used. This is because the in vivo studies had to use hydrogel volume of 0.1 mL that can 

be accommodated in rat’s bladder (volume of ≤ 1 mL), while the in vitro studies used 400 mL 

release medium and hydrogel volume of 12 mL applicable to humans. However, to achieve this 



29 

 

excellent retentive effect, urine needed to be acidified for the formulation to float. This may 

be less acceptable due to potential irritation of the bladder caused by low pH [69]. Thus 

floating in situ gelling drug carrier with sustained release profile at pH 6-7 (intrinsic pH of the 

bladder environment) would be worth investigating in the future. 

 

 

1.5.2.3.2. Non-floating, mucoadhesive composite systems of polymeric nanoparticles 

and hydrogels 

Some authors investigated delivery systems that form non-floatable gels in situ but made of 

materials that do not potentially obstruct urine elimination as they are flexible and steadily 

dissolve in urine over time, though mucoadhesive for sufficient length of time to allow for 

drug uptake into urothelial membranes. 

Chitosan formulated with β-glycerophosphate disodium salt is an example of physically cross-

linked temperature-responsive gelling system (Fig. 1.6) that has been evaluated by some 

researchers [44,140–142]. They suggested molecular mechanism for the gelation process in 

terms of increased electrostatic repulsion between chitosan macromolecules as well as 

interactions between positively charged chitosan molecules and negatively charged β-

glycerophosphate which stabilises the resultant hydrogel system below physiological 

temperature as well as increased chitosan intermolecular hydrophobic interactions prevalent 

around 37oC expelling water molecules and generating less hydrated gel network [143,144]. It 

was suggested by Supper and co-workers [131] that these molecular interactions have not 

explained the influence of temperature on the gelation process while some authors [145,146] 

have established the role of polyol moiety of gelling material in the thermo-sensitivity of 

chitosan- β-glycerophosphate  in situ gelling systems. 
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Fig. 1.6. Schematic diagram showing in situ gelation process of chitosan/ß-glycerophosphate mixture at 

37
o
C, with the electrostatic interaction between the amine groups of chitosan and phosphate groups of 

β-glycerophosphate ensuring that drug carrier remain liquid below 25
o
C; with increased temperature at 

37
o
C, chitosan intermolecular hydrophobic interactions become more pronounced as hydrating water 

molecules around chitosan macromolecules are expelled, generating less hydrated gel network.  

 

Therapeutic agents have been delivered locally and systemically using thermoresponsive 

chitosan- β-glycerophosphate (CHIGP) in situ gelling system [44,141,142,147,148]. Common 

features for all these studies is that the release of the loaded drugs such as ellagic acid [44], 

insulin [141], meglumine antimoniate [147], venlafaxine hydrochloride [148] and cisplatin 

[142] was sustained over the release study period. In addition, their gelation time and 

temperature was dependent on the concentration and volume ratio of chitosan and β-

glycerophosphate. Despite the promising efficacy and drug release properties of CHIGP in situ 

gelling systems, they have not been explored for intravesical drug delivery. 

Magnetic delivery system was studied for the adjuvant treatment of superficial bladder 

cancer. Bacillus Calmette Guérin (BCG) powder and magnetite nanoparticles were 

incorporated into CHIGP solution. The nanoparticulate component targeted the carrier to 

bladder tissues under the influence of magnetic field. The resultant Fe3O4-BCG-CHIGP system 

formed gel in situ and resisted urine wash-off [68]. BCG loaded magnetic gel dosage form 

stimulated greater Th1 immune reaction with increased expression of interleukin-2 (IL-2, 149.3 

± 8.06 pg/mL) and interferon ɣ (IFN-ɣ, 373.47 ± 40.53 pg/mL) in the urine and superior 

antitumour activity (tumour volume of 0.53 ± 0.27 mm3) compared to conventional BCG 

solution with “IL-2” of 98.84 ± 7.03 pg/mL; IFN-ɣ of 220.28 ± 54.19 pg/mL and tumour volume 
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of 1.82 ± 0.48 mm3. The duration of BCG residence within the bladder tissues was also 

extended beyond one month, evident by the CD4+ lymphocyte levels detected in submucosal 

regions: 3913 ± 467 lymphocytes were recorded for magnetic BCG nanoparticle-hydrogel 

carrier compared to 2578 ± 269 lymphocytes when BCG solution was used. 

Chitosan has an intrinsic mucoadhesive property and may be responsible for improved 

antitumour immune reaction exhibited by the magnetic carrier in the bladder [68]. In addition, 

tight junctions of the urothelial membrane are loosened up due to their interaction with 

chitosan, thereby increasing and sustaining local drug concentration [149]. In vitro release 

studies were not carried out by Zhang’s group [68] due to the lack of reliable techniques used 

for detection and quantification of BCG. Moreover, the BCG radiolabelling technique explored 

by Shen et al. was not helpful [150]. So, initial burst release profile was suggested based on 

persistent cytokine expression in rat urine up to 48 h during in vivo studies. The burst release 

profile of BCG may result in adverse reactions such as induction of immune reactions. So, 

further studies should be carried out to ascertain if the delivery system is appropriate for BCG. 

Moreover, alternative method of BCG quantification may be helpful for dosage determination. 

Deguelin has been employed for chemotherapy of lung, breast and colon cancer due to its 

antiangiogenic potential [151–153]. However, its clinical use is limited because of its 

hydrophobicity as well as potential toxic effects on the heart, lungs and nerves associated with 

high drug dose [151]. N-[1-(2, 3-Dioleoyloxy) propyl]- N, N, N-trimethylammonium chloride 

(DOTAP) has cationic hydrophilic head and hydrophobic chain and nanoparticles formulated 

using this amphiphilic material are able to solubilise lipophilic drugs and enhance urothelial 

uptake so that the dose required for therapy is reduced, minimising toxic effects. This justifies 

their acceptance by FDA for the gene-based treatment of lung cancer [154–156]. 

Men et al. reported the improved deguelin’s aqueous solubility and residence time in the 

bladder using the formulations composed of amphiphilic N-[1-(2,3-dioleoyloxy)propyl]-N, N, N-

trimethylammonium chloride (DOTAP) surface modified monomethoxyl poly (ethylene glycol)-

poly (Ɛ-caprolactone) (MPEG-PCL) based nanoparticles and thermosensitive in situ gelling 

Pluronic F127, and biological properties compared with that of unmodified MPEG-PCL 

nanoparticles [67]. Pluronic F127 hydrogel improved urothelial uptake and tissue absorption 

of deguelin while cationic DOTAP-modified MPEG-PCL nanoparticulate component facilitated 

sustained drug release [157]. Deguelin loaded nanoparticles had encapsulation efficiency of 

98.2% but rate of loading drug into these nanoparticles was low (4.9%). In vitro drug release 

studies were performed using dialysis membrane maintained in a water-bath containing PBS 
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(pH 7.4) and 0.5% w/w Tween 80. This formulation formed gel readily at 25oC in vitro and 

fluorescent gel was observed in mice within 10 min of intravesical administration which 

sustained for 2 h [67]. In vitro cellular uptake studies using DOTAP modified in situ gelling 

formulation and unmodified nanoparticles loaded with fluorescent coumarin-6 (with similar 

hydrophobic nature to deguelin) showed that the DOTAP modified nanoparticles were more 

readily taken up by T24 bladder cancer cells than the unmodified nanoparticles. In vivo studies 

using mice confirmed cellular uptake of fluorescent model drug loaded formulation based on 

fluorescence observed within sections of bladder tissues. MTT assay also confirmed that the 

deguelin loaded DOTAP modified nanoparticle-hydrogel system exhibited cytotoxic effect on 

T24 bladder cancer cells at a lower IC50 values than that of the unmodified nanoparticles and 

free drug. The tolerability of deguelin was improved with the intravesical administration of the 

novel drug loaded formulation because similar drug amount (2 mg kg-1) given intravenously to 

mice, killed them. Thus the novel deguelin based dosage form may be safer, effective without 

causing urethral blockage due to its gradual elimination from the bladder [67]. However, the 

anti-angiogenic properties of the novel drug carrier was not carried out, though that of the 

free drug was investigated with transgenic zebrafish model using fluorescence microscopy, 

with the intersegmental embryo vessels developing abnormally or did not grow relative to 

control embryo. It will be valuable to undertake this study to ascertain the superior 

antitumour efficacy of the new intravesical delivery system relative to the free drug. 

Ṣenyiğit et al. have employed chitosan-thioglycolic acid conjugate to prepare nanoparticles 

and incorporated them into 2% chitosan gel or in situ gel forming poloxamer (mixture of 20% 

poloxamer 407 and 10% poloxamer 188) for improved intravesical delivery of gemcitabine 

hydrochloride [50]. Gemcitabine-HCl loaded thiolated chitosan nanoparticles had greater drug 

loading than deguelin loaded DOTAP-modified MPEG-PCL nanoparticles evaluated by Men et 

al. [67] (9.4% vs 4.9%) but the latter had greater encapsulation efficiency than the former 

(98.2% vs 19.2%). This finding may be associated with the differences in the physicochemical 

properties of the formulation. Composite system of chitosan gel and chitosan-thioglycolic acid 

conjugate based nanoparticles was more resistant to dilution by artificial urine (Tyrode 

solution) than composite system of in situ gel forming poloxamer gel and chitosan-thioglycolic 

acid conjugate based nanoparticles  at 37oC based on rheological frequency sweep data 

(Storage modulus 15Pa vs 6 Pa). In vitro drug release studies also suggested that the rate of 

drug release following dispersal of nanoparticles into chitosan gel and Poloxamer gel 

decreased by a magnitude of 1.5 and 2.6, respectively as well as release rate of 33.4 ± 5.0% vs 

19.6 ± 1.6% in 4 h [50]. During bioadhesion test using bovine bladder mucosa, chitosan gel 
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based delivery system also had improved bioadhesive properties (in terms of its force of 

detachment from the bladder tissues) compared to Poloxamer gel based carrier (1.003 ± 0.048 

N.mm vs 0.378 ± 0.022 N. mm).  

The incorporation of the drug carriers with Tyrode solution resulted in a 51% and 80% 

reduction in bioadhesive properties, respectively [50]. Greater percentage of the drug 

permeated the bladder mucosa for the chitosan gel based carrier compared to Poloxamer gel 

(33.16 ± 5.11% vs 18.78 ± 1.97%) during ex vivo studies. Thus chitosan gel based drug carrier 

may be a potential intravesical delivery system for Gemtacibine hydrochloride in order to 

improve drug efficacy and residence time within the bladder. This investigation was intended 

to mimic the behaviour of the proposed formulation within the urine containing environment. 

However, the gelation time reported for poloxamer gel-Tyrode solution and poloxamer gel 

based drug carrier-Tyrode solution (457 ± 4 s vs 483 ± 2 s) at 37oC was quite unexpectedly low 

for formulations with gelation temperature of 51.7 ± 1.0oC and 53.7 ± 1.9oC, respectively. 

 

 

1.5.2.4. Liposomal systems 

Liposomes comprise of synthetic or natural phospholipids which assemble to form bilayers 

surrounding an aqueous core. They can encapsulate both hydrophilic and hydrophobic drugs 

as well as DNA plasmids, and are taken up into the cells through endocytosis [158,159]. 

Liposomes were not usually explored for intravesical drug delivery because of their instability 

in human urine. Recently, Nakamura’s group modified cationic liposomal surfaces with 

cholesteryl-PEG to overcome their urine aggregation and promote uptake into urothelial 

tissues [160]. N- (carbonyl-methoxypolyethyleneglycol 200)-1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-PEG-based formulations were the most resistant to aggregation in the 

presence of human urine relative to 1,2-distearoyl-sn-glycerol, methoxyPEG 2000 and 

cholesterol-PEG. This finding was due to the superior flexible conformation of N-(carbonyl-

methoxypolyethylene glycol 200)-1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG 

(DSPE-PEG) in comparison to 1, 2-distearoyl-sn-glycerol, methoxyPEG 2000 (DSG-PEG) and 

cholesterol-PEG. Also, the rich density of negative charge on DSPE-PEG shields the cationic 

liposomes thereby enhancing stability in the urine. 
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Additionally, fluorescently labelled liposomal suspension in human urine was incorporated 

into MB49 cells and these cells were evaluated by flow cytometry. The surface 

functionalisation of the cationic liposomes with PEG ensures that the drug carrier is taken up 

into MB49 murine cells uniformly. Surprisingly, 2 or 5 mol% Chol-PEG functionalised cationic 

liposomes were taken up into the cells more efficiently compared to unmodified and other 

PEG modified liposomes. This result was in contrast to their stability behaviour in human urine 

as more rigid conformation of cholesterol-PEG based carrier supported their uptake into MB49 

cells [160]. Thus lipid based carriers incorporating both DSPE and cholesterol-PEG may be 

formulated for improved stability in human urine as well as cellular uptake into cancerous 

urothelial tissues. 

GuhaSarkar et al. explored paclitaxel loaded composite liposomes in gellan hydrogel (PTX-LP-

Gel) for intravesical delivery [70]. Paclitaxel was encapsulated efficiently into the drug carrier 

(91.2 ±0.7%) because of the affinity of the hydrophobic drug towards lipid bilayers. Apart from 

being mucoadhesive, gellan is a temperature and ion-responsive polysaccharide, so it becomes 

physically cross-linked in the presence of urine, resulting in prolonged retention of the drug 

carrier onto the urothelial surface. Gellan (0.1%) was identified as the optimum concentration 

for syringeability through the catheter. The liposomal component (124 nm, PDI 0.22, surface 

charge -16.8 mV) enhances urothelial cell permeation as a result of merging with the lipid 

content of the cell membranes. Based on cryo-TEM results, the size of the drug loaded 

liposome was increased with paclitaxel encapsulation to ~200 nm. The novel drug carrier, PTX-

LP-Gel exhibited a sustained drug release profile over 50 h (17.8 ±3.0% of loaded drug) due to 

the smart matrix of the hydrogel; though porous structure facilitates controlled drug and/or 

liposome diffusion out of the hydrogel. Cellular uptake studies using confocal laser scanning 

microscopy confirmed superior NBT-II and T24 cell internalisation of loaded rhodamine-6G, 

relative to the control cell group. Also, cytotoxic testing of the novel drug carrier using NBT-II 

and T24 cell lines suggested that they retained their cytotoxic effect with IC50 values of 55.7 ± 

13.0 nM and 1.9 ± 0.5 μM, respectively. The composite system of liposomes and gellan 

hydrogels was not detected in non-target organs during in vivo retention studies and the 

amount detected in the rat bladder 7 days post instillation was remarkably greater than that 

of the commercial product, Taxol (1.71 ± 0.86 μg/g vs 0.02 ± 0.01 μg/g).  

The safety of the novel drug carrier, LP-Gel was confirmed based on scanning electron and 

atomic force microscopic images depicting intact urothelium, with residence of the gel 

formulation for up to 24 h. This work revealed that the limited mucoadhesiveness associated 
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with conventional liposomes can be overcome by incorporation of liposomes within gellan gel. 

Moreover, toxic effect of cross-linkers (such as glutaraldehyde and 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride) used with mucoadhesive polymers, to 

improve mucoadhesiveness of liposomes, will be avoided [70]. Overall, this work generated 

safe, injectable, mucoadhesive, ion-triggered in situ gelling carrier, resistant to pH changes in 

the bladder with a sustained release profile. 

Recently, our group reported that  maleimide-terminated PEGylated liposomes (PEG-Mal), 

with diameter 86±1 nm and PDI of 0.22 exhibited superior urothelial mucoadhesiveness 

relative to PEGylated liposomes and conventional liposomes (WO50 values 48 mL vs 24 mL vs 

15 mL) due to its stronger interaction with the thiol content of membrane mucins via covalent 

linkages [71]. However, PEGylated liposomes displayed greater bladder mucosal epithelial 

penetration than PEG-Mal liposomes (p < 0.05), which may be due to the strong adhesive 

property of the latter slightly retarding their mucosal penetration [71]. In vitro model drug 

release studies also showed that PEG-Mal liposomes facilitated controlled release of the 

model drug (fluorescein sodium) with 95-100% released after 8 h relative to same amount of 

the model drug released in 4 h with the PEGylated liposomes [71]. This study indicated the 

influence of PEG and maleimide functionalisation on the urothelial mucosal adhesion and 

penetration as well as drug release pattern. However, the use of fluorescein sodium to mimic 

drugs may be less reliable. Thus, future studies will explore loading bladder cancer 

chemotherapeutic agents in order to ascertain that similar biological properties were 

exhibited by the liposomal formulations. 

1.6. In vitro – in vivo models to study intravesical drug delivery 

Various in vitro and in vivo models have been used to study drug delivery systems intended for 

intravesical administration. Different types of bladder cancer cells have been employed for cell 

viability studies. Murine sources include MBT-2 [59], MB49 [160], and NBT-II [70], while T-24, 

RT-4, UM-UC-3, 5637 and HT-1376 are human cell lines [53,62,64,66,67,70,76]. They differ in 

terms of their invasive and metastatic tendencies. SV-HUC-1 are non-malignant human 

bladder cell lines studied to evaluate the biocompatibility of drug carriers [62]. These cells are 

often maintained in appropriate medium containing 5% carbon dioxide at 37oC for optimal 

growth [53,59,61,62,64,66,67]. 

During in vitro studies, cell viability in the presence of potential drug carriers have been 

evaluated using different methods such as lactate dehydrogenase assay [59], 
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bromodeoxyuridine, XTT assay [62], MTT assay [64,66,67,76], WST-1 assay [61] and 

sulphorhodamine-B colorimetry [70]. During LDH assay, the damage of the intravesical carriers 

to cell membrane was measured in terms of specific enzymes or antibodies release into the 

cytosol when carriers were mixed with malignant cells. Bromodeoxyuridine assay relies on the 

incorporation of bromodeoxyuridine (synthetic nucleoside and analog of thymidine) into 

newly synthesised DNA of replicating cells which substitutes thymidine and denature cells. 

This process is detectable by expression of antibodies after the cells have been exposed to acid 

or heat [161].  With MTT assay, some reducing enzymes that are present in the mitochondria 

of viable cells reduce the MTT reagent (tetrazolium salt) resulting in a coloured formazan 

product which is solubilised in an appropriate solvent such as dimethyl sulfoxide and the 

absorbance of the formazan solution is read using spectrophotometric method, which 

correlates with the number of metabolically active cells in the culture. The XTT and WST-1 

assay operates under similar principle as MTT assay except that the resultant formazan 

product is water soluble, thus does not require to be solubilised prior to spectrophotometric 

analysis [162]. Another technique, sulphorhodamine-B colorimetry requires that 

sulphorhodamine binds to the protein constituents of the cells in a stoichiometric manner so 

that the amount of dye extracted from the stained cells is directly proportional to the cell 

mass [163]. Some researchers did not carry out in vitro cell viability or cytotoxicity testing of 

their formulations [50,65,69]. However, in vitro drug release [50,65] and floating tendency [69] 

of their formulations in the presence of artificial urine were evaluated. 

There are detailed protocols available for the preparation of artificial urine for in vitro cell 

based studies, which is representative of the components of the human urine but they are 

varied in composition and concentration of their constituents, which imparts on their pH (6.2-

7.8), specific gravity (1.008-1.02 g/mL) and osmolality value (430-861 mOsm/kg) [164–170]. 

Examples of constituents include urea, uric acid, creatinine, trisodium citrate, sodium chloride, 

potassium chloride, ammonium chloride, calcium chloride dihydrate, magnesium sulphate 

heptahydrate, sodium bicarbonate, disodium oxalate, sodium sulphate, sodium dihydrogen 

phosphate and disodium hydrogen phosphate [164–170]. The artificial urine with pH, specific 

gravity and osmolality of 6.2, 1.01 g/mL and 446 mOsm/kg, respectively, was appropriate for 

various biomedical applications [170]. 

Martin et al. evaluated the uptake of fluorescent carriers suspended in artificial urine instilled 

into healthy human ureter using ex vivo binding assay [61]. The in vitro cytotoxicity of free 

drug, blank nanoparticles, drug loaded modified and unmodified PLGA nanoparticles, on T-24 
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cells (metastatic, invasive high grade BC), RT-4 cells and UM-UC-3 cells (papillary, well 

differentiated, non-invasive) were studied using WST-1 assay and IC50 values determined [61]. 

These values may help to establish the dose of formulation that would be toxic to urothelial 

cells. 

During in vivo studies, mice were induced with human bladder cancer (orthotopic model) by 

transurethral implantation [59] or subcutaneous injection [53,61] of bladder cancer cells like 

UM-UC-3 cells as well as oral intake of water containing 0.05% (w/v) N-butyl-N-(4-

hydroxybutyl)-nitrosamine for 20 weeks [76]. Predetermined concentration of carriers were 

instilled and the degree of tumour regression determined from the weight of the bladder 

tumour after sacrificing mice [53,59,61]. The actual drug taken up may be evaluated based on 

LC-MS/MS analysis of extracts from bladder tumour homogenate [59]. Other authors 

quantified in vivo retention of drug carriers in terms of observable fluorescence within the 

bladder using fluorescence microscopy [53,62,66] or acid-fast staining and/or HE staining [68]. 

Men et al. also used mice but did not test the antitumour efficacy of their formulations on 

orthotopic mice models [67]. They simply tested the drug uptake into bladder tissues from the 

delivery system using flow cytometry. Nevertheless, they evaluated the cytotoxic effects of 

free deguelin, drug nanoparticles and drug loaded hydrogel-nanoparticle composite 

formulations on T-24 cells using MTT assay while the anti-angiogenic potential of deguelin was 

assessed using transgenic zebrafish model [67]. 

Similar number of injections (six) were administered to mice and rats based malignant models 

but dose and dosing interval of the drug carriers differ probably due to the pharmacological 

profile of various chemotherapeutic agents used [59,61,68]. Therefore, it would be difficult to 

compare degree of tumour regression across studies. Moreover, some studies were less 

detailed in terms of the original volume of tumour [59]. Thus it is not easy to ascertain the 

degree of tumour regression by the final volume of tumour observed. 

Wistar rats are typically used for in vivo studies, so Lin et al. used these rats to assess the urine 

wash-off resistance and sustained release profile of Poloxamer-based floating and non-floating 

carriers [69]. Zhang et al. [68] used similar rats to evaluate urothelial cellular uptake of 

chitosan/β-glycerophosphate/Fe3O4-magnetic hydrogel-nanoparticles system. The 

immunological response of rat bladder to the intravesical instillation of BCG-based carriers 

was quantified by urinary analysis of cytokines and tissue histochemical analysis of CD4+ T 

cells [68]. GuhaSarkar’s group evaluated the in vivo retention of rhodamine and paclitaxel 

loaded liposomes and liposome-gel systems using healthy female and male rats [70]. However, 
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the antitumour effect of the drug loaded formulations was not investigated in rats, in addition 

to their retention in the bladder. 

On the other hand, in vivo testing of formulations was not carried out in some studies 

reported [50,62,64–66]. However, ex vivo mucoadhesive studies of some formulations were 

conducted using porcine [64–66] or bovine [50] bladder tissues. They quantified the 

mucoadhesiveness of their drug carriers differently using confocal laser scanning microscope 

[64,66], fluorescence stereomicroscope [65] and TA-XT Plus texture analyser [50]. Recently, 

our group evaluated urothelial mucosal retention and penetration as well as drug release 

properties of liposomal dosage forms using fluorescein sodium as a model drug [71]. 

 

 

 

 

 

 

 

1.7. Clinical trials 

TCGel®, a polymeric thermoresponsive hydrogel containing Pluronic F-127 (27%), PEG-400 

(1.1%), HPMC (0.3%), and double distilled water (71.6%) was developed by Theracoat Ltd 

(Israel). It exhibited improved safety and residence within the bladder cavity between 6 and 8 

h and was gradually eliminated during urine voiding, in comparison to simple mitomycin-C 

solution during preclinical evaluation [171]. Thus it was assessed for intravesical application by 

mixing TCGel® with 40 mg mitomycin-C (standard dose prior to surgery) and pharmacological 

effect compared with same amount of mitomycin-C mixed with water, in an ongoing trial for 

management of low risk recurrent NMIBC [172]. In the US, there is a clinical trial investigating 

mitomycin-C therapy in combination with radiofrequency induced hyperthermia for non-

muscle invasive Carcinoma in situ bladder cancer therapy  [173]. Another trial explores an 

improved method of delivering mitomycin-C for the treatment of low grade upper urinary 

urothelial carcinoma using MitoGel™ which is a thermosensitive sustained release poloxamer 
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based mitomycin-C formulation that may be used for chemoablation to preserve the bladder 

in low risk upper tract urothelial cancer, developed by UroGen Pharma Ltd (New York) [174]. 

1.8. Conclusions 

The intravesical route is the most viable means of improving drug delivery for bladder cancer 

treatment, especially at the early stages of the disease, due to the limitations of delivery via 

the oral and systemic routes. However, intravesical drug delivery has a few disadvantages such 

as drug dilution by urine and drug wash-out during micturition, particularly when conventional 

formulations made of a simple solution of the chemotherapeutic agent are used. Moreover, 

the urothelium limits permeation of potentially useful therapeutic agents for bladder cancer 

treatment while carrying out its regulatory role. This results in frequent dosing or catheter 

retention within the urethral tract that leads to bladder irritation and infection. 

Drug carriers reviewed are mostly of polymeric nature with potential to treat superficial 

bladder cancer and prevent disease progression to its metastatic and advanced forms. 

Moreover, the composite nanoparticulate and in situ gelling formulations are able to combine 

benefits of both delivery systems to generate dosage forms, with improved safety, efficacy 

and sustained release profile. 

There are variations in the design of the in vitro and in vivo studies as well as evaluation of 

data generated from such studies. Some studies were not detailed enough to allow for 

comparison of cytotoxic or mucoadhesive profiles. Also, some authors did not carry out 

particular in vitro and ex vivo studies conducted by others, making it difficult to establish 

dosage regimen for such formulations. 

The issue of formulation design (modulation of formulation properties to generate a uniform 

thin gel layer in situ, with adequate strength and sustained drug release) for higher capacity of 

human bladder, identified by GuhaSarkar et al. [14] still persist, as it is still difficult to upscale 

the dosage of drug carriers in animals, for human use. This has prevented promising 

formulations from being tested in human bladder during clinical trials. However, their findings 

have suggested that solubilisation of lipophilic drugs in amphiphilic systems; surface 

modification of particulate systems and incorporation of such particulate systems into in situ 

gelling formulations would generate advanced carriers with superior drug loading, safety, in 

situ gelling, mucoadhesive/floating and selective bladder cancer cell penetrating features that 

would improve the cytotoxic profile of the incorporated therapeutics. Drug carriers that would 
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explore combination of delivery strategies would be desirable in order to prevent bladder 

cancer recurrence and progression. 

Promising safety and cytotoxicity data generated from some of the studies offer hope that 

single drug loaded carriers may be investigated instead of multiple drugs based delivery 

systems widely explored in ongoing clinical trials for bladder cancer treatment. The 

harmonisation of the acceptable and realistic protocols for in vitro and in vivo models for 

studying intravesical delivery systems may accelerate the translation of some of the 

formulations, currently being developed, into the clinic. Therapeutic outcomes of patients 

would also be improved with promising disease prognosis. 

 

 

 

 

 

 

1.9. Aims and Objectives of the work 

1.9.1. Aims of the work 

The aims of this project were:  

 To investigate the in situ gelling properties of chitosan/β-glycerophosphate delivery 

systems using three chitosan grades. 

 To investigate the mucoadhesive properties of two types of chitosan derivatives in 

comparison with the parent chitosan. 

My working hypothesis is that chitosan solution mixed with β-glycerophosphate solution in the 

appropriate concentration and volume ratio will generate a drug carrier that gel at 

physiological temperature (37oC) and could be retained in the bladder for extended period of 

time. The second hypothesis is that methacrylation or boronation of chitosan will improve its 
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mucoadhesiveness relative to unmodified chitosan, also beneficial for improved residence of 

drug carriers in the bladder. 

1.9.2. Objectives of the work 

The objectives of this project were: 

 To develop three chitosan/β-glycerophosphate delivery systems using different 

chitosan grades (in terms of molecular weight), with chitosan solutions as control. 

 To evaluate their syringeability (texture analyser), gelation (vial inversion/rheology), 

mucoadhesiveness (flow through technique/fluorescence microscopy and tensile test) 

and drug release profile (HPLC). 

 To evaluate cytotoxicity and cellular uptake potential of drug loaded CHIGP systems. 

 

 To synthesise two types of methacrylated chitosan as well as three types of boronated 

chitosan that differ in terms of their degree of chemical modification. 

 To characterise them in terms of their modification with methacrylate or boronate 

groups using NMR, FT-IR and ninhydrin test. 

 To evaluate pH influence on the solubility of polymer solutions/dispersions (UV-Vis 

spectroscopy), mucoadhesiveness (flow-through technique/ fluorescence microscopy 

and tensile test), and safety (MTT assay). 

 To develop and characterise drug loaded methacrylated and boronated nanoparticles 

in terms of their particle size and zeta potential (DLS), drug loading/encapsulation 

efficiency (HPLC) and cytotoxic effect (MTT assay) and uptake into UMUC3 cells (flow 

cytometry). 
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2. Chitosan / β-glycerophosphate in situ gelling mucoadhesive 

systems for intravesical delivery of mitomycin-C 

Out of all the drug delivery systems described in Chapter 1, chitosan/β-glycerophosphate in situ 

gelling systems will be investigated because of the biocompatibility of chitosan and β-

glycerophosphate as well as mucoadhesive, and drug permeation enhancing properties of 

chitosan. Also, mixture of chitosan and β-glycerophosphate in the appropriate concentration 

and volume ratio generate drug carriers that could improve drug residence in the bladder and 

promote patient compliance to dosage regimen due to a reduction in dosing frequency. 

Mitomycin-C was chosen as the model drug because it is drug of choice for the treatment of 

superficial bladder cancer. 
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2.1. Introduction 

Bladder cancer has been identified as a major clinical issue with prevalence and mortality rate 

escalating globally [1] and there is increasing  research in this area to improve drug delivery 

[2,3]. Oral and other systemic route of administrations are not employed for bladder cancer 

treatment, especially at the early stages of the disease because therapeutic drug concentrations 

cannot be achieved in the bladder due to the hostile environment of the stomach, hepatic 

metabolism as well as drug transport to non-target organs [4]. Consequently, drugs are instilled 

via the catheter directly into the bladder, referred to as intravesical drug delivery, to increase 

local drug availability. The local route of administration has been explored further for bladder 

cancer treatment because it minimises systemic toxicity and facilitates targeted drug delivery 

to urothelial malignant tissues  [2,4].  

Polymers exhibiting the ability to adhere to mucosal tissues in the bladder are typically referred 

as mucoadhesive dosage forms. These dosage forms are commonly prepared using polymers 

that interact with glycoprotein components of mucin through non-covalent bonding such as 

hydrogen bonds, chain entanglements and electrostatic interactions [5–7]. They are particularly 

desirable for drug delivery to the bladder because they may be able to overcome some inherent 

limitations of intravesical administration such as substantial drug dilution and wash-out during 

urine formation and elimination.  

Chitosan, (1,4)-2-amino-2-deoxy-β-D-glucan, is a natural polymer generated by the partial 

deacetylation of chitin under basic or enzymatic conditions [8]. Chitosan is a mucoadhesive 

polymeric excipient that has been approved by the national food regulatory authorities in Japan 

and Korea as a food additive; in the European Union as an excipient for nasal drug delivery and 

vaccine delivery, and the FDA has approved chitosan containing medical devices and 

antimicrobial wound dressings for non-systemic use. However, the FDA does not currently 

permit the use of chitosan as constituents of food, drug products or biopharmaceutical delivery 

systems due to its structural heterogeneity, large batch variations and possible allergic reactions 

as a result of its crustacean source[9]. Nevertheless, chitosan is still one of the most researched 

mucoadhesive polymer for transmucosal drug delivery due to its good biocompatibility and 

versatility to generate a wide range of drug carriers [10]. It is commercially available as various 

grades depending on molecular weight and degree of deacetylation, with the highly 

deacetylated forms preferred because they can be readily functionalised for a variety of 

biomedical applications [11]. The continued interest in chitosan over the last two decades for 

drug delivery and tissue engineering is due to its biocompatible, biodegradable, mucoadhesive, 
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and cell permeation properties [10,11]. Tyagi et al reported that chitosan exhibited properties 

desirable for the formulation of intravesical dosage forms: effective and extended 

mucoadhesion as well as non-interference with bladder physiology [12]. 

Glycerophosphate is presented as its sodium salt which is hydrolysed in the body to inorganic 

phosphate and glycerol [13]. It  has been approved by the Medicines and Healthcare products 

Regulatory Agency as a phosphate supplement in intravenous nutrition for adult patients 

marketed by Fresenius Kabi, which is a concentrate containing 21.6% sodium glycerophosphate 

for infusion [14]. 

The possibility of chitosan solution forming in situ gelling systems with physical cross-linking was 

first reported by  Chenite et al. (2000), where chitosan solution (pH ~ 6) formed a gel in the 

presence of β-glycerophosphate at about 37oC [15]. Chitosan/β-glycerophosphate mixtures 

were reported to be safe, biodegradable and thermosensitive with relatively easy drug loading 

that allow its release at the point of administration; plus their preparation does not require 

expensive equipment [16,17]. They also display sustained gel stability for 90 days when stored 

at -80oC  [18].  

Various researchers have investigated one or two grades of chitosan or its derivatives with αβ- 

or β-glycerophosphate and reported improved efficacy and sustained drug release of various 

therapeutics [18–25]. Zhang and co-workers have mixed Bacillus Calmette Guérin (BCG) with 

ferric oxide (Fe3O4) nanoparticles and incorporated the nanoparticulate formulation into 

chitosan/β-glycerophosphate in situ gelling systems to generate composite system for 

intravesical bladder cancer treatment [26]. To the best of our knowledge, chitosan/β-

glycerophosphate in situ gelling systems have not been explored for intravesical drug delivery. 

Moreover, the wash-out influence of artificial urine on the retention of in situ gelling drug 

carriers has not been studied. The drug-loaded in situ gelling formulations may form a 

mucoadhesive gel layer across a wide surface area of the bladder mucosa allowing for 

therapeutic concentrations of the drug to diffuse across urothelial cancerous tissues for 

extended period of time. 

Mitomycin-C is the drug for superficial / non-invasive bladder cancer therapy, used preferably 

immediately or ≤ 24 h after transurethral resection of bladder tumour to reduce recurrence rate 

[27,28]. Mitomycin-C is generally administered at a concentration of 1-2mg/mL for superficial 

bladder cancer treatment [29]. According to a randomised controlled trial, 1 mg/mL mitomycin-
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C formulation (20-40mL) resulted in recurrence reduction of 23.5% in bladder cancer patients 

[30]. So, mitomycin-C at 1 mg/mL was selected for the current study.  

Bilensoy and co-workers explored cationic chitosan- and poly-L-lysine-coated poly-Ɛ-

caprolactone (PCL) nanoparticles for improved intravesical delivery of mitomycin-C [31–33]. 

They reported that bladder tumour induced rats treated with chitosan-coated PCL nanoparticles 

displayed superior antitumour efficacy (evident with more rats alive up to 83 days) relative to 

other groups treated with poly-L-lysine-coated PCL nanoparticles and uncoated chitosan 

nanoparticles in vivo [33]. Their findings suggested that chitosan coated drug carriers may be 

efficient for improved drug localisation and accumulation in bladder tissues.  

Despite the potential of in situ gelling systems to facilitate controlled drug release [34], they 

have not been explored as delivery systems for mitomycin-C in enhancing the therapeutic 

outcome of bladder cancer. This current work sought to explore chitosan based in situ gelling 

systems to improve the residence time of mitomycin-C in the bladder. We present the first 

report on the formulation of chitosan/β-glycerophosphate gels using three grades of chitosan 

for intravesical drug delivery, with chitosan molecular weight modulating gelation, 

mucoadhesive and drug release profile of the CHIGP formulations.  
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2.2. Materials and methods 

2.2.1. Materials 

Low (LCHI), medium (MCHI) and high molecular weight (HCHI) grades of chitosan, β-

glycerophosphate (β-GP), FITC-dextran (3-5 kDa), dextran (5 kDa), fluorescein sodium, 

trifluoroacetic acid, urea, uric acid, magnesium sulphate heptahydrate, sodium hydrogen 

phosphate, creatinine, sodium bicarbonate, sodium sulphate, disodium oxalate and trisodium 

citrate acid were purchased from Sigma-Aldrich (UK); disodium phosphate, sodium chloride, 

potassium chloride, ammonium chloride, and calcium chloride dihydrate, mitomycin-C, HPLC 

grade methanol, acetonitrile, water and other chemical reagents were from Fischer 

Scientific/Chemicals (UK) and used as received without further purification. Dialysis membranes 

with molecular weight cut off 12-14 kDa were supplied by Medicell International (UK). Freshly 

excised porcine urinary bladders were provided by PC Turner Abattoir (Farnborough, 

Hampshire, UK). 

2.2.2. Characterisation of three chitosan grades 

The molecular weights of the three grades of chitosan were determined by gel permeation 

chromatography using an Agilent PL Aquagel-OH (mixed H8 µm) as column with 0.1 M sodium 

nitrate as a solvent system (pH 2.1) at a flow rate of 0.5 mL/min at 30oC, which separates 

chitosan based on size.  For the purpose of 1H NMR analysis, approximately 20 mg of LCHI, MCHI 

and HCHI were dissolved in 3 mL deuterium oxide (D2O) acidified with 30 µL trifluoroacetic acid 

for 12 h at room temperature and the 1H NMR spectra were recorded using a 400 MHz 

ULTRASHIELD PLUS™ B-ACS 60 spectrometer (Bruker, UK). The degrees of acetylation of 

chitosan samples were evaluated based on the integration pattern of the N-acetyl protons (δ = 

1.6 ppm) relative to the other protons (δ = 3.0-3.6 ppm). An exemplar 1H NMR spectrum is 

provided in Fig. 2.1. 

The acetylation level evaluates the amount of reacted chitosan amine groups. it was calculated 

using the following equation [35]: 

Degree of acetylation (DA) (%) = (I CH3/3) / (I H2-H6 / 6) x 100 %                                               (1),                               

where the integral intensity of N-acetyl protons is denoted as I CH3 and I H2-H6 depicted the integral 

intensities of H-2, -3, -4, -5 and H-6 of the deacetylated glucosamine ring of chitosan.  
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Fig. 2.1. 1H NMR spectra of chitosan recorded in D2O acidified with 1% trifluoroacetic acid. Protons for 

the acetylated segment of chitosan was detected at around 2 ppm while that of the deacetylated 

glucosamine H2-H6 protons were evident at 3.0-3.8 ppm. 

The amount of free amine groups (%) available for functionalisation or interaction with β-

glycerophosphate to generate in situ gelling systems can then be determined by deduction of 

the obtained degree of acetylation values from 100%. 

2.2.3. Preparation of CHI and CHIGP formulations 

1% w/v LCHI in 12% w/v β-GP (LCHIGP), 1% w/v MCHI in 12% w/v β-GP (MCHIGP) and 1% w/v 

HCHI in 12% w/v β-GP (HCHIGP) formulations were prepared according to a previously reported 

procedure with modification [22]. Briefly, 1% w/v of chitosan solutions were prepared in 0.1 M 

acetic acid (buffered to pH 4 using 1 M potassium hydroxide) for 12 h at room temperature. The 

β-glycerophosphate solutions (48% w/v, 2 mL) were added to chitosan solutions (6 mL) in a 

dropwise manner under ice-cold conditions, giving a final β-GP concentration of 12% w/v and 

chitosan to β-GP volume ratio of 3:1. LCHI, MCHI and HCHI (1% w/v) solution in 0.1M acetic acid 

(pH 4) was also prepared for comparison. 
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2.2.4. Characterisation of CHI and CHIGP formulations 

2.2.4.1. pH determination 

The pH of CHI and CHIGP solutions was measured using a calibrated pH meter (SevenEasy 

Mettler-Toledo). Data was expressed as mean ± S.D (n=3). 

2.2.4.2. Zeta potential measurement 

The zeta potential of the formulations was evaluated based on our previously reported method 

[36]. Briefly, folded DTS-1070 capillary cells (Malvern, UK) were filled with 1 % w/v chitosan 

solutions or CHIGP formulations (sol form) and their zeta-potential values were determined at 

25 and 37oC using the Zetasizer Nano-ZS (Malvern Instruments, UK). The samples were studied 

after 1 in 20 dilution to 0.05% w/v chitosan: 0.6% w/v β-glycerophosphate using ultrapure 

water. The instrument was set to operate at an absorbance of 0.01 and a refractive index of 

1.59, which is the refractive index of aqueous chitosan solution. Measurements were conducted 

in triplicates with 50 sub-runs per reading. 

2.2.4.3. Syringeability through the catheter experiment 

The ability of the chitosan or CHIGP solution to pass through a catheter via a syringe was 

evaluated  using a TA-XT Plus Texture Analyser (Stable Micro Systems, UK) operated at the 

compression mode. Male SpeediCath® 28414 CH 14/4.7 mm catheter (Coloplast A/S, Denmark) 

was used in this study. The experiment was carried out using a previously reported method with 

slight modification [37]. Briefly, the samples were packed into 2 mL plastic syringes connected 

to a catheter. The syringe was vertically secured while the probe was lowered until it had an 

initial contact with the syringe plunger. Then, the probe was lowered at a constant speed of 2 

mm/s for 25 mm (Fig. 2.2). The work done to expel the syringe contents (work of compression) 

at 25oC was assessed as a function of the area under the force-distance curve recorded during 

the plunger compression (n=3). Sodium chloride (0.9% w/v) which is typically used in the urology 

clinic to prepare mitomycin-C solution for intravesical administration served as the control. 
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Fig. 2.2. Schematic representation of the texture analyser used to perform syringeability studies. 

2.2.4.4. Gelation studies using a vial inversion method 

The gelation time of the formulations was evaluated at 37oC using a modified version of a vial 

inversion method reported earlier [22] to determine the ease of gelation of the formulations 

within the bladder environment. Briefly, 3 mL LCHIGP, MCHIGP, HCHIGP samples were 

incubated in glass vials in a temperature-controlled water bath (Grant Instruments, Ltd, 

Cambridge) at 37oC. The vials were inverted at predetermined time intervals to evaluate the 

flow of the samples by visual examination. The gelation time was identified as the point where 

the formulations stopped flowing. 

2.2.4.5. Rheology 

Apart from evaluating the sol-gel transition temperature and gelation time of viscoelastic 

materials, rheological techniques also provide information on gel strength. The viscoelastic 

properties of the formulations were evaluated using an AR-2000ex rheometer (TA Instruments, 

UK) operated in the oscillatory mode using 40 mm parallel plate and a trim gap of 0.4 mm. The 

samples were steadily deposited onto the lower plate of the rheometer and the chosen trim 

gap was applied to reduce sample shearing, with the solvent trap in place during sample analysis 

to prevent sample loss. In order to determine the linear viscoelastic region of the samples at 

25oC, a “strain sweep” was carried out where the magnitude of strain applied on the samples 

was steadily increased from 0.05 to 10%, at a constant frequency of 1 Hz. The strain where the 
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storage / elastic modulus (G’) and loss / viscous modulus (G”) was unchanged and independent 

of the prevalent frequency, was chosen for the frequency sweep studies. 

2.2.4.5.1. Gel strength determination: Frequency sweep analysis 

Based on the strain sweep analysis, 1% strain was chosen for the “frequency sweep” conducted 

at 25oC with samples scanned from frequency of 0.01 to 10 Hz to confirm optimal frequency for 

the rheological experiment. In order to evaluate the gel strength of the formulations, a 

“frequency sweep” was carried out at 37oC over the frequency range of 0.01-10 Hz, applying 1% 

strain. The gel strength of the samples was evaluated based on the ratio of their storage 

modulus (G’) to loss modulus (G”) at a frequency of 0.1 Hz. The higher the G’/G” value, the 

stronger the gel and vice versa, which implies that stronger gels are generated from samples 

whose elastic properties (G’) are considerably greater than their viscous nature (G”)  [38]. 

2.2.4.5.2. Gelation temperature determination: Temperature ramp test 

The gelation temperature of the samples was evaluated using a temperature ramp test with 

samples heated from 20 to 50oC at 1oC/min, frequency and strain of 1 Hz and 1%, respectively. 

The sol-gel transition temperature was the temperature where a rapid increase in the 

magnitude of G’ relative to G” occurs as the samples are subjected to increasing temperature 

via the rheometer plate. The tangent of the loss modulus to storage modulus was also evaluated 

over the studied temperature range. LCHIGP, MCHIGP and HCHIGP samples were also evaluated 

for their storage modulus values at 37oC during the temperature ramp test as this rheological 

parameter depicted their elastic properties at physiological temperature which impacts their 

gelation potential. 

2.2.4.5.3. Gelation time determination: Time sweep analysis 

The gelation time of the samples was evaluated by carrying out a time sweep experiment, with 

samples maintained at 37oC for 30 min, applying a respective strain and frequency of 1% and 1 

Hz. The gelation time is identified as the time where there is a sharp increase in the G’ value 

relative to that of G” when samples are maintained at 37oC for predetermined length of time. 

The tangent of the ratio of the loss modulus to storage modulus over 30 min was also 

investigated. As some samples displayed similar gelation time during time sweep analysis with 

different gelation times recorded during the vial inversion method, the G’ values of the CHIGP 

systems (which correlates with their elastic properties) after 30 min of maintaining them at 37oC 

were also evaluated. 
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2.2.5. Retention on porcine bladder: urine wash-out experiment 

The artificial urine used for ex vivo porcine retention and drug release studies was prepared 

according to a previously reported method [39]. Briefly, the following compounds were 

dissolved in 2 L ultrapure water (18.2 MΩ): urea (24.27 g), uric acid (0.34 g), magnesium sulphate 

heptahydrate (1.00 g), sodium hydrogen phosphate (1.00 g), disodium phosphate (0.11 g), 

creatinine (0.90 g), sodium bicarbonate (0.34 g), sodium sulphate (2.58 g), disodium oxalate 

(0.03 g), trisodium citrate (2.97 g), sodium chloride (6.34 g), potassium chloride (4.50 g), 

ammonium chloride (1.61 g), and calcium chloride dihydrate (0.89 g). The resultant artificial 

urine had a final pH of 6.2±0.2. 

The LCHIGP, MCHIGP, HCHIGP (containing 1% w/v CHI and 12% β-glycerophosphate) were 

mixed with 0.1% w/v fluorescein sodium solution in the ratio of 9:1 prior to the urine wash-out 

experiment. FITC-dextran 0.4% w/v served as the negative control while LCHI, MCHI and HCHI 

solutions (1 % w/v) were the positive controls. 

The mucosal retention of fluorescein sodium on porcine urinary bladder mucosa, in the 

presence of chitosan and CHIGP samples was investigated using a fluorescent MZ10F 

microscope (Leica Microsystems, UK) coupled with an “ET GFP” filter and a Zeiss Imager with 

exposure time of 70 ms (A1/AxioCam MRm, 1296 x 966 pixels; 0.8 x magnification), according 

to a slightly modified method earlier developed by our group [40]. The study was carried out 

using freshly excised porcine urinary bladders (stored on ice during transport from the abattoir 

to the laboratory), refrigerated (4oC) and used within 24 h. Contact with the mucosal side of the 

bladder tissue was avoided during excision of the required bladder sections (about 1.5 x 2.5 cm) 

and rinsed with artificial urine solution (~ 3 mL) prior to tissue imaging. The bladder tissue was 

placed on a 75 mm x 25 mm glass slide and maintained in an incubator at 37oC during urine 

wash-out (Fig. 2.3). Microscopic images were recorded on each tissue section before and after 

applying ~ 50 µL of sample as well as after each of the five washing cycles with 10 mL artificial 

urine/cycle at 2 mL/min.  
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Fig. 2.3. Schematic set up for retention studies using porcine bladder tissues and artificial urine. 

Image J software (Java 8, National Institute of Health, USA) was employed to evaluate the 

microscopic images, generating mean fluorescence values as a function of urine volume used 

for the wash-out. The normalised fluorescence intensity during each urine wash-out cycle is 

obtained by subtracting the background fluorescence intensity from the raw fluorescence 

intensity at the wash-out cycle of interest. The value “1” was used to depict the fluorescence 

intensity from the tissue before artificial urine wash-out. “WO50” is defined as the volume of 

biologically relevant fluid (simulated urine) required to wash out 50 % of the fluorescent 

formulation from mucosal surface[40].  The WO50 values were determined using the polynomial 

fit of the wash-out graphs of the samples, which represents the volume of artificial urine needed 

to wash out 50% of the chitosan solutions and CHIGP formulations. 
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2.2.6. Mucoadhesive properties of the formulations 

The TA-XT Plus Texture Analyser (Stable Micro Systems Ltd, UK) coupled with a 5 kg load cell 

was used as an additional technique to study the mucoadhesive properties of the formulations. 

Chitosan solutions (0.4% w/v) served as the positive controls while the negative control was 

dextran solution (0.4% w/v). Porcine bladder tissues were secured at the base of a cylindrical 

container. The bottom of the cylindrical container had a circular cut-out region (20 mm in 

diameter) exposing the mucosal surface of the bladder tissue. This container was screwed onto 

the probe of the texture analyser through a hole drilled on the lid of the container. Another 

bladder tissue was placed on a Petri dish and coupled onto the lower platform of the texture 

analyser, exposing bladder mucosal surface (20 mm in diameter) as shown in Fig. 2.4.  

 

Fig. 2.4.Schematic representation of texture analyser demonstrating bioadhesion evaluation. 

The tests were performed using an earlier reported equipment settings [41] with slight 

modification: pre-speed test 1.0 mm/s; test speed 0.1 mm/s; post-test speed 0.1 mm/s; applied 

force 0.05 N; contact time 120 s; trigger type auto; trigger force 0.1 N; and return distance of 

10.0 mm. Bladder tissues were incubated at 37oC for 5 min prior to the study and the samples 

(0.4 mL) were applied onto the exposed area of the bladder tissue secured onto the lower 

platform of the texture analyser. The probe was then lowered such that the blank tissue comes 

in contact with the formulation applied onto the tissue secured on the lower platform for 2 min 
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after which the parameters of interest (detachment force and total work of adhesion) were 

determined as shown in Fig. 2.5. The Texture Analyser software (T.A. Exponent, Stable Micro 

Systems, UK) was used to record the force versus distance curves. The maximum force needed 

to detach tissue from formulation indicated the adhesive strength of the samples while the total 

work of adhesion was evaluated from the area under the force versus distance curve [41,42]. 

 

 

Fig. 2.5. Typical pattern of the detachment of hydrogels from porcine bladder mucosa during the 

mucoadhesion studies carried out using the texture analyser (Stable Micro Systems Ltd, UK). 

2.2.7. Mitomycin-C in vitro release experiment 

2.2.7.1. Preparation of mitomycin-C loaded CHI and CHIGP formulations 

Mitomycin-C-loaded CHIGP formulations were prepared by dissolving 2mg mitomycin-C in 

1%w/v chitosan solutions (1.5 mL) and vortexed for one minute before β-GP solution (48 % w/v, 

0.5 mL) was added dropwise under ice-cold conditions and stirred for a further 30 min, 

producing a final β-glycerophosphate concentration of 12% w/v and drug concentration of 1 

mg/mL (generating MMC/LCHIGP, MMC/MCHIGP, MMC/HCHIGP). This method was used 

because earlier chitosan studies reported that CHIGP formulations where β-glycerophosphate 

solution was added to the drug containing chitosan formulations exhibited superior sustained 

release profile relative to formulations, where drug was incorporated into the CHIGP mixture 

[24,43]. MMC-loaded LCHI, MCHI and HCHI samples were prepared as described above without 
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addition of β-glycerophosphate. Mitomycin-C solution (2 mL, 1 mg/mL) was prepared by 

dissolution of the drug in water for 30 min under ice-cold conditions. 

 

2.2.7.2. Mitomycin-C in vitro release efficiency 

In vitro drug release studies were carried out using a modified method used by Senyiğit et al. 

(2015) [44]. Briefly, 2 mL mitomycin-C solution, mitomycin-C loaded CHI and CHIGP formulations 

were loaded in dialysis membrane bags (12-14 kDa MWCO) and allowed to gel in a water bath 

at 37oC for 1 h. Mitomycin-C solution was not maintained in the water bath for 1 h as it had no 

possibility of forming a gel and the samples was simply transferred into the dialysis bag. The 

dialysis bags with the drug solution and gelled samples were placed in a stoppered 100 mL glass 

bottle containing 40 mL of artificial urine (pH 6.2 ± 0.2), maintained in a shaker water bath at 

37oC (60 rpm). At predetermined time intervals (0, 0.5, 1, 2, 4, 6, and 24 hours), 1 mL of artificial 

urine was taken and replenished with same amount of fresh artificial urine. Drug content was 

analysed using previously reported HPLC-UV method with slight modification [45]. The HPLC 

instrument was coupled with the quaternary pump and VWD UV detector (Agilent, Germany) 

operated at 365 nm. The aliquot samples (10 µL) were injected into the reverse phase C18 

column, 150 mm x 4.6 mm, 5 µM (Dionex™, Thermo Scientific, UK) maintained at 25oC. The 

mobile phase consisted of 83.5% of 25 mM sodium phosphate (pH 5.4) and 16.5% of 

methanol/acetonitrile (1:1), which was run in an isocratic mode at a flow rate of 1.5 mL/min, 

with run time of 15 min.   
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Mitomycin-C eluted at ≈ 10 min, depicted in Fig. 2.6. The standard curve of mitomycin-C was 

generated by analysing eight standard solutions of known concentrations (Appendix 2).  

 

Fig. 2.6. Exemplar HPLC-UV chromatogram of mitomycin-C loaded CHI and chitosan/β-glycerophosphate 

systems, with mitomycin-C eluting at about 10 min and salt constituents of the artificial urine eluting at 

0.9, 1.2 and 4 min. 

2.2.8. Statistical analysis 

All studies were carried out in triplicate, data expressed as mean ± SD and statistical differences 

were determined using t-test and One-Way ANOVA/ post-hoc Bonferroni test with GraphPad 

Prism (version 5.04, USA) with p < 0.05 implying statistical significance. 

2.3. Results and discussion 

2.3.1. Characterisation of chitosan and chitosan/-glycerophosphate formulations 

According to the gel permeation chromatography data, the low (LCHI), medium (MCHI) and high 

(HCHI) molecular weight chitosan grades were 62, 124 and 370 kDa, respectively, with 

polydispersity indices (PDI) of 3.43, 3.54 and 6.98, respectively, which matches manufacturer 

specifications. The gel permeation data is provided as Appendix 3. The degrees of deacetylation 

were 82 ± 1%, 72 ± 2%, and 71 ± 2%, respectively, which are in good agreement with those used 

by previous researchers to formulate CHIGP in situ gelling systems [25,46]. 

The focus of this study was to develop and characterise thermoresponsive and mucoadhesive 

formulations using chitosan/β-glycerophosphate mixtures. LCHIGP, MCHIGP and HCHIGP were 

formulated to contain 1% w/v chitosan, 12% w/v β-glycerophosphate and chitosan to β-

glycerophosphate volume ratio of 3:1. The LCHI, MCHI and HCHI solutions had pH of about 4 
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and remained transparent liquid samples above 37oC. On the other hand, CHIGP formulations 

formed transparent solutions (pH 7.1-7.3) below 37oC, which is similar to the pH in the bladder 

environment, and turned into cloudy gels at 37 C (Fig. 2.7). Chitosan/β-glycerophosphate 

mixtures are transparent below physiological temperature due to electrostatic attraction 

between negatively charged phosphate groups of β-glycerophosphate and positively charged 

ammonium groups of chitosan as well as hydrogen bonding between chitosan repeating units 

[47]. Alcohol groups of glycerophosphate provide additional hydration due to hydrogen bonding 

with water molecules, thereby preventing gel formation below physiological temperature [48]. 

An increase in temperature up to 37oC results in partial dissociation of hydrogen bonds with 

water molecules, leading to the formation of less hydrated gel.  

 

Fig.2.7. Exemplar images of chitosan/ß-glycerophosphate formulations at (a) room temperature and (b) 

37oC. 

All chitosan/β-glycerophosphate mixtures showed fast in situ gelation as detected using the vial 

inversion method. MCHIGP and HCHIGP  formulations formed a physical gel within 7 ± 2 min 

and 5 ± 1 min, respectively, while LCHIGP mixture formed a very weak gel at 15 ± 5 min that 

eventually  collapsed upon further incubation at 37oC (Fig. 2.7).  

Despite the fact that LCHI had the greatest extent of deacetylation and a favourable pH of about 

7 (Table 2.1), its gelation was not sustained. Chitosan intermolecular interactions occur via 

entanglements, which becomes more pronounced with increased chitosan molecular weight 

[21]. One of the reasons for weak gel formation for LCHIGP is the reduced degree of 

entanglements in LCHIGP due to its lower chitosan molecular weight, resulting in lower viscosity 

at increased temperature [21]. This finding is in contrast to the study by Khodaverdi et al. (2012) 

[22], who reported fast onset of gelation with highly deacetylated chitosan as a result of their 
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assessment of medium weight chitosan. This finding proved that the molecular weight of 

chitosan played a more remarkable influence on their gelling properties than the degree of 

deacetylation of chitosan used in preparing the in situ gelling formulations. 

2.3.2. Rheological studies of gelation  

This study was carried out to understand the structural and dynamic features of chitosan/ß-

glycerophosphate formulations. During rheological analysis, samples were directly in contact 

with the heated rheometer plate at the temperature of interest, which simulated the 

physiological conditions of the bladder. A strain of 1% and frequency of 1 Hz was selected for 

the current rheological study as the storage modulus (G’) and loss modulus (G”) of the samples 

remained constant upon application of that magnitude of strain and frequency to the samples. 

Frequency dependent rheological profiles of 1 % w/v pure chitosan solutions are characteristic 

of viscous liquids, where G’ is lower than G” at all studied frequency ranges. This behaviour was 

evident with all studied chitosan samples (LCHI, MCHI and HCHI) as G” (viscous property) 

remained greater than G’ (elastic nature) at 25 and 37oC during frequency sweep analysis, 

inferring the absence of gelation (data not shown). This data is in good agreement with the 

report by Supper et al (2013) [23], where G’ was lower than G” during frequency sweep studies 

carried out with 1.5 % w/v chitosan solutions at 20, 30 and 40oC. During frequency sweep of 1% 

w/v of LCHI, MCHI and HCHI solutions from 0.1 Hz to 10 Hz, they all exhibited rheological profile 

where their loss modulus G” values were greater than storage modulus G’ values, though 

differed in terms of the magnitude of storage and loss modulus (Appendix 4). 
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Gels typically display solid-like mechanical profiles, where the storage modulus (G’) is greater 

than the loss modulus (G”) throughout the evaluated frequency ranges. LCHIGP, MCHIGP and 

HCHIGP displayed gel-like behaviour at the onset of all rheological analysis (Fig. 2.8). This 

behaviour is desirable as it supports the rapid gelation of the samples at physiological 

temperature. Moreover, drug incorporation into the CHIGP formulations as well as urine 

presence in the bladder will potentially increase their gelation temperature and time. 

 

Fig. 2.8. Exemplar rheological profiles of LCHIGP (red), MCHIGP (green) and HCHIGP (blue) showing (a) 

the temperature-dependent changes in viscoelastic properties at ramp rate 1oC/min; (b) time-dependent 

viscoelastic changes of samples maintained at 37oC for 30 min, with G’ persistently greater than G” for all 

studied samples, though differ in terms of the magnitude of their G’ values. 

With frequency sweep analysis at 37oC, the greater the similarity in the values of G’ and G”, the 

weaker the gel. On the other hand, stronger gels exhibit rheological profiles, where the elastic 

modulus (G’) is greater than the viscous modulus (G”)  [38]. HCHI based formulations displayed 

superior gel strength (in terms of their G’/G” values at frequency of 0.1 Hz during frequency 

sweep at 37oC) relative to MCHI and LCHI based samples (Table 2.1). There was a statistically 

significant difference between the gel strength of LCHIGP and MCHIGP as well as between 

LCHIGP and HCHIGP (p<0.05), but the gel strength of MCHIGP and HCHIGP was similar (p>0.05). 

This finding indicated that both MCHIGP and HCHIGP formulations may be potentially less 

susceptible to rapid erosion by the urine in the bladder.  
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Table 2.1  

Rheological properties of Chitosan/ß-glycerophosphate samples 

Samples pH Frequency 
sweep, 
37oC 

Temperature ramp (20-50oC, 1oC/min) Time sweep for 30 min at 37oC (Pa) 

G’/G” 
ratio at 0.1 
Hz  

Gelation 
temp (oC) 

G’ at 
37oC 
(Pa) 

 Tan δ at 37oC Gelation 
time 
(min) 

G’ after 
30 min 
at 37oC 
(Pa) 

Tan δ after 
30 min at 
37oC 

LCHIGP 7.4±0.2 12.9±1.8 30.4±0.3 38.5±3.5  0.04±0.01 1.6±0.3 30.2±0.3  0.03±0.01 

MCHIGP 7.5±0.2 15.8±0.1 29.8±0.2 41.1±2.2  0.03±0.01 1.4±0.3 59.7±7.1  0.02±0.03 

HCHIGP 7.3±0.2 16.7±0.2 29.6±0.1 95.8±5.5  0.03±0.01 1.0±0.1 138.0±7.9  0.02±0.02 

* Higher G’/G” values at 0.1 Hz (frequency sweep at 37oC) infer stronger gels; storage modulus (G’) values 

at 37oC during temperature ramp test, G’ after 30 min during the time sweep test also depict elastic 

property and correlate with their ease of gelation. Loss factor or tan δ was calculated as tangent of G”/G’ 

ratio, when these values are closest to zero this indicates greater ease of gelation, n = 3 (mean±SD). 

The temperature ramp analysis was conducted from 20 to 50oC because this range was sufficient 

to study the transition of the drug carrier from the sol (≤ 25oC) to the gel state (25-37oC). 

Formulations intended for intravesical delivery ideally should have a gelation temperature of 30 

to 36oC [49]. This ensures that such drug carriers remain liquid at room temperature during 

injection through the catheter and only transform into a gel within the bladder. In situ gelling 

systems with gelation temperature above 37oC are not suitable for intravesical administration 

as they could be readily washed out of the bladder during urine voiding since they will remain 

liquid at physiological temperature. 

For predominantly viscous materials, G” is initially lower than G’ during temperature ramp test 

but as temperature increases, G” increases at a faster rate than G’ and the sol-gel transition 

temperature is attained at the point of G” and G’ intersection [50]. Alternatively, gelation 

temperature is identified as the temperature where there was a greater growth rate of G’ 

(elastic property) relative to the G” (viscous property) without samples necessarily displaying 

cross-over of G’ and G” [20]. This method of evaluating gelation temperatures may be explored 

for CHIGP formulations with medium viscosity showing a rheological profile with storage 

modulus G’ greater than the loss modulus G” at the onset of the “temperature ramp” test with 

no possibility of G’ and G” intersection at any studied temperature (Fig. 2.8a). Moreover, some 
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researchers have acknowledged that G’/G” cross-over point during temperature ramp test may 

not depict the actual gelation temperature of the material [21,51].  

The temperature ramp and time sweep tests for chitosan solutions were not carried out as the 

delivery system was not in situ gelling in nature. Our current study revealed that the 

temperature ramp profiles of some formulations may imply that they have similar gelation 

temperatures, which may not necessarily correlate with their ease of gelation using a different 

method of evaluating their thermogelation such as vial inversion studies at 37oC. The gelation 

temperatures of LCHIGP, MCHIGP and HCHIGP formulations determined as a function of the 

temperature at which there was a rapid increase in G’ during temperature ramp test were 

30.4±0.3oC, 29.8±0.2oC, and 29.6±0.1oC, respectively (p >0.05). LCHIGP, MCHIGP and HCHIGP 

displayed similar gelation temperature based on the temperature at which there was a rapid 

change in their tan δ values (Figure 2.9). So, there was the need to define the elastic potential 

of our CHIGP formulations based on their G’ and tan (delta) values at physiological temperature 

of 37oC (Table 2.1). HCHIGP displayed significant greater extent of elastic features (95.8±5.5 Pa) 

relative to MCHIGP (41.1±2.2 Pa) and LCHIGP (38.5±3.5 Pa) (p<0.05). Similarly, tan δ values of 

MCHIGP and HCHIGP were smaller than that of LCHIGP, inferring that chitosan molecular weight 

has substantial effect on the ease of gelation of CHIGP in situ gelling systems despite the fact 

that MCHIGP and HCHIGP displayed similar tan (delta) values during temperature ramp and time 

sweep test.  

Based on rheological time sweep at 37oC for 30 min (Fig. 2.9b), the gelation times of LCHIGP, 

MCHIGP and HCHIGP were found to be 1.6, 1.4 and 1.0 min, respectively, with HCHIGP forming 

gel most readily. As there was no significant differences in their gelation time based on their 

sharp increase in G’ relative to G” as well as their tan δ values at any particular time, G’ values 

of the gels as well as their tan δ values were determined after maintaining the samples at 37oC 

for 30 min. HCHIGP displayed a 2.3-fold and 4.3-fold increase in elastic features, relative to 

MCHIGP and LCHIGP, respectively. This result suggested that chitosan molecular weight 

influenced the gelation potential and gel strength of the formulations with -glycerophosphate.  

The gelation time for MCHIGP and HCHIGP formulations determined using rheological method 

is in good agreement with that of vial inversion data. In contrast, the results observed for LCHIGP 

differs as it formed gel less readily and the gel reversed to its sol state upon prolonged 

incubation at 37oC (Fig. 2.7) whereas temperature ramp and time sweep studies indicated that 

it displayed similar gelation temperature and time with that of MCHIGP and HCHIGP 

formulations. Nevertheless, gel strength evaluation confirmed that LCHIGP was the weakest gel. 
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It can be concluded that the elastic modulus (G’) measured at 37oC may be a useful method for 

evaluating the gelation potential of CHIGP formulations, in addition to the already established 

techniques used in rheology to determine gelation temperature and time: (1) G’/G” intersection 

evaluated during temperature ramp and time sweep test; (2) temperature and time where there 

is a rapid increase in G’ relative to G”. 

It should be noted that all these rheological experiments were performed with the samples that 

were not diluted with urine. Following the intravesical administration of these in situ gelling 

formulations, a dilution with urine is expected. This could potentially affect the gelation time. 

The effect of dilution of these formulations with urine was evaluated in a later section, 

describing retention on the bladder mucosa. 

 

 

Fig. 2.9. Tan (delta) rheological profiles for temperature-dependent (a) and time-dependent (b) changes 

of LCHIGP (red), MCHIGP (green) and HCHIGP (blue), with HCHIGP gels displaying the tan delta values 

closest to zero, inferring that they exhibited the greatest elasticand gel properties. 
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2.3.3. Syringeability through the urethral catheter 

Syringeability is a critical parameter for evaluating the efficiency of intravesical dosage forms. A 

formulation that could flow through the catheter readily to quickly reach the bladder is one of 

the desirable attributes for intravesical delivery. Since administration of intravesical 

formulations is usually carried out at ambient temperature, the syringeability test of our 

samples was conducted using a texture analyser at 25oC.  

 

Fig. 2.10. Syringeability of chitosan and chitosan/ß-glycerophosphate formulations evaluated as the work 

done to expel samples from 2mL plastic syringes into the urethral catheter. Experiment was conducted 

at 25oC using the texture analyser (Stable Micro Systems Ltd, UK), mean±SD, n = 3. Syringeability is 

inversely proportional to the work of compression; there was significant statistical difference in the work 

of compression values between all groups of samples (p < 0.05) except those designated with “ns”. 

Sodium chloride (0.9%) served as the control. 

Figure 2.10 shows the values of work required to release chitosan and CHIGP formulations from 

the syringe through a catheter, which is inversely proportional to syringeability of these 

formulations.  The values for the work of compression of 0.9% NaCl, LCHI, MCHI, HCHI, LCHIGP, 

MCHIGP, HCHIGP were 3.75±0.62 N·mm, 11.60±0.94 N·mm, 18.07±2.80 N·mm, 20.54±1.63 

N·mm, 16.29±2.24 N·mm, 24.62±2.05 N·mm, 26.03±1.38 N·mm. Sodium chloride (0.9% w/v), 

which is typically used to dissolve mitomycin-C for intravesical application displayed the lowest 

work of compression amongst all studied samples, implying that it was the most syringeable.  

There was statistically significant difference between the work of compression of 0.9% sodium 

chloride solution and all the other studied samples (p < 0.05). This may be related to a gradual 

growth in chitosan molecular weight of 62 kDa, 124 kDa and 370 kDa for LCHI, MCHI and HCHI, 

respectively, as greater molecular weight of macromolecules results in higher solution viscosity 
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and better resistance to flow. Also, the decreased syringeability may become less remarkable 

with further increase in chitosan molecular weight evident with MCHI and HCHI based samples. 

It should be noted that all values of the work of compression determined for the CHI and CHIGP 

systems (14-26 N·mm) were lower than the syringeability of chitosan and poloxamer gel based 

formulations reported in the study of Senyiğit et al (30-130 N·mm), indicating that our 

formulations are also syringeable.  

2.3.4. Retention study on bladder tissues 

The ability of polymeric dispersions to flow and adhere onto mucosal membranes is dependent 

on the surface energy between the drug carrier and mucosal surface. In situ gelling systems 

possess lower surface energy than that of the mucosal surfaces and readily spread over them, 

thereby maximising the contact area and optimising adhesion [52]. Thus such systems are 

desirable to promote urothelial mucoadhesion and resistance to urine wash-out. 

Ex vivo porcine urinary bladder retention studies were performed with fluorescein sodium as a 

model compound formulated using both chitosan solutions and their mixtures with ß-

glycerophosphate.  FITC-dextran (3-5 kDa) was also used in these experiments as a negative 

control due to the well-known poor adhesiveness of this oligomeric polysaccharide to mucosal 

tissues [53].  
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Based on the polynomial fit of the mucosal fluorescence retention versus urine volume graph 

(Fig. 2.11), the WO50 values for FITC-dextran, LCHI, MCHI, HCHI, LCHIGP, MCHIGP and HCHIGP 

were 7±1, 8±1, 9±1, 14±3, 6±1, 8±1, and 9±1 mL, respectively. 

 

Fig. 2.11. The mucosal fluorescence retention profile of FITC-dextran, chitosan and chitosan/β-

glycerophosphate systems on porcine bladder tissues evaluated using imageJ software and WO50 values 

calculated based on the polynomial fit of the graphs; n=3, error bars not shown to prevent overlap.  

Figure 2.12 presents the results of these wash off experiments in the form of fluorescent images. 

The relative fluorescence intensity values were used to calculate the wash out50 values (WO50) 

of the formulations. It is clearly seen that FITC-dextran was removed from the surface of bladder 

mucosa with the first 10 mL of simulated urine, which is consistent with our previous findings 

[36,40,54]. Formulations composed of chitosans and fluorescein sodium demonstrated 

excellent retention performance on the bladder surface with HCHI displaying superior resistance 

to urine wash out compared to its lower molecular weight analogues (p<0.05). The formulations 

containing ß-glycerophosphate displayed reduced mucoadhesive properties relative to their 

respective chitosan solutions (Fig. 2.12). For example, WO50 value for HCHI (14 mL) is 

significantly higher compared to its HCHIGP formulation (9 mL). This was a surprising result as 

one would have expected the combination of excellent mucoadhesive properties of chitosan 

with formation of a gel in situ would provide a synergistic or enhanced retention effect on 

mucosa [55]. However, this is not the case.  
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There was no significant difference between the fluorescence retention profiles of FITC-dextran 

and FS/LCHI, FS/LCHIGP, FS/MCHIGP and FS/HCHIGP after washing out with 10 mL of artificial 

urine (p > 0.05), but the mucoadhesiveness of FS/MCHI and FS/HCHI was more than that of FITC-

dextran depicted by fluorescence intensity (Fig. 2.12a & b) (p < 0.05). With 20 mL artificial urine 

washing, the fluorescence retention of FS/HCHIGP was greater than that of FITC-dextran (p < 

0.05). The significant difference between the mucoadhesiveness of FITC-Dextran and MCHIGP 

was evident after 4 washing cycles with 40 mL artificial urine (p < 0.05). The mucoadhesive 

properties of FS/LCHI and FS/LCHIGP were similar to that of FITC-dextran after washing with 50 

mL artificial urine (Fig. 2.12a & b). 
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Fig. 2.12a. Retention study of fluorescein sodium (FS) formulations and FITC-dextran as a negative control: (a) Exemplar microphotographs showing wash-out from porcine 

urinary bladder tissue with artificial urine solution over 5 washing cycles, scale bar is 2 mm 
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Fig. 2.12b. Retention study of fluorescein sodium (FS) formulations and FITC-dextran as a negative control:  Mucosal retention on porcine urinary bladder tissues. Result 

presented as mean ± standard deviation, n = 3; Asterisk (*) depicts statistically significant differences between samples (p < 0.05).
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FS/LCHI, FS/LCHIGP and FS/MCHIGP displayed similar WO50 values with FITC-dextran (p > 0.05). 

On the other hand, FS/MCHI, FS/HCHI and FS/HCHIGP were more mucoadhesive than FITC-

dextran based on their WO50 values (Fig. 2.13). This finding demonstrated that high molecular 

weight chitosan may be the most efficient grade to formulate CHIGP delivery systems for 

intravesical administration. 

 

Fig. 2.13. Artificial urine wash-out-50 (WO50) values determined for different formulations. Results 

presented as mean ± standard deviation, n = 3; Asterisk (*) depicts statistically significant differences 

between samples (p < 0.05). 
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2.3.5. Mucoadhesive properties tested using tensile method  

The tensile method was used to probe the mucoadhesive properties of the formulations further 

[5]. As it was expected, dextran as the non-mucoadhesive control displayed the lowest force of 

detachment and total work of adhesion values (Fig. 2.14). Pure chitosan samples had a greater 

mucoadhesive performance compared to CHIGP formulations. For example, the values of 

maximal detachment force and total work of adhesion determined for HCHI (0.41±0.02 N and 

0.56±0.13 Nmm, respectively) were significantly greater (p<0.05) than the respective values for 

HCHIGP (0.13±0.01 N and 0.35±0.02 N·mm, respectively). 

 

 

Fig.2.14. Adhesion of CHI (1% w/v) and CHIGP samples to porcine bladder mucosa using tensile method: 

(a) force of detachment values, (b) work of adhesion values. Result presented as mean ± standard 

deviation, n = 3; Asterisk (*) implies statistically significant difference between data sets (p<0.05). 

The detachment characteristics of all formulations correlate well with their resistance to urine 

wash-out: the use of both methods indicates greater mucoadhesiveness of chitosan samples 

compared to their mixtures with ß-glycerophosphate.  

To get a further insight into the reasons why chitosan solutions alone show superior retention 

and mucoadhesive properties compared to the formulations of chitosan with ß-

glycerophosphate, additional experiments were performed by determining zeta potential of all 

samples at 25oC and 37oC (Table 2.2). The chitosan formulations displayed relatively high 

positive values of zeta potential (ZP) due to the cationic nature of chitosan associated with the 

presence of free amino groups that facilitates electrostatic interactions with the negatively 

charged bladder mucosal surfaces [36]. For the formulations with -glycerophosphate, ZP values 
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significantly decreased (p < 0.05) in comparison.  This trend was observed both at 25oC and 37C. 

A significant reduction in ZP values is related to partial neutralisation of cationic chitosan 

macromolecules with anionic -glycerophosphate, which is in good agreement with the 

literature data [56]. 

Table 2.2  

Zeta potential values of chitosan solutions (CHI) and chitosan/ß-glycerophosphate mixtures (CHIGP) at 

25oC and 37oC. 

Chitosan Samples Zeta potential, 25oC (mV) Zeta potential, 37oC (mV) 

CHI CHIGP CHI CHIGP 

Low 43.9±2.7 1.5±0.1 46.0±1.6 1.1±0.2 

Medium 50.1±7.8 1.9±0.1 50.0±2.7 1.2±0.2 

High 56.6±2.3 2.3±0.1 51.8±0.3 1.6±0.2 

It is well established that excellent mucoadhesive properties of chitosan are related to the 

interactions of its macromolecules with negatively charged mucin [7]. The nature of these 

interactions is predominantly electrostatic; however, the contribution of hydrogen bonding and 

hydrophobic effects cannot be completely disregarded [35]. A reduction in the positive values 

of zeta potential observed in the case of CHIGP formulations compared to chitosan alone may 

well be the main reason for their decreased interactions with bladder mucosal surfaces.  A 

second factor that could possibly contribute to weakening of mucoadhesive performance is the 

physical cross-linking of chitosan macromolecules caused by their interactions with β-

glycerophosphate. This cross-linking could restrict diffusion of chitosan macromolecules and 

prevent them from formation of an interpenetrating layer with mucins present on the mucosal 

surface. According to the diffusion theory of mucoadhesion related to the penetration of the 

polymeric dosage form into the mucus gel as well as diffusion of mucin into the dosage form 

generating interpenetration layers, this could reduce the mucoadhesive properties of these 

formulations [5].  
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2.3.6. Mitomycin-C in vitro release  

Dialysis technique using semi-permeable membrane is an established method for drug release 

studies in intravesical drug delivery [44,57]Mitomycin-C (MMC) was chosen for the current 

study as a drug that is typically used intravesically to treat superficial / non-invasive bladder 

cancer.  

 

 

Fig. 2.15. In vitro release profiles of mitomycin-C from free drug solution, chitosan solutions and CHIGP 

formulations in pH 6.2 artificial urine. Results are presented as mean values (n = 3); error bars are not 

shown to avoid overlapping for some samples.  

Figure 2.15 shows the release profiles from drug solution, CHI, and CHIGP formulations. Within 

the first 30 min, the release of mitomycin-C from the free drug solution, LCHI, MCHI, HCHI, 

LCHIGP, MCHIGP and HCHIGP samples was 52±21, 14±2, 11±2, 8±1, 18±2, 14±1 and 11±1%, 

respectively. Expectedly, drug release from free mitomycin-C solution was greatest after 30 min, 

which was more significant than that of the CHI and CHIGP formulations (p < 0.05). After 6 h, 

the drug release profile for free drug solution was 100% and it was statistically similar to that of 

LCHIGP (p > 0.05), inferring that in situ gelling systems based on low molecular weight chitosan 

had the least ability to sustain drug release amongst the CHIGP samples. As expected, the 

release from the free drug solution was faster compared to polymer-containing formulations, 

which is consistent with the literature on release studies involving small molecules (see [43] as 

an example). There was no significant difference in the drug release pattern of the pure chitosan 

formulations (LCHI, MCHI and HCHI), as compared at 0.5 h and 6 h (p >0.05). This behaviour is 
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not ideal for intravesical dosage forms where it is desirable for a substantial amount of the 

therapeutic dose to be available after transurethral resection of the tumours, for superficial 

bladder cancer management. In contrast, there was some influence of chitosan molecular 

weight on the drug release from CHIGP samples. For example, a cumulative release of 63±23%, 

39±20% and 37±17% of the drug was observed over 6 h release period for the LCHIGP, MCHIGP 

and HCHIGP samples, respectively. This finding is in good agreement with the report by Zhou et 

al (2008) [43], where high molecular weight chitosan based gels (CS-αβ-GP) exhibited slower 

adriamycin release compared to low molecular weight chitosan polysaccharide based 

formulations (50% vs 70%) over 24 h. There was statistically significant difference in the 

cumulative amount of drug released from MCHIGP and HCHIGP compared to the free drug 

solution (p<0.05). The drug release behaviour of the samples beyond 6 h was not studied 

because mitomycin-C degraded with prolonged exposure to artificial urine [45].  The drug 

degradation is due to the hydrolysis of its labile ester bond in the aqueous medium. 

Nevertheless, drug degradation in the physiological fluid may be avoided as its release and 

diffusion across underlying diseased tissues will take place quickly.  

MMC/LCHIGP displayed 1.6-fold and 1.7-fold increase in the amount of mitomycin-C released, 

relative to MCHIGP and HCHIGP, respectively, after 6 h release period, inferring that LCHIGP 

favoured an overall rapid drug release relative to MCHIGP and HCHIGP. The amount of MMC 

released from chitosan decorated poly-Ɛ-caprolactone nanoparticles evaluated by  Bilensoy et 

al., (2009) [44] was 80% over a 6 h release period using phosphate buffer pH 6.0. In a subsequent 

report, in vitro studies were carried out by the same group using a different release medium of 

citrate buffer but having similar pH 6.0 [32], and  89%, 92% and 91% of MMC were respectively 

released in 15 min from chitosan, poly-L-lysine-coated and chitosan coated poly-Ɛ-caprolactone 

nanoparticles, inferring that the type of release medium used modulates the release profile of 

the nanoparticles rather than their pH values. Moreover, the use of physiologically relevant 

release medium like simulated urine used in the current study is valuable to generate reliable 

drug release data. These drug carriers exhibited fast drug release, which will necessitate 

frequent dosing which is not convenient for bladder cancer patients as their therapy is carried 

out in the hospital. In contrast, our MMC/MCHIGP and MMC/HCHIGP favoured sustained drug 

release as 39 and 37% of the drug were respectively released in 6 h from these formulations. 

This may prolong dosing interval and minimise bladder cancer recurrence. On the other hand, 

MMC/LCHIGP, with 63% of drug released within 6 h, displayed a comparable release profile with 

the best chitosan based formulations (chitosan coated PCL nanoparticles) reported by  Bilensoy 

et al., (2009) [44].  
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2.4. Conclusions 

In situ gelling systems composed of chitosan of three molecular weights and β-

glycerophosphate were formulated in this work and studies for their potential applicability for 

intravesical delivery of mitomycin-C to treat bladder cancer were carried out. These 

formulations were evaluated for their ability to form gels in situ, rheological properties, 

syringeability, retention on and adhesion to the urinary bladder mucosa as well as the drug 

release in vitro.  

The molecular weight of chitosan was found to modulate syringeability, gelation, mucoadhesive 

properties and drug release profiles of the formulations.  Chitosan with the highest molecular 

weight (370 kDa) combined with β-glycerophosphate displayed superior resistance to urine 

wash-out compared to the formulations with lower molecular weights; it also provided 

controlled release of mitomycin-C over a 6 h period. 

This work showed that the mucoadhesive properties of chitosan are reduced by its formulation 

with β-glycerophosphate. This is related to the reduction in positive values of zeta potential for 

these formulations compared to chitosan alone. So, in terms of the retention of the 

formulations in the bladder, the use of in situ gelling dosage forms composed of chitosan and β-

glycerophosphate did not show any superior mucoadhesive benefit over simple solutions of 

chitosan without gelation properties. However, the drug release pattern from chitosan solutions 

demonstrated that the local availability of mitomycin-C in the bladder may be limited as a 

maximum of 15.1 to 24.9% of the drug was released over the study period. Thus, HCHIGP still 

demonstrated superior urothelial mucoadhesive properties relative to LCHIGP and MCHIGP. 

Future work will explore chemical modification of chitosan prior to formulating with β-

glycerophosphate to develop in situ gelling systems with improved mucoadhesiveness. 
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3. Methacrylated chitosan as a polymer with enhanced 

mucoadhesive properties for transmucosal drug delivery 

Despite the limited mucoadhesiveness of CHIGP in situ gelling systems (WO50 values 6-9 mL), 

HCHIGP (prepared using high molecular weight chitosan) was the most promising in terms of 

ease of gelation, sustained drug release and mucoadhesiveness. Therefore, high molecular 

weight chitosan was chemically modified with methacrylate groups to improve its 

mucoadhesiveness. 

 

This chapter was published as: 

Kolawole, O.M., Lau, W-M., Khutoryanskiy, V.V., 2018. Methacrylated chitosan as a polymer 

with enhanced mucoadhesive properties for transmucosal drug delivery. Int. J. Pharm. 550    

(1-2), 123-129. 
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3.1. Introduction 

Ability of water-soluble polymers to adhere to mucosal surfaces, defined as mucoadhesion, 

has been exploited in the design of mucoadhesive drug delivery systems in the last decades. 

Various studies have reported the use of mucoadhesive polymers to improve drug delivery in 

the eye, the nasal cavity, the mouth, the vagina and the urinary bladder [1–8]. Advantages of 

mucoadhesive delivery systems include improved drug bioavailability, non-invasive nature of 

dosage form administration and ease of their application, and the possibility of targeting 

specific organs, etc.  

Chitosan is a cationic polysaccharide that has been widely used in the design of dosage forms 

for transmucosal drug delivery due to its non-toxic nature and excellent mucoadhesive 

properties [3,6]. Chitosan often exhibits superior mucoadhesive properties compared to many 

other water-soluble polymers; however, there is still a strong interest to improve its 

performance through chemical modification [9]. Various dosage forms were developed using 

chitosan derivatives such as glycol chitosan, trimethyl chitosan, carboxymethyl chitosan, 

thiolated chitosan,  half-acetylated chitosan, glycol chitosan-catechol, methylpyrrolidinone 

chitosan, and acrylated chitosan and they have all displayed improved retention on mucosal 

surfaces, thereby extending the duration of action of loaded therapeutics [9].  

Over the last few years, acrylate- and maleimide-functionalised materials have been explored 

for transmucosal drug delivery due to their enhanced mucoadhesiveness [10–17]. This is 

achieved through the quick formation of covalent bonds between acrylate- or maleimide- 

groups of a mucoadhesive polymer and thiol-groups present in cysteine-rich domains on 

mucosal surfaces.  

Methacrylate groups are also capable of forming covalent bonds with thiols under 

physiological conditions, similarly to acrylate groups and maleimide. A few studies exist where 

methacrylate groups have been conjugated to pharmaceutical materials for drug delivery and 

tissue engineering. For example, Yu et al. (2007) reported the development of methacrylated 

chitosan that was subsequently cross-linked by radical polymerisation to prepare 

biodegradable macroporous scaffolds for cell culture applications [18]. Lin et al. (2013) 

reported the synthesis of methacrylated gelatin that was then used in mixtures with human 

endothelial colony-forming cells/mesenchymal stem cells for in vivo injection and transdermal 

photo-crosslinking [19]. However, to our knowledge, the potential of methacrylated polymers 

as mucoadhesive materials has not been explored yet.  
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In this study, we developed methacrylated derivatives by reacting chitosan with methacrylic 

anhydride and evaluated their physicochemical properties, in vitro adhesion to porcine urinary 

bladder mucosa and cytotoxicity in UMUC3 cells to establish their suitability as materials for 

transmucosal delivery.   

3.2. Materials and methods 

3.2.1. Materials 

High molecular weight chitosan (CHI, 370 kDa; deacetylation degree 70.9 ± 2.2%), methacrylic 

anhydride (MA), ninhydrin, trifluoroacetic acid, citric acid, fluorescein sodium, FITC-Dextran (3-

5 kDa), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), deuterated water 

(D2O), dextran (5 kDa), foetal bovine serum (FBS) and UMUC3 malignant urothelial cells 

(Sigma-Aldrich UK); modified Eagle’s medium with Earle salts & non-essential amino acids and 

trypsin-EDTA (Lonza UK); dialysis membrane with molecular weight cut off 12-14 kDa (Medicell 

International UK); and most chemical reagents (Fischer Scientific UK) were used as received 

without further purification. Freshly excised porcine urinary bladders were received from PC 

Turner Abattoir (Farnborough, Hampshire, UK). 

3.2.2. Synthesis of methacrylated chitosan 

Methacrylated chitosan was synthesised by reacting chitosan with methacrylic anhydride at 

various molar ratios (Table 3.1) in order to generate two types of products using the method 

developed in-house with slight modification [20] (See Fig. 3.1). 

 

  

Fig. 3.1. Reaction scheme for the synthesis of methacrylated chitosan: CHI is a parent chitosan and 

LMeCHI and HMeCHI are chitosans with low and high degrees of methacrylation, respectively; a 

(deacetylated), b (acetylated), and c (methacrylated) segments of chitosan repeating units. 
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Briefly, 1.5 % w/v chitosan solution (100 mL) was prepared by dissolving predetermined 

amount of chitosan in 4% v/v acetic acid at room temperature for 12 h. Different amounts of 

methacrylic anhydride were added slowly to chitosan solution and the mixture was 

maintained at 40
o
C, shaken at 60 rpm for 12 h, protected from light. The products were 

redispersed in deionised water; purified by dialysis (MWCO 12-14 kDa membrane) against 4.5 

L deionised water with six water changes over 72 h. The final products were freeze-dried using 

a Heto PowerDry LL3000 Freeze Dryer (Thermo Scientific, UK). 

 

Table 3.1 

Molar feed ratios for the synthesis of LMeCHI and HMeCHI, with low and high degrees of 

methacrylation, respectively. 

Parameters LMeCHI HMeCHI 

Concentration, chitosan 1.5 % (w/v) 1.5 % (w/v) 

Weight/volume of 

methacrylic anhydride 

1.035 g (1 mL) 6.21 g (6 mL) 

Moles of MA per unit mole 

chitosan 

0.79 4.65 

 

3.2.3. Characterisation of methacrylated chitosan 

3.2.3.1. 
1
 H Nuclear magnetic resonance spectroscopy (

1
 H NMR) 

Solutions of CHI, LMeCHI & HMeCHI (0.6% w/v) were prepared in D2O acidified with 30µL 

trifluoroacetic acid and allowed to be dissolved overnight at room temperature. The 
1
H NMR 

spectra were recorded using a 400 MHz ULTRASHIELD PLUS™ B-ACS 60 spectrometer (Bruker, 

UK). 

3.2.3.2. Fourier Transform-Infrared Spectroscopy (FT-IR) 

Solid samples of modified and unmodified chitosan were scanned from 4,000 to 400 cm
-1

, 

resolution of 4 cm
-1

. Data was processed based on the average of six scans per spectrum 

generated by the Nicolet iS5-iD5 ATR FT-IR spectrometer (Thermo Scientific, UK). 

3.2.3.3. Turbidimetric measurements 

The influence of pH on the turbidity of polymer samples, was studied according to Sogias et al. 

(2010) with slight modification. Briefly, polymer solutions were prepared in 0.1 M acetic acid 

at room temperature with initial pH 3. NaOH solution (0.1 mol·L
-1

) was added to increase the 
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pH stepwise and turbidity values of polymer dispersions were measured at 400 nm with 

JENWAY 7315 UV-Vis spectrophotometer (Bibby Scientific, UK).  

3.2.3.4. Zeta potential measurements 

Zeta potential values of CHI, LMeCHI and HMeCHI solutions/dispersions were determined in 

folded DTS-1070 capillary cell using Zetasizer Nano-ZS (Malvern Instruments, UK) at 25
o
C. 

Solutions/dispersions of chitosan and derivatives (0.4 % w/v) were diluted 1:20 with ultrapure 

water prior to analysis. The machine was operated at a refractive index of 1.59 and an 

absorbance of 0.01. Triplicate readings were recorded with 50 sub-runs per measurement. 

3.2.3.5. X-ray Diffractometry 

The influence of methacrylation on the crystallinity of chitosan was evaluated using a wide-

angle powder D8 Advance diffractometer/LYNXEYE XE detector (Bruker, UK). Solid samples of 

CHI, LMeCHI and HMeCHI were loaded into a capillary tube, sealed with wax to prevent loss 

and placed onto the goniometer and aligned under a microscope for diffraction analysis, 

scanning at diffraction ranges from 5 to 65
o
 with a scan step of 0.02

o
, generating characteristic 

diffractograms at the rate of 2.5 scans min 
-1

. 

3.2.3.6. Ninhydrin test to quantify methacrylate groups 

The amount of methacrylate groups conjugated to chitosan was quantified using a previously 

published method with slight modification [14]. Briefly, 2 % w/v solution of ninhydrin in DMSO 

was prepared by stirring for 12 h at room temperature in the dark. Unmodified and modified 

chitosan solutions (0.05 – 0.5% w/v) were prepared by dissolving in 0.1 M acetic acid, stirred 

for 18 h in the dark at room temperature. 5mL of ninhydrin solution and 1.25 mL of 4M 

phosphate buffer (pH 5.4 ± 0.2) were mixed with 0.5 mL polymer solution. The resultant 

mixtures were incubated in a water bath at 85
o
C (OLS 200, Grant, UK) shaken at 60 rpm for 30 

min. Each mixture (1 mL) was analysed using a JENWAY 7315 UV-Vis spectrophotometer 

(Bibby Scientific, UK) at 500 nm. 

3.2.4. Ex vivo Porcine mucoadhesion studies 

3.2.4.1. Preparation of polymer / fluorescein sodium mixture and artificial urine solution 

The polymeric solutions/dispersions of CHI, LMeCHI and HMeCHI were prepared by dissolving 

polymers in 0.1 M acetic acid and stirred overnight at room temperature. Resultant polymer 

solutions/dispersions were mixed with 0.1% w/v fluorescein sodium to yield final polymer 

concentration of 0.4 % w/v (FS/CHI, FS/LMeCHI and FS/HMeCHI, respectively). FITC-dextran 
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0.4 % (w/v) was dissolved in deionised water overnight under dark conditions at room 

temperature to serve as negative control. 

A protocol developed by Chutipongtanate & Thongboonkerd (2010) [21] was used to prepare 

artificial urine. Briefly, the compounds (Table 3.2) were stirred in deionised water for 3 h at 

room temperature, pH adjusted to 6.2 and made up to a final volume of 2 L. 

Table 3.2.  

Constituents of artificial urine contained in 2 L sample (pH 6.2 ± 0.2) 

Compounds Amount (g) Amount (mM) Source 

Urea 24.27 200 Sigma Life Science 

Uric acid 0.34 1.00 Sigma Life Science 

MgSO4.7H2O 1.00 2.00 Sigma Life Science 

NaH2PO4 1.00 3.60 Sigma Life Science 

Creatinine 0.90 4.00 Sigma-Aldrich 

NaHCO3 0.34 2.00 Sigma-Aldrich 

Na2SO4 2.58 9.00 Sigma-Aldrich 

Na2C2O4 0.03 0.10 Sigma-Aldrich 

Na3C6H5O7 2.97 5.00 Sigma-Aldrich 

NaCl 6.34 54.00 Fisher Chemical 

Na2HPO4 0.10 0.40 Fisher Chemical 

KCl 4.50 30.00 Fisher Chemical 

NH4Cl 1.61 15.00 Fisher Scientific 

CaCl2.2H2O 0.89 3.00 Fisher Scientific 
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3.2.4.2. Retention on porcine urinary bladder mucosa 

Fluorescence microscopy (MZ10F microscope (Leica Microsystems, UK) fitted with an “ET GFP” 

filter, a Zeiss Imager A1/AxioCam MRm camera; 1296 x 966 pixels; 0.8 x magnification) was 

used to evaluate the mucosal retention of fluorescein sodium  in the presence of the 

polymeric carriers based on a slightly modified protocol developed in-house [22]. Freshly 

excised porcine urinary bladders stored on ice were used in this study within 24 h of 

procurement. The mucosal side of the bladder tissue was preserved during excision of the 

required section (about 1.5 x 2.5 cm) and rinsed with artificial urine solution (~ 3 mL) prior to 

blank tissue imaging. The bladder tissue was placed on a 75 mm x 25 mm glass slide and 

maintained in an incubator at 37
o
C during urine wash-out. The following exposure times were 

used: FITC-dextran (80 ms), FS/CHI (211 ms), FS/LMeCHI and FS/HMeCHI (279 ms). 

Microscopic images were recorded for each tissue sections before and after applying ~ 100 µL 

of sample as well as after each of the five washing cycles with 10 mL artificial urine/cycle at 2 

mL/min. The studies were carried out in triplicates. Image J software (National Institute of 

Health, USA) was used to analyse the microscopic images, generating average fluorescence 

values as a function of urine volume used for the wash-out. In order to normalise the mean 

fluorescence values, fluorescence values obtained based on blank tissues were deducted from 

fluorescence values obtained after each wash-out cycle while the value “1” was used to depict 

the fluorescence intensity from the tissue prior to wash. From the wash-out trends of the 

polymers, the WO50 values were determined using exponential or polynomial fit of the graphs, 

which depicts the volume of artificial urine needed to wash out 50% of the polymer dispersion. 

3.2.5. Bioadhesive test 

The TA-XT Plus Texture Analyser (Stable Micro Systems Ltd, UK) coupled to a 5 kg load cell was 

used as an additional technique to study the adhesion of LMeCHI and HMeCHI samples. Blank 

chitosan solutions (0.4% w/v) served as the positive control while the negative control was 

dextran solution (0.4% w/v). The experiment was carried out as previously described in 

Section 2.3.6. Briefly, porcine bladder tissues were secured at the base of a cylindrical 

container. The vessel bottom had a circular cut-out region (20 mm diameter) exposing the 

mucosal surface of the bladder tissue. This container was screwed onto the probe of the 

texture analyser through a hole drilled on the lid of the container. Another bladder tissue was 

placed on a petridish and coupled onto the lower platform of the texture analyser, exposing 

the mucosal surface (20 mm diameter) of another bladder tissue. The tests were performed 

using an earlier reported equipment settings [23] with slight modification: pre-speed test 1.0 
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mm/s; test speed 0.1 mm/s; post-test speed 0.1 mm/s; applied force 0.05 N; contact time 

120.0 s; trigger type auto; trigger force 0.1 N; and return distance of 10.0 mm. Bladder tissues 

were maintained in an incubator at 37
o
C for 5 min prior to the study. CHI, dextran, LBCHI, 

MBCHI and HBCHI samples (0.4 mL) were applied onto the exposed area of the bladder tissue 

secured onto the lower platform of the texture analyser. The probe was then lowered such 

that the upper blank bladder tissue comes in contact with the formulation applied onto the 

bladder tissue secured on the lower platform for 2 min. The Texture Analyser software (T.A. 

Exponent) was used to record the area under the force versus distance curves (work of 

adhesion) as well as the force of adhesion/adhesive strength which is the maximum force 

needed to detach tissue from the polymer solutions/dispersions [23,24]. 

3.2.6. Cell culture and viability experiment 

Human urothelial carcinoma cell line, UMUC3 cells (Sigma-Aldrich, UK) were cultured in MEM 

supplemented with 10% FBS. The cells were cultured in an incubator maintained at 37
o
C 

containing 5% CO2 atmosphere. The MTT assay was used to evaluate cell viability using a 

previously reported method with slight modification [25]. Briefly, UMUC3 cells were seeded 

into a 96-well plate at a density of 1 x 10
4
 cells/well. After 24 h, the cells were treated with 

polymer solution in growth medium (6.25 – 200 µg mL
-1

) for 4 h. The cells were allowed to 

grow for a further 72 h. After the incubation period, 20μL of MTT solution (5 mg mL
-1

) was 

added to each well. After 4 h, the supernatant was removed and 100 µL DMSO was added. 

Then, absorbance was read using the microplate reader (Benchmark-BIO-RAD) at 570 nm. 

Untreated cells were used as positive control and culture medium was used as background 

control. Each concentration had three triplicates in each experiment and all experiments were 

done in triplicate. The cell viability was evaluated as a function of viable cells post treatment 

and total untreated cells. The polymer concentration that yielded half-maximum inhibitory 

response (IC50 value) was determined based on the best linear fit of the cell viability versus 

polymer concentration graph. 

3.2.7. Statistical analysis 

All experimental data were carried out in triplicates and data expressed as average ± standard 

deviation. Data were compared using t-test and one-way ANOVA and post-hoc Bonferroni test 

with GraphPad Prism 5.04 (GraphPad Software Inc., San Diego, California), with p < 0.05 

depicting significant statistical difference between data sets. 
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3.3. Results and discussion 

Over the last decade, chitosan has been progressively explored for mucosal delivery of drugs 

and biotherapeutics due to its  biocompatibility, biodegradability, mucoadhesiveness and cell 

permeation enhancing features [26]. Recently, acrylated chitosan has been proven to have 

superior intestinal mucoadhesiveness relative to the thiolated analogue [14]. 

The aim of this study was to synthesise methacrylated chitosan using an efficient single step 

chemical modification. Two types of methacrylated chitosan derivatives with different degrees 

of substitution were synthesised and evaluated on their solubility at various pH, 

mucoadhesiveness and biocompatibility. These derivatives were prepared by reaction of 

chitosan with methacrylic anhydride. 

3.3.1. Methacrylated chitosan derivatives synthesis / physicochemical 

characterisation 

The two methacrylated chitosan derivatives LMeCHI and HMeCHI were synthesised with a 

yield of 62% and 24%, respectively (Table 3.3). There was no significant difference in their 

appearance being both off-white colour in nature. 

Table 3.3  

Synthetic yield, physical properties and degree of methacrylation (using 
1
H NMR spectroscopy and 

ninhydrin test) of LMeCHI and HMeCHI 

Parameter LMeCHI HMeCHI 

Synthetic yield 62% (w/w) 24 % (w/w) 

Physical appearance off-white solid off-white solid 

Methacrylation 

extent 

  
1
H NMR 

 

11.2 ± 3.4 % 38.5 ± 3.9% 

Ninhydrin test 34.3 ± 2.0 % 55.4 ± 1.0% 

The 
1
H NMR spectra (Fig. 3.2) show the distinctive peaks for chitosan at δ 2.0 ppm (CH3 from 

acetylated part of chitosan) as well as, 3.09-3.8 ppm representing protons from the 

glucosamine ring. With the methacrylated derivatives, additional peaks were evident at 5.6 

and 6.2 ppm depicting the alkenyl double bond from the methacrylate moiety conjugated to 

chitosan. Also, the additional peak at 1.84 ppm appeared in the spectra of the methacrylated 

chitosan is due to CH3 of methacrylic groups. These spectral data are in good agreement with 

the report by Yu et al. (2007) [18]. 
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The ratio of mean intensity of the proton peaks of the methacrylate groups (δ = 5.6–6.2 ppm) 

relative to that of chitosan glucosamine protons (δ = 3.0-3.8 ppm) provides their extent of 

methacrylation.  𝑀𝑒𝑡ℎ𝑎𝑐𝑟𝑦𝑙𝑎𝑡𝑖𝑜𝑛 (%) = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑐𝑟𝑦𝑙𝑎𝑡𝑒 𝑝𝑟𝑜𝑡𝑜𝑛𝑠 𝑎𝑡 5.6 & 6.2 𝑝𝑝𝑚 /2𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝐻2 − 𝐻6  𝑝𝑟𝑜𝑡𝑜𝑛𝑠 /6 100% 

 

 

 

Fig. 3.2. 
1
H NMR spectra of (1) CHI (2) LMeCHI and (3) HMeCHI recorded in D2O acidified with 1% 

trifluoroacetic acid. H2-H6 protons of CHI were detected at (i) 3.0-3.8 ppm and (ii) vinyl groups of 

methacrylate segment evident around 5.6-6.2 ppm.  
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3.3.2. Quantification of acrylate groups 

In addition to  
1
H NMR, the ninhydrin test was also used to confirm the degree of 

methacrylation, where ninhydrin reacts with the unmodified amine groups of chitosan to form 

a coloured product detectable by UV [27]. The slope of the adsorption versus concentration 

curve of unconjugated chitosan is represented as ɑCHI, while that of LMeCHI and HMeCHI are 

denoted as ɑMeCHI (unmodified amine groups of the methacrylated products).  

Methacrylation percentage can be defined as (1 - ɑMeCHI/ ɑCHI) * 100% [14].                                             

Table 3.2 provided data on the extent of methacrylation for LMeCHI and HMeCHI. The degrees 

of methacrylation for LMeCHI and HMeCHI, calculated from the ninhydrin test (34.3% vs. 

55.4%, respectively) were greater than the values calculated using 
1
H NMR (11.2% vs. 38.5%). 

This may be due to the differences in experimental design as the 
1
H NMR spectra of polymers 

were recorded in D2O, acidified with 1% trifluoroacetic acid, whereas analysis with ninhydrin 

was performed with the samples dissolved in 0.1 M acetic acid. Different solvents used in 

these methods could affect the conformation of polymers and availability of functional groups. 

Potentially, 
1
H NMR could underestimate the degree of methacrylation because methacrylate 

groups could not be on the surface. Nevertheless, the data from both techniques reveal that 

HMeCHI had a greater degree of methacrylation than LMeCHI. 

3.3.3. FT-IR analysis 

FT-IR shows characteristic absorption bands for chitosan (Fig. 3.3) at 1026-1151 cm
-1

 (amine C-

N stretch). Since both chitosan and methacrylate groups display alkyl C-H stretch (2850 and 

2930 cm-
1
), the increase in the intensity of the absorption bands is evident of the 

methacrylated products. The appearance of a new double bond signal at 1537-1653 cm
-1

 

depicted alkenyl C=C stretch, while amide C=O stretch evident at 1635 cm
-1

 in LMeCHI and 

HMeCHI confirms the methacrylation of chitosan. The FT-IR spectra of LMeCHI is similar to 

that of HMeCHI, but differs in terms of the intensity, which is related to their extent of 

methacrylation. 
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Fig. 3.3. FT-IR spectra of CHI , LMeCHI and HMeCHI with characteristic peak at 1537-1635 cm
-1

 as well as 

1653 cm
-1

 for LMeCHI and HMeCHI depicting alkenyl C=C and amide C=O linkage between chitosan and 

methacrylate groups, respectively. 

3.3.4. Turbidimetric measurements  

The effect of pH on turbidity of polymers were analysed where unmodified chitosan shows a 

turbidity-pH profile (Fig. 3.4) in good agreement with our previous report [20]: the solution 

remains transparent until the pH reaches 6.5; then a further increase in solution pH results in a 

dramatic increase in turbidity. LMeCHI sample exhibits a pH-dependent solubility similar to 

unmodified chitosan, with a sharp increase in turbidity observed at pH > 6.5. 

 

Fig.3.4. Effect of pH on solution turbidity of unmodified chitosan, LMeCHI and HMeCHI. Lines are used 

as a guide to the eye. 
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On the other hand, the turbidity profile of HMeCHI is distinctly different, where a slightly 

turbid colloidal solution was formed at first and maintained in the studied pH range. This is 

likely to be due to the relatively hydrophobic nature of methacrylate groups that cause 

aggregation of chitosan macromolecules and formation of micellar structures. The solution of 

LMeCHI did not show any sign of turbidity at pH < 6.5 possibly because its degree of 

methacrylation did not reach a certain threshold to become sufficiently hydrophobic to 

undergo aggregation. The relatively unchanged turbidity of HMeCHI possibly relates to the 

disruption of the semi-crystalline nature of chitosan caused by introduction of bulky 

methacrylate groups; a similar effect was reported for half-acetylated chitosan [20]. The 

physiological implication of this finding is that dosage forms generated from highly 

methacrylated chitosan may be more resistant to the pH fluctuations in the bladder possible 

with metabolic and dietary conditions (pH 4.6 to 8), than LMeCHI and unmodified chitosan 

based delivery systems. 

3.3.5. X-ray Diffractometry 

The X-ray diffractograms (Fig. 3.5) shows the unmodified chitosan exhibited two major peaks 

at diffraction angles (2θ) of 10.1 and 20.8o
, which correlate with the peaks displayed by 

chitosan reported in our earlier publications [20,28–30]. X-ray diffractograms of LMeCHI and 

HMeCHI (Fig. 3.5) reveal a decrease in crystallinity upon methacrylation of chitosan with the 

disappearance of the peak at 10.1
o
 and broadening of the peak at 20.8

o
. This suggests that 

chitosan has been successfully modified and the modification reduced the ability of chitosan 

macromolecules to form crystalline domains. This is in good agreement with our previous 

report on reduction of chitosan’s crystallinity upon its re-acetylation [20]. The reduced 

crystallinity of methacrylated chitosan could facilitate improved aqueous solubility of the drug 

carriers relative to the parent chitosan, which is beneficial for intravesical formulations that 

are presented as liquid, injectable dosage forms. 
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Fig. 3.5. X-ray diffractograms of CHI, LMeCHI and HMeCHI generated at 2.5 scansmin
-1

, scan angle 5-

65
o
, scan step size of 0.02

o
, spectra offset for improved

 
clarity. 

3.3.6. Mucoadhesion studies 

In order to evaluate the mucosal retention, fluorescein sodium was added to the unmodified 

and methacrylated chitosan solutions prior to the experiment. In the study, the unmodified 

chitosan, cationic in nature with proven mucoadhesive potential [31], was chosen as the 

positive control, while dextran with limited mucoadhesiveness [32] served as the negative 

control.  
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Fig. 3.6 (a) Exemplar microphotographs showing FITC-Dextran, FS/CHI, FS/LMeCHI, and FS/HMeCHI wash-out from porcine urinary bladder with artificial urine solution over 

5 washing cycles, scale bar is    2 mm. 
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Fig. 3.6 (b) Mucosal retention of fluorescein sodium (FS) from CHI, LMeCHI and HMeCHI on porcine urinary bladder tissue; FITC dextran served as negative control and 

FS/CHI (unmodified chitosan) as positive control. Result presented as mean ± standard deviation, n = 3, * (Asterisk) depicts significant statistical differences between 

samples (p < 0.05).
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The mucosal retention of CHI, LMeCHI and HMeCHI on ex vivo bladder tissue was quantified 

using numerical WO50 values [22]. WO50 is defined as the volume of artificial urine required to 

remove 50% of fluorescein sodium from the bladder mucosal surface. FITC-dextran serving as 

the negative control was the least retained on the porcine bladder mucosa, displays WO50 of 

7±1 mL based on extrapolation as 10 mL of artificial urine was used for each wash-out cycle 

(Fig. 3.6) similar to that reported previously [22]. WO50 values for FS/CHI, FS/LMeCHI and 

FS/HMeCHI were 15±4 mL, 24±1 mL and 48±1 mL, respectively, based on the polynomial fit of 

the mucosal fluorescence retention versus urine volume graph (Fig. 3.7). FITC-dextran was 

significantly less mucoadhesive than the unmodified chitosan and the methacrylated chitosan 

after washing out the bladder mucosa with 10 mL of artificial urine. The significantly superior 

mucoadhesiveness of HMeCHI over LMeCHI became evident after the second washing cycle 

(20 mL artificial urine). The statistical difference between the mucoadhesiveness of 

unmodified chitosan and HMeCHI was sustained with bladder mucosa wash out with 50 mL of 

artificial urine. However, LMeCHI was statistical similar to unmodified chitosan after wash-out 

with 50 mL artificial urine, probably due to its low degree of methacrylation which is not 

sufficient to confer superior mucoadhesive property on chitosan. Nevertheless, bladder wash-

out with 30 mL artificial urine showed that LMeCHI was significantly more mucoadhesive than 

FITC-dextran (non-mucoadhesive control) while unmodified chitosan was similar to FITC-

dextran after the third washing cycle. Despite these urine wash-out behaviour, the statistical 

analysis of their WO50 values affirms that the methacrylated chitosan was more mucoadhesive 

than unmodified chitosan and dextran (non-mucoadhesive control). This finding suggested 

that increased methacrylation confers greater mucoadhesive potential on chitosan. The 

superior mucoadhesive behaviour of HMeCHI as shown in Fig. 3.6 is likely due to the presence 

of a higher percentage of unsaturated methacrylate groups that formed covalent bonds with 

thiols of mucin present on the mucosal surface [14]. Interestingly, HMeCHI displayed a similar 

WO50 value (48 mL) to PEGylated maleimide functionalised liposomes (WO50 value 48 mL) 

evaluated for bladder delivery [16], suggesting that functionalisation of chitosan with 

methacrylate moieties may facilitate comparable covalent interactions with mucosal 

glycoproteins, achievable with maleimide derivatisation of liposomes. 
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Fig. 3.7. The mucosal fluorescence retention profile of FITC-dextran, unmodified chitosan and 

methacrylated chitosan on porcine bladder tissues evaluated using ImageJ software and WO50 values 

calculated based on the polynomial fit of the graph; Results presented as mean ± standard deviation; 

n=3. 

 The zeta potential of 13.3 ± 3.2, 41.4 ± 7.0 and 54.4 ± 1.9 mV were recorded for 0.02% w/v 

polymer solutions/dispersions of CHI, LMeCHI and HMeCHI, respectively. The degree of 

positive charge of these polymers supported their favourable interaction with the negatively 

charged bladder mucosal surface[4]. Moreover, the  methacrylated chitosan may also facilitate 

loosening of tight junctions which promotes cellular internalisation of the drug carrier [33]. 

There was significant statistical difference in the mucoadhesive profile of parent chitosan and 

the highly methacrylated derivative (HMeCHI) after five washing cycles (p < 0.05).  

3.3.7. Bioadhesion test 

 

The bioadhesion test provides valuable information about the bioadhesive features of LMeCHI 

and HMeCHI. The force of adhesion was directly proportional to the work of bioadhesion, 

suggesting that a material with a greater force of adhesion is likely to have a larger work of 

bioadhesion. 

The force needed to surmount the adhesive bonds between the drug carrier and bladder 

mucosa is referred to as the force of adhesion/adhesive strength while the work of adhesion is 

defined by the area under the force-distance curves, which depicts all forces that must be 

removed in order to separate the bladder tissue from the drug carrier [23,24].  
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Dextran, the non-mucoadhesive control exhibited the least “force of adhesion” and “work of 

bioadhesion” as seen in Fig. 3.8. The force of adhesion presented in increasing order: dextran 

(0.04±0.01 N) < CHI (0.06±0.01 N) < LMeCHI (0.10±0.02 N) < HMeCHI (0.11±0.01 N).  

 

Fig. 3.8. Bioadhesive profile: (a) Force of adhesion; (b) work of adhesion of dextran, CHI, LMeCHI, and 

HMeCHI; result presented as average ± standard deviation, n = 3, * (Asterisk) depicts significant 

statistical differences between samples (p < 0.05); ns signifies otherwise. 

The work of adhesion of CHI was less than that of LMeCHI and HMeCHI (0.14±0.02 N·mm vs 

0.16±0.02 N·mm vs 0.22±0.02 N·mm). The adhesive strength of the polymers correlated well 

with their work of adhesion. In terms of the force of adhesion, there was significant statistical 

difference between the unmodified chitosan and the methacrylated chitosan (LMeCHI and 
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HMeCHI) but that of LMeCHI and HMeCHI were statistically similar. As their work of adhesion 

was a more reliable method of evaluating the bioadhesiveness of materials, unmodified 

chitosan and LMeCHI behaved similarly in terms of the work of adhesion values. However, 

parent chitosan was remarkably less bioadhesive than HMeCHI, and LMeCHI displayed inferior 

bioadhesiveness relative to HMeCHI statistically. These findings inferred that the 

bioadhesiveness of the polymers was improved with increased extent of methacrylation. Also, 

there was good agreement in their mucoadhesive profile using the urine-wash-out and tensile 

test. 

3.3.8. Cell viability studies 

Distressing symptoms like painful sensation during urination are common in bladder cancer. 

So, drug carriers intended for bladder cancer therapy should not aggravate the discomfort 

experienced by patients. UMUC3 human bladder carcinoma cells have been used as an in vitro 

model for studying the cytotoxic and irritation effect of drug delivery systems intended for 

bladder cancer treatment [34–36]. The selected duration of cell incubation with polymer 

solution (4 h) was clinically relevant as most drug carriers required such contact time with 

diseased tissues for effective therapy [37]. The safety of methacrylated gellan gum has been 

reported [38], but there was no data available for methacrylated chitosan.  

MTT assay is a well-established colorimetric assay for investigating the cell metabolic, growth 

inhibitory or toxic effects of novel intravesical formulations [34,35,39,40]. Cellular enzymes 

reduce the MTT reagent (tetrazolium salt) to its insoluble purplish formazan, which is then 

solubilised using appropriate solvent. The absorbance of the coloured solution at wavelength 

of 500 to 600 nm via spectrophotometer correlates to the amount of viable cells available 

after cell treatment [41]. This assay is appropriate for our cytotoxicity test because UMUC3 

cells are rapidly dividing cancerous cells that exhibit high rates of MTT reduction. 
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Fig.3.9. UMUC3 cell viability studies using CHI, LMeCHI and HMeCHI. Polymer treatment for 4 h and cell 

viability studied at 72 h post exposure to polymers. The untreated cells served as the control. Cell 

viability is normalised against the control; n=3. Lines are used as a guide to the eye. Error bars are not 

shown on this figure to avoid overcrowding. 

The UMUC3 cell cytotoxic effect of the polymers was studied over 72 h (Fig. 3.9). CHI, LMeCHI 

and HMeCHI displayed IC50 values of 108.40 ± 5.81, 96.17 ± 5.27 and 104.16 ± 4.81 µg mL
-1

, 

respectively. One-way ANOVA statistical analysis shows that there is no statistically significant 

differences in the IC50 values between all three polymers (p > 0.05). This suggests the 

methacrylated chitosan is as safe as the unmodified chitosan and thus could be exploited 

further for intravesical drug delivery especially due to its superior mucoadhesive features. 
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3.4. Conclusions 

To our knowledge, this is the first report where the pH-dependent solubility, mucoadhesive 

properties and safety profile of unmodified and methacrylated chitosan have been compared. 

Methacrylate groups were grafted onto chitosan through the reaction of its amino-groups 

with methacrylic anhydride in order to synthesise novel mucoadhesive polymers. The volume 

ratio of high molecular weight chitosan (CHI) to methacrylic anhydride was varied to generate 

two types of methacrylated chitosan that differed in terms of their degree of methacrylation 

(LMeCHI and HMeCHI). 
1
H NMR and ninhydrin test data analysis confirmed the successful 

synthesis of the methacrylated products.  

Methacrylation of chitosan has been identified as a simple and viable synthetic strategy to 

generate drug carriers with greater mucoadhesive properties. This novel drug carrier can be 

used to formulate dosage forms that allows prolonged drug residence time in the bladder 

thereby improving extent of drug absorption and therapeutic outcomes from bladder cancer 

treatment. Methacrylated chitosan with enhanced mucoadhesive properties could also be of 

interest for application in other areas of transmucosal drug delivery. Future research using 

these mucoadhesive chitosan derivatives may include preparation of formulations with 

various active pharmaceutical ingredients, studies of their physicochemical characteristics and 

drug release studies. 
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4. Synthesis and evaluation of boronated chitosan as a 

mucoadhesive polymer for intravesical drug delivery 

Another method of improving the mucoadhesiveness of high molecular weight chitosan was 

investigated to determine if boronated chitosan could display superior mucoadhesive 

properties relative to methacrylated chitosan and unmodified chitosan. 
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4.1. Introduction 

Bladder cancer is one of the frequent causes of tumour-associated mortality worldwide and 

the overall survival tendency for the advanced stage of the disease is only about a year despite 

the fact that urothelial cancerous tissues respond well to conventional chemotherapeutic 

agents [1–3]. The local bioavailability and residence time of formulations delivered to the 

bladder is often reduced as drugs are diluted or washed out of the bladder due to urine filling 

and excretion. Thus there is a need to develop better mucoadhesive delivery systems that are 

resistant to urine wash out, thereby prolonging duration of drug action and preventing disease 

progression.  

Chitosan is a biopolymer with well-established biodegradable, biocompatible and 

mucoadhesive properties [4–6]. It is a polysaccharide consisting of acetylated and 

deacetylated glucosamine units, with the deacetylated segment that can be modified to be a 

more mucoadhesive derivative such as chitosan-cysteine [7], chitosan-thioglycolic acid [8], 

chitosan-4-thio-butyl-amidine [9], chitosan-glutathione [10], chitosan-N-acetylcysteine 

conjugates [11], chitosan-graft-6-mercaptonicotinic acid [12] and methacrylated chitosan [13]. 

One of the constituents of the cell membranes are mucin oligosaccharides, which comprise of 

sialic acid groups that are overexpressed in malignant tissues and organs such as the bladder 

[14]. So, sialic acid moieties have been explored as therapeutic targets by conjugating 

polymeric drug carriers with phenylboronic acid groups which bind favourably with sialic acid 

groups to form reversible covalent complexes [15], thereby facilitating enhanced 

mucoadhesion and cellular uptake of their therapeutic payload.  

Phenylboronic acid decorated polymers have been explored for the delivery of drugs and 

biotherapeutics because they are biocompatible, mucoadhesive, form stable colloidal systems, 

with tumour-targeting abilities [16–18]. Transmucosal routes that have been explored include 

ocular [19–21], nasal [22] and vaginal [23]. The ability of these boronated delivery systems to 

be responsive to glucose presence makes them valuable for glucose detection [18,24,25] and 

as glucose sensitive sustained insulin release system [26]. They have also been explored for 

cancer targeting [27–30] and gene delivery [31,32] due to their favourable interaction with 

sialic acid moieties.  

Liu et al demonstrated that cyclosporine loaded phenylboronic acid conjugated polymeric 

nanoparticles reduced ocular drug clearance. The boronated nanoparticles displayed good 

drug encapsulation efficiency (13.7 % w/w), reduction in inflammation after topical application 
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to dry-eye induced mice, and sustained drug release of up to 5 days showing their potential in 

reducing dosing interval and improving ocular drug bioavailability [20].  

Recently, in vivo studies using H22 lung metastasis tumour-bearing mice showed that 

doxorubicin loaded boronate modified chitosan nanoparticles exhibit greater antitumour 

activity than carboxymethyl chitosan nanoparticles [33]. 3- and 4-carboxyphenylboronic acid 

modified chitosan nanoparticles were shown to exhibit superior doxorubicin loading, active 

tumour targeting, cellular internalisation and target site retention, relative to unmodified 

nanoparticles [33,34]. 

Asantewaa et al. studied the correlation between the physicochemical features of various 

boronic-acid-chitosan conjugates to their glucose adsorption properties [35]. However, to our 

knowledge, there are no studies investigating how the physicochemical properties of different 

boronated chitosan affect urothelial mucoadhesiveness as a potential intravesical dosage form 

for bladder cancer treatment. Thus there is a critical need to establish whether boronated 

chitosan has sufficient interaction with the urothelial mucosa that is constantly in contact with 

urine, to prolong drug residence time in the bladder. 

In this work, we synthesised boronate-conjugated chitosan derivatives by reaction of chitosan 

with 4-carboxyphenylboronic acid using EDC and NHS as coupling agents and characterised 

their physicochemical properties and evaluated in vitro adhesion to porcine urinary bladder 

mucosa to establish their intravesical drug delivery potential. Boronate conjugation of chitosan 

influenced its mucoadhesiveness with the highly boronated derivative (HBCHI) being 

statistically more mucoadhesive than LBCHI, MBCHI and unmodified chitosan. Methacrylate 

groups have proven to improve the mucoadhesiveness of chitosan [13]. This work aims to 

investigate the mucoadhesive properties of boronated chitosan in comparison to 

methacrylated chitosan and unmodified chitosan. 
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4.2. Materials and Methods 

4.2.1. Materials  

Chitosan (high molecular weight grade, 370 kDa; deacetylation extent 70.9 ± 2.2%), ninhydrin, 

trifluoroacetic acid, FITC-dextran (3-5 kDa), dextran 5 kDa, deuterium oxide, urea, uric acid, 

magnesium sulphate heptahydrate, sodium hydrogen phosphate, creatinine, sodium 

bicarbonate, sodium sulphate, disodium oxalate and trisodium citrate were all purchased from 

Sigma-Aldrich, UK. 4-carboxyphenylboronic acid (4-CPBA), N-3(dimethylaminopropyl)-N-

ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), dimethyl sulfoxide 

(DMSO), disodium hydrogen phosphate, sodium chloride, potassium chloride, ammonium 

chloride and calcium chloride dihydrate  were all purchased from Fisher Scientific, UK. Dialysis 

membrane with molecular weight cut off 12-14 kDa was obtained from Medicell International, 

UK. All chemical reagents were used as received without further purification. Freshly excised 

porcine urinary bladders were procured from PC Turner Abattoir (Farnborough, Hampshire, 

UK).  

4.2.2. Synthesis of boronated chitosan 

Three types of boronated chitosan were synthesised by varying the molar amount of 4-CPBA 

(Table 4.1) using a published method  with modification [34]. 

Briefly, 1.5% w/v chitosan solution (100 mL) was prepared in 4% v/v acetic acid for 12 h at 

room temperature for complete polymer dissolution. According to Table 4.1, the required 

amounts of 4-CPBA, EDC and NHS were dissolved in predetermined amounts of DMSO, stirred 

under dark conditions at room temperature for 30 min. The 4-CPBA/NHS/EDC mixtures were 

then added slowly to chitosan solution and the resultant chitosan/4-CPBA/NHS/EDC mixture 

was stirred for 24 h at room temperature, in the dark to prevent degradation of 4-

carboxyphenylboronic acid, EDC and NHS. The products were redispersed in deionised water, 

purified by dialysis in the dark (MWCO 12-14 kDa membrane) against 4.5 L of 7 mM HCl for 24 

h (three changes) followed by dialysis against 4.5 L deionised water for 2 days (6 changes) to 

remove unreacted 4-CPBA. The products were freeze-dried using Heto PowerDry LL3000 

Freeze Dryer (Thermo Scientific, UK). 
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Table 4.1  

Materials used for the synthesis of boronated chitosan, with low (LBCHI), medium (MBCHI), and high 

(HBCHI) degrees of modification. 

Parameters LBCHI MBCHI HBCHI 

Chitosan (CHI) concentration (% w/v) 1.5 1.5 1.5 

4-carboxyphenyl boronic acid (4-CPBA, g) 0.28  0.56  1.11  

N-3(dimethylaminopropyl)-N-ethylcarbodiimide 

hydrochloride (EDC, g) 

0.39  0.77  1.54  

N-hydroxysuccinimide (NHS, g) 0.23  0.47 0.93 

DMSO for 4-CPBA, EDC & NHS dissolution (mL) 5 10 20 

Moles of 4-CPBA per unit mole CHI 0.20 0.39 0.79 

4.2.3. Characterisation of boronated chitosan 

4.2.3.1. 
1
H NMR spectroscopy 

Solutions of CHI, LBCHI MBCHI, and HBCHI (0.6% w/v) were prepared in D2O acidified with 30 

µL trifluoroacetic acid and allowed to be dissolved overnight at room temperature. The 
1
H 

NMR spectra were recorded using 400 MHz ULTRASHIELD PLUS™ B-ACS 60 spectrometer 

(Bruker, UK). 

 Fig. 4.1. Reaction scheme for the synthesis of boronated chitosan: CHI is a parent chitosan and LBCHI, 
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MBCHI, and HBCHI are chitosans with low, medium, and high degrees of boronation, respectively; a 

(deacetylated), b (acetylated), and c (boronated) segments of chitosan repeating units. 

. 

4.2.3.2. Quantification of the extent of chemical modification 

The quantity of boronate groups conjugated to chitosan was calculated using a previously 

published method with slight modification [36]. Briefly, 2 % w/v solution of ninhydrin in DMSO 

was prepared by stirring for 12 h, protected from light at room temperature. Unmodified and 

modified chitosan solutions (0.05 – 0.5% w/v) were prepared by dissolving in 0.1 M acetic acid, 

stirred for 12 h under dark conditions at room temperature. 5mL of ninhydrin solution and 

1.25 mL of 4M phosphate buffer (pH 5.4±0.2) were mixed with 0.5 mL polymer solution. The 

resultant mixtures were incubated in a water bath at 85
o
C shaken at 60 rpm for 30 min. The 

degree of chitosan amine substitution was determined using microplate spectrophotometer at 

500 nm (Epoch, BioTek Instruments Inc., UK). Mixture of ninhydrin solution and phosphate 

buffer solution (4M, pH 5.4) (4:1) served as the blank control. 

 

4.2.3.3. Fourier Transform-Infrared spectroscopy (FT-IR) 

Solid samples of modified and unmodified chitosan were scanned from 4, 000 to 600 cm
-1

, 

resolution of 4 cm
-1

 to identify characteristic functional groups in both chitosan and the 

boronate moieties that suggested that boronation was successful. Data was processed based 

on the average of sixteen scans per spectrum generated by FT-IR spectrometer (PerkinElmer 

Spectrum 100, Thermo Scientific, UK). 

4.2.3.4. Turbidimetric analysis 

The influence of pH on the turbidity of polymer samples was evaluated based on a method 

reported by Sogias et al. (2010) with slight modification [37]. Briefly, polymer solutions (0.1% 

w/v, pH 3) were prepared in 0.1M acetic acid at room temperature. NaOH solution (0.1 molL-

1
) was added to increase the pH stepwise from 3 to 9 and 0.1 molL-1

 HCl was used to adjust 

the pH of the samples if necessary. The turbidity values of polymer dispersions were measured 

at 400 nm using UV-Vis spectrophotometer (Jenway 7315, Bibby Scientific, UK).  

4.2.3.5. X-ray diffraction analysis 

In order to investigate the influence of boronation on the crystallinity of chitosan, solid forms 

of the polymers were studied using an earlier reported method [13]. Briefly, solid samples of 
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CHI, LBCHI, MBCHI, and HBCHI were loaded into a capillary tube sealed with wax to avoid loss 

and placed onto the goniometer and aligned under a microscope to be analysed with a wide-

angle powder D8 Advance diffractometer/LYNXEYE XE detector (Bruker, UK). Samples were 

scanned at diffraction ranges from 5 to 65
o
C with a scan step of 0.02

o
, producing distinctive 

diffractograms at the rate of 2.5 scans min-
1
. 

4.2.4. Ex vivo porcine mucoadhesion studies 

4.2.4.1. Preparation of polymer / fluorescein sodium mixtures and artificial urine solutions 

The solutions/dispersions of CHI, LBCHI, MBCHI and HBCHI were prepared by dissolving the 

polymers in 0.1 M acetic acid and stirred overnight in dark conditions at room temperature. 

Resultant polymer solutions/dispersions were mixed with 0.1% w/v fluorescein sodium (9:1) to 

yield final fluorescent polymer concentration of 0.4 % w/v (FS/CHI, FS/LBCHI, FS/MBCHI and 

FS/HBCHI, respectively). FITC-dextran 0.4 % (w/v) in deionised water served as negative 

control. 

Chutipongtanate and Thongboonkerd (2010) method [38] was used to prepare artificial urine. 

Briefly, urea (24.27 g), uric acid (0.34 g), magnesium sulphate heptahydrate (1.00 g), sodium 

hydrogen phosphate (1.00 g), disodium hydrogen phosphate (0.11 g), creatinine (0.90 g), 

sodium bicarbonate (0.34 g), sodium sulphate (2.58 g), disodium oxalate (0.03 g), trisodium 

citrate (2.97 g), sodium chloride (6.34 g), potassium chloride (4.50 g), ammonium chloride 

(1.61 g), and calcium chloride dihydrate (0.89 g) were dissolved in 2 L ultrapure water (18.2 

MΩ) for 3 h at room temperature. The resultant artificial urine had a final pH of 6.2±0.2. 

4.2.4.2. Retention on porcine urinary bladder mucosa 

Fluorescence microscopy (MZ10F microscope, Leica Microsystems, UK), coupled to an “ET 

GFP” filter camera (Zeiss Imager A1/AxioCam MRm camera, 1296 x 966 pixels, 0.8 x 

magnification) was used to investigate the mucosal retention of model drug fluorescein 

sodium in the presence of the polymeric carriers based on a slightly modified protocol 

developed in-house [39]. Freshly excised porcine urinary bladders were stored on ice until use 

and used within 24 h of procurement. The mucosal side of the bladder tissue was prevented 

from any possible   damage during excision of the studied mucosal section (about 1.5 x 2.5 cm) 

and rinsed with artificial urine solution (~ 3 mL) prior to blank tissue imaging. The bladder 

tissue was placed on a glass slide and maintained in an incubator at 37
o
C during urine wash-

out. The following exposure times were used: FITC-dextran (80 ms), FS/CHI (211 ms), 

FS/LBCHI, FS/MBCHI and FS/HBCHI (86 ms). Microscopic images of the tissues were taken 
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before and after sample application (50μL) as well as after each of the five washing cycles with 

10 mL artificial urine/cycle at 2 mL/min. The studies were carried out in triplicates. Image J 

software (National Institute of Health, USA) was used to analyse the microscopic images, 

generating average fluorescence values as a function of urine volume used for the wash-out. 

Fluorescence intensity values were normalised against the blank tissue control. The WO50 

values (volume of artificial urine required to wash-out 50% of the applied fluorescence 

sodium/polymer mixture) were determined based on the polynomial fit of the percent 

mucosal fluorescence retention versus artificial urine volume graphs. 

4.2.5. Tensile method 

The TA-XT Plus Texture Analyser (Stable Micro Systems Ltd, UK) coupled to a 5 kg load cell was 

used as an additional technique to study the mucoadhesive properties of the polymer 

samples. Blank chitosan solutions (0.4% w/v in 0.1 M acetic acid solution) served as the 

positive control, while the negative control was dextran solution (0.4% w/v in water). The 

experiment was carried out as described in Section 2.6. Briefly, porcine bladder tissues were 

secured at the base of a cylindrical container. The vessel bottom had a circular cut-out region 

(20 mm diameter) exposing the mucosal surface of the bladder tissue. This container was 

screwed onto the probe of the texture analyser through a hole drilled on the lid of the 

container. Another bladder tissue was placed on a petridish and coupled onto the lower 

platform of the texture analyser, exposing the mucosal surface (20 mm diameter) of another 

bladder tissue. The tests were performed using an earlier reported equipment settings [40] 

with slight modification: pre-speed test 1.0 mm/s; test speed 0.1 mm/s; post-test speed 0.1 

mm/s; applied force 0.05 N; contact time 120.0 s; trigger type auto; trigger force 0.1 N; and 

return distance of 10.0 mm. Bladder tissues were maintained in an incubator at 37
o
C for 5 min 

prior to the study. CHI, dextran, LBCHI, MBCHI and HBCHI samples (0.4 mL) were applied onto 

the exposed area of the bladder tissue secured onto the lower platform of the texture 

analyser. The probe was then lowered such that the upper blank bladder tissue comes in 

contact with the formulation applied onto the bladder tissue secured on the lower platform 

for 2 min. The Texture Analyser software (T.A. Exponent) was used to record the area under 

the force versus distance curves (work of adhesion) as well as the force of adhesion/adhesive 

strength which is the maximum force needed to detach tissue from the polymer 

solutions/dispersions [40,41]. 
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4.2.6. Statistical analysis 

All experimental data were collected in triplicates and data expressed as mean ± standard 

deviation. Data were compared using t-test and one-way ANOVA/post-hoc Bonferroni test 

with GraphPad Prism 5.04 (GraphPad Software Inc., San Diego, California), with p < 0.05 

depicting significant statistical difference between data sets. 

4.3. Results and discussion 

The potential for chitosan as material for drug delivery and tissue engineering cannot be 

overemphasized due to its physical and biological properties such as biocompatibility, 

mucoadhesiveness and permeation enhancing properties [5,42–44]. Chemical modification of 

chitosan with boronate groups may impact on its safety and urothelial mucoadhesiveness. The 

biocompatible nature of boronate modified chitosan nanoparticles has been previously 

established in mouse and mammalian cells  [33,34]. Over 90% of human bone marrow 

neuroblastoma SH-SY5Y cells, human liver cancer HepG2 cells and mouse liver cancer H22 cells 

remained viable after incubation with chitosan and boronated chitosan based nanoparticles 

for 48h [34]. Also, boronated dextran based formulations were tested on healthy rabbit eyes 

and did not trigger any inflammatory response acutely (1 week) and chronically (12 weeks) 

[20]. These studies suggested that boronated drug carriers are safe. Consequently, cytotoxicity 

testing was not carried out for the studied boronated chitosan. Moreover, several in vitro and 

in vivo studies have established the safety of phenylboronate molecules [17,20,45].  

We recently reported that methacrylated chitosan displayed greater mucoadhesive properties 

than the parent chitosan based on ex vivo urine wash-out studies using porcine urinary 

bladder model, with WO50 values of 48 mL and 15 mL, respectively [13]. We hypothesise that 

conjugation of chitosan with boronate groups may exhibit superior mucoadhesive potential in 

comparison to methacrylate groups as well as unmodified chitosan. The highly boronated 

chitosan (HBCHI) was synthesised using similar ratio of reactants as LMeCHI [13] so that they 

can be compared. With the synthesis of LBCHI and MBCHI, we would be able to investigate 

what extent of boronate conjugation could affect the urothelial mucoadhesiveness. 

4.3.1. Synthesis of boronated chitosan derivatives and physical properties 

According to Table 4.1, three types of boronated chitosan were synthesised using EDC/NHS 

chemistry which is an efficient synthetic method for covalent amide bond formation [46]. The 

synthetic yields of LBCHI, MBCHI, and HBCHI were 61%, 43%, and 33%, respectively and all 
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with whitish appearance (Table 4.2). The product yield decreased with greater extent of 

chitosan modification. This finding correlates well with our previous studies where chitosan 

with low extent of methacrylation produced a greater yield (62%) than sample with a high 

extent of methacrylation (24%) [13]. HBCHI had lower yield than LMeCHI (33% vs 62%) despite 

the fact that both chitosan derivatives were synthesised with the same moles of methacrylic 

anhydride or 4-carboxyphenyboronic acid per unit mole of chitosan (0.79). This may be due to 

the differences in the chemical reactivity of methacrylate and boronate groups with chitosan.  

Table 4.2  

Synthetic yield and degrees of boronation (using 
1
H NMR spectroscopy and ninhydrin test) of LBCHI, 

MBCHI, and HBCHI  

Parameter LBCHI MBCHI HBCHI 

Synthetic yield (% w/w) 61 43 33 

Boronation 

extent (%) 

1
H NMR 3.9 ± 0.3 5.5 ± 0.1 16.5 ± 0.2 

Ninhydrin 

test 

4.4 ± 1.8 7.4 ± 1.2 10.7 ± 2.2 

 

According to the 
1
H NMR spectra (Fig. 4.2), the characteristic peaks of chitosan were evident 

at 2.0 ppm (-CH3 from the acetylated segment of chitosan) as well as 3.09-3.8 ppm (protons 

from the glucosamine ring). With the boronated chitosan, additional peaks were evident at 

7.79-7.96 ppm representative of the phenyl ring protons from the boronate moiety, 

confirming the successful conjugation of phenylboronate groups to chitosan. Also, the peaks 

at 2.67-2.8 ppm for the boronated chitosan are the result of the quartet methyne protons of 

the boronic acid. These spectral data are in good agreement with that reported by Zhang et al 

[14]. 
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Fig. 4.2. 
1
H NMR spectra of (1) CHI (2) LBCHI (3) MBCHI and (4) HBCHI recorded in D2O acidified with 1% 

trifluoroacetic acid. Methyl protons from the acetylated part of chitosan observed at 2.0 ppm (i), 

methyne protons from the boronate moiety were evident at 2.67 - 2.8 ppm (ii), H2-H6 protons of CHI 

were detected at 3.0-4.0 ppm (iii & iv), and benzene ring of the boronate groups detected around 7.8 

and 8.0 ppm (v & vi).  
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Their degree of boronation was calculated from the ratio of mean intensity of the proton 

peaks of the boronate moieties (δ = 7.8-8.0 ppm) relative to that of the chitosan glucosamine 

protons (δ = 3.0-4.0 ppm). 

𝐵𝑜𝑟𝑜𝑛𝑎𝑡𝑖𝑜𝑛 (%) = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑏𝑜𝑟𝑜𝑛𝑎𝑡𝑒 𝑝𝑟𝑜𝑡𝑜𝑛𝑠 𝑎𝑡 7.8 & 8.0 𝑝𝑝𝑚 /2𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑐ℎ𝑖𝑡𝑜𝑠𝑎𝑛 𝐻2−𝐻6  𝑝𝑟𝑜𝑡𝑜𝑛𝑠 /6 100%                (1) 

  

Fig. 4.3. Boronation extent versus molar ratio of 4-CPBA per unit mole of chitosan through 
1
H NMR 

analysis (n=3, mean ± standard deviation), with red, dark green, green and blue bar charts depicting CHI, 

LBCHI, MBCHI and HBCHI, respectively.  

Based on 
1
H NMR data analysis (Fig. 4.3), a two-fold increase in the ratio of 4-CPBA per unit 

mole of chitosan used for LBCHI to generate MBCHI (Table 4.1) did not show a doubling of 

boronate conjugation (3.9% vs 5.5%, respectively) despite doubling the amount of boronate 

groups available to conjugate with the chitosan primary amino group. However, a 3-fold 

increase in the degree of boronation occurred when doubling the quantity of 4-CPBA in HBCHI 

against MBCHI with boronation of 5.5% and 16.5%, respectively. This finding may be due to a 

critical amount of 4-CPBA required to conjugate boronate groups to chitosan amine groups 

significantly.  

4.3.2. Calculation of boronation extent using ninhydrin test 

The ninhydrin test was used as an additional means of quantifying the degree of substitution 

of chitosan amine groups with boronate moieties. The principle of detection is based on the 

fact that ninhydrin reacts with the unmodified amine groups of chitosan to form a coloured 

product measurable by UV spectroscopy [47]. The slope of the adsorption versus 
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concentration curve of unconjugated chitosan is represented as δCHI, while that of LBCHI, 

MBCHI, and HBCHI are denoted as δBCHI. Boronation percentage can be defined as (1-

δBCHI/δCHI)* 100% [13,36]. The respective boronation extent for LBCHI, MBCHI, and HBCHI were 

4.4%, 7.4%, and 10.7% (Table 4.2). These values were comparable with that calculated using 

1
H NMR spectroscopy (3.9%, 5.5%, and 16.5%, respectively) and showing the same trend in the 

degree of boronation with an increase in the molar ratio of 4-CPBA used.  

4.3.3. FT-IR analysis 

FT-IR spectra (Fig. 4.4) showed pronounced absorption band at 1026-1151 cm
-1

 indicating the 

amine C-N stretch from chitosan. Since both chitosan and boronate groups exhibit alkyl C-H 

stretch at 2850 and 2930 cm
-1

, the increases in the intensity of the absorption bands depicts 

the formation of the boronated chitosan. The appearance of the new signal at 1311 cm
-1 

indicated –B(OH)2 groups of the boronic acid segment and peaks evident at 713 and 1533 cm
-1

 

represented para-substituted benzene ring. The prominent absorption peak at 1636 cm
-1

 in 

LBCHI, MBCHI and HBCHI confirmed the successful grafting of phenylboronate groups onto 

chitosan. This finding is in good agreement with the FT-IR spectra of chitosan-boronate 

conjugate reported in earlier studies [14] where –B(OH)2 groups were evident at 1333.34 cm
-1

; 

aromatic C-H bending bands were observed at 712.57 cm
-1 

while that of the benzene ring 

appeared at 1546.34 cm
-1

. Also, the absorption peak confirming chitosan boronation               

(1636 cm
-1

) is comparable to that of the chitosan-boronate conjugate earlier reported     

(1643.37 cm
-1

). The FT-IR spectrum of LBCHI, MBCHI and HBCHI are comparable but vary in 

terms of the spectral intensity, which is dictated by their degree of boronation.  
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Fig. 4.4. FT-IR spectra of chitosan and boronated chitosan with distinct peak at 1311 cm
-1

 indicative of –

B(OH)2 groups; absorption bands at 713 and 1533 cm
-1

 depicted p-substituted benzene and absorption 

band confirming amide C=O linkage between chitosan and boronate groups evident at 1636 cm
-1

. 

4.3.4. Turbidimetric analysis 

The typical pH of the bladder environment is between 6 and 7. However, various factors such 

as diet and disease states such as bladder cancer can impact urine pH resulting in pH ranges 

from 4.6 to 8 [48–50]. Moreover, changes in solution turbidity may impact product stability 

and performance. Thus there is a need to develop drug carriers that will withstand possible pH 

changes in the bladder.  

The modified and unmodified chitosan solutions maintained transparency until pH 6.5, where 

further increase in pH resulted in a drastic increase in solution turbidity (p < 0.05) (Fig. 4.5). 

This turbidity-pH pattern is in good agreement with our earlier reports [13,37], where the 

unmodified chitosan and the chitosan with low extent of methacrylation displayed steep 

increase in degree of turbidity at ≥ pH 6.5 comparable to our boronated chitosans. The 

influence of boronate conjugation on the turbidity of chitosan solution was pronounced at pH 

≥ 7, where the boronated chitosans displayed a lower turbidity than that of the unmodified 

chitosan (p < 0.05). This is because at pH ≥ 7 and higher degree of boronate conjugation, the 

bulky boronate groups will disrupt the semi-crystalline nature of chitosan, thereby improving 

its solubility and decreasing the solution turbidity [13,37].  There was significant difference in 

the turbidity values of the boronated chitosan at pH 9 (p < 0.05) (Fig. 4.6).  
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Fig. 4.5. Influence of pH on solution turbidity of unmodified and boronated chitosan (n=3, mean ± 

standard deviation)  

Methacrylated chitosan previously reported from our group (LMeCHI), exhibited  comparable 

pH-turbidity pattern to HBCHI [13] in terms of their turbidity values at pH 7 (0.014 vs. 0.0099) 

as well as at pH 9 (0.196 vs. 0.16) (p > 0.05).  Since LMeCHI and HBCHI were synthesised using 

similar chitosan to hydrophobic group bearing moiety molar ratio, this finding suggested that 

methacrylate and boronate groups may have similar pH influence on the solution turbidity of 

the modified chitosan. This implies that the ability of methacrylated or boronated chitosan to 

withstand pH fluctuations in the bladder could be improved by increasing the amount of 

methacrylate or boronate groups conjugated to chitosan. 

Also, at pH ≥ 7, the turbidity of all the studied boronated chitosans was more than that of the 

chitosan with high degree of methacrylation earlier reported [13]. This finding is expected as 

HMeCHI was synthesised using ten times the molar amount of the hydrophobic group bearing 

material per unit mole of chitosan used to prepare the most promising boronated chitosan 

(HBCHI). The physiological implication of these findings is that the ability of boronated 

chitosan to withstand pH fluctuations in the bladder may be improved by increasing the 

amount of boronate groups conjugated to chitosan.   
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4.3.5. X-ray diffraction analysis 

Chitosan is a semi-crystalline polymer that displayed two main peaks at diffraction angles of 

9.8
o
 and 20.5

o
 (Fig. 4.6). This finding is in good agreement with that of the chitosan peaks 

previously reported [13,37,51,52]. There was reduction in the crystallinity of chitosan after 

boronation with the disappearance and broadening of peaks as well as peaks appearing at a 

diffraction angle different from that of chitosan. The boronated chitosan did not exhibit any 

peak at a diffraction angle of 9.8
o
. The distinctive broad peaks for LBCHI, MBCHI and HBCHI 

were evident at 20.5
o
, 21.6

o
 and 21.9

o
, respectively (Fig. 4.7). This finding is in good agreement 

with that observed with the methacrylated chitosans with loss and broadening of peaks 

evident at diffraction angles of 8.3
o
 and 22.4

o
, respectively [13]. The physiological implication 

of this findings is that boronated chitosan may generate drug solubilised amphiphilic 

copolymeric systems more readily than the parent chitosan, which is desirable for injectable 

formulations intended for intravesical application. 

 

Fig. 4.6. X-ray diffractograms of CHI, LBCHI, MBCHI and HBCHI generated at scan angle 5-65
o
, 2.5 

scans·min-
1
, scan step of 0.02

o
, spectra offset for improved clarity. 

4.3.6. Urine wash-out studies 

Fluorescein sodium (FS), which served as the model drug, was mixed with the unmodified and 

boronated chitosan prior to the mucoadhesion studies. The unmodified chitosan served as the 

mucoadhesive positive control [53], while the negative control was FITC-dextran, with limited 

mucoadhesive property [54]. The ex vivo porcine bladder was used to measure the wash-out50 

values of fluorescein sodium in the presence of the unmodified and boronated chitosan. WO50 
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is the volume of artificial urine needed to remove 50% of fluorescein from the bladder 

mucosal surface [39]. 

FITC-dextran displayed the least mucosal retention on the porcine bladder mucosa (WO50 of 

7±2 mL, Fig. 4.8) from extrapolation as 10 mL of artificial urine was used for each wash-out 

cycle similar to that reported previously [13,39]. FITC-dextran was significantly less 

mucoadhesive than the boronated chitosan over the five washing cycles (with 50 mL artificial 

urine) (p < 0.05). Also, unmodified chitosan was significantly more mucoadhesive than FITC-

dextran (p < 0.05).  

Typically, cationic polymers like chitosan interact with negatively charged sialic acid groups 

present on urothelial mucosal surfaces via electrostatic interaction. Phenylboronic acid is 

composed of phenyl substituent and two hydroxyl groups attached to boron, which enables it 

form a complex with the diol groups of sialic acid at physiological pH [15]. The presence of 

counter ions present in the artificial urine used for the wash-out studies may inhibit the 

favourable interaction of chitosan with sialic acid-rich mucosal surfaces. Chitosan conjugation 

with boronate groups (HBCHI) resulted in 3.1-fold increase in their WO50 values. Based on the 

polynomial fit of the fluorescence intensity versus urine volume graph, the WO50 values of the 

polymer samples were determined (Fig. 4.7).  

 

Fig. 4.7. The mucosal fluorescence retention profile of FITC-dextran, unmodified chitosan and 

boronated chitosan on porcine bladder tissues evaluated using ImageJ software and WO50 values 

calculated based on the polynomial fit of the graphs. Results presented as mean±SD, n=3 
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The WO50 values of FS/CHI, FS/LBCHI, FS/MBCHI and FS/HBCHI were 15±4 mL, 23±3 mL, 48±5 

mL and 55±2 mL, respectively. Boronated chitosan may interact with mucosal surfaces through 

various mechanisms [22] shown in Scheme 4.1: (i) the phenylboronic acid groups could 

potentially form covalent linkage with sialic acid expressed on cell membranes to form 

reversible covalent complexes [55,56], (ii) hydrogen bond formation with mucin glycoproteins 

possible due to its constituent hydroxyl groups [43] and (iii) electrostatic interaction between 

cationic polymer and negatively charged sialic acid residues [42,53]. Therefore, the greater 

degree of mucoadhesion as seen in HBCHI could be due to the more boronate groups being 

available to interact with the mucosal surface (Fig. 4.8 and Fig. 4.9).  

 

 

Scheme 4.1. Schematic illustration of the urothelial mucoadhesiveness of boronated chitosan to 

prevent wash-out during urine voiding, where “R” is the chitosan backbone 
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Significant difference in the mucoadhesive behaviour of the parent chitosan and the 

boronated derivatives (LBCHI, MBCHI and HBCHI) can be seen after two urine washing cycles 

and differences remained significant after five washing cycles (p < 0.05). MBCHI and HBCHI 

were significantly more mucoadhesive than LBCHI after the first washing cycle with 10 mL 

artificial urine. On the other hand, the mucoadhesive behaviour of MBCHI and HBCHI was not 

significantly different after 5 washing cycles with 50 mL artificial urine. This finding indicated 

that the urine wash-out resistance of boronated chitosan may become unchanged after a 

particular degree of boronation. Figure 4.9 confirmed that FS/CHI and FS/LBCHI displayed 

comparable mucoadhesiveness in terms of their WO50 values (15±4 mL vs 23±3 mL) but that of 

HBCHI was significantly more mucoadhesive than MBCHI, with WO50 values of 48±5 mL and 

56±2 mL, respectively. Thus, boronation still had some influence on the mucoadhesiveness of 

the boronated chitosans, which was most prominent after washing out the bladder mucosa 

with 30 mL artificial urine. 
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Fig. 4.8a. Ex vivo urine wash-out studies using porcine urinary bladder with fluorescently labelled dextran, FS/CHI, FS/LBCHI, FS/MBCHI and FS/HBCHI: Exemplary 

fluorescent microscopic photos of the urinary bladder over 5 washing cycles, scale bar is 2 mm. 
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Fig. 4.8 (b) Mucosal retention of the model drug fluorescein sodium mixed with CHI, LBCHI, MBCHI and HBCHI at different washing cycles; FITC-dextran served as negative 

control and FS/CHI (unmodified chitosan) as a positive control. Results presented as average ± standard deviation, n = 3, all the studied groups of samples displayed 

statistically significant differences between them (p < 0.05) except those depicted by “ns” implying no significant differences between particular groups of samples
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Interestingly, HMeCHI early reported by our group which was synthesised using 4.65 moles per 

unit mole of chitosan displayed similar porcine mucoadhesive profile with MBCHI (WO50 values 

of 48 mL), synthesised using 0.39 moles of 4-CPBA per unit mole of chitosan                                

(Fig. 4.8 and Fig. 4.9). This finding further affirmed that boronate conjugated chitosan was 

more mucoadhesive than methacrylate derivatised chitosan. 

 

Fig. 4.9. Urine Wash-out50 values of FITC-dextran, CHI, LBCHI, MBCHI and HBCHI. Results presented as 

average ± standard deviation, n = 3; all the studied groups of samples displayed statistically significant 

differences between them (p < 0.05) except those depicted by “ns” implying no significant differences 

between particular groups of samples. 
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4.3.7. Mucoadhesive properties studied using tensile test 

The force of detachment or adhesive strength indicates the force required to overcome the 

adhesive bonds between the drug carrier and bladder mucosa, while the work of adhesion is 

the area under the force-distance curves.  

 

Fig. 4.10. (a) Force of detachment and (b) work of adhesion of dextran, CHI, LBCHI, MBCHI and HBCHI to 

porcine bladder mucosa measured using tensile test. Results presented as mean ± standard deviation,      

n = 3; all the studied groups of samples displayed statistically significant differences between them                  

(p < 0.05) except those depicted by “ns” implying no significant differences between particular groups 

of samples. 

 Though, dextran and CHI displayed similar force of detachment (Fig. 4.10), the work of 

adhesion values showed that CHI was statistically more mucoadhesive than dextran.  MBCHI 

and HBCHI were significantly more mucoadhesive compared to the unmodified chitosan with 

the force of detachment in increasing order from dextran (0.04±0.01 N) < CHI (0.06±0.01 N) < 

LBCHI (0.08±0.01 N) < MBCHI (0.12±0.01 N) < HBCHI (0.32±0.02 N). CHI vs LBCHI; LBCHI vs 

MBCHI and MBCHI vs HBCHI displayed comparable forces of detachment and work of 

adhesion values. The work of adhesion presented in increasing order: CHI (0.14±0.02 N·mm) < 

LBCHI (0.16±0.02 N·mm) < MBCHI 0.2±0.01 N·mm < HBCHI (0.4 N±0.02 N·mm). Overall, the 

adhesive strength of the polymers correlated well with their work of adhesion as MBCHI and 

HBCHI exhibited greater force of detachment and work of adhesion relative to the parent 

chitosan. These findings inferred that the mucoadhesiveness of the polymers was improved 

with increased extent of boronation. This is in good agreement with the urine-wash-out test 

data. 
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4.4. Conclusions 

Boronated chitosans were successfully synthesised. Based on 
1
H NMR analysis, chitosan 

conversion to boronated chitosan occurred in a controlled but less predictable manner. This is 

because an initial two-fold increase in the molar ratio of 4-CPBA per unit mole of chitosan       

(0.20 vs 0.39) used for the synthesis of boronated chitosan did not result in the doubling of the 

boronation extent of LBCHI and MBCHI (3.9% and 5.5%, respectively, using 
1
H NMR analysis) 

but a further two-fold increase in the CPBA/CHI ratio resulted in about three-fold increase in 

the degree of boronation with HBCHI displaying 16.5% as its degree of boronation (Table 4.2). 

There was good correlation in the boronation extent of boronated chitosan using 
1
H NMR and 

ninhydrin method of boronate quantification. 

Chitosan boronation had a profound influence on the mucoadhesiveness of the new polymers 

as mucoadhesive properties (in terms of wash-out50 profile, force of adhesion/detachment 

and work of adhesion) was greatest for the highly boronated chitosan. Nevertheless, all the 

boronated chitosan still exhibited superior mucoadhesiveness (WO50 values of 23-55 mL) 

relative to our previously reported methacrylated chitosans (WO50 values of 24-48 mL).  

Boronation did not show a significant influence on the solution turbidity of the polymers as 

the pH of the polymer solutions was progressively increased from 3 to 8. However, all the 

unmodified and modified chitosan displayed relatively low turbidity at ≤ 6.5, implying that the 

colloidal stability of all the boronated chitosans could be sustained if the pH of the bladder 

environment is ≤ 6.5 and they could all be explored for intravesical drug delivery. 

Nevertheless, boronation influenced their turbidity profile at pH 9, with HBCHI displaying the 

lowest turbidity in comparison to boronated chitosan and the parent chitosan, inferring that 

the potential of boronate groups to maintain colloidal stability of boronated chitosan (evident 

by lowered turbidity) becomes evident at higher pH of 9.  

The tensile test corroborated the findings from the wash-out studies indicating 

mucoadhesiveness was improved with increasing extent of boronation. These boronated 

chitosan delivery systems could potentially extend the residence time of therapeutic payload 

on malignant urothelial tissues due to their superior covalent interaction with sialic acid 

residues on urothelial mucosal surfaces relative to the parent chitosan, thereby limiting the 

dosing frequency of boronated chitosan based dosage forms used for bladder disease 

treatment. Future research will explore studying the safety of boronated chitosan as well as 
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formulating with excipients and loading with drugs for the treatment of bladder diseases to 

study their drug release and efficacy. 
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5. Conclusions / Future studies 

The key findings of the PhD project as well as potential future work are detailed in this 

concluding chapter 
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5.1. General conclusions 

Charitable Organisations (e.g. Action on Bladder Cancer, Fight Bladder Cancer and The Urology 

Foundation) that emphasise bladder cancer prevention and treatment, launched a “Shout Out 

About Bladder Cancer” campaign to raise awareness of bladder cancer and its symptoms to 

both the public and health professionals  [1]. Also, current bladder cancer related clinical trials 

in the UK focus on bladder cancer diagnosis and treatment. Out of the current 13 clinical trials 

on the UK bladder cancer clinical trial database, 4 (31%) focused on disease diagnosis, 3 (23%) 

investigated surgical and radiation therapy, while 6 (46%) explored biologics and 

chemotherapeutic agents for bladder cancer treatment [2]. Surprisingly, improved 

formulations or methods for the intravesical delivery of Mitomycin-C are not currently studied 

in the UK bladder cancer related clinical trials [2]. Nevertheless, Mitomycin-C (with antimitotic 

and cytotoxic effects) is still the gold-standard for the treatment of superficial / non-invasive 

bladder cancer in the UK [3] and effective dosage forms for delivering chemotherapeutic 

agents to the bladder still occupies an integral component for the successful management of 

the disease to prevent metastasis and progression to muscle invasive forms. Moreover, there 

is a strong need to develop improved intravesical dosage forms that will be retained in the 

bladder for an extended period of time.  

This PhD project focused on monotherapy which is typically used for superficial/non-muscle 

invasive bladder cancer treatment. Moreover, combination therapy through the systemic 

route of administration becomes critical for more advanced stages of the disease, though 

plagued by its therapy associated side effects and adverse reaction [4]. The first chapter 

provided an overview of various formulations that have been explored to improve drug 

residence time in the bladder. They include amphiphilic copolymers, biorecognitive drug 

carriers, mucoadhesive micro- and nanoparticles, in situ gelling formulations, floating and 

liposomal delivery systems. Most of these studied formulations were promising in terms of 

their drug loading, tumour regression, biocompatibility and duration of action. Some of the 

issues that prevented clinical translation of these promising dosage forms were identified, 

which include disparity in the in vitro and in vivo experimental design as well as scale-up of 

excipients and chemotherapeutic agents that were effective in animal models for efficient 

treatment of human urinary bladder cancer. The harmonisation of relevant in vitro and in vivo 

models and methods of evaluating the physicochemical and biological properties of 

intravesical formulations may be a step closer to regulatory approval and commercialisation of 

novel intravesical dosage forms. 
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Therefore, in the second chapter, mitomycin-C loaded chitosan/β-glycerophosphate (CHIGP) in 

situ thermosensitive gelling systems were formulated using three chitosan grades (with 

different molecular weights) generating low- (MMC/LCHIGP), medium- (MMC/MCHIGP) and 

high-molecular weight based (MMC/HCHIGP) gels. Control chitosan formulations without β-

glycerophosphate (MMC/LCHI, MMC/MCHI and MMC/HCHI) were also prepared for 

comparison of physicochemical and biological properties. The method of preparing these 

dosage forms was simple and efficient yet the ability of the CHIGP mixtures to form gels at 

physiological temperature (37
o
C) was dependent on the concentration and volume ratio 

between chitosan and β-glycerophosphate solution. The formation of the gels was 

reproducible and independent of the vessels used for their preparation. The samples 

presented in the order of increasing ease of gelation with or without mitomycin-C: 

MMC/LCHIGP < MMC/MCHIGP < MMC/HCHIGP, inferring that chitosan molecular weight 

modulated the in situ gelling properties of the CHIGP mixtures.  

Gel strength is one of the critical parameters required for bladder cancer therapeutic drug 

carriers as in situ gelling formulations will be in constant contact with urine. At physiological 

temperature, urea, the major component of urine, disrupts the hydrogen bonds in the gel 

network of the formulations in situ, making the formulations remain as a liquid within  the 

bladder thereby compromising interaction between the dosage form and the urothelial 

mucosa [5]. Stronger gels are more resistant to the gel network disruptive effect of urine than 

weaker types. Amongst the CHIGP in situ gelling systems, HCHIGP could be the most promising 

drug carrier for bladder cancer chemotherapeutics delivery in terms of their overall 

physicochemical and biological properties: ease of gelation (2-5 min), gelation temperature 

(31 
o
C), gel strength (G’/G” 16.7 fold), drug release (37±17% over 6 h), and porcine 

mucoadhesive profile (WO50 9±1 mL). Using rheological methods, LCHIGP, MCHIGP and 

HCHIGP had a satisfactory gelation time (≈ 2 min) and gelation temperature (≈ 30
o
C), but 

LCHIGP and MCHIGP gels were weaker than that of HCHIGP in terms of gel strength.  

Our major findings was that chitosan gels were more mucoadhesive than LCHIGP, MCHIGP and 

HCHIGP in terms of their bioadhesiveness and resistance to artificial urine wash-out from 

porcine bladder mucosa. The β-glycerophosphate was thought to reduce the overall cationic 

charge of the drug carriers, thereby decreasing the electrostatic interaction between the 

formulations and mucin glycoproteins present on urothelial cell membranes. The 

mucoadhesive profile of LCHIGP, MCHIGP and HCHIGP, defined in terms of their urine wash-

out50 values was 6±1 mL, 8±1 mL and 9±1 mL, respectively, which may reduce drug residence 
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time in the bladder. Nevertheless, high molecular weight chitosan based drug delivery systems 

may still be a promising drug delivery system due to their ease of gelation, gel strength and 

mucoadhesiveness. Thus we synthesised more mucoadhesive derivatives of high molecular 

weight chitosan that may be more resistant to urine wash-out than the parent chitosan. 

In the third chapter, we hypothesise that chemical conjugation of methacrylate groups to 

chitosan would facilitate covalent interaction of the drug delivery system with the urothelial 

mucosal surfaces, thereby exhibiting superior mucoadhesive features relative to parent 

chitosan. Methacrylated chitosan was synthesised by reaction of chitosan with methacrylic 

anhydride. The method of synthesis provided a quick reaction due to the reactivity of 

methacrylic anhydride and so a coupling agent was not required. Two types of the 

methacrylated chitosan were synthesised with low and high degree of methacrylate 

conjugation (LMeCHI and HMeCHI respectively) in order to study the influence of 

methacrylation on the mucoadhesiveness of the polymers. The extent of methacrylation 

influence the mucoadhesive properties where HMeCHI (with 55.4±1.0% of methacrylation 

extent based on ninhydrin test) exhibited a superior urine wash-out50 value relative to LMeCHI 

(with 34.3±2.0% of methacrylation extent) and unmodified chitosan (48±1 mL vs 24±1 mL vs 

15±4 mL respectively). We established the safety of these polymers by incubating UMUC3 

bladder cancer cells with growth medium containing polymer solutions/dispersions for 4 h at 

37
o
C with 5% CO2 atmosphere; and cell viability/recovery after 72 h incubation in fresh growth 

medium was evaluated using MTT assay. The methacrylated chitosans (LMeCHI and HMeCHI) 

had similar safety profile as the unmodified chitosan (HCHI) based on their IC50 values 

(polymer concentration that killed 50% of incubated UMUC3 cells). 

Another group of chitosan derivatives, boronated chitosan, was also developed. Unlike the 

methacrylated chitosan synthesised by direct reaction of chitosan with methacrylic anhydride 

at 40
o
C for 12 h, the boronated chitosan (BCHI) required a coupling system (N-3-

(dimethylaminopropyl)-N-ethylcarboiimide hydrochloride (EDC)/ N-hydroxysuccinimide (NHS)) 

for amide bond formation between the chitosan amino groups and the carboxyl groups of 4-

carboxyphenylboronic acid (4-CPBA). Also, a longer reaction time (24 h) was required for the 

synthesis of BCHI though the reaction was carried out at room temperature. The synthesis also 

required DMSO in dissolving 4-CPBA, NHS and EDC. In contrast, DMSO was not required for 

the synthesis of methacrylated chitosan as methacrylic anhydride was presented as liquid 

samples.  
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Interestingly, there was no significant differences in the resistance to changes in the turbidity 

of HBCHI and LMeCHI (both prepared using 0.79 moles of 4-CPBA and MA per unit mole of 

chitosan, respectively) as the pH values of the polymer solutions were increased stepwise from 

3 to 9. For instance, HBCHI and LMeCHI displayed similar absorbance values of 0.01 at pH 7 

with rapid increase in their turbidity at pH 9 (0.16 and 0.18 respectively). Also, none of the 

boronated chitosan exhibited comparable turbidity profile with HMeCHI, which is expected as 

HMeCHI had more methacrylate groups conjugated to chitosan than the amount of boronate 

groups conjugated to chitosan in the case of HBCHI. Nevertheless, methacrylate and boronate 

groups displayed similar pH-turbidity profile as a function of chitosan hydrophobic 

modification. The physiological implication of this finding is that the ability of methacrylated 

and boronated chitosan to withstand pH fluctuations in the bladder will be dependent on the 

extent of chitosan conjugation with the hydrophobic groups (methacrylate or boronate).  

Boronation modulated the mucoadhesiveness of LBCHI, MBCHI, and HBCHI (with boronation 

extent of 4.4%, 7.4% and 10.7%, respectively based on ninhydrin analysis): HBCHI exhibited a 

superior urine wash-out50 value relative to MBCHI, LBCHI and unmodified chitosan (55 mL vs 

48 mL vs 23 mL vs 15 mL). We did not carry out any biocompatibility or cytotoxicity testing of 

the boronated chitosans on UMUC3 cells due to time and money constraint, though a number 

of in vitro and  in vivo studies have established the safety of phenylboronic molecules using 

mouse and mammalian cancer cell lines [6,7] as well as healthy rabbits [8]. Nevertheless, it is 

important to evaluate their safety in healthy bladder cell lines.  

Figure 5.1 shows the porcine urine wash-out profile of the three groups of transmucosal drug 

delivery carriers. The WO50 values of methacrylated and boronated chitosan may change after 

formulating them with other excipients and loading with drugs. For example, HCHIGP 

displayed similar WO50 profile with MCHI, suggesting that addition of the β-glycerophosphate 

component reduced the mucoadhesive potential of HCHI resulting in the formulation 

displaying comparable mucoadhesiveness with MCHI. Thus, a future formulation development 

strategy will be aimed at improving physicochemical and mucoadhesive properties of the 

dosage forms without compromising their safety.  
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Fig. 5.1 WO50 profile of chitosan related drug carriers: CHIGP in situ gelling systems, methacrylated 

chitosan and boronated chitosan. Results are presented as bars indicating mean WO50 values ± S.D, n=3, 

Asterisk (*) depicted statistically significant differences between groups of samples. 

Interestingly, HMeCHI synthesised using 4.65 moles per unit mole of chitosan exhibited WO50 

values of 48 mL which is comparable (p > 0.05) to that observed for MBCHI (WO50 values 46 

mL) synthesised using 0.39 moles of 4-CPBA per unit mole of chitosan (Fig 5.1). This finding 

suggested that boronate conjugated chitosan was more mucoadhesive than methacrylate 

derivatised chitosan because the carbonyl groups of methacrylated chitosan interact with 

urothelial cysteine groups of the mucin glycoproteins via Michael addition reaction to 

establish C-S covalent linkage [9] while phenylboronic acid groups of boronated chitosan could 

form cyclic ester bond with the sialic acid component of the mucin [10], which is a superior 

covalent linkage. 

CHIGP in situ gelling systems (LCHIGP, MCHIGP and HCHIGP) exhibited lower urine WO50 

values (6-9 mL) than methacrylated (24-48 mL) and boronated chitosan (23-55 mL). FS/LCHI, 

FS/LCHIGP and FS/MCHIGP displayed similar WO50 values with FITC-dextran (p > 0.05), whose 
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limited mucoadhesiveness has been well-established [11–13]. On the other hand, FS/MCHI, 

FS/HCHI and FS/HCHIGP formulations were more mucoadhesive than FITC-dextran based on 

their WO50 values (Fig. 5.1) (p < 0.05). This finding demonstrated that high molecular weight 

chitosan may be more efficient in formulating CHIGP delivery systems for intravesical 

administration. 

A tensile test was conducted for CHIGP in situ gelling systems, methacrylated chitosans and 

boronated chitosans. This test provides complementary information to the urine wash-out50 

profile of the studied delivery systems. The flow-through mucoadhesion test (where urine was 

used to wash-out applied fluorescein-sodium/polymer mixture from porcine bladder mucosal 

surfaces) is more physiologically relevant as it simulates the in vivo bladder environment that 

is constantly in contact with urine. So, the urine flow-through/fluorescent microscopy 

technique may be a more reliable technique in evaluating the mucoadhesiveness of a 

potential drug carrier. Nevertheless, it is still desirable to conduct a tensile test in addition to 

the urine wash-out test. There is a similar trend from the mucoadhesive patterns for all the 

studied drug carriers, obtained with both tests (Table 5.1). In other words, the highly 

methacrylated or boronated chitosan was shown to be the most mucoadhesive amongst the 

evaluated chitosan derivatives using the urine wash-out and tensile test. Also, the high 

molecular weight chitosan/β-glycerophosphate in situ gelling systems was also the most 

mucoadhesive and resistant to urine wash-out from the bladder. 

Table 5.1.  

Tensile test parameters and WO50 values of CHIGP mixtures, methacrylated and boronated chitosan 

Samples Urine WO50 (mL) Force of adhesion (N) Work of Adhesion 

(N·mm) 

LCHIGP 6.1 ± 0.1 0.03 ± 0.01 0.07 ± 0.03 

MCHIGP 7.9 ± 0.7 0.06 ± 0.01 0.13 ± 0.03 

HCHIGP 9.3 ± 0.9 0.13 ± 0.01 0.35 ± 0.02 

LMeCHI 24.4 ± 0.8 0.10 ± 0.02 0.16 ± 0.02 

HMeCHI 48.2 ± 0.4 0.11 ± 0.01 0.22 ± 0.02 

LBCHI 23.4 ± 3.5 0.08 ± 0.01 0.16 ± 0.01 

MBCHI 47.8 ± 5.3 0.11 ± 0.01 0.20 ± 0.01 

HBCHI 55.5 ± 1.5 0.32 ± 0.02 0.39 ± 0.02 
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The use of methacrylated chitosan and boronated chitosan is not restricted for intravesical 

application. In fact, it is useful for all transmucosal routes of administration where drug 

formulations need to come in contact with mucosal surfaces. Thus there is a strong need to 

develop dosage forms using these chitosan derivatives as polymeric excipients as well as 

evaluate their safety, efficacy and pharmacokinetic profile in vitro and in vivo. 

The aims of the project has been achieved as three types of chitosan/β-glycerophosphate in 

situ gelling systems were developed using different chitosan grades. The method of preparing 

the CHIGP formulations was optimised so that they displayed reproducible physicochemical 

characteristics such as gelation temperature and time as well as drug release profile. This is 

particularly important for drug carriers that would be moved forward to clinical trials in the 

coming years. To date, no chitosan/β-glycerophosphate formulations have made it to clinical 

trials or market, especially for bladder cancer treatment. Thus the development of optimised 

CHIGP in situ gelling systems is particularly timely and important. Moreover, their formulation 

process does not require any costly equipment as it only required vessels and stirrers. With its 

optimisation to generate more mucoadhesive drug carriers, they will be affordable for bladder 

cancer patients when they are eventually launched to the market after clinical trials and 

regulatory approval. However, more in vitro and in vivo studies definitely need to be carried 

out before the CHIGP products could be commercialised. Nevertheless, step has been taken to 

develop affordable drug carriers for the treatment of bladder cancer since it is one of the most 

expensive cancers to treat [14–17]. Moreover, mitomycin-C loaded chitosan formulations 

entrapped the drug limiting its release to a maximum of 25% over the 6 h release period, 

inferring the use of CHIGP formulations for intravesical drug delivery is valuable as such drug 

carriers (e.g. LCHIGP) facilitated controlled drug release of up to 63% within 6 h. 

Secondly, the chitosan derivatives (two types of methacrylated chitosan and three type of 

boronated chitosan) have proven to be mucoadhesive materials that will be widely explored in 

the coming decades for transmucosal application based on their superior mucoadhesive 

profile relative to unmodified chitosan and CHIGP formulations. . The zeta potential analysis of 

boronated chitosan was not carried out as its mode of interaction of boronated chitosan with 

the urothelial mucosal surfaces was predominantly via covalent linkage with sialic acid group 

on the bladder mucosa. Moreover, earlier studies have shown that positive zeta potential 

values of chitosan was reduced after boronation [6], implying that there may be diminished 

electrostatic interactions between the drug carrier and the urothelium. Their biocompatibility 

is also good and comparable to that of the parent chitosan.  
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There is a strong need to use organs from animal models that are physiologically related to 

that of humans for the clinical testing of the drug loaded transmucosal dosage forms as the 

most commonly used animals for intravesical drug delivery studies are rats and mice [18]. This 

is because lots of experiments using extracted bladder of rodents maintained in artificial urine 

cannot simulate the physiological situation in the human bladder as issues such as differences 

in the physiology of human and murine bladder; sufficient tissue perfusion and environmental 

control [19] may make it difficult to scale-up excipients appropriately to prepare effective 

dosage forms for humans. 

5.2. Future work 

The study could not cover all the aspects that must be considered when translating the drug 

carriers further towards its regulatory approval and marketing authorisation. For example, the 

cytotoxicity testing as well as cellular uptake studies of the drug loaded CHIGP in situ gelling 

systems need to be carried out on UMUC3 cells. This is to evaluate whether the drug 

containing dosage form will be readily taken up into malignant tissues as well as demonstrate 

antitumour activity on bladder cancer cells. It would be important to carry out SV-HUC-1 cell 

viability studies of boronated chitosan using MTT assay to evaluate their biocompatibility with 

bladder cells before they are further developed into intravesical dosage forms for bladder 

cancer treatment. Dosage forms such as composite systems of nanoparticles and hydrogels 

could be developed from methacrylated (MeCHI) and boronated chitosan (BCHI). MeCHI and 

BCHI could be formulated using β-glycerophosphate or Pluronic F-127 to generate in situ 

gelling dosage forms. Then, mitomycin-C loaded nanoparticles can be incorporated into the 

MeCHI and BCHI hydrogels. These delivery systems may display superior mucoadhesive profile 

relative to chitosan/β-glycerophosphate systems as the more mucoadhesive chitosan 

derivatives may enable the drug carrier to adhere onto the urothelial mucosal surfaces for 

prolonged period of time by interacting through stronger covalent bonds as in the case of 

boronated chitosan. Another possible dosage form to be developed may be methacrylated 

chitosan nanoparticles coated with boronated chitosan to improve its tumour targeting 

potential. Thus boronated chitosan could enhance covalent interaction with mucosal surfaces 

and targeted intratumour delivery while core methacrylated chitosan nanoparticles would 

sustain and prolong the covalent interaction between the drug carrier and the urothelial 

malignant tissues. 

Orthotopic mice models (implanted with human bladder tumours), established models in the 

cancer research field due to their ability to mimic disease processes in humans, and can be 



162 

 

used to study the in vivo antitumor effect of drug loaded MeCHI and BCHI based dosage forms 

[20,21].  

It will be interesting to perform in vivo biocompatibility tests for the methacrylated chitosan 

and boronated chitosan using pig models as their bladder has similar structure [19,22,23] and 

urodynamic [19,24–27] features to that of humans, to ascertain their feasibility for the 

development of dosage forms for the treatment of various grades of bladder cancer.  

Another innovative dosage form such as the use of nanocapsules to deliver two anticancer 

agents for the treatment of advanced stages of bladder cancer [28] is desirable as synergism 

may prevent drug resistance possible with monotherapy. 

Concluding remark 

Out of the studied drug delivery systems, boronated chitosan appeared to be the most 

promising in terms of its mucoadhesive profile for intravesical application. The UMUC3 cell 

cytotoxicity test of the chitosan derivative was not carried out due to time constraint. 

Nevertheless, all the studied methacrylated chitosan and CHIGP systems are still useful for 

various drug delivery applications depending on the onset and duration of action required. 

This work is indeed a valuable contribution to the plethora of advanced mucoadhesive drug 

carriers administered through the transmucosal route. Since most diseases originate from the 

mucosal surfaces of tissues and organs, these new groups of materials may be able to reduce 

the overall global disease burden. 
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Appendix 1: Chemical structures of mucoadhesive polymers: (PEO: poly(ethylene oxide), PPO: poly(propylene oxide), HPMC: hydroxypropyl methylcellulose. Biodegradable 

and synthetic (biodegradable and non-biodegradable) polymers can be used to form temperature, pH or ion sensitive gels.
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Appendix 2: Calibration curve of standard solutions of mitomycin-C (3.9 to 500 µg/mL) used to evaluate extent 

of drug release from chitosan and CHIGP samples during in vitro drug release experiment. 

 

Appendix 3: Gel permeation data for the three chitosan grades depicting their average molecular weight 

estimated using pullulan as standard. 

Parameters Low MW chitosan Medium MW chitosan High MW chitosan 

Number-average MW 

(Mn) 

18196 35088 53038 

Weight Average MW 

(Mw) 

62343 124072 370006 

Polydispersity 

(Mw/Mn) 

3.4262 3.536 6.9762 

 

y = 0.033x

R² = 0.9997

0

5

10

15

20

0 200 400 600

A
U

C
 (a

.u
)

MMC concentration (µg/mL)



 

168 

 

 

Appendix 4: Exemplar rheological profile of LCHI (red), MCHI (green) and HCHI (blue) showing the frequency-

dependent changes in the viscoelastic properties of samples maintained at 37
o
C and subjected to frequency 

ranges from 0.1 to 10 Hz, with G” consistently greater than G’ for all the studied chitosan solutions, though 

HCHI exhibited the greatest magnitude of G’ and G” values. 
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